WO2019171872A1 - 半導体装置および撮像装置 - Google Patents

半導体装置および撮像装置 Download PDF

Info

Publication number
WO2019171872A1
WO2019171872A1 PCT/JP2019/004430 JP2019004430W WO2019171872A1 WO 2019171872 A1 WO2019171872 A1 WO 2019171872A1 JP 2019004430 W JP2019004430 W JP 2019004430W WO 2019171872 A1 WO2019171872 A1 WO 2019171872A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
conductive portion
semiconductor device
diffusion layer
memory element
Prior art date
Application number
PCT/JP2019/004430
Other languages
English (en)
French (fr)
Inventor
孝司 横山
幹生 岡
泰夫 神田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/976,738 priority Critical patent/US11482548B2/en
Priority to DE112019001173.1T priority patent/DE112019001173T5/de
Priority to CN201980014306.3A priority patent/CN111788672A/zh
Publication of WO2019171872A1 publication Critical patent/WO2019171872A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Definitions

  • the present disclosure relates to a semiconductor device including a transistor and a memory element, and an imaging device including the semiconductor device.
  • CMOS Complementary Metal Oxide Semiconductor
  • MRAM MagneticoresistiveesisRandom Access Memory
  • a semiconductor device includes a transistor having a gate portion, a source portion, and a drain portion, a first conductive portion, and a second conductive portion that is electrically insulated from the first conductive portion.
  • a first memory element that is located between the source part and the first conductive part and is electrically connected to the source part and the first conductive part, and a drain part and a second conductive part, And a second memory element which is located between and electrically connected to the drain portion and the second conductive portion.
  • an imaging device as an embodiment of the present disclosure includes the semiconductor device.
  • the first storage element is connected to the source portion of the transistor and the second storage element is connected to the drain portion of the transistor. For this reason, the area which the whole occupies becomes smaller than the case where both the 1st memory element and the 2nd memory element are connected to a source part, for example.
  • the semiconductor device and the imaging device as one embodiment of the present disclosure are suitable for high integration.
  • the effect of this indication is not limited to this, Any effect of the following description may be sufficient.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. FIG. 1B is a plan view illustrating a configuration example of the semiconductor device illustrated in FIG. 1A.
  • FIG. 2B is another plan view illustrating a configuration example of the semiconductor device illustrated in FIG. 1A.
  • FIG. 1B is a circuit diagram of the semiconductor device shown in FIG. 1A. It is sectional drawing showing an example of a structure of the memory
  • FIG. 3 is a cross-sectional view illustrating an example of a configuration of each layer of the storage unit illustrated in FIG. 2.
  • FIG. 1B is an explanatory diagram for describing a method for writing first information to a first memory element of the semiconductor device illustrated in FIG. 1A.
  • FIG. 1B is an explanatory diagram for describing a method of writing second information to a first memory element of the semiconductor device illustrated in FIG. 1A.
  • FIG. 1B is an explanatory diagram for describing a method of writing first information to a second memory element of the semiconductor device illustrated in FIG. 1A.
  • FIG. 1B is an explanatory diagram for describing a method for writing second information to a second memory element of the semiconductor device illustrated in FIG. 1A. It is sectional drawing showing the example of 1 structure of the semiconductor device which concerns on 2nd Embodiment of this indication.
  • FIG. 1B is an explanatory diagram for describing a method for writing first information to a first memory element of the semiconductor device illustrated in FIG. 1A.
  • FIG. 1B is an explanatory diagram for describing a method of writing second information to a first memory element of the semiconductor device illustrated
  • FIG. 5B is a plan view illustrating a configuration example of the semiconductor device illustrated in FIG. 5A.
  • FIG. 5B is another plan view illustrating a configuration example of the semiconductor device illustrated in FIG. 5A.
  • It is a perspective view showing the example of 1 composition of the semiconductor device concerning a 3rd embodiment of this indication.
  • FIG. 6B is a cross-sectional view illustrating a configuration example of the semiconductor device illustrated in FIG. 6A.
  • FIG. 6B is a cross-sectional view illustrating a modification of the semiconductor device illustrated in FIG. 6A.
  • It is a perspective view showing typically an imaging device as an example of application provided with the semiconductor device of this indication.
  • It is sectional drawing showing the example of 1 structure of the imaging device shown to FIG. 7A.
  • FIG. 8B is a plan view illustrating a semiconductor device as a reference example illustrated in FIG. 8A.
  • 10 is an explanatory diagram for describing a method of writing second information to a first storage element of a semiconductor device as another modified example of the present disclosure.
  • FIG. 10 is an explanatory diagram for describing a method of writing first information to a first memory element of a semiconductor device as another modified example of the present disclosure.
  • First embodiment semiconductor device having two memory elements on the back side of a semiconductor substrate
  • Second embodiment semiconductor device having two memory elements on the surface side of a semiconductor substrate
  • Third embodiment semiconductor device having two memory elements on the back side of a fin-shaped semiconductor layer
  • Application example imaging device with semiconductor device and sensor device bonded together
  • FIG. 1A illustrates a cross-sectional configuration of the semiconductor device 1 according to the first embodiment of the present disclosure.
  • 1B and 1C both show a planar configuration of the semiconductor device 1.
  • FIG. 1B shows a planar configuration of the semiconductor device 1 when viewed from the main surface 10A side of the semiconductor substrate 10 described later
  • FIG. 1C shows the semiconductor device viewed from the back surface 10B side of the semiconductor substrate 10 described later.
  • 1 represents a planar configuration.
  • FIG. 1A corresponds to a cross-sectional view in the arrow direction along the IA-IA cut line shown in FIGS. 1B and 1C, respectively.
  • FIG. 1D is a circuit diagram of the semiconductor device 1.
  • the semiconductor device 1 includes a transistor 20, a bit line BL1 as a first conductive portion, and a second conductive portion electrically insulated from the bit line BL1. It has a bit line BL2, a storage element 30A as a first storage element, and a storage element 30B as a second storage element.
  • the transistor 20 includes a gate electrode 21 as a gate portion, a diffusion layer 22S as a source portion, and a diffusion layer 22D as a drain portion.
  • the storage element 30A is located between the diffusion layer 22S and the bit line BL1, and is electrically connected to the diffusion layer 22S and the bit line BL1, respectively.
  • the storage element 30B is located between the diffusion layer 22D and the bit line BL2, and is electrically connected to the diffusion layer 22D and the bit line BL2.
  • Each of the gate electrode 21, the bit line BL1, and the bit line BL2 is made of a highly conductive material such as copper (Cu), for example, and extends along the Y-axis direction (see FIG. 1B).
  • the semiconductor device 1 further includes a selection line SL2 as a third conductive portion and a selection line SL1 as a fourth conductive portion.
  • the selection line SL2 is provided on the side opposite to the storage element 30A when viewed from the diffusion layer 22S, and is electrically connected to the diffusion layer 22S.
  • the selection line SL1 is provided on the side opposite to the memory element 30B when viewed from the diffusion layer 22D, and is electrically connected to the diffusion layer 22D.
  • the selection line SL2 and the selection line SL1 are made of a highly conductive material such as copper (Cu) and extend along the Y-axis direction. (See FIG. 1C).
  • a multilayer wiring forming unit 40, an interlayer insulating layer 27, an interlayer insulating layer 26, a semiconductor substrate 10, and an insulating layer 60 are sequentially stacked on a support substrate 50.
  • the transistor 20 is provided in the vicinity of the main surface (front surface) 10 ⁇ / b> A of the semiconductor substrate 10, and the memory element 30 ⁇ / b> A and the memory element 30 ⁇ / b> B are provided on the back surface 10 ⁇ / b> B side of the semiconductor substrate 10 via the insulating layer 60.
  • the number of transistors 20 provided on the semiconductor substrate 10 is not particularly limited. One may be sufficient and two or more may be sufficient.
  • the semiconductor substrate 10 has an element region R1 in which a part of the transistor 20 is provided, and an isolation region R2 surrounding the element region R1.
  • an element isolation layer 11 formed by, for example, STI (Shallow Trench Isolation) is provided in the isolation region R2 of the semiconductor substrate 10.
  • the element isolation layer 11 is an insulating layer made of, for example, a silicon oxide film (SiO 2 ), and one surface thereof is exposed on the main surface 10 A of the semiconductor substrate 10.
  • the portion of the semiconductor substrate 10 that occupies the element region R1 is, for example, a channel region that forms part of the transistor 20 and a pair of diffusion layers 22S and 22D formed in single crystal silicon.
  • the back surface 10B of the semiconductor substrate 10 is covered with an insulating layer 60.
  • Storage elements 30A and 30B are provided on the surface of the insulating layer 60 opposite to the surface in contact with the back surface 10B, that is, the upper surface 60S of the insulating layer 60.
  • the element region R1 is provided with a contact plug P1 as a first connection portion and a contact plug P2 as a second connection portion, each extending so as to penetrate the insulating layer 60.
  • the contact plug P1 and the contact plug P2 are made of a material mainly composed of a low resistance metal such as Cu (copper), W (tungsten), or aluminum (Al). Further, a barrier metal layer made of a simple substance of Ti (titanium) or Ta (tantalum) or an alloy thereof may be provided around the low-resistance metal.
  • the contact plug P1 and the contact plug P2 are each surrounded by an insulating layer 60 and are electrically separated from each other.
  • the lower end of the contact plug P1 is in contact with a silicide region 25S described later, and the upper end of the contact plug P1 is in contact with the storage element 30A.
  • the lower end of the contact plug P2 is in contact with a silicide region 25D described later, and the upper end of the contact plug P2 is in contact with the storage element 30B.
  • the storage element 30A is electrically connected to the silicide region 25S in the source region via the contact plug P1
  • the storage element 30B is electrically connected to the silicide region 25D in the drain region via the contact plug P2. It is connected to the.
  • the contact plug P1 and the contact plug P2 have a shape in which each occupied area gradually increases, for example, from the silicide regions 25S and 25D toward the storage elements 30A and 30B.
  • the transistor 20 is a transistor for selecting the memory elements 30A and 30B, and is, for example, a planar transistor having a gate electrode 21 and a pair of diffusion layers 22S and 22D that become a source region and a drain region.
  • the gate electrode 21 is connected to the word lines WL of the storage elements 30A and 30B.
  • the gate electrode 21 is provided on the main surface 10 ⁇ / b> A of the semiconductor substrate 10. However, a gate insulating film 23 made of a silicon oxide film or the like is provided between the gate electrode 21 and the semiconductor substrate 10. On the side surface of the gate electrode 21, a sidewall 24 made of a laminated film of, for example, a silicon oxide film 24A and a silicon nitride film 24B is provided.
  • the pair of diffusion layers 22S and 22D is formed, for example, by diffusing impurities in silicon.
  • the diffusion layer 22S corresponds to the source region
  • the diffusion layer 22D corresponds to the drain region.
  • the pair of diffusion layers 22S and 22D are provided with a channel region facing the gate electrode 21 in the semiconductor substrate 10 interposed therebetween.
  • Silicide regions 25S and 25D made of a metal silicide such as NiSi (nickel silicide) or CoSi (cobalt silicide) are provided in part of the diffusion layers 22S and 22D, respectively.
  • the silicide regions 25S and 25D reduce contact resistance between connection layers 28A to 28D, which will be described later, and diffusion layers 22S and 22D.
  • the thickness of the diffusion layers 22S and 22D and the thickness of the silicide regions 25S and 25D are preferably smaller than the thickness of the element isolation layer 11.
  • word lines WL and selection lines SL1, SL2 are embedded.
  • Connection layers 28A to 28C are provided so as to penetrate the interlayer insulating layers 26 and 27.
  • the gate electrode 21 is connected to the word line WL via the connection layer 28C.
  • the silicide region 25S of the diffusion layer 22S serving as the source region is connected to the selection line SL2 via a connection layer 28A serving as a source electrode.
  • the silicide region 25D of the diffusion layer 22D serving as the drain region is connected to the selection line SL1 via the connection layer 28B as the drain electrode.
  • connection layer 28A is a specific example corresponding to the “third connection portion” of the present disclosure
  • connection layer 28B is a specific example corresponding to the “fourth connection portion” of the present disclosure.
  • the selection line SL2 is connected to a via V1 of a later-described wiring group 40A
  • the selection line SL1 is connected to a via V1 of a later-described wiring group 40B.
  • the multilayer wiring forming unit 40 is, for example, one in which wiring groups 40A and 40B are provided in an interlayer insulating layer 41, an interlayer insulating layer 42, an interlayer insulating layer 43, and an interlayer insulating layer 44 that are stacked in order from the side closer to the transistor 20. .
  • Each of the wiring groups 40A and 40B has a structure in which a metal layer M1, a metal layer M2, a metal layer M3, and a metal layer M4 are stacked.
  • the metal layer M1 is embedded in the interlayer insulating layer 41
  • the metal layer M2 is embedded in the interlayer insulating layer 42
  • the metal layer M3 is embedded in the interlayer insulating layer 43
  • the metal layer M4 is embedded in the interlayer insulating layer 44.
  • the wiring groups 40A and 40B further have vias V1 to V4.
  • the metal layer M1 and the metal layer M2 are connected by a via V2 that penetrates the interlayer insulating layer.
  • the metal layer M2 and the metal layer M3 are connected by a via V3 penetrating the interlayer insulating layer 43
  • the metal layer M3 and the metal layer M4 are connected by a via V4 penetrating the interlayer insulating layer 44.
  • the wiring group 40A is connected to the silicide region 25S in the diffusion layer 22S as the source region via the via V1, the selection line SL2, and the connection layer 28A.
  • the wiring group 40B is connected to the silicide region 25D in the diffusion layer 22D, which is the drain region, via the via V1, the selection line SL1, and the connection layer 28B.
  • the configuration of the multilayer wiring forming unit 40 shown in FIG. 1A is an example, and the present invention is not limited to this.
  • the multilayer wiring forming portion 40 is bonded to the support substrate 50.
  • the support substrate 50 is a substrate made of, for example, single crystal silicon.
  • the material of the support substrate 50 is not particularly limited, and may be composed of other materials such as SiO 2 or glass in addition to single crystal silicon.
  • the insulating layer 60 is provided so as to cover the semiconductor substrate 10.
  • the insulating layer 60 is, for example, a High-K (high dielectric constant) film that can be formed at a low temperature, that is, Hf oxide, Al 2 O 3 , Ru (ruthenium) oxide, Ta oxide, Al, Ru, Ta, or Hf.
  • a first layer made of an oxide containing Si and Si, a nitride containing Al, Ru, Ta or Hf and Si, or an oxynitride containing Al, Ru, Ta or Hf and Si;
  • a laminated structure of a second layer containing SiO 2 and a third layer made of a material (Low-K) having a dielectric constant lower than that of SiO 2 may be used.
  • Each of the memory element 30A and the memory element 30B has a stacked structure in which, for example, a conductive layer 31 as a lower electrode, a storage unit 32, and a conductive layer 33 as an upper electrode are sequentially stacked.
  • the conductive layer 31 of the memory element 30A is connected to the silicide region 25S via the contact plug P1.
  • the conductive layer 31 of the memory element 30B is connected to the silicide region 25D via the contact plug P2.
  • a back surface interlayer film 71 is provided around the memory element 30A and the memory element 30B.
  • Examples of the material for the back surface interlayer film 71 include SiO 2 and Low-K (low dielectric constant) films.
  • the upper surface of the conductive layer 33 in the memory element 30A is in contact with the lower surface of the bit line BL1, and the upper surface of the conductive layer 33 in the memory element 30B is in contact with the lower surface of the bit line BL2.
  • the periphery of the bit line BL1 and the bit line BL2 is filled with an insulating layer 72.
  • the storage unit 32 in the storage element 30 stores information by reversing the direction of magnetization of a storage layer to be described later by spin injection, for example, a spin injection magnetization reversal storage element (STT-MTJ; Spin Transfer Torque-Magnetic Tunnel). Junctions).
  • STT-MTJ spin injection magnetization reversal storage element
  • the STT-MTJ is promising as a non-volatile memory that replaces a volatile memory because it can perform high-speed writing and reading.
  • the conductive layer 31 and the conductive layer 33 are made of a metal material such as Cu, Ti, W, or Ru, for example.
  • the conductive layer 31 and the conductive layer 33 are preferably composed of a metal other than the constituent material of the base layer 32A or the cap layer 32E described later, mainly Cu, Al, and W.
  • the conductive layer 31 and the conductive layer 33 can also be configured by Ti, TiN (titanium nitride), Ta, TaN (tantalum nitride), W, Cu, Al, and a laminated structure thereof.
  • FIG. 2 shows an example of the configuration of the storage unit 32.
  • the storage unit 32 has a configuration in which, for example, a base layer 32A, a magnetization fixed layer 32B, an insulating layer 32C, a storage layer 32D, and a cap layer 32E are stacked in order from the side closer to the conductive layer 31. That is, the memory element 30 has a bottom pin structure having the magnetization fixed layer 32B, the insulating layer 32C, and the memory layer 32D in this order from the bottom to the top in the stacking direction.
  • Information is stored by changing the direction of the magnetization M32D of the storage layer 32D having uniaxial anisotropy.
  • Information “0” or “1” is defined by the relative angle (parallel or antiparallel) between the magnetization M32D of the storage layer 32D and the magnetization M32B of the magnetization fixed layer 32B.
  • the base layer 32A and the cap layer 32E are made of a metal film such as Ta or Ru or a laminated film thereof.
  • the magnetization fixed layer 32B is a reference layer used as a reference for storage information (magnetization direction) of the storage layer 32D, and is composed of a ferromagnetic material having a magnetic moment in which the direction of the magnetization M32B is fixed in the direction perpendicular to the film surface. Yes.
  • the magnetization fixed layer 32B is made of, for example, Co—Fe—B.
  • the direction of the magnetization M32B of the magnetization fixed layer 32B is not desirably changed by writing or reading, but it is not necessarily fixed in a specific direction. This is because the direction of the magnetization M32B of the magnetization fixed layer 32B may be made harder to move than the direction of the magnetization M32D of the storage layer 32D. For example, the magnetization fixed layer 32B may have a larger coercive force, a larger magnetic film thickness, or a larger magnetic damping constant than the storage layer 32D.
  • an antiferromagnetic material such as PtMn or IrMn may be provided in contact with the magnetization fixed layer 32B.
  • a nonmagnetic material such as Ru. Good.
  • the insulating layer 32C is an intermediate layer that becomes a tunnel barrier layer (tunnel insulating layer), and is made of, for example, aluminum oxide or magnesium oxide (MgO). Among these, the insulating layer 32C is preferably made of magnesium oxide.
  • the magnetoresistance change rate (MR ratio) can be increased, the efficiency of spin injection can be improved, and the current density for reversing the direction of the magnetization M32D of the storage layer 32D can be reduced.
  • the memory layer 32D is made of a ferromagnetic material having a magnetic moment in which the direction of the magnetization M32D freely changes in the direction perpendicular to the film surface.
  • the storage layer 32D is made of, for example, Co—Fe—B.
  • FIG. 3 shows an example of the configuration of each layer of the storage unit 32 in more detail.
  • the base layer 32A has a configuration in which a Ta layer having a thickness of 3 nm and a Ru film having a thickness of 25 nm are stacked in order from the side closer to the conductive layer 31.
  • the magnetization fixed layer 32B includes, for example, a Pt layer having a thickness of 5 nm, a Co layer having a thickness of 1.1 nm, a Ru layer having a thickness of 0.8 nm, and a (Co20Fe80) 80B20 layer having a thickness of 1 nm in order from the side closer to the conductive layer 31. Are stacked.
  • the insulating layer 32C has a configuration in which, for example, an Mg layer having a thickness of 0.15 nm, an MgO layer having a thickness of 1 nm, and an Mg layer having a thickness of 0.15 nm are stacked in order from the side closer to the conductive layer 31.
  • the memory layer 32D has, for example, a thickness t of 1.2 to 1.7 nm and is composed of a (Co20Fe80) 80B20 layer.
  • the cap layer 32E has, for example, a structure in which a Ta layer with a thickness of 1 nm, a Ru layer with a thickness of 5 nm, and a Ta layer with a thickness of 3 nm are stacked in order from the side closer to the conductive layer 31.
  • the semiconductor device 1 further includes a control unit CTRL (FIG. 3).
  • the control unit CTRL controls each potential of the selection line SL1, the selection line SL2, the bit line BL1, the bit line BL2, and the word line WL.
  • the storage layer 32D of the storage element 30A and the storage layer of the storage element 30B are selected in accordance with the magnitude relationship between the potentials of the selection line SL1, the selection line SL2, the bit line BL1, the bit line BL2, and the word line WL.
  • Information writing to 32D is performed.
  • the potentials of the selection line SL1, the selection line SL2, the bit line BL1, the bit line BL2, and the word line WL are controlled by the control unit CTRL (FIG. 3).
  • the control unit CTRL sets the potential of the bit line BL1 to the first potential (for example, Low) and sets the potential of the selection line SL1 to a second level higher than the first potential. Potential (High).
  • the control unit CTRL sets the potential of the gate electrode 21, that is, the word line WL to the second potential, the potential of the bit line BL2 and the potential of the selection line SL2, the potential of the bit line BL1, the potential of the selection line SL1 and The third potential independent from the potential of the word line WL is maintained.
  • control unit CTRL causes the potential of the bit line BL2 and the potential of the selection line SL2 to be in a floating state.
  • the control unit CTRL may perform floating control on the potential of the bit line BL2 and the potential of the selection line SL2 by a high impedance circuit (Hi-Z circuit) included therein.
  • Hi-Z circuit high impedance circuit
  • the control unit CTRL sets the potential of the bit line BL1 to the second potential and sets the potential of the selection line SL1 to the first potential.
  • the electrons e ⁇ flow in the direction of the arrow, and the second information “0” is written to the storage layer 32D of the storage element 30A.
  • the control unit CTRL uses the gate electrode 21, that is, the potential of the word line WL as the second potential, the potential of the bit line BL2 and the potential of the selection line SL2, the potential of the bit line BL1, and the potential of the selection line SL1.
  • the potential is maintained at a third potential independent of the potential of the word line WL. That is, the control unit CTRL causes the potential of the bit line BL2 and the potential of the selection line SL2 to be in a floating state.
  • the control unit CTRL sets the potential of the bit line BL2 to the first potential and sets the potential of the selection line SL2 to the second potential.
  • the electrons e ⁇ flow in the direction of the arrow, and the first information “1” is written to the storage layer 32D of the storage element 30B.
  • the potential of the gate electrode 21, that is, the word line WL is set to the second potential
  • the potential of the bit line BL1 and the potential of the selection line SL1 are set to the potential of the bit line BL2, the potential of the selection line SL2, and the potential of the word line WL.
  • the control unit CTRL maintains the potential of the bit line BL1 and the potential of the selection line SL1 in a floating state.
  • the control unit CTRL sets the potential of the bit line BL2 to the second potential and the potential of the selection line SL2 to the first potential.
  • the electrons e ⁇ flow in the direction of the arrow, and the second information “0” is written into the storage layer 32D of the storage element 30B.
  • the potential of the gate electrode 21, that is, the word line WL is set to the second potential, and the potential of the bit line BL1 and the potential of the selection line SL1 are maintained at the fourth potential. That is, the control unit CTRL maintains the potential of the bit line BL1 and the potential of the selection line SL1 in a floating state.
  • a current is applied in the direction perpendicular to the film surface of the storage section 32 in accordance with the magnitude relationship between the potentials of the selection line SL1, the selection line SL2, the bit line BL1, the bit line BL2, and the word line WL, and spin torque magnetization reversal occurs.
  • the direction of the magnetization M32D of the storage layer 32D is made parallel or anti-parallel to the magnetization M32B of the magnetization fixed layer 32B, thereby changing the resistance value of the storage unit 32 and writing information.
  • a magnetic layer (not shown) serving as a reference for information is provided in the storage layer 32D via a thin insulating film, and the ferromagnetic tunnel flows through the insulating layer 32C. It is possible to read by current. Moreover, you may read by a magnetoresistive effect.
  • the storage element 30 ⁇ / b> A is connected to the source region of the transistor 20 and the storage element 30 ⁇ / b> B is connected to the drain region of the transistor 20. For this reason, the area which the whole semiconductor device 1 occupies becomes smaller than the case where both the memory element 30A and the memory element 30B are connected to the source region, for example.
  • the semiconductor device 1001 as a reference example shown in FIGS. 8A and 8B both the two storage elements 1030A and 1030B located in the same layer are connected to the source region. In this case, a larger element region R1001 is required.
  • FIG. 8A is a cross-sectional view illustrating a configuration example of a semiconductor device 1001 as a reference example, and FIG. 8B illustrates a planar configuration example of the semiconductor device 1001.
  • FIG. 8A corresponds to a cross section in the direction of the arrow along the VIIIA-VIIIA cutting line shown in FIG. 8B.
  • the transistor 20 and the memory elements 30A and 30B can be compactly arranged in the narrower element region R1. Therefore, as a whole semiconductor device 1, more transistors 20 and storage elements 30A and 30B can be accommodated in a limited region, so that high integration can be achieved. Further, during normal use, for example, writing to and reading from the storage element 30A is performed, and if an abnormality occurs in the storage element 30A, writing to and reading from the storage element 30B are performed, thereby providing redundancy. Can be achieved. That is, the operational reliability of the semiconductor device 1 can be improved.
  • the memory elements 30A and 30B are provided on the back surface 10B side of the semiconductor substrate 10, for example, the influence of heat generated in the process of manufacturing the transistor 20 and the wiring layer is affected by the memory element. It is possible to avoid reaching 30A and 30B.
  • FIG. 5A illustrates a cross-sectional configuration of the semiconductor device 2 according to the second embodiment of the present disclosure.
  • 5B and 5C both show a planar configuration of the semiconductor device 2.
  • FIG. 5B shows a planar configuration of the semiconductor device 2 when viewed from the main surface 10A side of the semiconductor substrate 10
  • FIG. 5C shows a planar configuration of the semiconductor device 2 when viewed from the back surface 10B side of the semiconductor substrate 10.
  • FIG. 5A corresponds to a cross-sectional view in the direction of the arrows along the VA-VA cutting line shown in FIGS. 5B and 5C, respectively.
  • the memory element 30A and the memory element 30B are disposed on the back surface 10B side of the semiconductor substrate 10 opposite to the main surface 10A on which the transistor 20 is provided via the insulating layer 60. It is intended to be provided.
  • the memory element 30A and the memory element 30B are provided on the main surface 10A side of the semiconductor substrate 10 where the transistor 20 is provided.
  • the same reference numerals are given to the components corresponding to the semiconductor device 1 of the first embodiment.
  • the storage element 30A and the selection line SL2 are arranged at positions where they are interchanged with each other, and the storage element 30B and the selection line SL1 are interchanged with each other. It is arranged at each position. That is, the selection line SL2 and the selection line SL1 are provided on the upper surface 60S of the insulating layer 60, the lower surface of the selection line SL2 is in contact with the contact plug P1, and the lower surface of the selection line SL1 is in contact with the contact plug P2.
  • the memory element 30A and the memory element 30B are embedded in the interlayer insulating layer 27, the memory element 30A is in contact with the lower surface of the connection layer 28A, and the memory element 30B is in contact with the lower surface of the connection layer 28B.
  • the bit line BL1 is arranged instead of the metal layer M4 in the wiring group 40A of the semiconductor device 1
  • the bit line BL2 is arranged instead of the metal layer M4 in the wiring group 40B of the semiconductor device 1. . That is, both the bit line BL1 and the bit line BL2 are provided on the support substrate 50, and the upper surface thereof is in contact with the lower surface of the via V4 and is embedded in the interlayer insulating layer 44.
  • the same effect as the semiconductor device 1 of the first embodiment can be obtained. That is, in the semiconductor device 2, the storage element 30 ⁇ / b> A is connected to the source region of the transistor 20 and the storage element 30 ⁇ / b> B is connected to the drain region of the transistor 20. For this reason, the area occupied by the entire semiconductor device 2 is smaller than, for example, when both the storage element 30A and the storage element 30B are connected to the source region. Therefore, more transistors 20 and memory elements 30A and 30B can be arranged in a narrower region, and high integration can be achieved.
  • the contact plugs P1, P2 and the selection lines SL1, SL2, etc. are provided on the back surface 10B side. It is sufficient to place only the wiring. That is, the formation process on the back surface 10B side can be simplified. Further, in the semiconductor device 2, since the memory element 30A and the memory element 30B are embedded in the interlayer insulating layer 27 provided with the transistor 20, the entire semiconductor device 2 is compared with the semiconductor device 1 of the first embodiment. Easy to reduce the thickness.
  • FIG. 6A is a perspective view illustrating a configuration of a semiconductor device 3 according to the third embodiment of the present disclosure.
  • FIG. 6B shows the configuration of the semiconductor device 3, and corresponds to a cross section in the direction of the arrow along the VIB-VIB cutting line shown in FIG. 6A.
  • the semiconductor device 3 has the same configuration as the semiconductor device 1 except that the semiconductor device 3 includes a transistor 80 instead of the transistor 20.
  • the transistor 80 is embedded in an element formation layer 80A provided between the support substrate 50 and the semiconductor substrate 13 made of, for example, silicon.
  • the semiconductor substrate 13 has a surface 13A facing the element forming layer 80A and a back surface 13B located on the opposite side.
  • the transistor 80 is provided on the surface 13A side of the semiconductor substrate 13.
  • Storage elements 30A and 30B are provided on the back surface 13B side.
  • components corresponding to those of the semiconductor device 1 of the first embodiment will be described with the same reference numerals.
  • the transistor 80 is, for example, a fin field effect transistor (Fin-FET) having a fin 81 made of Si (silicon) and a gate electrode 82G, a source electrode 82S, and a drain electrode 82D.
  • Fin-FET fin field effect transistor
  • the gate electrode 82G also serves as the word line WL of the memory element 30A and the memory element 30B.
  • the fins 81 have a flat plate shape, and a plurality of fins 81 are erected on the semiconductor substrate 13 made of, for example, silicon.
  • the plurality of fins 81 extend in the X-axis direction and are arranged in the Y-axis direction.
  • FIGS. 6A and 6B illustrate only one fin 81.
  • the cross section orthogonal to the X-axis direction in the fin 81, that is, the YZ cross section has a trapezoidal shape, for example.
  • the gate electrode 82G, the source electrode 82S, and the drain electrode 82D are all extended so as to straddle the fin 81 in the Y-axis direction intersecting with the extending direction of the fin 81.
  • the gate electrode 82 ⁇ / b> G, the source electrode 82 ⁇ / b> S, and the drain electrode 82 ⁇ / b> D all cover a surface other than the back surface of the fin 81, that is, a surface other than the surface where the fin 81 contacts the semiconductor substrate 13.
  • the source electrode 82S is connected to the selection line SL2 at its upper end
  • the drain electrode 82D is connected to the selection line SL1 at its upper end.
  • the description of the selection line SL1 and the selection line SL2 is omitted to avoid complexity.
  • the fin 81 includes impurity diffusion regions 83S and 83D functioning as a source region and a drain region in the vicinity of the back surface thereof, and the impurity diffusion region 83S is connected to the memory element 30A via the contact plug P1. At the same time, the impurity diffusion region 83D is connected to the storage element 30B via the contact plug P2.
  • the transistor 80 which is a Fin-FET having a high current drive capability, is mounted and used as a selection transistor for the storage element 30A and the storage element 30B, so that high-speed reading / writing is possible. Become.
  • FIG. 6C is a cross-sectional view illustrating a configuration of a semiconductor device 3A as a modified example of the present embodiment, and corresponds to FIG. 6B.
  • the memory elements 30A and 30B are provided on the back surface 13B side of the semiconductor substrate 13.
  • the memory elements 30A and 30B are provided on the surface 13A side of the semiconductor substrate 13. Also in such a semiconductor device 3A, the same effect as that of the semiconductor device 3 of the third embodiment can be expected.
  • FIG. 7A illustrates a schematic configuration of the imaging device 101 in which the sensor device 100 and the semiconductor device 200 are bonded together.
  • the semiconductor device 200 the semiconductor devices 1 to 3 in the first to third embodiments described above can be used.
  • the imaging apparatus 101 is, for example, a stacked type image sensor device in which the sensor apparatus 100 is stacked on the semiconductor apparatus 200.
  • a pixel unit 110 is formed in the sensor device 100.
  • the semiconductor device 200 is provided with a logic circuit 210 and a memory unit 220.
  • unit pixels are two-dimensionally arranged.
  • a back-illuminated imaging element imaging element 110S, see FIG. 2
  • charges obtained by photoelectric conversion of the imaging element 110S are FD (floating diffusion).
  • Transfer transistor a reset transistor for resetting the potential of the FD portion
  • an amplifying transistor for outputting a signal corresponding to the potential of the FD portion, and the like.
  • the semiconductor device 200 is provided with a logic circuit 210 such as a control circuit for controlling the operation of the image sensor 110S, and non-volatile memory elements (memory elements 30A and 30B) constituting the memory unit 220.
  • a logic circuit 210 such as a control circuit for controlling the operation of the image sensor 110S
  • non-volatile memory elements memory elements 30A and 30B constituting the memory unit 220.
  • a circuit having an image processing function or an analog signal output from a unit pixel provided in the pixel unit is converted into a digital signal and output.
  • An ADC (Analog digital converter) circuit or the like may be mounted.
  • FIG. 7B illustrates an example of a specific cross-sectional configuration of the imaging apparatus 101 illustrated in FIG. 7A.
  • the sensor device 100 in the imaging device 101 is provided with the imaging element 110S as described above.
  • the imaging element 110S is formed by laminating a planarization layer 114, a color filter 115, and a microlens 116 in this order on a semiconductor substrate 113 in which a photodiode 113A and a transistor 113B are embedded.
  • a protective layer 117 is provided on the microlens 116 of the image sensor 110 ⁇ / b> S, and a glass substrate 118 is disposed on the protective layer 117.
  • the sensor device 100 includes a conductive film 111 made of Cu, for example, and an insulating layer 112 occupying the periphery of the conductive film 111 in the lowermost layer (a surface facing the semiconductor device 200).
  • the lower surface of the conductive film 111 is connected to a connection layer P ⁇ b> 3 provided in the uppermost layer of the semiconductor device 200.
  • the connection layer P3 is made of, for example, copper, and its periphery is occupied by the insulating layer 73.
  • the semiconductor devices 1 to 3 in the first to third embodiments are applied as the semiconductor device 200, so that high integration is achieved. Can do.
  • the configurations of the transistors 20 and 80 and the storage elements 30A and 30B are specifically described. However, it is not necessary to include all the components, and further include other components. It may be.
  • the transistor 20 is an NMOS transistor
  • the semiconductor device 1A shown in FIGS. 9A and 9B includes a PMOS transistor 20A.
  • the potential of the bit line BL1 is set to a first potential (eg, Low)
  • the potential of the selection line SL1 is set to a second potential (High) higher than the first potential.
  • the electrons e ⁇ flow in the direction of the arrow, and the second information “0” is written to the storage layer 32D of the storage element 30A.
  • FIG. 9A the potential of the bit line BL1 is set to a first potential (eg, Low)
  • the potential of the selection line SL1 is set to a second potential (High) higher than the first potential.
  • the electrons e ⁇ flow in the direction of the arrow, and the second information “0” is written to the storage layer 32D of the storage element 30A.
  • FIG. 9A the potential of the bit line BL1 is set to a first potential (eg, Low)
  • the memory element has been described with a bottom pin structure.
  • a memory element with a top pin structure may be employed.
  • the top pin structure here refers to a structure in which a storage layer, an insulating layer, and a magnetization fixed layer are stacked in this order from the bottom to the top in the stacking direction.
  • the behavior is opposite to the behavior when the memory element has a bottom pin structure (High and Low written to the memory element are reversed).
  • this technique can take the following structures. (1) A transistor having a gate portion, a first diffusion layer and a second diffusion layer; A first conductive portion; A second conductive portion electrically insulated from the first conductive portion; A first memory element located between the first diffusion layer and the first conductive portion and electrically connected to the first diffusion layer and the first conductive portion, And a second memory element that is located between the second diffusion layer and the second conductive portion and electrically connected to the second diffusion layer and the second conductive portion, respectively. apparatus.
  • a third conductive portion provided on the side opposite to the first memory element as viewed from the first diffusion layer and electrically connected to the first diffusion layer;
  • the fourth conductive portion according to (1) further comprising: a fourth conductive portion that is provided on the opposite side of the second storage element as viewed from the second diffusion layer and is electrically connected to the second diffusion layer.
  • (4) The gate device and the first to fourth conductive portions all extend along a first direction.
  • a semiconductor substrate including a first surface on which the gate portion is provided and a second surface located on the opposite side of the first surface;
  • the first diffusion layer constitutes a part of the semiconductor substrate in the vicinity of the first surface;
  • the semiconductor device according to any one of (1) to (4), wherein the second diffusion layer forms another part of the semiconductor substrate in the vicinity of the first surface.
  • a second insulating layer covering the first surface of the semiconductor substrate; A third conductive portion and a fourth conductive portion provided on the opposite side of the second surface when viewed from the second insulating layer; A third connecting portion that penetrates through the second insulating layer and electrically connects the first diffusion layer and the third conductive portion;
  • the potential of the first conductive portion is a first potential
  • the potential of the fourth conductive portion is a second potential higher than the first potential
  • the potential of the gate portion is the second potential.
  • the potential of the second conductive portion and the potential of the third conductive portion are independent of any of the potential of the first conductive portion, the potential of the fourth conductive portion, and the potential of the gate portion.
  • the first information is written to the first memory element
  • the potential of the first conductive portion is the second potential
  • the potential of the fourth conductive portion is the first potential
  • the potential of the gate portion is the second potential
  • the second conductive portion is the second potential.
  • the controller is The semiconductor device according to (8), further including a potential control circuit capable of maintaining the potential of the second conductive portion and the potential of the third conductive portion at the third potential.
  • the potential of the second conductive portion is a first potential
  • the potential of the third conductive portion is a second potential higher than the first potential
  • the potential of the gate portion is the second potential.
  • the potential of the first conductive part and the potential of the fourth conductive part are independent of any of the potential of the second conductive part, the potential of the third conductive part, and the potential of the gate part.
  • the first information is written to the second memory element by setting the potential to 4;
  • the second conductive portion is set to the second potential, the third conductive portion is set to the first potential, the gate portion is set to the second potential, and the first conductive portion is set.
  • a control unit that controls to write the second information to the second memory element by setting the potential of the part and the potential of the fourth conductive part to be the fourth potential (7) The semiconductor device described.
  • the controller is The semiconductor device according to (10), further including a potential control circuit capable of maintaining the potential of the first conductive portion and the potential of the fourth conductive portion at the fourth potential.
  • a first insulating layer covering the first surface of the semiconductor substrate; A first connecting portion and a second connecting portion that respectively penetrate the first insulating layer; A third conductive portion provided on the opposite side of the first surface as viewed from the first insulating layer and electrically connected to the first diffusion layer via the first connection portion; A fourth conductive portion provided on the opposite side of the first surface as viewed from the first insulating layer and electrically connected to the second diffusion layer via the second connection portion;
  • the first conductive portion is provided on the side opposite to the second insulating layer as viewed from the first memory element, and is electrically connected to the first diffusion layer via the third connection portion.
  • the second conductive portion is provided on the side opposite to the second insulating layer when viewed from the second memory element, and is electrically connected to the second diffusion layer through the fourth connection portion.
  • a fin comprising a semiconductor material stretched in a second direction intersecting the first direction;
  • the first memory element and the second memory element are respectively connected to the back surface of the fin;
  • a semiconductor device An image pickup device stacked on the semiconductor device, and
  • the semiconductor device includes: A transistor having a gate portion, a first diffusion layer and a second diffusion layer; A first conductive portion; A second conductive portion electrically insulated from the first conductive portion; A first memory element located between the first diffusion layer and the first conductive portion and electrically connected to the first diffusion layer and the first conductive portion, A second memory element that is located between the second diffusion layer and the second conductive portion and is electrically connected to the second diffusion layer and the second conductive portion, respectively.
  • a transistor having a gate portion, a first diffusion layer and a second diffusion layer
  • a first conductive portion A second conductive portion electrically insulated from the first conductive portion
  • a first memory element located between the first diffusion layer and the first conductive portion and electrically connected to the first diffusion layer and the first conductive portion
  • a second memory element that is located between the second diffusion layer and the second conductive portion and is electrically connected to the second diffusion layer and the second conductive portion, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

高集積化に適した構造の半導体装置を提供する。この半導体装置は、ゲート部、第1の拡散層および第2の拡散層を有するトランジスタと、第1の導電部と、その第1の導電部と電気的に絶縁された第2の導電部と、第1の拡散層と第1の導電部との間に位置すると共に第1の拡散層および第1の導電部とそれぞれ電気的に接続された第1の記憶素子と、第2の拡散層と第2の導電部との間に位置すると共に第2の拡散層および第2の導電部とそれぞれ電気的に接続された第2の記憶素子とを有する。

Description

半導体装置および撮像装置
 本開示は、トランジスタと記憶素子とを有する半導体装置、およびその半導体装置を備えた撮像装置に関する。
 従来、CMOS(Complementary Metal Oxide Semiconductor)トランジスタを含む半導体集積回路において、その高集積化や動作速度の高速化が検討されている。近年では、低消費電力の観点から揮発性メモリから不揮発性メモリへの転換が検討されており、例えばMRAM(Magnetoresistive Random Access Memory)の開発が進められている(例えば特許文献1参照)。
国際公開2007/066407号公報
 ところで、このような半導体集積回路を有する半導体装置においては、さらなる高集積化が求められている。したがって、高集積化に適した構造を有する半導体装置およびその半導体装置を備えた撮像装置を提供することが望ましい。
 本開示の一実施形態としての半導体装置は、ゲート部、ソース部およびドレイン部を有するトランジスタと、第1の導電部と、その第1の導電部と電気的に絶縁された第2の導電部と、ソース部と第1の導電部との間に位置すると共にソース部および第1の導電部とそれぞれ電気的に接続された第1の記憶素子と、ドレイン部と第2の導電部との間に位置すると共にドレイン部および第2の導電部とそれぞれ電気的に接続された第2の記憶素子とを有する。また、本開示の一実施形態としての撮像装置は、上記半導体装置を備えたものである。
 本開示の一実施形態としての半導体装置および撮像装置では、トランジスタにおけるソース部に第1の記憶素子を接続すると共にトランジスタにおけるドレイン部に第2の記憶素子を接続するようにした。このため、全体が占める面積は、例えばソース部に第1の記憶素子および第2の記憶素子の双方を接続する場合よりも小さくなる。
 本開示の一実施形態としての半導体装置および撮像装置によれば、高集積化に適する。なお、本開示の効果はこれに限定されるものではなく、以下の記載のいずれの効果であってもよい。
本開示の第1の実施の形態に係る半導体装置の一構成例を表す断面図である。 図1Aに示した半導体装置の一構成例を表す平面図である。 図1Aに示した半導体装置の一構成例を表す他の平面図である。 図1Aに示した半導体装置における回路図である。 図1Aに示した記憶素子の記憶部の構成の一例を表す断面図である。 図2に示した記憶部の各層の構成の一例を表す断面図である。 図1Aに示した半導体装置の第1の記憶素子に第1の情報を書き込む方法を説明するための説明図である。 図1Aに示した半導体装置の第1の記憶素子に第2の情報を書き込む方法を説明するための説明図である。 図1Aに示した半導体装置の第2の記憶素子に第1の情報を書き込む方法を説明するための説明図である。 図1Aに示した半導体装置の第2の記憶素子に第2の情報を書き込む方法を説明するための説明図である。 本開示の第2の実施の形態に係る半導体装置の一構成例を表す断面図である。 図5Aに示した半導体装置の一構成例を表す平面図である。 図5Aに示した半導体装置の一構成例を表す他の平面図である。 本開示の第3の実施の形態に係る半導体装置の一構成例を表す斜視図である。 図6Aに示した半導体装置の構成例を表す断面図である。 図6Aに示した半導体装置の変形例を表す断面図である。 本開示の半導体装置を備えた適用例としての撮像装置を模式的に表す斜視図である。 図7Aに示した撮像装置の一構成例を表す断面図である。 参考例としての半導体装置の一構成例を表す断面図である。 図8Aに示した参考例としての半導体装置を表す平面図である。 本開示のその他の変形例としての半導体装置の第1の記憶素子に第2の情報を書き込む方法を説明するための説明図である。 本開示のその他の変形例としての半導体装置の第1の記憶素子に第1の情報を書き込む方法を説明するための説明図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(半導体基板の裏面側に2つの記憶素子を有する半導体装置)
2.第2の実施の形態(半導体基板の表面側に2つの記憶素子を有する半導体装置)
3.第3の実施の形態(フィン形状の半導体層の裏面側に2つの記憶素子を有する半導体装置)
4.適用例(半導体装置とセンサ装置とを貼り合わせた撮像装置)
5.その他の変形例
<第1の実施の形態>
[半導体装置1の構成]
 図1Aは、本開示の第1の実施の形態としての半導体装置1の断面構成を表したものである。また、図1Bおよび図1Cは、いずれも半導体装置1の平面構成を表す。但し、図1Bは、後述する半導体基板10の主面10A側から眺めたときの半導体装置1の平面構成を表し、図1Cは、後述する半導体基板10の裏面10B側から眺めたときの半導体装置1の平面構成を表す。図1Aは、図1Bおよび図1Cにそれぞれ示したIA-IA切断線に沿った矢視方向の断面図に相当する。さらに、図1Dは、半導体装置1における回路図である。
 図1A~1Dに示したように、この半導体装置1は、トランジスタ20と、第1の導電部としてのビット線BL1と、そのビット線BL1と電気的に絶縁された第2の導電部としてのビット線BL2と、第1の記憶素子としての記憶素子30Aと、第2の記憶素子としての記憶素子30Bとを有する。トランジスタ20は、ゲート部としてのゲート電極21と、ソース部としての拡散層22Sと、ドレイン部としての拡散層22Dとを有する。記憶素子30Aは、拡散層22Sとビット線BL1との間に位置すると共に、それら拡散層22Sおよびビット線BL1とそれぞれ電気的に接続されている。記憶素子30Bは、拡散層22Dとビット線BL2との間に位置すると共に、それら拡散層22Dおよびビット線BL2とそれぞれ電気的に接続されている。また、ゲート電極21、ビット線BL1およびビット線BL2は、いずれも、例えば銅(Cu)などの高導電材料からなり、Y軸方向に沿って延在している(図1B参照)。
 半導体装置1は、第3の導電部としての選択線SL2と、第4の導電部としての選択線SL1とをさらに有している。選択線SL2は、拡散層22Sから見て記憶素子30Aと反対側に設けられ、拡散層22Sと電気的に接続されている。選択線SL1は、拡散層22Dから見て記憶素子30Bと反対側に設けられ、拡散層22Dと電気的に接続されている。また、選択線SL2および選択線SL1も、ゲート電極21、ビット線BL1およびビット線BL2と同様に、例えば銅(Cu)などの高導電材料からなり、Y軸方向に沿って延在している(図1C参照)。
 半導体装置1は、例えば支持基板50の上に、多層配線形成部40と、層間絶縁層27と、層間絶縁層26と半導体基板10と、絶縁層60とが順に積層されたものである。半導体基板10の主面(表面)10Aの近傍にはトランジスタ20が設けられ、半導体基板10の裏面10B側には、絶縁層60を介して記憶素子30Aおよび記憶素子30Bが設けられている。なお、半導体基板10に設けるトランジスタ20の数は特に限定されない。1つでもよいし、2以上であってもよい。
 半導体基板10は、トランジスタ20の一部が設けられた素子領域R1と、この素子領域R1を取り囲む分離領域R2とを有する。半導体基板10の分離領域R2には、例えばSTI(Shallow Trench Isolation)により形成された素子分離層11が設けられている。素子分離層11は、例えば酸化シリコン膜(SiO2)よりなる絶縁層であり、その一面が半導体基板10の主面10Aに露出している。
 半導体基板10のうち素子領域R1を占める部分は、例えば単結晶シリコンにトランジスタ20の一部を構成するチャネル領域および一対の拡散層22S,22Dが形成されたものである。
 半導体基板10の裏面10Bは、絶縁層60により覆われている。絶縁層60における、裏面10Bと接する面と反対側の面、すなわち絶縁層60の上面60Sには、記憶素子30A,30Bが設けられている。
 さらに、素子領域R1には、絶縁層60を貫通するように各々延伸された、第1の接続部としてのコンタクトプラグP1および第2の接続部としてのコンタクトプラグP2が設けられている。コンタクトプラグP1およびコンタクトプラグP2は、例えばCu(銅),W(タングステン)またはアルミニウム(Al)などの低抵抗金属を主体とする材料からなる。また、それらの低抵抗金属の周囲に、Ti(チタン)もしくはTa(タンタル)の単体、またはそれらの合金などからなるバリアメタル層を設けたものとしてもよい。コンタクトプラグP1およびコンタクトプラグP2は、各々の周囲が絶縁層60により覆われており、互いに電気的に分離されている。コンタクトプラグP1の下端は、後述するシリサイド領域25Sと接しており、コンタクトプラグP1の上端は、記憶素子30Aと接している。コンタクトプラグP2の下端は、後述するシリサイド領域25Dと接しており、コンタクトプラグP2の上端は、記憶素子30Bと接している。したがって、記憶素子30Aは、コンタクトプラグP1を介してソース領域のうちのシリサイド領域25Sと電気的に接続され、記憶素子30Bは、コンタクトプラグP2を介してドレイン領域のうちのシリサイド領域25Dと電気的に接続されている。なお、コンタクトプラグP1およびコンタクトプラグP2は、各々の占有面積が、例えばシリサイド領域25S,25Dから記憶素子30A,30Bへ向かうほど徐々に増大する形状を有している。
 トランジスタ20は、記憶素子30A,30Bの選択用トランジスタであり、例えば、ゲート電極21と、ソース領域およびドレイン領域となる一対の拡散層22S,22Dとを有するプレーナー型トランジスタである。ゲート電極21は、記憶素子30A,30Bのワード線WLと接続されている。
 ゲート電極21は、半導体基板10の主面10Aに設けられている。但し、ゲート電極21と半導体基板10との間には、酸化シリコン膜などよりなるゲート絶縁膜23が設けられている。ゲート電極21の側面には、例えば酸化シリコン膜24Aと窒化シリコン膜24Bとの積層膜よりなるサイドウォール24が設けられている。
 一対の拡散層22S,22Dは、例えばシリコンに不純物が拡散してなるものである。具体的には、拡散層22Sはソース領域に対応し、拡散層22Dはドレイン領域に対応する。一対の拡散層22S,22Dは、半導体基板10におけるゲート電極21と対向するチャネル領域を挟んで設けられている。拡散層22S,22Dの一部には、それぞれ、NiSi(ニッケルシリサイド)またはCoSi(コバルトシリサイド)などの金属シリサイドよりなるシリサイド領域25S,25Dが設けられている。シリサイド領域25S,25Dは、後述する接続層28A~28Dと拡散層22S,22Dとの間の接触抵抗を低減するものである。シリサイド領域25S,25Dは、その一面が半導体基板10の主面10Aに露出しているが、その反対側の面は絶縁層60によって覆われている。また、拡散層22S,22Dの厚さおよびシリサイド領域25S,25Dの厚さは、いずれも素子分離層11の厚さよりも薄いとよい。
 層間絶縁層27には、ワード線WLおよび選択線SL1,SL2が埋設されている。また、層間絶縁層26,27を貫通するように、接続層28A~28Cが設けられている。ここで、ゲート電極21は、接続層28Cを経由してワード線WLと接続されている。ソース領域となる拡散層22Sのシリサイド領域25Sには、ソース電極としての接続層28Aを経由して選択線SL2と接続されている。さらに、ドレイン領域となる拡散層22Dのシリサイド領域25Dは、ドレイン電極としての接続層28Bを経由して選択線SL1と接続されている。接続層28Aは、本開示の「第3の接続部」に対応する一具体例であり、接続層28Bは、本開示の「第4の接続部」に対応する一具体例である。なお、選択線SL2は、後述の配線群40AのビアV1と接続され、選択線SL1は、後述の配線群40BのビアV1と接続されている。
 多層配線形成部40は、例えばトランジスタ20に近いほうから順に積層された層間絶縁層41、層間絶縁層42、層間絶縁層43、層間絶縁層44に配線群40A,40Bが設けられたものである。配線群40A,40Bは、いずれも金属層M1と金属層M2と金属層M3と金属層M4とが積層された構造を有する。ここで、金属層M1は層間絶縁層41に埋設され、金属層M2は層間絶縁層42に埋設され、金属層M3は層間絶縁層43に埋設され、金属層M4は層間絶縁層44に埋設されている。配線群40A,40Bは、さらに、ビアV1~V4を有している。金属層M1と金属層M2とは、層間絶縁層42を貫通するビアV2により接続されている。同様に、金属層M2と金属層M3とは層間絶縁層43を貫通するビアV3により接続され、金属層M3と金属層M4とは層間絶縁層44を貫通するビアV4により接続されている。上述したように、配線群40Aは、ビアV1、選択線SL2および接続層28Aを介して、ソース領域である拡散層22Sのうちのシリサイド領域25Sに接続されている。また、配線群40Bは、ビアV1、選択線SL1および接続層28Bを介して、ドレイン領域である拡散層22Dのうちのシリサイド領域25Dに接続されている。なお、図1Aに示した多層配線形成部40の構成は一例であり、これに限定されるものではない。
 多層配線形成部40は支持基板50と接合されている。支持基板50は、例えば単結晶シリコンよりなる基板である。なお、支持基板50の材料は特に限定されず、単結晶シリコンのほかSiO2やガラスなど他の材料により構成されてもよい。
 絶縁層60は、上述したように、半導体基板10を覆うように設けられている。絶縁層60は、例えば低温形成が可能なHigh-K(高誘電率)膜、すなわち、Hf酸化物、Al23、Ru(ルテニウム)酸化物、Ta酸化物、Al,Ru,TaもしくはHfとSiとを含む酸化物、Al,Ru,TaもしくはHfとSiとを含む窒化物、または、Al,Ru,TaもしくはHfとSiとを含む酸化窒化物などにより構成される第1の層と、例えばSiO2を含む第2の層と、SiO2よりも低い比誘電率を有する材料(Low-K)からなる第3の層との積層構造を有するようにしてもよい。
 記憶素子30Aおよび記憶素子30Bは、いずれも、例えば下部電極としての導電層31と記憶部32と上部電極としての導電層33とが順に積層された積層構造を有するものである。記憶素子30Aの導電層31は、コンタクトプラグP1を経由してシリサイド領域25Sに接続されている。記憶素子30Bの導電層31は、コンタクトプラグP2を経由してシリサイド領域25Dに接続されている。
 記憶素子30Aおよび記憶素子30Bの周囲には、裏面層間膜71が設けられている。裏面層間膜71の材料としては、SiO2,Low-K(低誘電率)膜などがあげられる。記憶素子30Aにおける導電層33の上面はビット線BL1の下面と接しており、記憶素子30Bにおける導電層33の上面はビット線BL2の下面と接している。ビット線BL1およびビット線BL2の周囲は絶縁層72によって埋められている。
 記憶素子30における記憶部32は、例えば、スピン注入により後述する記憶層の磁化の向きを反転させて情報の記憶を行う、スピン注入磁化反転型記憶素子(STT-MTJ;Spin Transfer Torque-Magnetic Tunnel Junctions)であることが好ましい。STT-MTJは高速書き込み読み出しが可能であることから、揮発性メモリに置き換わる不揮発性メモリとして有望視されている。
 導電層31および導電層33は、例えば、Cu,Ti,W,Ruなどの金属材料により構成されている。導電層31および導電層33は、後述する下地層32Aまたはキャップ層32Eの構成材料以外の金属、主としてCu,Al,Wにより構成されていることが好ましい。また、導電層31および導電層33は、Ti,TiN(窒化チタン),Ta,TaN(窒化タンタル),W,Cu,Alおよびそれらの積層構造により構成することも可能である。
 図2は、記憶部32の構成の一例を表したものである。記憶部32は、例えば、導電層31に近い方から順に、下地層32A,磁化固定層32B,絶縁層32C,記憶層32D,キャップ層32Eを積層した構成を有している。すなわち、記憶素子30は、積層方向の下から上に向かって磁化固定層32B,絶縁層32Cおよび記憶層32Dをこの順に有するボトムピン構造を有している。一軸異方性を有する記憶層32Dの磁化M32Dの向きを変化させることにより情報の記憶が行われる。記憶層32Dの磁化M32Dと磁化固定層32Bの磁化M32Bとの相対的な角度(平行または反平行)によって情報の「0」または「1」が規定される。
 下地層32Aおよびキャップ層32Eは、Ta,Ruなどの金属膜またはその積層膜により構成されている。
 磁化固定層32Bは、記憶層32Dの記憶情報(磁化方向)の基準とされるリファレンス層であり、磁化M32Bの方向が膜面垂直方向に固定された磁気モーメントを有する強磁性体により構成されている。磁化固定層32Bは、例えばCo-Fe-Bにより構成されている。
 磁化固定層32Bの磁化M32Bの方向は、書込みや読出しによって変化することは望ましくないが、必ずしも特定の方向に固定されている必要はない。記憶層32Dの磁化M32Dの方向よりも磁化固定層32Bの磁化M32Bの方向が動きにくくなるようにすればよいからである。例えば、磁化固定層32Bが記憶層32Dと比較して、より大きな保磁力を有し、より大きな磁気膜厚を有し、または、より大きな磁気ダンピング定数を有するようにすればよい。磁化M32Bの方向を固定するには、例えばPtMnやIrMnなどの反強磁性体を、磁化固定層32Bに接触させて設ければよい。あるいは、そのような反強磁性体に接触した磁性体を、Ru等の非磁性体を介して磁気的に磁化固定層32Bと結合させることで、磁化M32Bの方向を間接的に固定してもよい。
 絶縁層32Cは、トンネルバリア層(トンネル絶縁層)となる中間層であり、例えば、酸化アルミニウムまたは酸化マグネシウム(MgO)により構成されている。中でも、絶縁層32Cは酸化マグネシウムにより構成されていることが好ましい。磁気抵抗変化率(MR比)を高くすることが可能となり、スピン注入の効率を向上させて、記憶層32Dの磁化M32Dの向きを反転させるための電流密度を低減することが可能となる。
 記憶層32Dは、磁化M32Dの方向が膜面垂直方向に自由に変化する磁気モーメントを有する強磁性体により構成されている。記憶層32Dは、例えばCo-Fe-Bにより構成されている。
 図3は、記憶部32の各層の構成の一例をさらに詳細に表したものである。下地層32Aは、例えば、導電層31に近い方から順に、厚み3nmのTa層と、厚み25nmのRu膜とを積層した構成を有している。磁化固定層32Bは、例えば、導電層31に近い方から順に、厚み5nmのPt層と、厚み1.1nmのCo層と、厚み0.8nmのRu層と、厚み1nmの(Co20Fe80)80B20層とを積層した構成を有している。絶縁層32Cは、例えば、導電層31に近い方から順に、厚み0.15nmのMg層と、厚み1nmのMgO層と、厚み0.15nmのMg層とを積層した構成を有している。記憶層32Dは、例えば厚みtが1.2~1.7nmであり、(Co20Fe80)80B20層により構成されている。キャップ層32Eは、例えば、導電層31に近い方から順に、厚み1nmのTa層と、厚み5nmのRu層と、厚み3nmのTa層とを積層した構成を有している。
 半導体装置1は、さらに、制御部CTRL(図3)を有している。制御部CTRLは、選択線SL1、選択線SL2、ビット線BL1、ビット線BL2およびワード線WLの各々の電位を制御するものである。
[半導体装置1の動作]
 この半導体装置1では、選択線SL1、選択線SL2、ビット線BL1、ビット線BL2およびワード線WLにおける各々の電位の大小関係に応じて、記憶素子30Aの記憶層32Dおよび記憶素子30Bの記憶層32Dへの情報書き込みが行われる。選択線SL1、選択線SL2、ビット線BL1、ビット線BL2およびワード線WLの電位は、制御部CTRL(図3)により制御されるようになっている。
 具体的には、制御部CTRLは、例えば図4Aに示したように、ビット線BL1の電位を第1の電位(例えばLow)とし、選択線SL1の電位を第1の電位よりも高い第2の電位(High)とする。これにより、電子e-が矢印の方向に流れ、記憶素子30Aの記憶層32Dに対し第1の情報“1”が書き込まれる。その際、制御部CTRLは、ゲート電極21、すなわちワード線WLの電位を第2の電位とし、ビット線BL2の電位および選択線SL2の電位を、ビット線BL1の電位、選択線SL1の電位およびワード線WLの電位とは独立した第3の電位に維持する。すなわち、制御部CTRLは、ビット線BL2の電位および選択線SL2の電位をフローティング状態とする。制御部CTRLは、それに含まれるハイインピーダンス回路(Hi-Z回路)により、ビット線BL2の電位および選択線SL2の電位についてのフローティング制御を行うようにしてもよい。
 制御部CTRLは、例えば図4Bに示したように、ビット線BL1の電位を第2の電位とし、選択線SL1の電位を第1の電位とする。これにより、電子e-が矢印の方向に流れ、記憶素子30Aの記憶層32Dに対し第2の情報“0”が書き込まれる。その場合においても、制御部CTRLは、ゲート電極21、すなわちワード線WLの電位を第2の電位とし、ビット線BL2の電位および選択線SL2の電位を、ビット線BL1の電位、選択線SL1の電位およびワード線WLの電位とは独立した第3の電位に維持する。すなわち、制御部CTRLは、ビット線BL2の電位および選択線SL2の電位をフローティング状態とする。
 制御部CTRLは、例えば図4Cに示したように、ビット線BL2の電位を第1の電位とし、選択線SL2の電位を第2の電位とする。これにより、電子e-が矢印の方向に流れ、記憶素子30Bの記憶層32Dに対し第1の情報“1”が書き込まれる。その場合、ゲート電極21、すなわちワード線WLの電位を第2の電位とし、ビット線BL1の電位および選択線SL1の電位を、ビット線BL2の電位、選択線SL2の電位およびワード線WLの電位とは独立した第4の電位に維持する。すなわち、制御部CTRLは、ビット線BL1の電位および選択線SL1の電位をフローティング状態に維持する。
 制御部CTRLは、例えば図4Dに示したように、ビット線BL2の電位を第2の電位とし、選択線SL2の電位を第1の電位とする。これにより、電子e-が矢印の方向に流れ、記憶素子30Bの記憶層32Dに対し第2の情報“0”が書き込まれる。その場合においても、ゲート電極21、すなわちワード線WLの電位を第2の電位とし、ビット線BL1の電位および選択線SL1の電位を第4の電位に維持する。すなわち、制御部CTRLは、ビット線BL1の電位および選択線SL1の電位をフローティング状態に維持する。
 選択線SL1、選択線SL2、ビット線BL1、ビット線BL2およびワード線WLにおける各々の電位の大小関係に応じて、記憶部32の膜面垂直方向に電流が印加され、スピントルク磁化反転が生じる。これにより、記憶層32Dの磁化M32Dの向きを、磁化固定層32Bの磁化M32Bに対して平行あるいは反平行にすることにより、記憶部32の抵抗値の大小に変化させて情報の書込みを実行する。
 一方、記憶部32に記憶された情報を読み出すには、記憶層32Dに薄い絶縁膜を介して情報の基準となる磁性層(図示せず)を設け、絶縁層32Cを介して流れる強磁性トンネル電流によって読み出すことが可能である。また、磁気抵抗効果により読み出してもよい。
[半導体装置1の作用および効果]
 半導体装置1では、トランジスタ20におけるソース領域に記憶素子30Aを接続すると共にトランジスタ20におけるドレイン領域に記憶素子30Bを接続するようにした。このため、半導体装置1の全体が占める面積は、例えばソース領域に記憶素子30Aおよび記憶素子30Bの双方を接続する場合よりも小さくなる。例えば図8Aおよび図8Bに示した参考例としての半導体装置1001では、ソース領域に、互いに同一の階層に位置する2つの記憶素子1030A,1030Bの双方を接続するようにしたものである。この場合、より大きな素子領域R1001が必要となってしまう。なお、図8Aは、参考例としての半導体装置1001の一構成例を表す断面図であり、図8Bは、その半導体装置1001の平面構成例を表している。図8Aは、図8Bに示したVIIIA-VIIIA切断線に沿った矢視方向の断面に相当する。
 これに対し、本実施の形態の半導体装置1によれば、より狭い素子領域R1内に、トランジスタ20および記憶素子30A,30Bをコンパクトに配置することができる。したがって、半導体装置1の全体として、限られた領域内により多くのトランジスタ20および記憶素子30A,30Bを収めることができるので、高集積化を図ることができる。また、通常使用時においては、例えば記憶素子30Aへの書き込みおよび読み出しを行うようにし、記憶素子30Aに異常が生じた場合には記憶素子30Bへの書き込みおよび読み出しを行うようにすれば、冗長化を図ることができる。すなわち、半導体装置1の動作信頼性の向上を図ることができる。また、本実施の形態の半導体装置1では、半導体基板10の裏面10B側に記憶素子30A,30Bを設けるようにしたので、例えばトランジスタ20や配線層の製造過程において発生する熱の影響が記憶素子30A,30Bに及ぶのを回避できる。
<第2の実施の形態>
[半導体装置2の構成]
 図5Aは、本開示の第2の実施の形態としての半導体装置2の断面構成を表したものである。また、図5Bおよび図5Cは、いずれも半導体装置2の平面構成を表す。但し、図5Bは、半導体基板10の主面10A側から眺めたときの半導体装置2の平面構成を表し、図5Cは、半導体基板10の裏面10B側から眺めたときの半導体装置2の平面構成を表す。図5Aは、図5Bおよび図5Cにそれぞれ示したVA-VA切断線に沿った矢視方向の断面図に相当する。
 上記第1の実施の形態の半導体装置1は、半導体基板10のうち、トランジスタ20が設けられた主面10Aと反対の裏面10B側に、絶縁層60を介して記憶素子30Aおよび記憶素子30Bを設けるようにしたものである。これに対し、本実施の形態における半導体装置2は、半導体基板10のうち、トランジスタ20が設けられた主面10A側に、記憶素子30Aおよび記憶素子30Bを設けるようにしたものである。以下の説明および図5では、上記第1の実施の形態の半導体装置1に対応する構成要素には同一の符号を付している。
 本実施の形態の半導体装置2では、半導体装置1と比較した場合、記憶素子30Aと選択線SL2とが互いに入れ替わった位置にそれぞれ配置されており、記憶素子30Bと選択線SL1とが互いに入れ替わった位置にそれぞれ配置されている。すなわち、絶縁層60の上面60Sには選択線SL2および選択線SL1がそれぞれ設けられ、その選択線SL2の下面がコンタクトプラグP1と接し、選択線SL1の下面がコンタクトプラグP2と接している。一方、層間絶縁層27には記憶素子30Aおよび記憶素子30Bが埋設されており、記憶素子30Aが接続層28Aの下面と接し、記憶素子30Bが接続層28Bの下面と接している。さらに、半導体装置2では、半導体装置1の配線群40Aにおける金属層M4の代わりにビット線BL1が配置され、半導体装置1の配線群40Bにおける金属層M4の代わりにビット線BL2が配置されている。すなわち、ビット線BL1およびビット線BL2はいずれも支持基板50の上に設けられ、その上面がビアV4の下面と接すると共に層間絶縁層44に埋設されている。
[半導体装置2の作用効果]
 このような半導体装置2においても、上記第1の実施の形態の半導体装置1と同様の効果が得られる。すなわち半導体装置2にでは、トランジスタ20におけるソース領域に記憶素子30Aを接続すると共にトランジスタ20におけるドレイン領域に記憶素子30Bを接続するようにした。このため、半導体装置2の全体が占める面積は、例えばソース領域に記憶素子30Aおよび記憶素子30Bの双方を接続する場合よりも小さくなる。したがって、より狭い領域中により多くのトランジスタ20および記憶素子30A,30Bを配置することができ、高集積化を図ることができる。また、半導体装置2では、トランジスタ20が設けられた主面10A側に記憶素子30Aおよび記憶素子30Bを設けるようにしたので、裏面10B側にはコンタクトプラグP1,P2や選択線SL1,SL2などの配線のみを配置するだけで足りる。すなわち、裏面10B側における形成プロセスを簡素化できる。さらに、半導体装置2では、トランジスタ20が設けられた層間絶縁層27に記憶素子30Aおよび記憶素子30Bを埋設するようにしたので、上記第1の実施の形態の半導体装置1と比較して、全体の厚さを低減しやすい。
<第3の実施の形態>
[半導体装置3の構成]
 図6Aは、本開示の第3の実施の形態としての半導体装置3の構成を表す斜視図である。図6Bは、半導体装置3の構成を表すものであり、図6Aに示したVIB-VIB切断線に沿った矢視方向の断面に相当する。半導体装置3は、トランジスタ20の代わりにトランジスタ80を備えることを除き、他は半導体装置1と同様の構成を有する。トランジスタ80は、支持基板50と、例えばシリコンからなる半導体基板13との間に設けられた素子形成層80Aに埋設されている。半導体基板13は、素子形成層80Aと対向する表面13Aと、その反対側に位置する裏面13Bとを有している。トランジスタ80は、半導体基板13の表面13A側に設けられている。裏面13B側には、記憶素子30A,30Bが設けられている。本実施の形態では、上記第1の実施の形態の半導体装置1に対応する構成要素には同一の符号を付して説明する。
 トランジスタ80は、例えば、Si(シリコン)よりなるフィン81と、ゲート電極82G,ソース電極82Sおよびドレイン電極82Dとを有するフィン電界効果トランジスタ(Fin-FET)である。Fin-FETを用いることにより、バルク基板上のプレーナー型トランジスタに比べて、ショートチャネル特性を抑制することが可能となる。ゲート電極82Gは、記憶素子30Aおよび記憶素子30Bのワード線WLを兼ねている。
 フィン81は、平板状をなし、例えばシリコンよりなる半導体基板13上に複数立設している。複数のフィン81は、例えばX軸方向にそれぞれ延在すると共にY軸方向に並んでいる。但し、図6Aおよび図6Bは1つのフィン81のみを例示している。フィン81におけるX軸方向と直交する断面、すなわちYZ断面は、例えば台形形状をなしている。ゲート電極82G、ソース電極82Sおよびドレイン電極82Dは、いずれも、フィン81の延伸方向と交差するY軸方向にフィン81を跨ぐように延伸されている。ゲート電極82G、ソース電極82Sおよびドレイン電極82Dは、いずれも、フィン81の裏面以外の面、すなわちフィン81が半導体基板13と接する面以外の面を覆っている。ここで、ソース電極82Sは、その上端において選択線SL2と接続されており、ドレイン電極82Dは、その上端において選択線SL1と接続されている。なお、図6Aでは、煩雑さを避けるため、選択線SL1および選択線SL2の記載を省略している。
 また、フィン81には、その裏面近傍にソース領域およびドレイン領域として機能する不純物拡散領域83S,83Dが含まれており、不純物拡散領域83Sが、コンタクトプラグP1を介して記憶素子30Aと接続されると共に、不純物拡散領域83Dが、コンタクトプラグP2を介して記憶素子30Bと接続されている。
[半導体装置3の作用効果]
 このような半導体装置3においても、上記第1の実施の形態の半導体装置1と同様の効果が期待できる。
 さらに、本実施の形態では、電流ドライブ能力の高いFin-FETであるトランジスタ80を搭載し、記憶素子30Aおよび記憶素子30Bの選択用トランジスタとして用いるようにしたので、高速の読出し・書込みが可能となる。
[変形例としての半導体装置3Aの構成]
 図6Cは、本実施の形態の変形例としての半導体装置3Aの構成を表す断面図であり、図6Bに相当するものである。図6Aおよび図6Bに示した第3の実施の形態としての半導体装置3では、半導体基板13の裏面13B側に記憶素子30A,30Bを設けるようにした。これに対し、本変形例としての半導体装置3Aでは、半導体基板13の表面13A側に記憶素子30A,30Bを設けるようにしたものである。このような半導体装置3Aにおいても、上記第3の実施の形態の半導体装置3と同様の効果が期待できる。
<4.適用例>
 図7Aは、センサ装置100と半導体装置200とを貼り合わせた撮像装置101の概略構成を表すものである。半導体装置200としては、上述した第1から第3の実施の形態における半導体装置1~3を用いることができる。
 撮像装置101は、例えば半導体装置200の上にセンサ装置100が積層された積層型のイメージセンサデバイスである。センサ装置100には画素部110が形成されている。半導体装置200には、ロジック回路210と、メモリ部220とが設けられている。
 センサ装置100の画素部110には、単位画素が2次元配置され、例えば裏面照射型の撮像素子(撮像素子110S,図2参照)および撮像素子110Sの光電変換によって得られる電荷をFD(フローティングディフュージョン)部に転送する転送トランジスタ、FD部の電位をリセットするリセットトランジスタやFD部の電位に応じた信号を出力する増幅トランジスタ等が設けられている。
 半導体装置200には、撮像素子110Sの動作を制御する制御回路等のロジック回路210と、メモリ部220を構成する不揮発性メモリ素子(記憶素子30A,30B)が設けられている。なお、半導体装置200には、ロジック回路210およびメモリ部220のほか、例えば、画像処理機能を有する回路や、画素部に設けられた単位画素から出力されるアナログ信号をデジタル信号に変換して出力するADC(Analog digital converter)回路等が搭載されていてもよい。
 図7Bは、図7Aに示した撮像装置101の具体的な断面構成の一例を表したものである。撮像装置101におけるセンサ装置100には、上述したように撮像素子110Sが設けられている。撮像素子110Sは、例えば、フォトダイオード113Aおよびトランジスタ113Bが埋設された半導体基板113上に、平坦化層114とカラーフィルタ115とマイクロレンズ116とがこの順に積層されたものである。センサ装置100では、撮像素子110Sのマイクロレンズ116上に保護層117が設けられ、その保護層117の上にはガラス基板118が配設されている。さらにセンサ装置100は、最下層(半導体装置200との対向面)に例えばCuからなる導電膜111と、その導電膜111の周囲を占める絶縁層112とを有する。導電膜111の下面は、半導体装置200の最上層に設けられた接続層P3と接続されている。接続層P3は例えば銅などからなり、その周囲が絶縁層73により占められている。
 図7Aおよび図7Bに示した撮像装置101によれば、半導体装置200として、上記第1から第3の実施の形態における半導体装置1~3を適用したものであるので、高集積化を図ることができる。
 以上、実施の形態等を挙げて本開示を説明したが、本開示は上記実施の形態に限定されるものではなく、種々の変形が可能である。
 例えば、上記実施の形態等では、トランジスタ20,80および記憶素子30A,30Bの構成を具体的に挙げて説明したが、全ての構成要素を備える必要はなく、また、他の構成要素を更に備えていてもよい。
 また、上記第1の実施の形態では、トランジスタ20がNMOSトランジスタである場合を例示して説明したが、本開示はそれに限定されるものではなく、例えばPMOSトランジスタを適用できる。例えば図9Aおよび図9Bに示した半導体装置1Aは、PMOSトランジスタ20Aを有している。この場合、例えば図9Aに示したように、ビット線BL1の電位を第1の電位(例えばLow)とし、選択線SL1の電位を第1の電位よりも高い第2の電位(High)とする。これにより、電子e-が矢印の方向に流れ、記憶素子30Aの記憶層32Dに対し第2の情報“0”が書き込まれる。一方、図9Bに示したように、ビット線BL1の電位を第2の電位とし、選択線SL1の電位を第1の電位とすると、電子e-が矢印の方向に流れ、記憶素子30Aの記憶層32Dに対し第1の情報“1”が書き込まれる。
 また、上記実施の形態等では、記憶素子をボトムピン構造で説明したが、本技術ではトップピン構造の記憶素子を採用することもできる。ここでいうトップピン構造とは、積層方向の下から上に向かって、記憶層と絶縁層と磁化固定層とをこの順に積層した構造をいう。但し、記憶素子がトップピン構造である場合、その挙動は記憶素子がボトムピン構造である場合の挙動と逆になる(記憶素子に書き込まれるHighとLowとが逆になる)。
 なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。また、本技術は以下のような構成を取り得るものである。
(1)
 ゲート部、第1の拡散層および第2の拡散層を有するトランジスタと、
 第1の導電部と、
 前記第1の導電部と電気的に絶縁された第2の導電部と、
 前記第1の拡散層と前記第1の導電部との間に位置すると共に前記第1の拡散層および前記第1の導電部とそれぞれ電気的に接続された第1の記憶素子と、
 前記第2の拡散層と前記第2の導電部との間に位置すると共に前記第2の拡散層および前記第2の導電部とそれぞれ電気的に接続された第2の記憶素子と
 を有する半導体装置。
(2)
 前記第1の拡散層から見て前記第1の記憶素子と反対側に設けられて前記第1の拡散層と電気的に接続された第3の導電部と、
 前記第2の拡散層から見て前記第2の記憶素子と反対側に設けられて前記第2の拡散層と電気的に接続された第4の導電部と
 をさらに有する上記(1)記載の半導体装置。
(3)
 前記ゲート部、前記第1の導電部および前記第2の導電部は、いずれも第1の方向に沿って延在している
 上記(1)または(2)に記載の半導体装置。
(4)
 前記ゲート部、および前記第1から第4の導電部は、いずれも第1の方向に沿って延在している
 上記(2)記載の半導体装置。
(5)
 前記ゲート部が設けられた第1の面と、前記第1の面と反対側に位置する第2の面とを含む半導体基板をさらに備え、
 前記第1の拡散層は、前記第1の面の近傍において前記半導体基板の一部を構成し、
 前記第2の拡散層は、前記第1の面の近傍において前記半導体基板の他の一部を構成する
 上記(1)から(4)のいずれか1つに記載の半導体装置。
(6)
 前記半導体基板の前記第2の面を覆う第1の絶縁層と、
 前記第1の絶縁層をそれぞれ貫く第1の接続部および第2の接続部と
 をさらに備え、
 前記第1の記憶素子および前記第2の記憶素子は、それぞれ、前記第1の絶縁層から見て前記第2の面と反対側に設けられており、
 前記第1の記憶素子は、前記第1の接続部を介して前記第1の拡散層と電気的に接続され、
 前記第2の記憶素子は、前記第2の接続部を介して前記第2の拡散層と電気的に接続されている
 上記(5)記載の半導体装置。
(7)
 前記半導体基板の前記第1の面を覆う第2の絶縁層と、
 前記第2の絶縁層から見て前記第2の面と反対側にそれぞれ設けられた第3の導電部および第4の導電部と、
 前記第2の絶縁層を貫くと共に前記第1の拡散層と前記第3の導電部とを電気的に繋ぐ第3の接続部と、
 前記第2の絶縁層を貫くと共に前記第2の拡散層と前記第4の導電部とを電気的に繋ぐ第4の接続部と
 をさらに備えた上記(6)記載の半導体装置。
(8)
 前記第1の導電部の電位を第1の電位とし、前記第4の導電部の電位を前記第1の電位よりも高い第2の電位とし、前記ゲート部の電位を前記第2の電位とし、前記第2の導電部の電位および前記第3の導電部の電位を、前記第1の導電部の電位、前記第4の導電部の電位および前記ゲート部の電位のいずれからも独立した第3の電位とすることにより、前記第1の記憶素子に対し第1の情報を書き込み、
 前記第1の導電部の電位を前記第2の電位とし、前記第4の導電部の電位を前記第1の電位とし、前記ゲート部の電位を前記第2の電位とし、前記第2の導電部の電位および前記第3の導電部の電位を前記第3の電位とすることにより、前記第1の記憶素子に対し第2の情報を書き込むように制御する制御部をさらに有する
 上記(7)記載の半導体装置。
(9)
 前記制御部は、
 前記第2の導電部の電位および前記第3の導電部の電位を前記第3の電位に維持することのできる電位制御回路を含む
 上記(8)記載の半導体装置。
(10)
 前記第2の導電部の電位を第1の電位とし、前記第3の導電部の電位を前記第1の電位よりも高い第2の電位とし、前記ゲート部の電位を前記第2の電位とし、前記第1の導電部の電位および前記第4の導電部の電位を、前記第2の導電部の電位、前記第3の導電部の電位および前記ゲート部の電位のいずれからも独立した第4の電位とすることにより、前記第2の記憶素子に対し第1の情報を書き込み、
 前記第2の導電部の電位を前記第2の電位とし、前記第3の導電部の電位を前記第1の電位とし、前記ゲート部の電位を前記第2の電位とし、前記第1の導電部の電位および前記第4の導電部の電位を前記第4の電位とすることにより、前記第2の記憶素子に対し第2の情報を書き込むように制御する制御部をさらに有する
 上記(7)記載の半導体装置。
(11)
 前記制御部は、
 前記第1の導電部の電位および前記第4の導電部の電位を前記第4の電位に維持することのできる電位制御回路を含む
 上記(10)記載の半導体装置。
(12)
 前記半導体基板の前記第1の面を覆う第1の絶縁層と、
 前記第1の絶縁層をそれぞれ貫く第1の接続部および第2の接続部と、
 前記第1の絶縁層から見て前記第1の面と反対側に設けられ、前記第1の接続部を介して前記第1の拡散層と電気的に接続された第3の導電部と、
 前記第1の絶縁層から見て前記第1の面と反対側に設けられ、前記第2の接続部を介して前記第2の拡散層と電気的に接続された第4の導電部と
 をさらに備えた上記(5)から(11)のいずれか1つに記載の半導体装置。
(13)
 前記半導体基板の前記第2の面を覆う第2の絶縁層と、
 前記第2の絶縁層をそれぞれ貫く第3の接続部および第4の接続部と
 をさらに備え、
 前記第1の導電部は、前記第1の記憶素子から見て前記第2の絶縁層と反対側に設けられると共に前記第3の接続部を介して前記第1の拡散層と電気的に接続され、
 前記第2の導電部は、前記第2の記憶素子から見て前記第2の絶縁層と反対側に設けられると共に前記第4の接続部を介して前記第2の拡散層と電気的に接続されている
 上記(12)記載の半導体装置。
(14)
 前記第1の方向と交差する第2の方向に延伸された半導体材料を含むフィンをさらに備え、
 前記第1の記憶素子および前記第2の記憶素子は、前記フィンの裏面とそれぞれ接続され、
 前記ゲート部、前記第1の拡散層および前記第2の拡散層は、前記第1の方向に延在し、前記フィンの前記裏面以外の面を覆っている
 上記(1)記載の半導体装置。
(15)
 半導体装置と、
 前記半導体装置に積層された撮像素子と
 を備え、
 前記半導体装置は、
 ゲート部、第1の拡散層および第2の拡散層を有するトランジスタと、
 第1の導電部と、
 前記第1の導電部と電気的に絶縁された第2の導電部と、
 前記第1の拡散層と前記第1の導電部との間に位置すると共に前記第1の拡散層および
前記第1の導電部とそれぞれ電気的に接続された第1の記憶素子と、
 前記第2の拡散層と前記第2の導電部との間に位置すると共に前記第2の拡散層および前記第2の導電部とそれぞれ電気的に接続された第2の記憶素子と
 を有する
 撮像装置。
 本出願は、日本国特許庁において2018年3月6日に出願された日本特許出願番号2018-39217号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (15)

  1.  ゲート部、第1の拡散層および第2の拡散層を有するトランジスタと、
     第1の導電部と、
     前記第1の導電部と電気的に絶縁された第2の導電部と、
     前記第1の拡散層と前記第1の導電部との間に位置すると共に前記第1の拡散層および前記第1の導電部とそれぞれ電気的に接続された第1の記憶素子と、
     前記第2の拡散層と前記第2の導電部との間に位置すると共に前記第2の拡散層および前記第2の導電部とそれぞれ電気的に接続された第2の記憶素子と
     を有する半導体装置。
  2.  前記第1の拡散層から見て前記第1の記憶素子と反対側に設けられて前記第1の拡散層と電気的に接続された第3の導電部と、
     前記第2の拡散層から見て前記第2の記憶素子と反対側に設けられて前記第2の拡散層と電気的に接続された第4の導電部と
     をさらに有する請求項1記載の半導体装置。
  3.  前記ゲート部、前記第1の導電部および前記第2の導電部は、いずれも第1の方向に沿って延在している
     請求項1記載の半導体装置。
  4.  前記ゲート部、および前記第1から第4の導電部は、いずれも第1の方向に沿って延在している
     請求項2記載の半導体装置。
  5.  前記ゲート部が設けられた第1の面と、前記第1の面と反対側に位置する第2の面とを含む半導体基板をさらに備え、
     前記第1の拡散層は、前記第1の面の近傍において前記半導体基板の一部を構成し、
     前記第2の拡散層は、前記第1の面の近傍において前記半導体基板の他の一部を構成する
     請求項1記載の半導体装置。
  6.  前記半導体基板の前記第2の面を覆う第1の絶縁層と、
     前記第1の絶縁層をそれぞれ貫く第1の接続部および第2の接続部と
     をさらに備え、
     前記第1の記憶素子および前記第2の記憶素子は、それぞれ、前記第1の絶縁層から見て前記第2の面と反対側に設けられており、
     前記第1の記憶素子は、前記第1の接続部を介して前記第1の拡散層と電気的に接続され、
     前記第2の記憶素子は、前記第2の接続部を介して前記第2の拡散層と電気的に接続されている
     請求項5記載の半導体装置。
  7.  前記半導体基板の前記第1の面を覆う第2の絶縁層と、
     前記第2の絶縁層から見て前記第2の面と反対側にそれぞれ設けられた第3の導電部および第4の導電部と、
     前記第2の絶縁層を貫くと共に前記第1の拡散層と前記第3の導電部とを電気的に繋ぐ第3の接続部と、
     前記第2の絶縁層を貫くと共に前記第2の拡散層と前記第4の導電部とを電気的に繋ぐ第4の接続部と
     をさらに備えた請求項6記載の半導体装置。
  8.  前記第1の導電部の電位を第1の電位とし、前記第4の導電部の電位を前記第1の電位よりも高い第2の電位とし、前記ゲート部の電位を前記第2の電位とし、前記第2の導電部の電位および前記第3の導電部の電位を、前記第1の導電部の電位、前記第4の導電部の電位および前記ゲート部の電位のいずれからも独立した第3の電位とすることにより、前記第1の記憶素子に対し第1の情報を書き込み、
     前記第1の導電部の電位を前記第2の電位とし、前記第4の導電部の電位を前記第1の電位とし、前記ゲート部の電位を前記第2の電位とし、前記第2の導電部の電位および前記第3の導電部の電位を前記第3の電位とすることにより、前記第1の記憶素子に対し第2の情報を書き込むように制御する制御部をさらに有する
     請求項7記載の半導体装置。
  9.  前記制御部は、
     前記第2の導電部の電位および前記第3の導電部の電位を前記第3の電位に維持することのできる電位制御回路を含む
     請求項8記載の半導体装置。
  10.  前記第2の導電部の電位を第1の電位とし、前記第3の導電部の電位を前記第1の電位よりも高い第2の電位とし、前記ゲート部の電位を前記第2の電位とし、前記第1の導電部の電位および前記第4の導電部の電位を、前記第2の導電部の電位、前記第3の導電部の電位および前記ゲート部の電位のいずれからも独立した第4の電位とすることにより、前記第2の記憶素子に対し第1の情報を書き込み、
     前記第2の導電部の電位を前記第2の電位とし、前記第3の導電部の電位を前記第1の電位とし、前記ゲート部の電位を前記第2の電位とし、前記第1の導電部の電位および前記第4の導電部の電位を前記第4の電位とすることにより、前記第2の記憶素子に対し第2の情報を書き込むように制御する制御部をさらに有する
     請求項7記載の半導体装置。
  11.  前記制御部は、
     前記第1の導電部の電位および前記第4の導電部の電位を前記第4の電位に維持することのできる電位制御回路を含む
     請求項10記載の半導体装置。
  12.  前記半導体基板の前記第1の面を覆う第1の絶縁層と、
     前記第1の絶縁層をそれぞれ貫く第1の接続部および第2の接続部と、
     前記第1の絶縁層から見て前記第1の面と反対側に設けられ、前記第1の接続部を介して前記第1の拡散層と電気的に接続された第3の導電部と、
     前記第1の絶縁層から見て前記第1の面と反対側に設けられ、前記第2の接続部を介して前記第2の拡散層と電気的に接続された第4の導電部と
     をさらに備えた請求項5記載の半導体装置。
  13.  前記半導体基板の前記第2の面を覆う第2の絶縁層と、
     前記第2の絶縁層をそれぞれ貫く第3の接続部および第4の接続部と
     をさらに備え、
     前記第1の導電部は、前記第1の記憶素子から見て前記第2の絶縁層と反対側に設けられると共に前記第3の接続部を介して前記第1の拡散層と電気的に接続され、
     前記第2の導電部は、前記第2の記憶素子から見て前記第2の絶縁層と反対側に設けられると共に前記第4の接続部を介して前記第2の拡散層と電気的に接続されている
     請求項12記載の半導体装置。
  14.  第1の方向と交差する第2の方向に延伸された半導体材料を含むフィンをさらに備え、
     前記第1の記憶素子および前記第2の記憶素子は、前記フィンの裏面とそれぞれ接続され、
     前記ゲート部、前記第1の拡散層および前記第2の拡散層は、前記第1の方向に延在し、前記フィンの前記裏面以外の面を覆っている
     請求項1記載の半導体装置。
  15.  半導体装置と、
     前記半導体装置に積層された撮像素子と
     を備え、
     前記半導体装置は、
     ゲート部、第1の拡散層および第2の拡散層を有するトランジスタと、
     第1の導電部と、
     前記第1の導電部と電気的に絶縁された第2の導電部と、
     前記第1の拡散層と前記第1の導電部との間に位置すると共に前記第1の拡散層および前記第1の導電部とそれぞれ電気的に接続された第1の記憶素子と、
     前記第2の拡散層と前記第2の導電部との間に位置すると共に前記第2の拡散層および前記第2の導電部とそれぞれ電気的に接続された第2の記憶素子と
     を有する
     撮像装置。
PCT/JP2019/004430 2018-03-06 2019-02-07 半導体装置および撮像装置 WO2019171872A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/976,738 US11482548B2 (en) 2018-03-06 2019-02-07 Semiconductor device and imaging unit
DE112019001173.1T DE112019001173T5 (de) 2018-03-06 2019-02-07 Halbleiter und bildgebungseinheit
CN201980014306.3A CN111788672A (zh) 2018-03-06 2019-02-07 半导体设备与成像设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018039217 2018-03-06
JP2018-039217 2018-03-06

Publications (1)

Publication Number Publication Date
WO2019171872A1 true WO2019171872A1 (ja) 2019-09-12

Family

ID=67845990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004430 WO2019171872A1 (ja) 2018-03-06 2019-02-07 半導体装置および撮像装置

Country Status (5)

Country Link
US (1) US11482548B2 (ja)
CN (1) CN111788672A (ja)
DE (1) DE112019001173T5 (ja)
TW (1) TWI780302B (ja)
WO (1) WO2019171872A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755002B (zh) * 2019-09-17 2022-02-11 台灣積體電路製造股份有限公司 半導體結構及其形成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11749729B2 (en) * 2021-03-31 2023-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device, integrated circuit component and manufacturing methods thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227917A (ja) * 2006-02-22 2007-09-06 Samsung Electronics Co Ltd 磁気メモリ装置及びデータ記録方法
JP2009151885A (ja) * 2007-12-21 2009-07-09 Fujitsu Ltd 半導体記憶装置、その製造方法、書き込み方法及び読み出し方法
JP2012216776A (ja) * 2011-03-31 2012-11-08 Sony Corp 半導体装置、および、その製造方法
JP2013058521A (ja) * 2011-09-07 2013-03-28 Toshiba Corp 記憶装置及びその製造方法
WO2017038403A1 (ja) * 2015-09-01 2017-03-09 ソニー株式会社 積層体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851914B2 (ja) * 2003-07-09 2006-11-29 株式会社東芝 不揮発性半導体記憶装置
JP4744532B2 (ja) 2005-12-09 2011-08-10 富士通株式会社 磁気メモリ装置及びその書き込み方法
KR100719382B1 (ko) * 2006-04-10 2007-05-18 삼성전자주식회사 세 개의 트랜지스터들이 두 개의 셀을 구성하는 비휘발성메모리 소자
JP5487625B2 (ja) * 2009-01-22 2014-05-07 ソニー株式会社 半導体装置
JP4970507B2 (ja) * 2009-08-27 2012-07-11 株式会社東芝 半導体記憶装置
JP5614150B2 (ja) * 2010-07-29 2014-10-29 ソニー株式会社 抵抗変化型メモリデバイス
JP2014220376A (ja) * 2013-05-08 2014-11-20 ソニー株式会社 半導体装置およびその製造方法
JP2014229758A (ja) * 2013-05-22 2014-12-08 ソニー株式会社 半導体装置およびその製造方法
JP6292049B2 (ja) * 2013-09-02 2018-03-14 ソニー株式会社 半導体装置およびその製造方法
JP2015050339A (ja) * 2013-09-02 2015-03-16 ソニー株式会社 半導体装置およびその製造方法
KR102212558B1 (ko) * 2014-12-22 2021-02-08 삼성전자주식회사 자기 메모리 소자의 제조 방법
US9614002B1 (en) * 2016-01-21 2017-04-04 Samsung Electronics Co., Ltd. 0T bi-directional memory cell
US9917249B2 (en) * 2016-03-09 2018-03-13 Samsung Electronics Co., Ltd. Method and system for providing a magnetic junction usable in spin transfer torque applications and including a magnetic barrier layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227917A (ja) * 2006-02-22 2007-09-06 Samsung Electronics Co Ltd 磁気メモリ装置及びデータ記録方法
JP2009151885A (ja) * 2007-12-21 2009-07-09 Fujitsu Ltd 半導体記憶装置、その製造方法、書き込み方法及び読み出し方法
JP2012216776A (ja) * 2011-03-31 2012-11-08 Sony Corp 半導体装置、および、その製造方法
JP2013058521A (ja) * 2011-09-07 2013-03-28 Toshiba Corp 記憶装置及びその製造方法
WO2017038403A1 (ja) * 2015-09-01 2017-03-09 ソニー株式会社 積層体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755002B (zh) * 2019-09-17 2022-02-11 台灣積體電路製造股份有限公司 半導體結構及其形成方法
US11362212B2 (en) 2019-09-17 2022-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Contact interface engineering for reducing contact resistance

Also Published As

Publication number Publication date
CN111788672A (zh) 2020-10-16
TWI780302B (zh) 2022-10-11
TW201946280A (zh) 2019-12-01
US11482548B2 (en) 2022-10-25
US20210043663A1 (en) 2021-02-11
DE112019001173T5 (de) 2020-11-19

Similar Documents

Publication Publication Date Title
TWI773719B (zh) 半導體裝置
US10879299B2 (en) Semiconductor device with transistor in semiconductor substrate and insulated contact plug extending through the substrate
US20180197916A1 (en) Semiconductor device structure useful for bulk transistor and method of manufacturing same
US20180233539A1 (en) Semiconductor device and method of manufacturing same
US10074690B2 (en) Semiconductor device and method of manufacturing the same
US8482953B2 (en) Composite resistance variable element and method for manufacturing the same
KR102428101B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
US9876163B2 (en) Magnetic memory with tunneling magnetoresistance enhanced spacer layer
US20160027843A1 (en) Semiconductor memory device and manufacturing method thereof
CN112234077A (zh) 磁性存储单元及其制作方法
US9343662B2 (en) Magnetic memory device and method of forming thereof
WO2019171872A1 (ja) 半導体装置および撮像装置
CN108807661B (zh) 半导体元件及其制造方法
JP2009224477A (ja) 半導体記憶装置及びその製造方法
US20240114700A1 (en) Semiconductor device
US20230065619A1 (en) Semiconductor device, integrated circuit and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763380

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19763380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP