WO2019167224A1 - 分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラム - Google Patents

分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラム Download PDF

Info

Publication number
WO2019167224A1
WO2019167224A1 PCT/JP2018/007760 JP2018007760W WO2019167224A1 WO 2019167224 A1 WO2019167224 A1 WO 2019167224A1 JP 2018007760 W JP2018007760 W JP 2018007760W WO 2019167224 A1 WO2019167224 A1 WO 2019167224A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
unit
display
displayed
screen
Prior art date
Application number
PCT/JP2018/007760
Other languages
English (en)
French (fr)
Inventor
雅基 石垣
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2018/007760 priority Critical patent/WO2019167224A1/ja
Priority to JP2020503208A priority patent/JP7303180B2/ja
Priority to EP18907644.1A priority patent/EP3760988A4/en
Priority to CN201880088373.5A priority patent/CN111670347B/zh
Priority to US16/976,444 priority patent/US11009393B2/en
Publication of WO2019167224A1 publication Critical patent/WO2019167224A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0264Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials

Definitions

  • the present invention relates to a spectroscopic analysis control device, a spectroscopic analysis device, a spectroscopic analysis control method, and a spectroscopic analysis control program for analyzing a sample.
  • the spectroscopic analyzer In the spectroscopic analyzer, the light absorption amount or light emission amount of a plurality of standard samples whose concentrations are known (hereinafter, the light absorption amount will be described as an example) is measured. Thereby, a calibration curve indicating the correspondence between the light absorption amount and the concentration of a plurality of standard samples is created. Thereafter, the amount of light absorption of an unknown sample whose concentration is unknown is measured. Based on the measured light absorption amount of the unknown sample and the prepared calibration curve, the concentration of the unknown sample is quantified. When performing the above measurement, the user sets appropriate measurement conditions in the spectroscopic analyzer.
  • Patent Document 1 describes a spectrophotometer capable of selectively inputting measurement parameters (measurement conditions) in all parameter mode and partial parameter mode. All parameter modes are selected by a user who is well versed in measurement parameters, and input a number of measurement parameters (unit, wavelength, photometric value range, slit width, and number of integrations). Accept. The partial parameter mode is selected by a user who does not fully understand the measurement parameters, and accepts input of only the basic measurement parameters (“unit” and “wavelength”) which are the minimum necessary. JP-A-8-233729
  • a small operation panel is mounted on the spectroscopic analyzer.
  • the user since only a few setting items such as one or two can be displayed on the operation panel at the same time, the user needs to switch the display screen of the operation panel each time to input a large number of setting items. Therefore, the above problem becomes more obvious.
  • the user when the user does not understand the input stage of the setting item, the user must check by switching the display screen many times. Therefore, a spectroscopic analyzer with improved operability is desired.
  • An object of the present invention is to provide a spectroscopic analysis control device, a spectroscopic analysis device, a spectroscopic analysis control method, and a spectroscopic analysis control program with improved operability.
  • a spectroscopic control apparatus is a spectroscopic control apparatus that is connected to a spectrophotometer that performs spectroscopic measurement of a sample and that quantifies the sample based on parameters input from a display unit.
  • a plurality of parameter setting screens respectively corresponding to a plurality of processes sequentially executed in a predetermined order in quantitative determination are sequentially displayed on the display unit, and a plurality of process indexes respectively corresponding to the plurality of processes are displayed on the display unit.
  • the parameter accepting unit for accepting the input of a plurality of parameters corresponding to a plurality of processes in the plurality of parameter setting screens, and the acceptance of the input of the parameters in each parameter setting screen, Set in the parameter setting section that sets the accepted parameters so that they cannot be changed, and the parameter setting section
  • An analysis control unit that controls the spectrophotometer based on the measured parameters, and a quantification execution unit that quantifies the sample based on a plurality of parameters set in the parameter setting unit, and the display control unit includes one parameter
  • the display unit is controlled so that the next parameter setting screen is displayed, and the parameter setting screen being displayed on the display unit among the plurality of process indexes is displayed.
  • the display unit is controlled to display the corresponding process index so that it can be distinguished from other process indices.
  • a plurality of parameter setting screens corresponding respectively to a plurality of processes sequentially executed in a predetermined order in quantification are sequentially displayed, and a plurality of process indexes respectively corresponding to a plurality of processes
  • the display unit is controlled so that is displayed.
  • input of a plurality of parameters respectively corresponding to a plurality of processes is accepted.
  • the accepted parameter is set so that it cannot be changed.
  • the display unit is controlled so as to be displayed in an identifiable manner.
  • the spectrophotometer is controlled based on the set parameters. Further, the sample is quantified based on a plurality of set parameters.
  • a process index corresponding to the current process is displayed so as to be distinguishable from other process indices. Therefore, the user can easily confirm whether the current parameter being input is a parameter corresponding to any of the processes. Therefore, the user does not need to switch the display of the parameter setting screen in order to confirm the current process. As a result, the operability of the spectroscopic analysis control device can be improved.
  • the display control unit may control the display unit to further display the process index corresponding to the process for which the parameter has already been set and the process index corresponding to the process for which the parameter has not been set. Good. In this case, the user can easily identify a process for which a parameter has already been set and a process for which no parameter has been set by visually recognizing a plurality of process indexes.
  • the display control unit may control the display unit so that the process index corresponding to the process for which the parameter has already been set and the process index corresponding to the process for which the parameter has not been set are displayed in different shapes. .
  • the user can more easily identify a process for which a parameter has already been set and a process for which no parameter has been set.
  • the spectroscopic analysis control apparatus is set to the next parameter setting screen after one or more parameter setting screens and one or more parameter setting screens corresponding to one or more steps, respectively.
  • a screen switching unit that accepts an instruction to switch display between and the display control unit, when an instruction to display any of the parameter setting screens is accepted by the screen switching unit, displays the parameter setting screen In this way, the display unit may be controlled.
  • the user can check the already set parameters by switching the display of the parameter setting screen. Further, the display can be returned to the parameter setting screen corresponding to the current process.
  • the screen switching unit may receive an instruction to display the parameter setting screen corresponding to the operated process index by operating any one of the plurality of process indexes displayed on the display unit.
  • the user can easily switch the display of the parameter setting screen by operating a process index corresponding to a process in which parameters have already been set or a current process.
  • the spectroscopic analysis control apparatus further includes a resetting unit that receives an instruction for resetting an already set parameter, and the parameter setting unit receives an instruction for resetting the parameter corresponding to one of the steps. If it is accepted, the parameter setting corresponding to all processes after the process instructed to reset the parameter is canceled, and the display control unit displays the parameter setting screen corresponding to the process instructed to reset the parameter. The display unit may be controlled to do so.
  • the parameter setting unit creates, as a plurality of parameters, a calibration curve indicating the correspondence between the measurement conditions of the spectrophotometer in the spectrophotometer and the concentration and the spectral characteristic value in the standard sample, which is a sample having a known concentration. And the spectral characteristic value of the unknown sample whose concentration is unknown in this order, and the analysis control unit sets the spectral characteristic value of the standard sample and the unknown sample based on the measurement conditions set in the parameter setting unit.
  • the quantification execution unit quantifies the concentration of the unknown sample based on the parameters for creating the calibration curve set in the parameter setting unit and the spectral characteristic value in the unknown sample. Also good.
  • the measurement conditions are received from the predetermined parameter setting screen and set.
  • the spectrophotometer is controlled based on the set measurement conditions. Based on the measurement of a known sample by the spectrophotometer, parameters for creating a calibration curve are received from the parameter setting screen and set. Further, based on the measurement of the unknown sample by the spectrophotometer, the spectral characteristic value of the unknown sample is further received and set from another parameter setting screen. The concentration of the unknown sample can be quantified based on the parameter for creating the set calibration curve and the spectral characteristic value of the unknown sample.
  • the parameters for creating the calibration curve may include the concentration of the standard sample, the spectral characteristic value of the standard sample, and the order of the calibration curve.
  • a calibration curve can be easily created based on the concentration of the standard sample, the spectral characteristic value of the standard sample, and the order of the calibration curve.
  • a spectroscopic analyzer includes a spectrophotometer that performs spectroscopic measurement of a sample, a display unit that receives input of parameters, and controls the operations of the spectrophotometer and the display unit.
  • a spectroscopic analysis control device according to the aspect.
  • a plurality of parameter setting screens respectively corresponding to a plurality of processes sequentially executed in a predetermined order in quantification are sequentially displayed on the display unit, and a plurality of parameters setting screens respectively corresponding to the plurality of processes are displayed.
  • the process index is displayed on the display unit.
  • input of a plurality of parameters respectively corresponding to a plurality of processes is accepted.
  • the accepted parameter is set so that it cannot be changed.
  • the process index corresponding to the currently displayed parameter setting screen among the plurality of process indices is different. It is displayed so that it can be identified from the process index.
  • the spectrophotometer is controlled based on the set parameters. Further, the sample is quantified based on a plurality of set parameters.
  • the user can easily input predetermined parameters in a predetermined order without mistaken order of parameter input. Furthermore, the user can easily confirm whether the current parameter being input is a parameter corresponding to any of the processes by visually recognizing a plurality of process indexes. Therefore, the user does not need to switch the display of the parameter setting screen in order to confirm the current process. As a result, the operability of the spectroscopic analyzer can be improved.
  • a spectroscopic control method is connected to a spectrophotometer that performs spectroscopic measurement of a sample, and spectroscopic control that performs quantification of the sample based on parameters input from a display unit
  • a spectroscopic analysis control method for an apparatus wherein a plurality of parameter setting screens respectively corresponding to a plurality of steps sequentially executed in a predetermined order in quantification are sequentially displayed on a display unit, and respectively correspond to a plurality of steps.
  • the step of displaying a plurality of process indexes on the display unit, the step of receiving input of a plurality of parameters respectively corresponding to a plurality of processes on a plurality of parameter setting screens, and the reception of input of parameters on each parameter setting screen are completed For each step, the received parameter is set to be unchangeable and the set parameter is set.
  • the next parameter setting screen is displayed on the display unit, and the process index corresponding to the parameter setting screen being displayed on the display unit among the plurality of process indexes is displayed on the display unit so as to be distinguishable from other process indexes.
  • this spectroscopic analysis control method it is possible to prevent the parameter corresponding to the subsequent process from becoming inappropriate due to the change of the parameter corresponding to the previous process. Further, the user can easily input predetermined parameters in a predetermined order without mistaken order of parameter input. Furthermore, the user can easily confirm whether the current parameter being input is a parameter corresponding to any of the processes by visually recognizing a plurality of process indexes. Therefore, the user does not need to switch the display of the parameter setting screen in order to confirm the current process. As a result, the operability of the spectroscopic analysis control device can be improved.
  • a spectroscopic control program is connected to a spectrophotometer that performs spectroscopic measurement of a sample, and spectroscopic control that performs quantification of the sample based on parameters input from the display unit
  • a spectroscopic analysis control program for the apparatus which sequentially displays a plurality of parameter setting screens respectively corresponding to a plurality of steps sequentially executed in a predetermined order in quantification on the display unit, and corresponds to each of the plurality of steps. Processing for displaying a plurality of process indices on the display unit, processing for receiving input of a plurality of parameters corresponding to a plurality of processes on a plurality of parameter setting screens, and reception of input of parameters on each parameter setting screen are completed.
  • the accepted parameter is set to be unchangeable and the set parameter is A process for controlling the spectrophotometer based on a meter and a process for quantifying a sample based on a plurality of set parameters are executed by a processing device, and the process for displaying the parameters is performed on one parameter setting screen.
  • the next parameter setting screen is displayed on the display section, and the process index corresponding to the parameter setting screen being displayed on the display section among the plurality of process indices is displayed so that it can be distinguished from other process indices. Including displaying in the department.
  • this spectroscopic analysis control program it is possible to prevent the parameter corresponding to the subsequent process from becoming inappropriate due to the change of the parameter corresponding to the previous process. Further, the user can easily input predetermined parameters in a predetermined order without mistaken order of parameter input. Furthermore, the user can easily confirm whether the current parameter being input is a parameter corresponding to any of the processes by visually recognizing a plurality of process indexes. Therefore, the user does not need to switch the display of the parameter setting screen in order to confirm the current process. As a result, the operability of the spectroscopic analysis control device can be improved.
  • the operability of the spectroscopic analysis control device can be improved.
  • FIG. 1 is a diagram showing a configuration of a spectroscopic analyzer according to an embodiment of the present invention.
  • FIG. 2 shows an example of the condition setting screen.
  • FIG. 3 is a view showing an example of the attached device screen.
  • FIG. 4 is a diagram showing an example of the standard sample screen.
  • FIG. 5 is a diagram showing an example of a calibration curve screen.
  • FIG. 6 is a diagram showing an example of the unknown sample screen.
  • FIG. 7 is a diagram showing an example of the unknown sample screen after quantification.
  • FIG. 8 is a diagram showing an example of a parameter setting screen in the confirmation process.
  • FIG. 9 is a block diagram showing a functional configuration of the spectroscopic analysis control apparatus of FIG. FIG.
  • FIG. 10 is a flowchart showing an algorithm of the spectroscopic analysis control process performed by the spectroscopic analysis control program.
  • FIG. 11 is a flowchart showing an algorithm of the measurement condition setting process in the spectroscopic analysis control process of FIG.
  • FIG. 12 is a flowchart showing an algorithm of the accessory device information setting process in the spectroscopic analysis control process of FIG.
  • FIG. 13 is a flowchart showing an algorithm of standard sample information setting processing in the spectral analysis control processing of FIG.
  • FIG. 14 is a flowchart showing an algorithm of a calibration curve creation process in the spectral analysis control process of FIG.
  • FIG. 15 is a flowchart showing an algorithm of concentration determination processing in the spectral analysis control processing of FIG.
  • a spectroscopic analysis control apparatus according to an embodiment of the present invention, a spectroscopic analysis apparatus including the spectroscopic analysis apparatus, a spectroscopic analysis control method, and a spectroscopic analysis control program will be described in detail with reference to the drawings.
  • FIG. 1 is a diagram showing a configuration of a spectroscopic analyzer according to an embodiment of the present invention.
  • the spectroscopic analysis device 300 includes a spectroscopic analysis control device 100 and a spectrophotometer 200 that performs spectroscopic measurement.
  • FIG. 1 mainly shows the hardware configuration of the spectroscopic analyzer 300.
  • the spectroscopic analysis control apparatus 100 includes a CPU (central processing unit) 110, a RAM (random access memory) 120, a ROM (read only memory) 130, a storage device 140, an operation unit 150, a display unit 160, and an input / output I / F ( Interface) 170.
  • CPU 110, RAM 120, ROM 130, storage device 140, operation unit 150, display unit 160 and input / output I / F 170 are connected to bus 180.
  • the RAM 120 is used as a work area for the CPU 110.
  • the ROM 130 stores a system program.
  • the storage device 140 includes a storage medium such as a hard disk or a semiconductor memory, and stores a spectroscopic analysis control program. When the CPU 110 executes the spectroscopic analysis control program stored in the storage device 140 on the RAM 120, a spectroscopic analysis control process described later is performed.
  • the operation unit 150 includes an input device such as a keyboard or a mouse.
  • the display unit 160 includes a display device such as a liquid crystal display device.
  • the operation unit 150 and the display unit 160 may be configured by a touch panel (operation panel).
  • the display unit 160 sequentially displays a parameter setting screen for receiving a plurality of parameters necessary for quantifying the concentration of the sample. The user can specify a plurality of parameters on the parameter setting screen of the display unit 160 using the operation unit 150.
  • the input / output I / F 170 is connected to the spectrophotometer 200.
  • the spectrophotometer 200 includes a light projecting unit 210, a lens 220, a sample stage 230, a spatial filter 240, a spectroscopic element 250, and a light receiving unit 260.
  • the light projecting unit 210 includes a plurality of light sources such as a deuterium lamp and a halogen lamp, and emits light having various wavelengths based on control by the spectroscopic analysis control device 100.
  • Sample 1 is attached to the sample stage 230.
  • the spectroscopic analysis apparatus 300 includes a sample cell 310 as an accessory device.
  • the sample 1 is a liquid or a gas
  • the sample 1 is attached to the sample stage 230 while being injected into the sample cell 310.
  • the sample 1 is solid, the sample 1 is directly attached to the sample stage 230.
  • the sample 1 whose concentration is known is called a standard sample
  • the sample 1 whose concentration is unknown is called an unknown sample.
  • the light emitted from the light projecting unit 210 is collected by the lens 220 and applied to the sample 1 attached to the sample stage 230.
  • the light applied to the sample stage 230 passes through the opening (pinhole) of the spatial filter 240 and is guided to the spectroscopic element 250.
  • the spectroscopic element 250 is, for example, a reflective concave diffraction grating.
  • the light guided to the spectroscopic element 250 is spatially separated for each wavelength and received by the light receiving unit 260.
  • the light receiving unit 260 is a line sensor in which a plurality of light receiving elements are arranged one-dimensionally, and receives a plurality of lights separated for each wavelength by the plurality of light receiving elements based on control by the spectroscopic analysis control device 100. .
  • the light receiving unit 260 outputs an electrical signal (hereinafter referred to as a light receiving signal) corresponding to the amount of light received in each pixel to the spectroscopic analysis control device 100.
  • the spectral characteristic value such as the light absorption amount or the light emission amount of the sample 1 is measured by the spectral analysis control device 100. Further, the spectroscopic analysis control device 100 quantifies the concentration of the unknown sample based on a plurality of types of parameters including the measured spectral characteristic values of the unknown sample.
  • a plurality of types (five types in this example) of parameters are received in a predetermined order on a plurality of parameter setting screens displayed on the display unit 160.
  • the first step measurement conditions are accepted on the condition setting screen.
  • the attached device information is received on the attached device screen.
  • standard sample information is received on the standard sample screen.
  • calibration curve information is received on the calibration curve screen.
  • unknown sample information is received on the unknown sample screen.
  • FIG. 2 is a diagram showing an example of the condition setting screen. As shown in FIG. 2, a rectangular setting screen display area A is provided at the center of the display screen of the display unit 160. After the start of the spectroscopic analysis control process, the condition setting screen A1 is displayed in the setting screen display area A as the first parameter setting screen in the first step. In the example of FIG. 2, measurement conditions indicating “unit”, “wavelength”, and “number of measurements” are accepted as parameters by the condition setting screen A1.
  • “Unit” indicates whether the spectral characteristic value is a light absorption amount or a light emission amount.
  • the “unit” is accepted when one of the plurality of check boxes CB1 displayed on the condition setting screen A1 is checked so as to correspond to the type of the “unit”.
  • “Wavelength” indicates the wavelength of light emitted from the light projecting unit 210 of FIG.
  • the “wavelength” is accepted by inputting a numerical value in the numerical value input field NE1 displayed on the condition setting screen A1 so as to correspond to the type of the “wavelength”.
  • “Measurement count” indicates the number of times spectrophotometry is performed by the spectrophotometer 200.
  • the “number of measurements” is accepted by checking any of the plurality of check boxes CB2 displayed on the condition setting screen A1 so as to correspond to the type of the “number of measurements”.
  • a strip-shaped process index display area B is provided at the top of the display screen of the display unit 160 so as to extend in the left-right direction.
  • the process index display area B regardless of the parameter setting screen displayed in the setting screen display area A, a plurality of process indices B1 to B5 respectively corresponding to a plurality of processes are always displayed.
  • the process index corresponding to the parameter setting screen being displayed in the setting screen display area A is displayed so as to be distinguishable from other process indexes.
  • the process index B1 corresponding to the condition setting screen A1 being displayed in the setting screen display area A is displayed in a different color from the other process indexes B2 to B5.
  • the process index corresponding to the process for which the parameter has already been set and the process index corresponding to the process for which the parameter has not been set are displayed so as to be further identifiable. Specifically, the process index corresponding to the process for which the parameter is already set and the process index corresponding to the process for which the parameter is not set are displayed in different shapes. In the example of FIG. 2, no process parameters are set. Therefore, all the process indexes B1 to B5 are displayed in the same shape (for example, a ribbon shape such as a pentagon or a hexagon).
  • a setting button C is displayed at the bottom of the display screen of the display unit 160.
  • the setting button C is operated in a state where the measurement condition is received on the condition setting screen A1, the received measurement condition is set to be unchangeable. Further, instead of the condition setting screen A1, the attached device screen is displayed in the setting screen display area A as the second parameter setting screen. Further, the display mode of the plurality of process indexes B1 to B5 changes. The operation of the spectrophotometer 200 of FIG. 1 is controlled based on the set measurement conditions.
  • FIG. 3 is a diagram illustrating an example of the attached device screen.
  • the parameters in the first process are already set, and the parameters in the second to fifth processes are not set. Therefore, as shown in FIG. 3, the process index B1 corresponding to the first process is displayed in a rectangular shape, and the process indices B2 to B5 corresponding to the second to fifth processes are displayed in a ribbon shape. Further, the process index B2 corresponding to the attached device screen A2 being displayed in the setting screen display area A is displayed in a color different from the other process indices B1, B3 to B5.
  • the attached device screen A2 information (attached device information) about the attached device provided in the spectroscopic analysis device 300 in FIG. 1 is accepted as a parameter.
  • the attached device is, for example, the sample cell 310 of FIG.
  • the accessory device information includes, for example, the shape and dimensions of the accessory device. Further, the accessory device information includes not using the accessory device. Since the accessory device information can be specified by the model number of the accessory device, in the example of FIG. 3, “model number V” to “model number Z” of the accessory device are displayed on the accessory device screen A2 as the accessory device information.
  • the accessory device information is accepted by checking any of the plurality of check boxes CB3 displayed on the accessory device screen A2 so as to correspond to the type of the accessory device information.
  • the setting button C When the setting button C is operated in a state where the accessory device information is received on the accessory device screen A2, the received accessory device information is set to be unchangeable.
  • the standard sample screen is displayed as the third parameter setting screen in the setting screen display area A instead of the attached device screen A2, and the display mode of the plurality of process indexes B1 to B5 is changed.
  • FIG. 4 is a diagram showing an example of the standard sample screen.
  • the parameters in the first and second steps are already set, and the parameters in the third to fifth steps are not set. Therefore, as shown in FIG. 4, the process indexes B1 and B2 corresponding to the first and second processes are displayed in a rectangular shape, and the process indexes B3 to B5 corresponding to the third to fifth processes are displayed as ribbons. Displayed by shape. Further, the process index B3 corresponding to the standard sample screen A3 being displayed in the setting screen display area A is displayed in a color different from the other process indices B1, B2, B4, B5.
  • standard sample information for each of a plurality of standard samples is accepted as a parameter.
  • the standard sample information includes a set of concentration and spectral characteristic value.
  • “standard sample 1” to “standard sample 5” are displayed on the standard sample screen A3 as a plurality of standard samples.
  • Each standard sample information is accepted by inputting a concentration and a spectral characteristic value in the numerical value input fields NE2 and NE3 displayed on the standard sample screen A3 so as to correspond to the standard sample information.
  • the spectral characteristic value of the standard sample measured by the spectrophotometer 200 of FIG. 1 based on the measurement conditions and attached device information respectively set in the first and second steps is input to the numerical value input field NE3. It will be.
  • the spectral characteristic value is “light absorption amount”.
  • concentration” and “light absorption amount” are respectively input in the numerical value input fields NE2 and NE3.
  • the setting button C When the setting button C is operated while the standard sample information is received on the standard sample screen A3, the received standard sample information is set to be unchangeable. Further, instead of the standard sample screen A3, a calibration curve screen is displayed as the fourth parameter setting screen in the setting screen display area A, and the display mode of the plurality of process indexes B1 to B5 is changed.
  • FIG. 5 is a diagram showing an example of the calibration curve screen.
  • the parameters in the first to third steps are already set, and the parameters in the fourth and fifth steps are not set. Therefore, as shown in FIG. 5, process indices B1 to B3 corresponding to the first to third processes are displayed in a rectangular shape, and process indices B4 and B5 corresponding to the fourth and fifth processes are displayed as ribbons. Displayed by shape. Further, the process index B4 corresponding to the calibration curve screen A4 being displayed in the setting screen display area A is displayed in a color different from the other process indices B1 to B3, B5.
  • calibration curve information indicating the order of the calibration curve is accepted as a parameter.
  • “primary expression” and “secondary expression” are displayed on the calibration curve screen A4 as the order of the calibration curve.
  • Calibration curve information is accepted by checking the check box CB4 displayed on the calibration curve screen A4 so as to correspond to the type of the calibration curve information.
  • the calibration curve screen A4 may display a graph GR indicating the relationship between the concentration and the spectral characteristic value for a plurality of standard samples set on the standard sample screen A3.
  • the user can easily specify an appropriate type of calibration curve information by visually recognizing the graph GR.
  • the setting button C When the setting button C is operated in a state where the calibration curve information is accepted on the calibration curve screen A4, the accepted calibration curve information is set to be unchangeable. Further, a calibration curve is created based on the set calibration curve information and the standard sample information set in the third step. Furthermore, instead of the calibration curve screen A4, an unknown sample screen is displayed as the fifth parameter setting screen in the setting screen display area A, and the display mode of the plurality of process indexes B1 to B5 changes.
  • FIG. 6 is a diagram illustrating an example of the unknown sample screen.
  • the parameters in the first to fourth steps are already set, and the parameters in the fifth step are not set. Therefore, as shown in FIG. 6, process indices B1 to B4 corresponding to the first to fourth processes are displayed in a rectangular shape, and process indices B5 corresponding to the fifth process are displayed in a ribbon shape. . Further, the process index B5 corresponding to the unknown sample screen A5 being displayed in the setting screen display area A is displayed in a different color from the other process indices B1 to B4.
  • unknown sample information indicating the spectral characteristic value of the unknown sample is accepted as a parameter.
  • the spectral characteristic values of a plurality of unknown samples can be received, and “unknown sample 1” to “unknown sample 5” are displayed on the unknown sample screen A5 as the plurality of unknown samples.
  • Each unknown sample information is accepted by inputting a spectral characteristic value in the numerical value input field NE4 displayed on the unknown sample screen A5 so as to correspond to the unknown sample information.
  • the spectral characteristic value of the unknown sample measured by the spectrophotometer 200 of FIG. 1 based on the measurement conditions and the attached device information set in the first and second steps, respectively, is input to the numerical value input field NE4. It will be.
  • the spectral characteristic value is “light absorption amount”. Further, for “unknown sample 1” and “unknown sample 2”, “light absorption” is entered in the numerical value input field NE4.
  • a determination button D is displayed at the bottom of the display screen of the display unit 160 instead of the setting button C in FIGS.
  • the determination button D is operated in a state where the unknown sample information is received on the unknown sample screen A5, the received unknown sample information is set to be unchangeable. Further, the concentration of the unknown sample is quantified based on the set unknown sample information and the calibration curve created in the fourth step.
  • FIG. 7 is a diagram illustrating an example of the unknown sample screen after quantification. As shown in FIG. 7, the quantified concentration of the unknown sample is displayed on the unknown sample screen A5.
  • FIG. 8 is a diagram showing an example of a parameter setting screen in the confirmation process.
  • the user operates the process index B1.
  • the display of the setting screen display area A is switched from the standard sample screen A3 to the condition setting screen A1 corresponding to the process index B1.
  • process indices B1 and B2 corresponding to the first and second processes are displayed in a rectangular shape
  • process indices B3 to B5 corresponding to the third to fifth processes are displayed in a ribbon shape.
  • the process index B1 corresponding to the condition setting screen A1 being displayed in the setting screen display area A is displayed in a different color from the other process indices B2 to B5.
  • the user can confirm the measurement conditions by viewing the condition setting screen A1 displayed in the setting screen display area A.
  • the user can switch the display of the setting screen display area A to the attached device screen A2 by operating the process index B2.
  • the user can switch (return) the display of the setting screen display area A to the standard sample screen A3 in the middle of parameter setting by operating the process index B3.
  • the parameter set in the previous process is changed, the parameter set in the process after that process may become inappropriate. Therefore, on the parameter setting screen during the confirmation process, the change of the previously set parameter is not accepted. As a result, it is possible to prevent an already set parameter from becoming inappropriate.
  • a reset button E is further displayed on the parameter setting screen corresponding to the process for which parameters have already been set.
  • the user wants to change a parameter set in any process, the user operates the reset button E on the parameter setting screen during the confirmation process corresponding to that process.
  • the parameters corresponding to the process in which the reset button E is operated are canceled, and the parameters corresponding to all the processes after the process are canceled.
  • a parameter setting screen corresponding to the process in which the reset button E is operated is displayed in the setting screen display area A. Thereby, the user can reset the parameter to be changed.
  • parameters corresponding to subsequent processes are also reset, it is possible to prevent an already set parameter from becoming inappropriate.
  • FIG. 9 is a block diagram showing a functional configuration of the spectral analysis control device 100 of FIG.
  • the spectroscopic analysis control apparatus 100 includes a condition setting screen generation unit 10, a measurement condition reception unit 11, a measurement condition setting unit 12, an auxiliary device screen generation unit 20, an auxiliary device information reception unit 21, and auxiliary device information.
  • a setting unit 22, a standard sample screen generating unit 30, a standard sample information receiving unit 31, and a standard sample information setting unit 32 are included.
  • the spectroscopic analysis control apparatus 100 includes a calibration curve screen generation unit 40, a calibration curve information reception unit 41, a calibration curve information setting unit 42, a calibration curve generation unit 43, an unknown sample screen generation unit 50, an unknown sample information reception unit 51, An unknown sample information setting unit 52, a quantitative execution unit 53, a display control unit 60, a determination unit 61, a screen switching unit 62, a resetting unit 63, and an analysis control unit 70 are included.
  • the CPU 110 in FIG. 1 executes the spectral analysis control program stored in the storage device 140, whereby the components (10-12, 20-22, 30-32, 40-43, 50-53) of the spectral analysis control device 100 are executed. , 60 to 64, 70) are realized. Part or all of the components (10 to 12, 20 to 22, 30 to 32, 40 to 43, 50 to 53, 60 to 64, 70) of the spectroscopic analysis control apparatus 100 are realized by hardware such as an electronic circuit. May be.
  • the determination unit 61 and the measurement condition setting unit 12, the attached device information setting unit 22, the standard sample information setting unit 32, the calibration curve information setting unit 42, and the unknown sample information setting The connection with the part 52 is indicated by a dotted line. Further, the connection between the resetting unit 63, the measurement condition setting unit 12, the attached device information setting unit 22, the standard sample information setting unit 32, and the calibration curve information setting unit 42 is indicated by a one-dot chain line.
  • the condition setting screen generation unit 10 generates condition setting screen data for displaying the condition setting screen A1 in FIG.
  • the measurement condition receiving unit 11 receives measurement conditions on the condition setting screen A1 displayed in the setting screen display area A.
  • the measurement condition setting unit 12 sets the measurement condition received by the measurement condition reception unit 11 in response to the determination instruction being given. In addition, the measurement condition setting unit 12 cancels the set measurement condition in response to an instruction for resetting.
  • the attached device screen generation unit 20 generates attached device screen data for displaying the attached device screen A2 of FIG.
  • the attached device information receiving unit 21 receives attached device information on the attached device screen A2 displayed in the setting screen display area A.
  • the attached device information setting unit 22 sets the attached device information received by the attached device information receiving unit 21 in response to the determination instruction being given. Further, the auxiliary device information setting unit 22 cancels the set auxiliary device information in response to a resetting instruction being given. Further, the accessory device information setting unit 22 cancels the set accessory device information even when a resetting instruction is given to the measurement condition setting unit 12.
  • the standard sample screen generation unit 30 generates standard sample screen data for displaying the standard sample screen A3 of FIG.
  • the standard sample information receiving unit 31 includes a concentration receiving unit 31a and a spectral characteristic value receiving unit 31b.
  • the concentration receiving unit 31a and the spectral characteristic value receiving unit 31b receive the standard sample concentration and the spectral characteristic value on the standard sample screen A3 displayed in the setting screen display area A, respectively.
  • the standard sample information setting unit 32 includes a concentration setting unit 32a and a spectral characteristic value setting unit 32b.
  • the density setting unit 32a and the spectral characteristic value setting unit 32b set the density and the spectral characteristic value received by the density receiving unit 31a and the spectral characteristic value receiving unit 31b, respectively, in response to the determination instruction.
  • the density setting unit 32a and the spectral characteristic value setting unit 32b cancel the set density and spectral characteristic value, respectively, in response to a reset instruction.
  • the density setting unit 32a and the spectral characteristic value setting unit 32b respectively set the set density and spectral characteristic value even when a resetting instruction is given to the measurement condition setting unit 12 or the accessory device information setting unit 22. cancel.
  • the calibration curve screen generation unit 40 generates calibration curve screen data for displaying the calibration curve screen A4 of FIG.
  • the calibration curve information receiving unit 41 receives the calibration curve information in the calibration curve screen A4 displayed in the setting screen display area A.
  • the calibration curve information setting unit 42 sets the calibration curve information received by the calibration curve information receiving unit 41 in response to the determination instruction being given. In addition, the calibration curve information setting unit 42 cancels the set calibration curve information in response to an instruction for resetting. Further, the calibration curve information setting unit 42 cancels the set calibration curve information even when a resetting instruction is given to the measurement condition setting unit 12, the attached device information setting unit 22, or the standard sample information setting unit 32. .
  • the calibration curve creation unit 43 generates a calibration curve based on the concentration set by the concentration setting unit 32a, the spectral characteristic value set by the spectral characteristic value setting unit 32b, and the calibration curve information set by the calibration curve information setting unit 42. create. Note that the calibration curve creation unit 43 is one of the concentration set by the concentration setting unit 32a, the spectral characteristic value set by the spectral characteristic value setting unit 32b, and the calibration curve information set by the calibration curve information setting unit 42. In case of cancellation, cancel the created calibration curve.
  • the unknown sample screen generation unit 50 generates unknown sample screen data for displaying the unknown sample screen A5 of FIG.
  • the unknown sample information receiving unit 51 receives unknown sample information on the unknown sample screen A5 displayed in the setting screen display area A.
  • the unknown sample information setting unit 52 sets the unknown sample information received by the unknown sample information receiving unit 51 in response to the determination instruction being given. Further, the unknown sample information setting unit 52 cancels the set unknown sample information in response to a resetting instruction being given. Further, the unknown sample information setting unit 52 is set even when a resetting instruction is given to the measurement condition setting unit 12, the accessory device information setting unit 22, the standard sample information setting unit 32, or the calibration curve information setting unit 42. Cancel the unknown sample information.
  • the quantification executing unit 53 quantifies the concentration of the unknown sample based on the calibration curve created by the calibration curve creation unit 43 and the unknown sample information set by the unknown sample information setting unit 52. Further, the quantitative execution unit 53 gives the unknown sample screen generation unit 50 information indicating the concentration of the quantified unknown sample. Thereby, the concentration of the unknown sample quantified is displayed on the unknown sample screen A5 of FIG.
  • each of the measurement condition receiving unit 11, the attached device information receiving unit 21, the standard sample information receiving unit 31, the calibration curve information receiving unit 41, and the unknown sample information receiving unit 51 is an example of a parameter receiving unit.
  • Each of the measurement condition setting unit 12, the accessory device information setting unit 22, the standard sample information setting unit 32, the calibration curve information setting unit 42, and the unknown sample information setting unit 52 is an example of a parameter setting unit.
  • the display control unit 60 displays the process indexes B1 to B5 of FIGS. 2 to 6 in the process index display area B.
  • the display control unit 60 is based on the screen data generated by the condition setting screen generation unit 10, the accessory device screen generation unit 20, the standard sample screen generation unit 30, the calibration curve screen generation unit 40, or the unknown sample screen generation unit 50.
  • the parameter setting screen is displayed in the setting screen display area A.
  • the display control unit 60 changes the display mode of the process indexes B1 to B5 in response to the determination instruction, the instruction to switch the display of the parameter setting screen, or the resetting instruction.
  • the display unit 160 is controlled so that the parameter setting screen to be changed is changed.
  • the determination unit 61 determines the measurement condition setting unit 12, the attached device information setting unit 22, the standard sample information setting unit 32, or the calibration curve. Instructions for determining parameters are given to the information setting unit 42, respectively. Further, when the determination button D in FIG. 6 is operated in the fifth step, the determination unit 61 gives an instruction for parameter determination to the unknown sample information setting unit 52. Further, when the setting button C or the determination button D is operated, the determination unit 61 also gives a parameter determination instruction to the display control unit 60.
  • the screen switching unit 62 gives an instruction to switch the display of the parameter setting screen to the display control unit 60 when a process index corresponding to a process for which parameters have already been set or a process in the middle of parameter setting is operated.
  • the resetting unit 63 measures the measurement condition setting unit 12, the accessory device information setting unit 22, the standard sample information setting unit. 32 or the calibration curve information setting unit 42 is instructed to reset parameters.
  • the resetting unit 63 also gives a parameter resetting instruction to the display control unit 60.
  • the analysis control unit 70 controls the operation of the spectrophotometer 200 of FIG. 1 based on the measurement conditions set by the measurement condition setting unit 12.
  • the analysis control unit 70 is configured such that the standard sample and the unknown sample measured by the spectrophotometer 200 of FIG. 1 based on the measurement conditions and the accessory device information set by the measurement condition setting unit 12 and the accessory device information setting unit 22, respectively. Get the spectral characteristic value of.
  • FIG. 10 is a flowchart showing an algorithm of the spectral analysis control process performed by the spectral analysis control program.
  • a measurement condition setting process is executed (step S10).
  • an auxiliary device information setting process is executed (step S20).
  • standard sample information setting processing is executed (step S30).
  • a calibration curve creation process is executed (step S40).
  • the concentration determination process is executed (step S50). Details of the measurement condition setting process, the attached device information setting process, the standard sample information setting process, the calibration curve creation process, and the concentration quantification process will be described below.
  • FIG. 11 is a flowchart showing an algorithm for the measurement condition setting process in the spectroscopic analysis control process of FIG.
  • the display control unit 60 displays the condition setting screen A1 of FIG. 2 in the setting screen display area A based on the condition setting screen data generated by the condition setting screen generation unit 10 (step S11). Further, the display control unit 60 displays a plurality of process indices B1 to B5 in the process index display area B (step S12).
  • step S12 process indexes B1 to B5 are displayed in a ribbon shape. Further, the process index B1 is displayed in a different color from the other process indices B2 to B5. Steps S11 and S12 may be executed first or may be executed simultaneously.
  • the measurement condition accepting unit 11 determines whether or not the measurement condition is accepted on the condition setting screen A1 in step S11 (step S13).
  • the user can input measurement conditions by checking one of the plurality of check boxes CB1 in FIG. 2, inputting a numerical value in the numerical value input field NE1, and checking one of the plurality of check boxes CB2. .
  • the measurement condition acceptance unit 11 proceeds to step S15.
  • the measurement condition reception unit 11 holds the received measurement condition (step S14), and the process proceeds to step S15.
  • step S15 the determination unit 61 determines whether or not it is instructed to proceed to the next setting (step S15). The user can instruct to proceed to the next setting by operating the setting button C in FIG. When it is not instructed to proceed to the next setting, the determination unit 61 returns to step S13. If the measurement condition is not held in step S14, it is not instructed to proceed to the next setting in step S15.
  • Steps S13 to S15 are repeated until it is instructed to proceed to the next setting in step S15.
  • the measurement condition setting unit 12 sets the measurement condition held in step S14 (step S16), and ends the measurement condition setting process.
  • FIG. 12 is a flowchart showing an algorithm of the attached device information setting process in the spectroscopic analysis control process of FIG.
  • the display control unit 60 displays the attached device screen A2 of FIG. 3 in the setting screen display area A based on the attached device screen data generated by the attached device screen generating unit 20 (step S21). Further, the display control unit 60 updates the display mode of the plurality of process indexes B1 to B5 (step S22).
  • step S22 the process index B1 is displayed in a rectangular shape, and the process indexes B2 to B5 are displayed in a ribbon shape. Further, the process index B2 is displayed in a different color from the other process indices B1, B3 to B5. Note that either of steps S21 and S22 may be executed first or at the same time.
  • the auxiliary device information receiving unit 21 determines whether or not auxiliary device information has been received on the auxiliary device screen A2 in step S21 (step S23).
  • the user can input the attached device information by checking one of the plurality of check boxes CB3 in FIG.
  • the accessory device information receiving unit 21 proceeds to step S25.
  • the attached device information receiving unit 21 holds the received attached device information (step S24), and proceeds to step S25.
  • step S25 the screen switching unit 62 determines whether confirmation processing has been instructed (step S25). The user can instruct confirmation processing by operating the process indicators B1 and B2. If the confirmation process is not instructed, the screen switching unit 62 proceeds to step S27. When the confirmation process is instructed, the screen switching unit 62 executes the confirmation process (step S26).
  • step S26 either the condition setting screen A1 or the accessory device screen A2 is displayed in the setting screen display area A. Further, the colors of the process indexes B1 and B2 are changed according to the parameter setting screen displayed in the setting screen display area A.
  • the reset button E (FIG. 8) is displayed on the condition setting screen A1, and the resetting unit 63 determines whether or not the reset button E on the condition setting screen A1 has been operated.
  • the resetting unit 63 proceeds to step S27.
  • the measurement condition setting unit 12 cancels the measurement condition set in step S16 in FIG. 11 and returns to the measurement condition setting process in step S10.
  • step S27 the determination unit 61 determines whether or not it is instructed to proceed to the next setting (step S27).
  • the user can instruct to proceed to the next setting by operating the setting button C in FIG.
  • the determination unit 61 returns to step S23. If the attached device information is not held in step S24, it is not instructed to proceed to the next setting in step S27.
  • Steps S23 to S27 are repeated until resetting is instructed in the confirmation processing of step S26 or until it is instructed to proceed to the next setting in step S27.
  • the auxiliary device information setting unit 22 sets the auxiliary device information held in step S24 (step S28), and ends the auxiliary device information setting process.
  • FIG. 13 is a flowchart showing an algorithm of the standard sample information setting process in the spectroscopic analysis control process of FIG.
  • the display control unit 60 displays the standard sample screen A3 of FIG. 4 in the setting screen display area A based on the standard sample screen data generated by the standard sample screen generation unit 30 (step S31).
  • the display control unit 60 updates the display mode of the plurality of process indexes B1 to B5 (step S32).
  • step S32 the process indicators B1 and B2 are displayed in a rectangular shape, and the process indicators B3 to B5 are displayed in a ribbon shape. Further, the process index B3 is displayed in a different color from the other process indices B1, B2, B4, B5. Note that either of steps S31 and S32 may be executed first or at the same time.
  • the standard sample information receiving unit 31 determines whether or not standard sample information is received on the standard sample screen A3 in step S31 (step S33).
  • the user can input standard sample information by inputting numerical values into the plurality of numerical value input fields NE2 and NE3 in FIG.
  • the user inputs the concentrations of a plurality of standard samples in the plurality of numerical value input fields NE2, respectively. Further, the user sequentially attaches a plurality of standard samples to the sample stage 230 of the spectrophotometer 200 of FIG.
  • the standard sample is a liquid or a gas, it is attached to the sample stage 230 while being injected into the sample cell 310.
  • the analysis control unit 70 is configured to perform spectroscopic measurement of each standard sample based on the measurement conditions set in step S16 of the measurement condition setting process and the accessory apparatus information set in step S28 of the accessory apparatus information setting process. 1 spectrophotometer 200 is controlled. Further, the analysis control unit 70 acquires the spectral characteristic value of each standard sample measured by the spectrophotometer 200.
  • the user inputs the spectral characteristic values of the plurality of standard samples acquired by the analysis control unit 70 into the plurality of numerical value input fields NE3, respectively.
  • the spectral characteristic values of the plurality of standard samples acquired by the analysis control unit 70 may be automatically input to the plurality of numerical value input fields NE3, respectively.
  • step S33 If the standard sample information is not received in step S33, the standard sample information receiving unit 31 proceeds to step S35.
  • the standard sample information receiving unit 31 holds the received standard sample information (step S34), and proceeds to step S35.
  • step S35 the screen switching unit 62 determines whether confirmation processing is instructed (step S35).
  • the user can instruct confirmation processing by operating the process indicators B1 to B3.
  • the screen switching unit 62 proceeds to step S37.
  • the screen switching unit 62 executes the confirmation process (step S36).
  • any one of the condition setting screen A1, the accessory device screen A2, and the standard sample screen A3 is displayed in the setting screen display area A. Further, the colors of the process indexes B1 to B3 are changed according to the parameter setting screen displayed in the setting screen display area A.
  • a reset button E (FIG. 8) is displayed on the condition setting screen A1 and the accessory device screen A2. Further, the resetting unit 63 determines whether or not the reset button E on the condition setting screen A1 or the accessory device screen A2 is operated. When the reset button E is not operated, the reset unit 63 proceeds to step S37.
  • the auxiliary device information setting unit 22 cancels the auxiliary device information set in step S28 of FIG. Further, the measurement condition setting unit 12 cancels the measurement condition set in step S16 of FIG. 11, and returns to the measurement condition setting process of step S10.
  • the attached device information setting unit 22 cancels the attached device information set in step S28 in FIG. 12, and returns to the attached device information setting process in step S20.
  • step S37 the determination unit 61 determines whether or not it is instructed to proceed to the next setting (step S37). The user can instruct to proceed to the next setting by operating the setting button C in FIG. When it is not instructed to proceed to the next setting, the determination unit 61 returns to step S33. If the standard sample information is not held in step S34, it is not instructed to proceed to the next setting in step S37.
  • Steps S33 to S37 are repeated until resetting is instructed in the confirmation processing in step S36 or until it is instructed to proceed to the next setting in step S37.
  • the standard sample information setting unit 32 sets the standard sample information held in step S34 (step S38), and ends the standard sample information setting process.
  • FIG. 14 is a flowchart showing an algorithm for the calibration curve creation process in the spectral analysis control process of FIG.
  • the display control unit 60 displays the calibration curve screen A4 of FIG. 5 in the setting screen display area A based on the calibration curve screen data generated by the calibration curve screen generation unit 40 (step S41). Further, the display control unit 60 updates the display mode of the plurality of process indexes B1 to B5 (step S42).
  • step S42 the process indicators B1 to B3 are displayed in a rectangular shape, and the process indicators B4 and B5 are displayed in a ribbon shape. Further, the process index B4 is displayed in a different color from the other process indices B1 to B3, B5. Note that either of steps S41 and S42 may be executed first or at the same time.
  • the calibration curve information receiving unit 41 determines whether or not calibration curve information has been received on the calibration curve screen A4 in step S41 (step S43).
  • the user can input calibration curve information by checking any of the plurality of check boxes CB4 in FIG.
  • step S45 the calibration curve information reception unit 41 holds the received calibration curve information (step S44), and proceeds to step S45.
  • step S45 the screen switching unit 62 determines whether confirmation processing is instructed (step S45).
  • the user can instruct confirmation processing by operating the process indicators B1 to B4.
  • the screen switching unit 62 proceeds to step S47.
  • confirmation processing is instructed, the screen switching unit 62 executes confirmation processing (step S46).
  • any one of the condition setting screen A1, the accessory device screen A2, the standard sample screen A3, and the calibration curve screen A4 is displayed in the setting screen display area A. Further, the colors of the process indexes B1 to B4 are changed according to the parameter setting screen displayed in the setting screen display area A.
  • a reset button E (FIG. 8) is displayed on the condition setting screen A1, the attached device screen A2, and the standard sample screen A3. Further, the resetting unit 63 determines whether or not the reset button E on the condition setting screen A1, the attached device screen A2 or the standard sample screen A3 is operated. When the reset button E is not operated, the reset unit 63 proceeds to step S47.
  • the standard sample information setting unit 32 cancels the standard sample information set in step S38 of FIG.
  • the auxiliary device information setting unit 22 cancels the auxiliary device information set in step S28 of FIG.
  • the measurement condition setting unit 12 cancels the measurement condition set in step S16 in FIG. 11, and returns to the measurement condition setting process in step S10.
  • the standard sample information setting unit 32 cancels the standard sample information set in step S38 of FIG. Further, the accessory device information setting unit 22 cancels the accessory device information set in step S28 of FIG. 12, and returns to the accessory device information setting process of step S20.
  • the standard sample information setting unit 32 cancels the standard sample information set in step S38 in FIG. 13 and returns to the standard sample information setting process in step S30.
  • step S47 the determination unit 61 determines whether or not it is instructed to proceed to the next setting (step S47). The user can instruct to proceed to the next setting by operating the setting button C in FIG. When it is not instructed to proceed to the next setting, the determination unit 61 returns to step S43. If calibration curve information is not held in step S44, it is not instructed to proceed to the next setting in step S47.
  • Steps S43 to S47 are repeated until resetting is instructed in the confirmation processing in step S46, or until it is instructed to proceed to the next setting in step S47.
  • the calibration curve information setting unit 42 sets the calibration curve information held in step S44 (step S48).
  • the calibration curve creation unit 43 creates a calibration curve based on the calibration curve information set in step S48 and the standard sample information set in step S38 of the standard sample information setting process (step S49), and creates a calibration curve. The process ends.
  • FIG. 15 is a flowchart showing an algorithm for concentration determination processing in the spectral analysis control processing of FIG.
  • the display control unit 60 displays the unknown sample screen A5 of FIG. 6 in the setting screen display area A based on the unknown sample screen data generated by the unknown sample screen generation unit 50 (step S51).
  • the display control unit 60 updates the display mode of the plurality of process indexes B1 to B5 (step S52).
  • step S52 the process indexes B1 to B4 are displayed in a rectangular shape, and the process index B5 is displayed in a ribbon shape. Further, the process index B5 is displayed in a different color from the other process indices B1 to B4. Note that either of steps S51 and S52 may be executed first or at the same time.
  • the unknown sample information receiving unit 51 determines whether or not unknown sample information is received on the unknown sample screen A5 in step S51 (step S53).
  • the user can input unknown sample information by inputting a numerical value into one or more numerical value input fields NE4 in FIG.
  • the user sequentially attaches one or more unknown samples to the sample stage 230 of the spectrophotometer 200 of FIG.
  • the analysis control unit 70 is configured to perform spectroscopic measurement of each unknown sample based on the measurement conditions set in step S16 of the measurement condition setting process and the accessory apparatus information set in step S28 of the accessory apparatus information setting process. 1 spectrophotometer 200 is controlled. Further, the analysis control unit 70 acquires the spectral characteristic value of each unknown sample measured by the spectrophotometer 200.
  • the user inputs the spectral characteristic values of one or more unknown samples acquired by the analysis control unit 70 into one or more numerical value input fields NE4. Note that the spectral characteristic values of one or more samples acquired by the analysis control unit 70 may be automatically input to one or more numerical value input fields NE4, respectively.
  • step S55 the unknown sample information receiving unit 51 holds the received unknown sample information (step S54), and proceeds to step S55.
  • step S55 the screen switching unit 62 determines whether confirmation processing has been instructed (step S55). The user can instruct confirmation processing by operating the process indicators B1 to B5. If the confirmation process is not instructed, the screen switching unit 62 proceeds to step S57. When the confirmation process is instructed, the screen switching unit 62 executes the confirmation process (step S56).
  • any one of the condition setting screen A1, the accessory device screen A2, the standard sample screen A3, the calibration curve screen A4, and the unknown sample screen A5 is displayed in the setting screen display area A. Further, the colors of the process indexes B1 to B5 are changed according to the parameter setting screen displayed in the setting screen display area A.
  • a reset button E (FIG. 8) is displayed on the condition setting screen A1, the attached device screen A2, the standard sample screen A3, and the calibration curve screen A4. Further, the resetting unit 63 determines whether or not the reset button E on the condition setting screen A1, the accessory device screen A2, the standard sample screen A3, or the calibration curve screen A4 has been operated. When the reset button E is not operated, the reset unit 63 proceeds to step S57.
  • the calibration curve information setting unit 42 cancels the calibration curve information set in step S48 of FIG.
  • the standard sample information setting unit 32 cancels the standard sample information set in step S38 of FIG.
  • the auxiliary device information setting unit 22 cancels the auxiliary device information set in step S28 of FIG.
  • the measurement condition setting unit 12 cancels the measurement condition set in step S16 in FIG. 11, and returns to the measurement condition setting process in step S10.
  • the calibration curve information setting unit 42 cancels the calibration curve information set in step S48 of FIG.
  • the standard sample information setting unit 32 cancels the standard sample information set in step S38 of FIG.
  • the accessory device information setting unit 22 cancels the accessory device information set in step S28 of FIG. 12, and returns to the accessory device information setting process of step S20.
  • the calibration curve information setting unit 42 cancels the calibration curve information set in step S48 of FIG. Further, the standard sample information setting unit 32 cancels the standard sample information set in step S38 in FIG. 13, and returns to the standard sample information setting process in step S30.
  • the calibration curve information setting unit 42 cancels the calibration curve information set in step S48 in FIG. 14 and returns to the calibration curve creation process in step S40.
  • step S57 the determination unit 61 determines whether determination is instructed (step S57). The user can instruct the determination by operating the determination button D in FIG. If the determination is not instructed, the determination unit 61 returns to step S53. If unknown sample information is not held in step S54, no determination is instructed in step S57.
  • Steps S53 to S57 are repeated until resetting is instructed in the confirmation processing in step S56 or until determination is instructed in step S57.
  • the unknown sample information setting unit 52 sets the unknown sample information held in step S54 (step S58).
  • the quantification executing unit 53 quantifies the concentration of the unknown sample based on the unknown sample information set in step S58 and the calibration curve created in step S49 of the calibration curve creation process (step S59).
  • the display control unit 60 displays the concentration of the unknown sample quantified in step S59 on the display unit 160 (step S60), and ends the concentration quantification process.
  • a process index corresponding to the current process is displayed so as to be distinguishable from other process indices. Therefore, the user can easily confirm whether the current parameter being input is a parameter corresponding to any of the processes. Therefore, the user does not need to switch the display of the parameter setting screen in order to confirm the current process. As a result, the operability of the spectroscopic analysis control apparatus 100 can be improved.
  • the spectroscopic analysis control process includes an accessory device information setting process, but the present invention is not limited to this.
  • the spectroscopic analysis control process may not include the accessory device information setting process.
  • the accessory device screen A2 is not displayed in the setting screen display area A
  • the process index B2 is not displayed in the process index display area B.
  • the parameter is accepted by checking one of a plurality of check boxes displayed on the parameter setting screen or by inputting a numerical value in the numerical value input field. Is not limited to this.
  • a pull-down menu may be displayed on the parameter setting screen, and a parameter may be accepted by selecting any value in the pull-down menu.
  • the process index corresponding to the process for which the parameter is already set is displayed in a rectangular shape, and the process index corresponding to the process for which the parameter is not set is displayed in a ribbon shape.
  • the invention is not limited to this. If a process index corresponding to a process for which a parameter has already been set and a process index corresponding to a process for which a parameter has not been set can be identified, the plurality of process indexes B1 to B5 can be displayed in any shape. Good. If the process index corresponding to the process for which the parameter is already set and the process index corresponding to the process for which the parameter is not set can be identified, the plurality of process indices B1 to B5 are displayed in the same shape. Also good.
  • the process index corresponding to the parameter setting screen being displayed in the setting screen display area A is displayed in a different color from the other process indices, but the present invention is not limited to this. If the process index corresponding to the parameter setting screen being displayed in the setting screen display area A and other process indices can be identified, the plurality of process indices B1 to B5 may be displayed in the same color.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

定量において予め定められた順序で順次実行される複数の工程にそれぞれ対応する複数のパラメータ設定画面が順次表示され、複数の工程にそれぞれ対応する複数の工程指標が表示されるように表示部が制御される。複数のパラメータ設定画面において、複数の工程にそれぞれ対応する複数のパラメータの入力が受け付けられる。各パラメータ設定画面におけるパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータが変更不可能に設定される。一のパラメータ設定画面においてパラメータが設定されるごとに、次のパラメータ設定画面が表示され、複数の工程指標のうち表示中のパラメータ設定画面に対応する工程指標が他の工程指標から識別可能に表示されるように表示部が制御される。設定されたパラメータに基づいて分光光度計が制御される。設定された複数のパラメータに基づいて試料の定量が定量実行部により行われる。

Description

分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラム
 本発明は、試料の分析を行う分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラムに関する。
 分光分析装置においては、濃度が既知である複数の標準試料の光吸収量または発光量等(以下、光吸収量を例として説明する。)が測定される。これにより、複数の標準試料の光吸収量と濃度との対応関係を示す検量線が作成される。その後、濃度が未知である未知試料の光吸収量が測定される。測定された未知試料の光吸収量と作成された検量線とに基づいて、未知試料の濃度が定量される。上記の測定を行う際に、使用者は適切な測定条件を分光分析装置に設定する。
 特許文献1には、全パラメータモードと一部パラメータモードとで選択的に測定パラメータ(測定条件)を入力可能な分光光度計が記載されている。全パラメータモードは、測定パラメータを十分に熟知した使用者により選択され、多数の測定パラメータ(「単位」、「波長」、「測光値範囲」、「スリット幅」および「積算回数」)の入力を受け付ける。一部パラメータモードは、測定パラメータを十分に理解していない使用者により選択され、必要最小限の基本的な測定パラメータ(「単位」および「波長」)のみの入力を受け付ける。
特開平8-233729号公報
 近年、測定条件のみでなく、標準試料の濃度、標準試料の光吸収量および未知試料の光吸収量等が順次入力されることにより、自動的に検量線を作成し、未知試料の濃度を定量する分光分析装置が開発されている。しかしながら、このような分光分析装置においては、設定項目が多岐に及ぶため、熟練していない使用者には、どの順序でどの設定項目を入力しなければならないかを理解することが容易ではない。また、熟練した使用者であっても、設定項目の入力をどの段階まで進めたかが分からなくなることがある。
 特に、スタンドアローン形式の分光分析装置においては、小型の操作パネルが分光分析装置に搭載される。この場合、1~2個程度の少数の設定項目しか操作パネルに同時に表示することができないので、使用者は、多数の設定項目を入力するために操作パネルの表示画面を都度切り替える必要がある。そのため、上記の問題はより顕在化する。また、設定項目の入力の段階が分からなくなったときには、使用者は、表示画面を何度も切り替えて確認しなければならない。したがって、操作性がより向上された分光分析装置が望まれる。
 本発明の目的は、操作性が向上された分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラムを提供することである。
 (1)本発明の一局面に従う分光分析制御装置は、試料の分光測定を行う分光光度計に接続されるとともに、表示部から入力されるパラメータに基づいて試料の定量を行う分光分析制御装置であって、定量において予め定められた順序で順次実行される複数の工程にそれぞれ対応する複数のパラメータ設定画面を表示部に順次表示するとともに、複数の工程にそれぞれ対応する複数の工程指標を表示部に表示する表示制御部と、複数のパラメータ設定画面において、複数の工程にそれぞれ対応する複数のパラメータの入力を受け付けるパラメータ受付部と、各パラメータ設定画面におけるパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータを変更不可能に設定するパラメータ設定部と、パラメータ設定部に設定されたパラメータに基づいて分光光度計を制御する分析制御部と、パラメータ設定部に設定された複数のパラメータに基づいて試料の定量を行う定量実行部とを備え、表示制御部は、一のパラメータ設定画面においてパラメータ設定部によりパラメータが設定されるごとに、次のパラメータ設定画面が表示されるように表示部を制御し、かつ、複数の工程指標のうち表示部に表示中のパラメータ設定画面に対応する工程指標を他の工程指標から識別可能に表示するように表示部を制御する。
 この分光分析制御装置においては、定量において予め定められた順序で順次実行される複数の工程にそれぞれ対応する複数のパラメータ設定画面が順次表示されるとともに、複数の工程にそれぞれ対応する複数の工程指標が表示されるように表示部が制御される。複数のパラメータ設定画面において、複数の工程にそれぞれ対応する複数のパラメータの入力が受け付けられる。各パラメータ設定画面におけるパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータが変更不可能に設定される。ここで、一のパラメータ設定画面においてパラメータが設定されるごとに、次のパラメータ設定画面が表示され、かつ、複数の工程指標のうち表示中のパラメータ設定画面に対応する工程指標が他の工程指標から識別可能に表示されるように表示部が制御される。設定されたパラメータに基づいて分光光度計が制御される。また、設定された複数のパラメータに基づいて試料の定量が行われる。
 この構成によれば、各工程におけるパラメータの入力が、表示部に表示された当該工程に対応するパラメータ設定画面から受け付けられる。ここで、既に設定されたパラメータが変更されると、当該パラメータの変更により後の工程に対応するパラメータが不適切になることがある。そこで、一の工程に対応するパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータが変更不可能に設定されるとともに、次の工程に対応するパラメータ設定画面が表示部に表示される。これにより、前の工程に対応するパラメータの変更により後の工程に対応するパラメータが不適切になることを防止することができる。また、使用者は、パラメータの入力の順序を誤ることなく、予め定められた順序で所定のパラメータを容易に入力することができる。
 さらに、表示部には、現時点の工程に対応する工程指標が他の工程指標から識別可能に表示される。そのため、使用者は、入力中の現時点のパラメータが全工程中のいずれの工程に対応するパラメータであるかを容易に確認することができる。したがって、使用者は、現時点の工程を確認するためにパラメータ設定画面の表示を切り替える必要がない。これらの結果、分光分析制御装置の操作性を向上させることができる。
 (2)表示制御部は、パラメータが既に設定された工程に対応する工程指標とパラメータが設定されていない工程に対応する工程指標とをさらに識別可能に表示するように表示部を制御してもよい。この場合、使用者は、複数の工程指標を視認することにより、パラメータが既に設定された工程とパラメータが設定されていない工程とを容易に識別することができる。
 (3)表示制御部は、パラメータが既に設定された工程に対応する工程指標とパラメータが設定されていない工程に対応する工程指標とを異なる形状で表示するように表示部を制御してもよい。この場合、使用者は、複数の工程指標の形状を視認することにより、パラメータが既に設定された工程とパラメータが設定されていない工程とをより容易に識別することができる。
 (4)分光分析制御装置は、1以上の工程に対応するパラメータが設定された後、1以上の工程にそれぞれ対応する1以上のパラメータ設定画面と1以上のパラメータ設定画面の次のパラメータ設定画面との間で表示の切り替えの指示を受け付ける画面切替部をさらに備え、表示制御部は、いずれかのパラメータ設定画面の表示の指示が画面切替部により受け付けられた場合、当該パラメータ設定画面を表示するように表示部を制御してもよい。
 この場合、使用者は、パラメータ設定画面の表示を切り替えることにより、既に設定されたパラメータを確認することができる。また、表示を現時点の工程に対応するパラメータ設定画面に戻すことができる。
 (5)画面切替部は、表示部に表示された複数の工程指標のいずれかが操作されることにより、操作された工程指標に対応するパラメータ設定画面の表示の指示を受け付けてもよい。この場合、使用者は、既にパラメータが設定された工程または現時点の工程に対応する工程指標を操作することにより、パラメータ設定画面の表示を容易に切り替えることができる。
 (6)分光分析制御装置は、既に設定されたパラメータの再設定の指示を受け付ける再設定部をさらに備え、パラメータ設定部は、いずれかの工程に対応するパラメータの再設定の指示が再設定部により受け付けられた場合、パラメータの再設定が指示された工程以降の全工程に対応するパラメータの設定を取り消し、表示制御部は、パラメータの再設定が指示された工程に対応するパラメータ設定画面を表示するように表示部を制御してもよい。
 この構成によれば、既に設定されたパラメータの再設定の指示が受け付けられた場合、当該パラメータに対応する工程以降の全工程に対応するパラメータの設定が取り消される。そのため、既に設定されたパラメータの変更により後の工程に対応するパラメータが不適切になることを防止することができる。また、取り消されたパラメータに対応する工程以降の全工程のパラメータを順次再設定することができる。
 (7)パラメータ設定部は、複数のパラメータとして、分光光度計における分光測定の測定条件、濃度が既知の試料である標準試料における濃度と分光特性値との対応関係を示す検量線を作成するためのパラメータ、および濃度が未知の試料である未知試料の分光特性値をこの順で設定し、分析制御部は、パラメータ設定部に設定された測定条件に基づいて標準試料および未知試料の分光特性値を測定するように分光光度計を制御し、定量実行部は、パラメータ設定部に設定された検量線を作成するためのパラメータおよび未知試料における分光特性値に基づいて未知試料の濃度を定量してもよい。
 この場合、測定条件が所定のパラメータ設定画面から受け付けられ、設定される。設定された測定条件に基づいて分光光度計が制御される。分光光度計による既知試料の測定に基づいて、検量線を作成するためのパラメータがパラメータ設定画面から受け付けられ、設定される。また、分光光度計による未知試料の測定に基づいて、未知試料の分光特性値がさらに他のパラメータ設定画面から受け付けられ、設定される。設定された検量線を作成するためのパラメータおよび未知試料の分光特性値に基づいて、未知試料の濃度を定量することができる。
 (8)検量線を作成するためのパラメータは、標準試料の濃度、標準試料の分光特性値、および検量線の次数を含んでもよい。この場合、標準試料の濃度、標準試料の分光特性値、および検量線の次数に基づいて検量線を容易に作成することができる。
 (9)本発明の他の局面に従う分光分析装置は、試料の分光測定を行う分光光度計と、パラメータの入力を受け付ける表示部と、分光光度計および表示部の動作を制御する本発明の一局面に従う分光分析制御装置とを備える。
 この分光分析制置においては、定量において予め定められた順序で順次実行される複数の工程にそれぞれ対応する複数のパラメータ設定画面が表示部に順次表示されるとともに、複数の工程にそれぞれ対応する複数の工程指標が表示部に表示される。複数のパラメータ設定画面において、複数の工程にそれぞれ対応する複数のパラメータの入力が受け付けられる。各パラメータ設定画面におけるパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータが変更不可能に設定される。ここで、一のパラメータ設定画面においてパラメータが設定されるごとに、次のパラメータ設定画面が表示部に表示され、かつ、複数の工程指標のうち表示中のパラメータ設定画面に対応する工程指標が他の工程指標から識別可能に表示される。設定されたパラメータに基づいて分光光度計が制御される。また、設定された複数のパラメータに基づいて試料の定量が行われる。
 この場合、前の工程に対応するパラメータの変更により後の工程に対応するパラメータが不適切になることを防止することができる。また、使用者は、パラメータの入力の順序を誤ることなく、予め定められた順序で所定のパラメータを容易に入力することができる。さらに、使用者は、複数の工程指標を視認することにより、入力中の現時点のパラメータが全工程中のいずれの工程に対応するパラメータであるかを容易に確認することができる。したがって、使用者は、現時点の工程を確認するためにパラメータ設定画面の表示を切り替える必要がない。これらの結果、分光分析装置の操作性を向上させることができる。
 (10)本発明のさらに他の局面に従う分光分析制御方法は、試料の分光測定を行う分光光度計に接続されるとともに、表示部から入力されるパラメータに基づいて試料の定量を行う分光分析制御装置の分光分析制御方法であって、定量において予め定められた順序で順次実行される複数の工程にそれぞれ対応する複数のパラメータ設定画面を表示部に順次表示するとともに、複数の工程にそれぞれ対応する複数の工程指標を表示部に表示するステップと、複数のパラメータ設定画面において、複数の工程にそれぞれ対応する複数のパラメータの入力を受け付けるステップと、各パラメータ設定画面におけるパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータを変更不可能に設定するステップと、設定されたパラメータに基づいて分光光度計を制御するステップと、設定された複数のパラメータに基づいて試料の定量を行うステップとを含み、表示するステップは、一のパラメータ設定画面においてパラメータが設定されるごとに、次のパラメータ設定画面を表示部に表示し、かつ、複数の工程指標のうち表示部に表示中のパラメータ設定画面に対応する工程指標を他の工程指標から識別可能に表示部に表示することを含む。
 この分光分析制御方法によれば、前の工程に対応するパラメータの変更により後の工程に対応するパラメータが不適切になることを防止することができる。また、使用者は、パラメータの入力の順序を誤ることなく、予め定められた順序で所定のパラメータを容易に入力することができる。さらに、使用者は、複数の工程指標を視認することにより、入力中の現時点のパラメータが全工程中のいずれの工程に対応するパラメータであるかを容易に確認することができる。したがって、使用者は、現時点の工程を確認するためにパラメータ設定画面の表示を切り替える必要がない。これらの結果、分光分析制御装置の操作性を向上させることができる。
 (11)本発明のさらに他の局面に従う分光分析制御プログラムは、試料の分光測定を行う分光光度計に接続されるとともに、表示部から入力されるパラメータに基づいて試料の定量を行う分光分析制御装置の分光分析制御プログラムであって、定量において予め定められた順序で順次実行される複数の工程にそれぞれ対応する複数のパラメータ設定画面を表示部に順次表示するとともに、複数の工程にそれぞれ対応する複数の工程指標を表示部に表示する処理と、複数のパラメータ設定画面において、複数の工程にそれぞれ対応する複数のパラメータの入力を受け付ける処理と、各パラメータ設定画面におけるパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータを変更不可能に設定する処理と、設定されたパラメータに基づいて分光光度計を制御する処理と、設定された複数のパラメータに基づいて試料の定量を行う処理とを、処理装置に実行させ、表示する処理は、一のパラメータ設定画面においてパラメータが設定されるごとに、次のパラメータ設定画面を表示部に表示し、かつ、複数の工程指標のうち表示部に表示中のパラメータ設定画面に対応する工程指標を他の工程指標から識別可能に表示部に表示することを含む。
 この分光分析制御プログラムによれば、前の工程に対応するパラメータの変更により後の工程に対応するパラメータが不適切になることを防止することができる。また、使用者は、パラメータの入力の順序を誤ることなく、予め定められた順序で所定のパラメータを容易に入力することができる。さらに、使用者は、複数の工程指標を視認することにより、入力中の現時点のパラメータが全工程中のいずれの工程に対応するパラメータであるかを容易に確認することができる。したがって、使用者は、現時点の工程を確認するためにパラメータ設定画面の表示を切り替える必要がない。これらの結果、分光分析制御装置の操作性を向上させることができる。
 本発明によれば、分光分析制御装置の操作性を向上させることができる。
図1は本発明の一実施の形態に係る分光分析装置の構成を示す図である。 図2は条件設定画面の一例を示す図である。 図3は付属装置画面の一例を示す図である。 図4は標準試料画面の一例を示す図である。 図5は検量線画面の一例を示す図である。 図6は未知試料画面の一例を示す図である。 図7は定量後の未知試料画面の一例を示す図である。 図8は確認処理におけるパラメータ設定画面の一例を示す図である。 図9は図1の分光分析制御装置の機能的な構成を示すブロック図である。 図10は分光分析制御プログラムにより行われる分光分析制御処理のアルゴリズムを示すフローチャートである。 図11は図10の分光分析制御処理における測定条件設定処理のアルゴリズムを示すフローチャートである。 図12は図10の分光分析制御処理における付属装置情報設定処理のアルゴリズムを示すフローチャートである。 図13は図10の分光分析制御処理における標準試料情報設定処理のアルゴリズムを示すフローチャートである。 図14は図10の分光分析制御処理における検量線作成処理のアルゴリズムを示すフローチャートである。 図15は図10の分光分析制御処理における濃度定量処理のアルゴリズムを示すフローチャートである。
 以下、本発明の実施の形態に係る分光分析制御装置、それを備えた分光分析装置、分光分析制御方法および分光分析制御プログラムについて図面を参照しながら詳細に説明する。
 (1)分光分析装置の構成
 図1は、本発明の一実施の形態に係る分光分析装置の構成を示す図である。図1に示すように、分光分析装置300は、分光分析制御装置100および分光測定を行う分光光度計200を含む。図1においては、主として分光分析装置300のハードウエアの構成が示される。
 分光分析制御装置100は、CPU(中央演算処理装置)110、RAM(ランダムアクセスメモリ)120、ROM(リードオンリメモリ)130、記憶装置140、操作部150、表示部160および入出力I/F(インターフェイス)170により構成される。CPU110、RAM120、ROM130、記憶装置140、操作部150、表示部160および入出力I/F170はバス180に接続される。
 RAM120は、CPU110の作業領域として用いられる。ROM130にはシステムプログラムが記憶される。記憶装置140は、ハードディスクまたは半導体メモリ等の記憶媒体を含み、分光分析制御プログラムを記憶する。CPU110が記憶装置140に記憶された分光分析制御プログラムをRAM120上で実行することにより、後述する分光分析制御処理が行われる。
 操作部150は、キーボードまたはマウス等の入力デバイスを含む。表示部160は、液晶表示装置等の表示デバイスを含む。操作部150および表示部160は、タッチパネル(操作パネル)により構成されてもよい。表示部160は、試料の濃度を定量するために必要な複数のパラメータを受け付けるためのパラメータ設定画面を順次表示する。使用者は、操作部150を用いて表示部160のパラメータ設定画面上で複数のパラメータを指定することができる。入出力I/F170は、分光光度計200に接続される。
 分光光度計200は、投光部210、レンズ220、試料台230、空間フィルタ240、分光素子250および受光部260を含む。投光部210は、重水素ランプおよびハロゲンランプ等の複数の光源を含み、分光分析制御装置100による制御に基づいて種々の波長を有する光を出射する。
 試料台230には、試料1が取り付けられる。ここで、分光分析装置300は付属装置として試料セル310を含み、試料1が液体または気体である場合には、試料1は試料セル310に注入された状態で試料台230に取り付けられる。一方、試料1が固体である場合には、試料1は試料台230に直接取り付けられる。以下の説明では、濃度が既知である試料1を標準試料と呼び、濃度が未知である試料1を未知試料と呼ぶ。
 投光部210から出射された光は、レンズ220により集光され、試料台230に取り付けられた試料1に照射される。試料台230に照射された光は、空間フィルタ240の開口部(ピンホール)を通過して分光素子250に導かれる。分光素子250は、例えば反射型の凹面回折格子である。分光素子250に導かれた光は、波長ごとに空間的に分離され、受光部260により受光される。
 受光部260は、複数の受光素子が一次元状に配列されたラインセンサであり、波長ごとに分離された複数の光を分光分析制御装置100による制御に基づいて複数の受光素子によりそれぞれ受光する。また、受光部260は、各画素における受光量に対応する電気信号(以下、受光信号と呼ぶ。)を分光分析制御装置100に出力する。
 これにより、試料1の光吸収量または発光量等の分光特性値が分光分析制御装置100により測定される。また、測定された未知試料の分光特性値を含む複数種類のパラメータに基づいて、未知試料の濃度が分光分析制御装置100により定量される。ここで、複数種類(本例では5種類)のパラメータは、表示部160に表示される複数のパラメータ設定画面において予め定められた順序でそれぞれ受け付けられる。
 具体的には、第1の工程で、測定条件が条件設定画面において受け付けられる。第2の工程で、付属装置情報が付属装置画面において受け付けられる。第3の工程で、標準試料情報が標準試料画面において受け付けられる。第4の工程で、検量線情報が検量線画面において受け付けられる。第5の工程で、未知試料情報が未知試料画面において受け付けられる。以下、各パラメータ設定画面およびパラメータの種類について説明する。
 (2)パラメータ設定画面
 (a)条件設定画面
 図2は、条件設定画面の一例を示す図である。図2に示すように、表示部160の表示画面の中央部には、矩形状の設定画面表示領域Aが設けられる。分光分析制御処理の開始後、第1の工程における第1のパラメータ設定画面として条件設定画面A1が設定画面表示領域Aに表示される。図2の例では、「単位」、「波長」および「測定回数」を示す測定条件がパラメータとして条件設定画面A1により受け付けられる。
 「単位」は、分光特性値が光吸収量であるか、または発光量であるかを示す。「単位」は、当該「単位」の種類に対応するように条件設定画面A1に表示された複数のチェックボックスCB1のいずれかがチェックされることにより受け付けられる。「波長」は、図1の投光部210から出射される光の波長を示す。「波長」は、当該「波長」の種類に対応するように条件設定画面A1に表示された数値入力欄NE1に数値が入力されることにより受け付けられる。「測定回数」は、分光光度計200による分光測光の実行回数を示す。「測定回数」は、当該「測定回数」の種類に対応するように条件設定画面A1に表示された複数のチェックボックスCB2のいずれかがチェックされることにより受け付けられる。
 表示部160の表示画面の上部には、帯状の工程指標表示領域Bが左右方向に延びるように設けられる。工程指標表示領域Bには、設定画面表示領域Aに表示されるパラメータ設定画面に関わらず、複数の工程にそれぞれ対応する複数の工程指標B1~B5が常時表示される。
 複数の工程指標B1~B5のうち、設定画面表示領域Aに表示中のパラメータ設定画面に対応する工程指標は、他の工程指標から識別可能に表示される。図2の例では、設定画面表示領域Aに表示中の条件設定画面A1に対応する工程指標B1が、他の工程指標B2~B5とは異なる色で表示される。
 また、パラメータが既に設定された工程に対応する工程指標とパラメータが設定されていない工程に対応する工程指標とがさらに識別可能に表示される。具体的には、パラメータが既に設定された工程に対応する工程指標とパラメータが設定されていない工程に対応する工程指標とが異なる形状で表示される。なお、図2の例では、いずれの工程のパラメータも設定されていない。そのため、全部の工程指標B1~B5が同様の形状(例えば五角形または六角形等のリボン形状)により表示される。
 表示部160の表示画面の下部には、設定ボタンCが表示される。条件設定画面A1において測定条件が受け付けられた状態で設定ボタンCが操作されることにより、受け付けられた測定条件が変更不可能に設定される。また、条件設定画面A1に代えて、付属装置画面が第2のパラメータ設定画面として設定画面表示領域Aに表示される。また、複数の工程指標B1~B5の表示態様が変化する。設定された測定条件に基づいて、図1の分光光度計200の動作が制御される。
 (b)付属装置画面
 図3は、付属装置画面の一例を示す図である。現時点では、第1の工程におけるパラメータが既に設定され、第2~第5の工程におけるパラメータが設定されていない。そのため、図3に示すように、第1の工程に対応する工程指標B1が矩形状により表示され、第2~第5の工程にそれぞれ対応する工程指標B2~B5がリボン形状により表示される。また、設定画面表示領域Aに表示中の付属装置画面A2に対応する工程指標B2が、他の工程指標B1,B3~B5とは異なる色で表示される。
 付属装置画面A2において、図1の分光分析装置300に設けられる付属装置についての情報(付属装置情報)がパラメータとして受け付けられる。付属装置は、例えば図1の試料セル310である。付属装置情報は、例えば付属装置の形状および寸法を含む。また、付属装置情報は、付属装置を使用しないことも含む。なお、付属装置情報は付属装置の型番により特定可能であるため、図3の例では、付属装置情報として付属装置の「型番V」~「型番Z」が付属装置画面A2に表示されている。付属装置情報は、当該付属装置情報の種類に対応するように付属装置画面A2に表示された複数のチェックボックスCB3のいずれかがチェックされることにより受け付けられる。
 付属装置画面A2において付属装置情報が受け付けられた状態で設定ボタンCが操作されることにより、受け付けられた付属装置情報が変更不可能に設定される。また、付属装置画面A2に代えて、標準試料画面が第3のパラメータ設定画面として設定画面表示領域Aに表示されるとともに、複数の工程指標B1~B5の表示態様が変化する。
 (c)標準試料画面
 図4は、標準試料画面の一例を示す図である。現時点では、第1および第2の工程におけるパラメータが既に設定され、第3~第5の工程におけるパラメータが設定されていない。そのため、図4に示すように、第1および第2の工程にそれぞれ対応する工程指標B1,B2が矩形状により表示され、第3~第5の工程にそれぞれ対応する工程指標B3~B5がリボン形状により表示される。また、設定画面表示領域Aに表示中の標準試料画面A3に対応する工程指標B3が、他の工程指標B1,B2,B4,B5とは異なる色で表示される。
 標準試料画面A3において、複数の標準試料の各々についての標準試料情報がパラメータとして受け付けられる。標準試料情報は、濃度と分光特性値との組を含む。図4の例では、複数の標準試料として「標準試料1」~「標準試料5」が標準試料画面A3に表示されている。各標準試料情報は、当該標準試料情報に対応するように標準試料画面A3に表示された数値入力欄NE2,NE3にそれぞれ濃度および分光特性値が入力されることにより受け付けられる。
 ここで、第1および第2の工程においてそれぞれ設定された測定条件および付属装置情報に基づいて図1の分光光度計200により測定された標準試料の分光特性値が数値入力欄NE3に入力されることとなる。なお、図4の例では、分光特性値は「光吸収量」である。また、「標準試料1」~「標準試料3」について、「濃度」および「光吸収量」が数値入力欄NE2,NE3にそれぞれ入力されている。
 標準試料画面A3において標準試料情報が受け付けられた状態で設定ボタンCが操作されることにより、受け付けられた標準試料情報が変更不可能に設定される。また、標準試料画面A3に代えて、検量線画面が第4のパラメータ設定画面として設定画面表示領域Aに表示されるとともに、複数の工程指標B1~B5の表示態様が変化する。
 (d)検量線画面
 図5は、検量線画面の一例を示す図である。現時点では、第1~第3の工程におけるパラメータが既に設定され、第4および第5の工程におけるパラメータが設定されていない。そのため、図5に示すように、第1~第3の工程にそれぞれ対応する工程指標B1~B3が矩形状により表示され、第4および第5の工程にそれぞれ対応する工程指標B4,B5がリボン形状により表示される。また、設定画面表示領域Aに表示中の検量線画面A4に対応する工程指標B4が、他の工程指標B1~B3,B5とは異なる色で表示される。
 検量線画面A4において、検量線の次数を示す検量線情報がパラメータとして受け付けられる。図5の例では、検量線の次数として「1次式」および「2次式」が検量線画面A4に表示されている。検量線情報は、当該検量線情報の種類に対応するように検量線画面A4に表示されたチェックボックスCB4がチェックされることにより受け付けられる。
 なお、検量線画面A4には、標準試料画面A3において設定された複数の標準試料についての濃度と分光特性値との関係を示すグラフGRが表示されてもよい。この場合、使用者は、グラフGRを視認することにより、適切な検量線情報の種類を容易に指定することができる。
 検量線画面A4において検量線情報が受け付けられた状態で設定ボタンCが操作されることにより、受け付けられた検量線情報が変更不可能に設定される。また、設定された検量線情報と第3の工程において設定された標準試料情報とに基づいて検量線が作成される。さらに、検量線画面A4に代えて、未知試料画面が第5のパラメータ設定画面として設定画面表示領域Aに表示されるとともに、複数の工程指標B1~B5の表示態様が変化する。
 (e)未知試料画面
 図6は、未知試料画面の一例を示す図である。現時点では、第1~第4の工程におけるパラメータが既に設定され、第5の工程におけるパラメータが設定されていない。そのため、図6に示すように、第1~第4の工程にそれぞれ対応する工程指標B1~B4が矩形状により表示され、第5の工程にそれぞれ対応する工程指標B5がリボン形状により表示される。また、設定画面表示領域Aに表示中の未知試料画面A5に対応する工程指標B5が、他の工程指標B1~B4とは異なる色で表示される。
 未知試料画面A5において、未知試料の分光特性値を示す未知試料情報がパラメータとして受け付けられる。図6の例では、複数の未知試料の分光特性値を受け付け可能であり、複数の未知試料として「未知試料1」~「未知試料5」が未知試料画面A5に表示されている。各未知試料情報は、当該未知試料情報に対応するように未知試料画面A5に表示された数値入力欄NE4に分光特性値が入力されることにより受け付けられる。
 ここで、第1および第2の工程においてそれぞれ設定された測定条件および付属装置情報に基づいて図1の分光光度計200により測定された未知試料の分光特性値が数値入力欄NE4に入力されることとなる。なお、図6の例では、分光特性値は「光吸収量」である。また、「未知試料1」および「未知試料2」について、「光吸収量」が数値入力欄NE4に入力されている。
 第5の工程においては、図2~図5の設定ボタンCに代えて、決定ボタンDが表示部160の表示画面の下部に表示される。未知試料画面A5において未知試料情報が受け付けられた状態で決定ボタンDが操作されることにより、受け付けられた未知試料情報が変更不可能に設定される。また、設定された未知試料情報と第4の工程において作成された検量線とに基づいて未知試料の濃度が定量される。図7は、定量後の未知試料画面の一例を示す図である。図7に示すように、定量された未知試料の濃度が未知試料画面A5に表示される。
 (f)パラメータ設定画面の確認
 第2~第5の工程において、使用者は、以前に設定されたパラメータを確認したい場合がある。そこで、本実施の形態においては、現工程よりも前の工程に対応する工程指標を操作することにより、操作された工程指標に対応するパラメータ設定画面を設定画面表示領域Aに表示する確認処理を実行することができる。
 図8は、確認処理におけるパラメータ設定画面の一例を示す図である。例えば、図4に示す第3の工程において、以前に設定された測定条件を確認する場合には、使用者は、工程指標B1を操作する。これにより、図8に示すように、設定画面表示領域Aの表示が標準試料画面A3から工程指標B1に対応する条件設定画面A1に切り替えられる。
 この状態においては、第1および第2の工程におけるパラメータが既に設定され、第3~第5の工程におけるパラメータが設定されていない。そのため、第1および第2の工程にそれぞれ対応する工程指標B1,B2が矩形状により表示され、第3~第5の工程にそれぞれ対応する工程指標B3~B5がリボン形状により表示される。また、設定画面表示領域Aに表示中の条件設定画面A1に対応する工程指標B1が、他の工程指標B2~B5とは異なる色で表示される。
 使用者は、設定画面表示領域Aに表示された条件設定画面A1を視認することにより、測定条件を確認することができる。なお、使用者は、工程指標B2を操作することにより、設定画面表示領域Aの表示を付属装置画面A2に切り替えることができる。また、使用者は、工程指標B3を操作することにより、設定画面表示領域Aの表示をパラメータ設定途中の標準試料画面A3に切り替える(戻す)ことができる。
 以前の工程において設定されたパラメータが変更されると、その工程よりも後の工程において設定されたパラメータが不適切になることがある。そこで、確認処理中のパラメータ設定画面においては、以前に設定されたパラメータの変更が受け付けられない。これにより、既に設定されたパラメータが不適切になることを防止することができる。
 一方で、以前の工程において設定されたパラメータを変更したい場合がある。そこで、確認処理中においては、既にパラメータが設定された工程に対応するパラメータ設定画面に再設定ボタンEがさらに表示される。使用者は、いずれかの工程において設定されたパラメータを変更したい場合には、その工程に対応する確認処理中のパラメータ設定画面において再設定ボタンEを操作する。
 この場合、再設定ボタンEが操作された工程に対応するパラメータが取り消されるとともに、その工程よりも後の全工程に対応するパラメータが取り消される。また、再設定ボタンEが操作された工程に対応するパラメータ設定画面が設定画面表示領域Aに表示される。これにより、使用者は、変更したいパラメータの再設定を行うことができる。また、後の工程に対応するパラメータも再設定されることになるので、既に設定されたパラメータが不適切になることを防止することができる。
 (3)分光分析制御装置
 図9は、図1の分光分析制御装置100の機能的な構成を示すブロック図である。図9に示すように、分光分析制御装置100は、条件設定画面生成部10、測定条件受付部11、測定条件設定部12、付属装置画面生成部20、付属装置情報受付部21、付属装置情報設定部22、標準試料画面生成部30、標準試料情報受付部31および標準試料情報設定部32を含む。また、分光分析制御装置100は、検量線画面生成部40、検量線情報受付部41、検量線情報設定部42、検量線作成部43、未知試料画面生成部50、未知試料情報受付部51、未知試料情報設定部52、定量実行部53、表示制御部60、決定部61、画面切替部62、再設定部63および分析制御部70を含む。
 図1のCPU110が記憶装置140に記憶された分光分析制御プログラムを実行することにより、分光分析制御装置100の構成要素(10~12,20~22,30~32,40~43,50~53,60~64,70)の機能が実現される。分光分析制御装置100の構成要素(10~12,20~22,30~32,40~43,50~53,60~64,70)の一部または全てが電子回路等のハードウエアにより実現されてもよい。
 なお、図9においては、視認を容易にするために、決定部61と測定条件設定部12、付属装置情報設定部22、標準試料情報設定部32、検量線情報設定部42および未知試料情報設定部52との間の接続が点線により示される。また、再設定部63と測定条件設定部12、付属装置情報設定部22、標準試料情報設定部32および検量線情報設定部42との間の接続が一点鎖線により示される。
 条件設定画面生成部10は、図2の条件設定画面A1を表示するための条件設定画面データを生成する。測定条件受付部11は、設定画面表示領域Aに表示された条件設定画面A1において測定条件を受け付ける。
 測定条件設定部12は、決定の指示が与えられることに応答して、測定条件受付部11により受け付けられた測定条件を設定する。また、測定条件設定部12は、再設定の指示が与えられることに応答して、設定された測定条件を取り消す。
 付属装置画面生成部20は、図3の付属装置画面A2を表示するための付属装置画面データを生成する。付属装置情報受付部21は、設定画面表示領域Aに表示された付属装置画面A2において付属装置情報を受け付ける。
 付属装置情報設定部22は、決定の指示が与えられることに応答して、付属装置情報受付部21により受け付けられた付属装置情報を設定する。また、付属装置情報設定部22は、再設定の指示が与えられることに応答して、設定された付属装置情報を取り消す。さらに、付属装置情報設定部22は、測定条件設定部12に再設定の指示が与えられた場合にも、設定された付属装置情報を取り消す。
 標準試料画面生成部30は、図4の標準試料画面A3を表示するための標準試料画面データを生成する。標準試料情報受付部31は、濃度受付部31aおよび分光特性値受付部31bを含む。濃度受付部31aおよび分光特性値受付部31bは、設定画面表示領域Aに表示された標準試料画面A3において標準試料の濃度および分光特性値をそれぞれ受け付ける。
 標準試料情報設定部32は、濃度設定部32aおよび分光特性値設定部32bを含む。濃度設定部32aおよび分光特性値設定部32bは、決定の指示が与えられることに応答して、濃度受付部31aおよび分光特性値受付部31bにより受け付けられた濃度および分光特性値をそれぞれ設定する。また、濃度設定部32aおよび分光特性値設定部32bは、再設定の指示が与えられることに応答して、設定された濃度および分光特性値をそれぞれ取り消す。さらに、濃度設定部32aおよび分光特性値設定部32bは、測定条件設定部12または付属装置情報設定部22に再設定の指示が与えられた場合にも、設定された濃度および分光特性値をそれぞれ取り消す。
 検量線画面生成部40は、図5の検量線画面A4を表示するための検量線画面データを生成する。検量線情報受付部41は、設定画面表示領域Aに表示された検量線画面A4において検量線情報を受け付ける。
 検量線情報設定部42は、決定の指示が与えられることに応答して、検量線情報受付部41により受け付けられた検量線情報を設定する。また、検量線情報設定部42は、再設定の指示が与えられることに応答して、設定された検量線情報を取り消す。さらに、検量線情報設定部42は、測定条件設定部12、付属装置情報設定部22または標準試料情報設定部32に再設定の指示が与えられた場合にも、設定された検量線情報を取り消す。
 検量線作成部43は、濃度設定部32aにより設定された濃度、分光特性値設定部32bにより設定された分光特性値および検量線情報設定部42により設定された検量線情報に基づいて検量線を作成する。なお、検量線作成部43は、濃度設定部32aにより設定された濃度、分光特性値設定部32bにより設定された分光特性値および検量線情報設定部42により設定された検量線情報のいずれかが取り消された場合には、作成した検量線を取り消す。
 未知試料画面生成部50は、図6の未知試料画面A5を表示するための未知試料画面データを生成する。未知試料情報受付部51は、設定画面表示領域Aに表示された未知試料画面A5において未知試料情報を受け付ける。
 未知試料情報設定部52は、決定の指示が与えられることに応答して、未知試料情報受付部51により受け付けられた未知試料情報を設定する。また、未知試料情報設定部52は、再設定の指示が与えられることに応答して、設定された未知試料情報を取り消す。さらに、未知試料情報設定部52は、測定条件設定部12、付属装置情報設定部22、標準試料情報設定部32または検量線情報設定部42に再設定の指示が与えられた場合にも、設定された未知試料情報を取り消す。
 定量実行部53は、検量線作成部43により作成された検量線および未知試料情報設定部52により設定された未知試料情報に基づいて、未知試料の濃度を定量する。また、定量実行部53は、定量された未知試料の濃度を示す情報を未知試料画面生成部50に与える。これにより、図7の未知試料画面A5に定量された未知試料の濃度が表示される。
 上記の構成においては、測定条件受付部11、付属装置情報受付部21、標準試料情報受付部31、検量線情報受付部41および未知試料情報受付部51の各々がパラメータ受付部の例である。また、測定条件設定部12、付属装置情報設定部22、標準試料情報設定部32、検量線情報設定部42および未知試料情報設定部52の各々がパラメータ設定部の例である。
 表示制御部60は、図2~図6の工程指標B1~B5を工程指標表示領域Bに表示させる。また、表示制御部60は、条件設定画面生成部10、付属装置画面生成部20、標準試料画面生成部30、検量線画面生成部40または未知試料画面生成部50により生成された画面データに基づくパラメータ設定画面を設定画面表示領域Aに表示させる。さらに、表示制御部60は、決定の指示、パラメータ設定画面の表示の切り替えの指示、または再設定の指示が与えられることに応答して、工程指標B1~B5の表示の態様が変化するとともに表示されるパラメータ設定画面が変化するように表示部160を制御する。
 決定部61は、第1~第4の工程において図2~図5の設定ボタンCが操作された場合、測定条件設定部12、付属装置情報設定部22、標準試料情報設定部32または検量線情報設定部42にパラメータの決定の指示をそれぞれ与える。また、決定部61は、第5の工程において図6の決定ボタンDが操作された場合、未知試料情報設定部52にパラメータの決定の指示を与える。さらに、決定部61は、設定ボタンCまたは決定ボタンDが操作された場合、パラメータの決定の指示を表示制御部60にも与える。
 画面切替部62は、既にパラメータが設定された工程またはパラメータ設定途中の工程に対応する工程指標が操作された場合、パラメータ設定画面の表示の切り替えの指示を表示制御部60に与える。再設定部63は、第2~第5の工程において、確認処理中に図8の再設定ボタンEが操作された場合、測定条件設定部12、付属装置情報設定部22、標準試料情報設定部32または検量線情報設定部42にパラメータの再設定の指示をそれぞれ与える。また、再設定部63は、再設定ボタンEが操作された場合、パラメータの再設定の指示を表示制御部60にも与える。
 分析制御部70は、測定条件設定部12により設定された測定条件に基づいて図1の分光光度計200の動作を制御する。また、分析制御部70は、測定条件設定部12および付属装置情報設定部22によりそれぞれ設定された測定条件および付属装置情報に基づいて図1の分光光度計200により測定された標準試料および未知試料の分光特性値を取得する。
 (4)分光分析制御処理
 図10は、分光分析制御プログラムにより行われる分光分析制御処理のアルゴリズムを示すフローチャートである。分光分析制御処理においては、まず、測定条件設定処理が実行される(ステップS10)。次に、付属装置情報設定処理が実行される(ステップS20)。続いて、標準試料情報設定処理が実行される(ステップS30)。その後、検量線作成処理が実行される(ステップS40)。最後に、濃度定量処理が実行される(ステップS50)。以下、測定条件設定処理、付属装置情報設定処理、標準試料情報設定処理、検量線作成処理および濃度定量処理の詳細について説明する。
 (a)測定条件設定処理
 図11は、図10の分光分析制御処理における測定条件設定処理のアルゴリズムを示すフローチャートである。まず、表示制御部60は、条件設定画面生成部10により生成された条件設定画面データに基づいて、図2の条件設定画面A1を設定画面表示領域Aに表示させる(ステップS11)。また、表示制御部60は、複数の工程指標B1~B5を工程指標表示領域Bに表示させる(ステップS12)。
 ステップS12においては、工程指標B1~B5が、リボン形状により表示される。また、工程指標B1が、他の工程指標B2~B5とは異なる色で表示される。なお、ステップS11,S12は、いずれが先に実行されてもよいし、同時に実行されてもよい。
 次に、測定条件受付部11は、ステップS11の条件設定画面A1において測定条件が受け付けられたか否かを判定する(ステップS13)。使用者は、図2の複数のチェックボックスCB1のいずれかをチェックし、数値入力欄NE1に数値を入力し、複数のチェックボックスCB2のいずれかをチェックすることにより測定条件を入力することができる。
 測定条件が受け付けられない場合、測定条件受付部11はステップS15に進む。測定条件が受け付けられた場合、測定条件受付部11は、受け付けられた測定条件を保持し(ステップS14)、ステップS15に進む。
 ステップS15において、決定部61は、次の設定に進むことが指示されたか否かを判定する(ステップS15)。使用者は、図2の設定ボタンCを操作することにより次の設定に進むことを指示することができる。次の設定に進むことが指示されない場合、決定部61はステップS13に戻る。なお、ステップS14において測定条件が保持されていない場合、ステップS15において次の設定に進むことは指示されない。
 ステップS15において次の設定に進むことが指示されるまで、ステップS13~S15が繰り返される。次の設定に進むことが指示された場合、測定条件設定部12は、ステップS14において保持された測定条件を設定し(ステップS16)、測定条件設定処理を終了する。
 (b)付属装置情報設定処理
 図12は、図10の分光分析制御処理における付属装置情報設定処理のアルゴリズムを示すフローチャートである。まず、表示制御部60は、付属装置画面生成部20により生成された付属装置画面データに基づいて、図3の付属装置画面A2を設定画面表示領域Aに表示させる(ステップS21)。また、表示制御部60は、複数の工程指標B1~B5の表示の態様を更新する(ステップS22)。
 ステップS22においては、工程指標B1が矩形状により表示され、工程指標B2~B5がリボン形状により表示される。また、工程指標B2が、他の工程指標B1,B3~B5とは異なる色で表示される。なお、ステップS21,S22は、いずれが先に実行されてもよいし、同時に実行されてもよい。
 次に、付属装置情報受付部21は、ステップS21の付属装置画面A2において付属装置情報が受け付けられたか否かを判定する(ステップS23)。使用者は、図3の複数のチェックボックスCB3のいずれかをチェックすることにより付属装置情報を入力することができる。
 付属装置情報が受け付けられない場合、付属装置情報受付部21はステップS25に進む。付属装置情報が受け付けられた場合、付属装置情報受付部21は、受け付けられた付属装置情報を保持し(ステップS24)、ステップS25に進む。
 ステップS25において、画面切替部62は、確認処理が指示されたか否かを判定する(ステップS25)。使用者は、工程指標B1,B2を操作することにより確認処理を指示することができる。確認処理が指示されない場合、画面切替部62はステップS27に進む。確認処理が指示された場合、画面切替部62は、確認処理を実行する(ステップS26)。
 ステップS26の確認処理中においては、条件設定画面A1および付属装置画面A2のいずれかが設定画面表示領域Aに表示される。また、設定画面表示領域Aに表示されるパラメータ設定画面に応じて工程指標B1,B2の色が変更される。
 ここで、条件設定画面A1には再設定ボタンE(図8)が表示されるとともに、条件設定画面A1の再設定ボタンEが操作されたか否かが再設定部63により判定される。条件設定画面A1の再設定ボタンEが操作されない場合、再設定部63はステップS27に進む。一方、条件設定画面A1の再設定ボタンEが操作された場合、測定条件設定部12は、図11のステップS16で設定された測定条件を取り消し、ステップS10の測定条件設定処理に戻る。
 ステップS27において、決定部61は、次の設定に進むことが指示されたか否かを判定する(ステップS27)。使用者は、図3の設定ボタンCを操作することにより次の設定に進むことを指示することができる。次の設定に進むことが指示されない場合、決定部61はステップS23に戻る。なお、ステップS24において付属装置情報が保持されていない場合、ステップS27において次の設定に進むことは指示されない。
 ステップS26の確認処理において再設定が指示されるか、またはステップS27において次の設定に進むことが指示されるまで、ステップS23~S27が繰り返される。次の設定に進むことが指示された場合、付属装置情報設定部22は、ステップS24において保持された付属装置情報を設定し(ステップS28)、付属装置情報設定処理を終了する。
 (c)標準試料情報設定処理
 図13は、図10の分光分析制御処理における標準試料情報設定処理のアルゴリズムを示すフローチャートである。まず、表示制御部60は、標準試料画面生成部30により生成された標準試料画面データに基づいて、図4の標準試料画面A3を設定画面表示領域Aに表示させる(ステップS31)。また、表示制御部60は、複数の工程指標B1~B5の表示の態様を更新する(ステップS32)。
 ステップS32においては、工程指標B1,B2が矩形状により表示され、工程指標B3~B5がリボン形状により表示される。また、工程指標B3が、他の工程指標B1,B2,B4,B5とは異なる色で表示される。なお、ステップS31,S32は、いずれが先に実行されてもよいし、同時に実行されてもよい。
 次に、標準試料情報受付部31は、ステップS31の標準試料画面A3において標準試料情報が受け付けられたか否かを判定する(ステップS33)。使用者は、図4の複数の数値入力欄NE2,NE3に数値を入力することにより標準試料情報を入力することができる。
 具体的には、使用者は、複数の数値入力欄NE2に複数の標準試料の濃度をそれぞれ入力する。また、使用者は複数の標準試料を図1の分光光度計200の試料台230に順次取り付ける。標準試料が液体または気体である場合には、試料セル310に注入された状態で試料台230に取り付けられる。分析制御部70は、測定条件設定処理のステップS16において設定された測定条件および付属装置情報設定処理のステップS28において設定された付属装置情報に基づいて、各標準試料の分光測定を行うように図1の分光光度計200を制御する。また、分析制御部70は、分光光度計200により測定された各標準試料の分光特性値を取得する。使用者は、分析制御部70により取得された複数の標準試料の分光特性値を複数の数値入力欄NE3にそれぞれ入力する。なお、分析制御部70により取得された複数の標準試料の分光特性値は、複数の数値入力欄NE3に自動的にそれぞれ入力されてもよい。
 ステップS33において、標準試料情報が受け付けられない場合、標準試料情報受付部31はステップS35に進む。標準試料情報が受け付けられた場合、標準試料情報受付部31は、受け付けられた標準試料情報を保持し(ステップS34)、ステップS35に進む。
 ステップS35において、画面切替部62は、確認処理が指示されたか否かを判定する(ステップS35)。使用者は、工程指標B1~B3を操作することにより確認処理を指示することができる。確認処理が指示されない場合、画面切替部62はステップS37に進む。確認処理が指示された場合、画面切替部62は、確認処理を実行する(ステップS36)。
 ステップS36の確認処理中においては、条件設定画面A1、付属装置画面A2および標準試料画面A3のいずれかが設定画面表示領域Aに表示される。また、設定画面表示領域Aに表示されるパラメータ設定画面に応じて工程指標B1~B3の色が変更される。
 ここで、条件設定画面A1および付属装置画面A2には再設定ボタンE(図8)が表示される。また、条件設定画面A1または付属装置画面A2の再設定ボタンEが操作されたか否かが再設定部63により判定される。再設定ボタンEが操作されない場合、再設定部63はステップS37に進む。
 一方、条件設定画面A1の再設定ボタンEが操作された場合、付属装置情報設定部22は、図12のステップS28で設定された付属装置情報を取り消す。また、測定条件設定部12は、図11のステップS16で設定された測定条件を取り消し、ステップS10の測定条件設定処理に戻る。
 付属装置画面A2の再設定ボタンEが操作された場合、付属装置情報設定部22は、図12のステップS28で設定された付属装置情報を取り消し、ステップS20の付属装置情報設定処理に戻る。
 ステップS37において、決定部61は、次の設定に進むことが指示されたか否かを判定する(ステップS37)。使用者は、図4の設定ボタンCを操作することにより次の設定に進むことを指示することができる。次の設定に進むことが指示されない場合、決定部61はステップS33に戻る。なお、ステップS34において標準試料情報が保持されていない場合、ステップS37において次の設定に進むことは指示されない。
 ステップS36の確認処理において再設定が指示されるか、またはステップS37において次の設定に進むことが指示されるまで、ステップS33~S37が繰り返される。次の設定に進むことが指示された場合、標準試料情報設定部32は、ステップS34において保持された標準試料情報を設定し(ステップS38)、標準試料情報設定処理を終了する。
 (d)検量線作成処理
 図14は、図10の分光分析制御処理における検量線作成処理のアルゴリズムを示すフローチャートである。まず、表示制御部60は、検量線画面生成部40により生成された検量線画面データに基づいて、図5の検量線画面A4を設定画面表示領域Aに表示させる(ステップS41)。また、表示制御部60は、複数の工程指標B1~B5の表示の態様を更新する(ステップS42)。
 ステップS42においては、工程指標B1~B3が矩形状により表示され、工程指標B4,B5がリボン形状により表示される。また、工程指標B4が、他の工程指標B1~B3,B5とは異なる色で表示される。なお、ステップS41,S42は、いずれが先に実行されてもよいし、同時に実行されてもよい。
 次に、検量線情報受付部41は、ステップS41の検量線画面A4において検量線情報が受け付けられたか否かを判定する(ステップS43)。使用者は、図5の複数のチェックボックスCB4のいずれかをチェックすることにより検量線情報を入力することができる。
 検量線情報が受け付けられない場合、検量線情報受付部41はステップS45に進む。検量線情報が受け付けられた場合、検量線情報受付部41は、受け付けられた検量線情報を保持し(ステップS44)、ステップS45に進む。
 ステップS45において、画面切替部62は、確認処理が指示されたか否かを判定する(ステップS45)。使用者は、工程指標B1~B4を操作することにより確認処理を指示することができる。確認処理が指示されない場合、画面切替部62はステップS47に進む。確認処理が指示された場合、画面切替部62は、確認処理を実行する(ステップS46)。
 ステップS46の確認処理中においては、条件設定画面A1、付属装置画面A2、標準試料画面A3および検量線画面A4のいずれかが設定画面表示領域Aに表示される。また、設定画面表示領域Aに表示されるパラメータ設定画面に応じて工程指標B1~B4の色が変更される。
 ここで、条件設定画面A1、付属装置画面A2および標準試料画面A3には再設定ボタンE(図8)が表示される。また、条件設定画面A1、付属装置画面A2または標準試料画面A3の再設定ボタンEが操作されたか否かが再設定部63により判定される。再設定ボタンEが操作されない場合、再設定部63はステップS47に進む。
 一方、条件設定画面A1の再設定ボタンEが操作された場合、標準試料情報設定部32は、図13のステップS38で設定された標準試料情報を取り消す。また、付属装置情報設定部22は、図12のステップS28で設定された付属装置情報を取り消す。さらに、測定条件設定部12は、図11のステップS16で設定された測定条件を取り消し、ステップS10の測定条件設定処理に戻る。
 付属装置画面A2の再設定ボタンEが操作された場合、標準試料情報設定部32は、図13のステップS38で設定された標準試料情報を取り消す。また、付属装置情報設定部22は、図12のステップS28で設定された付属装置情報を取り消し、ステップS20の付属装置情報設定処理に戻る。
 標準試料画面A3の再設定ボタンEが操作された場合、標準試料情報設定部32は、図13のステップS38で設定された標準試料情報を取り消し、ステップS30の標準試料情報設定処理に戻る。
 ステップS47において、決定部61は、次の設定に進むことが指示されたか否かを判定する(ステップS47)。使用者は、図5の設定ボタンCを操作することにより次の設定に進むことを指示することができる。次の設定に進むことが指示されない場合、決定部61はステップS43に戻る。なお、ステップS44において検量線情報が保持されていない場合、ステップS47において次の設定に進むことは指示されない。
 ステップS46の確認処理において再設定が指示されるか、またはステップS47において次の設定に進むことが指示されるまで、ステップS43~S47が繰り返される。次の設定に進むことが指示された場合、検量線情報設定部42は、ステップS44において保持された検量線情報を設定する(ステップS48)。
 その後、検量線作成部43は、ステップS48で設定された検量線情報および標準試料情報設定処理のステップS38において設定された標準試料情報に基づいて検量線を作成し(ステップS49)、検量線作成処理を終了する。
 (e)濃度定量処理
 図15は、図10の分光分析制御処理における濃度定量処理のアルゴリズムを示すフローチャートである。まず、表示制御部60は、未知試料画面生成部50により生成された未知試料画面データに基づいて、図6の未知試料画面A5を設定画面表示領域Aに表示させる(ステップS51)。また、表示制御部60は、複数の工程指標B1~B5の表示の態様を更新する(ステップS52)。
 ステップS52においては、工程指標B1~B4が矩形状により表示され、工程指標B5がリボン形状により表示される。また、工程指標B5が、他の工程指標B1~B4とは異なる色で表示される。なお、ステップS51,S52は、いずれが先に実行されてもよいし、同時に実行されてもよい。
 次に、未知試料情報受付部51は、ステップS51の未知試料画面A5において未知試料情報が受け付けられたか否かを判定する(ステップS53)。使用者は、図6の1以上の数値入力欄NE4に数値を入力することにより未知試料情報を入力することができる。
 具体的には、使用者は1以上の未知試料を図1の分光光度計200の試料台230に順次取り付ける。未知試料が液体または気体である場合には、試料セル310に注入された状態で試料台230に取り付けられる。分析制御部70は、測定条件設定処理のステップS16において設定された測定条件および付属装置情報設定処理のステップS28において設定された付属装置情報に基づいて、各未知試料の分光測定を行うように図1の分光光度計200を制御する。また、分析制御部70は、分光光度計200により測定された各未知試料の分光特性値を取得する。使用者は、分析制御部70により取得された1以上の未知試料の分光特性値を1以上の数値入力欄NE4にそれぞれ入力する。なお、分析制御部70により取得された1以上試料の分光特性値は、1以上の数値入力欄NE4に自動的にそれぞれ入力されてもよい。
 未知試料情報が受け付けられない場合、未知試料情報受付部51はステップS55に進む。未知試料情報が受け付けられた場合、未知試料情報受付部51は、受け付けられた未知試料情報を保持し(ステップS54)、ステップS55に進む。
 ステップS55において、画面切替部62は、確認処理が指示されたか否かを判定する(ステップS55)。使用者は、工程指標B1~B5を操作することにより確認処理を指示することができる。確認処理が指示されない場合、画面切替部62はステップS57に進む。確認処理が指示された場合、画面切替部62は、確認処理を実行する(ステップS56)。
 ステップS56の確認処理中においては、条件設定画面A1、付属装置画面A2、標準試料画面A3、検量線画面A4および未知試料画面A5のいずれかが設定画面表示領域Aに表示される。また、設定画面表示領域Aに表示されるパラメータ設定画面に応じて工程指標B1~B5の色が変更される。
 ここで、条件設定画面A1、付属装置画面A2、標準試料画面A3および検量線画面A4には再設定ボタンE(図8)が表示される。また、条件設定画面A1、付属装置画面A2、標準試料画面A3または検量線画面A4の再設定ボタンEが操作されたか否かが再設定部63により判定される。再設定ボタンEが操作されない場合、再設定部63はステップS57に進む。
 一方、条件設定画面A1の再設定ボタンEが操作された場合、検量線情報設定部42は、図14のステップS48で設定された検量線情報を取り消す。また、標準試料情報設定部32は、図13のステップS38で設定された標準試料情報を取り消す。また、付属装置情報設定部22は、図12のステップS28で設定された付属装置情報を取り消す。さらに、測定条件設定部12は、図11のステップS16で設定された測定条件を取り消し、ステップS10の測定条件設定処理に戻る。
 付属装置画面A2の再設定ボタンEが操作された場合、検量線情報設定部42は、図14のステップS48で設定された検量線情報を取り消す。また、標準試料情報設定部32は、図13のステップS38で設定された標準試料情報を取り消す。さらに、付属装置情報設定部22は、図12のステップS28で設定された付属装置情報を取り消し、ステップS20の付属装置情報設定処理に戻る。
 標準試料画面A3の再設定ボタンEが操作された場合、検量線情報設定部42は、図14のステップS48で設定された検量線情報を取り消す。また、標準試料情報設定部32は、図13のステップS38で設定された標準試料情報を取り消し、ステップS30の標準試料情報設定処理に戻る。
 検量線画面A4の再設定ボタンEが操作された場合、検量線情報設定部42は、図14のステップS48で設定された検量線情報を取り消し、ステップS40の検量線作成処理に戻る。
 ステップS57において、決定部61は、決定が指示されたか否かを判定する(ステップS57)。使用者は、図6の決定ボタンDを操作することにより決定を指示することができる。決定が指示されない場合、決定部61はステップS53に戻る。なお、ステップS54において未知試料情報が保持されていない場合、ステップS57において決定は指示されない。
 ステップS56の確認処理において再設定が指示されるか、またはステップS57において決定が指示されるまで、ステップS53~S57が繰り返される。決定が指示された場合、未知試料情報設定部52は、ステップS54において保持された未知試料情報を設定する(ステップS58)。
 その後、定量実行部53は、ステップS58で設定された未知試料情報および検量線作成処理のステップS49において作成された検量線に基づいて未知試料の濃度を定量する(ステップS59)。表示制御部60は、ステップS59で定量された未知試料の濃度を表示部160に表示し(ステップS60)、濃度定量処理を終了する。
 (5)効果
 本実施の形態に係る分光分析制御装置100によれば、各工程におけるパラメータの入力が、表示部160に表示された当該工程に対応するパラメータ設定画面から受け付けられる。ここで、既に設定されたパラメータが変更されると、当該パラメータの変更により後の工程に対応するパラメータが不適切になることがある。そこで、一の工程に対応するパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータが変更不可能に設定されるとともに、次の工程に対応するパラメータ設定画面が表示部160に表示される。これにより、前の工程に対応するパラメータの変更により後の工程に対応するパラメータが不適切になることを防止することができる。また、使用者は、パラメータの入力の順序を誤ることなく、予め定められた順序で所定のパラメータを容易に入力することができる。
 さらに、表示部160には、現時点の工程に対応する工程指標が他の工程指標から識別可能に表示される。そのため、使用者は、入力中の現時点のパラメータが全工程中のいずれの工程に対応するパラメータであるかを容易に確認することができる。したがって、使用者は、現時点の工程を確認するためにパラメータ設定画面の表示を切り替える必要がない。これらの結果、分光分析制御装置100の操作性を向上させることができる。
 (6)他の実施の形態
 (a)上記実施の形態において、分光分析制御処理が付属装置情報設定処理を含むが、本発明はこれに限定されない。分光分析装置300に付属装置が用いられない場合には、分光分析制御処理は付属装置情報設定処理を含まなくてもよい。この場合には、設定画面表示領域Aに付属装置画面A2が表示されず、工程指標表示領域Bに工程指標B2が表示されない。
 (b)上記実施の形態において、パラメータは、パラメータ設定画面に表示された複数のチェックボックスのいずれかがチェックされるか、または数値入力欄に数値が入力されることにより受け付けられるが、本発明はこれに限定されない。パラメータ設定画面にプルダウンメニューが表示され、当該プルダウンメニューにおけるいずれかの値が選択されることによりパラメータが受け付けられてもよい。
 (c)上記実施の形態において、パラメータが既に設定された工程に対応する工程指標が矩形状により表示され、パラメータが設定されていない工程に対応する工程指標がリボン形状により表示されるが、本発明はこれに限定されない。パラメータが既に設定された工程に対応する工程指標とパラメータが設定されていない工程に対応する工程指標とが識別可能であれば、複数の工程指標B1~B5はどのような形状で表示されてもよい。また、パラメータが既に設定された工程に対応する工程指標とパラメータが設定されていない工程に対応する工程指標とが識別可能であれば、複数の工程指標B1~B5は同一の形状で表示されてもよい。
 (d)上記実施の形態において、設定画面表示領域Aに表示中のパラメータ設定画面に対応する工程指標は他の工程指標とは異なる色で表示されるが、本発明はこれに限定されない。設定画面表示領域Aに表示中のパラメータ設定画面に対応する工程指標と他の工程指標とが識別可能であれば、複数の工程指標B1~B5は同一の色で表示されてもよい。
 (e)上記実施の形態において、表示部160に表示された複数の工程指標B1~B5のいずれかが操作されることにより、操作された工程指標に対応するパラメータ設定画面の表示の指示が受け付けられるが、本発明はこれに限定されない。複数の工程に対応する操作ボタンが別途設けられる場合には、当該操作ボタンが操作されることにより、操作された操作ボタンに対応するパラメータ設定画面の表示の指示が受け付けられてもよい。

Claims (11)

  1. 試料の分光測定を行う分光光度計に接続されるとともに、表示部から入力されるパラメータに基づいて試料の定量を行う分光分析制御装置であって、
     定量において予め定められた順序で順次実行される複数の工程にそれぞれ対応する複数のパラメータ設定画面を前記表示部に順次表示するとともに、前記複数の工程にそれぞれ対応する複数の工程指標を前記表示部に表示する表示制御部と、
     前記複数のパラメータ設定画面において、前記複数の工程にそれぞれ対応する複数のパラメータの入力を受け付けるパラメータ受付部と、
     各パラメータ設定画面におけるパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータを変更不可能に設定するパラメータ設定部と、
     前記パラメータ設定部に設定されたパラメータに基づいて前記分光光度計を制御する分析制御部と、
     前記パラメータ設定部に設定された前記複数のパラメータに基づいて試料の定量を行う定量実行部とを備え、
     前記表示制御部は、一のパラメータ設定画面において前記パラメータ設定部によりパラメータが設定されるごとに、次のパラメータ設定画面が表示されるように前記表示部を制御し、かつ、前記複数の工程指標のうち前記表示部に表示中のパラメータ設定画面に対応する工程指標を他の工程指標から識別可能に表示するように前記表示部を制御する、分光分析制御装置。
  2. 前記表示制御部は、パラメータが既に設定された工程に対応する工程指標とパラメータが設定されていない工程に対応する工程指標とをさらに識別可能に表示するように前記表示部を制御する、請求項1記載の分光分析制御装置。
  3. 前記表示制御部は、パラメータが既に設定された工程に対応する工程指標とパラメータが設定されていない工程に対応する工程指標とを異なる形状で表示するように前記表示部を制御する、請求項2記載の分光分析制御装置。
  4. 1以上の工程に対応するパラメータが設定された後、前記1以上の工程にそれぞれ対応する1以上のパラメータ設定画面と前記1以上のパラメータ設定画面の次のパラメータ設定画面との間で表示の切り替えの指示を受け付ける画面切替部をさらに備え、
     前記表示制御部は、いずれかのパラメータ設定画面の表示の指示が前記画面切替部により受け付けられた場合、当該パラメータ設定画面を表示するように前記表示部を制御する、請求項1~3のいずれか一項に記載の分光分析制御装置。
  5. 前記画面切替部は、前記表示部に表示された前記複数の工程指標のいずれかが操作されることにより、操作された工程指標に対応するパラメータ設定画面の表示の指示を受け付ける、請求項4記載の分光分析制御装置。
  6. 既に設定されたパラメータの再設定の指示を受け付ける再設定部をさらに備え、
     前記パラメータ設定部は、いずれかの工程に対応するパラメータの再設定の指示が前記再設定部により受け付けられた場合、パラメータの再設定が指示された工程以降の全工程に対応するパラメータの設定を取り消し、
     前記表示制御部は、パラメータの再設定が指示された工程に対応するパラメータ設定画面を表示するように前記表示部を制御する、請求項1~5のいずれか一項に記載の分光分析制御装置。
  7. 前記パラメータ設定部は、前記複数のパラメータとして、前記分光光度計における分光測定の測定条件、濃度が既知の試料である標準試料における濃度と分光特性値との対応関係を示す検量線を作成するためのパラメータ、および濃度が未知の試料である未知試料の分光特性値をこの順で設定し、
     前記分析制御部は、前記パラメータ設定部に設定された測定条件に基づいて標準試料および未知試料の分光特性値を測定するように前記分光光度計を制御し、
     前記定量実行部は、前記パラメータ設定部に設定された前記検量線を作成するためのパラメータおよび未知試料における分光特性値に基づいて未知試料の濃度を定量する、請求項1~6のいずれか一項に記載の分光分析制御装置。
  8. 前記検量線を作成するためのパラメータは、標準試料の濃度、標準試料の分光特性値、および前記検量線の次数を含む、請求項7記載の分光分析制御装置。
  9. 試料の分光測定を行う分光光度計と、
     パラメータの入力を受け付ける表示部と、
     前記分光光度計および前記表示部の動作を制御する請求項1~8のいずれか一項に記載の分光分析制御装置とを備える、分光分析装置。
  10. 試料の分光測定を行う分光光度計に接続されるとともに、表示部から入力されるパラメータに基づいて試料の定量を行う分光分析制御装置の分光分析制御方法であって、
     定量において予め定められた順序で順次実行される複数の工程にそれぞれ対応する複数のパラメータ設定画面を前記表示部に順次表示するとともに、前記複数の工程にそれぞれ対応する複数の工程指標を前記表示部に表示するステップと、
     前記複数のパラメータ設定画面において、前記複数の工程にそれぞれ対応する複数のパラメータの入力を受け付けるステップと、
     各パラメータ設定画面におけるパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータを変更不可能に設定するステップと、
     設定されたパラメータに基づいて前記分光光度計を制御するステップと、
     設定された前記複数のパラメータに基づいて試料の定量を行うステップとを含み、
     前記表示するステップは、一のパラメータ設定画面においてパラメータが設定されるごとに、次のパラメータ設定画面を前記表示部に表示し、かつ、前記複数の工程指標のうち前記表示部に表示中のパラメータ設定画面に対応する工程指標を他の工程指標から識別可能に前記表示部に表示することを含む、分光分析制御方法。
  11. 試料の分光測定を行う分光光度計に接続されるとともに、表示部から入力されるパラメータに基づいて試料の定量を行う分光分析制御装置の分光分析制御プログラムであって、
     定量において予め定められた順序で順次実行される複数の工程にそれぞれ対応する複数のパラメータ設定画面を前記表示部に順次表示するとともに、前記複数の工程にそれぞれ対応する複数の工程指標を前記表示部に表示する処理と、
     前記複数のパラメータ設定画面において、前記複数の工程にそれぞれ対応する複数のパラメータの入力を受け付ける処理と、
     各パラメータ設定画面におけるパラメータの入力の受け付けが完了するごとに、受け付けられた当該パラメータを変更不可能に設定する処理と、
     設定されたパラメータに基づいて前記分光光度計を制御する処理と、
     設定された前記複数のパラメータに基づいて試料の定量を行う処理とを、
     処理装置に実行させ、
     前記表示する処理は、一のパラメータ設定画面においてパラメータが設定されるごとに、次のパラメータ設定画面を前記表示部に表示し、かつ、前記複数の工程指標のうち前記表示部に表示中のパラメータ設定画面に対応する工程指標を他の工程指標から識別可能に前記表示部に表示することを含む、分光分析制御プログラム。
PCT/JP2018/007760 2018-03-01 2018-03-01 分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラム WO2019167224A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/007760 WO2019167224A1 (ja) 2018-03-01 2018-03-01 分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラム
JP2020503208A JP7303180B2 (ja) 2018-03-01 2018-03-01 分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラム
EP18907644.1A EP3760988A4 (en) 2018-03-01 2018-03-01 CONTROL DEVICE FOR SPECTROSCOPIC ANALYSIS, DEVICE FOR SPECTROSCOPIC ANALYSIS, METHOD FOR SPECTROSCOPIC ANALYSIS, CONTROL METHOD FOR SPECTROSCOPIC ANALYSIS AND CONTROL PROGRAM FOR SPECTROSCOPIC ANALYSIS
CN201880088373.5A CN111670347B (zh) 2018-03-01 2018-03-01 分光分析控制装置、分光分析装置、分光分析控制方法以及分光分析控制程序
US16/976,444 US11009393B2 (en) 2018-03-01 2018-03-01 Spectroscopic analysis control device, spectroscopic analysis device, spectroscopic analysis control method, and spectroscopic analysis control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007760 WO2019167224A1 (ja) 2018-03-01 2018-03-01 分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラム

Publications (1)

Publication Number Publication Date
WO2019167224A1 true WO2019167224A1 (ja) 2019-09-06

Family

ID=67805190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007760 WO2019167224A1 (ja) 2018-03-01 2018-03-01 分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラム

Country Status (5)

Country Link
US (1) US11009393B2 (ja)
EP (1) EP3760988A4 (ja)
JP (1) JP7303180B2 (ja)
CN (1) CN111670347B (ja)
WO (1) WO2019167224A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022076610A (ja) * 2020-11-10 2022-05-20 株式会社島津製作所 自動試料注入装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233729A (ja) 1995-02-28 1996-09-13 Shimadzu Corp 分光光度計
JPH11118708A (ja) * 1997-10-09 1999-04-30 Shimadzu Corp 計測情報処理装置
JP2001116688A (ja) * 1999-10-19 2001-04-27 Shimadzu Corp 検量線作成方法及び分光光度計
US20070036686A1 (en) * 2005-05-31 2007-02-15 Mehdi Hatamian Systems for tracking and testing of medical specimens and data
JP2007101351A (ja) * 2005-10-04 2007-04-19 Canon Inc 表示方法と表示装置、該表示装置を備えた全自動検査装置
JP2008014895A (ja) * 2006-07-10 2008-01-24 Shimadzu Corp 同一性判定プログラム
JP2012243183A (ja) * 2011-05-23 2012-12-10 Seiko Epson Corp データ生成装置、データ生成方法、及びプログラム
JP2013140053A (ja) * 2011-12-28 2013-07-18 Keyence Corp 画像処理装置及び画像処理方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047937B2 (ja) * 1991-12-26 2000-06-05 株式会社東芝 自動化学分析装置
JP3353496B2 (ja) * 1994-09-30 2002-12-03 株式会社島津製作所 分析装置
JPH1172499A (ja) * 1997-08-29 1999-03-16 Shimadzu Corp 分析装置用システムコントローラ
JP2001153799A (ja) * 1999-11-29 2001-06-08 Shimadzu Corp 定量分析方法及び定量分析装置
DE102006019228A1 (de) 2006-04-26 2007-10-31 Schaeffler Kg Radialwälzlager, insbesondere einreihiges Kugelrollenlager, sowie Verfahren zu dessen Montage
JP5509773B2 (ja) * 2009-01-21 2014-06-04 オムロン株式会社 パラメータ決定支援装置およびパラメータ決定支援プログラム
JP5330090B2 (ja) * 2009-05-20 2013-10-30 キヤノン株式会社 放射線撮影装置、その表示処理方法、及びプログラム
US9285987B2 (en) * 2009-08-31 2016-03-15 Kyocera Mita Corporation Operating device and image forming apparatus with display format receiver for receiving instructions from a user for selecting a display format
JP2012189549A (ja) * 2011-03-14 2012-10-04 Horiba Ltd 分析装置
TWI554857B (zh) 2011-05-23 2016-10-21 精工愛普生股份有限公司 資料產生方法
WO2013153711A1 (ja) * 2012-04-09 2013-10-17 富士フイルム株式会社 携帯型電子機器及び表示制御方法
JP6119190B2 (ja) * 2012-10-30 2017-04-26 株式会社島津製作所 分析装置の制御装置
JP2015180862A (ja) 2014-03-03 2015-10-15 アークレイ株式会社 測定装置および測定方法
JP6020774B1 (ja) * 2014-12-01 2016-11-02 東京電力ホールディングス株式会社 再利用可否判定方法、限度見本表示装置、および限度見本表示方法
JP2017187413A (ja) 2016-04-07 2017-10-12 株式会社島津製作所 分析装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233729A (ja) 1995-02-28 1996-09-13 Shimadzu Corp 分光光度計
JPH11118708A (ja) * 1997-10-09 1999-04-30 Shimadzu Corp 計測情報処理装置
JP2001116688A (ja) * 1999-10-19 2001-04-27 Shimadzu Corp 検量線作成方法及び分光光度計
US20070036686A1 (en) * 2005-05-31 2007-02-15 Mehdi Hatamian Systems for tracking and testing of medical specimens and data
JP2007101351A (ja) * 2005-10-04 2007-04-19 Canon Inc 表示方法と表示装置、該表示装置を備えた全自動検査装置
JP2008014895A (ja) * 2006-07-10 2008-01-24 Shimadzu Corp 同一性判定プログラム
JP2012243183A (ja) * 2011-05-23 2012-12-10 Seiko Epson Corp データ生成装置、データ生成方法、及びプログラム
JP2013140053A (ja) * 2011-12-28 2013-07-18 Keyence Corp 画像処理装置及び画像処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3760988A4

Also Published As

Publication number Publication date
US11009393B2 (en) 2021-05-18
JPWO2019167224A1 (ja) 2021-02-04
CN111670347B (zh) 2023-02-17
US20210003447A1 (en) 2021-01-07
EP3760988A1 (en) 2021-01-06
CN111670347A (zh) 2020-09-15
JP7303180B2 (ja) 2023-07-04
EP3760988A4 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
JP5150939B2 (ja) 光学特性測定装置および光学特性測定方法
US9163990B2 (en) Color measuring device calibration
US20090231469A1 (en) Image processing apparatus
JP6658517B2 (ja) 光学特性測定装置および光学特性測定方法
JP5716582B2 (ja) 装置バリデーションシステム
WO2019167224A1 (ja) 分光分析制御装置、分光分析装置、分光分析制御方法および分光分析制御プログラム
JP4324701B2 (ja) 発光分光分析装置
JP6864122B2 (ja) レシピ最適化及び計測のためのゾーナル分析
CN108469431A (zh) 发射光谱分析装置
NL7907746A (nl) Kleurenanalysator.
JP2007024679A (ja) 分析装置および分析処理方法
JP2007192749A (ja) 分光特性測定装置
JP6786341B2 (ja) 測定装置
JP4506524B2 (ja) 発光分光分析装置
JP7247844B2 (ja) 光学分析装置及び方法
JP5929306B2 (ja) 体液分析装置
JP2018004614A (ja) 光量測定装置
JP3757155B2 (ja) 分光分析装置
US20220163391A1 (en) Diagnostic testing method for a spectrometer
JP6973123B2 (ja) 分析制御装置、分析装置、分析制御方法および分析方法
EP4379391A1 (en) Analysis apparatus
JP3131138U (ja) 色合わせ支援装置
JP2021015038A (ja) 光測定装置および光測定装置用プログラム
JP6477205B2 (ja) 分析システム、分光蛍光光度計、演算処理装置および演算処理装置用プログラム
JP2010249649A (ja) 測光装置および測光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018907644

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018907644

Country of ref document: EP

Effective date: 20201001