WO2019167949A1 - ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の製造方法 - Google Patents
ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の製造方法 Download PDFInfo
- Publication number
- WO2019167949A1 WO2019167949A1 PCT/JP2019/007335 JP2019007335W WO2019167949A1 WO 2019167949 A1 WO2019167949 A1 WO 2019167949A1 JP 2019007335 W JP2019007335 W JP 2019007335W WO 2019167949 A1 WO2019167949 A1 WO 2019167949A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solvent
- fluorosulfonyl
- alkali metal
- metal salt
- bis
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/087—Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
- C01B21/093—Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
- C01B21/096—Amidosulfonic acid; Salts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/0018—Evaporation of components of the mixture to be separated
- B01D9/0031—Evaporation of components of the mixture to be separated by heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/22—Evaporating by bringing a thin layer of the liquid into contact with a heated surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/22—Evaporating by bringing a thin layer of the liquid into contact with a heated surface
- B01D1/221—Composite plate evaporators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/22—Evaporating by bringing a thin layer of the liquid into contact with a heated surface
- B01D1/222—In rotating vessels; vessels with movable parts
- B01D1/223—In rotating vessels; vessels with movable parts containing a rotor
- B01D1/225—In rotating vessels; vessels with movable parts containing a rotor with blades or scrapers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/22—Evaporating by bringing a thin layer of the liquid into contact with a heated surface
- B01D1/24—Evaporating by bringing a thin layer of the liquid into contact with a heated surface to obtain dry solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/0036—Crystallisation on to a bed of product crystals; Seeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/005—Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
- B01D9/0054—Use of anti-solvent
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/086—Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/48—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/004—Fractional crystallisation; Fractionating or rectifying columns
- B01D9/0045—Washing of crystals, e.g. in wash columns
Definitions
- the present invention relates to a method for producing a bis (fluorosulfonyl) amide alkali metal salt powder. More specifically, the present invention relates to a method for producing a high-purity bis (fluorosulfonyl) amide alkali metal salt powder by suppressing a decrease in yield due to thermal decomposition or the like.
- This application claims priority to Japanese Patent Application No. 2018-35582 filed on Feb. 28, 2018, the contents of which are incorporated herein by reference.
- Patent Document 1 states that a fluorosulfonylimide alkali metal salt can be produced by the method described in Patent Document 1. Since the fluorosulfonylimide alkali metal salt cannot be said to have high heat resistance, the yield may decrease when heated for a long period of time. Therefore, Patent Document 1 discloses a reaction containing at least one solvent selected from the group consisting of carbonate solvents, aliphatic ether solvents, ester solvents, amide solvents, nitro solvents, sulfur solvents, and nitrile solvents.
- the reaction solvent After synthesizing an alkali metal salt of fluorosulfonylimide in the presence of a solvent, the reaction solvent and at least one selected from the group consisting of an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, and an aromatic ether solvent And a step of concentrating the alkali metal salt solution of fluorosulfonylimide by distilling off the reaction solvent in the presence of a poor solvent for the alkali metal salt of fluorosulfonylimide.
- a method for producing a salt is disclosed.
- Patent Document 1 a rotary evaporator, a flask, a tank reactor, or the like is used in the concentration step, and a reaction solvent is removed using a thin film evaporator or the like before the concentration step in the presence of a poor solvent. It states that it may be removed in advance.
- An object of the present invention is to provide a method for producing a high-purity bis (fluorosulfonyl) amide alkali metal salt powder while suppressing a decrease in yield due to thermal decomposition or the like.
- a solution obtained by dissolving bis (fluorosulfonyl) amide alkali metal salt in a good solvent is distilled using a thin film evaporator while adding a poor solvent to obtain bis (fluorosulfonyl) amide alkali metal.
- the good solvent is a carbonate solvent, an aliphatic ether solvent, an ester solvent, an amide solvent, a nitro solvent, a sulfur solvent or a nitrile solvent
- the equilibrium vapor pressure of the good solvent is higher than the equilibrium vapor pressure of the poor solvent at a temperature at which distillation is performed using a thin film evaporator.
- the thin film evaporator includes a tank having a poor solvent supply port and a vapor discharge port, a stirring device installed in the tank, and a heating device for adjusting the temperature of the wall of the tank.
- the stirring device has a vertical rotation shaft and a rotary blade capable of pumping the liquid accumulated in the lower part of the tank by centrifugal force and spraying the pumped liquid to the upper wall in the tank,
- the production method according to any one of [1] to [3], wherein the sprayed liquid naturally flows down along the wall in the tank and causes the liquid to evaporate during that time.
- a decrease in yield due to thermal decomposition or the like can be suppressed, and high-purity bis (fluorosulfonyl) amide alkali metal salt powder can be produced in a short time.
- a good solvent solution of bis (fluorosulfonyl) amide alkali metal salt is simply concentrated, the viscosity only increases and precipitation does not easily occur, so the yield of bis (fluorosulfonyl) amide alkali metal salt powder Is low. This is presumed that the bis (fluorosulfonyl) amide alkali metal salt and the good solvent have some interaction, and the bis (fluorosulfonyl) amide alkali metal salt is not separated from the solvent.
- the method for producing a bis (fluorosulfonyl) amide alkali metal salt powder according to the present invention comprises bis (fluorosulfonyl) amide alkali metal salt dissolved in a good solvent of bis (fluorosulfonyl) amide alkali metal salt, Including adding a poor solvent for the fluorosulfonyl) amide alkali metal salt using a thin film evaporator to precipitate the bis (fluorosulfonyl) amide alkali metal salt.
- the bis (fluorosulfonyl) amide alkali metal salt used in the present invention is, for example, a known substance represented by the formula (I).
- M is an alkali metal
- R 1 and R 2 are each independently a fluorine atom or a hydrocarbon group having 1 to 6 carbon atoms substituted with at least one fluorine atom.
- bis (fluorosulfonyl) amide alkali metal salts include bis (fluorosulfonyl) amide lithium salt, bis (perfluoromethylsulfonyl) amide lithium salt, bis (fluorosulfonyl) amide potassium salt, and bis (perfluoromethylsulfonyl).
- the good solvent is not particularly limited as long as it can dissolve a predetermined amount or more of bis (fluorosulfonyl) amide alkali metal salt at room temperature.
- Examples of good solvents preferably used in the present invention include carbonate solvents, aliphatic ether solvents, ester solvents, amide solvents, nitro solvents, sulfur solvents, and nitrile solvents. Of these, aliphatic ether solvents, ester solvents, and nitrile solvents are preferred.
- a good solvent can be used individually by 1 type or in combination of 2 or more types.
- the poor solvent is one in which a predetermined amount or more of bis (fluorosulfonyl) amide alkali metal salt cannot be dissolved at room temperature.
- the poor solvent preferably used in the present invention include an aromatic hydrocarbon solvent, a linear or branched aliphatic hydrocarbon solvent, a cyclic aliphatic hydrocarbon solvent, and an aromatic ether solvent. Can do. Of these, aromatic hydrocarbon solvents and linear or branched aliphatic hydrocarbon solvents are preferred.
- Aromatic hydrocarbon solvents, linear or branched aliphatic hydrocarbon solvents include substituted or unsubstituted aromatic hydrocarbons; substituted or unsubstituted linear aliphatic hydrocarbons, substituted or non-substituted Examples thereof include substituted branched aliphatic hydrocarbons.
- a poor solvent can be used individually by 1 type or in combination of 2 or more types. The poor solvent to be added may be unused in the distillation of the present invention, may be the one obtained by condensing and refluxing the vapor discharged by the distillation of the present invention, or the distillation of the present invention. The steam discharged in step 1 may be purified and regenerated.
- the good solvent and poor solvent used in the present invention are preferably such that the equilibrium vapor pressure of the good solvent is higher than the equilibrium vapor pressure of the poor solvent at the temperature when distillation is performed using a thin film evaporator.
- a poor solvent and a good solvent satisfying such a magnitude relationship are selected, the good solvent is easily discharged from the vapor outlet to the outside of the thin film evaporator, and the poor solvent is likely to remain in the thin film evaporator.
- the temperature at the vapor outlet of the thin film evaporator is preferably 20 to 90 ° C, more preferably 30 to 80 ° C.
- the good solvent and the poor solvent used in the present invention preferably have a boiling point of the good solvent lower than that of the poor solvent at the pressure when distillation is performed using a thin film evaporator.
- the difference between the boiling point of the good solvent and the poor solvent is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, more preferably 35 ° C. or higher, and even more preferably 45 ° C. or higher at 1 atmosphere.
- the maximum temperature when performing distillation using a thin film evaporator is preferably less than a temperature at which thermal decomposition of the bis (fluorosulfonyl) amide alkali metal salt does not proceed.
- the temperature of the liquid in the thin film evaporator is preferably 25 to 90 ° C, more preferably 35 to 80 ° C. Distillation under reduced pressure is preferred to promote evaporation at lower temperatures. In order to prevent entrainment and bumping, it is preferable that the temperature of the liquid in the thin film evaporator is lower than the boiling point of the mixture of the good solvent and the poor solvent.
- the temperature of the thin film evaporator can be adjusted by a known heating device such as a jacket.
- the thin film evaporator is a device that evaporates liquid by spreading the liquid into a thin film and heating the thin film.
- Examples of the method for spreading the liquid into a thin film include a wiper type, a scraper type, a liquid flow type, and a centrifugal type.
- those having a film forming apparatus inside the tank such as a wiper type, a scraper type, a centrifugal jet type, etc. are preferable.
- thin film evaporators include, for example, “short stroke distillation apparatus” (manufactured by UIC GmbH), “Wiperen (registered trademark)”, “Exeva (registered trademark)” (above, manufactured by Shinko Environmental Solution Co., Ltd.) “Contro”, “Inclined Wing Contro”, “Cebucon (registered trademark)” (manufactured by Hitachi Plant Technology Co., Ltd.), “High Evaporator (registered trademark)” (manufactured by Sakai Manufacturing Co., Ltd.) "Viscon", “Film Truder” (made by Kimura Chemical Co., Ltd.), “Hi-U Blusher”, “Evariactor”, “Recovery” (made by Kansai Chemical Machinery Manufacturing Co., Ltd.), “NRH” ( Nichinan Machinery Co., Ltd.), “Evapol (registered trademark)” (manufactured by Ogawara Seisakusho Co., Ltd.), and the
- the thin film evaporator 1 preferably used in the present invention adjusts the temperature of a tank 9 having a poor solvent supply port 6a and a vapor discharge port 5a, a stirrer installed in the tank, and the wall surface of the tank.
- Heating devices 4a lower jacket
- 4b middle jacket
- 4c upper jacket
- the stirring device has a vertical rotating shaft 2 and a rotary blade 3 that can pump up the liquid accumulated in the lower part of the tank by centrifugal force and spray the liquid pumped up on the upper wall of the tank.
- the applied liquid naturally flows down the wall in the tank, and causes the liquid to evaporate during that time. For example, as shown in FIG.
- the rotor blade 3 is mounted with a tube or a half tube on a vertical rotation axis so that the distal end 3a is above the proximal end 3b and is inclined with respect to the horizontal plane.
- the proximal end 3b of the tube or the half pipe is in the liquid accumulated in the lower part of the tank, and the rotor blades reach a predetermined number of revolutions, the liquid flows through the pipe or the half pipe by centrifugal force. Ascend and eject from the distal end 3a. The ejected liquid is sprayed on the upper wall in the tank, and the sprayed liquid naturally flows down along the wall.
- a normal stirring blade for example, Paddle blades, propeller blades, ribbon blades, turbine blades, edged turbine blades, anchor blades, and the like may be provided.
- the stirring blade provided on the lower side of the rotary blade 3 may share the vertical rotary shaft 2.
- the poor solvent to be added is warmed to a temperature close to the temperature of the liquid in the tank.
- the heating method is not particularly limited.
- heat is applied between the poor solvent 10 added and the vapor of the solvent evaporated in the tank 9. Exchange can be performed to warm the poor solvent 10 and condense some of the vapor.
- the condensate 12 obtained by condensing some steam and the remaining steam 11 may be discharged out of the system as they are.
- the poor solvent has a boiling point higher than that of the good solvent, and the vapor temperature is adjusted by the heat exchanger 7 to a temperature at which most of the good solvent is discharged as vapor and most of the poor solvent is condensed.
- the condensate 12 is rich in poor solvent, and the vapor 11 is rich in good solvent.
- the poor solvent-rich condensate accumulates at the bottom of the gas-liquid separator 8.
- the poor solvent rich liquid thus obtained may be returned to the tank 9.
- the good solvent-rich vapor can be discharged out of the system.
- the discharged vapor can be purified by a known method and reused as a good solvent or a poor solvent.
- the inside of the tank is preferably in a reduced pressure state in order to promote evaporation at a low temperature.
- the addition of the poor solvent can be performed before starting the distillation. If a poor solvent is added before starting the distillation, a part of the bis (fluorosulfonyl) amide alkali metal salt may precipitate and a seed crystal may be generated. This seed crystal may promote precipitation in the distillation stage, grow the precipitate, and increase the size. Larger precipitates are easier to solid-liquid separate. When there are few seed crystals to be produced, seed crystals prepared in advance may be added before starting distillation or during distillation. Further, the rate of addition of the poor solvent during distillation is not particularly limited. The addition of the poor solvent is preferably performed so that the amount of liquid in the thin film evaporator is substantially constant.
- the total amount of the poor solvent added during the distillation is preferably 100 parts by mass to 10,000 parts by mass, more preferably 200 parts by mass to 1000 parts by mass, and still more preferably 300 parts by mass with respect to 100 parts by mass of the good solvent. Parts by mass to 800 parts by mass.
- the total amount of poor solvent added during distillation includes the amount of poor solvent contained in the condensate returned to the tank.
- Bis (fluorosulfonyl) amide alkali metal salt is precipitated by distillation as described above, and then the temperature of the liquid in the tank is lowered, followed by solid-liquid separation treatment. Next, the residual solvent is removed by evaporation from the precipitate taken out by the solid-liquid separation treatment. Thereby, high-purity bis (fluorosulfonyl) amide alkali metal salt powder can be obtained.
- the solid-liquid separation process can be performed by, for example, a centrifugal separation method, a gradient method, a filtration method, or the like.
- the solvent can be removed by a known drying method, for example, a reduced pressure drying method, a vacuum drying method, an atmospheric pressure drying method, or the like.
- Example 1 In a 1 L cylindrical round bottom separable flask made of glass, 56.26 g of bis (fluorosulfonyl) amide lithium salt (LiFSI) and isopropyl acetate (boiling point 89 ° C., density 0.88 g / cm 3 ) 56.29 g And 30.03 g of decane (boiling point: 174.2 ° C., density: 0.7 g / cm 3 ) were charged with a four-necked separable cover.
- LiFSI bis (fluorosulfonyl) amide lithium salt
- a stirrer having a rotary blade (distal end interval 10 cm, proximal end interval 5 cm, height 9 cm) composed of a vertical rotating shaft and two half-divided tubes having a width of 2 cm as shown in FIG. 1 was attached thereto. Further, a dropping funnel filled with decane (poor solvent), a condenser, and a thermometer were attached at predetermined positions. The separable flask was immersed in a 60 ° C. hot water bath to a level just below the collar. While rotating the rotating blade at 350 rpm, the degree of vacuum was adjusted so that the condenser inlet temperature was 48 ° C., and distillation was started.
- Liquid collected at the bottom of the separable flask was lifted up the half pipe by centrifugal force, spouted from the distal end, and sprayed on the wall at the level just below the collar in the separable flask.
- the sprayed liquid flowed down the wall. Distillation was continued while dropping decane so that the amount of liquid in the separable flask was constant, and rotating the rotary blade.
- the dropping of 449.57 g of decane was completed (approximately 74 minutes from the start of dropping)
- the rotary blade was stopped and returned to normal pressure.
- the liquid in the separable flask was cooled to room temperature and filtered to take out the precipitate. The taken out precipitate was washed with methylene chloride and dried under reduced pressure. 49.86 g of LiFSI (yield 88.6%) was obtained.
- Comparative Example 1 A 1 L cylindrical round bottom separable flask made of glass is charged with a solution of 56.71 g of bis (fluorosulfonyl) amide lithium salt (LiFSI) and 56.77 g of isopropyl acetate, and 30.98 g of decane. The lid was covered with a separable cover at the mouth. To this, a stirrer having a vertical rotation shaft and a half-moon shaped stirring blade (width 7.5 cm, thickness 4 mm, height 2 cm) was attached. Further, a dropping funnel filled with decane (poor solvent), a condenser, and a thermometer were attached at predetermined positions.
- decane poor solvent
- condenser condenser
- the separable flask was immersed in a 60 ° C. hot water bath to a level just below the collar. While rotating the half-moon stirring blade at 350 rpm, the degree of vacuum was adjusted so that the temperature at the inlet of the condenser was 48 ° C., and distillation was started. Due to centrifugal force, the liquid in the separable flask was slightly raised in height relative to the wall of the separable flask as compared with the case of standing still. Distillation was continued while dropping decane so that the amount of liquid in the separable flask was constant and turning the stirring blade.
- Example 2 In a 1 L cylindrical round bottom separable flask made of glass, 56.43 g of bis (fluorosulfonyl) amide lithium salt (LiFSI) and 56.42 g of acetonitrile (boiling point 82 ° C., density 0.786 g / cm 3 ) 56.42 g The solution was charged with 30.01 g of toluene (boiling point 110.63 ° C., density 0.867 g / cm 3 ), and the lid was covered with a four-neck separable cover.
- LiFSI bis (fluorosulfonyl) amide lithium salt
- a stirrer having a rotary blade (distal end interval 10 cm, proximal end interval 5 cm, height 9 cm) composed of a vertical rotating shaft and two half-divided tubes having a width of 2 cm as shown in FIG. 1 was attached thereto. Further, a dropping funnel filled with toluene (poor solvent), a condenser, and a thermometer were attached at predetermined positions. The separable flask was immersed in a 60 ° C. hot water bath to a level just below the collar. While rotating the rotary blade at 350 rpm, the degree of vacuum was adjusted so that the condenser inlet temperature was 49 ° C., and distillation was started.
- Liquid collected at the bottom of the separable flask was lifted up the half pipe by centrifugal force, spouted from the distal end, and sprayed on the wall at the level just below the collar in the separable flask.
- the sprayed liquid flowed down the wall. Distillation was continued while dripping toluene so that the amount of liquid in the separable flask was constant and rotating the rotary blade.
- the pressure was returned to normal pressure.
- the liquid in the separable flask was cooled to room temperature and filtered to take out the precipitate. The taken out precipitate was washed with methylene chloride and dried under reduced pressure. LiFSI 52.34g (yield 92.8%) was obtained.
- Comparative Example 2 A 1 L cylindrical round bottom separable flask made of glass is charged with a solution of 56.26 g of bis (fluorosulfonyl) amide lithium salt (LiFSI) and 56.32 g of acetonitrile, and 30.00 g of toluene. The mouth was covered with a separable cover. To this, a stirrer having a vertical rotation shaft and a half-moon shaped stirring blade (width 7.5 cm, thickness 4 mm, height 2 cm) was attached. Further, a dropping funnel filled with toluene (poor solvent), a condenser, and a thermometer were attached at predetermined positions. The separable flask was immersed in a 60 ° C.
- LiFSI bis (fluorosulfonyl) amide lithium salt
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
〔1〕 良溶媒にビス(フルオロスルホニル)アミドアルカリ金属塩を溶解させてなる溶液に、貧溶媒を添加しながら、 薄膜式蒸発器を用いて蒸留を行って、ビス(フルオロスルホニル)アミドアルカリ金属塩を析出させることを含む、ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の製造方法。
貧溶媒が芳香族炭化水素系溶媒、直鎖状若しくは分枝鎖状脂肪族炭化水素系溶媒、環状脂肪族炭化水素系溶媒または芳香族エーテル系溶媒である、〔1〕に記載の製造方法。
〔3〕 薄膜式蒸発器を用いて蒸留を行う際の温度において、良溶媒の平衡蒸気圧が貧溶媒の平衡蒸気圧より高い、〔1〕または〔2〕に記載の製造方法。
前記撹拌装置が、垂直回転軸と、槽内の下部に溜まった液体を遠心力によって汲み上げ且つ汲み上げた液体を槽内の上部の壁に噴きかけることができる回転翼とを有し、
噴きかけた液体が槽内の壁を伝って自然流下し、その間に液体の蒸発をひき起こさせるものである、〔1〕~〔3〕のいずれかひとつに記載の製造方法。
なお、ビス(フルオロスルホニル)アミドアルカリ金属塩の良溶媒溶液を、単純に濃縮しても、粘性が高くなるだけで、析出が起き難いため、ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の収率が低い。これは、ビス(フルオロスルホニル)アミドアルカリ金属塩と良溶媒とが何らかのインタラクションをして、溶媒からビス(フルオロスルホニル)アミドアルカリ金属塩が離れないからではないかと推測する。
(式(I)中、Mはアルカリ金属であり、R1およびR2はそれぞれ独立に、フッ素原子又は少なくとも一つのフッ素原子で置換された炭素数1~6の炭化水素基である。)
また、蒸留を行っている際の、貧溶媒の添加の速度は、特に制限されない。貧溶媒の添加は、薄膜式蒸発器内にある液体の量がほぼ一定になるように行うことが好ましい。液体の量がほぼ一定になるように行うことで、過熱を防ぎつつ、析出の速度を上げることができる。
蒸留を行っている際の貧溶媒の添加量の合計は、良溶媒100質量部に対して、好ましくは100質量部~10000質量部、より好ましくは200質量部~1000質量部、さらに好ましくは300質量部~800質量部である。なお、蒸留を行っている際の貧溶媒の添加量の合計には、槽に戻される凝縮液に含まれる貧溶媒の量も含める。
ガラス製、1L、直径11cm円筒形丸底のセパラブルフラスコに、ビス(フルオロスルホニル)アミドリチウム塩(LiFSI)56.26gおよび酢酸イソプロピル(沸点89℃、密度0.88g/cm3)56.29gの溶液と、デカン(沸点174.2℃、密度0.7g/cm3)30.03gとを仕込み、四つ口のセパラブルカバーで蓋をした。これに、図1に示すような垂直回転軸と幅2cmの半割管2本からなる回転翼(遠位端間隔10cm、近位端間隔5cm、高さ9cm)を有する撹拌装置を取り付けた。さらに、デカン(貧溶媒)を充填した滴下ロート、コンデンサ、および温度計を所定の位置に取り付けた。
60℃の温水バスにセパラブルフラスコをつばのすぐ下のレベルまで浸けた。350rpmで回転翼を回しながら、コンデンサ入口の温度が48℃になるように減圧度を調整して、蒸留を開始した。セパラブルフラスコの底に溜まった液体が、遠心力によって半割管を上昇し、遠位端から噴出し、セパラブルフラスコ内のつばのすぐ下のレベルの壁に散布された。散布された液体は壁を伝って流下した。セパラブルフラスコ内の液体の量が一定になるようにデカンを滴下しながら、且つ回転翼を回しながら蒸留を続けた。デカン449.57gの滴下を完了した時点(滴下開始から約74分間)で、回転翼を止め、常圧に戻した。
セパラブルフラスコ内の液を、常温まで冷やし、濾過して、析出物を取り出した。取り出した析出物を、塩化メチレンで洗浄し、減圧下で乾燥させた。LiFSI49.86g(収率88.6%)が得られた。
ガラス製、1L、直径11cm円筒形丸底のセパラブルフラスコに、ビス(フルオロスルホニル)アミドリチウム塩(LiFSI)56.71gおよび酢酸イソプロピル56.77gの溶液と、デカン30.98gとを仕込み、四つ口のセパラブルカバーで蓋をした。これに、垂直回転軸と半月形撹拌翼(横幅7.5cm、厚み4mm、高さ2cm)とを有する撹拌装置を取り付けた。さらに、デカン(貧溶媒)を充填した滴下ロート、コンデンサ、および温度計を所定の位置に取り付けた。
60℃の温水バスにセパラブルフラスコをつばのすぐ下のレベルまで浸けた。350rpmで半月形撹拌翼を回しながら、コンデンサ入口の温度が48℃になるように減圧度を調整して、蒸留を開始した。セパラブルフラスコ内の液体が、遠心力によって、セパラブルフラスコの壁に接する液の高さが静置時に比べて若干上昇した。セパラブルフラスコ内の液体の量が一定になるようにデカンを滴下しながら、且つ撹拌翼を回しながら蒸留を続けた。デカン567.64gの滴下を完了した時点(滴下開始から約76分間)で、撹拌翼を止め、常圧に戻した。
セパラブルフラスコ内の液を、常温まで冷やし、濾過して、析出物を取り出した。取り出した析出物を、塩化メチレンで洗浄し、減圧下で乾燥させた。LiFSI35.86g(収率63.2%)が得られた。
ガラス製、1L、直径11cm円筒形丸底のセパラブルフラスコに、ビス(フルオロスルホニル)アミドリチウム塩(LiFSI)56.43gとアセトニトリル(沸点82℃、密度0.786g/cm3)56.42gの溶液と、トルエン(沸点110.63℃、密度0.867g/cm3)30.01gとを仕込み、四つ口のセパラブルカバーで蓋をした。これに、図1に示すような垂直回転軸と幅2cmの半割管2本からなる回転翼(遠位端間隔10cm、近位端間隔5cm、高さ9cm)を有する撹拌装置を取り付けた。さらに、トルエン(貧溶媒)を充填した滴下ロート、コンデンサ、および温度計を所定の位置に取り付けた。
60℃の温水バスにセパラブルフラスコをつばのすぐ下のレベルまで浸けた。350rpmで回転翼を回しながら、コンデンサ入口の温度が49℃になるように減圧度を調整して、蒸留を開始した。セパラブルフラスコの底に溜まった液体が、遠心力によって半割管を上昇し、遠位端から噴出し、セパラブルフラスコ内のつばのすぐ下のレベルの壁に散布された。散布された液体は壁を伝って流下した。セパラブルフラスコ内の液体の量が一定になるようにトルエンを滴下しながら、且つ回転翼を回しながら蒸留を続けた。トルエン736.36gの滴下を完了した時点(滴下開始から約73分間)で、常圧に戻した。
セパラブルフラスコ内の液を、常温まで冷やし、濾過して、析出物を取り出した。取り出した析出物を、塩化メチレンで洗浄し、減圧下で乾燥させた。LiFSI52.34g(収率92.8%)が得られた。
ガラス製、1L、直径11cm円筒形丸底のセパラブルフラスコに、ビス(フルオロスルホニル)アミドリチウム塩(LiFSI)56.26gおよびアセトニトリル56.32gの溶液と、トルエン30.00gとを仕込み、四つ口のセパラブルカバーで蓋をした。これに、垂直回転軸と半月形撹拌翼(横幅7.5cm、厚み4mm、高さ2cm)とを有する撹拌装置を取り付けた。さらに、トルエン(貧溶媒)を充填した滴下ロート、コンデンサ、および温度計を所定の位置に取り付けた。
60℃の温水バスにセパラブルフラスコをつばのすぐ下のレベルまで浸けた。350rpmで半月形撹拌翼を回しながら、コンデンサ入口の温度が49℃になるように減圧度を調整して、蒸留を開始した。遠心力によって、セパラブルフラスコの壁に接する液の高さが静置時に比べて若干上昇した。セパラブルフラスコ内の液体の量が一定になるようにトルエンを滴下しながら、且つ撹拌翼を回しながら蒸留を続けた。トルエン732.46gの滴下を完了した時点(滴下開始から約104分間)で、撹拌翼を止め、常圧に戻した。
セパラブルフラスコ内の液を、常温まで冷やし、濾過して、析出物を取り出した。取り出した析出物を、塩化メチレンで洗浄し、減圧下で乾燥させた。LiFSI46.10g(収率81.9%)が得られた。
2:回転軸
3:回転翼(管または半割管)
4a:下段ジャケット
4b:中段ジャケット
4c:上段ジャケット
5:蒸気排出管
5a:蒸気排出口
6:貧溶媒供給管
6a:貧溶媒供給口
7:熱交換器(凝縮器)
8:気液分離器
9:槽
10:貧溶媒
11:蒸気
12:凝縮液
Claims (4)
- 良溶媒にビス(フルオロスルホニル)アミドアルカリ金属塩を溶解させてなる溶液に、貧溶媒を添加しながら、薄膜式蒸発器を用いて蒸留を行って、ビス(フルオロスルホニル)アミドアルカリ金属塩を析出させることを含む、ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の製造方法。
- 良溶媒がカーボネート系溶媒、脂肪族エーテル系溶媒、エステル系溶媒、アミド系溶媒、ニトロ系溶媒、硫黄系溶媒またはニトリル系溶媒であり、
貧溶媒が芳香族炭化水素系溶媒、直鎖状若しくは分枝鎖状脂肪族炭化水素系溶媒、環状脂肪族炭化水素系溶媒または芳香族エーテル系溶媒である、請求項1に記載の製造方法。 - 薄膜式蒸発器を用いて蒸留を行う際の温度において、良溶媒の平衡蒸気圧が貧溶媒の平衡蒸気圧より高い、請求項1または2に記載の製造方法。
- 薄膜式蒸発器は、貧溶媒供給口と蒸気排出口とを有する槽と、該槽内に設置された攪拌装置と、槽の壁面の温度を調節するための加熱装置とを有し、
前記撹拌装置が、垂直回転軸と、槽内の下部に溜まった液体を遠心力によって汲み上げ且つ汲み上げた液体を槽内の上部の壁に噴きかけることができる回転翼とを有し、
噴きかけた液体が槽内の壁を伝って自然流下し、その間に液体の蒸発をひき起こさせるものである、請求項1~3のいずれかひとつに記載の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207023802A KR102457551B1 (ko) | 2018-02-28 | 2019-02-26 | 비스(플루오로술포닐)아미드알칼리 금속염 분말의 제조 방법 |
MX2020008785A MX2020008785A (es) | 2018-02-28 | 2019-02-26 | Metodo para producir polvo de sal de metal alcalino de bis(fluorosulfonil)amida. |
CN201980014891.7A CN111741925A (zh) | 2018-02-28 | 2019-02-26 | 双(氟磺酰)亚胺碱金属盐粉末的制造方法 |
EP19761157.7A EP3760582A4 (en) | 2018-02-28 | 2019-02-26 | METHOD OF PRODUCTION OF BIS ALKALINE METAL SALT (FLUOROSULFONYL) AMIDE POWDER |
CA3091030A CA3091030C (en) | 2018-02-28 | 2019-02-26 | Method for producing bis(fluorosulfonyl)amide alkali metal salt powder |
BR112020016173-0A BR112020016173A2 (pt) | 2018-02-28 | 2019-02-26 | Método para produção de um pó de sal de metal alcalino de bis(fluorossulfonil)amida. |
US16/975,167 US11492258B2 (en) | 2018-02-28 | 2019-02-26 | Method for producing bis(fluorosulfonyl)amide alkali metal salt powder |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018035782A JP6375463B1 (ja) | 2018-02-28 | 2018-02-28 | ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の製造方法 |
JP2018-035782 | 2018-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019167949A1 true WO2019167949A1 (ja) | 2019-09-06 |
Family
ID=63165886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/007335 WO2019167949A1 (ja) | 2018-02-28 | 2019-02-26 | ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の製造方法 |
Country Status (11)
Country | Link |
---|---|
US (1) | US11492258B2 (ja) |
EP (1) | EP3760582A4 (ja) |
JP (1) | JP6375463B1 (ja) |
KR (1) | KR102457551B1 (ja) |
CN (1) | CN111741925A (ja) |
BR (1) | BR112020016173A2 (ja) |
CA (1) | CA3091030C (ja) |
MA (1) | MA52432A (ja) |
MX (1) | MX2020008785A (ja) |
TW (1) | TWI742345B (ja) |
WO (1) | WO2019167949A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113666346B (zh) * | 2021-08-23 | 2022-11-25 | 泰兴华盛精细化工有限公司 | 一种双氟磺酰亚胺锂短程蒸馏高效提纯装置及其提纯方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026374A1 (en) * | 2000-09-28 | 2002-04-04 | Kansai Chemical Engineering Co., Ltd. | Heat transfer device |
JP2005232415A (ja) * | 2004-02-23 | 2005-09-02 | Nippon Shokubai Co Ltd | ノニオン性アルキレンオキシド系水溶性樹脂の輸送方法 |
JP2006043597A (ja) * | 2004-08-05 | 2006-02-16 | Kansai Chemical Engineering Co Ltd | 蒸留方法 |
WO2011149095A1 (ja) * | 2010-05-28 | 2011-12-01 | 株式会社日本触媒 | フルオロスルホニルイミドのアルカリ金属塩およびその製造方法 |
JP2014201453A (ja) | 2013-04-01 | 2014-10-27 | 株式会社日本触媒 | フルオロスルホニルイミドのアルカリ金属塩の製造方法 |
WO2016143776A1 (ja) * | 2015-03-09 | 2016-09-15 | 関西化学機械製作株式会社 | 蒸発装置 |
JP2017052689A (ja) * | 2013-11-18 | 2017-03-16 | 日本曹達株式会社 | ジスルホニルアミド塩の顆粒または粉末 |
JP2018035782A (ja) | 2016-09-02 | 2018-03-08 | 株式会社日立産機システム | スクリュー圧縮機 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3266395B2 (ja) * | 1993-11-24 | 2002-03-18 | 富士写真フイルム株式会社 | 有機薬品の晶析方法 |
CA2497069A1 (en) | 2004-02-19 | 2005-08-19 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Method for drying nonionic alkylene oxide-type water-soluble resin, method for packaging it, and method for transporting it |
JP2007297314A (ja) * | 2006-04-28 | 2007-11-15 | Kaneka Corp | (2s,4r)−2−ジメチルアミノカルボニル−4−メタンスルホニルオキシ−1−保護ピロリジンの改良された製造方法 |
JP5781749B2 (ja) * | 2009-10-27 | 2015-09-24 | 住友化学株式会社 | 固体状のアンモニウム塩化合物の製造方法 |
TWI406869B (zh) * | 2010-09-01 | 2013-09-01 | Nippon Catalytic Chem Ind | An alkali metal salt of fluosulfonyl imide and a process for producing the same |
ES2821826T3 (es) * | 2014-12-05 | 2021-04-27 | Meiji Seika Pharma Co Ltd | Método para producir cristales de derivado de diazabiciclooctano y preparación liofilizada estable |
JP6678499B2 (ja) * | 2016-03-31 | 2020-04-08 | トッパン・フォームズ株式会社 | 結晶添加方法 |
-
2018
- 2018-02-28 JP JP2018035782A patent/JP6375463B1/ja active Active
-
2019
- 2019-02-26 WO PCT/JP2019/007335 patent/WO2019167949A1/ja unknown
- 2019-02-26 CA CA3091030A patent/CA3091030C/en active Active
- 2019-02-26 US US16/975,167 patent/US11492258B2/en active Active
- 2019-02-26 MX MX2020008785A patent/MX2020008785A/es unknown
- 2019-02-26 KR KR1020207023802A patent/KR102457551B1/ko active IP Right Grant
- 2019-02-26 MA MA052432A patent/MA52432A/fr unknown
- 2019-02-26 BR BR112020016173-0A patent/BR112020016173A2/pt active Search and Examination
- 2019-02-26 EP EP19761157.7A patent/EP3760582A4/en active Pending
- 2019-02-26 CN CN201980014891.7A patent/CN111741925A/zh active Pending
- 2019-02-27 TW TW108106848A patent/TWI742345B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026374A1 (en) * | 2000-09-28 | 2002-04-04 | Kansai Chemical Engineering Co., Ltd. | Heat transfer device |
JP2005232415A (ja) * | 2004-02-23 | 2005-09-02 | Nippon Shokubai Co Ltd | ノニオン性アルキレンオキシド系水溶性樹脂の輸送方法 |
JP2006043597A (ja) * | 2004-08-05 | 2006-02-16 | Kansai Chemical Engineering Co Ltd | 蒸留方法 |
WO2011149095A1 (ja) * | 2010-05-28 | 2011-12-01 | 株式会社日本触媒 | フルオロスルホニルイミドのアルカリ金属塩およびその製造方法 |
JP2014201453A (ja) | 2013-04-01 | 2014-10-27 | 株式会社日本触媒 | フルオロスルホニルイミドのアルカリ金属塩の製造方法 |
JP2017052689A (ja) * | 2013-11-18 | 2017-03-16 | 日本曹達株式会社 | ジスルホニルアミド塩の顆粒または粉末 |
WO2016143776A1 (ja) * | 2015-03-09 | 2016-09-15 | 関西化学機械製作株式会社 | 蒸発装置 |
JP2018035782A (ja) | 2016-09-02 | 2018-03-08 | 株式会社日立産機システム | スクリュー圧縮機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3760582A4 |
Also Published As
Publication number | Publication date |
---|---|
MA52432A (fr) | 2021-01-06 |
JP2019151497A (ja) | 2019-09-12 |
BR112020016173A2 (pt) | 2020-12-15 |
JP6375463B1 (ja) | 2018-08-15 |
US11492258B2 (en) | 2022-11-08 |
KR102457551B1 (ko) | 2022-10-20 |
TWI742345B (zh) | 2021-10-11 |
CA3091030A1 (en) | 2019-09-06 |
CN111741925A (zh) | 2020-10-02 |
TW201945277A (zh) | 2019-12-01 |
CA3091030C (en) | 2022-07-19 |
MX2020008785A (es) | 2020-10-14 |
US20210114877A1 (en) | 2021-04-22 |
EP3760582A1 (en) | 2021-01-06 |
KR20200110770A (ko) | 2020-09-25 |
EP3760582A4 (en) | 2021-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3348318B1 (en) | Evaporator | |
WO2019167949A1 (ja) | ビス(フルオロスルホニル)アミドアルカリ金属塩粉末の製造方法 | |
WO2006022507A1 (en) | Apparatus with multi-tube rotary evaporator having movable balls | |
JP2002532217A (ja) | 回転プレート流体蒸発器及び凝縮器 | |
CN1148247C (zh) | 结晶装置和结晶方法 | |
KR100390563B1 (ko) | 정제된에폭시화합물의제조방법 | |
CN102250132B (zh) | 从浓盐酸中回收硅氧烷与粗氯甲烷精制联合工艺 | |
CN107879940A (zh) | 一种连续精制戊二胺的装置和方法 | |
KR20210015820A (ko) | 플루오로설포닐 기를 함유하는 이미드 염의 제조 방법 | |
JP6045283B2 (ja) | レジスト剥離液の再生方法および再生装置 | |
CN117654089A (zh) | 一种锂电添加剂的提纯装置及方法 | |
JPS5915718B2 (ja) | 水銀含有スラッジから水銀を除去する方法 | |
JP3598692B2 (ja) | 晶析方法及び晶析装置 | |
JP2021065869A (ja) | 回転散液具およびそれを備える蒸発装置 | |
CN216169954U (zh) | 一种硫氰酸胍制备用脱水装置 | |
CN220918197U (zh) | 一种磷酸一铵溶液蒸发结晶设备 | |
CN220918156U (zh) | 母液连续处理装置 | |
CN215352083U (zh) | 一种酸浴或酸性水超效蒸发结晶装置 | |
CN118341105A (zh) | 一种电子级硫酸提纯装置及方法 | |
WO2023142028A1 (zh) | 一种在双氟磺酰亚胺锂的生产中回收原辅材料的方法 | |
JPH11128718A (ja) | 混合蒸気発生装置及び混合蒸気の発生法 | |
FR2490968A1 (fr) | Procede pour la cristallisation de corps difficilement solubles et appareil de cristallisation | |
CN112218821A (zh) | 制备含有氟磺酰基的酰亚胺盐的方法 | |
JP2014214166A (ja) | ポリエステルの製造方法及び製造装置 | |
JPH10251411A (ja) | 重縮合系ポリマーの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19761157 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3091030 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20207023802 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019761157 Country of ref document: EP Effective date: 20200928 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020016173 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112020016173 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200807 |