WO2019167897A1 - 熱線遮蔽構造体およびそれを含む合わせガラスならびにそれらの製造方法 - Google Patents

熱線遮蔽構造体およびそれを含む合わせガラスならびにそれらの製造方法 Download PDF

Info

Publication number
WO2019167897A1
WO2019167897A1 PCT/JP2019/007116 JP2019007116W WO2019167897A1 WO 2019167897 A1 WO2019167897 A1 WO 2019167897A1 JP 2019007116 W JP2019007116 W JP 2019007116W WO 2019167897 A1 WO2019167897 A1 WO 2019167897A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat ray
layer
ray shielding
resin
shielding structure
Prior art date
Application number
PCT/JP2019/007116
Other languages
English (en)
French (fr)
Inventor
康弘 穂積
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67805774&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019167897(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to US16/975,905 priority Critical patent/US20210003756A1/en
Priority to CN201980015316.9A priority patent/CN111770834A/zh
Priority to EP19760561.1A priority patent/EP3760434A4/en
Priority to KR1020207024747A priority patent/KR20200125609A/ko
Priority to JP2019537191A priority patent/JP6618233B1/ja
Publication of WO2019167897A1 publication Critical patent/WO2019167897A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/1011Properties of the bulk of a glass sheet having predetermined tint or excitation purity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • B32B17/10357Specific parts of the laminated safety glass or glazing being colored or tinted comprising a tinted intermediate film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10449Wavelength selective transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10651Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/20Accessories, e.g. wind deflectors, blinds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings

Definitions

  • the present invention relates to a heat ray shielding structure having a heat ray shielding function and a laminated glass including the same, and a method for producing the same, which are used to reduce the increase in the indoor temperature of vehicles and buildings caused by the heat radiation of sunlight.
  • a heat ray shielding sheet that can shield heat rays from sunlight is attached to the window glass, or an intermediate layer having a heat ray shielding function is supported between two glasses. In order to suppress the temperature rise in the room and the office.
  • Patent Document 1 proposes to impart a heat ray shielding function to an intermediate layer supported between glass and contains an absorptive heat ray absorbing material.
  • the use of such a thermoplastic resin as an intermediate layer is exemplified.
  • the heat-absorbing material also absorbs light in the visible range, so there is a problem that the visible light transmittance is impaired if the content is increased to improve the heat-ray heat-shielding performance. Have difficulty.
  • Patent Document 2 an absorptive heat ray shielding layer is prepared on a support substrate having peelability.
  • Patent Document 3 a reflective shielding layer containing a resin containing silver tabular grains is prepared, and an adhesive resin is prepared.
  • transferring a heat ray shielding layer is illustrated. Transparency is excellent because it does not use a supporting substrate, but it does not have a multilayer structure from the heat ray absorbing layer and / or the heat ray reflecting layer, and the heat ray shielding layer alone or the heat ray reflecting layer alone is not sufficient. There are no challenges.
  • Patent Document 4 discloses a laminated glass for windows having an inner glass plate, a first resin layer, an infrared reflecting film, a second resin layer, and an outer glass plate in this order.
  • the film is self-supporting because it forms a thin film structure by itself after being formed. Because the film itself has a heat ray shielding function, it is easy to handle in the laminated glass manufacturing process, but it cannot be handled as a film unless a material such as a base layer, polyethylene terephthalate, or polymethyl methacrylate is used to provide self-supporting properties. .
  • the material of the heat ray shielding layer is limited.
  • the laminated glass for windows carries a reflective layer made of an organic material containing an absorbing material, sufficient heat ray shielding performance cannot be obtained unless the refractive index difference is small and the number of laminated layers is increased due to the limitation of the material.
  • Patent Document 5 an intermediate layer in which a heat ray shielding film in which a heat ray reflective layer composed of a high refractive index layer and a low refractive index layer is formed on a plastic substrate is supported between two adhesive resin layers, and A heat ray shielding laminated glass in which an intermediate layer is sandwiched between two glasses is disclosed.
  • these methods can produce a layer structure using various materials on the resin film substrate, it is possible to improve the heat shielding performance, and since the shielding layer can be continuously formed in a roll state, it is excellent in cost.
  • the layer having the heat ray shielding performance can be separated from the molded substrate alone. Have difficulty. Therefore, in the prior art, in order to provide excellent heat ray shielding performance on a material in which a heat ray shielding layer cannot be formed by wet or dry coating due to solvent resistance, outgas generation, etc., a supporting substrate unnecessary for the heat ray shielding function Or a film containing a base layer in the structure. However, since transparency is impaired or constituent materials are limited by using a film, a method capable of easily and additionally forming only a layer having excellent heat ray shielding performance is required.
  • the present invention provides a heat ray shielding structure and laminated glass that can easily provide an excellent heat ray shielding function without impairing the transparency and visible light transmittance, and greatly increases the production cost. It aims at providing the manufacturing method of the heat ray shielding structure and laminated glass which can be improved.
  • a heat ray shielding structure including a heat ray shielding layer between the first resin layer and the second resin layer,
  • the heat ray shielding layer is A heat ray reflective layer which is a first heat ray reflective layer having a repeated multilayer structure of a high refractive index layer and a low refractive index layer or a second heat ray reflective layer containing at least one of Au, Ag, Cu and Al,
  • a heat ray absorbing layer containing at least one of an inorganic oxide and a pigment and a binder resin, or a layer comprising the heat ray reflecting layer and the heat ray absorbing layer,
  • a heat ray shielding structure is A heat ray reflective layer which is a first heat ray reflective layer having a repeated multilayer structure of a high refractive index layer and a low refractive index layer or a second heat ray reflective layer containing at least one of Au, Ag, Cu and Al,
  • a heat ray absorbing layer containing at least one of an inorganic oxide and a pigment and a
  • a method for producing a heat ray shielding structure having the following steps, (A) A first heat ray reflective layer having a repeated multilayer structure of a high refractive index layer and a low refractive index layer or a second layer containing at least one of Au, Ag, Cu and Al on a substrate having peelability Laminate a heat ray reflective layer that is a heat ray reflective layer of Laminating a heat ray absorbing layer containing at least one of an inorganic oxide and a dye and a binder resin on the substrate having peelability, or On the substrate having the peelability, either the heat ray reflective layer or the heat ray absorption layer is laminated, and the heat ray reflection layer and the heat ray absorption layer are further formed on either the heat ray reflection layer or the heat ray absorption layer.
  • a step of obtaining the first laminate by laminating either one of the heat ray absorbing layers (B) After peeling the base material having peelability after laminating the heat ray reflective layer or the heat ray absorbing layer of the first laminate obtained in the step (A) with the first resin layer, Placing the heat ray reflective layer or the heat ray absorbing layer on the first resin layer to obtain a second laminate; (C) The heat ray reflective layer or the heat ray absorbing layer of the second laminate obtained in the step (B) is bonded to a second resin layer, and the heat ray reflective layer or the Arranging the heat ray absorbing layer to obtain a heat ray shielding structure; (3)
  • the peelable substrate has a peel force of 1000 mN / 25 mm or more and 5000 mN / 25 mm or less in a 180 ° peel test at a speed of 300 mm / min between a 25 mm-wide adhesive tape and the peelable substrate.
  • Laminated glass which includes in its configuration a heat ray shielding structure having the first glass plate, the heat ray shielding structure according to (1), and a second glass plate in this order.
  • a method for producing a laminated glass having the steps (A), (B) and (C) described in (2), and further having the following steps: (D) The process of arrange
  • the peelable substrate has a peel force of 1000 mN / 25 mm or more and 5000 mN / 25 mm or less in a 180 ° peel test at a speed of 300 mm / min between a 25 mm-wide adhesive tape and the peelable substrate.
  • the heat ray shielding structure of the present invention is generally excellent in performance concerning visible light transmittance, total solar transmittance, and haze. Moreover, if the method for producing a heat ray shielding structure of the present invention is used, a structure having an excellent heat ray shielding function without greatly increasing the number of process steps with a high degree of freedom in selecting a material necessary for imparting heat ray shielding performance. Low cost and easy manufacture. Furthermore, since the window material which comprises the heat ray shielding structure of this invention does not use a plastic support base material, it is excellent in heat ray shielding property and transparency.
  • the heat ray shielding structure according to the present embodiment includes a heat ray shielding layer between the first resin layer and the second resin layer.
  • the heat ray shielding layer in this embodiment is provided as a layer which has a heat ray shielding function on the base material 1 which has peelability as shown in FIG. 1 (heat ray shielding layer 2).
  • FIG. 1 heat ray shielding layer 2
  • the 1st laminated body (FIG. 1) provided with the heat ray shielding layer 2 on the base material 1 which has peelability, it is continuously produced in roll shape and affixed to a window material, and peels the base material 1 which has peelability.
  • the heat ray shielding layer 2 can be easily transferred. Thereby, the productivity of laminated glass and windows can be improved.
  • the heat ray shielding layer may be composed of either or both of a heat ray reflecting layer that is a layer that reflects heat rays and a heat ray absorbing layer that is a layer that absorbs heat rays. And may have both functions of absorption. Moreover, the resin layer which has adhesiveness can also be provided in the upper part of a heat ray shielding layer as needed.
  • the thickness of the heat ray shielding layer is not particularly limited, but is preferably greater than 0 ⁇ m and 50 ⁇ m or less in terms of ensuring transparency. Since the layer thickness is thin, the self-supporting property is poor, and it is difficult to separate only the heat ray shielding layer and handle it alone.
  • the base material having releasability is not limited to paper or plastic. Moreover, about peelability, what is necessary is just to be able to peel the layer which has a heat ray shielding function formed on a base material, and the presence or absence of a release agent is not limited.
  • the scale of the peelability of the substrate having peelability is determined by the 180 ° peel test at a speed of 300 mm / min between the adhesive tape manufactured by Nitto Denko Corporation (product name: 31B, 25 mm width) and the peelable substrate. The force is preferably in the range of 1000 mN / 25 mm to 5000 mN / 25 mm.
  • the heat ray reflective layer in this embodiment means a layer that reflects light having a wavelength of 780 nm to 2500 nm and does not transmit heat energy. However, “reflection” does not mean that light is not completely transmitted.
  • the heat ray reflective layer may be any layer that reflects 15% or more of incident light having a wavelength of 780 nm to 2500 nm, but it is preferable that the reflectance be higher.
  • a preferable reflectance is 20% or more, more preferably 25% or more, and further preferably 28% or more.
  • a heat ray reflective layer As a layer that reflects light with a wavelength of 780 nm to 2500 nm, a heat ray reflective layer (also referred to as a first heat ray reflective layer in this specification) having a repeated multilayer structure of a high refractive index layer and a low refractive index layer, or in addition, a heat ray reflective layer (also referred to as a second heat ray reflective layer in this specification) containing at least one of Au, Ag, Cu, and Al can be used.
  • the repeated multilayer structure of the first heat ray reflective layer means a structure in which a high refractive index layer and a low refractive index layer are alternately laminated to form a heat ray reflective layer by two or more layers.
  • the number of layers may be even or odd, and the high refractive index layer or the low refractive index layer may be in both the lowermost layer and the uppermost layer of the heat ray reflective layer.
  • the first heat ray reflective layer uses the principle of optical interference by stacking dielectrics, and has an advantage that the reflection wavelength and reflectance can be easily controlled by the refractive index and thickness of the layer. In the lamination of dielectrics, the constituent materials can be widely selected, so that there is an advantage that the refractive index can be easily adjusted.
  • examples of the high refractive index layer include a layer having a refractive index of 1.6 or more and 2.4 or less, preferably 1.7 or more and 2.2 or less, and more preferably 1.8 or more and 2.0 or less.
  • the low refractive index layer is a layer having a refractive index lower than the refractive index of the high refractive index layer in the previous period, and has a refractive index of, for example, greater than 0 and 1.5 or less, preferably greater than 0 and 1.4 or less.
  • the refractive index values are all values at a wavelength of 550 nm. Since the maximum reflectance improves as the refractive index difference between the high refractive index layer and the low refractive index layer increases, the number of laminated layers necessary to achieve the heat ray shielding performance can be reduced.
  • the material of the high refractive index layer and the low refractive index layer is not particularly limited, but TiO 2 , Nb 2 O 5 , WO 3 , MWO 3 (tungsten composite oxide), Ta 2 O 5 , SiO 2 , Al 2 O. 3 , metal oxides such as ZrO 2 , MgF 2 and the like having an appropriate refractive index can be selected and mixed alone or with a resin serving as a binder to form a layer. Further, an organic substance having a high refractive index and a low refractive index may be used alone without using a metal oxide. Moreover, you may contain various additives, such as a dispersing agent, a near-infrared absorption pigment
  • the content of the fine particles such as the metal oxide in the heat ray reflective layer is preferably 40% by weight to 90% by weight with respect to the total amount of the heat ray reflective layer.
  • the resin serving as the binder is not particularly limited as long as it is a resin capable of maintaining the dispersion of fine particles such as the above metal oxide.
  • a cured product of a thermoplastic resin or / and a curable resin that is cured by heat or light also referred to as a heat or photocurable resin
  • a thermosetting resin or a photocurable resin specifically, a thermosetting resin or a photocurable resin
  • the content of the binder resin in the heat ray reflective layer is preferably 10% by weight to 60% by weight with respect to the total amount of each heat ray reflective layer.
  • the second heat ray reflective layer is based on the reflection caused by the electromagnetic wave shielding effect of free electrons of the metal conductor. It consists of a single metal layer and is produced by dry coating such as vapor deposition and sputtering. Since a high reflectance can be obtained with a single metal layer, the number of coatings is small, and the load on the manufacturing process can be reduced.
  • the heat ray absorbing layer means a layer that absorbs light having a wavelength of 780 nm to 2500 nm and does not transmit heat energy.
  • “absorption” does not mean that light is not completely transmitted.
  • the heat ray absorbing layer and the heat ray reflecting layer are combined, it is preferable to selectively absorb light having a wavelength of 780 nm to 2500 nm so that light in the infrared region that cannot be shielded by the heat ray reflecting layer can be shielded.
  • the heat ray absorbing layer contains at least one of an inorganic oxide and a pigment and a binder resin.
  • the heat ray absorbing layer includes a material that absorbs light having a wavelength of 780 nm to 2500 nm (heat ray absorbing material) as an essential component and is composed of a mixture with a resin serving as a binder.
  • a material that absorbs light having a wavelength of 780 nm to 2500 nm is not particularly limited.
  • examples of such materials include ITO (tin-doped indium oxide), ATO (antimony-doped tin oxide), AZO (aluminum-doped zinc oxide), zinc oxide, tungsten composite oxide, antimony-doped zinc oxide, and lanthanum hexaboride.
  • the pigment may be any of inorganic and organic dyes and pigments and is not particularly limited.
  • the inorganic pigment for example, a cobalt dye, an iron dye, a chromium dye, a titanium dye, a vanadium dye, a zirconium dye, a molybdenum dye, a ruthenium dye, or the like can be used.
  • organic pigments and organic dyes include diimonium dyes, anthraquinone dyes, aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azurenium dyes, polymethine dyes, and naphthoquinone dyes.
  • Dyes pyrylium dyes, phthalocyanine dyes, naphthalocyanine dyes, naphtholactam dyes, azo dyes, condensed azo dyes, indigo dyes, perinone dyes, and the like can be used.
  • a dye having no maximum absorption at a wavelength of 500 nm to 600 nm is preferable.
  • the content of the inorganic oxide and the pigment in the heat ray absorbing layer is preferably 5% by weight to 75% by weight with respect to the total amount of the heat ray absorbing layer.
  • the binder resin used in this embodiment is not particularly limited, but thermoplastic resins such as acrylic, epoxy, polyolefin, polyurethane, and polyester, or ultraviolet curable resins such as acrylate and epoxy, or thermosetting such as polyurethane, epoxy, and polyolefin. Can be used. From the viewpoint of productivity, a thermoplastic resin or an ultraviolet curable resin is preferable.
  • the thickness of the layer that absorbs heat rays is not particularly limited, but if it is too thick, the productivity is impaired, so 50 ⁇ m or less is preferable.
  • the content of the binder resin in the heat ray absorbing layer is preferably 25% by weight to 95% by weight with respect to the total amount of the heat ray absorbing layer.
  • the first resin layer and the second resin layer are highly transparent resins that can be used as window members, for example, acrylic resins such as PVB (polyvinyl butyral), polycarbonate, and PMMA (polymethyl methacrylate), triacetyl cellulose, cyclohexane Olefin, polyvinyl acetal such as an intermediate layer for windows, and ethylene vinyl acetate copolymer are preferable.
  • acrylic resins such as PVB (polyvinyl butyral), polycarbonate, and PMMA (polymethyl methacrylate)
  • triacetyl cellulose, cyclohexane Olefin, polyvinyl acetal such as an intermediate layer for windows, and ethylene vinyl acetate copolymer are preferable.
  • the resin is not limited to this as long as the resin has high transparency.
  • a laminate thereof may be used.
  • the first resin layer and the second resin layer are more preferably made of an acrylic resin such as PVB (polyvinyl but
  • the first resin layer and the second resin layer may have adhesiveness.
  • the 1st resin layer and the 2nd resin layer may contain the additive.
  • the additive include fine particles for heat ray shielding, fine particles for sound insulation, and a plasticizer.
  • the heat ray shielding fine particles and the sound insulation fine particles include inorganic fine particles and metal fine particles.
  • the amount of fine particles added to the first resin layer and the second resin layer is not particularly limited, but is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the resin component.
  • thermoplastic resin As the resin layer having adhesiveness that may be provided between the heat ray shielding layer and the first resin layer or the second resin layer as necessary, thermoplastic resin, ultraviolet curable resin, thermosetting A layer composed of a resin or the like can be given.
  • thermoplastic resin include polyvinyl acetal, ethylene-vinyl acetate copolymer, polyester, polymethyl methacrylate, polycarbonate, polyurethane, polyolefin, polycycloolefin, and the like.
  • ultraviolet curable resin include ultraviolet curable acrylates and ultraviolet curable epoxy resins
  • thermosetting resin include an acrylic resin, a urethane resin, and an epoxy resin, but are not limited thereto.
  • the heat ray shielding structure of the present embodiment only the heat ray shielding layer and, optionally, a resin layer having adhesiveness are disposed between the first resin layer and the second resin layer. Less material is used, which is preferable from the viewpoint of production and transparency. That is, by not including a support base material for supporting the heat ray shielding layer, it is possible to improve production efficiency and transparency.
  • the heat ray shielding structure of the present embodiment when only the heat ray shielding layer is disposed between the first resin layer and the second resin layer, less material is used and from the viewpoint of manufacturing and transparency, preferable. From the above viewpoint, a configuration in which the support substrate (for example, PET or the like) is not included in the heat ray shielding structure of the present embodiment is also a preferred embodiment.
  • the laminated glass according to the present embodiment includes the first glass plate, the heat ray shielding structure, and the second glass plate in this order.
  • the window according to the present embodiment includes the above laminated glass.
  • the first glass plate and the second glass plate may be the same or different, and the embodiment is not particularly limited.
  • the first glass plate and the second glass plate may be glass having no curvature or curved glass. Further, the two glass plates may have different thicknesses or may be colored. In particular, when it is used for the windshield of an automobile for the purpose of heat insulation, a colored component such as a metal is added to the glass plate so that the visible light transmittance of the laminated glass does not fall below 70% defined by JIS R 3211. In general, heat shielding properties can be effectively improved by using green glass for the glass plate. About the color density of green glass, it is preferable to adjust to the density
  • the visible light transmittance of the green glass of the present embodiment is preferably 70% or more, more preferably 75% or more, and further preferably 80% or more.
  • the value of b * in the L * a * b * color system of the laminated glass is preferably 10 or less, and more preferably 8 or less. When the b * value is larger than 10, it is unfavorable because the hue feels uncomfortable.
  • the visible light transmittance of the laminated glass of the present embodiment is preferably 70% or more, more preferably 75% or more, and further preferably 80% or more.
  • the value of b * in the L * a * b * color system of the laminated glass is preferably 10 or less, and more preferably 8 or less.
  • the b * value is larger than 10, it is unfavorable because the hue feels uncomfortable.
  • the manufacturing method of the heat ray shielding structure of the present embodiment includes the following steps (A), (B), and (C).
  • a step of obtaining the first laminate by laminating the other (B)
  • the first resin is obtained by peeling the substrate having peelability after laminating the heat ray reflective layer or heat ray absorbing layer of the first laminate obtained in the step (A) with the first resin layer.
  • the heat ray reflective layer or heat ray absorption layer of the second laminate obtained in the step (B) is bonded to the second resin layer, and the heat ray reflection layer or heat ray absorption layer is disposed on the second resin layer. And obtaining a heat ray shielding structure.
  • stacking order is not limited.
  • the manufacturing method of the laminated glass of this invention has said process (A), (B) and (C), and also has the following processes.
  • the method of forming the heat ray reflective layer and the heat ray absorbing layer used in the step (A) is a dry coating method such as vapor deposition or sputtering, or spin coating in which a coating solution is dissolved or dispersed in a solvent and then dried to form a layer.
  • a dry coating method such as vapor deposition or sputtering, or spin coating in which a coating solution is dissolved or dispersed in a solvent and then dried to form a layer.
  • examples thereof include, but are not limited to, wet coating methods typified by roll coating, and extrusion molding methods in which a solventless material is melted and extruded from a die to form a thin layer. From the viewpoint of productivity, it is preferable to coat continuously in a roll state.
  • a pressure-sensitive adhesive method in which a pressure-sensitive adhesive layer or a pressure-sensitive adhesive is applied to form a pressure-sensitive adhesive layer, a liquid adhesive layer is applied and then bonded by ultraviolet curing or heat curing, and an adhesive.
  • a plasma bonding method or the like that does not use may be used.
  • thermocompression bonding and plasma bonding are preferable from the viewpoint of productivity.
  • the method of bonding the heat ray reflective layer and / or the heat ray absorbing layer to the first resin layer or the second resin layer is not particularly limited, but a general roll laminating method is preferable. If the first resin layer is plate-shaped, it can be performed by a single-wafer method, and if it is roll-shaped, it can be performed by a roll-to-roll continuous method. The continuous method is preferable from the viewpoint of productivity.
  • the first resin layer is made of a thermoplastic resin and the glass transition temperature is not so high
  • the first resin layer side is subjected to thermocompression bonding at a temperature higher than the glass transition temperature by 50 ° C. or more, preferably 70 ° C. or more. Good adhesion to the heat ray reflective layer and / or the heat ray absorbing layer is obtained.
  • the first resin layer is a thermoplastic resin or glass having a glass transition temperature exceeding 100 ° C.
  • a high temperature is required at the time of thermocompression bonding, and thus the surface of the heat ray reflective layer and / or the heat ray absorbing layer has adhesiveness. It is preferable to provide a resin layer.
  • the thermocompression bonding conditions can be adjusted by adjusting the glass transition point of the resin layer having adhesiveness and heating the surface of the heat ray reflective layer and / or the heat ray absorbing layer.
  • a resin layer having the above-described adhesiveness can be employed.
  • the adhesive resin layer is either a hot melt type that melts by heating to develop adhesiveness, or a liquid adhesive that applies adhesive and adheres to the adherend, and then cures by UV or heat to develop adhesiveness. May be used.
  • it is good also as an adhesive layer which has a heat ray absorption function by containing the said heat ray absorption material in an adhesive layer.
  • the thickness of the layer having adhesiveness is not particularly limited as long as the adhesive layer and the adherend are sufficiently thick. If it is too thin, the adhesive strength is insufficient, and if it is too thick, the productivity is impaired, so 0.001 to 0.05 mm is preferable.
  • the bonding in the step (C) can employ the same method as the bonding method described in the step (B).
  • thermo-compression bonding or a pressure-sensitive adhesive is applied to form a pressure-sensitive adhesive layer, and then the pressure-sensitive bonding method is performed. You may do it.
  • a plasma bonding method or the like that does not use an adhesive may be used. From the viewpoint of productivity, a thermocompression bonding or plasma bonding method that does not require an adhesive layer or an adhesive layer is preferable.
  • the visible light transmittance of the heat ray shielding structure in the present embodiment is measured at a wavelength of 380 nm to 780 nm in accordance with JIS R 3106 using a spectrophotometer (Shimadzu Corporation, trade name “UV-3100”). It is evaluated by measuring the visible light transmittance.
  • the total solar transmittance (Tts; Total Solar Transmission) of the heat ray shielding structure is calculated by a measurement method and a calculation formula defined in ISO13837.
  • the haze of the heat ray shielding structure is measured according to JIS K 6714 using a haze meter (trade name “TC-HIIIDPK” manufactured by Tokyo Denshoku Co., Ltd.).
  • FIG. 1 is a schematic view showing an example of a layer having a heat ray shielding function on a substrate having releasability.
  • FIG. 2 is a schematic view illustrating a laminated glass including the heat ray shielding structure A according to the first embodiment in its configuration.
  • FIG. 3 is a schematic diagram illustrating a laminated glass including the heat ray shielding structure B according to the second embodiment in its configuration.
  • FIG. 4 is a schematic view showing a laminated glass including the heat ray shielding structure C according to Comparative Example 1 in its configuration.
  • FIG. 5 is a schematic view showing a laminated glass including the structure D according to Comparative Example 2 in its configuration.
  • Titanium oxide fine particles having an average primary particle diameter of 35 nm (trade name “TTO-51A”, manufactured by Ishihara Sangyo Co., Ltd.) 1.4 parts by mass, KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) 0.4 parts by mass, 2-methyl -1- [4- (Methylthio) phenyl] -2-morpholinopropan-1-one (“Irgacure 907” manufactured by BASF Japan Ltd.) 0.05 parts by mass and a dispersant (trade name “DISPERBYK-2001”, BIC -Chemie Japan Co., Ltd.) 0.3 mass part was added in 7 mass parts of toluene, and the high refractive index resin coating liquid was produced.
  • KAYARAD DPHA manufactured by Nippon Kayaku Co., Ltd.
  • 2-methyl -1- [4- (Methylthio) phenyl] -2-morpholinopropan-1-one (“Irg
  • Production Example 2 (Preparation of laminate A) A 75 ⁇ m thick polyester peelable film (trade name “SP2020” manufactured by Toyo Cloth Co., Ltd.) is used as the substrate 1 having peelability, and a micro gravure coater (trade name “Prime Coater”, manufactured by Yasui Seiki Co., Ltd.).
  • the high refractive index resin coating solution was applied onto the substrate so as to have a layer thickness of 120 nm after drying. After drying at 60 ° C. for 1 minute, a high refractive index resin layer was produced on the substrate by ultraviolet irradiation. Subsequently, the low refractive index resin coating solution was applied onto the high refractive resin layer so as to have a layer thickness of 150 nm after drying.
  • a high refractive resin layer and a low refractive resin layer were laminated in this order on the substrate by irradiation with ultraviolet rays. Thereafter, similarly, a high refractive index resin layer, a low refractive index resin layer, a high refractive index resin layer, and a low refractive index resin layer were laminated in this order, and a heat ray reflective layer composed of a total of 6 layers was produced. Next, a resin coating solution for the heat ray absorbing layer was dried on the heat ray reflective layer and then applied to a layer thickness of 2 ⁇ m to prepare a heat ray absorbing layer.
  • the laminated body A which has the heat ray shielding layer A which has the heat ray reflective layer 3 comprised by six layers and the heat ray absorption layer 4 on the base material 1 which has peelability was produced.
  • the heat ray shielding layer A having a layer thickness of 2.81 ⁇ m is peeled from the base material 1 having peelability, the heat ray shielding layer A cannot be handled alone because it is inferior in itself and is brittle and easily torn off. It was.
  • Production Example 3 (Preparation of laminated body B) After forming the heat ray reflective layer 3 on the peelable substrate 1 in Production Example 2, a laminate B having the heat ray shielding layer B is produced in the same manner as in Production Example 2 except that the heat ray absorbing layer 4 is not produced. did.
  • the heat ray shielding layer B having a layer thickness of 0.81 ⁇ m is peeled from the base material 1 having peelability, the heat ray shielding layer B cannot be handled alone because it is inferior in itself and is easily broken and easily broken. It was.
  • Production Example 4 (Preparation of laminate C) Instead of the 75 ⁇ m-thick polyester peelable film (trade name “SP2020” manufactured by Toyo Cloth Co., Ltd.) as the base material 1 having peelability in Production Example 2, a 75 ⁇ m-thick polyester film as the base material having no peelability (Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) (Plastic support base material 9) was used to produce a laminate C.
  • the heat ray shielding layer A having a layer thickness of 2.81 ⁇ m was fixed to the polyester film and could not be peeled off. However, it has the heat ray shielding layer A on the base material of the polyester film and can be handled as a film having self-supporting properties.
  • Production Example 5 (Preparation of first sheet-like adhesive resin 5) First, 360 g of polyvinyl butyral resin (trade name “S-LEC” manufactured by Sekisui Chemical Co., Ltd.) and 130 g of triethylene glycol bis (2-ethylbutyrate) are kneaded and mixed at about 70 ° C. for 15 minutes using a three-roll mixer. 1 sheet-like adhesive resin raw material was obtained. Next, the first sheet-like adhesive resin 5 having a thickness of about 0.8 mm was produced by extrusion molding at a molding temperature of 200 ° C. using an extrusion molding machine.
  • Second sheet-like adhesive resin 6 Three rolls of 360 g of polyvinyl butyral resin (trade name “ESREC” manufactured by Sekisui Chemical Co., Ltd.) and 130 g of triethylene glycol bis (2-ethylbutyrate) added with 1.6 g of ITO fine particles (particle size 0.02 ⁇ m or less).
  • a second sheet-shaped adhesive resin raw material was obtained by kneading and mixing with a mixer at about 70 ° C. for 15 minutes.
  • extrusion molding was performed at a molding temperature of 200 ° C., so that a second sheet-like adhesive resin 6 having a heat ray absorbability with a thickness of about 0.8 mm was produced.
  • Example 1 (Production of laminated glass including heat ray shielding structure A in its configuration)
  • the 1st sheet-like adhesive resin 5 produced in the manufacture example 5 as a 1st resin layer was heat-bonded to the surface of the heat ray absorption layer 4 of the laminated body A produced in the manufacture example 2 using the roll laminator.
  • the temperature of the laminator roll was 140 ° C.
  • the nip pressure was 0.2 MPa
  • the conveyance speed was 0.7 m / min.
  • the base material 1 having peelability was peeled from the laminate, and a heat ray shielding layer was disposed on the first resin.
  • the surface of the heat ray reflective layer 3 and the first sheet-like adhesive resin 5 produced in Production Example 5 as a second resin layer were thermally bonded using a roll laminator to produce a heat ray shielding structure A.
  • the temperature of the laminator roll was 140 ° C.
  • the nip pressure was 0.2 MPa
  • the conveyance speed was 0.7 m / min.
  • the soda glass 7 having a thickness of 2 m, the heat ray shielding structure A, and the green glass 8 having a thickness of 2 mm were overlapped in this order, and then placed in a vacuum bag, and the pressure was reduced to ⁇ 0.09 MPa with a vacuum pump. Then, it preliminarily pressure-bonded by holding at 110 ° C.
  • the laminated glass which contains the heat ray shielding structure A which concerns on this invention in the structure by returning to normal temperature normal pressure after that was produced (refer FIG. 2).
  • Example 2 (Preparation of laminated glass including heat ray shielding structure B)
  • the heat ray reflective layer 3 was disposed on the first resin in the same manner as in Example 1 except that the laminate B produced in Production Example 3 was used instead of the laminate A.
  • the heat ray shielding structure B was produced by thermally bonding the surface of the heat ray reflective layer 3 and the second sheet-like adhesive resin 6 produced in Production Example 6 as a second resin layer using a roll laminator.
  • the temperature of the laminator roll was 140 ° C.
  • the nip pressure was 0.2 MPa
  • the conveyance speed was 0.7 m / min.
  • the soda glass 7 having a thickness of 2 m, the heat ray shielding structure B, and the green glass 8 having a thickness of 2 mm were superposed in this order, and then placed in a vacuum bag and depressurized to ⁇ 0.09 MPa with a vacuum pump. Then, it preliminarily pressure-bonded by holding at 110 ° C. for 30 minutes under reduced pressure. After pre-bonding, the film was held in an autoclave at a pressure of 1.5 MPa and a temperature of 150 ° C. for 30 minutes for final bonding.
  • the laminated glass which contains the heat ray shielding structure B which concerns on this invention in the structure by returning to normal temperature normal pressure after that was produced (refer FIG. 3).
  • Comparative Example 1 The soda glass 7 having a thickness of 2 m, the first sheet-like adhesive resin 5, the laminate C produced in Production Example 4, the first sheet-like adhesive resin 5, and the green glass 8 having a thickness of 2 mm are stacked in this order. After that, it was put in a vacuum bag and depressurized to ⁇ 0.09 MPa with a vacuum pump. Then, it preliminarily pressure-bonded by holding at 110 ° C. for 30 minutes under reduced pressure. After pre-bonding, the film was held in an autoclave at a pressure of 1.5 MPa and a temperature of 150 ° C. for 30 minutes for final bonding. Thereafter, by returning to room temperature and normal pressure, a laminated glass containing a comparative heat ray shielding structure C including a plastic support substrate 9 in the structure was produced (see FIG. 4).
  • Comparative Example 2 A soda glass 7 having a thickness of 2 m, a second sheet-like adhesive resin 6 and a green glass 8 having a thickness of 2 mm were superposed in this order, and then placed in a vacuum bag and decompressed to ⁇ 0.09 MPa with a vacuum pump. Then, it preliminarily pressure-bonded by holding at 110 ° C. for 30 minutes under reduced pressure. After pre-bonding, the film was held in an autoclave at a pressure of 1.5 MPa and a temperature of 150 ° C. for 30 minutes for final bonding. Then, the laminated glass in which the comparative structure D in which the sheet-like adhesive resin layer has a heat ray absorbing function is arranged by returning to room temperature and normal pressure was produced (see FIG. 5).
  • the visible light transmittance, total solar transmittance (Tts), and haze of the heat ray shielding structures A to C of Example 1, Example 2, and Comparative Example 1, and the structure D of Comparative Example 2 were measured by the following methods. .
  • Total solar transmittance (Tts) is a measure of how much thermal energy from the solar thermal energy (total solar energy) penetrates the material to be measured.
  • the total solar transmittance (Tts) of the heat ray shielding structure was calculated by the measurement method and calculation formula defined in ISO13837. It shows that the total solar radiation energy which permeate
  • incident light was entered from the soda glass side (outside air side).
  • Table 1 shows the measurement results of visible light transmittance, total solar transmittance, and haze of the heat ray shielding structures A to C of Examples 1 and 2 and Comparative Example 1 and the structure D of Comparative Example 2.
  • Example 1 does not contain a support base material in the heat ray shielding structure, so the haze is low, and the transparency is superior to that of Comparative Example 1. Since the comparative example 1 contains the polyester film which is a support base material in the structure, its haze is high and transparency is impaired.
  • the heat ray shielding structure B of Example 2 can easily impart a heat ray shielding function by reflection by transferring the heat ray reflective layer 3, and does not impair the visible light transmittance as compared with the structure D of Comparative Example 2.
  • the total solar transmittance is greatly improved.
  • the heat ray shielding structures of Example 1 and Example 2 are excellent in productivity because they can be produced simply by transferring the heat ray shielding layer continuously produced in a roll shape to a window material.
  • the heat ray shielding structure of the present invention When the heat ray shielding structure of the present invention is laid on a window glass of a house or automobile, it suppresses the temperature rise of the space of the house or automobile, reduces the load on the air conditioner of the house or automobile, and contributes to energy saving and global environmental problems it can. Furthermore, the heat ray shielding structure of the present invention can be used for window members for buildings, window members for vehicles, window glass for refrigeration and frozen showcases, IR cut filters, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Optical Filters (AREA)

Abstract

第1の樹脂層と第2の樹脂層との間に熱線遮蔽層(2)を含む熱線遮蔽構造体であって、熱線遮蔽層(2)は、高屈折率層および低屈折率層の繰り返し多層構造を有する第1の熱線反射層もしくは少なくともAu、Ag、CuおよびAlのいずれかを含有する第2の熱線反射層である熱線反射層、無機酸化物および色素の少なくとも一方ならびにバインダー樹脂を含有する熱線吸収層、または熱線反射層および熱線吸収層を含む層、である熱線遮蔽構造体。

Description

熱線遮蔽構造体およびそれを含む合わせガラスならびにそれらの製造方法
 本発明は、太陽光の熱輻射によって生じる車両や建物の室内温度上昇を低減するために用いられる熱線遮蔽機能を有する熱線遮蔽構造体およびそれを含む合わせガラスならびにそれらの製造方法に関するものである。
 近年、省エネルギーや地球環境問題の観点から、空調機器の負荷を軽減することが求められている。例えば、住宅や自動車の分野では太陽光からの熱線を遮蔽できる熱線遮蔽性シート(フィルム)等を窓ガラスに添付する、または熱線遮蔽機能を有する中間層を2枚のガラスの間に担持するなどして室内や社内の温度上昇を抑えることが行われている。
 窓部材に熱線遮蔽機能を付与する方法として、特許文献1ではガラスとガラスとの間に担持された中間層に熱線遮蔽機能を付与することが提案されており、吸収性の熱線吸収材料を含有した熱可塑性樹脂を中間層として用いることが例示されている。しかしながら熱線吸収材料は可視域の光も吸収するために熱線遮熱性能向上のため含有量を増やすと可視光透過率が損なわれるといった課題があり、熱線吸収材料だけでは熱線遮蔽性能の著しい向上は困難である。
 特許文献2には、剥離性を有する支持基材上に吸収性の熱線遮蔽層を作製すること、特許文献3には銀平板粒子を樹脂が含む反射性の遮蔽層を作成し、接着性樹脂層と貼り合わせた後に剥離性を有する基材を剥離し、熱線遮蔽層を転写する手法が例示されている。支持基材を用いないため透明性に優れるが、熱線吸収層および/または熱線反射層からの多層構造を有しておらず、熱線吸収層単独または熱線反射層単独においても熱線遮蔽機能が十分ではない課題がある。
 特許文献4は、内側ガラス板と、第1の樹脂層と、赤外線反射フィルムと、第2の樹脂層と、外側ガラス板と、をこの順に有する窓用合わせガラスを開示している。フィルムは成形後に単体で薄膜状の構造を成立させるものであり自立性を有している。フィルム自体が熱線遮蔽機能を有することで、合わせガラス製造工程でのハンドリングが容易であるが、自立性を持たせるためにベース層やポリエチレンテレフタレート、ポリメチルメタクリレートといった材料を用いなければフィルムとして取り扱えない。熱線遮蔽層の材質が制限されてしまう。その窓用合わせガラスは、吸収材料を含む有機物からなる反射層を担持しているが、材質の制限により屈折率差が小さく積層数を多くしなければ熱線遮蔽性能を十分に得ることができない。
 特許文献5には、プラスチック基材上に高屈折率層層と低屈折率層とからなる熱線反射層を形成した熱線遮蔽フィルムを2枚の接着性樹脂層の間に担持した中間層および、中間層を2枚のガラスで挟んだ熱線遮蔽合わせガラスが開示されている。これらの手法は樹脂フィルム基材上に多様な材質を用いた層構成を作製できるため遮熱性能の向上が望めること、ロール状態で連続的に遮蔽層が形成できるためコストに優れているが、本来熱線遮蔽性能には不要である樹脂フィルムが支持基材として構成中に含まれることにより透明性が悪化するといったデメリットがあった。
日本国特開2001-151539号公報 日本国特開2000-219543号公報 日本国特許第5599639公報 日本国特許第4848872公報 国際公開第2011/074425号
 透明性を損なわず熱線遮蔽性能を向上するためには熱線遮蔽性能に必要な層のみを構造中に形成することが好ましいが、熱線遮蔽性能を有する層は、成形した基材から単独では分離が困難である。そのため従来技術では、耐溶剤性やアウトガスの発生等で湿式、乾式コーティングにより熱線遮蔽層が形成できない材質上へ優れた熱線遮蔽性能を付与するためには、熱線遮蔽機能には不要な支持基材やベース層を構造中に含んだフィルムを用いざるを得ない。しかしながら、フィルムを用いることで透明性が損なわれたり、構成材料が制限されてしまうため、優れた熱線遮蔽性能を有する層のみを簡易に追加形成できる方法が求められる。そこで本発明は、窓材への熱線遮蔽性付与に関して、透明性、可視光透過率を損なわず、優れた熱線遮蔽機能を容易に提供できる熱線遮蔽構造体および合わせガラス、ならびに製造コストを大幅に改善できる熱線遮蔽構造体および合わせガラスの製造方法を提供することを目的とする。
 本発明者らは前記課題を解決するため鋭意研究の結果、本発明を完成した。即ち、本発明は、下記(1)~(7)に関する。
(1)
 第1の樹脂層と第2の樹脂層との間に熱線遮蔽層を含む熱線遮蔽構造体であって、
 前記熱線遮蔽層は、
  高屈折率層および低屈折率層の繰り返し多層構造を有する第1の熱線反射層もしくは少なくともAu、Ag、CuおよびAlのいずれかを含有する第2の熱線反射層である熱線反射層、
  無機酸化物および色素の少なくとも一方ならびにバインダー樹脂を含有する熱線吸収層、または
  前記熱線反射層および前記熱線吸収層を含む層、
である熱線遮蔽構造体。
(2)
 以下の工程を有する熱線遮蔽構造体の製造方法、
(A)剥離性を有する基材上に、高屈折率層および低屈折率層の繰り返し多層構造を有する第1の熱線反射層もしくは少なくともAu、Ag、CuおよびAlのいずれかを含有する第2の熱線反射層である熱線反射層を積層するか、
 前記剥離性を有する基材上に、無機酸化物および色素の少なくとも一方ならびにバインダー樹脂を含有する熱線吸収層を積層するか、または、
 前記剥離性を有する基材上に、前記熱線反射層および前記熱線吸収層のいずれか一方を積層し、さらに前記熱線反射層および前記熱線吸収層のいずれか一方の上に前記熱線反射層および前記熱線吸収層のいずれか他方を積層することで、第1の積層体を得る工程、
(B)工程(A)で得られた前記第1の積層体の前記熱線反射層または前記熱線吸収層を第1の樹脂層と張り合わせたのち前記剥離性を有する基材を剥離することで、前記第1の樹脂層上に前記熱線反射層または前記熱線吸収層を配置して第2の積層体を得る工程、
(C)工程(B)で得られた前記第2の積層体の前記熱線反射層または前記熱線吸収層を第2の樹脂層と張り合わせて、前記第2の樹脂層上に前記熱線反射層または前記熱線吸収層を配置して熱線遮蔽構造体を得る工程。
(3)
 前記剥離性を有する基材は、25mm幅の粘着テープと前記剥離性を有する基材との速度300mm/minにおける180°剥離試験での剥離力が1000mN/25mm以上5000mN/25mm以下である、(2)に記載の熱線遮蔽構造体の製造方法。
(4)
 第1のガラス板と、(1)に記載の熱線遮蔽構造体と、第2のガラス板とをこの順に有する熱線遮蔽構造体を構成中に含む合わせガラス。
(5)
 (2)に記載の工程(A)、(B)および(C)を有し、さらに以下の工程を有する合わせガラスの製造方法、
(D)第1のガラス板と第2のガラス板との間に(2)に記載の工程(C)で得られた熱線遮蔽構造体を配置する工程。
(6)
 前記剥離性を有する基材は、25mm幅の粘着テープと前記剥離性を有する基材との速度300mm/minにおける180°剥離試験での剥離力が1000mN/25mm以上5000mN/25mm以下である、(5)に記載の合わせガラスの製造方法。
(7)
 (4)に記載の合わせガラスを含む窓。
 本発明の熱線遮蔽構造体は、可視光透過性、全日射透過率およびヘイズに関する性能が総合的に優れている。また、本発明の熱線遮蔽構造体の製造方法を用いれば、熱線遮蔽性能付与に必要な材料選定の自由度が高く、プロセスの工程を大幅に増やすことなく優れた熱線遮蔽機能を有する構造体を低コストかつ容易に製造することができる。さらに、本発明の熱線遮蔽構造体を構成する窓材はプラスチック支持基材を用いないため、熱線遮蔽性および透明性に優れる。
剥離性を有する基材上の熱線遮蔽機能を有する層の一例を示す概略図である。 実施例1に係る熱線遮蔽構造体Aを構成中に含む合わせガラスを示す概略図である。 実施例2に係る熱線遮蔽構造体Bを構成中に含む合わせガラスを示す概略図である。 比較例1に係る熱線遮蔽構造体Cを構成中に含む合わせガラスを示す概略図である。 比較例2に係る構造体Dを構成中に含む合わせガラスを示す概略図である。
 以下、本発明の実施形態について詳細に説明する。
 本実施形態に係る熱線遮蔽構造体は、第1の樹脂層と第2の樹脂層との間に熱線遮蔽層を含む。本実施形態における熱線遮蔽層は、図1に示すように剥離性を有する基材1上に熱線遮蔽機能を有する層として設けられる(熱線遮蔽層2)。剥離性を有する基材1上に熱線遮蔽層2を備える第1の積層体(図1)によれば、ロール状に連続作製して窓材に張り付けて、剥離性を有する基材1を剥がすことで熱線遮蔽層2を容易に転写できる。これにより合わせガラスや窓の生産性を向上させることができる。
 熱線遮蔽層は、熱線を反射する層である熱線反射層および熱線を吸収する層である熱線吸収層のいずれかまたは両方の層で構成されていても良く、それらの層を多層積層し、反射と吸収の両機能を有していても良い。また必要に応じて熱線遮蔽層の上部に接着性を有する樹脂層を設けることもできる。熱線遮蔽層の厚みは特に限定されるものでは無いが、透明性の確保という点で0μmより大きく50μm以下であることが好ましい。層厚が薄いため自立性に乏しく、熱線遮蔽層だけを分離し単独でフィルムとして取り扱うことは困難である。
 剥離性を有する基材としては紙、プラスチック等限定されることは無い。また剥離性については基材上に形成する熱線遮蔽機能を有する層の剥離が可能であれば良く、離形剤の有無は限定されない。剥離性を有する基材の剥離性の尺度は、日東電工株式会社製粘着テープ(製品名:31B、25mm幅)と剥離性を有する基材との速度300mm/minにおける180°剥離試験での剥離力が1000mN/25mm以上5000mN/25mm以下の範囲が好ましい。剥離力が1000mN/25mmよりも低い基材を用いると、湿式コーティングで熱線遮蔽機能を有する層を作製する際に、塗布液の基材への濡れが十分確保できず熱線遮蔽機能を有する層の作製が困難となる。また剥離力が5000mN/25mmよりも高い基材を用いると剥離性を有する基材と熱線遮蔽機能を有する層の密着力が強くなり剥離が困難となる。
 本実施形態の熱線反射層は、780nm~2500nmの波長の光を反射し、熱エネルギーを透過させない層を意味する。ただし、「反射」とは完全に光を透過させないものを指すわけではない。熱線反射層は、780nm~2500nmの波長の入射光を15%以上反射する層であればよいが、この反射率は高いほうが好ましい。好ましい反射率は、20%以上であり、より好ましくは25%以上であり、更に好ましくは28%以上である。780nm~2500nmの波長の光を反射する層としては、高屈折率層と低屈折率層との繰り返し多層構造を有する熱線反射層(本明細書にて第1の熱線反射層ともいう。)または、少なくともAu、Ag、CuおよびAlのいずれかを含有する熱線反射層(本明細書にて第2の熱線反射層ともいう。)を用いることができる。
 第1の熱線反射層の繰り返し多層構造とは詳細には、高屈折率層と低屈折率層とが交互に積層されて2以上の層によって熱線反射層が構成されている構造を意味する。層の数は、偶数であっても奇数であってもよく、高屈折率層または低屈折率層が熱線反射層の最も下の層と最も上の層の両方にあってもよい。第1の熱線反射層は、誘電体の積層による光学干渉原理を用いており、反射波長や反射率を層の屈折率および厚みで容易に制御できる利点がある。誘電体の積層においては構成材料を広く選定することができるため屈折率の調整が容易であるという利点がある。ここで高屈折率層は例えば1.6以上2.4以下、好ましくは1.7以上2.2以下、さらに好ましくは1.8以上2.0以下の屈折率を有する層が挙げられる。また低屈折率層は、前期高屈折率層の屈折率に比べて低い屈折率からなる層であり、例えば0より大きく1.5以下、好ましくは0より大きく1.4以下の屈折率を有する層が挙げられる。前記屈折率の値はいずれも波長550nmにおける値である。高屈折率層と低屈折率層との屈折率差が大きいほど最大反射率が向上するため、熱線遮蔽性能を達成するに必要な積層数を少なくすることができる。
 ここで高屈折率層、低屈折率層の材質は特に限定されないが、TiO、Nb、WO、MWO(タングステン複合酸化物)、Ta、SiO、Al、ZrO、MgF等の金属酸化物から適当な屈折率を有するものを選び、単独またはバインダーとなる樹脂と混合し、層とすることができる。また金属酸化物を用いず、高屈折率、低屈折率の有機物質を単独で用いても良い。また、必要に応じて、分散剤、近赤外線吸収色素、紫外線吸収剤、酸化防止剤、光安定剤等の各種添加剤を含んでもよい。
 熱線反射層中の上記の金属酸化物等の微粒子の含有率は該熱線反射層の総量に対して、40重量%~90重量%であることが好ましい。
 バインダーとなる樹脂としては、上記の金属酸化物等の微粒子を分散維持できる樹脂であれば、特に制限はない。通常、熱可塑性樹脂、又は/及び、熱又は光で硬化する硬化性樹脂(熱または光硬化性樹脂とも言う)(具体的には熱硬化性樹脂又は光硬化性樹脂)の硬化物等が挙げられる。熱線反射層中のバインダー樹脂の含有率は、各熱線反射層の総量に対して、10重量%~60重量%であることが好ましい。
 第2の熱線反射層は、金属導体の自由電子の電磁波遮蔽効果により生じる反射を原理としている。金属単層から成り、蒸着、スパッタリングといった乾式コーティングにより作製される。金属単層で高い反射率が得られるためコーティング回数が少なく製造プロセスへの負荷を少なくすることができる。
 本実施形態において、熱線吸収層とは780nm~2500nmの波長の光を吸収し、熱エネルギーを透過させない層を意味する。ただし、「吸収」とは完全に光を透過させないものを指すわけではない。熱線吸収層と熱線反射層とを組み合わせる場合には、熱線反射層では遮蔽できない赤外領域の光を遮蔽できるように、780nm~2500nmの波長の光を選択的に吸収できるようにすると好ましい。熱線吸収層は、無機酸化物および色素の少なくとも一方ならびにバインダー樹脂を含有する。別の言い方では、熱線吸収層は、780nm~2500nmの波長の光を吸収する材料(熱線吸収材料)を必須成分とし、バインダーとなる樹脂との混合物から構成される。
 本実施形態において780nm~2500nmの波長の光を吸収する材料は特に限定されない。当該材料としては、ITO(スズドープ酸化インジウム)、ATO(アンチモンドープ酸化スズ)、AZO(アルミニウムドープ酸化亜鉛)、酸化亜鉛、タングステン複合酸化物、アンチモンドープ酸化亜鉛、6ホウ化ランタン等の無機酸化物、および色素から選ばれる少なくとも一つが挙げられる。当該色素とは無機系、有機系の染料および顔料のいずれでも良く特に限定されない。また、無機系顔料として、例えばコバルト系色素、鉄系色素、クロム系色素、チタン系色素、バナジウム系色素、ジルコニウム系色素、モリブデン系色素、ルテニウム系色素等を用いることができる。有機系顔料、有機系染料としては、例えばジイモニウム系色素、アンスラキノン系色素、アミニウム系色素、シアニン系色素、メロシアニン系色素、クロコニウム系色素、スクアリウム系色素、アズレニウム系色素、ポリメチン系色素、ナフトキノン系色素、ピリリウム系色素、フタロシアニン系色素、ナフタロシアニン系色素、ナフトラクタム系色素、アゾ系色素、縮合アゾ系色素、インジゴ系色素、ペリノン系色素等を用いることができる。可視光透過率を損なわずに熱線遮蔽性能を向上するためには波長500nm~600nmに極大吸収を有さない色素が好ましい。
 熱線吸収層中の無機酸化物、色素の含有率は該熱線吸収層の総量に対して、5重量%~75重量%であることが好ましい。
 本実施形態にて使用されるバインダー樹脂としては特に限定されないが、アクリル、エポキシ、ポリオレフィン、ポリウレタン、ポリエステル等の熱可塑性樹脂またはアクリレート、エポキシ等の紫外線硬化樹脂またはポリウレタン、エポキシ、ポリオレフィン等の熱硬化性樹脂を用いることができる。生産性の観点から熱可塑性樹脂または紫外線硬化樹脂が好ましい。熱線を吸収する層の厚みは特に限定されないが、厚すぎると生産性が損なわれるため、50μm以下が好ましい。熱線吸収層中のバインダー樹脂の含有率は、熱線吸収層の総量に対して、25重量%~95重量%であることが好ましい。
 第1の樹脂層および第2の樹脂層は、窓部材として使用されうる透明性の高い樹脂、例えばPVB(ポリビニルブチラール)、ポリカーボネート、PMMA(ポリメチルメタクリレート)などのアクリル樹脂、トリアセチルセルロース、シクロオレフィン、窓用中間層のようなポリビニルアセタールやエチレン酢酸ビニル共重合体等が好ましいが、透明性が高い樹脂であればこれに限定されるものでは無い。またはそれらの積層体でも良い。第1の樹脂層および第2の樹脂層は、上記の中でもPVB(ポリビニルブチラール)、ポリカーボネート、PMMA(ポリメチルメタクリレート)などのアクリル樹脂で構成されているとより好ましい。第1の樹脂層および第2の樹脂層は、接着性を有していてもよい。また、第1の樹脂層および第2の樹脂層は、添加剤を含んでいてもよい。前記添加剤としては、例えば、熱線遮蔽用の微粒子及び遮音用の微粒子、可塑剤等を挙げることができる。前記の熱線遮蔽用の微粒子及び遮音用の微粒子としては、例えば、無機微粒子、金属微粒子を挙げることができる。第1の樹脂層および第2の樹脂層の微粒子の添加量は、特に制限はないが、樹脂成分100重量部に対して0.1~10重量部であることが好ましい。
 必要に応じて熱線遮蔽層と、第1の樹脂層または第2の樹脂層と、の間に設けてもよい接着性を有する樹脂層としては、熱可塑性樹脂、紫外線硬化性樹脂、熱硬化性樹脂等から構成される層が挙げられる。具体的に熱可塑性樹脂としてはポリビニルアセタール、エチレン-酢酸ビニル共重合体、ポリエステル、ポリメチルメタクリレート、ポリカーボネート、ポリウレタン、ポリオレフィン、ポリシクロオレフィン等が挙げられる。紫外線硬化樹脂としては紫外線硬化型アクリレート類や紫外線硬化型エポキシ樹脂類、熱硬化性樹脂としてはアクリル樹脂、ウレタン樹脂、エポキシ樹脂等が挙げられるが、これらに限定されない。
 本実施形態の熱線遮蔽構造体は、第1の樹脂層と第2の樹脂層との間に、熱線遮蔽層と、任意選択で接着性を有する樹脂層と、のみが配置されていると、用いられる材料が少なく製造上また透明度の観点から好ましい。すなわち、熱線遮蔽層を支持するための支持基材を含まないことにより、製造効率を向上させ、透明度も向上させることができる。本実施形態の熱線遮蔽構造体は、第1の樹脂層と第2の樹脂層との間に、熱線遮蔽層のみが配置されていると、用いられる材料が少なく製造上また透明度の観点からより好ましい。
 また上記観点から、本実施形態の熱線遮蔽構造体中に支持基材(例えばPET等)を含有しない構成も、好ましい実施態様である。
 本実施形態に係る合わせガラスは、第1のガラス板と、上記の熱線遮蔽構造体と、第2のガラス板とをこの順に有する。本実施形態に係る窓は、上記の合わせガラスを含む。第1のガラス板および第2のガラス板は、同一であっても異なっていてもよく、態様は特に限定されるものではない。
 第1のガラス板および第2のガラス板は、曲率を有さないガラスであっても、曲面ガラスであってもよい。また、2枚のガラス板は、厚みが異なっていてもよく、着色されていてもよい。特に、遮熱性を目的として自動車のフロントガラス等に用いる場合は、合わせガラスの可視光透過率がJIS R 3211で定められている70%を下回らない程度にガラス板中に金属などの着色成分を混入させてもよく、一般的にはガラス板にグリーンガラスを用いることで効果的に遮熱性を向上させることができる。グリーンガラスの色濃度については、添加する金属成分の量を調整したり、厚みを調整したりすることで、目的に合った濃度に調節することが好ましい。本実施形態のグリーンガラスの可視光透過率は、好ましくは70%以上、より好ましくは75%以上、さらに好ましくは80%以上である。さらに外観上好ましい色相とする為に、合わせガラスのL*a*b*表色系でb*の値は10以下が好ましく、8以下がより好ましい。b*値が10より大きくなると、不快に感じる色相となり好ましくない。また、本実施形態の合わせガラスの可視光透過率は好ましくは70%以上、より好ましくは75%以上、さらに好ましくは80%以上である。さらに外観上好ましい色相とする為に、合わせガラスのL*a*b*表色系でb*の値は10以下が好ましく、8以下がより好ましい。b*値が10より大きくなると、不快に感じる色相となり好ましくない。
 本実施形態の熱線遮蔽構造体の製造方法は以下の工程(A)、(B)および(C)を有する。
(A)剥離性を有する基材上に、第1の熱線反射層もしくは第2の熱線反射層である熱線反射層を積層するか、
 剥離性を有する基材上に、熱線吸収層を積層するか、または、
 前記剥離性を有する基材上に、熱線反射層および熱線吸収層のいずれか一方を積層し、さらに熱線反射層および熱線吸収層のいずれか一方の上に熱線反射層および熱線吸収層のいずれか他方を積層することで、第1の積層体を得る工程、
(B)工程(A)で得られた第1の積層体の熱線反射層または熱線吸収層を第1の樹脂層と張り合わせたのち剥離性を有する基材を剥離することで、第1の樹脂層上に熱線反射層または熱線吸収層を配置して第2の積層体を得る工程、
(C)工程(B)で得られた第2の積層体の熱線反射層または熱線吸収層を第2の樹脂層と張り合わせて、第2の樹脂層上に熱線反射層または熱線吸収層を配置して熱線遮蔽構造体を得る工程。
 なお、剥離性を有する基材上に熱線反射層および熱線吸収層の両方を積層する場合、その積層順番は限定されない。
 本発明の合わせガラスの製造方法は上記の工程(A)、(B)および(C)を有し、さらに以下の工程を有する。
(D)第1のガラス板と第2のガラス板の間に工程(C)で得られた熱線遮蔽構造体を配置する工程。
 工程(A)に使用される熱線反射層および熱線吸収層の形成方法は、蒸着、スパッタリングといった乾式コーティング法、溶剤に溶解または分散し塗布液としたものを塗布後乾燥し層を形成するスピンコーティングやロールコーティングに代表される湿式コーティング法、または無溶剤の材料を溶融しダイスから押出し薄層化する押出成形法等が挙げられるが、これらに限定されるものではない。生産性の観点からロール状態で連続してコーティングすることが好ましい。
 工程(B)における貼り合わせ方法については、熱圧着または粘着剤を塗布し粘着層を形成した後に貼り合わせる感圧接着法、液状接着材層を塗布形成後に紫外線硬化や加熱硬化による接着、接着剤を用いないプラズマ接合法等を用いても良い。特に限定されないが生産性の観点からは熱圧着やプラズマ接合方式が好ましい。また、熱線反射層および/または熱線吸収層と第1の樹脂層または第2の樹脂層とを貼り合わせる方法は特に限定されるものではないが、一般的なロールラミネート方式が好ましい。第1の樹脂層が板状であれば枚葉方式で、ロール状であれば、ロールtoロールの連続方式で行うことができる。生産性の観点から連続方式が好ましい。
 第1の樹脂層が熱可塑性樹脂からなりガラス転移温度がさほど高温でない場合にはそのガラス転移温度より50℃以上、好ましくは70℃以上高い温度で第1の樹脂層側を加熱圧着することで熱線反射層および/または熱線吸収層との良好な密着が得られる。第1の樹脂層が100℃を超えるガラス転移温度を有する熱可塑性樹脂やガラスの場合には加熱圧着時に高温が必要となるため、熱線反射層および/または熱線吸収層の面に接着性を有する樹脂層を設けると好ましい。接着性を有する樹脂層のガラス転移点を調整し熱線反射層および/または熱線吸収層の面を加熱することで加熱圧着条件を調整することができる。
 接着層を介して貼り合わせる場合には、上述の接着性を有する樹脂層を採用できる。接着性を有する樹脂層は加熱により溶融し接着性を発現するホットメルト型、液状体を塗布し被着体と貼合した後、紫外線または熱により硬化させ接着性を発現する液状接着剤のいずれを用いても良い。また、前記熱線吸収材料を接着層に含有することで、熱線吸収機能を有する接着層としても良い。接着性を有する層の厚みは被着体との接着力が十分に得られる厚みであれば特に限定されない。薄すぎると接着力が不足し、厚すぎると生産性が損なわれるため、0.001~0.05mmが好ましい。
 工程(C)における貼り合わせは、工程(B)で説明した貼合せ方法と同様の方法を採用できる。
 工程(D)における貼り合わせる工程については、熱圧着または粘着剤を塗布し粘着層を形成した後に貼り合わせる感圧接着法、液状接着材層を塗布形成後に紫外線硬化や加熱硬化にて接着し転写しても良い。接着剤を用いないプラズマ接合法等を用いても良い。生産性の観点からは粘着層または接着層を必要としない熱圧着やプラズマ接合方式が好ましい。
 本実施形態における、熱線遮蔽構造体の可視光透過性は、分光光度計(株式会社島津製作所、商品名「UV-3100」)を用いて、JIS R 3106に準拠して、波長380nm~780nmにおける可視光透過率を測定することにより評価される。
 本実施形態における、熱線遮蔽構造体の全日射透過率(Tts;Total Solar Transmittance)は、ISO13837に定義されている測定方法および計算式にて算出される。
 本実施形態における、熱線遮蔽構造体のヘイズは、ヘイズメーター(有限会社東京電色製、商品名「TC-HIIIDPK」)を用いて、JIS K 6714に準拠して、測定される。
 以下、本発明を実施例により更に具体的に説明するが、本発明が下記実施例に限定されるものではない。本実施例においては図面を参照して、各態様を説明する。
 図1は、剥離性を有する基材上の熱線遮蔽機能を有する層の一例を示す概略図である。図2は、実施例1に係る熱線遮蔽構造体Aを構成中に含む合わせガラスを示す概略図である。図3は、実施例2に係る熱線遮蔽構造体Bを構成中に含む合わせガラスを示す概略図である。図4は、比較例1に係る熱線遮蔽構造体Cを構成中に含む合わせガラスを示す概略図である。図5は、比較例2に係る構造体Dを構成中に含む合わせガラスを示す概略図である。
製造例1
(熱線反射層用の高屈折率樹脂塗布液の作製)
 平均一次粒子径35nmである酸化チタン微粒子(商品名「TTO-51A」、石原産業株式会社製) 1.4質量部、KAYARAD DPHA(日本化薬株式会社製) 0.4質量部、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン(BASFジャパン株式会社製「イルガキュア907」) 0.05質量部、および分散剤(商品名「DISPERBYK-2001」、ビック・ケミージャパン株式会社製) 0.3質量部をトルエン 7質量部中に加え、高屈折率樹脂塗布液を作製した。
(熱線反射層用の低屈折率樹脂塗布液の作製)
 KAYARAD DPHA 0.4質量部およびイルガキュア907 0.05質量部をメチルエチルケトン(MEK) 4質量部に溶解した溶液中に、中空シリカ微粒子(商品名「スルーリア」、平均一次粒子径50nm、固形分濃度20重量%、日揮触媒化成株式会社製、分散媒:メチルイソブチルケトン) 3質量部を分散させ、低屈折率樹脂塗布液を調製した。
(熱線吸収層用の樹脂塗布液の作製)
 KAYARAD PET30(日本化薬株式会社製) 63.5質量部およびイルガキュア184 5質量部を、MEK 200質量部に溶解させた溶液中にスズドープ酸化インジウム微粒子(商品名「ITO-R」、CIKナノテック株式会社製) 30質量部、銅(II)2,3-ナフタロシアニン(シグマアルドリッチジャパン合同会社製) 1.5質量部を分散させ、熱線吸収層用の樹脂塗布液を調整した。
製造例2
(積層体Aの作製)
 剥離性を有する基材1として75μm厚みのポリエステル製剥離性フィルム(商品名「SP2020」 東洋クロス株式会社製)を用い、マイクログラビアコーター(商品名「プライムコーター」、康井精機社製社製)により基材上に高屈折率樹脂塗布液を乾燥後に層厚が120nmになるように塗布した。60℃で1分乾燥後、紫外線照射することで基材上に高屈折率樹脂層を作製した。続いて、高屈折樹脂層上に低屈折率樹脂塗布液を乾燥後に層厚が150nmになるよう塗布した。60℃で1分乾燥後、紫外線照射することで基材上に高屈折樹脂層と、低屈折樹脂層とをこの順に積層した。以降同様に高屈折率樹脂層、低屈折率樹脂層、高屈折率樹脂層、低屈折率樹脂層をこの順に積層し、計6層で構成される熱線反射層を作製した。次いで、熱線反射層上に熱線吸収層用の樹脂塗布液を乾燥後に層厚が2μmになるよう塗布し熱線吸収層を作製した。これにより剥離性を有する基材1上に6層で構成される熱線反射層3と熱線吸収層4とを有する熱線遮蔽層Aを有する積層体Aを作製した。層厚が2.81μmである熱線遮蔽層Aを、剥離性を有する基材1から剥離したところ、自立性に劣り、脆く容易にちぎれてしまうため熱線遮蔽層Aを単独で取り扱うことはできなかった。
製造例3
(積層体Bの作製)
 製造例2において剥離性を有する基材1上に熱線反射層3を形成した後、次いで熱線吸収層4を作製しない以外は製造例2と同様にして熱線遮蔽層Bを有する積層体Bを作製した。層厚が0.81μmである熱線遮蔽層Bを、剥離性を有する基材1から剥離したところ、自立性に劣り、脆く容易にちぎれてしまうため熱線遮蔽層Bを単独で取り扱うことはできなかった。
製造例4
(積層体Cの作製)
 製造例2において剥離性を有する基材1として75μm厚みのポリエステル製剥離性フィルム(商品名「SP2020」 東洋クロス株式会社製)の代わりに、剥離性を有さない基材として厚み75μmのポリエステルフィルム(コスモシャインA4300 東洋紡株式会社製)(プラスチック支持基材9)を用いて積層体Cを作製した。層厚が2.81μmである熱線遮蔽層Aはポリエステルフィルムに固着しており剥離することはできなかった。ただし、ポリエステルフィルムの基材上に熱線遮蔽層Aを有しており自立性を有するフィルムとして取り扱うことができた。
製造例5
(第1のシート状接着樹脂5の作製)
 ポリビニルブチラール樹脂(商品名「エスレック」、積水化学社製) 360g、およびトリエチレングリコールビス(2-エチルブチレート)130gを、3本ロールミキサーにより約70℃で15分間練りこみ混合することで第1のシート状接着樹脂原料を得た。次いで押出し成形機を用いて、成形温度200℃で押出し成形することで、厚み約0.8mmの第1のシート状接着樹脂5を作製した。
製造例6
(第2のシート状接着樹脂6の作製)
 ポリビニルブチラール樹脂(商品名「エスレック」、積水化学社製) 360g、ITO微粒子(粒径0.02μm以下)1.6gを添加したトリエチレングリコールビス(2-エチルブチレート)130gを、3本ロールミキサーにより約70℃で15分間練りこみ混合することで第2のシート状接着樹脂原料を得た。次いで押出し成形機を用いて、成形温度200℃で押出し成形することで、厚み約0.8mmの熱線吸収性を有する第2のシート状接着樹脂6を作製した。
実施例1
(熱線遮蔽構造体Aを構成中に含む合わせガラスの作製)
 製造例2で作製した積層体Aの熱線吸収層4の面に第1の樹脂層として製造例5で作製した第1のシート状接着樹脂5を、ロールラミネータを用いて熱接着させた。ラミネーターロールの温度は140℃、ニップ圧力は0.2MPa、搬送速度は0.7m/分であった。熱接着後、積層体から剥離性を有する基材1を剥離し、第1の樹脂上に熱線遮蔽層を配置した。次いで、熱線反射層3の面と第2の樹脂層として製造例5で作製した第1のシート状接着樹脂5とをロールラミネータを用いて熱接着させて熱線遮蔽構造体Aを作製した。ラミネーターロールの温度は140℃、ニップ圧力は0.2MPa、搬送速度は0.7m/分であった。次いで厚さ2mのソーダガラス7、熱線遮蔽構造体A、および厚さ2mmのグリーンガラス8をこの順で重ねあわせた後、真空バッグに入れ、-0.09MPaまで真空ポンプで減圧した。その後、減圧下で110℃、30分間保持し予備圧着した。予備圧着後、オートクレーブにて圧力1.5Mpa、150℃の条件で30分間保持し本圧着した。その後常温常圧まで戻すことで本発明に係る熱線遮蔽構造体Aを構成中に含む合わせガラスを作製した(図2参照)。
実施例2
(熱線遮蔽構造体Bを構成中に含む合わせガラスの作製)
 実施例1において積層体Aの代わりに製造例3で作製した積層体Bを用いる以外は実施例1と同様にして第1の樹脂上に熱線反射層3を配置した。次いで熱線反射層3の面と第2の樹脂層として製造例6で作製した第2のシート状接着樹脂6を、ロールラミネータを用いて熱接着させて熱線遮蔽構造体Bを作製した。ラミネーターロールの温度は140℃、ニップ圧力は0.2MPa、搬送速度は0.7m/分であった。次いで厚さ2mのソーダガラス7、熱線遮蔽構造体B、および厚さ2mmのグリーンガラス8をこの順で重ね合わせた後、真空バッグに入れ、-0.09MPaまで真空ポンプで減圧した。その後、減圧下で110℃、30分間保持し予備圧着した。予備圧着後、オートクレーブにて圧力1.5Mpa、150℃の条件で30分間保持し本圧着した。その後常温常圧まで戻すことで本発明に係る熱線遮蔽構造体Bを構成中に含む合わせガラスを作製した(図3参照)。
比較例1
 厚さ2mのソーダガラス7、第1のシート状接着樹脂5、製造例4で作製した積層体C、第1のシート状接着樹脂5、および厚さ2mmのグリーンガラス8をこの順で重ねあわせた後、真空バッグに入れ、-0.09MPaまで真空ポンプで減圧した。その後、減圧下で110℃、30分間保持し予備圧着した。予備圧着後、オートクレーブにて圧力1.5Mpa、150℃の条件で30分間保持し本圧着した。その後常温常圧まで戻すことで構造中にプラスチック支持基材9を含む比較用の熱線遮蔽構造体Cを構成中に含む合わせガラスを作製した(図4参照)。
比較例2
 厚さ2mのソーダガラス7、第2のシート状接着樹脂6、および厚さ2mmのグリーンガラス8をこの順で重ね合わせた後、真空バッグに入れ、-0.09MPaまで真空ポンプで減圧した。その後、減圧下で110℃、30分間保持し予備圧着した。予備圧着後、オートクレーブにて圧力1.5Mpa、150℃の条件で30分間保持し本圧着した。その後常温常圧まで戻すことでシート状接着樹脂層が熱線吸収機能を有している比較用の構造体Dを配置した合わせガラスを作製した(図5参照)。
 実施例1、実施例2および比較例1の熱線遮蔽構造体A~C、ならびに比較例2の構造体Dの可視光透過率、全日射透過率(Tts)およびヘイズを以下の方法で測定した。
(可視光透過率の測定)
 分光光度計(株式会社島津製作所、商品名「UV-3100」)を用いて、JIS R 3106に準拠して、得られた熱線遮蔽構造体の波長380nm~780nmにおける可視光透過率を測定した。
(全日射透過率(Tts)の測定)
 全日射透過率(Tts;Total Solar Transmittance)は、太陽からの熱的エネルギー(全日射エネルギー)のうちどの程度の熱的エネルギーが、測定対象となる材料を透過するかという尺度である。熱線遮蔽構造体の全日射透過率(Tts)は、ISO13837に定義されている測定方法および計算式にて算出した。算出された熱線遮蔽構造体の全日射透過率の数値が小さいほど、熱線遮蔽構造体を透過する全日射エネルギーが小さいことを示し、熱線遮蔽構造体の熱線遮蔽性が高いことを示す。尚、分光光度計で透過率、反射率を測定する際、入射光はソーダガラス側(外気側)より入射させた。
(ヘイズ測定)
 ヘイズメーター(有限会社東京電色製、商品名「TC-HIIIDPK」)を用いて、JIS K 6714に準拠して、得られた熱線遮蔽構造体のヘイズを測定した。
 実施例1、2および比較例1の熱線遮蔽構造体A~C、ならびに比較例2の構造体Dの可視光透過率、全日射透過率およびヘイズの測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より実施例1は熱線遮蔽構造体に支持基材を含んでいないためにヘイズが低く、比較例1と比べて透明性に優れている。比較例1は構造中に支持基材であるポリエステルフィルムを含んでいるためヘイズが高く透明性が損なわれている。
 実施例2の熱線遮蔽構造体Bは熱線反射層3を転写することで容易に反射による熱線遮蔽機能を付与できており、比較例2の構造体Dと比べて可視光透過率を損なうことなく全日射透過率が大幅に改善されている。
 実施例1および実施例2の熱線遮蔽構造体は、ロール状に連続作製した熱線遮蔽層を窓材に転写するのみで作製できることから生産性に優れている。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2018年2月27日付で出願された日本国特許出願(特願2018-32984)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明の熱線遮蔽構造体を住宅や自動車の窓ガラスに敷設した場合に、住宅や自動車の空間の温度上昇を抑え、住宅や自動車の空調機器の負荷を軽減し、省エネルギーや地球環境問題に貢献できる。さらに、本発明の熱線遮蔽構造体は、建造物用の窓用部材、車両用の窓用部材、冷蔵、冷凍ショーケースの窓ガラス、IRカットフィルター等に利用可能である。
1 剥離性を有する基材、2 熱線遮蔽層、3 熱線反射層、4 熱線吸収層、5 第1のシート状接着樹脂、6 第2のシート状接着樹脂、7 ソーダガラス、8 グリーンガラス、9 プラスチック支持基材

Claims (7)

  1.  第1の樹脂層と第2の樹脂層との間に熱線遮蔽層を含む熱線遮蔽構造体であって、
     前記熱線遮蔽層は、
      高屈折率層および低屈折率層の繰り返し多層構造を有する第1の熱線反射層もしくは少なくともAu、Ag、CuおよびAlのいずれかを含有する第2の熱線反射層である熱線反射層、
      無機酸化物および色素の少なくとも一方ならびにバインダー樹脂を含有する熱線吸収層、または
      前記熱線反射層および前記熱線吸収層を含む層、
    である熱線遮蔽構造体。
  2.  以下の工程を有する熱線遮蔽構造体の製造方法、
    (A)剥離性を有する基材上に、高屈折率層および低屈折率層の繰り返し多層構造を有する第1の熱線反射層もしくは少なくともAu、Ag、CuおよびAlのいずれかを含有する第2の熱線反射層である熱線反射層を積層するか、
     前記剥離性を有する基材上に、無機酸化物および色素の少なくとも一方ならびにバインダー樹脂を含有する熱線吸収層を積層するか、または、
     前記剥離性を有する基材上に、前記熱線反射層および前記熱線吸収層のいずれか一方を積層し、さらに前記熱線反射層および前記熱線吸収層のいずれか一方の上に前記熱線反射層および前記熱線吸収層のいずれか他方を積層することで、第1の積層体を得る工程、
    (B)工程(A)で得られた前記第1の積層体の前記熱線反射層または前記熱線吸収層を第1の樹脂層と張り合わせたのち前記剥離性を有する基材を剥離することで、前記第1の樹脂層上に前記熱線反射層または前記熱線吸収層を配置して第2の積層体を得る工程、
    (C)工程(B)で得られた前記第2の積層体の前記熱線反射層または前記熱線吸収層を第2の樹脂層と張り合わせて、前記第2の樹脂層上に前記熱線反射層または前記熱線吸収層を配置して熱線遮蔽構造体を得る工程。
  3.  前記剥離性を有する基材は、25mm幅の粘着テープと前記剥離性を有する基材との速度300mm/minにおける180°剥離試験での剥離力が1000mN/25mm以上5000mN/25mm以下である、請求項2に記載の熱線遮蔽構造体の製造方法。
  4.  第1のガラス板と、請求項1に記載の熱線遮蔽構造体と、第2のガラス板とをこの順に有する熱線遮蔽構造体を構成中に含む合わせガラス。
  5.  請求項2に記載の工程(A)、(B)および(C)を有し、さらに以下の工程を有する合わせガラスの製造方法、
    (D)第1のガラス板と第2のガラス板との間に請求項2に記載の工程(C)で得られた熱線遮蔽構造体を配置する工程。
  6.  前記剥離性を有する基材は、25mm幅の粘着テープと前記剥離性を有する基材との速度300mm/minにおける180°剥離試験での剥離力が1000mN/25mm以上5000mN/25mm以下である、請求項5に記載の合わせガラスの製造方法。
  7.  請求項4に記載の合わせガラスを含む窓。
PCT/JP2019/007116 2018-02-27 2019-02-25 熱線遮蔽構造体およびそれを含む合わせガラスならびにそれらの製造方法 WO2019167897A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/975,905 US20210003756A1 (en) 2018-02-27 2019-02-25 Heat ray shielding structure, laminated glass including the same, and method for producing the same
CN201980015316.9A CN111770834A (zh) 2018-02-27 2019-02-25 热射线屏蔽结构体和包含热射线屏蔽结构体的夹层玻璃以及它们的制造方法
EP19760561.1A EP3760434A4 (en) 2018-02-27 2019-02-25 PROTECTION STRUCTURE AGAINST THERMAL RAYS, LAMINATED GLASS INCLUDING THE SAID STRUCTURE AND ITS MANUFACTURING PROCESS
KR1020207024747A KR20200125609A (ko) 2018-02-27 2019-02-25 열선 차폐 구조체 및 그것을 포함하는 합판 유리 및 그들의 제조 방법
JP2019537191A JP6618233B1 (ja) 2018-02-27 2019-02-25 熱線遮蔽構造体およびそれを含む合わせガラスならびにそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-032984 2018-02-27
JP2018032984 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167897A1 true WO2019167897A1 (ja) 2019-09-06

Family

ID=67805774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007116 WO2019167897A1 (ja) 2018-02-27 2019-02-25 熱線遮蔽構造体およびそれを含む合わせガラスならびにそれらの製造方法

Country Status (6)

Country Link
US (1) US20210003756A1 (ja)
EP (1) EP3760434A4 (ja)
JP (1) JP6618233B1 (ja)
KR (1) KR20200125609A (ja)
CN (1) CN111770834A (ja)
WO (1) WO2019167897A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135484A (ja) * 2020-02-26 2021-09-13 南亞塑膠工業股▲分▼有限公司 赤外線遮蔽フィルム及びその製造方法
KR20220155583A (ko) 2020-03-17 2022-11-23 다이니폰 인사츠 가부시키가이샤 광학 적층체, 그리고 그것을 사용한 편광판, 표면판 및 화상 표시 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219543A (ja) 1999-01-27 2000-08-08 Fujicopian Co Ltd 合わせガラス用転写材料を用いる合わせガラスの製造方法
JP2001151539A (ja) 1999-09-14 2001-06-05 Asahi Glass Co Ltd 合わせガラス
WO2011074425A1 (ja) 2009-12-16 2011-06-23 旭硝子株式会社 合わせガラス
JP4848872B2 (ja) 2006-07-19 2011-12-28 旭硝子株式会社 窓用合わせガラス
JP5599639B2 (ja) 2010-04-06 2014-10-01 富士フイルム株式会社 転写用フィルム、合わせガラス及びその製造方法
JP2016506544A (ja) * 2012-12-20 2016-03-03 スリーエム イノベイティブ プロパティズ カンパニー 層ごとに自己集合された層を含む多層光学フィルム及び物品の製造方法
JP2017223827A (ja) * 2016-06-15 2017-12-21 日本化薬株式会社 赤外線遮蔽シート、赤外線遮蔽合わせガラス用中間膜並びに赤外線遮蔽合わせガラス及びその製造方法
JP2018022073A (ja) * 2016-08-04 2018-02-08 大日本印刷株式会社 近赤外線遮蔽積層体、車両用ガラス及び車両
JP2018032984A (ja) 2016-08-24 2018-03-01 ソニー株式会社 画像処理装置、画像撮影装置、および画像処理方法、並びにプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012681B2 (ja) * 2008-06-17 2012-08-29 凸版印刷株式会社 積層体及びその製造方法
JP5423271B2 (ja) * 2009-04-16 2014-02-19 セントラル硝子株式会社 自動車のフロントガラス用合わせガラスの製造方法
WO2010150839A1 (ja) * 2009-06-24 2010-12-29 株式会社ブリヂストン 熱線遮蔽ガラス、及び熱線遮蔽複層ガラス
JP5297359B2 (ja) * 2009-11-30 2013-09-25 富士フイルム株式会社 接着性積層体の製造方法、接着性積層体、並びに機能性合わせガラス及びその製造方法
US20140355107A1 (en) * 2011-12-28 2014-12-04 Konica Minolta, Inc. Infrared shielding film, heat reflective laminated glass using same, and method for producing heat reflective laminated glass
JP6174330B2 (ja) * 2012-05-17 2017-08-02 日産自動車株式会社 透明誘電体膜、熱反射構造体およびその製造方法、ならびにこれを用いた合わせガラス
JP6136819B2 (ja) * 2013-09-27 2017-05-31 住友金属鉱山株式会社 熱線遮蔽用合わせ構造体
MX2016009646A (es) * 2014-01-31 2016-11-17 Sekisui Chemical Co Ltd Pelicula intermedia para vidrio laminado, vidrio laminado y metodo para vidrio laminado.
JP6549044B2 (ja) * 2016-01-07 2019-07-24 王子ホールディングス株式会社 自動車用遮熱合わせガラス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219543A (ja) 1999-01-27 2000-08-08 Fujicopian Co Ltd 合わせガラス用転写材料を用いる合わせガラスの製造方法
JP2001151539A (ja) 1999-09-14 2001-06-05 Asahi Glass Co Ltd 合わせガラス
JP4848872B2 (ja) 2006-07-19 2011-12-28 旭硝子株式会社 窓用合わせガラス
WO2011074425A1 (ja) 2009-12-16 2011-06-23 旭硝子株式会社 合わせガラス
JP5599639B2 (ja) 2010-04-06 2014-10-01 富士フイルム株式会社 転写用フィルム、合わせガラス及びその製造方法
JP2016506544A (ja) * 2012-12-20 2016-03-03 スリーエム イノベイティブ プロパティズ カンパニー 層ごとに自己集合された層を含む多層光学フィルム及び物品の製造方法
JP2017223827A (ja) * 2016-06-15 2017-12-21 日本化薬株式会社 赤外線遮蔽シート、赤外線遮蔽合わせガラス用中間膜並びに赤外線遮蔽合わせガラス及びその製造方法
JP2018022073A (ja) * 2016-08-04 2018-02-08 大日本印刷株式会社 近赤外線遮蔽積層体、車両用ガラス及び車両
JP2018032984A (ja) 2016-08-24 2018-03-01 ソニー株式会社 画像処理装置、画像撮影装置、および画像処理方法、並びにプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3760434A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135484A (ja) * 2020-02-26 2021-09-13 南亞塑膠工業股▲分▼有限公司 赤外線遮蔽フィルム及びその製造方法
JP7065171B2 (ja) 2020-02-26 2022-05-11 南亞塑膠工業股▲分▼有限公司 赤外線遮蔽フィルム及びその製造方法
US11561332B2 (en) 2020-02-26 2023-01-24 Nan Ya Plastics Corporation Infrared shielding film and method for manufacturing the same
KR20220155583A (ko) 2020-03-17 2022-11-23 다이니폰 인사츠 가부시키가이샤 광학 적층체, 그리고 그것을 사용한 편광판, 표면판 및 화상 표시 장치

Also Published As

Publication number Publication date
CN111770834A (zh) 2020-10-13
US20210003756A1 (en) 2021-01-07
JPWO2019167897A1 (ja) 2020-04-16
EP3760434A4 (en) 2021-11-24
EP3760434A1 (en) 2021-01-06
KR20200125609A (ko) 2020-11-04
JP6618233B1 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
TWI614540B (zh) 紅外線遮蔽片及其製造方法與其用途
EP2216304B1 (en) Process for producing laminated glass with inserted plastic film
JP4848872B2 (ja) 窓用合わせガラス
JP6127804B2 (ja) 車両用合わせガラスおよびその製造方法
WO2011074425A1 (ja) 合わせガラス
JP6127805B2 (ja) 車両用合わせガラスおよびその製造方法
JP5959746B2 (ja) 光透過性積層体
JP2010222233A (ja) 断熱合わせガラス
KR100507842B1 (ko) 플라즈마 디스플레이 판넬용 전면 광학 필터
JPWO2013099564A1 (ja) 赤外遮蔽フィルム、これを用いた熱線反射合わせガラス、および熱線反射合わせガラスの製造方法
JP6618233B1 (ja) 熱線遮蔽構造体およびそれを含む合わせガラスならびにそれらの製造方法
JP5499837B2 (ja) 熱線遮蔽フィルム
JP2011195417A (ja) 合わせガラス
WO2017010280A1 (ja) 熱線遮蔽フィルム
JP2020115157A (ja) 光反射フィルム及び光反射フィルムの製造方法
JP5865412B2 (ja) 窓貼用赤外線遮断フイルム
WO2012169603A1 (ja) 光学膜および合わせガラス
JP5413314B2 (ja) 赤外線反射フィルムおよび合わせガラスの製造方法
JP2017209926A (ja) 飛散防止フィルムおよび積層体
JP2017185669A (ja) 遮熱フィルムと遮熱合わせガラス
JP2000219543A (ja) 合わせガラス用転写材料を用いる合わせガラスの製造方法
WO2017094453A1 (ja) 合わせガラス
JP2018103547A (ja) ガラス木材積層体
KR100513642B1 (ko) 플라즈마 디스플레이 패널용 광학필터 및 그 제조방법
JP2006047437A (ja) 光学フィルタ及びプラズマディスプレイパネル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019537191

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019760561

Country of ref document: EP

Effective date: 20200928