WO2019167853A1 - 積層不織布 - Google Patents

積層不織布 Download PDF

Info

Publication number
WO2019167853A1
WO2019167853A1 PCT/JP2019/006920 JP2019006920W WO2019167853A1 WO 2019167853 A1 WO2019167853 A1 WO 2019167853A1 JP 2019006920 W JP2019006920 W JP 2019006920W WO 2019167853 A1 WO2019167853 A1 WO 2019167853A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
laminated nonwoven
laminated
fabric layer
resin
Prior art date
Application number
PCT/JP2019/006920
Other languages
English (en)
French (fr)
Inventor
一 西村
このみ 阪上
洋平 中野
羽根 亮一
西村 誠
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020207024458A priority Critical patent/KR20200126369A/ko
Priority to CN201980015423.1A priority patent/CN111771020A/zh
Priority to JP2019541200A priority patent/JP7173021B2/ja
Publication of WO2019167853A1 publication Critical patent/WO2019167853A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/593Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the laminated nonwoven fabric of the present invention is formed by laminating a spunbond nonwoven fabric layer and a melt blown nonwoven fabric layer composed of composite fibers, and is excellent in water resistance and flexibility, and excellent in moldability as a building material application. It relates to a laminated nonwoven fabric.
  • Nonwoven fabrics have been used for various purposes and are expected to grow in the future.
  • Nonwoven fabrics are used in a wide range of applications such as industrial materials, civil engineering materials, building materials, living materials, agricultural materials, sanitary materials, and medical materials.
  • a ventilation layer method is widely used in which a ventilation layer is provided between an outer wall material and a heat insulating material, and moisture that has entered the wall body is released to the outside through the ventilation layer.
  • This ventilation layer construction method is a spunbonded nonwoven fabric as a house wrap material that is a moisture permeable waterproof sheet that has both water resistance to prevent rainwater from entering the building and moisture permeability that allows moisture generated inside the wall to escape to the outside. Is used.
  • the spunbonded nonwoven fabric is characterized by excellent moisture permeability due to its structure, but has a problem of poor water resistance. Therefore, a spunbonded nonwoven fabric is laminated and integrated with a film excellent in water resistance to form a moisture permeable waterproof sheet and used as a house wrap material.
  • House wrap material is fixed to the ground with spelling needles (also known as tucker needles or staples) and has excellent long-term durability and weather resistance under high and low temperature conditions. It is required to have durability (hydrolysis resistance) and excellent moldability during construction.
  • spelling needles also known as tucker needles or staples
  • a polyester nonwoven fabric having a single fiber diameter of 3 to 28 microns and a basis weight of 5 to 50 g / m 2 in order to improve the balance between moisture permeability and water resistance.
  • a house wrap material has been proposed in which a film having a thickness of 7 to 60 microns made of a block copolymer polyester having a hard segment and a soft segment is laminated on this nonwoven fabric (see Patent Document 1).
  • the conventional house wrap material is a laminate of a nonwoven fabric and a film
  • the sheet is hard and inferior in formability.
  • the hardness of the sheet is attributed to the film, and it is an effective means to reduce the ratio of the film to be bonded, but there is a limit to the reduction of the film ratio from the viewpoint of water resistance.
  • the object of the present invention has been made in view of the above circumstances, and the object is to have both water resistance and high flexibility even without a conventionally used film, and further, thermal adhesiveness, etc. It is in providing the nonwoven fabric excellent also in the moldability of.
  • the inventors of the present invention were composed of a spunbond nonwoven fabric layer composed of fibers composed of two or more different polyolefin resins and a fiber composed of a polyolefin resin.
  • this laminated nonwoven fabric can have the desired high level of water resistance, flexibility, and workability mainly composed of thermal adhesiveness.
  • the laminated nonwoven fabric of the present invention is a laminated nonwoven fabric obtained by laminating a spunbond nonwoven fabric layer and a meltblown nonwoven fabric layer, and the spunbond nonwoven fabric layer is a composite comprising a thermoplastic resin (A1) and a polyethylene resin (A2). Composed of fibers, the thermoplastic resin (A1) is a polyolefin resin (A1a) or a polyester resin (A1b), the meltblown nonwoven fabric layer is composed of fibers composed of a polyolefin resin (B), and
  • the composite fiber of the spunbond nonwoven fabric layer has an average single fiber diameter of 6.5 to 11.9 ⁇ m, and the complex viscosity of the spunbond nonwoven fabric layer measured under the conditions of 230 ° C. and 6.28 rad / sec is 100 Pa ⁇ sec or less.
  • the water pressure resistance per unit basis weight is 15 mmH 2 O / (g / m 2 ) or more.
  • the melt flow rate of the fiber made of the polyolefin resin (A1) is 155 to 850 g / 10 minutes.
  • the content of the melt blown nonwoven fabric layer is 1% by mass or more and 15% by mass or less with respect to the mass of the laminated nonwoven fabric.
  • the surface roughness SMD by the KES method on at least one side is 1.0 to 2.6 ⁇ m.
  • the average friction coefficient MIU according to the KES method on at least one side is 0.1 to 0.5.
  • the variation MMD of the average friction coefficient according to the KES method on at least one side is 0.008 or less.
  • the polyolefin resin (A2) contains a fatty acid amide compound having 23 to 50 carbon atoms.
  • the amount of the fatty acid amide compound added is 0.01 to 5.0% by mass.
  • the fatty acid amide compound is ethylene bis stearamide.
  • a polyethylene resin, a spunbond nonwoven fabric layer composed of a composite fiber composed of a polyolefin resin or a polyester resin, and a melt blown nonwoven fabric layer composed of a fiber composed of a polyolefin resin are laminated,
  • a laminated nonwoven fabric having excellent water resistance and flexibility and excellent workability can be obtained. From these characteristics, the laminated nonwoven fabric of the present invention can be suitably used particularly for building materials such as a moisture-permeable waterproof sheet.
  • the laminated nonwoven fabric of the present invention is excellent in water resistance, and therefore, when used as a moisture permeable waterproof sheet, the basis weight can be reduced as compared with a conventional laminated nonwoven fabric.
  • FIG. 1 is a schematic cross-sectional view illustrating a cross section of a composite fiber constituting the nonwoven fabric of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating a cross section of another conjugate fiber constituting the nonwoven fabric of the present invention.
  • FIG. 3 is a schematic cross-sectional view illustrating a cross section of another conjugate fiber constituting the nonwoven fabric of the present invention.
  • the laminated nonwoven fabric of the present invention is a laminated nonwoven fabric obtained by laminating a spunbond nonwoven fabric layer and a meltblown nonwoven fabric layer, and the spunbond nonwoven fabric layer is a composite comprising a thermoplastic resin (A1) and a polyethylene resin (A2). Composed of fibers, the thermoplastic resin (A1) is a polyolefin resin (A1a) or a polyester resin (A1b), the meltblown nonwoven fabric layer is composed of fibers composed of a polyolefin resin (B), and The average single fiber diameter of the composite fiber of the spunbond nonwoven fabric layer is 6.5 to 11.9 ⁇ m, and the complex viscosity of the laminated nonwoven fabric measured under the conditions of 230 ° C. and 6.28 rad / sec is 100 Pa ⁇ sec or less. It is a laminated nonwoven fabric. The details will be described below.
  • thermoplastic resins (A1), (A2), polyolefin resins (B) Among the laminated nonwoven fabrics of the present invention, a thermoplastic resin (A1) and a polyethylene resin (A2) are used for the composite fibers constituting the spunbond nonwoven fabric layer.
  • thermoplastic resin (A1) a polyolefin resin (A1a) or a polyester resin (A1b) is used.
  • polyolefin resin (A1a) a polyolefin containing an olefin having 2 to 10 carbon atoms is preferably used.
  • Specific examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexane, 4-methyl-1-pentene, 1-octene, and copolymers of these monomers with other ⁇ -olefins. Can be mentioned. These can be used alone or in combination of two or more. Among these, it is preferable to use a polypropylene-based resin because of its high strength and excellent dimensional stability during the production of sanitary materials.
  • the proportion of the propylene homopolymer is preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably. Is 80% by mass or more. By setting it in the above range, good spinnability can be maintained and the strength can be improved.
  • polyester resin (A1b) composed of an acid component and an alcohol component is used for the polyester resin (A1b).
  • the acid component include aromatic carboxylic acids such as terephthalic acid, isophthalic acid and phthalic acid, aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanecarboxylic acid. it can.
  • the alcohol component ethylene glycol, diethylene glycol, polyethylene glycol, or the like can be used as the alcohol component.
  • polyester resins include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate, and the like, and copolymers thereof.
  • strength of a laminated nonwoven fabric can further be improved, and when it uses for a house wrap, the fastening strength in a staple can be improved.
  • examples of the polyethylene resin (A2) used in the present invention include ethylene homopolymers and copolymers of ethylene and various ⁇ -olefins.
  • examples of the polyethylene resin (A2) include medium density, high density, and linear low density polyethylene (hereinafter sometimes referred to as LLDPE), and the like, in terms of excellent spinnability. LLDPE is preferably used.
  • the polyethylene resin used in the present invention may be a mixture of two or more kinds, and a branched component different from ethylene, for example, ⁇ - such as butene, hexene, 4-methylpentene, heptene, and octene.
  • ⁇ - such as butene, hexene, 4-methylpentene, heptene, and octene.
  • a resin composition containing a polyethylene resin copolymerized with an olefin, a thermoplastic elastomer, or the like can also be used.
  • the antioxidant in the polyethylene-based resin used in the present invention, the antioxidant, weathering stabilizer, light stabilizer, antistatic agent, antifogging agent, antiblocking agent, lubricant, which are usually used within the range not impairing the effects of the present invention, Nucleating agents, additives such as pigments, or other polymers can be added as necessary.
  • the melting point of the polyethylene resin used in the present invention is preferably 80 to 160 ° C, more preferably 100 to 140 ° C.
  • the melting point is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, heat resistance that can withstand practical use is easily obtained.
  • the melting point is preferably 160 ° C. or lower, more preferably 140 ° C. or lower, it is easy to firmly adhere to the polypropylene resin and it is easy to spin without yarn breakage.
  • polyolefin resin (B) of the fibers constituting the meltblown nonwoven fabric layer a polyolefin containing an olefin having 2 to 10 carbon atoms is preferably used, like the polyolefin resin (A1a).
  • a polypropylene-based resin because of its high strength and excellent dimensional stability during the production of sanitary materials.
  • thermoplastic fiber (A1) of the composite fiber constituting the spunbond nonwoven fabric layer, the polyolefin resin (A2), and the polyolefin resin (B) of the fiber constituting the meltblown nonwoven fabric layer according to the present invention As the melt flow rate (which may be abbreviated as MFR), a value measured by ASTM D1238 (A method) is adopted.
  • polypropylene is measured at a load of 2.16 kg and a temperature of 230 ° C.
  • polyethylene is measured at a load of 2.16 kg and a temperature of 190 ° C.
  • the measurement conditions for polyester are measured at a load of 2.16 kg and 280 ° C.
  • the MFR of the thermoplastic resin (A1) of the fibers constituting the spunbond nonwoven fabric layer is preferably 155 to 850 g / 10 minutes.
  • the fiber thinning behavior when spinning the spunbond nonwoven fabric layer can be improved. Stable spinning is possible even if the spinning is performed at a high spinning speed in order to stabilize and increase the productivity. Further, by stabilizing the thinning behavior, the yarn swaying is suppressed, and unevenness when collecting in a sheet form is less likely to occur. Furthermore, since it becomes possible to draw stably at a high spinning speed, the fibers can be oriented and crystallized to obtain fibers having high mechanical strength.
  • the MFR of the thermoplastic resin is preferably 10 to 1000 g / 10 minutes, more preferably 20 to 800 g / 10 minutes, and still more preferably 30 to 600 g / minute. 10 minutes.
  • a viscosity spot may arise partially in the blended thermoplastic resin, and it can prevent that a fineness becomes non-uniform
  • the melt flow rate (MFR) of the polyethylene resin (A2) used in the present invention is preferably 50 to 200 g / 10 minutes.
  • the MFR is preferably from 50 to 200 g / 10 minutes, more preferably from 60 to 180 g / 10 minutes, and even more preferably from 70 to 150 g / 10 minutes, so that stretching is performed at a high spinning speed in order to increase productivity.
  • the viscosity is low, deformation can be easily followed and stable spinning becomes possible.
  • the fibers can be oriented and crystallized to obtain fibers having high mechanical strength.
  • the MFR of the polyethylene resin (A2) is preferably 10 to 1000 g / 10 min, more preferably 10 to 800 g / 10 min, and still more preferably 10 to 600 g / min. 10 minutes.
  • a viscosity spot may arise partially in the blended polyethylene-type resin (A2), and it can prevent that a fineness becomes non-uniform
  • the MFR of the polyolefin resin (B) of the fibers constituting the melt blown nonwoven fabric layer is preferably 200 to 2500 g / 10 minutes.
  • the MFR is preferably 200 to 2500 g / 10 minutes, more preferably 400 to 2000 g / 10 minutes, and further preferably 600 to 1500 g / 10 minutes, stable spinning can be easily performed, and a level of several ⁇ m can be obtained.
  • a fiber made of the polyolefin resin (B) can be obtained.
  • the complex viscosity of the spunbonded nonwoven fabric layer measured at 230 ° C. and 6.28 rad / sec is 100 Pa ⁇ sec or less.
  • the complex viscosity of the spunbond nonwoven fabric layer is determined by mixing the types of polyolefin resins such as polyethylene resins and polypropylene resins, and when mixing multiple types of resins with different complex viscosities. It can be adjusted by the mass ratio.
  • the complex viscosity (Pa ⁇ sec) of the spunbonded nonwoven fabric layer of the present invention was measured using a dynamic viscoelasticity measuring device in accordance with “3.3 Complex Shear Viscosity” of JIS K 7244-10 (2005). The value measured according to the above conditions shall be adopted.
  • Frequency 0.3 to 63 rad / sec
  • the mass ratio of the polyethylene resin (A2) is 100 for the entire resin constituting the composite fiber.
  • the mass% is preferably 20 to 50 mass%
  • the mass ratio of the thermoplastic resin (A1) is preferably 50 to 80 mass%.
  • the mass ratio of polyethylene is preferably 20 to 50% by mass, more preferably 25 to 40% by mass, a flexible composite fiber having sufficient adhesive strength can be obtained.
  • the mass ratio of the thermoplastic resin (A1) is preferably 50 to 80% by mass, and more preferably 60 to 75% by mass, a composite fiber having strength that can be used practically can be obtained.
  • thermoplastic resin (A1), polyethylene resin (A2), and polyolefin resin (B) used in the present invention antioxidants, weather stabilizers, and light resistance that are usually used are within the range not impairing the effects of the present invention.
  • Additives such as stabilizers, antistatic agents, antifogging agents, antiblocking agents, lubricants, nucleating agents, and pigments, or other polymers can be added as necessary.
  • the melting point of the thermoplastic resin (A1) or polyethylene resin (A2) used in the present invention is preferably 80 to 200 ° C., more preferably 100 to 180 ° C., further preferably 120 to 180 ° C. is there.
  • the melting point is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 120 ° C. or higher, heat resistance that can withstand practical use is easily obtained.
  • the melting point to preferably 200 ° C. or less, more preferably 180 ° C. or less, it becomes easy to cool the yarn discharged from the die, and it becomes easy to perform stable spinning by suppressing the fusion of fibers.
  • the melting point of the polyolefin resin (B) used in the present invention is preferably 80 to 200 ° C., more preferably 100 to 180 ° C., and further preferably 120 to 180 ° C.
  • the melting point is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 120 ° C. or higher, heat resistance that can withstand practical use can be easily obtained.
  • the melting point is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, it becomes easy to cool the yarn discharged from the die, and it becomes easy to perform stable spinning by suppressing fusion of fibers.
  • the laminated nonwoven fabric of the present invention contains a fatty acid amide compound having 23 to 50 carbon atoms in the polyethylene resin (A2) constituting the spunbonded nonwoven fabric in order to improve slipperiness and flexibility. It is a preferred embodiment.
  • the number of carbon atoms in the fatty acid amide compound is preferably 23 or more, and more preferably 30 or more, the fatty acid amide compound is suppressed from being excessively exposed on the fiber surface, and has excellent spinnability and processing stability. High productivity can be maintained.
  • the number of carbon atoms of the fatty acid amide compound is preferably 50 or less, more preferably 42 or less, so that the fatty acid amide compound can easily move to the fiber surface, and can impart slipperiness and flexibility to the laminated nonwoven fabric. it can.
  • Examples of the fatty acid amide compound having 23 to 50 carbon atoms used in the present invention include saturated fatty acid monoamide compounds, saturated fatty acid diamide compounds, unsaturated fatty acid monoamide compounds, and unsaturated fatty acid diamide compounds.
  • examples of the fatty acid amide compound having 23 to 50 carbon atoms include tetradocosanoic acid amide, hexadocosanoic acid amide, octadocosanoic acid amide, nervonic acid amide, tetracosaentapentic acid amide, nisic acid amide, and ethylenebislauric acid.
  • Amides methylene bis lauric acid amides, ethylene bis stearic acid amides, ethylene bis hydroxy stearic acid amides, ethylene bis behenic acid amides, hexamethylene bis stearic acid amides, hexamethylene bis behenic acid amides, hexamethylene hydroxy stearic acid amides, distearyl Examples include adipic acid amide, distearyl sebacic acid amide, ethylene bisoleic acid amide, ethylene biserucic acid amide, and hexamethylene bisoleic acid amide. In combination they can also be used.
  • ethylene bis stearamide which is a saturated fatty acid diamide compound
  • ethylene bis-stearic acid amide is excellent in thermal stability, it can be melt-spun, and high productivity can be maintained by the polyethylene resin (A2) in which the ethylene bis-stearic acid amide is blended.
  • the slipperiness between fibers is improved, the fibers can be uniformly dispersed during collection, which contributes to an improvement in the smoothness of the nonwoven fabric. Therefore, when the nonwoven fabric is formed, the pore diameter of the nonwoven fabric can be reduced, and a laminated nonwoven fabric excellent in water resistance and flexibility can be obtained.
  • the addition amount of the fatty acid amide compound relative to the entire resin constituting the spunbond nonwoven fabric layer constituting the laminated nonwoven fabric is 0.01 to It is preferably 5.0% by mass.
  • the addition amount of the fatty acid amide compound is preferably 0.01 to 5.0% by mass, more preferably 0.1 to 3.0% by mass, and still more preferably 0.1 to 1.0% by mass. It is possible to impart moderate slipperiness and flexibility while maintaining spinnability.
  • the composite fiber composed of the thermoplastic resin (A1) and the polyethylene resin (A2) constituting the spunbond nonwoven fabric layer according to the present invention has an average single fiber diameter of 6.5 to 11.9 ⁇ m. .
  • the average single fiber diameter By setting the average single fiber diameter to 6.5 ⁇ m or more, preferably 7.5 ⁇ m or more, more preferably 8.4 ⁇ m or more, a decrease in spinnability is prevented, and a stable and high-quality nonwoven fabric layer is formed. Can do.
  • the average single fiber diameter to 11.9 ⁇ m or less, preferably 11.2 ⁇ m or less, more preferably 10.6 ⁇ m or less, the flexibility and uniformity are high, and the content ratio of the melt blown nonwoven fabric layer is lowered. Even in this case, it is possible to obtain a laminated nonwoven fabric excellent in water resistance that can withstand practical use.
  • the value calculated by the following procedures shall be employ
  • a composite fiber composed of a thermoplastic resin (A1) and a polyethylene resin (A2) is melt-spun, pulled and stretched by an ejector, and then a nonwoven fabric layer is collected on the net.
  • Ten small sample pieces (100 ⁇ 100 mm) are collected at random.
  • the average single fiber diameter ( ⁇ m) is calculated from the average value of the 100 measured values.
  • FIG. 1 to FIG. 3 are schematic cross-sectional views illustrating a cross section of a composite fiber constituting the spunbonded nonwoven fabric of the present invention.
  • FIG. 1 and 2 are schematic cross-sectional views showing a cross section of a core-sheath composite fiber.
  • the centers of the core (a) and the sheath (b) are the same, and in FIG. 2, the centers of the core (a) and the sheath (b) are different.
  • the core-sheath type composite fiber includes a core part (a) and a sheath part (b), and the core part (a) is at least partially in a polymer different from the core part (a) in the cross section of the fiber.
  • a sheath part (b) says the part arrange
  • the eccentric core-sheath type composite fiber includes an exposed type in which the side surface of the core part (a) is exposed and an unexposed type in which the side surface of the core part (a) is not exposed.
  • an unexposed eccentric core-sheath type composite fiber is preferably used in view of spinning stability.
  • FIG. 3 is a schematic cross-sectional view showing a cross section of a side-by-side type composite fiber.
  • the side-by-side type composite fiber has a structure in which the first component (c) and the second component (d) are bonded together. These two component bonding surfaces may be either straight lines or curves, and differ depending on the viscosity characteristics of the two components and the discharge rate ratio.
  • the cross section of the composite fiber may be circular, or may be an odd-shaped cross section such as an ellipse.
  • the fibers made of the polyolefin resin (B) constituting the meltblown nonwoven fabric according to the present invention preferably have an average single fiber diameter of 0.1 to 8.0 ⁇ m, and a range of 0.4 to 7.0 ⁇ m. It is more preferable that
  • the value calculated by the following procedures shall be employ
  • the polyolefin resin (B) is melt-spun and refined with hot air, the nonwoven fabric layer is collected on the net.
  • Ten small sample pieces (100 ⁇ 100 mm) are collected at random.
  • the average single fiber diameter ( ⁇ m) is calculated from the average value of the 100 measured values.
  • the water resistance of the laminated nonwoven fabric of the present invention can be controlled by each characteristic of the spunbond nonwoven fabric layer and the melt blown nonwoven fabric layer constituting the laminated nonwoven fabric.
  • the water resistance of the spunbond nonwoven fabric layer can be controlled by the average fiber diameter of the constituent fibers and the dispersibility of the surface fibers of the nonwoven fabric layer.
  • the water resistance of the meltblown nonwoven fabric layer can be controlled by the average fiber diameter of the constituent fibers, the mass ratio in the laminated nonwoven fabric, and the degree of fusion between the fibers constituting the meltblown nonwoven fabric layer.
  • laminated nonwoven fabric of the present invention is formed by laminating a spunbond nonwoven fabric layer and a melt blown nonwoven fabric layer. By comprising in this way, the water resistance more than the level requested
  • the laminated nonwoven fabric of the present invention preferably has a water pressure resistance per unit basis weight of 15 mmH 2 O / (g / m 2 ) or more.
  • the water pressure per unit weight is preferably 15 mmH 2 O / (g / m 2 ) or more, more preferably 17 mmH 2 O / (g / m 2 ) or more, while maintaining water resistance that can withstand practical use.
  • it can be set as the laminated nonwoven fabric excellent in a softness
  • the fabric weight of a laminated nonwoven fabric is also attained.
  • the upper limit of the water pressure resistance is not particularly limited, but the upper limit that can be achieved while maintaining the nonwoven fabric structure is at most 30 mmH 2 O / (g / m 2 ).
  • the water pressure per unit weight of the laminated nonwoven fabric of the present invention is a value measured by the following procedure according to JIS L1092 (2009) “7.1.1 A method (low water pressure method)”. Shall. (1) Five test pieces having a width of 150 mm ⁇ 150 mm are collected from the laminated nonwoven fabric at equal intervals in the width direction of the laminated nonwoven fabric. (2) Set the test piece on the clamp of the measuring device (the part of the test piece that contacts the water has a size of 100 cm 2 ). (3) The water level is raised at a speed of 600 mm / min ⁇ 30 mm / min with a level device containing water, and the water level when water comes out from three places on the back side of the test piece is measured in mm. (4) The above measurement is performed on five test pieces, and the average value is taken as the water pressure resistance.
  • the surface roughness SMD by the KES method Kawabata Evaluation System
  • the average friction coefficient MIU by the KES method the average friction by the KES method Coefficient variation is evaluated by MMD.
  • the laminated nonwoven fabric of the present invention preferably has a surface roughness SMD of at least one side by the KES method of 1.0 to 2.6 ⁇ m.
  • the surface roughness SMD by the KES method is preferably 1.0 ⁇ m or more, more preferably 1.3 ⁇ m or more, further preferably 1.6 ⁇ m or more, and further preferably 2.0 ⁇ m or more, so that the fibers are excessively Densification can prevent the texture from deteriorating and the flexibility from being impaired.
  • the surface roughness SMD by the KES method is preferably 2.6 ⁇ m or less, more preferably 2.5 ⁇ m or less, still more preferably 2.4 ⁇ m or less, and even more preferably 2.3 ⁇ m or less. It is possible to obtain a laminated nonwoven fabric that is smooth and has a small feeling of roughness and is excellent in touch.
  • the surface roughness SMD by the KES method can be controlled by appropriately adjusting the average single fiber diameter, the MFR of the laminated nonwoven fabric, and the like.
  • the surface roughness SMD by the KES method adopts a value measured as follows. (1) Three test pieces having a width of 200 mm ⁇ 200 mm are collected from the laminated nonwoven fabric at equal intervals in the width direction of the laminated nonwoven fabric. (2) Set the test piece on the sample stage. (3) The surface of the test piece is scanned with a contact for measuring surface roughness (material: ⁇ 0.5 mm piano wire, contact length: 5 mm) applied with a load of 10 gf, and the average deviation of the uneven shape on the surface is measured. To do.
  • the average friction coefficient MIU according to the KES method of at least one side of the laminated nonwoven fabric of the present invention is preferably 0.1 to 0.5.
  • the average friction coefficient MIU is preferably 0.5 or less, more preferably 0.45 or less, and even more preferably 0.4 or less, thereby improving the slipperiness of the surface of the nonwoven fabric and improving the feel of the laminated nonwoven fabric. It can be.
  • the average friction coefficient MIU is preferably 0.1 or more, more preferably 0.15 or more, and even more preferably 0.2 or more, the lubricant is excessively added and the spinnability deteriorates, When the yarn is collected on the net, it is possible to prevent the yarn from slipping and getting worse.
  • the average friction coefficient MIU by the KES method should be controlled by appropriately adjusting the average single fiber diameter, the MFR of the laminated nonwoven fabric, or adding a lubricant to the polyethylene resin (A2) or the polyolefin resin (B). Can do.
  • the variation MMD of the average friction coefficient by the KES method on at least one side of the laminated nonwoven fabric of the present invention is preferably 0.008 or less.
  • the variation MMD of the average friction coefficient is preferably 0.008 or less, more preferably 0.0075 or less, and further preferably 0.0070 or less, so that the roughness of the surface of the laminated nonwoven fabric can be further reduced. .
  • Fluctuation of the average friction coefficient by the KES method MMD is controlled by appropriately adjusting the average single fiber diameter, MFR of the laminated nonwoven fabric, or by adding a lubricant to the polyethylene resin (A2) or polyolefin resin (B). can do.
  • values measured as follows are used as the average friction coefficient MIU and the variation MMD of the average friction coefficient by the KES method.
  • Three test pieces having a width of 200 mm ⁇ 200 mm are collected from the laminated nonwoven fabric at equal intervals in the width direction of the laminated nonwoven fabric.
  • (3) The average friction coefficient is measured by scanning the surface of the test piece with a contact friction element (material: ⁇ 0.5 mm piano wire (20 parallel), contact area: 1 cm 2 ) applied with a load of 50 gf.
  • the flexibility of the laminated nonwoven fabric is evaluated by an air permeability and a sensory test.
  • the air permeability per unit weight of the laminated nonwoven fabric of the present invention is preferably 0.5 to 10 (cc / (cm 2 ⁇ sec)) / (g / m 2 ).
  • the air flow rate per unit weight is preferably 8 (cc / (cm 2 ⁇ sec)) / (g / m 2 ) or less, more preferably 6 (cc / (cm 2 ⁇ sec)) / (g / m 2 ) Or less, and more preferably 4 (cc / (cm 2 ⁇ sec)) / (g / m 2 ) or less, the air permeability required for house wrap applications can be sufficiently satisfied.
  • the air flow rate per unit weight is preferably 0.2 (cc / (cm 2 ⁇ sec)) / (g / m 2 ) or more, more preferably 0.4 (cc / (cm 2 ⁇ sec)). / (G / m 2 ) or more, and more preferably 0.6 (cc / (cm 2 ⁇ sec)) / (g / m 2 ) or more, the spunbond nonwoven fabric becomes excessively dense and flexible. It is possible to prevent the sex from being impaired.
  • the air flow rate can be adjusted by the basis weight, the single fiber fineness, the basis weight of the melt blow layer, and the thermocompression bonding conditions (compression rate, temperature and linear pressure).
  • the air permeability per unit basis weight of the laminated nonwoven fabric adopts a value measured by the following procedure according to “6.8.1 Frazier method” of JIS L1913 (2010). To do. (1) A test piece of 80 cm ⁇ 100 cm is cut out from the laminated nonwoven fabric. (2) An arbitrary 20 points on the test piece are measured at a barometer pressure of 125 Pa. (3) The average value of the above 20 points is calculated by rounding off the second decimal place. (4) Multiply the calculated air flow rate (cc / (cm 2 ⁇ sec)) by the basis weight (g / m 2 ).
  • the content of the melt blown nonwoven fabric layer is preferably 1% by mass or more and 15% by mass or less, and more preferably 2% by mass or more and 10% by mass or less with respect to the mass of the laminated nonwoven fabric.
  • the content of the melt blown nonwoven fabric layer is preferably 1% by mass or more, more preferably 2% by mass or more, water resistance that can withstand practical use can be imparted.
  • the hardness specific to a melt blown nonwoven fabric can be reduced by making content of a melt blown nonwoven fabric into 5 mass% or less preferably, more preferably 10 mass% or less.
  • the content of the spunbond nonwoven fabric layer in the laminated nonwoven fabric preferably greater than 85 mass% and less than 99 mass%, a laminated nonwoven fabric excellent in flexibility and workability can be obtained.
  • the value measured by the following procedures shall be employ
  • Three test pieces with a width of 100 mm ⁇ 100 mm are collected at equal intervals in the width direction of the laminated nonwoven fabric.
  • the content ratio of the melt blown nonwoven fabric in the laminated nonwoven fabric is calculated.
  • the basis weight of the laminated nonwoven fabric of the present invention is preferably 10 to 100 g / m 2 .
  • the basis weight is preferably 10 g / m 2 or more, more preferably 13 g / m 2 or more, and further preferably 15 g / m 2 or more, a laminated nonwoven fabric having mechanical strength that can be used practically can be obtained.
  • a basis weight of preferably 100 g / m 2 or less, more preferably 50 g / m 2 or less, and even more preferably 30 g / m 2 or less when used as a house wrap material, an operator holds it at the time of construction. Therefore, it is possible to obtain a laminated non-woven fabric that is suitable for work and has excellent handleability during construction. Moreover, it can be set as the laminated nonwoven fabric which is excellent in handling property also when using as another use.
  • the fabric weight of a laminated nonwoven fabric shall employ
  • Three test pieces of 20 cm ⁇ 25 cm are collected per 1 m width of the sample.
  • the average value is expressed in terms of mass per 1 m 2 (g / m 2 ).
  • the thickness of the laminated nonwoven fabric of the present invention is preferably 0.05 to 1.5 mm.
  • the thickness is preferably 0.05 to 1.5 mm, more preferably 0.08 to 1.0 mm, and still more preferably 0.10 to 0.8 mm, thereby providing flexibility and appropriate cushioning properties.
  • When used as a material it becomes a weight suitable for an operator to carry it by hand during construction, and the nonwoven fabric is not too rigid, and a laminated nonwoven fabric excellent in handleability during construction can be obtained.
  • the thickness (mm) of a laminated nonwoven fabric shall employ
  • a pressurizer having a diameter of 10 mm is used, and a thickness of 10 points per meter is measured in 0.01 mm units at equal intervals in the width direction of the nonwoven fabric with a load of 10 kPa.
  • the apparent density of the laminated nonwoven fabric of the present invention is preferably 0.05 to 0.3 g / cm 3 .
  • the apparent density is preferably 0.3 g / cm 3 or less, more preferably 0.25 g / cm 3 or less, and even more preferably 0.20 g / cm 3 or less, so that the fibers are densely packed and laminated. It can prevent that the softness
  • the apparent density is set to 0.05 g / cm 3 or more, more preferably set to 0.08 g / cm 3 or more, more preferably by a 0.10 g / cm 3 or more, fluffing and delamination occurs It is possible to obtain a laminated nonwoven fabric having strength, flexibility and handleability that can withstand practical use.
  • the apparent density (g / cm 3 ) is calculated based on the following formula from the basis weight and thickness before rounding, and rounded off to the third decimal place.
  • Apparent density (g / cm 3 ) [weight per unit area (g / m 2 )] / [thickness (mm)] ⁇ 10 ⁇ 3
  • the stress at 5% elongation per unit weight of the laminated nonwoven fabric of the present invention (hereinafter sometimes referred to as 5% modulus per unit weight) is 0.06 to 0.33 (N / 25 mm) / (g / M 2 ), preferably 0.13 to 0.30 (N / 25 mm) / (g / m 2 ), more preferably 0.20 to 0.27 (N / 25 mm). / (G / m 2 ).
  • 5% modulus per unit weight is 0.06 to 0.33 (N / 25 mm) / (g / M 2 ), preferably 0.13 to 0.30 (N / 25 mm) / (g / m 2 ), more preferably 0.20 to 0.27 (N / 25 mm). / (G / m 2 ).
  • the stress at 5% elongation per unit weight of the laminated nonwoven fabric is measured by the following procedure according to “6.3 Tensile strength and elongation (ISO method)” of JIS L1913 (2010).
  • the value to be adopted shall be adopted.
  • Three test pieces of 25 mm ⁇ 300 mm are collected per 1 m width in each of the longitudinal direction of the nonwoven fabric (longitudinal direction of the nonwoven fabric) and the lateral direction (width direction of the nonwoven fabric).
  • a test piece is set on a tensile tester with a grip interval of 200 mm.
  • the laminated nonwoven fabric of the present invention is a laminated nonwoven fabric composed of nonwoven fabrics produced by a spunbond (S) method and a melt blow (M) method.
  • the production method of the laminated nonwoven fabric of the present invention can be carried out according to any method as long as the spunbond nonwoven fabric layer and the melt blown nonwoven fabric layer can be laminated. For example, a method in which fibers formed by a melt blown method are directly deposited on a nonwoven fabric layer obtained by a spunbond method to form a meltblown nonwoven fabric layer, and then the spunbond nonwoven fabric layer and the meltblown nonwoven fabric layer are fused.
  • a method of bonding can be employed. From the viewpoint of productivity, a method in which a melt blown nonwoven fabric layer is directly formed on a spunbond nonwoven fabric layer is a preferred embodiment.
  • a spunbond nonwoven fabric layer (S) and a melt blown nonwoven fabric layer (M) can be laminated with SM, SMS, SMMS, SSMMS, and SMSMS.
  • the spunbond nonwoven fabric layer first spins molten thermoplastic resin (polyolefin-based resin) as a long fiber from a spinneret, sucks and stretches this with compressed air using an ejector, and then collects the fiber on a moving net. To make a non-woven fabric layer.
  • molten thermoplastic resin polyolefin-based resin
  • the shape of the spinneret and the ejector various shapes such as a round shape and a rectangular shape can be adopted.
  • the combination of a rectangular base and a rectangular ejector is used because the amount of compressed air used is relatively small, the energy cost is excellent, the yarns are not easily fused or scratched, and the yarn is easy to open.
  • the yarns are not easily fused or scratched, and the yarn is easy to open.
  • thermoplastic resin (A1) and the polyethylene resin (A2) are melted and weighed in separate extruders to form a fiber cross section, preferably as shown in FIG. Supplied to a core-sheath fiber spinneret, and spun as a long fiber with a core-sheath cross section in which a polypropylene resin is disposed in the core component and a polyethylene resin is disposed in the sheath component.
  • the spinning temperature at the time of melting and spinning the thermoplastic resin (A1) and the polyethylene resin (A2) is preferably 200 to 270 ° C., more preferably 210 to 260 ° C., and further preferably 220 to 250. ° C.
  • the spun long fiber yarn is then cooled.
  • a method for cooling the spun yarn for example, a method for forcibly blowing cold air onto the yarn, a method for natural cooling at the ambient temperature around the yarn, and a method for adjusting the distance between the spinneret and the ejector Or a combination of these methods can be employed.
  • the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature, and the like.
  • the spinning speed is preferably 3,000 to 6,500 m / min, more preferably 3,500 to 6,500 m / min, and further preferably 4,000 to 6,500 m / min.
  • the spinning speed is preferably 3,000 to 6,500 m / min, high productivity is obtained, and orientational crystallization of the fibers proceeds, so that high-strength long fibers can be obtained.
  • the spinning speed is increased, the spinnability deteriorates and the yarn cannot be stably produced.
  • the thermoplastic resin (A1) having a specific range of MFR and the polyethylene resin (A2). ) Can be used to stably spin the intended conjugate fiber.
  • a non-woven fabric layer is temporarily bonded by contacting a heat flat roll from one side of the net. By doing so, the surface layer of the nonwoven fabric layer is turned over or blown during transportation on the net to prevent the formation from getting worse, and the transportability from collecting yarn to thermocompression bonding Can be improved.
  • melt blown nonwoven fabric First, the polyolefin-based resin (B) is melted in an extruder and supplied to the base part, and hot air is blown onto the yarn extruded from the base to make it thin, and then a nonwoven fabric layer is formed on the collection net.
  • the melt blow method a complicated process is not required, a fine fiber of several ⁇ m can be easily obtained, and high water resistance can be easily achieved.
  • the intended laminated nonwoven fabric can be obtained by laminating the obtained spunbond nonwoven fabric layer and the melt blown nonwoven fabric layer and thermally bonding them.
  • the method of thermally bonding the nonwoven fabric layer is not particularly limited.
  • a hot embossing roll in which engravings (uneven portions) are respectively formed on a pair of upper and lower roll surfaces, a roll with one roll surface being flat (smooth), and the other roll
  • a method of heat bonding with various rolls such as a heat embossing roll composed of a combination of rolls with sculpture (uneven portions) on the surface, and a heat calender roll composed of a combination of a pair of upper and lower flat (smooth) rolls, Examples of the method include ultrasonic bonding in which heat welding is performed by ultrasonic vibration.
  • a hot embossing roll made of a combination of a roll having a flat (smooth) roll surface and a roll having a sculpture (uneven portion) on the other roll surface. It is an aspect.
  • a metal roll and a metal roll are used as a surface material of the hot embossing roll. Pairing is a preferred embodiment.
  • the embossed adhesion area ratio by such a hot embossing roll is preferably 5 to 30%.
  • the adhesion area preferably 5% or more, more preferably 8% or more, and further preferably 10% or more, it is possible to obtain strength that can be practically used as a laminated nonwoven fabric.
  • the adhesion area is preferably 30% or less, more preferably 25% or less, and further preferably 20% or less, moderate flexibility particularly suitable for use in building materials can be obtained. . Even when ultrasonic bonding is used, the bonding area ratio is preferably in the same range.
  • the adhesion area refers to the ratio of the adhesion part to the entire laminated nonwoven fabric.
  • the convex portion of the upper roll and the convex portion of the lower roll overlap and occupy the entire laminated nonwoven fabric of the portion that contacts the nonwoven fabric layer (adhesive portion).
  • the flat roll it says the ratio which the convex part of the roll which has an unevenness
  • ultrasonic bonding it refers to the ratio of the portion (bonded portion) to be thermally welded by ultrasonic processing to the entire laminated nonwoven fabric.
  • the shape of the bonded portion by heat embossing roll or ultrasonic bonding is not particularly limited, and for example, a circle, an ellipse, a square, a rectangle, a parallelogram, a rhombus, a regular hexagon, and a regular octagon can be used.
  • an adhesion part exists uniformly with a fixed space
  • the surface temperature of the hot embossing roll at the time of heat bonding is preferably -50 to -15 ° C with respect to the melting point of the polyethylene resin (A2) used.
  • the surface temperature of the heat roll is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 45 ° C. or higher, with respect to the melting point of the polyethylene resin (A2), Can be obtained.
  • the surface temperature of the heat embossing roll is preferably ⁇ 15 ° C. or lower, more preferably ⁇ 20 ° C. or lower, with respect to the melting point of the polyethylene resin (A2), thereby suppressing excessive thermal adhesion and providing a laminated nonwoven fabric. In particular, moderate flexibility and workability suitable for use in building materials can be obtained.
  • the linear pressure of the hot embossing roll during heat bonding is preferably 50 to 500 N / cm.
  • the linear pressure of the roll preferably 50 N / cm or more, more preferably 100 N / cm or more, and even more preferably 150 N / cm or more, a laminated nonwoven fabric having a strength that can be appropriately heat-bonded and used for practical use can be obtained. Can do.
  • the linear pressure of the hot embossing roll is preferably 500 N / cm or less, more preferably 400 N / cm or less, and even more preferably 300 N / cm or less. Suitable moderate flexibility and workability can be obtained.
  • thermocompression bonding can be performed by a thermal calender roll comprising a pair of upper and lower flat rolls before and / or after thermal bonding with the hot embossing roll.
  • a pair of upper and lower flat rolls is a metal roll or elastic roll with no irregularities on the surface of the roll, and a pair of metal roll and metal roll, or a pair of metal roll and elastic roll Can be used.
  • the elastic roll is a roll made of a material having elasticity compared to a metal roll.
  • the elastic roll include so-called paper rolls such as paper, cotton and aramid paper, and urethane-based resins, epoxy-based resins, silicon-based resins, polyester-based resins, hard rubbers, and resin-made rolls made of a mixture thereof. Is mentioned.
  • Resin MFR (g / 10 min): Regarding the MFR of the thermoplastic resin (A1) and the polyolefin resin (B), the polypropylene resin (A1a) and (B) were measured under the conditions of a load of 2.16 kg and a temperature of 230 ° C. The MFR of the polyethylene resin (A2) was measured under the conditions of a load of 2.16 kg and a temperature of 190 ° C.
  • MFR of laminated fiber (g / 10 min): The MFR of the laminated nonwoven fabric was measured under the conditions of a load of 2.16 kg and a temperature of 230 ° C.
  • Average friction coefficient MIU of laminated nonwoven fabric by KES method Fluctuation of average friction coefficient of laminated nonwoven fabric by KES method MMD: For the measurement, an automated surface tester “KES-FB4-AUTO-A” manufactured by Kato Tech was used. The average coefficient of friction MIU was measured on both sides of the laminated nonwoven fabric, and Table 1 shows the smaller value of these.
  • Nonwoven fabric flexibility As a sensory evaluation of the non-woven fabric touch, the softness was scored according to the following criteria. This was performed by 10 people, and the average was evaluated as the non-woven fabric touch. The higher the score, the better the flexibility, and the better the workability in various processes. ⁇ Flexibility (workability)> 5 points: flexible (good workability) 4 points: 3 points between 5 points and 3 points: Normal 2 points: 1 point between 3 points and 1 point: Hard (workability is poor).
  • Example 1 (Spunbond nonwoven fabric layer (lower layer))
  • a polyethylene resin (LLDPE) made of a polymer was used.
  • the thermoplastic resin (A1) and the polyethylene resin (A2) are melted by an extruder, respectively, and a spinning temperature is 235 ° C. and a single hole discharge amount from a rectangular die having a hole diameter ⁇ of 0.30 mm and a hole depth of 2 mm.
  • thermoplastic resin (A1) was placed in the core component and the polyethylene resin (A2) was placed in the sheath component. After spinning and solidifying the spun yarn, this was pulled and stretched by compressed air with an ejector pressure of 0.50 MPa in a rectangular ejector and collected on a moving net. As a result, a spunbonded nonwoven fabric layer consisting of long fibers of the core-sheath type composite fiber and having a basis weight of 8.2 g / m 2 was formed.
  • the average single fiber diameter was 10.9 ⁇ m, and the spinning speed calculated from this was 5,050 m / min. As for the spinnability, no yarn breakage was observed after spinning for 1 hour.
  • melt blown nonwoven layer a polypropylene resin made of a homopolymer having an MFR of 1100 g / min and a melting point of 163 ° C. was used for the melt blown nonwoven fabric layer as the polyolefin resin (B).
  • This polyolefin resin (B) was melted with an extruder and spun from a die having a pore diameter ⁇ of 0.25 mm at a spinning temperature of 260 ° C. and a single hole discharge rate of 0.10 g / min. Thereafter, air was sprayed onto the yarn under conditions of an air temperature of 290 ° C.
  • meltblown nonwoven fabric layer separately collected on the collection net under the same conditions was 1.6 g / m 2 and the average fiber diameter was 1.5 ⁇ m.
  • spunbond nonwoven fabric layer (upper layer) Furthermore, on this melt blown nonwoven fabric layer, the long fibers of the core-sheath type composite fiber were collected under the same conditions as the conditions for forming the lower layer spunbond nonwoven fabric layer to form a spunbond nonwoven fabric layer. This gave a spunbond-meltblown-spunbond laminated fiber web with a total basis weight of 18 g / m 2 .
  • the obtained laminated nonwoven fabric was measured for thickness, apparent density, water pressure resistance, air flow per unit weight, complex viscosity, surface roughness SMD, average friction coefficient MIU, and average friction coefficient variation MMD, and further laminated nonwoven fabric. was evaluated for flexibility. The results are shown in Table 1.
  • Example 2 (Spunbond nonwoven fabric layer (lower layer) / (upper layer)) A span made of a core-sheath composite fiber was obtained in the same manner as in Example 1 except that a polypropylene resin made of a homopolymer having an MFR of 300 g / 10 min and a melting point of 163 ° C. was used as the thermoplastic resin (A1). A bond nonwoven fabric layer was formed. As for the characteristics of the long fibers constituting the formed spunbond nonwoven fabric layer, the average single fiber diameter was 10.5 ⁇ m, and the spinning speed calculated from this was 5,500 m / min. As for the spinnability, no yarn breakage was observed after spinning for 1 hour.
  • meltblown nonwoven fabric layer In the same manner as in Example 1, a meltblown nonwoven fabric layer was formed. The average fiber diameter of the fibers constituting the resulting meltblown nonwoven fabric layer was 1.5 ⁇ m.
  • Example 2 (Laminated nonwoven fabric) In the same manner as in Example 1, a laminated nonwoven fabric was obtained. The obtained laminated nonwoven fabric was measured for thickness, apparent density, water pressure resistance, air flow per unit weight, complex viscosity, surface roughness SMD, average friction coefficient MIU, and average friction coefficient variation MMD, and further laminated nonwoven fabric. was evaluated for flexibility. The results are shown in Table 1.
  • Example 3 (Spunbond nonwoven fabric layer (lower layer) / (upper layer)) Spunbond made of core-sheath type composite fiber by the same method as in Example 1 except that a polypropylene resin made of a homopolymer having an MFR of 800 g / 10 minutes and a melting point of 163 ° C. was used as the thermoplastic resin (A1). A nonwoven layer was formed. As for the characteristics of the long fibers constituting the formed spunbond nonwoven fabric layer, the average single fiber diameter was 9.8 ⁇ m, and the spinning speed calculated from this was 6,300 m / min. As for the spinnability, no yarn breakage was observed after spinning for 1 hour.
  • meltblown nonwoven fabric layer was formed in the same manner as in Example 2.
  • laminated nonwoven fabric A laminated nonwoven fabric was obtained in the same manner as in Example 1. The obtained laminated nonwoven fabric was measured for thickness, apparent density, water pressure resistance, air flow per unit weight, complex viscosity, surface roughness SMD, average friction coefficient MIU, and average friction coefficient variation MMD, and further laminated nonwoven fabric. was evaluated for flexibility. The results are shown in Table 1.
  • Example 4 (Spunbond nonwoven fabric layer (lower layer) / (upper layer)) A spunbonded nonwoven fabric layer was obtained in the same manner as in Example 1 except that the single hole discharge rate was 0.21 g / min. Regarding the properties of the fibers constituting the formed spunbond nonwoven fabric layer, the average single fiber diameter was 7.4 ⁇ m, and the spinning speed calculated from this was 5,700 m / min.
  • meltblown nonwoven fabric fiber web was obtained.
  • laminated nonwoven fabric A laminated nonwoven fabric was obtained in the same manner as in Example 1. The obtained laminated nonwoven fabric was measured for thickness, apparent density, water pressure resistance, air flow per unit weight, complex viscosity, surface roughness SMD, average friction coefficient MIU, and average friction coefficient variation MMD, and further laminated nonwoven fabric. was evaluated for flexibility. The results are shown in Table 1.
  • Example 5 (Spunbond nonwoven fabric layer (lower layer) / (upper layer)) A spunbonded nonwoven fabric layer was obtained in the same manner as in Example 4 except that the basis weight was 8.5 g / m 2 .
  • melt blown fiber web A melt blown nonwoven fabric layer was obtained in the same manner as in Example 1 except that the air pressure was 0.20 MPa and the basis weight was 1.0 g / m 2 . Regarding the properties of the fibers constituting the obtained meltblown nonwoven fabric layer, the average fiber diameter was 1.0 ⁇ m.
  • laminated nonwoven fabric A laminated nonwoven fabric was obtained in the same manner as in Example 1. The obtained laminated nonwoven fabric was measured for thickness, apparent density, water pressure resistance, air flow per unit weight, complex viscosity, surface roughness SMD, average friction coefficient MIU, and average friction coefficient variation MMD, and further laminated nonwoven fabric. was evaluated for flexibility. The results are shown in Table 1.
  • Example 6 (Spunbond nonwoven fabric layer (lower layer) / (upper layer)) Example 1 except that ethylenebisstearic acid amide was added in an amount of 1.0% by mass to the polyethylene resin (A2) so that the amount added to the entire resin constituting the spunbond nonwoven fabric layer was 0.3% by mass. A spunbonded nonwoven fabric layer was obtained in the same manner.
  • melt blown nonwoven layer In the same manner as in Example 1, a melt blown nonwoven fabric layer was obtained.
  • laminated nonwoven fabric A laminated nonwoven fabric was obtained in the same manner as in Example 1. The obtained laminated nonwoven fabric was measured for thickness, apparent density, water pressure resistance, air flow per unit weight, complex viscosity, surface roughness SMD, average friction coefficient MIU, and average friction coefficient variation MMD, and further laminated nonwoven fabric. was evaluated for flexibility. The results are shown in Table 1.
  • thermoplastic resin (A1) a spunbonded nonwoven fabric layer was formed in the same manner as in Example 1 except that a homopolypropylene resin having an MFR of 60 g / 10 min, a melting point of 163 ° C. was used, and the ejector pressure was 0.15 MPa. Obtained. Regarding the properties of the long fibers constituting the obtained core-sheath nonwoven fabric layer, the average single fiber diameter was 18.0 ⁇ m, and the spinning speed calculated from this was 1,900 m / min. As for the spinnability, the yarn breakage was 11 times after 1 hour spinning.
  • meltblown nonwoven fabric layer was obtained in the same manner as in Example 1.
  • Example 1 A laminated nonwoven fabric was obtained in the same manner as in Example 1. The obtained laminated nonwoven fabric was measured for thickness, apparent density, water pressure resistance, air flow per unit weight, surface roughness SMD, average friction coefficient MIU, and average friction coefficient variation MMD, and further, the flexibility of the laminated nonwoven fabric. Evaluated. The results are shown in Table 1.
  • Example 2 (Spunbond nonwoven fabric layer (lower layer) / (upper layer)) A spunbonded nonwoven fabric layer was obtained in the same manner as in Example 1 except that a homopolyethylene resin having an MFR of 20 g / 10 min was used as the polyethylene resin (A2) and the ejector pressure was 0.15 MPa.
  • the average single fiber diameter was 17.4 ⁇ m, and the spinning speed calculated from this was 1,900 m / min.
  • the yarn breakage was 9 times after 1 hour spinning.
  • melt blown nonwoven layer In the same manner as in Example 1, a melt blown nonwoven fabric layer was obtained.
  • laminated nonwoven fabric A laminated nonwoven fabric was obtained in the same manner as in Example 1. The obtained laminated nonwoven fabric was measured for thickness, apparent density, water pressure resistance, air flow per unit weight, complex viscosity, surface roughness SMD, average friction coefficient MIU, and average friction coefficient variation MMD, and further laminated nonwoven fabric. was evaluated for flexibility. The results are shown in Table 1.
  • the surface roughness SMD by the KES method is 1.8 to 2.1 ⁇ m, and the water pressure per unit weight is 15 mmH 2 O / (g / m 2 ) or more and has excellent water resistance.
  • the laminated nonwoven fabric of Example 6 in which ethylenebisstearic acid amide was added to the fibers constituting the spunbonded nonwoven fabric layer has a reduced average friction coefficient, increased flexibility, and excellent workability. It was particularly suitable as a nonwoven fabric.
  • the laminated nonwoven fabrics of Comparative Examples 1 and 2 had a surface roughness SMD of 2.7 ⁇ m or more, poor water resistance, and low flexibility.
  • the laminated nonwoven fabric of the present invention is highly productive, has a uniform texture, has a smooth surface, is excellent in texture and touch, and has a high water resistance. Can be used.
  • the use of the laminated nonwoven fabric of the present invention is not limited to the above.
  • industrial materials such as filters, filter base materials, and wire holding materials, wallpaper, under roof covering materials, sound insulating materials, heat insulating materials, sound absorbing materials, etc.
  • Construction materials such as wood, wrapping materials, bag materials, signage materials, printing materials, etc., civil engineering materials such as grass protection sheets, drainage materials, ground reinforcement materials, sound insulation materials, sound absorbing materials, solid materials, light shielding sheets It can be used for agricultural materials such as vehicle materials such as ceiling materials and spare tire cover materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、ポリオレフィン系樹脂からなる繊維で構成された不織布であって、耐水性と柔軟性を兼ね備えており、かつ優れた加工性を有する不織布を提供する。本発明は、スパンボンド不織布層とメルトブロー不織布層とが積層されてなる積層不織布であって、前記スパンボンド不織布層は熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)とからなる複合繊維から構成され、前記熱可塑性樹脂(A1)はポリオレフィン系樹脂(A1a)もしくはポリエステル系樹脂(A1b)であり、前記メルトブロー不織布層はポリオレフィン系樹脂(B)からなる繊維で構成され、さらに、前記のスパンボンド不織布層の複合繊維の平均単繊維径が、6.5~11.9μmであって、かつ230℃、6.28rad/secの条件下で測定されるスパンボンド不織布層の複素粘度が100Pa・sec以下である、積層不織布に関する。

Description

積層不織布
 本発明は、本発明の積層不織布は、複合繊維で構成されるスパンボンド不織布層とメルトブロー不織布層とが積層されてなり、耐水性と柔軟性に優れており、建築資材用途として成形性に優れた積層不織布に関するものである。
 近年、不織布はさまざまな用途に使用されており、今後も成長が見込まれている。不織布の用途には、産業資材、土木資材、建築資材、生活資材、農業資材、衛生資材および医療用資材等、幅広い用途に使用されている。
 不織布の用途として、建築資材用途が注目されている。近年の木造住宅等の建築では、外壁材と断熱材との間に通気層を設け、壁体内に侵入した湿気を、通気層を通して外部に放出する通気層工法が普及している。この通気層工法には、建物外部からの雨水の浸入を防止する耐水性と、壁体内に生じる湿気を外部に逃がす透湿性とを兼ね備えた、透湿防水シートであるハウスラップ材としてスパンボンド不織布が使用されている。
 スパンボンド不織布は、その構造から透湿性に優れているという特徴があるが、耐水性に劣るという課題がある。そのため、スパンボンド不織布を耐水性に優れたフィルムと積層一体化させることにより透湿防水シートとし、ハウスラップ材として使用されている。
 ハウスラップ材は、つづり針(タッカー用針、ステープルともいう)により下地に固定して施工され、長期間における耐久性や高温低温条件下での耐候性に優れることと、長期間に使用に耐えうる耐久性(耐加水分解性)があること、および施工時の成型性に優れていることが要求される。
 従来、このようなハウスラップ材に用いられる透湿防水シートとして、透湿性と耐水性のバランスを良くするため、単繊維径が3~28ミクロンで目付が5~50g/mのポリエステル系不織布を用い、この不織布に、ハードセグメントとソフトセグメントを有するブロック共重合ポリエステルからなる、厚みが7~60ミクロンの皮膜を積層したハウスラップ材が提案されている(特許文献1参照。)。
日本国特許第3656837号公報
 しかし、従来のハウスラップ材は、不織布とフィルムの積層体であるが故にシートは硬く、成形性に劣るという課題があった。シートの硬さはフィルムに起因しており、貼り合わせるフィルムの割合を低減させることが有効な手段であるが、耐水性の観点からフィルム割合の低減には限界があった。
 そこで、本発明の目的は、上記事情に鑑みてなされたものであって、その目的は、従来用いられていたフィルムがなくとも耐水性と、高い柔軟性を併せ持ち、さらには、熱接着性等の成形性にも優れた不織布を提供することにある。
 本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、異なる2種類以上のポリオレフィン系樹脂からなる繊維で構成されたスパンボンド不織布層と、ポリオレフィン系樹脂からなる繊維で構成されたメルトブロー不織布層とが積層されてなる積層不織布を用い、それぞれの不織布層を構成する繊維の流動性を適切に制御することによって、高い柔軟性を有し積層不織布の機械的物性を向上できるという知見を得た。さらに、この積層不織布が、目的とする高い水準の耐水性や柔軟性、熱接着性を主体とした加工性を持たせることを可能とすることも判明した。
 本発明はこれら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
 本発明の積層不織布は、スパンボンド不織布層とメルトブロー不織布層とが積層されてなる積層不織布であって、前記スパンボンド不織布層は熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)とからなる複合繊維から構成され、前記熱可塑性樹脂(A1)はポリオレフィン系樹脂(A1a)もしくはポリエステル系樹脂(A1b)であり、前記メルトブロー不織布層はポリオレフィン系樹脂(B)からなる繊維で構成され、さらに、前記スパンボンド不織布層の複合繊維の平均単繊維径が6.5~11.9μmであり、かつ、230℃、6.28rad/secの条件下で測定されるスパンボンド不織布層の複素粘度が100Pa・sec以下である。
 本発明の積層不織布の好ましい様態によれば、単位目付当たりの耐水圧が15mmHO/(g/m)以上である。
 本発明の積層不織布の好ましい様態によれば、ポリオレフィン系樹脂(A1)からなる繊維のメルトフローレートが、155~850g/10分である。
 本発明の積層不織布の好ましい様態によれば、メルトブロー不織布層の含有量が、積層不織布質量に対し1質量%以上15質量%以下である。
 本発明の積層不織布の好ましい様態によれば、少なくとも片面のKES法による表面粗さSMDが1.0~2.6μmである。
 本発明の積層不織布の好ましい様態によれば、少なくとも片面のKES法による平均摩擦係数MIUが、0.1~0.5である。
 本発明の積層不織布の好ましい様態によれば、少なくとも片面のKES法による平均摩擦係数の変動MMDが、0.008以下である。
 本発明の積層不織布の好ましい様態によれば、前記のポリオレフィン系樹脂(A2)に、炭素数が23以上50以下の脂肪酸アミド化合物が含有されてなる。
 本発明の積層不織布の好ましい様態によれば、前記の脂肪酸アミド化合物の添加量が、0.01~5.0質量%である。
 本発明の積層不織布の好ましい様態によれば、前記の脂肪酸アミド化合物が、エチレンビスステアリン酸アミドである。
 本発明によれば、ポリエチレン系樹脂と、ポリオレフィン系またはポリエステル系樹脂からなる複合繊維で構成されるスパンボンド不織布層とポリオレフィン系樹脂からなる繊維で構成されるメルトブロー不織布層とが積層されてなり、耐水性および柔軟性に優れており、そして加工性に優れた積層不織布が得られる。これらの特性から、本発明の積層不織布は、特に透湿防水シート等の建築資材用途として好適に用いることができる。
 本発明の積層不織布は、耐水性に優れていることから、透湿防水シートとしての使用において、従来の積層不織布に比べて低目付化が可能となる。
 さらに、耐水性を目的に貼り合わせるフィルム重量を低減できる他、従来の積層不織布では適用困難な高い耐水性が要求される用途への使用も可能となる。
 さらに、柔軟性に優れていることから、建築資材用途として使用する際、特に貼り合わせを行う工程においてシワが入りにくく、成形性が良好となる。
図1は、本発明の不織布を構成する複合繊維の横断面を例示する模式断面図である。 図2は、本発明の不織布を構成する他の複合繊維の横断面を例示する模式断面図である。 図3は、本発明の不織布を構成する他の複合繊維の横断面を例示する模式断面図である。
 本発明の積層不織布は、スパンボンド不織布層とメルトブロー不織布層とが積層されてなる積層不織布であって、前記スパンボンド不織布層は熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)とからなる複合繊維から構成され、前記熱可塑性樹脂(A1)はポリオレフィン系樹脂(A1a)もしくはポリエステル系樹脂(A1b)であり、前記メルトブロー不織布層はポリオレフィン系樹脂(B)からなる繊維で構成され、さらに、前記スパンボンド不織布層の複合繊維の平均単繊維径が6.5~11.9μmであり、かつ、230℃、6.28rad/secの条件下で測定される積層不織布の複素粘度が100Pa・sec以下である、積層不織布である。以下に、この詳細を詳述する。
 [熱可塑性樹脂(A1),(A2)、ポリオレフィン系樹脂(B)]
 本発明の積層不織布のうち、スパンボンド不織布層を構成する複合繊維には、熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)が用いられる。
 このうち、熱可塑性樹脂(A1)には、ポリオレフィン系樹脂(A1a)もしくはポリエステル系樹脂(A1b)が用いられる。
 前記のポリオレフィン系樹脂(A1a)としては、炭素数が2~10のオレフィンを含むポリオレフィンが好ましく用いられる。具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキサン、4-メチル-1-ペンテン、1-オクテン、およびそれらのモノマーと他のα-オレフィンとの共重合体などが挙げられる。これらは1種類単独でも、2種類以上を組み合わせて用いることができる。なかでも、強度が強く、かつ衛生材料の生産時における寸法安定性に優れていることから、ポリプロピレン系樹脂を用いることが好ましい。
 本発明で用いられるポリオレフィン系樹脂(A1a)について、ポリプロピレン系樹脂を用いる場合、プロピレンの単独重合体の割合が60質量%以上であることが好ましく、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上である。上記範囲とすることで良好な紡糸性を維持し、かつ強度を向上させることができる。
 また、前記のポリエステル系樹脂(A1b)には、酸成分とアルコール成分からなるポリエステルが用いられる。酸成分としては、例えば、テレフタル酸、イソフタル酸およびフタル酸などの芳香族カルボン酸、アジピン酸やセバシン酸などの脂肪族ジカルボン酸、およびシクロヘキサンカルボン酸等の脂環族ジカルボン酸などを用いることができる。また、アルコール成分としては、エチレングリコール、ジエチレングリコールおよびポリエチレングリコールなどを用いることができる。
 ポリエステル系樹脂の例としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸およびポリブチレンサクシネート等、またこれらの共重合体を挙げることができる。このようにすることで、積層不織布の強度をさらに向上させ、ハウスラップに用いた際には、ステープルでの留め強度が向上することができる。中でも高い機械的物性が得られることから、ポリエチレンテレフタレートを用いることが好ましい。
 一方、本発明で用いられるポリエチレン系樹脂(A2)としては、例えば、エチレンの単独重合体もしくはエチレンと各種α-オレフィンとの共重合体などが挙げられる。このポリエチレン系樹脂(A2)として、中密度、高密度および直鎖状低密度ポリエチレン(以下、LLDPEと記載する場合がある。)等などを挙げることができ、紡糸性が優れているという点で、LLDPEが好ましく用いられる。
 本発明で用いられるポリエチレン系樹脂としては、2種以上の混合物であってもよく、また、エチレンとは異なる分岐成分、例えば、ブテン、ヘキセン、4-メチルペンテン、ヘプテン、およびオクテン等のα-オレフィンを共重合させたポリエチレン系樹脂や、更に熱可塑性エラストマー等を含有する樹脂組成物を用いることもできる。
 本発明で用いられるポリエチレン系樹脂には、本発明の効果を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、紡曇剤、ブロッキング防止剤、滑剤、核剤、および顔料等の添加物、あるいは他の重合体を必要に応じて添加することができる。
 また、後述する繊維を紡出する際、部分的な粘度斑の発生を防ぎ、繊維の繊度を均一化し、さらに繊維径を後述するように細くするため、用いる樹脂に対して、この樹脂を分解してMFRを調整することも考えられる。しかしながら、例えば、過酸化物、特に、ジアルキル過酸化物等の遊離ラジカル剤などを添加しないことが好ましい。この手法を用いた場合、部分的に粘度斑が発生して繊度が不均一化し、十分に繊維径を細くすることが困難となる他、粘度斑や分解ガスによる気泡で紡糸性が悪化する場合もある。
 本発明で用いられるポリエチレン系樹脂の融点は、80~160℃であることが好ましく、より好ましくは100~140℃である。融点を好ましくは80℃以上、より好ましくは100℃以上とすることにより、実用に耐え得る耐熱性が得られやすくなる。また、融点を好ましくは160℃以下、より好ましくは140℃以下とすることにより、ポリプロピレン系樹脂と強固に接着しやすくなり糸切れなく紡糸しやすくなる。
 さらに、メルトブロー不織布層を構成する繊維のポリオレフィン系樹脂(B)については、前記のポリオレフィン系樹脂(A1a)と同様、炭素数が2~10のオレフィンを含むポリオレフィンが好ましく用いられる。なかでも、強度が強く、かつ衛生材料の生産時における寸法安定性に優れていることから、ポリプロピレン系樹脂を用いることが好ましい。
 本発明に係る、スパンボンド不織布層を構成する複合繊維の熱可塑性樹脂(A1)、ポリオレフィン系樹脂(A2)、および、メルトブロー不織布層を構成する繊維のポリオレフィン系樹脂(B)について、その流動特性を示すメルトフローレート(MFRと略記することがある)は、ASTM D1238(A法)によって測定される値を採用する。
 なお、上記規格によれば、例えば、ポリプロピレンは荷重:2.16kg、温度:230℃にて、ポリエチレンは荷重:2.16kg、温度:190℃にて測定することが規定されている。また、本発明においてポリエステルについての測定条件は、荷重:2.16kg、280℃にて測定するものとする。
 まず、前記のスパンボンド不織布層を構成する繊維の熱可塑性樹脂(A1)のMFRは、155~850g/10分であることが好ましい。MFRを155~850g/10分とし、より好ましくは155~600g/10分とし、さらに好ましくは155~400g/10分とすることにより、スパンボンド不織布層を紡糸する際の繊維の細化挙動が安定し、生産性を高くするために速い紡糸速度で延伸したとしても、安定した紡糸が可能となる。また細化挙動を安定させることにより糸揺れを抑制し、シート状に捕集する際のムラが発生しにくくなる。さらに、安定して速い紡糸速度で延伸することが可能となるため、繊維の配向結晶化を進め、高い機械強度を有する繊維とすることができる。
 また、MFRの異なる2種類以上の樹脂を任意の割合でブレンドして、熱可塑性樹脂のMFRを調整することも考えられる。しかしながら、この場合、主となる熱可塑性樹脂に対してブレンドする樹脂のMFRは、10~1000g/10分であることが好ましく、より好ましくは20~800g/10分、さらに好ましくは30~600g/10分である。上記範囲とすることにより、ブレンドした熱可塑性樹脂に部分的に粘度斑が生じ、繊度が不均一化したり、紡糸性が悪化したりすることを防ぐことができる。
 また、本発明で用いられるポリエチレン系樹脂(A2)のメルトフローレート(MFR)は、50~200g/10分であることが好ましい。MFRを好ましくは50~200g/10分、より好ましくは60~180g/10分であり、さらに好ましくは70~150g/10分とすることにより、生産性を高くするために高い紡糸速度で延伸したとしても、粘度が低いため変形に対し容易に追従することができ、安定した紡糸が可能となる。また、高い紡糸速度で延伸することにより、繊維の配向結晶化を進め高い機械強度を有する繊維とすることができる。
 また、MFRの異なる2種類以上の樹脂を任意の割合でブレンドして、ポリエチレン系樹脂(A2)のMFRを調整することも考えられる。しかしながら、この場合、主となるポリエチレン系樹脂に対してブレンドする樹脂のMFRは、10~1000g/10分であることが好ましく、より好ましくは10~800g/10分、さらに好ましくは10~600g/10分である。上記範囲とすることにより、ブレンドしたポリエチレン系樹脂(A2)に部分的に粘度斑が生じ、繊度が不均一化したり、紡糸性が悪化したりすることを防ぐことができる。
 また、前記のメルトブロー不織布層を構成する繊維のポリオレフィン系樹脂(B)のMFRは、200~2500g/10分であることが好ましい。MFRを好ましくは200~2500g/10分とし、より好ましくは400~2000g/10分とし、さらに好ましくは600~1500g/10分とすることにより、安定した紡糸を行いやすくなり、かつ数μmレベルのポリオレフィン系樹脂(B)からなる繊維を得ることができる。
 本発明の積層不織布において、230℃、6.28rad/secの条件下で測定されるスパンボンド不織布層の複素粘度は、100Pa・sec以下であることが重要である。上記範囲とすることにより、生産性を高くするために高い紡糸速度で延伸したとしても、粘度が低いため変形に対し容易に追従することができ、安定した紡糸が可能となる。また、高い紡糸速度で延伸することにより、繊維の配向結晶化を進め高い機械強度を有する繊維とすることができる。スパンボンド不織布層の複素粘度は、ポリエチレン系樹脂やポリプロピレン系樹脂等のポリオレフィン系樹脂の種類、および異なる複素粘度の複数種類の樹脂を混合して使用する場合は、複数種類の樹脂を混合する際の質量比率により、調整することができる。
 本発明のスパンボンド不織布層の複素粘度(Pa・sec)は、JIS K 7244-10(2005年)の「3.3 複素せん断粘度」に順じて、動的粘弾性測定装置を用い、以下の条件によって測定される値を採用するものとする。
(1)測定冶具: φ20mmパラレルプレート
(2)上記パラレルプレートのギャップ: 0.5mm
(3)測定温度: 230℃
(4)ひずみ: 34.9%
(5)振動数: 0.3~63rad/sec
 本発明のスパンボンド不織布層を構成する熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)とからなる複合繊維において、ポリエチレン系樹脂(A2)の質量比率は、複合繊維を構成する樹脂全体を100質量%として、20~50質量%であることが好ましく、また、熱可塑性樹脂(A1)の質量比率が50~80質量%であることが好ましい態様である。ポリエチレンの質量比率を好ましくは20~50質量%、より好ましくは25~40質量%とすることにより、十分な接着強度を有し、かつ柔軟な複合繊維とすることができる。また、熱可塑性樹脂(A1)の質量比率を好ましくは50~80質量%、より好ましくは60~75質量%とすることにより、実用に供し得る強度を有する複合繊維とすることができる。
 本発明で用いられる熱可塑性樹脂(A1)やポリエチレン系樹脂(A2)、ポリオレフィン系樹脂(B)には、本発明の効果を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、紡曇剤、ブロッキング防止剤、滑剤、核剤、および顔料等の添加物、あるいは他の重合体を必要に応じて添加することができる。
 本発明で用いられる熱可塑性樹脂(A1)やポリエチレン系樹脂(A2)の融点は、80~200℃であることが好ましく、より好ましくは100~180℃であり、さらに好ましくは120~180℃である。融点を好ましくは80℃以上とし、より好ましくは100℃以上とし、さらに好ましくは120℃以上とすることにより、実用に耐え得る耐熱性が得られやすくなる。また、融点を好ましくは200℃以下、より好ましくは180℃以下とすることにより、口金から吐出された糸条を冷却し易くなり、繊維同士の融着を抑制し安定した紡糸が行い易くなる。
 本発明で用いられるポリオレフィン系樹脂(B)の融点は、80~200℃であることが好ましく、より好ましくは100~180℃であり、さらに好ましくは120~180℃である。融点を好ましくは80℃以上、より好ましくは100℃以上、さらに好ましくは120℃以上とすることにより、実用に耐え得る耐熱性が得られやすくなる。また、融点を好ましくは180℃以下、より好ましくは150℃以下とすることにより、口金から吐出された糸条を冷却し易くなり、繊維同士の融着を抑制し安定した紡糸が行い易くなる。
 本発明の積層不織布には、滑り性や柔軟性を向上させるために、スパンボンド不織布を構成する前記のポリエチレン系樹脂(A2)に、炭素数が23以上50以下の脂肪酸アミド化合物が含有されていることが好ましい態様である。
 脂肪酸アミド化合物の炭素数を好ましくは23以上とし、より好ましくは30以上とすることにより、脂肪酸アミド化合物が過度に繊維表面に露出することを抑制し、紡糸性と加工安定性に優れたものとし、高い生産性を保持することができる。一方、脂肪酸アミド化合物の炭素数を好ましくは50以下とし、より好ましくは42以下とすることにより、脂肪酸アミド化合物が繊維表面に移動しやすくなり、積層不織布に滑り性と柔軟性を付与することができる。
 本発明で使用される炭素数が23以上50以下の脂肪酸アミド化合物としては、例えば、飽和脂肪酸モノアミド化合物、飽和脂肪酸ジアミド化合物、不飽和脂肪酸モノアミド化合物および不飽和脂肪酸ジアミド化合物などが挙げられる。
 具体的には、炭素数が23以上50以下の脂肪酸アミド化合物としては、テトラドコサン酸アミド、ヘキサドコサン酸アミド、オクタドコサン酸アミド、ネルボン酸アミド、テトラコサエンタペン酸アミド、ニシン酸アミド、エチレンビスラウリン酸アミド、メチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、ジステアリルアジピン酸アミド、ジステアリルセバシン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、およびヘキサメチレンビスオレイン酸アミドなどが挙げられ、これらは複数組み合わせて用いることもできる。
 本発明では、これらの脂肪酸アミド化合物の中でも、特に飽和脂肪酸ジアミド化合物であるエチレンビスステアリン酸アミドが好ましく用いられる。エチレンビスステアリン酸アミドは、熱安定性に優れているため溶融紡糸が可能であり、このエチレンビスステアリン酸アミドが配合されたポリエチレン系樹脂(A2)により、高い生産性を保持することができる。さらに、繊維同士の滑り性が向上することから、捕集時に繊維が均一に分散させることができるため、不織布平滑性向上にも寄与する。そのため、不織布化した場合に、不織布の開孔径を小さくすることができ、耐水性、柔軟性に優れた積層不織布を得ることができる。
 本発明では、積層不織布を構成するスパンボンド不織布層を構成する樹脂全体(熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)を合わせたもの)に対する脂肪酸アミド化合物の添加量は、0.01~5.0質量%であることが好ましい。脂肪酸アミド化合物の添加量を好ましくは0.01~5.0質量%とし、より好ましくは0.1~3.0質量%とし、さらに好ましくは0.1~1.0質量%とすることにより、紡糸性を維持しながら適度な滑り性と柔軟性を付与することができる。
 [繊維]
 本発明に係るスパンボンド不織布層を構成する熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)からなる複合繊維は、その平均単繊維径が6.5~11.9μmであることが重要である。平均単繊維径を6.5μm以上とし、好ましくは7.5μm以上とし、より好ましくは8.4μm以上とすることにより、紡糸性の低下を防ぎ、安定して品質の良い不織布層を形成することができる。一方、平均単繊維径を11.9μm以下とし、好ましくは11.2μm以下とし、より好ましくは10.6μm以下とすることにより、柔軟性や均一性が高く、メルトブロー不織布層の含有比率を低くした場合においても、実用に耐えうる耐水特性に優れた積層不織布とすることができる。
 なお、本発明においては、前記のスパンボンド不織布層を構成する複合繊維の平均単繊維径(μm)は、以下の手順によって算出される値を採用するものとする。
(1)熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)からなる複合繊維を溶融紡出し、エジェクターで牽引・延伸した後、ネット上に不織布層を捕集する。
(2)ランダムに小片サンプル(100×100mm)10個を採取する。
(3)マイクロスコープで500~1000倍の表面写真を撮影し、各サンプルから10本ずつ、計100本の複合繊維の幅を測定する。
(4)測定した100本の値の平均値から平均単繊維径(μm)を算出する。
 図1~図3は、本発明のスパンボンド不織布を構成する複合繊維の横断面を例示する模式断面図である。
 図1と図2は、芯鞘型複合繊維の断面を示す模式断面図である。図1において、芯部(a)と鞘部(b)の中心は同一であり、図2において、芯部(a)と鞘部(b)の中心は異なる。
 具体的に、芯鞘型複合繊維は芯部(a)と鞘部(b)からなり、芯部(a)は、繊維の断面内において芯部(a)とは異なる重合体に少なくとも一部が取り囲まれるように配列され、かつ繊維の長さ方向に延びる部分をいう。また、鞘部(b)は、繊維の断面内において芯部(a)の少なくとも一部を取り囲むように配列され、かつ繊維の長さ方向に延びる部分をいう。偏芯の芯鞘型複合繊維には、芯部(a)の側面が露出した露出型と、芯部(a)の側面が露出していない非露出型が存在する。本発明においては、紡糸の安定性から非露出型の偏心芯鞘型複合繊維が好ましく用いられる。
 図3は、サイドバイサイド型複合繊維の断面を示す模式断面図である。サイドバイサイド型複合繊維は、第1成分(c)と第2成分(d)が貼り合わされた構造である。これらの2成分の接合面は、直線もしくは曲線のいずれでもよく、2成分の粘度特性や吐出量比率によって異なる。複合繊維の横断面は円形であってもよく、楕円形等の異型断面とすることもできる。
 一方、本発明に係るメルトブロー不織布を構成するポリオレフィン系樹脂(B)からなる繊維は、その平均単繊維径が0.1~8.0μmであることが好ましく、0.4~7.0μmの範囲であることがより好ましい。
 なお、本発明においては、メルトブロー不織布層を構成するポリオレフィン系樹脂(B)からなる繊維の平均単繊維径(μm)は、以下の手順によって算出される値を採用するものとする。
(1)ポリオレフィン系樹脂(B)を溶融紡出し、熱風で細化した後、ネット上に不織布層を捕集する。
(2)ランダムに小片サンプル(100×100mm)10個を採取する。
(3)マイクロスコープで500~2000倍の表面写真を撮影し、各サンプルから10本ずつ、計100本の繊維の幅を測定する。
(4)測定した100本の値の平均値から平均単繊維径(μm)を算出する。
 [不織布層]
 本発明の積層不織布の耐水性は、積層不織布を構成するスパンボンド不織布層とメルトブロー不織布層の各特性により制御することができる。スパンボンド不織布層の耐水性は、構成する繊維の平均繊維径や不織布層表面繊維の分散性により制御することができる。メルトブロー不織布層の耐水性は、構成する繊維の平均繊維径や積層不織布における質量比率、メルトブロー不織布層を構成する繊維同士の融着度合いにより制御することができる。
 [積層不織布]
 本発明の積層不織布は、スパンボンド不織布層とメルトブロー不織布層とを積層させてなることが重要である。このように構成することにより、ハウスラップ材用不織布として要求されるレベル以上の耐水性を付与することができる。
 本発明の積層不織布は、単位目付当たりの耐水圧が15mmHO/(g/m)以上であることが好ましい。単位目付当たりの耐水圧を好ましくは15mmHO/(g/m)以上、より好ましくは17mmHO/(g/m)以上とすることにより、実用に耐えうる耐水性を維持しつつ、柔軟性に優れる積層不織布とすることができ、さらに、積層不織布の低目付化も可能となる。耐水圧の上限について特に制限はないが、不織布構造を維持したまま達成できる上限は、せいぜい30mmHO/(g/m)である。
 なお、本発明の積層不織布の単位目付当たりの耐水圧は、JIS L1092(2009年)「7.1.1 A法(低水圧法)」に準じ、以下の手順によって測定される値を採用するものとする。
(1)積層不織布から幅150mm×150mmの試験片を、積層不織布の幅方向等間隔に5枚採取する。
(2)試験片を測定装置のクランプ(試験片の水に当たる部分が100cmの大きさのもの)にセットする。
(3)水を入れた水準装置を600mm/min±30mm/minの速さで水位を上昇させ、試験片の裏側に3か所から水が出たときの水位をmm単位で測定する。
(4)上記の測定を5枚の試験片で行い、その平均値を耐水圧とする。
 さらに、本発明においては、積層不織布の表面の滑らかさ、肌触りのよさに関して、前記のKES法(Kawabata Evaluation System)による表面粗さSMD、KES法による平均摩擦係数MIU、および、KES法による平均摩擦係数の変動MMDによって評価される。
 本発明の積層不織布は、少なくとも片面のKES法による表面粗さSMDが1.0~2.6μmであることが好ましい。KES法による表面粗さSMDを好ましくは1.0μm以上とし、より好ましくは1.3μm以上とし、さらに好ましくは1.6μm以上とし、さらに好ましくは2.0μm以上とすることにより、繊維が過度に緻密化して風合いが悪化したり、柔軟性が損なわれたりすることを防ぐことができる。
 一方、KES法による表面粗さSMDを好ましくは2.6μm以下とし、より好ましくは2.5μm以下とし、さらに好ましくは2.4μm以下とし、さらに好ましくは2.3μm以下とすることにより、表面が滑らかでざらつき感が小さく、肌触りに優れた積層不織布とすることができる。KES法による表面粗さSMDは、平均単繊維径や積層不織布のMFRなどを適切に調整することにより制御することができる。
 なお、本発明においてKES法による表面粗さSMDは、以下のように測定される値を採用するものとする。
(1)積層不織布から幅200mm×200mmの試験片を、積層不織布の幅方向等間隔に3枚採取する。
(2)試験片を試料台にセットする。
(3)10gfの荷重をかけた表面粗さ測定用接触子(素材:φ0.5mmピアノ線、接触長さ:5mm)で試験片の表面を走査して、表面の凹凸形状の平均偏差を測定する。
(4)上記の測定を、すべての試験片の縦方向(不織布の長手方向)と横方向(不織布の幅方向)で行い、これらの計6点の平均偏差を平均して小数点以下第二位を四捨五入し、表面粗さSMD(μm)とする。
 本発明の積層不織布の少なくとも片面のKES法による平均摩擦係数MIUは、0.1~0.5であることが好ましい。平均摩擦係数MIUを好ましくは0.5以下とし、より好ましくは0.45以下とし、さらに好ましくは0.4以下とすることにより、不織布表面の滑り性を向上させ、肌触りをより良好な積層不織布とすることができる。
 一方、平均摩擦係数MIUを好ましくは0.1以上とし、より好ましくは0.15以上とし、さらに好ましくは0.2以上とすることにより、滑剤を過度に添加して紡糸性が悪化したり、糸条をネットに捕集する際に糸条が滑り地合が悪化したりすることを防ぐことができる。KES法による平均摩擦係数MIUは、平均単繊維径や積層不織布のMFRなどを適切に調整したり、ポリエチレン樹脂(A2)やポリオレフィン系樹脂(B)に滑剤を添加したりすることにより制御することができる。
 本発明の積層不織布の少なくとも片面のKES法による平均摩擦係数の変動MMDは、0.008以下であることが好ましい。平均摩擦係数の変動MMDを好ましくは0.008以下とし、より好ましくは0.0075以下とし、さらに好ましくは0.0070以下とすることにより、積層不織布の表面のざらつき感をより低減することができる。
 KES法による平均摩擦係数の変動MMDは、平均単繊維径や積層不織布のMFRなどを適切に調整したり、ポリエチレン樹脂(A2)やポリオレフィン系樹脂(B)に滑剤を添加したりすることにより制御することができる。
 なお、本発明においてKES法による平均摩擦係数MIU、平均摩擦係数の変動MMDは、以下のように測定される値を採用するものとする。
(1)積層不織布から幅200mm×200mmの試験片を、積層不織布の幅方向等間隔に3枚採取する。
(2)試験片を試料台にセットする。
(3)50gfの荷重をかけた接触摩擦子(素材:φ0.5mmピアノ線(20本並列)、接触面積:1cm)で試験片の表面を走査して、平均摩擦係数を測定する。
(4)上記の測定を、すべての試験片の縦方向(不織布の長手方向)と横方向(不織布の幅方向)で行い、これらの計6点の平均偏差を平均して小数点以下第四位を四捨五入し、平均摩擦係数MIUとする。また、前記の計6点の平均摩擦係数の変動をさらに平均して小数点以下第四位を四捨五入し、平均摩擦係数の変動MMDとした。
 また、本発明においては、積層不織布の柔軟性に関して、通気量および官能試験によって評価される。
 本発明の積層不織布の単位目付当たりの通気量は、0.5~10(cc/(cm・秒))/(g/m)であることが好ましい。単位目付当たりの通気量を好ましくは8(cc/(cm・秒))/(g/m)以下とし、より好ましくは6(cc/(cm・秒))/(g/m)以下とし、さらに好ましくは4(cc/(cm・秒))/(g/m)以下とすることにより、ハウスラップ用途などで必要となる通気性を十分に満たすことができる。
 一方、単位目付当たりの通気量を好ましくは0.2(cc/(cm・秒))/(g/m)以上とし、より好ましくは0.4(cc/(cm・秒))/(g/m)以上とし、さらに好ましくは0.6(cc/(cm・秒))/(g/m)以上とすることにより、スパンボンド不織布が過度に緻密化して、柔軟性が損なわれたりすることを防ぐことができる。通気量は、目付、単繊維繊度、メルトブロー層の目付および熱圧着条件(圧着率、温度および線圧)などによって調整することができる。
 なお、本発明において、積層不織布の単位目付当たりの通気量は、JIS L1913(2010年)の「6.8.1 フラジール形法」に準じ、以下の手順によって測定される値を採用するものとする。
(1)積層不織布から80cm×100cmの試験片を切り出す。
(2)気圧計の圧力125Paで、試験片において任意の20点について測定する。
(3)上記20点の平均値について、小数点以下第二位を四捨五入して算出する。
(4)算出した通気量(cc/(cm・秒))に、目付(g/m)を乗じる。
 本発明の積層不織布は、メルトブロー不織布層の含有量が積層不織布質量に対し、1質量%以上15質量%以下であることが好ましく、2質量%以上10質量%以下がより好ましい態様である。メルトブロー不織布層の含有量を好ましくは1質量%以上とし、より好ましくは2質量%以上とすることにより、実用に耐えうる耐水性を付与することができる。また、メルトブロー不織布層の含有量を好ましくは5質量%以下とし、より好ましくは10質量%以下とすることにより、メルトブロー不織布特有の硬さを軽減できる。
 また、積層不織布におけるスパンボンド不織布層の含有量を、好ましくは85質量%より多く99質量%未満とすることにより、柔軟性と加工性に優れた積層不織布とすることができる。
 なお、本発明において、メルトブロー不織布層の含有比率は、以下の手順によって測定される値を採用するものとする。
(1)幅100mm×100mmの試験片を積層不織布の幅方向等間隔に3枚採取する。
(2)積層不織布の非圧着部のみを採取する。
(3)採取した試験片および、試験片から採取したメルトブロー不織布の質量をそれぞれ測定する。
(4)積層不織布におけるメルトブロー不織布の含有比率を算出する。
 本発明の積層不織布の目付は、10~100g/mであることが好ましい。目付を好ましくは10g/m以上とし、より好ましくは13g/m以上とし、さらに好ましくは15g/m以上とすることにより、実用に供し得る機械的強度の積層不織布を得ることができる。
 一方、目付を好ましくは100g/m以下、より好ましくは50g/m以下、さらに好ましくは30g/m以下とすることにより、ハウスラップ材として使用する場合、施工時に作業者が手に持って作業する際に適した重量となり、施工時の取り扱い性に優れた積層不織布とすることができる。また、他の用途として使用する際にもハンドリング性に優れる積層不織布とすることができる。
 なお、本発明において、積層不織布の目付は、JIS L1913(2010年)の「6.2 単位面積当たりの質量」に準じ、以下の手順によって測定される値を採用するものとする。
(1)20cm×25cmの試験片を、試料の幅1m当たり3枚採取する。
(2)標準状態におけるそれぞれの質量(g)を量る。
(3)その平均値を1m当たりの質量(g/m)で表する。
 本発明の積層不織布の厚みは、0.05~1.5mmであることが好ましい。厚みを好ましくは0.05~1.5mm、より好ましくは0.08~1.0mm、さらに好ましくは0.10~0.8mmとすることにより、柔軟性と適度なクッション性を備え、ハウスラップ材として使用する場合、施工時に作業者が手に持って作業する際に適した重量となり、不織布の剛性が強すぎず、施工時の取り扱い性に優れた積層不織布とすることができる。
 なお、本発明において、積層不織布の厚さ(mm)は、JIS L1906(2000年)の「5.1」に準じ、以下の手順によって測定される値を採用するものとする。
(1)直径10mmの加圧子を使用し、荷重10kPaで不織布の幅方向等間隔に1mあたり10点の厚さを0.01mm単位で測定する。
(2)上記10点の平均値の小数点以下第三位を四捨五入する。
 本発明の積層不織布の見掛密度は、0.05~0.3g/cmであることが好ましい。見掛密度を好ましくは0.3g/cm以下とし、より好ましくは0.25g/cm以下とし、さらに好ましくは0.20g/cm以下とすることにより、繊維が密にパッキングして積層不織布の柔軟性が損なわれることを防ぐことができる。
 一方、見掛密度を好ましくは0.05g/cm以上とし、より好ましくは0.08g/cm以上とし、さらに好ましくは0.10g/cm以上とすることにより、毛羽立ちや層間剥離の発生を抑え、実用に耐え得る強力や柔軟性および取り扱い性を備えた積層不織布とすることができる。
 なお、本発明において、見掛密度(g/cm)は、上記の四捨五入前の目付と厚みから、次の式に基づいて算出し、小数点以下第三位を四捨五入したものとする。
・見掛密度(g/cm)=[目付(g/m)]/[厚さ(mm)]×10-3
 本発明の積層不織布の単位目付あたりの5%伸長時応力(以下、単位目付あたりの5%モジュラスと記載することがある。)は、0.06~0.33(N/25mm)/(g/m)であることが好ましく、より好ましくは0.13~0.30(N/25mm)/(g/m)であり、さらに好ましくは0.20~0.27(N/25mm)/(g/m)である。上記範囲とすることにより、実用に供しうる強度を保持しつつ、柔軟で触感に優れたスパンボンド不織布とすることができる。
 なお、本発明において、積層不織布の単位目付あたりの5%伸長時応力は、JIS L1913(2010年)の「6.3 引張強さ及び伸び率(ISO法)」に準じ、以下の手順によって測定される値を採用するものとする。
(1)25mm×300mmの試験片を、不織布の縦方向(不織布の長手方向)と横方向(不織布の幅方向)それぞれについて幅1m当たり3枚採取する。
(2)試験片をつかみ間隔200mmで引張試験機にセットする。
(3)引張速度100mm/分で引張試験を実施し、5%伸長時の応力(5%モジュラス)を測定する。
(4)各試験片で測定した縦方向と横方向の5%モジュラスの平均値を求め、次の式に基づいて単位目付あたりの5%モジュラスを算出し、小数点以下第三位を四捨五入する。
・単位目付あたりの5%モジュラス((N/25mm)/(g/m))=[5%モジュラスの平均値(N/25mm)]/目付(g/m)。
 [積層不織布の製造方法]
 次に、本発明の積層不織布を製造する方法の好ましい態様について、具体的に説明する。
 本発明の積層不織布は、スパンボンド(S)法とメルトブロー(M)法により製造される不織布からなる積層不織布である。本発明の積層不織布の製造方法は、スパンボンド不織布層とメルトブロー不織布層とを積層できる方法であれば、いずれの方法にしたがっても行うことができる。例えば、メルトブロー法によって形成される繊維を、スパンボンド法で得られる不織布層の上に直接堆積させてメルトブロー不織布層を形成した後、スパンボンド不織布層とメルトブロー不織布層とを融着させる方法、スパンボンド不織布層とメルトブロー不織布層とを重ね合わせ、加熱加圧により両不織布層を融着させる方法、スパンボンド不織布層とメルトブロー不織布層とを、ホットメルト接着剤や溶剤系接着剤等の接着剤によって接着する方法等を採用することができる。生産性の観点からは、スパンボンド不織布層の上に、直接メルトブロー不織布層を形成する方法が好ましい態様である。
 また、目的に応じて、スパンボンド不織布層(S)とメルトブロー不織布層(M)を、SM、SMS、SMMS、SSMMS、およびSMSMSと積層した構造とすることができる。
 スパンボンド不織布層は、まず、溶融した熱可塑性樹脂(ポリオレフィン系樹脂)を紡糸口金から長繊維として紡出し、これをエジェクターにより圧縮エアで吸引延伸した後、移動するネット上に繊維を捕集して不織布層化する。
 紡糸口金やエジェクターの形状としては、丸形や矩形等、種々の形状のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なくエネルギーコストに優れること、糸条同士の融着や擦過が起こりにくく、糸条の開繊も容易であることから、矩形口金と矩形エジェクターの組み合わせが好ましく用いられる。
 本発明では、例えば、熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)をそれぞれ別の押出機において溶融し計量して、複合紡糸口金へ、好ましくは図1に示すような繊維断面を形成する芯鞘繊維紡糸口金へと供給し、ポリプロピレン系樹脂を芯成分に配置し、ポリエチレン系樹脂を鞘成分に配置した芯鞘型断面の長繊維として紡出する。
 熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)を溶融し紡糸する際の紡糸温度は、200~270℃であることが好ましく、より好ましくは210~260℃であり、さらに好ましくは220~250℃である。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができる。
 紡出された長繊維の糸条は、次に冷却される。紡出された糸条を冷却する方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせる方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸温度および雰囲気温度等を考慮して、適宜調整して採用することができる。
 次に、冷却固化された糸条は、エジェクターから噴射される圧縮エアによって牽引され、延伸される。紡糸速度は、3,000~6,500m/分であることが好ましく、より好ましくは3,500~6,500m/分であり、さらに好ましくは4,000~6,500m/分である。紡糸速度を3,000~6,500m/分とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み、高強度の長繊維を得ることができる。通常では紡糸速度を上げていくと、紡糸性は悪化して糸状を安定して生産することができないが、前述したとおり特定の範囲のMFRを有する熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)を用いることにより、意図する複合繊維を安定して紡糸することができる。
 続いて、得られた長繊維を、移動するネット上に捕集して不織布層化する。本発明では、不織布層に対して、ネット上でその片面から熱フラットロールを当接して仮接着させることも好ましい態様である。このようにすることにより、ネット上を搬送中に不織布層の表層がめくれたり吹き流れたりして地合が悪化することを防ぎ、糸条を捕集してから熱圧着するまでの搬送性を改善することができる。
 次に、メルトブロー不織布は、従来公知の方法を採用することができる。まず、ポリオレフィン系樹脂(B)を押出機内で溶融して口金部に供給し、口金から押し出した糸条に熱風を吹きつけ、細化させた後、捕集ネット上に不織布層を形成する。メルトブロー法では、複雑な工程を必要とせず、数μmの細繊維を容易に得ることができ、高い耐水特性を達成しやすくすることができる。
 続いて、得られたスパンボンド不織布層とメルトブロー不織布層を積層し、これらを熱接着することによって、意図する積層不織布を得ることができる。
 不織布層を熱接着する方法は特に制限されないが、例えば、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロール、および上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど、各種ロールにより熱接着する方法や、ホーンの超音波振動により熱溶着させる超音波接着などの方法が挙げられる。
 なかでも、生産性に優れ、部分的な熱接着部で強度を付与し、かつ非接着部で不織布ならではの風合いや肌触りを保持することができることから、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、または片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロールを用いることが好ましい態様である。
 熱エンボスロールの表面材質としては、十分な熱圧着効果を得て、かつ片方のエンボスロールの彫刻(凹凸部)が他方のロール表面に転写することを防ぐため、金属製ロールと金属製ロールを対にすることが好ましい態様である。
 このような熱エンボスロールによるエンボス接着面積率は、5~30%であることが好ましい。接着面積を好ましくは5%以上とし、より好ましくは8%以上とし、さらに好ましくは10%以上することにより、積層不織布として実用に供し得る強度を得ることができる。一方、接着面積を好ましくは30%以下とし、より好ましくは25%以下とし、さらに好ましくは20%以下とすることにより、特に建築資材用途での使用に適した適度な柔軟性を得ることができる。超音波接着を用いる場合でも、接着面積率は同様の範囲であることが好ましい。
 ここでいう接着面積とは、接着部が積層不織布全体に占める割合のことを言う。具体的には、一対の凹凸を有するロールにより熱接着する場合は、上側ロールの凸部と下側ロールの凸部とが重なって不織布層に当接する部分(接着部)の積層不織布全体に占める割合のことを言う。また、凹凸を有するロールとフラットロールにより熱接着する場合は、凹凸を有するロールの凸部が不織布層に当接する部分(接着部)の積層不織布全体に占める割合のことを言う。また、超音波接着する場合は、超音波加工により熱溶着させる部分(接着部)の積層不織布全体に占める割合のことを言う。
 熱エンボスロールや超音波接着による接着部の形状は特に制限されず、例えば、円形、楕円形、正方形、長方形、平行四辺形、ひし形、正六角形および正八角形などを用いることができる。また接着部は、積層不織布の長手方向(搬送方向)と幅方向に、それぞれ一定の間隔で均一に存在していることが好ましい。このようにすることにより、積層不織布の強度のばらつきを低減することができる。
 熱接着時の熱エンボスロールの表面温度は、使用しているポリエチレン系樹脂(A2)の融点に対し-50~-15℃とすることが好ましい態様である。熱ロールの表面温度をポリエチレン系樹脂(A2)の融点に対し好ましくは-50℃以上とし、より好ましくは-45℃以上とすることにより、適度に熱接着させ実用に供しうる強度の積層不織布を得ることができる。また、熱エンボスロールの表面温度をポリエチレン系樹脂(A2)の融点に対し好ましくは-15℃以下とし、より好ましくは-20℃以下とすることにより、過度な熱接着を抑制し、積層不織布として、特に建築資材用途での使用に適した適度な柔軟性・加工性を得ることができる。
 熱接着時の熱エンボスロールの線圧は、50~500N/cmであることが好ましい。ロールの線圧を好ましくは50N/cm以上とし、より好ましくは100N/cm以上とし、さらに好ましくは150N/cm以上とすることにより、適度に熱接着させ実用に供しうる強度の積層不織布を得ることができる。
 一方、熱エンボスロールの線圧を好ましくは500N/cm以下とし、より好ましくは400N/cm以下とし、さらに好ましくは300N/cm以下とすることにより、積層不織布として、特に建築資材用途での使用に適した適度な柔軟性・加工性を得ることができる。
 また、本発明では、積層不織布の厚みを調整することを目的に、上記の熱エンボスロールによる熱接着の前および/あるいは後に、上下一対のフラットロールからなる熱カレンダーロールにより熱圧着を施すことができる。上下一対のフラットロールとは、ロールの表面に凹凸のない金属製ロールや弾性ロールのことであり、金属製ロールと金属製ロールを対にしたり、金属製ロールと弾性ロールを対にしたりして用いることができる。
 また、ここで弾性ロールとは、金属製ロールと比較して弾性を有する材質からなるロールのことである。弾性ロールとしては、例えば、ペーパー、コットンおよびアラミドペーパー等のいわゆるペーパーロールや、ウレタン系樹脂、エポキシ系樹脂、シリコン系樹脂、ポリエステル系樹脂および硬質ゴム、およびこれらの混合物からなる樹脂製のロールなどが挙げられる。
 次に、実施例に基づき、本発明の積層不織布について具体的に説明する。各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。
 (1)樹脂のMFR(g/10分):
 熱可塑性樹脂(A1)、ポリオレフィン系樹脂(B)のMFRについて、ポリプロピレン樹脂(A1a)、(B)は、荷重が2.16kg、温度が230℃の条件で測定した。また、ポリエチレン系樹脂(A2)のMFRは、荷重が2.16kg、温度が190℃の条件で測定した。
 (2)積層繊維のMFR(g/10分):
 積層不織布のMFRは、荷重が2.16kgで、温度が230℃の条件で測定した。
 (3)複素粘度(Pa・sec):
 動的粘弾性測定装置「RHEOSOL-G3000」を用い、20mmパラレルプレート、ギャップ0.5mm、温度230℃、ひずみ34.9%、振動数0.3~63rad/secにおける積層不織布の複素粘度(Pa・sec)を測定した。
 (4)紡糸速度(m/分):
 前記の平均単繊維径と、使用するポリオレフィン系樹脂(A)もしくはポリオレフィン系樹脂(B)の固体密度から、長さ10,000m当たりの質量を平均単繊維繊度(dtex)として、小数点以下第二位を四捨五入して算出した。平均単繊維繊度と、各条件で設定した紡糸口金単孔から吐出される樹脂の吐出量(以下、単孔吐出量と略記する。)(g/分)から、次の式に基づき、紡糸速度を算出した。
・紡糸速度(m/分)=(10000×[単孔吐出量(g/分)])/[平均単繊維繊度(dtex)]。
 (5)積層不織布の耐水圧(mmHO):
 スイス・テクステスト社 耐水圧試験機「ハイドロテスター」(FX-3000-IV型)を用いた。
 (6)積層不織布の単位目付当たりの通気量((cc/cm・秒)/(g/m)):
 前記の方法に基づいて、通気量の測定を行った。なお、算出した通気量(cc/(cm・秒))を、上記の方法に基づいて求めた目付(g/m)から、次の式より小数点以下第二位を四捨五入して単位目付当たりの通気量を算出した。
・単位目付当たりの通気量=通気量(cc/(cm・秒))/目付(g/m)。
 (7)積層不織布のKES法による表面粗さSMD(μm):
 測定には、カトーテック社製自動化表面試験機「KES-FB4-AUTO-A」を用いた。表面粗さSMDは積層不織布の両面で測定し、表1にはこれらのうち小さい方の値を記載した。
 (8)積層不織布のKES法による平均摩擦係数MIU、積層不織布のKES法による平均摩擦係数の変動MMD:
 測定には、カトーテック社製自動化表面試験機「KES-FB4-AUTO-A」を用いた。平均摩擦係数MIUは積層不織布の両面で測定し、表1にはこれらのうち小さい方の値を記載した。
 (9)不織布の柔軟性(加工性):
 不織布触感の官能評価として、柔軟性について、次の基準で点数付けを行った。これを10名で行いその平均を不織布触感として評価した。それぞれの点数が高いほど柔軟性に優れ、各種加工における加工性が良好であると判断し、4.0点以上を合格とした。
<柔軟性(加工性)>
5点:柔軟(加工性良好)
4点:5点と3点の中間
3点:普通
2点:3点と1点の中間
1点:硬い(加工性不良)。
 [実施例1]
 (スパンボンド不織布層(下層))
 スパンボンド不織布層には、熱可塑性樹脂(A1)として、MFRが170g/10分、融点が163℃のホモポリマーからなるポリプロピレン樹脂、ポリエチレン系樹脂(A2)として、MFRが100g/10分のホモポリマーからなるポリエチレン樹脂(LLDPE)を用いた。前記の熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)を、それぞれ押出機で溶融し、孔径φが0.30mm、孔深度が2mmの矩形口金から、紡糸温度が235℃、単孔吐出量が0.43g/分で、熱可塑性樹脂(A1)を芯成分に配置し、ポリエチレン系樹脂(A2)を鞘成分に配置した芯鞘型断面にて紡出した。紡出した糸条を冷却固化した後、これを矩形エジェクターにおいて、エジェクター圧力を0.50MPaとした圧縮エアによって牽引、延伸し、移動するネット上に捕集した。これによって、芯鞘型複合繊維の長繊維からなる、目付が8.2g/mのスパンボンド不織布層を形成した。形成したスパンボンド不織布層を構成する繊維の特性は、平均単繊維径は10.9μmであり、これから換算した紡糸速度は5,050m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
 (メルトブロー不織布層)
 次に、メルトブロー不織布層には、ポリオレフィン系樹脂(B)として、MFRが1100g/分、融点が163℃のホモポリマーからなるポリプロピレン樹脂を用いた。このポリオレフィン系樹脂(B)を押出機で溶融し、孔径φが0.25mmの口金から、紡糸温度が260℃、単孔吐出量が0.10g/分で紡出した。その後、エア温度が290℃、エア圧力が0.10MPaの条件でエアを糸条に噴射し、前記のスパンボンド不織布層上に捕集し、メルトブロー不織布層を形成した。この時、同条件で捕集ネット上に別途採取したメルトブロー不織布層の目付は1.6g/mであり、平均繊維径は1.5μmであった。
 (スパンボンド不織布層(上層))
 さらに、このメルトブロー不織布層の上に、下層のスパンボンド不織布層を形成した条件と同じ条件で、芯鞘型複合繊維の長繊維を捕集させ、スパンボンド不織布層を形成した。これによって、総目付18g/mの、スパンボンド-メルトブロー-スパンボンド積層繊維ウェブを得た。
 (積層不織布)
 引き続き、得られた積層繊維ウェブを、上ロールに金属製で水玉柄の彫刻がなされた接着面積率16%のエンボスロールを、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて、線圧を300N/cm、熱接着温度を120℃の条件で熱接着し、目付が18g/mの積層不織布を得た。得られた積層不織布について、厚み、見掛密度、耐水圧、単位目付当たりの通気量、複素粘度、表面粗さSMD、平均摩擦係数MIU、および平均摩擦係数の変動MMDを測定し、さらに積層不織布の柔軟性を評価した。結果を表1に示す。
 [実施例2]
 (スパンボンド不織布層(下層)・(上層))
 熱可塑性樹脂(A1)として、MFRが300g/10分、融点が163℃のホモポリマーからなるポリプロピレン樹脂を用いたとしたこと以外は、実施例1と同じ方法により、芯鞘型複合繊維からなるスパンボンド不織布層を形成した。形成したスパンボンド不織布層を構成する長繊維の特性は、平均単繊維径は10.5μmであり、これから換算した紡糸速度は5,500m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
 (メルトブロー不織布層)
 実施例1と同様にして、メルトブロー不織布層を形成した。得られた形成したメルトブロー不織布層を構成する繊維の特性は、平均繊維径が1.5μmであった。
 (積層不織布)
 実施例1と同様にして、積層不織布を得た。得られた積層不織布について、厚み、見掛密度、耐水圧、単位目付当たりの通気量、複素粘度、表面粗さSMD、平均摩擦係数MIU、および平均摩擦係数の変動MMDを測定し、さらに積層不織布の柔軟性を評価した。結果を表1に示す。
 [実施例3]
 (スパンボンド不織布層(下層)・(上層))
 熱可塑性樹脂(A1)として、MFRが800g/10分、融点が163℃のホモポリマーからなるポリプロピレン樹脂を用いたこと以外は、実施例1と同じ方法により、芯鞘型複合繊維からなるスパンボンド不織布層を形成した。形成したスパンボンド不織布層を構成する長繊維の特性は、平均単繊維径は9.8μmであり、これから換算した紡糸速度は6,300m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
 (メルトブロー不織布層)
 実施例2と同じ方法でメルトブロー不織布層を形成した。
 (積層不織布)
 実施例1と同じ方法で積層不織布を得た。得られた積層不織布について、厚み、見掛密度、耐水圧、単位目付当たりの通気量、複素粘度、表面粗さSMD、平均摩擦係数MIU、および平均摩擦係数の変動MMDを測定し、さらに積層不織布の柔軟性を評価した。結果を表1に示す。
 [実施例4]
 (スパンボンド不織布層(下層)・(上層))
 単孔吐出量を0.21g/分とした以外は、実施例1と同じ方法で、スパンボンド不織布層を得た。形成したスパンボンド不織布層を構成する繊維の特性は、平均単繊維径は7.4μmであり、これから換算した紡糸速度は5,700m/分であった。
 (メルトブロー不織布層)
 実施例1と同じ方法で、メルトブロー不織布層繊維ウェブを得た。
 (積層不織布)
 実施例1と同じ方法で積層不織布を得た。得られた積層不織布について、厚み、見掛密度、耐水圧、単位目付当たりの通気量、複素粘度、表面粗さSMD、平均摩擦係数MIU、および平均摩擦係数の変動MMDを測定し、さらに積層不織布の柔軟性を評価した。結果を表1に示す。
 [実施例5]
 (スパンボンド不織布層(下層)・(上層))
 目付を8.5g/mとしたこと以外は、実施例4と同じ方法でスパンボンド不織布層を得た。
 (メルトブロー繊維ウェブ)
 エア圧力を0.20MPaとし、目付を1.0g/mとしたこと以外は、実施例1と同じ方法でメルトブロー不織布層を得た。得られたメルトブロー不織布層を構成する繊維の特性は、平均繊維径が1.0μmであった。
 (積層不織布)
 実施例1と同じ方法で積層不織布を得た。得られた積層不織布について、厚み、見掛密度、耐水圧、単位目付当たりの通気量、複素粘度、表面粗さSMD、平均摩擦係数MIU、および平均摩擦係数の変動MMDを測定し、さらに積層不織布の柔軟性を評価した。結果を表1に示す。
 [実施例6]
 (スパンボンド不織布層(下層)・(上層))
 エチレンビスステアリン酸アミドを、スパンボンド不織布層を構成する樹脂全体に対する添加量が0.3質量%となるように、ポリエチレン系樹脂(A2)に1.0質量%添加した以外は、実施例1と同じ方法でスパンボンド不織布層を得た。
 (メルトブロー不織布層)
 実施例1と同じ方法で、メルトブロー不織布層を得た。
 (積層不織布)
 実施例1と同じ方法で積層不織布を得た。得られた積層不織布について、厚み、見掛密度、耐水圧、単位目付当たりの通気量、複素粘度、表面粗さSMD、平均摩擦係数MIU、および平均摩擦係数の変動MMDを測定し、さらに積層不織布の柔軟性を評価した。結果を表1に示す。
 [比較例1]
 (スパンボンド不織布層(下層)・(上層))
 熱可塑性樹脂(A1)として、MFRが60g/10分、融点が163℃のホモポリプロピレン樹脂を用い、エジェクター圧力を0.15MPaとしたこと以外は、実施例1と同じ方法でスパンボンド不織布層を得た。得られた芯鞘型不織布層を構成する長繊維の特性は、平均単繊維径は18.0μmであり、これから換算した紡糸速度は1,900m/分であった。紡糸性については、1時間の紡糸で糸切れが11回と不良であった。
 (メルトブロー不織布層)
 実施例1と同じ方法でメルトブロー不織布層を得た。
 (積層不織布)
 実施例1と同じ方法で積層不織布を得た。得られた積層不織布について、厚み、見掛密度、耐水圧、単位目付当たりの通気量、表面粗さSMD、平均摩擦係数MIU、および平均摩擦係数の変動MMDを測定し、さらに積層不織布の柔軟性を評価した。結果を表1に示す。
 [比較例2]
 (スパンボンド不織布層(下層)・(上層))
 ポリエチレン系樹脂(A2)として、MFRが20g/10分のホモポリエチレン樹脂を用い、エジェクター圧力を0.15MPaとしたこと以外は、実施例1と同じ方法でスパンボンド不織布層を得た。得られた芯鞘型不織布層を構成する長繊維の特性は、平均単繊維径は17.4μmであり、これから換算した紡糸速度は1,900m/分であった。紡糸性については、1時間の紡糸で糸切れが9回と不良であった。
 (メルトブロー不織布層)
 実施例1と同じ方法で、メルトブロー不織布層を得た。
 (積層不織布)
 実施例1と同じ方法で積層不織布を得た。得られた積層不織布について、厚み、見掛密度、耐水圧、単位目付当たりの通気量、複素粘度、表面粗さSMD、平均摩擦係数MIU、および平均摩擦係数の変動MMDを測定し、さらに積層不織布の柔軟性を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6は、KES法による表面粗さSMDが1.8~2.1μmであり、単位目付当たりの耐水圧は15mmHO/(g/m)以上と優れた耐水特性を有していた。さらに、スパンボンド不織布層を構成する繊維に、エチレンビスステアリン酸アミドを添加した実施例6の積層不織布は、平均摩擦係数が低減され、柔軟性が増し加工性に優れており、ハウスラップ材用不織布として特に好適なものであった。
 一方、比較例1、2の積層不織布は、表面粗さSMDが2.7μm以上であり、耐水性能に劣り、柔軟性も低いものであった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2018年2月28日付で出願された日本特許出願(特願2018-034870)及び2018年7月27日付で出願された日本特許出願(特願2018-141051)に基づいており、その全体が引用により援用される。
 本発明の積層不織布は、生産性が高く、地合が均一であり、表面が滑らかで風合いや肌触りに優れ、さらに高い耐水性を有することから、透湿防水シートとして、建築用資材として好適に利用することができる。
 また、本発明の積層不織布の用途は、上記に限定されるものではなく、例えば、フィルター、フィルター基材、電線押え巻材等の工業資材、壁紙、屋根下葺材、遮音材、断熱材、吸音材等の建築資材、ラッピング材、袋材、看板材、印刷基材等の生活資材、防草シート、排水材、地盤補強材、遮音材、吸音材等の土木資材、べたがけ材、遮光シート等の農業資材、天井材、およびスペアタイヤカバー材等の車輌資材等に用いることができる。
(a):芯部
(b):鞘部
(c):第1成分
(d):第2成分

Claims (10)

  1.  スパンボンド不織布層とメルトブロー不織布層とが積層されてなる積層不織布であって、前記スパンボンド不織布層は熱可塑性樹脂(A1)とポリエチレン系樹脂(A2)とからなる複合繊維から構成され、前記熱可塑性樹脂(A1)はポリオレフィン系樹脂(A1a)もしくはポリエステル系樹脂(A1b)であり、前記メルトブロー不織布層はポリオレフィン系樹脂(B)からなる繊維で構成され、さらに、前記スパンボンド不織布層の複合繊維の平均単繊維径が6.5~11.9μmであり、かつ、230℃、6.28rad/secの条件下で測定されるスパンボンド不織布層の複素粘度が100Pa・sec以下である、積層不織布。
  2.  単位目付当たりの耐水圧が15mmHO/(g/m)以上である、請求項1記載の積層不織布。
  3.  スパンボンド積層不織布を構成する前記熱可塑性樹脂(A1)からなる繊維のメルトフローレートが、155~850g/10分である、請求項1または2記載の積層不織布。
  4.  前記メルトブロー不織布層の含有量が、積層不織布質量に対し1質量%以上15質量%以下である、請求項1から3のいずれか1項に記載の積層不織布。
  5.  少なくとも片面のKES法による表面粗さSMDが1.0~2.6μmである、請求項1から4のいずれか1項に記載の積層不織布。
  6.  少なくとも片面のKES法による平均摩擦係数MIUが、0.1~0.5である、請求項1から5のいずれか1項に記載の積層不織布。
  7.  少なくとも片面のKES法による平均摩擦係数の変動MMDが、0.008以下である、請求項1から6のいずれか1項に記載の積層不織布。
  8.  前記ポリエチレン系樹脂(A2)に、炭素数が23以上50以下の脂肪酸アミド化合物が含有されてなる、請求項1から7のいずれか1項に記載の積層不織布。
  9.  前記脂肪酸アミド化合物の添加量が、0.01~5.0質量%である、請求項8記載の積層不織布。
  10.  前記脂肪酸アミド化合物が、エチレンビスステアリン酸アミドである、請求項8または9記載の積層不織布。
PCT/JP2019/006920 2018-02-28 2019-02-22 積層不織布 WO2019167853A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207024458A KR20200126369A (ko) 2018-02-28 2019-02-22 적층 부직포
CN201980015423.1A CN111771020A (zh) 2018-02-28 2019-02-22 层叠无纺布
JP2019541200A JP7173021B2 (ja) 2018-02-28 2019-02-22 積層不織布およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-034870 2018-02-28
JP2018034870 2018-02-28
JP2018141051 2018-07-27
JP2018-141051 2018-07-27

Publications (1)

Publication Number Publication Date
WO2019167853A1 true WO2019167853A1 (ja) 2019-09-06

Family

ID=67805852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006920 WO2019167853A1 (ja) 2018-02-28 2019-02-22 積層不織布

Country Status (5)

Country Link
JP (1) JP7173021B2 (ja)
KR (1) KR20200126369A (ja)
CN (1) CN111771020A (ja)
TW (1) TW201941928A (ja)
WO (1) WO2019167853A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411338A (zh) * 2022-01-13 2022-04-29 莱州锦宏纺织有限公司 一种大姜种植用防霜无纺布及其制备方法
CN115431611B (zh) * 2022-08-04 2023-09-26 东营俊富净化科技有限公司 一种防护服用复合无纺布及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518205A (ja) * 1999-12-21 2003-06-03 キンバリー クラーク ワールドワイド インコーポレイテッド 細いデニールの多成分繊維
JP2007524008A (ja) * 2004-01-27 2007-08-23 ザ プロクター アンド ギャンブル カンパニー メルトフローレートの高い多成分繊維を含有する柔軟で伸張性のある不織布ウェブ
JP2007284859A (ja) * 2006-03-22 2007-11-01 Toray Ind Inc 不織布および該不織布からなる下敷き材
WO2016002950A1 (ja) * 2014-07-03 2016-01-07 出光興産株式会社 スパンボンド不織布及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740609B1 (en) * 2000-08-15 2004-05-25 Polymer Group, Inc. Soft polypropylene melt spun nonwoven fabric
JP2002088633A (ja) * 2000-09-18 2002-03-27 Idemitsu Unitech Co Ltd 多層不織布およびその用途
JP3656837B2 (ja) 2001-08-06 2005-06-08 東洋紡績株式会社 ハウスラップ材及びその製造方法
CN102470302B (zh) * 2009-07-08 2015-03-11 Jnc株式会社 使用了层叠驻极体无纺布的空气过滤材料
JP5411629B2 (ja) * 2009-09-02 2014-02-12 日東ライフテック株式会社 多孔質包装材及び使い捨てカイロ
KR102015880B1 (ko) * 2011-12-16 2019-08-29 도레이 카부시키가이샤 혼섬 부직포, 적층 시트, 필터, 및 혼섬 부직포의 제조 방법
DE102014119334A1 (de) * 2014-12-22 2016-06-23 Schill + Seilacher Gmbh Zusammensetzung zur permanent-hydrophilen Ausrüstung von Textilfasern und Textilerzeugnissen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518205A (ja) * 1999-12-21 2003-06-03 キンバリー クラーク ワールドワイド インコーポレイテッド 細いデニールの多成分繊維
JP2007524008A (ja) * 2004-01-27 2007-08-23 ザ プロクター アンド ギャンブル カンパニー メルトフローレートの高い多成分繊維を含有する柔軟で伸張性のある不織布ウェブ
JP2007284859A (ja) * 2006-03-22 2007-11-01 Toray Ind Inc 不織布および該不織布からなる下敷き材
WO2016002950A1 (ja) * 2014-07-03 2016-01-07 出光興産株式会社 スパンボンド不織布及びその製造方法

Also Published As

Publication number Publication date
JPWO2019167853A1 (ja) 2020-12-17
CN111771020A (zh) 2020-10-13
JP7173021B2 (ja) 2022-11-16
KR20200126369A (ko) 2020-11-06
TW201941928A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
EP3165656B1 (en) Spunbonded non-woven fabric and method for manufacturing same
US9694558B2 (en) Multilayer nonwoven fabric for foam molding, method of producing multilayer nonwoven fabric for foam molding, urethane-foam molded complex using multilayer nonwoven fabric, vehicle seat, and chair
JPWO2012008169A1 (ja) 発泡成形用不織布積層体
WO2019167851A1 (ja) スパンボンド不織布
JP5603575B2 (ja) 積層不織布
JPWO2018139523A1 (ja) スパンボンド不織布
WO2019167853A1 (ja) 積層不織布
EP3705615B1 (en) Spunbonded nonwoven fabric
JP6349019B1 (ja) メルトブローン不織布及びその用途ならびにその製造方法
WO2019078176A1 (ja) スパンボンド不織布
JP7173022B2 (ja) 積層不織布およびその製造方法
JP2019151963A (ja) 積層不織布および吸音材
US11332863B2 (en) Non-woven fabric with enhanced hardness and sound absorption, manufacturing method therefor, and automotive undercover comprising non-woven fabric with enhanced hardness and sound absorption
JP2019151962A (ja) 積層不織布およびフィルター材
JP2019148043A (ja) スパンボンド不織布
KR20150001364A (ko) 성형성이 우수한 카펫 기포지용 스펀본드 부직포 및 이의 제조방법
JP2019137960A (ja) スパンボンド不織布
JPWO2020066622A1 (ja) スパンボンド不織布
JP4792662B2 (ja) 多孔性シートの製造法
JP7409524B2 (ja) スパンボンド不織布
WO2021200371A1 (ja) スパンボンド不織布
TW202233930A (zh) 紡絲黏合不織布、包括其的地毯以及其製造方法
JP2020196962A (ja) スパンボンド不織布
JP2020196961A (ja) スパンボンド不織布
KR20110109399A (ko) 내장제용 부직포

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019541200

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760830

Country of ref document: EP

Kind code of ref document: A1