WO2019159865A1 - 成形体 - Google Patents

成形体 Download PDF

Info

Publication number
WO2019159865A1
WO2019159865A1 PCT/JP2019/004786 JP2019004786W WO2019159865A1 WO 2019159865 A1 WO2019159865 A1 WO 2019159865A1 JP 2019004786 W JP2019004786 W JP 2019004786W WO 2019159865 A1 WO2019159865 A1 WO 2019159865A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
antibacterial
antifungal agent
group
biofilm
Prior art date
Application number
PCT/JP2019/004786
Other languages
English (en)
French (fr)
Inventor
健太 櫻田
英二 新田
宜也 一宮
翔太 小西
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2020500471A priority Critical patent/JP7363763B2/ja
Publication of WO2019159865A1 publication Critical patent/WO2019159865A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a molded body.
  • Patent Document 1 describes a resin molded product containing polypropylene and a silver-based antibacterial agent.
  • a resin molded product containing polypropylene and a silver-based antibacterial agent is a polymer substance (hereinafter also referred to as a biofilm) such as polysaccharides, proteins, and nucleic acids formed by microorganisms in an environment where water and organic matter are present. Cannot prevent adhesion.
  • an object of this invention is to provide the molded object which can reduce adhesion of a biofilm.
  • the present invention provides the following [1] and [2].
  • [1] including at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, and an antibacterial / antifungal agent (B),
  • the common logarithm logS of the solubility of the antibacterial / antifungal agent (B) in water at 25 ° C. is smaller than ⁇ 0.6
  • the resin (A) is a thermoplastic resin.
  • the molded body according to the present invention includes at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, and an antibacterial / antifungal agent (B),
  • the common logarithm logS of the solubility of the antibacterial / antifungal agent (B) in water at 25 ° C. is smaller than ⁇ 0.6
  • the surface free energy dispersion force component ⁇ d is 25 mN / m or less
  • the sum of the surface free energy dipole force component ⁇ p and the hydrogen bond component ⁇ h is 30 mN / m or more. is there.
  • At least one resin (A) selected from the group consisting of thermoplastic resins and thermosetting resins As at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, for example, Polyolefins such as polypropylene and polyethylene; Methyl (meth) acrylate polymer, ethyl (meth) acrylate polymer, octadecyl (meth) acrylate polymer, hexadecyl (meth) acrylate polymer, tetradecyl (meth) acrylate polymer, polymethyl methacrylate, crosslinked polymethyl methacrylate , Acrylic and methacrylic resins such as polymethyl acrylate; Polystyrene, acrylonitrile-butadiene-styrene resin, acrylonitrile-acrylic rubber-styrene resin, acrylonitrile-ethylene rubber-styrene resin, (meth) acrylic ester-s
  • Styrenic resin Polyamide such as nylon; Polycarbonate; Polyesters such as saturated polyester and unsaturated polyester; Polyphenylene oxide; Polyacetal; Chlorine resins such as polyvinyl chloride and polyvinylidene chloride; Vinyl acetate resins such as polyvinyl acetate and ethylene-vinyl acetate resin; Ethylene- (meth) acrylate methyl copolymer, ethylene- (meth) ethyl acrylate copolymer, ethylene-octadecyl (meth) acrylate copolymer, ethylene-hexadecyl (meth) acrylate copolymer, ethylene-tetradecyl ( An ethylene- (meth) acrylate copolymer such as a (meth) acrylate copolymer, an ethylene-octadecyl (meth) acrylate-methyl (meth) acrylate copolymer, and an ionomer resin thereof
  • polyolefins acrylic / methacrylic resins, styrene resins, polyesters, chlorine resins, vinyl acetate resins, ethylene- (meth) acrylic acid ester copolymers and their ionomer resins, vinyl alcohol resins are preferred.
  • Thermoplastic elastomers engineering plastics, phenolic resins, polyurethanes, unia resins, melamine resins, epoxy resins or silicone resins, more preferably polyolefins, acrylic / methacrylic resins, styrene resins, polyesters, thermoplastic elastomers Engineering plastics or polyurethane, more preferably polypropylene, crosslinked polymethyl methacrylate, acrylonitrile-butadiene-styrene resin, unsaturated poly Ester, a polyolefin elastomer, a modified polyphenylene ether or polyurethane.
  • examples of at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin include the following polymer (A1) and polymer (A2).
  • Polymer (A1) A structural unit (A) derived from at least one selected from the group consisting of ethylene and propylene, and a structural unit (B) represented by the following formula (1); It may further include at least one structural unit (C) selected from the group consisting of a structural unit represented by the following formula (2) and a structural unit represented by the following formula (3),
  • the total number of the structural unit (A), the structural unit (B), and the structural unit (C) is 100%, and the number of the structural units (A) is 70% to 99%, and the structural unit ( The total number of B) and the structural unit (C) is 1% or more and 30% or less,
  • the total number of the structural units (B) and the structural units (C) is 100%, the number of the structural units (B) is 1% or more and 100% or less, and the number of the structural units (C) is 0%.
  • R represents a hydrogen atom or a methyl group
  • L 1 represents —CO—O—, —O—CO— or —O—
  • L 2 represents a single bond, -CH 2 -, - CH 2 -CH 2 -, - CH 2 -CH 2 -CH 2 -, - CH 2 -CH (OH) -CH 2 - or -CH 2 -CH ( CH 2 OH) —
  • L 3 is a single bond, —CO—O—, —O—CO—, —O—, —CO—NH—, —NH—CO—, —CO—NH—CO—, —NH—CO—NH—.
  • -NH- or -N (CH 3 )- L 6 represents — (CH 2 ) n — (R 2 O) p —R 1
  • R 1 represents an alkyl group having 1 to 30 carbon atoms, or an alkyl group having 1 to 15 carbon atoms in which one or more hydrogen atoms are substituted with one or more fluorine atoms
  • R 2 represents an alkylene group having 1 to 15 carbon atoms, or an alkylene group having 1 to 15 carbon atoms in which one or more hydrogen atoms are substituted with one or more fluorine atoms
  • n represents an integer of 0 to 10
  • p represents an integer of 0 to 15.
  • a plurality of — (R 2 O) — may be the same or different.
  • the left side corresponds to the upper side of the formula (1)
  • the right side corresponds to the lower side of the formula (1).
  • R represents a hydrogen atom or a methyl group
  • L 1 represents —CO—O—, —O—CO— or —O—
  • L 4 represents a single bond or an alkylene group having 1 to 8 carbon atoms
  • L 5 represents a hydrogen atom, an epoxy group, —CH (OH) —CH 2 OH, a carboxy group, a hydroxy group, an amino group, or an alkylamino group having 1 to 4 carbon atoms.
  • L 1 represents a hydrogen atom or a methyl group
  • L 1 represents —CO—O—, —O—CO— or —O—
  • L 4 represents a single bond or an alkylene group having 1 to 8 carbon atoms
  • L 5 represents a hydrogen atom, an epoxy group, —CH (OH) —CH 2 OH, a carboxy group, a hydroxy group, an amino group, or an alkylamino group having 1 to 4 carbon atoms.
  • Polymer (A2) A group consisting of a structural unit (A) derived from ethylene, a structural unit (B) represented by the formula (1), a structural unit represented by the formula (2), and a structural unit represented by the formula (3). And at least one structural unit (C) selected from The total number of the structural unit (A), the structural unit (B), and the structural unit (C) is 100%, and the number of the structural units (A) is 70% to 99%, and the structural unit ( The total number of B) and the structural unit (C) is 1% or more and 30% or less, The total number of the structural units (B) and the structural units (C) is 100%, the number of the structural units (B) is 1% or more and 99% or less, and the number of the structural units (C) is 1%. The polymer which is 99% or less.
  • the total amount of the structural unit (A), the structural unit (B), and the structural unit (C) is 100% by weight, respectively.
  • the content of may be 30% by weight or more.
  • R 1 constituting L 6 in the structural unit (B) represented by the formula (1) is CF 3 (CF 2 ) a — (where, a represents an integer of 3 or more and 9 or less).
  • the polymer (A1) and the polymer (A2) may each be crosslinked.
  • the polymer (A1) and the polymer (A2) may each have a gel fraction of 20% or more.
  • the polymer (A1) and the polymer (A2) are each composed of the structural unit (A), the structural unit (B), and the single component, where the total number of all the structural units contained in the polymer is 100%.
  • the total number of units (C) is preferably 90% or more.
  • the polymer (A1) and the polymer (A2) each preferably have the following modes.
  • R is preferably a hydrogen atom.
  • L 1 is preferably —CO—O— or —O—CO—, and more preferably —CO—O—.
  • L 2 is preferably a single bond, -CH 2 -, - CH 2 -CH 2 - or -CH 2 -CH 2 -CH 2 -, more preferably an a single bond.
  • L 3 is preferably a single bond, —O—CO—, —O—, —NH— or —N (CH 3 ) —, and more preferably a single bond.
  • the alkyl group having 1 to 30 carbon atoms represented by R 1 may be either a linear alkyl group or a branched alkyl group.
  • Examples of the alkyl group having 1 to 15 carbon atoms in which one or more hydrogen atoms represented by R 1 are substituted with one or more fluorine atoms include, for example, CF 3 (CF 2 ) a — (where, a represents an integer of 0 or more and 14 or less), CF 2 H (CHF) b (CF 2 ) c — (where b and c each independently represents an integer of 0 or more, and the sum of b and c) Is an integer of 0 or more and 14 or less.
  • R 1 is preferably CF 3 (CF 2 ) a — (where a represents an integer of 0 or more and 14 or less), and more preferably CF 3 (CF 2 ) a — (where a is Represents an integer from 3 to 9, and more preferably CF 3 (CF 2 ) a (where a represents an integer from 5 to 7).
  • -(R 2 O) p -R 1 is, for example,-(C 3 F 6 O) f (C 2 F 4 O) e (CF 2 O) d CF 3 (where d, e and f are each independently an integer of 0 or more and the sum of d, e and f is an integer of 1 to 15),-(C 3 H 3 F 3 O I (C 2 H 2 F 2 O) h (CHFO) g CHF 2 (where g, h and i are each independently an integer of 0 or more, and the sum of g, h and i is 1 or more) And an integer of 15 or less.
  • — (R 2 O) p —R 1 is preferably — (C 3 F 6 O) f (C 2 F 4 O) e (CF 2 O) d CF 3 (where d, e and f each independently represents an integer of 0 or more, and the sum of d, e and f is an integer of 1 to 15), more preferably-(C 2 F 4 O) e (CF 2 O) d CF 3 (where d and e each independently represent an integer of 0 or more, and the sum of d and e is an integer of 1 to 15) is there.
  • N constituting L 6 is preferably an integer of 0 or more and 4 or less, more preferably 1 or 2, and further preferably 2.
  • the structural unit (B) represented by the formula (1) is preferably a structural unit represented by any of the following.
  • the polymer (A1) and the polymer (A2) may each contain two or more types of structural units (B).
  • R is preferably a hydrogen atom.
  • L 1 is preferably —CO—O—, —O—CO—, or —O—, more preferably —CO—O— or —O—CO—, and still more preferably —CO—. O-.
  • Examples of the alkylene group having 1 to 8 carbon atoms represented by L 4 include a methylene group, an ethylene group, an n-propylene group, a 1-methylethylene group, an n-butylene group, and a 1,2-dimethylethylene group. 1,1-dimethylethylene group, 2,2-dimethylethylene group, n-pentylene group, n-hexylene group, n-heptalene group, n-octylene group and 2-ethyl-n-hexylene group. .
  • L 4 is preferably a single bond, a methylene group, an ethylene group or an n-propylene group, and more preferably a methylene group.
  • Examples of the alkylamino group having 1 to 4 carbon atoms represented by L 5 include a methylamino group, an ethylamino group, a propylamino group, a butylamino group, a dimethylamino group, and a diethylamino group.
  • L 5 is preferably a hydrogen atom, an epoxy group or —CH (OH) —CH 2 OH, more preferably a hydrogen atom.
  • the structural unit represented by the formula (2) is preferably a structural unit represented by any of the following.
  • the polymer (A1) and the polymer (A2) may each contain two or more kinds of the structural units (C).
  • a structural unit (A) As the polymer (A1), A structural unit (A); Formula (1) wherein R is a hydrogen atom or a methyl group, L 1 is —CO—O—, L 2 and L 3 are single bonds, and L 6 is — (CH 2 ) n —R 1
  • a polymer containing (C) A polymer in which the total number of all the structural units contained in the polymer is 100%, and the total number of the structural unit (A), the structural unit (B), and the structural unit (C) is 90% or more. Can be mentioned.
  • a structural unit (A) As the polymer (A2), A structural unit (A); Formula (1) wherein R is a hydrogen atom or a methyl group, L 1 is —CO—O—, L 2 and L 3 are single bonds, and L 6 is — (CH 2 ) n —R 1
  • a polymer containing (C) A polymer in which the total number of all the structural units contained in the polymer is 100%, and the total number of the structural unit (A), the structural unit (B), and the structural unit (C) is 90% or more. Can be mentioned.
  • the number of the structural units (A) in the polymer (A1) and the polymer (A2) is 100% of the total number of the structural units (A), the structural units (B), and the structural units (C). 70% or more and 99% or less, and since the molding processability of the molded product containing the polymer (A1) or polymer (A2) and the antibacterial / antifungal agent (B) becomes good, preferably 75 % Or more and 99% or less, more preferably 80% or more and 99% or less.
  • the total number of the structural unit (B) and the structural unit (C) in the polymer (A1) and the polymer (A2) is the structural unit (A), the structural unit (B), and the structural unit (
  • the total number of C) is 1% to 30%, and the water repellency and water repellency of the molded product containing the polymer (A1) or polymer (A2) and the antibacterial / antifungal agent (B). Since oiliness becomes favorable, it is preferably 5% or more and 30% or less, and more preferably 10% or more and 30% or less.
  • the number of the structural units (B) in the polymer (A1) and the polymer (A2) is 1% or more and 99% when the total number of the structural units (B) and the structural units (C) is 100%. Since the water and oil repellency of the molded article containing the polymer (A1) or the polymer (A2) and the antibacterial / antifungal agent (B) is improved, it is preferably 10% or more and 99% or less. More preferably, they are 20% or more and 99% or less, More preferably, they are 50% or more and 99% or less.
  • the number of the structural units (C) in the polymer (A1) and the polymer (A2) is 1% or more and 99% when the total number of the structural units (B) and the structural units (C) is 100%. Since the molding processability of the molded article containing the polymer (A1) or polymer (A2) and the antibacterial / antifungal agent (B) is improved, it is preferably 5% or more and 99% or less. Yes, more preferably from 10% to 99%, and even more preferably from 20% to 99%.
  • At least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin The polymer (A1); A polymer (A20) which is a polymer (excluding the polymer (A1)) having a melting peak temperature or a glass transition temperature of 50 ° C. or higher and 180 ° C. or lower observed by differential scanning calorimetry,
  • the total amount of the polymer (A1) and the polymer (A20) is 100% by weight
  • the content of the polymer (A1) is 1% by weight to 99% by weight
  • the content of the polymer (A20) Is a mixture of 1 wt% or more and 99 wt% or less.
  • At least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin The polymer (A2); A polymer (A21) which is a polymer (excluding the polymer (A2)) having a melting peak temperature or a glass transition temperature of 50 ° C. or higher and 180 ° C. or lower observed by differential scanning calorimetry,
  • the total amount of the polymer (A2) and the polymer (A21) is 100% by weight
  • the content of the polymer (A2) is 1% by weight to 99% by weight
  • the content of the polymer (A21) Is a mixture of 1 wt% or more and 99 wt% or less.
  • the melting peak temperature or glass transition temperature of the polymer (A20) and the polymer (A21) observed by differential scanning calorimetry (DSC) is in the range of 50 ° C. or higher and 180 ° C. or lower.
  • the melting peak temperature of the polymer (A20) and the polymer (A21) is a melting peak obtained by analyzing a melting curve measured by the following differential scanning calorimetry by a method based on JIS K7121-1987. It is the temperature at the extreme value, and is the temperature at which the melting endotherm is maximized.
  • the glass transition temperature of the polymer (A20) and the polymer (A21) is an intermediate glass obtained by analyzing a melting curve measured by the following differential scanning calorimetry by a method according to JIS K7121-1987. Transition temperature.
  • step (1) 200 ° C. for 5 minutes
  • step (2) from 200 ° C. at a rate of 5 ° C./min.
  • the temperature is lowered to ⁇ 80 ° C., maintained at ⁇ 80 ° C. for 5 minutes in Step (3), and raised from ⁇ 80 ° C. to 200 ° C. at a rate of 5 ° C./minute in Step (4).
  • the differential scanning calorimetry curve obtained by calorimetry in step (4) is taken as a melting curve.
  • Examples of the polymer (A20) and the polymer (A21) having a melting peak temperature in the range of 50 ° C. or higher and 180 ° C. or lower include high-density polyethylene (HDPE), high-pressure method low-density polyethylene (LDPE), ethylene- ⁇ -Olefin copolymers, ethylene-vinyl acetate copolymers (EVA), and polypropylene (PP).
  • HDPE high-density polyethylene
  • LDPE high-pressure method low-density polyethylene
  • EVA ethylene-vinyl acetate copolymers
  • PP polypropylene
  • Examples of the polymer (A20) and polymer (A21) having a glass transition temperature in the range of 50 ° C. or higher and 180 ° C. or lower include cyclic olefin polymer (COP), cyclic olefin copolymer (COC), polystyrene ( PS), polyvinyl chloride (PVC), acrylonitrile-styrene copolymer (AS), acrylonitrile-butadiene-styrene copolymer (ABS), polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyethylene terephthalate ( PET), polyacrylonitrile (PAN), polyamide 6 (PA6), polyamide 66 (PA66), polycarbonate (PC), polyphenylene sulfide (PPS), and polyetheretherketone (PEEK).
  • COP cyclic olefin polymer
  • COC cyclic olefin copolymer
  • PS polystyrene
  • the molded body according to the present invention may contain only one kind of at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, or may contain two or more kinds.
  • the antibacterial / antifungal agent (B) contained in the molded product according to the present invention is an antibacterial / antifungal agent having a common logarithm log S of solubility in water at 25 ° C. of less than ⁇ 0.6.
  • the log S of the antibacterial / antifungal agent (B) is preferably ⁇ 1 or less, more preferably ⁇ 1.5 or less.
  • the log S of the antibacterial / antifungal agent (B) is usually ⁇ 30 or more, preferably ⁇ 12 or more.
  • the log S of the antibacterial / antifungal agent (B) is the common logarithm of the amount (solubility) S (g / 100 g) in which the antibacterial / antifungal agent (B) dissolves in 100 g of water at a temperature of 25 ° C. and pH 6-8. It shows that it is hard to melt
  • the log S of the antibacterial / antifungal agent (B) is derived from the chemical structure of the antibacterial / antifungal agent (B) whose literature values are not known by using the computer software Hansen Solubility Parameter in Practice (HSPiP). It can be simply estimated.
  • the logS of the antibacterial / antifungal agent (B) contained in the molded product according to the present invention is usually a value calculated by HSPiP ver5.0.04 or a literature value.
  • the antibacterial / antifungal agent (B) contained in the molded product according to the present invention is an ionic compound, a charge transfer complex, an inorganic compound, a compound having more than 120 atoms other than hydrogen atoms, and multiple hydrogens between the compounds.
  • the logS of the antibacterial / antifungal agent (B) is a value calculated by a solubility measurement for measuring a dissolved mass dissolved in 100 g of water.
  • Examples of the antibacterial / antifungal agent (B) contained in the molded product according to the present invention include ethyl-2,4-dihydroxy-6-methylbenzoate, methyl-2,4-dihydroxy-3,6-dimethylbenzoate, Isopropyl-2,4-dihydroxy-6-methylbenzoate, 3-methoxy-5-methylphenyl-2,4-dihydroxy-6-methylbenzoate, ethyl-2,4-dihydroxy-3,6-dimethylbenzoate, ethyl- 3-formyl-2,4-dihydroxy-6-methylbenzoate, isopropyl-3-formyl-2,4-dihydroxy-6-methylbenzoate, 3-hydroxy-5-methylphenyl-2,4-dihydroxy-6-methyl Benzoate, 3-methyl-4isopropylphenol, 3-hydroxy-5-methyl Ruphenyl-2-dihydroxy-4-methoxy-6-methylbenzoate, 3-methoxy-5-methylphenyl-2-hydroxy-4-
  • imidazole / thiazole antibacterial / antifungal agents ester / sulfonic acid ester antibacterial / antifungal agents, pyridine / quinoline antibacterial / antifungal agents, phenol / alcohol antibacterial / antifungal agents, isothiazolones are preferred.
  • Antibacterial / antifungal agent aldehyde antibacterial / antifungal agent, quaternary ammonium salt, inorganic antibacterial agent, surfactant, biguanide, anilide antibacterial / antifungal agent or nitrile antibacterial / antifungal agent, and more
  • imidazole / thiazole antibacterial / antifungal agent ester / sulfonic acid ester antibacterial / antifungal agent, pyridine / quinoline antibacterial / antifungal agent, phenol / alcohol antibacterial / antifungal agent or isothiazolone antibacterial / antifungal agent
  • a fungicide more preferably thiabendazole, benzylparaben, zinc pyrithione Diiodomethyl-p-tolylsulfone, 3-methyl-4isopropylphenol, nalidixic acid, 2-n-octyl-4-isothiazolin-3-one, or 1,2-benzisothia
  • the antibacterial / antifungal agent (B) may be supported on a carrier.
  • a carrier for example, Zeolite; Montmorillonite; Activated carbon; Calcium phosphate compounds such as hydroxyapatite; Oxides such as silicon oxide, aluminum oxide, magnesium oxide, titanium oxide, zirconium oxide; Nitrides such as silicon nitride, titanium nitride, aluminum nitride, zirconium nitride; Non-oxide ceramics such as silicon carbide; Silicates such as calcium silicate, aluminum silicate, magnesium silicate, diatomaceous earth; Alumina-silica compounds such as kaolinite, bentonite, pumice, feldspar, quartz; Is mentioned.
  • the molded product according to the present invention may contain only one type of antibacterial / antifungal agent (B), or may contain two or more types.
  • the surface free energy dispersive force component ⁇ d is 25 mN / m or less, or the sum of the surface free energy dipole force component ⁇ p and the hydrogen bond component ⁇ h is 30 mN / m. m or more.
  • ⁇ d is 20 mN / m or less, or the sum of ⁇ p and ⁇ h is 40 mN / m or more, more preferably ⁇ d is 16 mN / m. Or the sum of ⁇ p and ⁇ h is 80 mN / m or more.
  • the surface free energy ⁇ d of the molded body according to the present invention is usually 0 or more.
  • the surface free energy is divided into a dispersion term ( ⁇ d ), a hydrogen bond term ( ⁇ h ), and a dipole term ( ⁇ p ).
  • the relationship between the surface energy ⁇ l of the liquid, the surface energy ⁇ s of the solid, and the static contact angle ⁇ is It is expressed.
  • Each component of the gamma l is using three known liquid, the contact angle was measured ⁇ in each of the liquid,
  • Each component of the surface free energy on the surface of the molded body can be obtained by solving the simultaneous equations.
  • the dispersion force component ⁇ d of the surface free energy of the molded body according to the present invention is 25 mN / m or less, or the sum of the dipole force component ⁇ p of the surface free energy and the hydrogen bond component ⁇ h is 30 mN / m.
  • Examples of the method described above include, for example, at least one of at least one resin (A) selected from the group consisting of a method of containing a surface modifier (C) described later in a molded body, a thermoplastic resin, and a thermosetting resin.
  • the method of making the molded object contain the following thermoplastic resin (A ') for surface modification is mentioned.
  • Thermoplastic resin for surface modification (A ') The monomer unit derived from the polymer (A1), the polymer (A2), the fluoroalkyl group-containing polymer, and the (meth) acrylate is a monomer unit derived from a (meth) acrylate having 10 or more carbon atoms.
  • An acrylic / methacrylic resin an ethylene- (meth) acrylate copolymer in which the monomer unit derived from (meth) acrylate is a monomer unit derived from (meth) acrylate having 10 or more carbon atoms, and Its ionomer resin, polyether-polypropylene block copolymer, polyether ester amide, ethylene- (meth) acrylic acid resin and its ionomer resin, vinyl alcohol resin, or cellulose resin
  • the acrylic / methacrylic resin in which the monomer unit derived from (meth) acrylate is a monomer unit derived from (meth) acrylate having 10 or more carbon atoms for example, octadecyl (meth) acrylate polymer, Examples include hexadecyl (meth) acrylate polymer and tetradecyl (meth) acrylate polymer.
  • Examples of the ethylene- (meth) acrylate copolymer in which the monomer unit derived from (meth) acrylate is a monomer unit derived from (meth) acrylate having 10 or more carbon atoms include, for example, ethylene-octadecyl.
  • (Meth) acrylate copolymer, ethylene-hexadecyl (meth) acrylate copolymer, ethylene-tetradecyl (meth) acrylate copolymer, ethylene-octadecyl (meth) acrylate-methyl (meth) acrylate copolymer may be mentioned.
  • examples of the surface modifier (C) described below include, for example, a fluorosurfactant, a perfluoropolyether group Containing compounds, alkylsiloxy group-containing compounds, and fluorine-based monomers can be used.
  • a surface modifier (C) described later for example, poly Surfactants such as alkylene ether group-containing compounds, betaine type compounds, glycerin monostearate and the like can be used.
  • the surface-modifying thermoplastic resin (A ′) Polyether-polypropylene block copolymers, polyether ester amides, or ethylene- (meth) acrylic acid resins or their ionomer resins can be used.
  • the ionomer resin of ethylene- (meth) acrylic acid resin include potassium ionomer of ethylene-methacrylic acid copolymer.
  • the total amount of at least one resin (A) selected from the group consisting of the thermoplastic resin and the thermosetting resin and the antibacterial / antifungal agent (B) is 100% by weight, and consists of a thermoplastic resin and a thermosetting resin.
  • the content of at least one resin (A) selected from the group may be 70 to 99.99% by weight, and the content of the antibacterial / antifungal agent (B) may be 0.01 to 30% by weight.
  • the content of at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin is 90 to 99.9% by weight, and the content of the antibacterial / antifungal agent (B) is 0.
  • the content of at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin is 97 to 99.9% by weight.
  • Antifungal agent (B) content is 0 1 to 3% by weight.
  • the molded body according to the present invention may further contain a surface modifier (C).
  • the “surface modifier” means a compound in which the surface free energy of the molded body changes depending on the presence or absence of the surface modifier.
  • Nonafluoro-1-butanesulfonic acid for example, Tridecafluoroheptanoic acid, heptadecafluorooctane sulfonic acid, heptadecafluorononanoic acid, heneicosafluoroundecanoic acid, 2H, 2H, 3H, 3H-heptadecafluoroundecanoic acid, pentadeca Fluorosurfactants such as ammonium fluorooctanoate, lithium nonafluoro-1-butanesulfonate, potassium hepadecafluoro-1-octanesulfonate, Surflon S-431, Surflon S-461, Surflon S-420; A perfluoropolyether group-containing compound described in International Publication No.
  • Fluorine monomers such as acrylic acid 1H, 1H, 2H, 2H-heptadecafluorodecyl; RSC Adv.
  • Surfactants such as glycerin monostearate; Is mentioned.
  • a fluorosurfactant preferably, a perfluoropolyether group-containing compound, a fluoromonomer, a polyalkylene ether group-containing compound, a betaine-type compound or a surfactant, more preferably a fluorosurfactant.
  • Agent fluorine monomer or polyalkylene ether group-containing compound, more preferably acrylic acid 1H, 1H, 2H, 2H-heptadecafluorodecyl, Surflon S-431, Surflon S-461 or Surflon S-420 .
  • the molded body according to the present invention contains a surface modifier (C), at least one resin (A) selected from the group consisting of the thermoplastic resin and the thermosetting resin and an antibacterial / antifungal agent (B) And the content of the surface modifier (C) is 100% by weight, and the content of at least one resin (A) selected from the group consisting of thermoplastic resins and thermosetting resins is 30 to 99.99% by weight.
  • the content of the antibacterial / antifungal agent (B) is 0.01 to 20% by weight, and the content of the surface modifier (C) may be 1 to 50% by weight, preferably thermoplastic.
  • the content of at least one resin (A) selected from the group consisting of a resin and a thermosetting resin is 60 to 98.9% by weight, and the content of the antibacterial / antifungal agent (B) is 0.1 to 10%.
  • the content of the surface modifier (C) is 1 to 30% by weight, More preferably, the content of at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin is 75 to 98.9% by weight, and the content of the antibacterial / antifungal agent (B) Is 0.1 to 5% by weight, and the content of the surface modifier (C) is 1 to 20% by weight.
  • the molded body according to the present invention may further contain a quorum sensing inhibitor (D).
  • Quorum sensing inhibitors are compounds that inhibit quorum sensing of microorganisms.
  • the inhibition of quorum sensing can be measured by a bioassay using a bacterium that produces a pigment by a substance that induces quorum sensing, a bacterium that exhibits bioluminescence, or the like (for example, Sensors 2013, 13, 5117-5129).
  • Sensors 2013, 13, 5117-5129 includes C.I. N-hexanoyl homoserine lactone that induces quorum sensing is added to a reporter strain such as violaceum CV026, and caffeine, which is a quorum sensing inhibitor, is added, and then the cells are incubated and cultured. It is described that caffeine has a quorum sensing inhibitory property because the amount of purple pigment (violacein) produced is smaller than the amount of purple pigment (violacein) when caffeine is not added.
  • the quorum sensing inhibitor is preferably the following quorum sensing inhibitor. Based on the method described in Sensors 2013, 13, 5117-5129, C.I. N-hexanoyl homoserine lactone is added to violaceum CV026 (reporter strain), and further a quorum sensing inhibitor is added, followed by incubation and cultivation of the bacteria. The amount of violet pigment produced is 85% or less (however, without adding a quorum sensing inhibitor, the bacteria are cultured by incubation and the amount of violet pigment produced is 100%. ) Quorum sensing inhibitor.
  • quorum sensing inhibitors include: Eugenol, methyl eugenol, cinnamaldehyde, cinnamic acid, vanillin, isovanillin, ferulic acid, chlorogenic acid, caffeic acid, P-coumaric acid, cinnamic aldehyde, methyl cinnamate, phenylpropionic acid, 2-methoxycinnamic acid, 3-methoxycinnamic acid, 4-methoxy cinnamic acid, 3-bromo cinnamic acid, 2-fluoro cinnamic acid, 3-fluoro cinnamic acid, 3-methyl cinnamic acid, 4-acetoxy cinnamic acid, 4 -Bromocinnamic acid, 4-ethoxycinnamic acid, 4-fluoro cinnamic acid, 3,4-dimethoxy cinnamic acid, 2,3-dimethoxy c
  • the common logarithm log S of the solubility of the quorum sensing inhibitor (D) in water at 25 ° C. is preferably less than 0.1 from the viewpoint of sustaining the effect of reducing the adhesion of the biofilm of the molded article according to the present invention. More preferably 0.01 or less, still more preferably ⁇ 0.1 or less, and particularly preferably ⁇ 0.4 or less.
  • the log S of the quorum sensing inhibitor (D) is usually ⁇ 30 or more, preferably ⁇ 12 or more.
  • HSP D Hansen solubility parameter of quorum sensing inhibitor
  • HSP D Hansen solubility parameter of at least one resin (A) selected from the group consisting of thermoplastic resins and thermosetting resins
  • the distance Ra 2 of the HSP a also referred to) is preferably greater than 3.2 MPa 1/2, more preferably 3.5 MPa 1/2 or more, more preferably is 4.2 MPa 1/2 or more .
  • Ra 2 is usually 50 MPa 1/2 or less, preferably 35 MPa 1/2 or less.
  • HSP Hansen solubility parameter
  • ⁇ D, ⁇ P and ⁇ H can be calculated from the chemical structural formulas of the resin (A) and the quorum sensing inhibitor (D) by using, for example, computer software Hansen Solubility Parameters in Practice (HSPiP).
  • HSPiP Hansen Solubility Parameters in Practice
  • the molded body according to the present invention is HSPiP ver. Use the value obtained by the calculation according to 5.0.04.
  • At least one resin (A) and quorum sensing inhibitor (D) selected from the group consisting of a thermoplastic resin and a thermosetting resin contained in the molded article of the present invention are each composed of two or more kinds of structural units.
  • the Hansen solubility parameter cannot be directly calculated by the above program.
  • the Hansen solubility parameter of the homopolymer composed of each constituent unit was calculated, and the calculated Hansen solubility parameter of each homopolymer was averaged by the volume ratio of the constituent units contained in the copolymer. The value was taken as the Hansen solubility parameter of the copolymer.
  • the “value averaged by volume ratio” is a value obtained by multiplying each of ⁇ D, ⁇ P and ⁇ H, which are Hansen solubility parameters of a homopolymer composed of each structural unit, by the volume fraction of the structural unit, This is the sum of ⁇ D, ⁇ P and ⁇ H.
  • the “volume fraction” of a certain structural unit means (volume of the structural unit) / (total volume of the structural unit in the copolymer).
  • the distance Ra 1 between HSP A and HSP D indicates the distance between the Hansen solubility parameters (HSP) of the two substances.
  • Ra 1 is an index representing the affinity of both substances, and it can be said that the smaller the value, the higher the affinity of both substances.
  • the distance (Ra) between HSP ⁇ and HSP ⁇ can be calculated by the following equation (2 ′).
  • Ra [4 ⁇ ( ⁇ D ⁇ - ⁇ D ⁇ ) 2 + ( ⁇ P ⁇ - ⁇ P ⁇ ) 2 + ( ⁇ H ⁇ - ⁇ H ⁇ ) 2] 1/2 ⁇ (2 ')
  • Quorum sensing inhibitor (D) may be supported on a carrier.
  • Examples of the carrier for the quorum sensing inhibitor (D) include those exemplified as the carrier for the antibacterial / antifungal agent (B).
  • the molded body according to the present invention further contains a quorum sensing inhibitor (D), at least one resin (A) selected from the group consisting of the thermoplastic resin and the thermosetting resin and an antibacterial / antifungal agent
  • the total amount of (B) and quorum sensing inhibitor (D) is 100% by weight, and the content of at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin is preferably 40 99.98% by weight, antibacterial / antifungal agent (B) content is 0.01-30% by weight, quorum sensing inhibitor (D) content is 0.01-30% by weight More preferably, the content of at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin is 80 to 99.8% by weight, and the antibacterial / antifungal agent (B) The content of 0.1 10% by weight, and the content of the quorum sensing inhibitor (D) is 0.1 to 10% by weight, more preferably at least one resin selected from the group consisting
  • the molded product according to the present invention further contains a surface modifier (C) and a quorum sensing inhibitor (D), at least one resin selected from the group consisting of the thermoplastic resin and the thermosetting resin (
  • the total amount of A), antibacterial / antifungal agent (B), surface modifier (C) and quorum sensing inhibitor (D) is preferably 100% by weight, and preferably comprises a thermoplastic resin and a thermosetting resin.
  • the content of at least one resin (A) selected from the group is 10 to 98.98% by weight, and the content of the antibacterial / antifungal agent (B) is 0.01 to 20% by weight.
  • the content of the agent (C) is 1 to 50% by weight, and the content of the quorum sensing inhibitor (D) is 0.01 to 20% by weight, more preferably a thermoplastic resin and a thermosetting resin. At least one selected from the group consisting of The resin (A) content is 50-98.8% by weight, the antibacterial / antifungal agent (B) content is 0.1-10% by weight, and the surface modifier (C) is contained.
  • the amount of the quorum sensing inhibitor (D) is 0.1 to 10% by weight, and more preferably selected from the group consisting of a thermoplastic resin and a thermosetting resin.
  • the content of at least one resin (A) is 70 to 98.8% by weight, the content of the antibacterial / antifungal agent (B) is 0.1 to 5% by weight, and the surface modifier (C) Is 1 to 20% by weight, and the content of the quorum sensing inhibitor (D) is 0.1 to 5% by weight.
  • the molded product according to the present invention includes an antioxidant, a rust inhibitor, an ultraviolet absorber, a light stabilizer, a bioadhesion agent, a biorepellent agent, an antibiotic, an antiviral agent, a deodorant, a pigment, a flame retardant, and a charge.
  • antioxidants examples include a phenol-based antioxidant, a sulfur-based antioxidant, a phosphorus-based antioxidant, and a hindered amine-based antioxidant.
  • phenolic antioxidants include N-octadecyl-3- (4-hydroxy-3,5-di-tert-butylphenyl) propionate, 2,6-di-tert-butyl-4-methylphenol, 2 , 2-thio-diethylene-bis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tri-ethylene glycol-bis- [3- (3-tert-butyl-5- Methyl-4-hydroxyphenyl) propionate], 3,9-bis [2- ⁇ 3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ -1,1-dimethylethyl] -2 , 4,8,10-tetraoxaspiro [5 ⁇ 5] undecane, tetrakis ⁇ 3- (3,5-di-tert-butyl-4-hydroxy Phenyl) -propionic acid ⁇ pentaerythr
  • sulfur-based antioxidants examples include 3,3′-thiodipropionic acid di-N-dodecyl ester, 3,3′-thiodipropionic acid di-N-tetradecyl ester, and 3,3-thiodipropion ester.
  • sulfur-based antioxidants examples include 3,3′-thiodipropionic acid di-N-dodecyl ester, 3,3′-thiodipropionic acid di-N-tetradecyl ester, and 3,3-thiodipropion ester.
  • examples include acid di-N-octadecyl ester and tetrakis (3-dodecylthiopropionic acid) pentaerythrityl ester.
  • Examples of phosphorus antioxidants include tris (2,4-di-tert-butylphenyl) phosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6 -Di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4-di-cumylphenyl) pentaerythritol diphosphite, tetrakis (2,4-di-tert-butylphenyl) -4, Examples thereof include 4′-biphenylene diphosphonite and bis- [2,4-di-tert-butyl, (6-methyl) phenyl] ethyl phosphite.
  • hindered amine antioxidant examples include bis (2,2,6,6-tetramethyl-4-piperidyl) ester sebacate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ -1,6-hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ ].
  • rust preventives include alkanolamines, quaternary ammonium salts, alkanethiols, imidazolines, sodium metavanadate, bismuth citrate, phenol derivatives, polyalkenylamines, alkyl imidazoline derivatives, dianoalkylamines, carboxylic acid amides, and alkylenes.
  • Examples of the ultraviolet absorber and the light stabilizer include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl]- 2H-benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, methyl -3- [3-tert-butyl-5- (2H-benzotriazol-2-yl) -4-hydroxyphenyl] propionate-polyethylene glycol, hydroxyphenylbenzotriazole derivative, 2- (4,6-diphenyl-1, 3,5-Triazin-2-yl) -5 [(hexyl) oxy] -phenol 2-ethoxy-2'-ethyl-oxalic acid bisanilide.
  • biofouling inhibitor examples include tetramethylthiuram disulfide, bis (N, N-dimethyldithiocarbamate) zinc, 3- (3,4-dichlorophenyl) -1,1-dimethylurea, dichloro-N-(( Dimethylamino) sulfonyl) fluoro-N- (P-tolyl) methanesulfenamide, pyridine-triphenylborane, N, N-dimethyl-N′-phenyl-N ′-(fluorodichloromethylthio) sulfamide, thiocyanic acid first Copper, cuprous oxide, tetrabutylthiuram disulfide, 2,4,5,6-tetrachloroisophthalonitrile, zinc ethylenebisdithiocarbamate, 2,3,5,6-tetrachloro-4- (methylsulfonyl) ) Pyridine, N- (2,4,6-trichlorophen
  • Examples of the deodorant include organic acids, fatty acid metals, metal compounds, cyclodextrins, and porous materials.
  • organic acids examples include lactic acid, succinic acid, malic acid, citric acid, maleic acid, malonic acid, ethylenediamine polyacetic acid, alkane-1,2-dicarboxylic acid, alkene-1,2-dicarboxylic acid, cycloalkane-1 , 2-dicarboxylic acid, cycloalkene-1,2-dicarboxylic acid, naphthalenesulfonic acid.
  • fatty acid metals examples include zinc undecylenate, zinc 2-ethylhexanoate, and zinc ricinoleate.
  • the metal compound examples include iron oxide, iron sulfate, zinc oxide, zinc sulfate, zinc chloride, silver oxide, steel oxide, metal (iron, copper, etc.) chlorophyllin sodium, metal (iron, copper, cobalt etc.) phthalocyanine, metal (Iron, copper, cobalt, etc.) Tetrasulfonic acid phthalocyanine, titanium dioxide, visible light responsive titanium dioxide (nitrogen doped type, etc.) can be mentioned.
  • cyclodextrins examples include ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, methyl derivatives, hydroxypropyl derivatives, glucosyl derivatives, and maltosyl derivatives.
  • the component constituting the porous body examples include polyunsaturated carboxylic acid, aromatic polymer, chitin, chitosan, activated carbon, silica gel, activated alumina, zeolite, ceramic and the like.
  • polyunsaturated carboxylic acid examples include polymethacrylic acid and polyacrylic acid.
  • aromatic polymer examples include polydivinylbenzene, styrene-divinylbenzene-vinylpyridine copolymer, and divinylbenzene-vinylpyridine copolymer.
  • the pigment examples include carbon black, titanium oxide, phthalocyanine pigment, quinacridone pigment, isoindolinone pigment, perylene pigment, perine pigment, quinophthalone pigment, diketopyrrolo-pyrrole pigment, dioxazine pigment, and disazo condensation pigment.
  • examples thereof include pigments and penzimidazolone pigments.
  • Examples of the flame retardant include decabromobiphenyl, antimony trioxide, phosphorus flame retardant, and aluminum hydroxide.
  • antistatic agent examples include a cationic surfactant, an amphoteric surfactant, an anionic surfactant, and a nonionic surfactant.
  • cationic surfactant examples include quaternary ammonium salts, primary amine salts, secondary amine salts, tertiary amine salts, quaternary amine salts, and pyridine derivatives.
  • amphoteric surfactants examples include betaine surfactants, carboxylic acid derivatives, and imidazoline derivatives.
  • anionic surfactant examples include alkyl phosphate surfactants, sulfated oils, soaps, sulfated ester oils, sulfated amide oils, olefin sulfated esters, fatty alcohol sulfates, alkyl sulfates. Fatty acid ethyl sulfonate, alkyl naphthalene sulfonate, alkyl benzene sulfonate, succinic acid ester sulfonate, and phosphoric acid ester salt.
  • Nonionic surfactants include, for example, partial fatty acid esters of polyhydric alcohols, fatty acid ethylene oxide adducts, fatty acid ethylene oxide adducts, fatty amino or fatty acid amide ethylene oxide adducts, and alkylphenol ethylene oxide adducts. And an ethylene oxide adduct of a partial fatty acid ester of a polyhydric alcohol, polyethylene glycol and the like.
  • curing agent examples include t-butyl peroxybenzoate, t-amyl peroxybenzoate, 1,1-dimethylbutyl peroxybenzoate, 1,1,2-trimethylpropyl peroxybenzoate, 1,1,3,3 Tertiary (C4-C10) alkyl peroxybenzoates such as tetramethylbutylperoxybenzoate, t-butylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, 1, 1-dimethylbutylperoxy-2-ethylhexanoate; 1,1,2-trimethylpropylperoxy-2-ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate Noate, t-butyl peroxyneodecanoate, t-butyl peroxypiva 1,1-dimethylbutyl peroxypivalate, 1,1,2-trimethyl
  • crosslinking agent examples include divinylbenzene, trivinylbenzene, ethylene glycol di (meth) acrylate, polyfunctional isocyanate, buta-1,3-diene, divinylbenzene, diallyl phthalate, dihydrodicyclopentadienyl acrylate, maleic acid
  • examples include diallyl and allyl (meth) acrylate.
  • polymerization inhibitor examples include quinones such as parabenzoquinone, tolquinone, naphthoquinone, phenanthraquinone, and 2,5 diphenylparabenzoquinone; tolhydroquinone, hydroquinone, tertiary butylcatechol, monotertiarybutyl hydroquinone, 2,5 Hydroquinones such as ditertiary butyl hydroquinone; monophenols such as hydroquinone monomethyl ether and 2,6-di-t-butyl-p-cresol;
  • low shrinkage agent examples include thermoplastic resins such as polystyrene, polymethyl methacrylate, polyvinyl acetate, saturated polyester, and styrene-butadiene rubber.
  • Examples of the accelerator include cobalt naphthenate, cobalt octenoate, manganese naphthenate, copper naphthenate, cobalt octenoate, copper octenoate and the like.
  • release agent examples include metal soaps such as zinc stearate and calcium stearate, fluorine organic compounds, and phosphoric acid compounds.
  • thickener examples include oxides or hydroxides such as magnesium and calcium.
  • Examples of the fibers include glass chopped strands, milled glass fibers, and roving glass.
  • the method for producing the molded body according to the present invention is not particularly limited.
  • a resin (A) which is a thermoplastic resin, an antibacterial / antifungal agent (B), and a surface modifier (C), a quorum sensing inhibitor (D), and other additives as necessary are melt-kneaded. Thereafter, the composition may be produced by cooling, and after melting and kneading these, the composition may be produced as pellets with a pelletizer.
  • a resin (A) that is a thermoplastic resin an antibacterial / antifungal agent (B), a surface modifier (C), a quorum sensing inhibitor (D), and other additives as necessary.
  • the resin (A) which is a thermoplastic resin may be further added, followed by heat-melt kneading to produce a composition.
  • the composition may be produced by mixing other additives, and the composition may be produced by further polymerization.
  • the polymerization method include bulk polymerization, cast polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • a molded body can be formed using the composition obtained by the above method as a raw material.
  • the method for obtaining the molded product of the present invention is not particularly limited, and examples thereof include an injection molding method, an extrusion molding method, a vacuum molding method, a pressure forming method, a press molding method, a transfer molding, a cast molding, a compression molding, and a laminate molding.
  • a molding method is mentioned.
  • Examples of the molded body according to the present invention include an injection molded body, an extrusion molded body, a vacuum molded body, a compressed air molded body, a press molded body, and a film.
  • the molded body according to the present invention may have a single layer structure or a multilayer structure.
  • the molded body according to the present invention and a molded body other than the molded body according to the present invention may be laminated to form a multilayer structure.
  • the molded body according to the present invention is preferably at least one surface layer of the multilayer structure.
  • the material constituting the molded body other than the molded body according to the present invention include resin, metal, paper, leather, and the like.
  • the multilayer structure can be produced by bonding the molded body according to the present invention and the molded body other than the molded body according to the present invention.
  • the method for measuring the amount of biofilm adhered to the surface of the molded article of the present invention comprises a step of forming a biofilm on a material and a step of quantifying the formed biofilm.
  • Biofilms used for measurement can be collected as they are in various environments and used as they are.
  • bacteria known to form a biofilm can be used for measurement alone or in combination of a plurality of species.
  • Biofilms contain different types of bacteria depending on the environment in which they are formed, and the types of bacteria vary depending on the time of collection and environmental conditions. Therefore, even if the same material is measured, there is a possibility that a different result is obtained for each measurement. Therefore, in the biofilm adhesion evaluation of materials, it is preferable to use bacteria known to form biofilms alone or in combination of several types for measurement from the viewpoint of quantitativeness and reproducibility.
  • the bacteria used for measuring the amount of biofilm attached is not particularly limited as long as it has the ability to form a biofilm.
  • the bacteria used for the measurement include bacteria belonging to the genus Pseudomonas, bacteria belonging to the genus Brevandimonas, bacteria belonging to the genus Methylobacterium, bacteria belonging to the genus Bacillus, bacteria belonging to the genus Staphylococcus Is mentioned.
  • the bacteria used for the measurement are preferably those that are easy to culture, have a large amount of adhesion to the material, and do not separate from the material with a weak water flow.
  • Staphylococcus epidermidis ATCC 35984 or Brevundimonas diminuta NBRC14213 is preferable.
  • a biofilm As a method of forming a biofilm on a material, it is possible to form a biofilm on the material by installing the material at a place where the biofilm is formed. Moreover, a biofilm can also be formed on a raw material by immersing the raw material in a culture solution using a general microorganism culture technique. In the measurement of the amount of biofilm attached, it is preferable to use a general microbial culture method from the viewpoint of quantification and reproducibility, and a culture vessel for forming a biofilm that maintains constant conditions such as temperature and culture medium. More preferably, the culture medium is sterilized, for example, so that no germs are mixed therein.
  • the culture conditions for forming a biofilm into the material include physical conditions such as temperature, aeration, shaking or standing, nutrient conditions such as medium components, concentration, pH, etc., material of the container used for the culture, size, etc. If conditions are the range which a microbe grows, it can set suitably.
  • the shape and size of the material for forming the biofilm can be appropriately set as long as it can be stored in the culture vessel and immersed in the culture solution.
  • the amount of biofilm deposited on the material can be measured while attached to the material or recovered from the material.
  • the biofilm detection method include a method of counting the number of bacteria by suspending the biofilm in water, and a method of staining the biofilm with a staining reagent.
  • the measurement operation is simple, quantitative, and reproducible. Therefore, a method of dyeing a biofilm is preferable.
  • the reagent for staining a biofilm include crystal violet, methylene blue, fuchsin, acridine orange, DAPI, and alcian blue. Crystal violet is preferable from the viewpoint of simplicity of measurement operation, quantitativeness, and reproducibility. .
  • the amount of biofilm attached to the surface of the article can be reduced by using the molded article according to the present invention as the following article.
  • the surface free energy of the molded body can be determined by measuring the static contact angles of a plurality of liquids whose surface free energy is known. Using DM-501 manufactured by Kyowa Interface Science Co., Ltd., the contact angle of the liquid with respect to the molded body was measured by the ⁇ / 2 method. Pure water, hexadecane, and diiodoethane were used as liquids for measuring the contact angle of the liquid with respect to the molded body, and the droplet volume was 2 ⁇ l. The surface free energy of the molded body was calculated from the contact angle of each liquid with respect to the molded body using the method of Kitazaki and Hata.
  • Method B A stirrer and 100 ml of water were added to a 100 ml eggplant flask and heated to 25 ° C. using a hot stirrer. While stirring at 100 rpm using a stir bar, the antibacterial / antifungal agent (B) was added, and the amount dissolved in 100 g of water at 25 ° C. from the concentration at which undissolved substances could be visually confirmed after 1 hour from the addition. The common logarithm log S of S (g / 100 g) was calculated. When 1 mg of the antibacterial / antifungal agent (B) was added and an undissolved substance was confirmed, logS ⁇ 3.
  • -Pre-culture medium 10 g of high polypeptone (manufactured by Nippon Pharmaceutical Co., Ltd.), 2 g of yeast extract (manufactured by DIFCO), and 1 g of MgSO 4 .7H 2 O (manufactured by Nacalai Tesque) are added to a 1000 mL medium bottle, and then 1000 mL of ultrapure water. Was added to dissolve each component.
  • the pH of the obtained solution was adjusted to 7.0 with a 1 mol / L NaOH solution, and then sterilized at 121 ° C. for 20 minutes using an autoclave to obtain a preculture medium.
  • ⁇ Main culture medium (R2A medium) 3.2 g of R2A medium (Nippon Pharmaceutical Co., Ltd.) was added to a 1000 mL medium bottle, and then 1000 mL of ultrapure water was added and dissolved. The obtained solution was sterilized at 121 ° C. for 20 minutes using an autoclave to obtain a main culture medium.
  • ⁇ Biofilm staining solution (0.2 mass% crystal violet solution: CV solution) 2 g of crystal violet (manufactured by Nacalai Tesque Co., Ltd.) was added to a 1000 mL medium bottle, and then 1000 mL of ultrapure water was added and dissolved to obtain a biofilm staining solution.
  • Staphylococcus epidermidis ATCC 35984 (hereinafter referred to as “Bacteria A”) from the American Type Culture Collection (ATCC) as a strain used for the measurement of the amount of biofilm attached is Brevandi from the National Institute for Product Evaluation and Technology (NBRC). Monas diminuta (Brevundimonas diminuta) NBRC14213 (hereinafter referred to as Bacteria B) was obtained as a freeze-dried ampoule. 3 mL of preculture medium was dispensed into an 18 ⁇ test tube equipped with a plastic cap for culture that was sterilized at 121 ° C. for 20 minutes using an autoclave.
  • the test tube was inoculated with the entire amount of the microbial cells in the lyophilized ampoule, and an inoculated test tube was prepared.
  • This inoculated test tube was attached to a shaking incubator and cultured at a temperature of 30 ° C. and at a shaking speed of 200 times / minute for 3 days to obtain a culture solution.
  • Glycerol was added to the culture solution to a final concentration of 30% by mass, and this was dispensed into a cryopreservation tube to prepare a cryopreserved strain.
  • the prepared cryopreserved strain was stored in an ultra-low temperature freezer at ⁇ 80 ° C.
  • preculture solution 3 mL of preculture medium was dispensed into an 18 ⁇ test tube equipped with a plastic cap for culture that was sterilized at 121 ° C. for 20 minutes using an autoclave. This was inoculated with 0.03 mL of a cryopreserved strain. The inoculated test tube was attached to a shaker and cultured for 3 days at a temperature of 30 ° C. and at a shake rate of 200 times / minute to obtain a preculture solution.
  • test piece The following biofilm adhesion test was performed on each of a sheet made of at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, and a sheet made of the composition of each example.
  • A a resin selected from the group consisting of a thermoplastic resin and a thermosetting resin
  • a test piece for the biofilm adhesion test a test piece having a thickness of 20 mm ⁇ 20 mm ⁇ 1 mm was used. The test piece was washed with a diluted neutral detergent in order to remove surface contamination, and sterilized by immersing in ethanol for a few seconds in order to kill surface germs.
  • a sterilized test piece was added to a sterilized 50 mL polypropylene centrifuge tube (hereinafter also referred to as a centrifuge tube), and then 15 mL of the inoculated main culture medium was dispensed. This was placed in an air jacketed incubator and statically cultured at 30 ° C. for 3 days. Then, the test piece was taken out from the centrifuge tube with tweezers, and the excess culture solution attached to the centrifuge tube was sucked up with a paper towel. After adding about 50 mL of pure water to a 100 mL beaker, the taken-out test piece was immersed in pure water and lightly shaken to wash the test piece. The cleaned test piece was taken out, and excess water attached to the test piece was blotted with a paper towel.
  • a sterilized 50 mL polypropylene centrifuge tube hereinafter also referred to as a centrifuge tube
  • 15 mL of the inoculated main culture medium was disp
  • A molded body
  • Biofilm reduction rate the greater the amount of biofilm adhered to the sheet comprising the following TPE, the following ABS, the following PP, the following m-PPE, the following crosslinked PMMA, the following unsaturated polyester, or the following polyurethane. This means that the amount of biofilm attached to the sheet is small.
  • Example 1 As at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, an olefin-based thermoplastic elastomer (TPE, manufactured by Sumitomo Chemical Co., Ltd., Espolex 4272) and ethylene-1H obtained in Production Example 2 , 1H, 2H, 2H-Tridecafluoro-1-octyl acrylate, and thiabendazole (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the antibacterial / antifungal agent (B).
  • TPE olefin-based thermoplastic elastomer
  • ethylene-1H obtained in Production Example 2
  • 1H, 2H, 2H-Tridecafluoro-1-octyl acrylate 1H, 2H, 2H-Tridecafluoro-1-octyl acrylate, and thiabendazole (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the antibacterial
  • TPE 96.5% by weight, ethylene-1H, 1H, 2H, 2H-tridecafluoro-1-octyl acrylate 3% by weight and thiabendazole 0.5% by weight R100) was used for melt kneading at 200 ° C. to obtain a resin composition.
  • the melt-kneaded resin composition is put into a frame of a spacer having a length of 150 mm, a width of 150 mm, and a thickness of 1 mm, the spacer is sandwiched between two 0.5 mm-thick aluminum plates, and further two pieces of 2 mm-thick stainless steel I sandwiched it with a board.
  • the obtained sample was placed in a hot press molding machine with a press plate set at 210 ° C., preheated for 5 minutes, pressurized to 10 MPa, held for 5 minutes, cooled at 30 ° C., 10 MPa for 5 minutes, A sheet having a thickness of 1 mm was produced.
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 2 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the bacterium A as the evaluation microbial species.
  • Example 2 As at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, an olefinic thermoplastic elastomer (TPE, manufactured by Sumitomo Chemical Co., Ltd., Espolex 4272), an antibacterial / antifungal agent (B) As the surface modifier (C), Surflon S-431 (fluorine surfactant, manufactured by AGC Seimi Chemical Co., Ltd.) was used. A resin composition and a sheet were prepared in the same manner as in Example 1 except that TPE was 94.5% by weight, thiabendazole was 0.5% by weight, and Surflon S-431 was 5% by weight. Table 2 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the fungus A as the evaluation strain.
  • TPE olefinic thermoplastic elastomer
  • B As the surface modifier (C)
  • Surflon S-431 fluorine sur
  • Example 3 A resin composition and a sheet were prepared in the same manner as in Example 2 except that Surflon S-461 (fluorine surfactant, manufactured by AGC Seimi Chemical Co., Ltd.) was used as the surface modifier (C). .
  • Table 2 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the fungus A as the evaluation strain.
  • Example 4 The resin composition and sheet were obtained in the same manner as in Example 1 except that PBM-OK (main component: diiodomethyl-para-tolylsulfone, manufactured by MIC Corporation) was used as the antibacterial / antifungal agent (B).
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 3 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the bacterium A as the evaluation microbial species.
  • Example 5 A resin composition and a sheet were produced in the same manner as in Example 1 except that benzylparaben (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the antibacterial / antifungal agent (B).
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 3 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the bacterium A as the evaluation microbial species.
  • Example 6 A resin composition and sheet were prepared in the same manner as in Example 1 except that FK-C (main component: zinc pyrithione, manufactured by Sumika Environmental Science Co., Ltd.) was used as the antibacterial / antifungal agent (B). did.
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 3 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the bacterium A as the evaluation microbial species.
  • Example 7 As at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, an acrylonitrile-butadiene-styrene copolymer (ABS, Nippon A & L Co., Ltd., Clarastic MTK) was obtained in Production Example 2. Thiabendazole was used as an antibacterial / antifungal agent (B) in a mixture with ethylene-1H, 1H, 2H, 2H-tridecafluoro-1-octyl acrylate.
  • A acrylonitrile-butadiene-styrene copolymer
  • a resin composition was obtained by melt-kneading at 210 ° C. using R100) manufactured by Seisakusho.
  • the melt-kneaded resin composition is put into a frame of a spacer having a length of 150 mm, a width of 150 mm, and a thickness of 1 mm, the spacer is sandwiched between two 0.5 mm-thick aluminum plates, and further two pieces of 2 mm-thick stainless steel I sandwiched it with a board.
  • the obtained sample was placed in a hot press molding machine with a press plate set at 220 ° C., preheated for 5 minutes, pressurized to 10 MPa, held for 5 minutes, cooled at 30 ° C., 10 MPa for 5 minutes, A sheet having a thickness of 1 mm was produced.
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 4 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (ABS) after the biofilm adhesion test using the bacterium A as the evaluation microbial species.
  • Example 8 As at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, an acrylonitrile-butadiene-styrene copolymer (ABS, manufactured by Nippon A & L Co., Ltd., Clarastic MTK) is used as an antibacterial / antifungal agent. Thiabendazole was used as (B), and Surflon S-420 was used as the surface modifier (C). A resin composition and a sheet were prepared in the same manner as in Example 7, except that ABS was 94.5% by weight, thiabendazole was 0.5% by weight, and Surflon S-420 was 5% by weight.
  • ABS 94.5% by weight
  • thiabendazole was 0.5% by weight
  • Surflon S-420 was 5% by weight.
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 4 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (ABS) after the biofilm adhesion test using the bacterium A as the evaluation microbial species.
  • Example 9 A resin composition and a sheet were produced in the same manner as in Example 7 except that benzylparaben was used as the antibacterial / antifungal agent (B).
  • Table 4 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (ABS) after the biofilm adhesion test using the fungus A as the evaluation strain.
  • Example 10 A resin composition and a sheet were obtained in the same manner as in Example 7 except that PBM-OK was used as the antibacterial / antifungal agent (B).
  • Table 4 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (ABS) after the biofilm adhesion test using the fungus A as the evaluation strain.
  • Example 11 As at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, TPE and ethylene-1H, 1H, 2H, 2H-tridecafluoro-1-octylacrylate obtained in Production Example 2 Nalidixic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the antibacterial / antifungal agent (B). By melting and kneading 94% by weight of TPE, 3% by weight of ethylene-1H, 1H, 2H, 2H-tridecafluoro-1-octylacrylate and 3% by weight of nalidixic acid at 200 ° C. using a lab plast mill. A resin composition was obtained.
  • the melt-kneaded resin composition is put into a frame of a spacer having a length of 150 mm, a width of 150 mm, and a thickness of 1 mm, the spacer is sandwiched between two 0.5 mm-thick aluminum plates, and further two pieces of 2 mm-thick stainless steel I sandwiched it with a board.
  • the obtained sample was placed in a hot press molding machine with a press plate set at 210 ° C., preheated for 5 minutes, pressurized to 10 MPa, held for 5 minutes, cooled at 30 ° C., 10 MPa for 5 minutes, A sheet having a thickness of 1 mm was produced.
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 5 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using bacteria A as the evaluation strain.
  • Example 12 As at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, TPE and ethylene-1H, 1H, 2H, 2H-tridecafluoro-1-octylacrylate obtained in Production Example 2 1,2-Benzisothiazol-3 (2H) -one (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the antibacterial / antifungal agent (B).
  • a resin composition was obtained by melt-kneading at 200 ° C. using a mill.
  • the melt-kneaded resin composition is put into a frame of a spacer having a length of 150 mm, a width of 150 mm, and a thickness of 1 mm, the spacer is sandwiched between two 0.5 mm-thick aluminum plates, and further two pieces of 2 mm-thick stainless steel I sandwiched it with a board.
  • the obtained sample was placed in a hot press molding machine with a press plate set at 210 ° C., preheated for 5 minutes, pressurized to 10 MPa, held for 5 minutes, cooled at 30 ° C., 10 MPa for 5 minutes, A sheet having a thickness of 1 mm was produced.
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 5 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using bacteria A as the evaluation strain.
  • Example 13 As at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin, polypropylene (PP, manufactured by Sumitomo Chemical Co., Ltd., Sumitomo Nobrene, FLX-80E4) and ethylene-1H obtained in Production Example 2, Thiabendazole (TBZ, manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a antibacterial / antifungal agent (B) from a mixture of 1H, 2H, 2H-tridecafluoro-1-octyl acrylate.
  • PP polypropylene
  • PP manufactured by Sumitomo Chemical Co., Ltd., Sumitomo Nobrene, FLX-80E4
  • ethylene-1H obtained in Production Example 2
  • Thiabendazole TZ, manufactured by Tokyo Chemical Industry Co., Ltd.
  • the melt-kneaded resin composition is put into a frame of a spacer having a length of 150 mm, a width of 150 mm, and a thickness of 1 mm, the spacer is sandwiched between two 0.5 mm-thick aluminum plates, and further two pieces of 2 mm-thick stainless steel I sandwiched it with a board.
  • the obtained sample was placed in a hot press molding machine with a press plate set at 210 ° C., preheated for 5 minutes, pressurized to 10 MPa, held for 5 minutes, cooled at 30 ° C., 10 MPa for 5 minutes, A sheet having a thickness of 1 mm was produced.
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 5 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (PP) after the biofilm adhesion test using the bacterium A as the evaluation microbial species.
  • Example 14 As at least one resin (A) selected from the group consisting of thermoplastic resins and thermosetting resins, modified polyphenylene ether (m-PPE, manufactured by Mitsubishi Engineering Plastics Co., Ltd., Iupiace AH-40) and ethylene obtained in Production Example 2 A mixture of 1H, 1H, 2H, 2H-tridecafluoro-1-octyl acrylate was used as an antibacterial / antifungal agent (B). Melting and kneading 94% by weight of m-PPE, 5% by weight of ethylene-1H, 1H, 2H, 2H-tridecafluoro-1-octyl acrylate and 1% by weight of TBZ at 200 ° C.
  • m-PPE modified polyphenylene ether
  • a resin composition was obtained.
  • the melt-kneaded resin composition is put into a frame of a spacer having a length of 150 mm, a width of 150 mm, and a thickness of 1 mm, the spacer is sandwiched between two 0.5 mm-thick aluminum plates, and further two pieces of 2 mm-thick stainless steel I sandwiched it with a board.
  • the obtained sample was placed in a hot press molding machine with a press plate set at 210 ° C., preheated for 5 minutes, pressurized to 10 MPa, held for 5 minutes, cooled at 30 ° C., 10 MPa for 5 minutes, A sheet having a thickness of 1 mm was produced.
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 5 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (m-PPE) after the biofilm adhesion test using the fungus A as the evaluation species. Show.
  • Example 15 Resin in the same manner as in Example 1 except that FK-C (main component: zinc pyrithione, manufactured by Sumika Environmental Science Co., Ltd.) was used as the antibacterial / antifungal agent (B) as in Example 6.
  • Compositions and sheets were prepared.
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 6 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using bacteria B as the evaluation bacteria species.
  • Example 16 A resin composition and a sheet were produced in the same manner as in Example 1 except that benzylparaben (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the antibacterial / antifungal agent (B) in the same manner as in Example 5.
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 6 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using bacteria B as the evaluation bacteria species.
  • Cross-linked PMMA is used as at least one resin (A) selected from the group consisting of thermoplastic resins and thermosetting resins, and 2-n-octyl-4-isothiazolin-3-one (OIT) is used as an antibacterial / antifungal agent (B).
  • A resin selected from the group consisting of thermoplastic resins and thermosetting resins
  • OIT 2-n-octyl-4-isothiazolin-3-one
  • B an antibacterial / antifungal agent
  • a surface modifier (C) acrylic acid 1H, 1H, 2H, 2H-heptadecafluorodecyl (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
  • MMA methyl methacrylate
  • 1G ethylene glycol dimethacrylate
  • 1G ethylene glycol dimethacrylate
  • 1G ethylene glycol dimethacrylate
  • 1G ethylene glycol dimethacrylate
  • 1G ethylene glycol dimethacrylate
  • 1G ethylene glycol dimethacrylate
  • 1G ethylene glycol dimethacrylate
  • 1G ethylene glycol dimethacrylate
  • Step 1 Heat from 25 ° C to 55 ° C over 22 minutes
  • Step 2 Hold at 55 ° C for 720 minutes
  • Step 3 Heat from 55 ° C to 115 ° C over 40 minutes
  • Step 4 Hold at 115 ° C for 120 minutes
  • Step 5 Cooled from 115 ° C to 25 ° C over 75 minutes
  • Table 1 shows logS of the antibacterial / antifungal agent (B) contained in the sheet.
  • Table 7 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (crosslinked PMMA) after the biofilm adhesion test using bacteria A as the evaluation species. .
  • the vertical lower surface when the sheet was formed was evaluated.
  • Example 18 Surface modification with unsaturated polyester as at least one resin (A) selected from the group consisting of thermoplastic resin and thermosetting resin, and chlorothalonil (manufactured by Tokyo Chemical Industry Co., Ltd.) as antibacterial and antifungal agent (B) As the agent (C), Surflon S-431 (fluorine surfactant, manufactured by AGC Seimi Chemical Co., Ltd.) was used.
  • A thermoplastic resin and thermosetting resin, and chlorothalonil (manufactured by Tokyo Chemical Industry Co., Ltd.) as antibacterial and antifungal agent
  • B As the agent (C)
  • Surflon S-431 fluorine surfactant, manufactured by AGC Seimi Chemical Co., Ltd.
  • seat of thickness 2mm was obtained by heating at 100 degreeC for 2 hours, and polymerizing unsaturated polyester and styrene.
  • Table 1 shows logS of the antibacterial / antifungal agent (B) contained in the sheet.
  • Table 7 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded article) and A (unsaturated polyester) after the biofilm adhesion test using the fungus A as the evaluation species. Show. In addition, the vertical lower surface when the sheet was formed was evaluated.
  • At least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin TPE and ethylene-1H, 1H, 2H, 2H-tridecafluoro-1-octylacrylate obtained in Production Example 2 Methylparaben was used for the mixture as an antibacterial / antifungal agent (B). 96.5% by weight of TPE, 3% by weight of ethylene-1H, 1H, 2H, 2H-tridecafluoro-1-octyl acrylate and 0.5% by weight of methyl paraben were melt-kneaded at 200 ° C. using a lab plast mill. By doing so, a resin composition was obtained.
  • the melt-kneaded resin composition is put into a frame of a spacer having a length of 150 mm, a width of 150 mm, and a thickness of 1 mm, the spacer is sandwiched between two 0.5 mm-thick aluminum plates, and further two pieces of 2 mm-thick stainless steel I sandwiched it with a board.
  • the obtained sample was placed in a hot press molding machine with a press plate set at 210 ° C., preheated for 5 minutes, pressurized to 10 MPa, held for 5 minutes, cooled at 30 ° C., 10 MPa for 5 minutes, A sheet having a thickness of 1 mm was produced.
  • Table 8 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the fungus A as the evaluation strain.
  • Comparative Example 3 A composition and a sheet were prepared in the same manner as in Comparative Example 1 except that sorbic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the antibacterial / antifungal agent (B).
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 8 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the bacterium A as the evaluation bacterium species.
  • Comparative Example 4 A resin composition and a sheet were prepared in the same manner as in Comparative Example 1 except that 4′-hydroxyacetanilide (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the antibacterial / antifungal agent (B).
  • Table 1 shows the common log S of the solubility of the antibacterial / antifungal agent (B) contained in the sheet in water at 25 ° C.
  • Table 8 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the bacterium A as the evaluation bacterium species.
  • Comparative Example 5 A composition and a sheet were prepared in the same manner as in Comparative Example 2, except that Bactekiller BM-102TG (manufactured by Fuji Chemical Co., Ltd.) was used as the antibacterial / antifungal agent (B).
  • Table 8 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the fungus A as the evaluation strain.
  • the melt-kneaded resin composition is put into a frame of a spacer having a length of 150 mm, a width of 150 mm, and a thickness of 1 mm, the spacer is sandwiched between two 0.5 mm-thick aluminum plates, and further two pieces of 2 mm-thick stainless steel I sandwiched it with a board.
  • the obtained sample was placed in a hot press molding machine with a press plate set at 220 ° C., preheated for 5 minutes, pressurized to 10 MPa, held for 5 minutes, cooled at 30 ° C., 10 MPa for 5 minutes, A sheet having a thickness of 1 mm was produced.
  • Table 9 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded article) and A (ABS) after the biofilm adhesion test using the fungus A as the evaluation species.
  • Comparative Example 7 A composition and a sheet were produced in the same manner as in Comparative Example 2 except that ABS was used as at least one resin (A) selected from the group consisting of a thermoplastic resin and a thermosetting resin.
  • Table 9 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded article) and A (ABS) after the biofilm adhesion test using the fungus A as the evaluation species.
  • Comparative Example 8 A composition and a sheet were prepared in the same manner as in Comparative Example 6 except that sorbic acid was used as the antibacterial / antifungal agent (B).
  • Table 9 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded article) and A (ABS) after the biofilm adhesion test using the fungus A as the evaluation species.
  • Comparative Example 9 In the same manner as in Comparative Example 1, a composition and a sheet were produced. Table 9 shows the surface free energy of the sheet and the biofilm reduction rate calculated from A (molded body) and A (TPE) after the biofilm adhesion test using the bacteria B as the evaluation bacteria species.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

バイオフィルムの付着を低減することができる成形体を提供する。 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)と、抗菌・防カビ剤(B)とを含み、前記抗菌・防カビ剤(B)の25℃の水に対する溶解度の常用対数logSが-0.6より小さく、表面自由エネルギーの分散力成分γdが25mN/m以下であるか、または、表面自由エネルギーの双極子力成分γpと水素結合成分γhとの和が30mN/m以上である、成形体。

Description

成形体
 本発明は、成形体に関する。
 従来から、樹脂成形品が家電部材等に広く用いられている。樹脂成形品の表面で、真菌、真正細菌、古細菌等の微生物が増殖することを防ぐために、樹脂成形品に抗菌剤が配合されている。例えば、特許文献1には、ポリプロピレンと銀系抗菌剤とを含有する樹脂成形品が記載されている。
特開2002-20632号公報
 しかし、ポリプロピレンと銀系抗菌剤とを含有する樹脂成形品は、水および有機物が存在する環境下において、微生物が形成する多糖、タンパク質、核酸等の高分子物質(以下、バイオフィルムともいう)の付着を防ぐことができない。そこで、本発明は、バイオフィルムの付着を低減することができる成形体を提供することを目的とする。
 本発明は、以下の[1]および[2]を提供する。
[1]熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)と、抗菌・防カビ剤(B)とを含み、
 前記抗菌・防カビ剤(B)の25℃の水に対する溶解度の常用対数logSが-0.6より小さく、
 表面自由エネルギーの分散力成分γdが25mN/m以下であるか、または、表面自由エネルギーの双極子力成分γpと水素結合成分γhとの和が30mN/m以上である、成形体。
[2]前記樹脂(A)が熱可塑性樹脂である、[1]に記載の組成物。
 本発明によれば、バイオフィルムの付着を低減することができる成形体を提供することができる。
 本発明に係る成形体は、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)と、抗菌・防カビ剤(B)とを含み、
 前記抗菌・防カビ剤(B)の25℃の水に対する溶解度の常用対数logSが-0.6より小さく、
 表面自由エネルギーの分散力成分γが25mN/m以下であるか、または、表面自由エネルギーの双極子力成分γと水素結合成分γとの和が30mN/m以上である、成形体である。
[熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としては、例えば、
 ポリプロピレン、ポリエチレン等のポリオレフィン;
 メチル(メタ)アクリレート重合体、エチル(メタ)アクリレート重合体、オクタデシル(メタ)アクリレート重合体、ヘキサデシル(メタ)アクリレート重合体、テトラデシル(メタ)アクリレート重合体、ポリメタクリル酸メチル、架橋ポリメタクリル酸メチル、ポリアクリル酸メチル等のアクリル系・メタクリル系樹脂;
 ポリスチレン、アクリロニトリル-ブタジエン-スチレン樹脂、アクリロニトリル-アクリルゴム-スチレン樹脂、アクリロニトリル-エチレンゴム-スチレン樹脂、(メタ)アクリル酸エステル-スチレン樹脂、スチレン-ブタジエン-スチレン樹脂、スチレン-ブタジエン共重合体等のスチレン系樹脂;
 ナイロン等のポリアミド;
 ポリカーボネート;
 飽和ポリエステル、不飽和ポリエステル等のポリエステル類;
 ポリフェニレンオキサイド;
 ポリアセタール;
 ポリ塩化ビニル、ポリ塩化ビニリデン等の塩素樹脂;
 ポリ酢酸ビニル、エチレン-酢酸ビニル樹脂等の酢酸ビニル系樹脂;
 エチレン-(メタ)アクリル酸メチル共重合体、エチレン-(メタ)アクリル酸エチル共重合体、エチレン-オクタデシル(メタ)アクリレート共重合体、エチレン-ヘキサデシル(メタ)アクリレート共重合体、エチレン-テトラデシル(メタ)アクリレート共重合体、エチレン-オクタデシル(メタ)アクリレート-メチル(メタ)アクリレート共重合体等のエチレン-(メタ)アクリル酸エステル共重合体およびそれらのアイオノマー樹脂;
 エチレン-(メタ)アクリル酸樹脂およびそのアイオノマー樹脂;
 ポリビニルアルコール、エチレン-ビニルアルコール樹脂等のビニルアルコール樹脂;
 セルロース樹脂;
 塩化ビニル系エラストマー、ウレタン系エラストマー、ポリオレフィン系エラストマー、ポリエステル系エラストマー等の熱可塑性エラストマー;
 ポリフェニレンサルファイド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、変性ポリフェニレンエーテル等のエンジニアリングプラスチック;
 1H,1H,2H,2H-トリデカフルオロ-1-オクチル(メタ)アクリレート重合体、1H,1H,2H,2H-ヘプタフルオロ-1-ヘキシル(メタ)アクリレート重合体等のフルオロアルキル基含有重合体;
 ポリエーテル-ポリプロピレンブロック共重合体;
 ポリエーテルエステルアミド;
 フェノール樹脂;
 キシレン樹脂;
 石油樹脂;
 ポリウレタン;
 ユリア樹脂;
 メラミン樹脂;
 アルキド樹脂;
 エポキシ樹脂;
 シリコーン樹脂;
 フラン樹脂;
 ポリイミド;
が挙げられる。
 これらの中でも、好ましくは、ポリオレフィン、アクリル系・メタクリル系樹脂、スチレン系樹脂、ポリエステル類、塩素樹脂、酢酸ビニル樹脂、エチレン-(メタ)アクリル酸エステル共重合体およびそれらのアイオノマー樹脂、ビニルアルコール樹脂、熱可塑性エラストマー、エンジニアリングプラスチック、フェノール樹脂、ポリウレタン、ユニア樹脂、メラミン樹脂、エポキシ樹脂またはシリコーン樹脂であり、より好ましくは、ポリオレフィン、アクリル系・メタクリル系樹脂、スチレン系樹脂、ポリエステル類、熱可塑性エラストマー、エンジニアリングプラスチックまたはポリウレタンであり、さらに好ましくは、ポリプロピレン、架橋ポリメタクリル酸メチル、アクリロニトリル―ブタジエンースチレン樹脂、不飽和ポリエステル、ポリオレフィン系エラストマー、変性ポリフェニレンエーテルまたはポリウレタンである。
 また、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としては、以下の重合体(A1)および重合体(A2)が挙げられる。
 重合体(A1):
 エチレンおよびプロピレンからなる群より選ばれる少なくとも一種に由来する構成単位(A)と、下記式(1)で示される構成単位(B)とを含み、
 下記式(2)で示される構成単位および下記式(3)で示される構成単位からなる群より選ばれる少なくとも一種の構成単位(C)をさらに含んでいてもよく、
 前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(A)の数が70%以上99%以下であり、前記構成単位(B)と前記構成単位(C)の合計数が1%以上30%以下であり、
 前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(B)の数が1%以上100%以下であり、前記構成単位(C)の数が0%以上99%以下である重合体。
Figure JPOXMLDOC01-appb-I000001
(式(1)中、
 Rは、水素原子またはメチル基を表し、
 Lは、―CO―O―、―O―CO―または―O―を表し、
 Lは、単結合、―CH―、―CH―CH―、―CH―CH―CH―、―CH―CH(OH)―CH―または―CH―CH(CHOH)―を表し、
 Lは、単結合、―CO―O―、―O―CO―、―O―、―CO―NH―、―NH―CO―、―CO―NH―CO―、―NH―CO―NH―、―NH―または―N(CH)―を表し、
 Lは、―(CH―(RO)―Rを表し、
 Rは、炭素原子数1以上30以下のアルキル基、または、1個以上の水素原子が1個以上のフッ素原子で置換された炭素原子数1以上15以下のアルキル基を表し、
 Rは、炭素原子数1以上15以下のアルキレン基、または、1個以上の水素原子が1個以上のフッ素原子で置換された炭素原子数1以上15以下のアルキレン基を表し、
 nは0以上10以下の整数を表し、pは0以上15以下の整数を表す。
 pが2以上の場合、複数の―(RO)―は、同一でも異なっていてもよい。
 なお、L、LおよびLで表される横書きの化学式の各々は、その左側が式(1)の上側に対応し、その右側が式(1)の下側に対応している。)
Figure JPOXMLDOC01-appb-I000002
(式(2)中、
 Rは、水素原子またはメチル基を表し、
 Lは、―CO―O―、―O―CO―または―O―を表し、
 Lは、単結合または炭素原子数1以上8以下のアルキレン基を表し、
 Lは、水素原子、エポキシ基、―CH(OH)―CHOH、カルボキシ基、ヒドロキシ基、アミノ基または炭素原子数1以上4以下のアルキルアミノ基を表す。
 なお、Lで表される横書きの化学式の各々は、その左側が式(2)の上側に対応し、その右側が式(2)の下側に対応している。)
Figure JPOXMLDOC01-appb-I000003
 重合体(A2):
 エチレンに由来する構成単位(A)と、前記式(1)で示される構成単位(B)と、前記式(2)で示される構成単位および前記式(3)で示される構成単位からなる群より選ばれる少なくとも一種の構成単位(C)とを含み、
 前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(A)の数が70%以上99%以下であり、前記構成単位(B)と前記構成単位(C)の合計数が1%以上30%以下であり、
 前記構成単位(B)と前記構成単位(C)の合計数を100%として、前記構成単位(B)の数が1%以上99%以下であり、前記構成単位(C)の数が1%以上99%以下である重合体。
 重合体(A1)および重合体(A2)は、それぞれ、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計量を100重量%として、前記構成単位(B)の含有量が30重量%以上であってもよい。
 重合体(A1)および重合体(A2)は、それぞれ、前記式(1)で示される構成単位(B)におけるLを構成するRが、CF(CF―(ここで、aは3以上9以下の整数を表す)であってもよい。
 重合体(A1)および重合体(A2)は、それぞれ、架橋されていてもよい。
 重合体(A1)および重合体(A2)は、それぞれ、ゲル分率が20%以上であってもよい。
 重合体(A1)および重合体(A2)は、それぞれ、該重合体に含まれる全ての構成単位の合計数を100%として、前記構成単位(A)と前記構成単位(B)と前記単構成位(C)の合計数が90%以上であることが好ましい。
 重合体(A1)および重合体(A2)は、それぞれ、以下の態様が好ましい。
・式(1)で示される構成単位(B)
 Rは、好ましくは、水素原子である。
 Lは、好ましくは、―CO―O―または―O―CO―であり、より好ましくは、―CO―O―である。
 Lは、好ましくは、単結合、―CH―、―CH―CH―または―CH―CH―CH―であり、より好ましくは、単結合である。
 Lは、好ましくは、単結合、―O―CO―、―O―、―NH―または―N(CH)―であり、より好ましくは、単結合である。
 Rで表される炭素原子数1以上30以下のアルキル基は、直鎖アルキル基、分岐アルキル基のいずれであってもよい。
 Rで表される1個以上の水素原子が1個以上のフッ素原子で置換された炭素原子数1以上15以下のアルキル基としては、例えば、CF(CF―(ここで、aは0以上14以下の整数を表す)、CFH(CHF)(CF―(ここで、bおよびcはそれぞれ独立に0以上の整数を表し、かつ、bおよびcの合計は0以上14以下の整数である)が挙げられる。
 Rは、好ましくは、CF(CF―(ここで、aは0以上14以下の整数を表す)であり、より好ましくは、CF(CF―(ここで、aは3以上9以下の整数を表す)であり、さらに好ましくは、CF(CF―(ここで、aは5以上7以下の整数を表す)である。
 pが1以上15以下の整数である場合、―(RO)―Rとしては、例えば-(CO)(CO)(CFO)CF(ここで、d、eおよびfはそれぞれ独立に0以上の整数であり、かつ、d、eおよびfの合計が1以上15以下の整数である)、-(CO)(CO)(CHFO)CHF(ここで、g、hおよびiはそれぞれ独立に0以上の整数であり、かつ、g、hおよびiの合計が1以上15以下の整数である)が挙げられる。
 pが1以上15以下の整数である場合、―(RO)―Rは、好ましくは、-(CO)(CO)(CFO)CF(ここで、d、eおよびfはそれぞれ独立に0以上の整数を表し、かつ、d、eおよびfの合計は1以上15以下の整数である)であり、より好ましくは-(CO)(CFO)CF(ここで、dおよびeはそれぞれ独立に0以上の整数を表し、かつ、dおよびeの合計は1以上15以下の整数である)である。
 Lを構成するnは、好ましくは、0以上4以下の整数であり、より好ましくは、1または2であり、さらに好ましくは、2である。
 式(1)で示される構成単位(B)は、好ましくは以下のいずれかで表される構成単位である。
Figure JPOXMLDOC01-appb-I000004
(式中、Lは前記と同じ意味を表す。)
 重合体(A1)および重合体(A2)は、それぞれ、2種類以上の構成単位(B)を含んでいてもよい。
・式(2)で示される構成単位
 Rは、好ましくは、水素原子である。
 Lは、好ましくは、―CO―O―、―O―CO―、または―O―であり、より好ましくは―CO―O―または―O―CO―であり、さらに好ましくは、―CO―O―である。
 Lで表される炭素原子数1以上8以下のアルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、1-メチルエチレン基、n-ブチレン基、1,2-ジメチルエチレン基、1,1-ジメチルエチレン基、2,2-ジメチルエチレン基、n-ペンチレン基、n-へキシレン基、n-ヘプタレン基、n-オクチレン基および2-エチル-n-へキシレン基が挙げられる。
 Lは、好ましくは、単結合、メチレン基、エチレン基またはn-プロピレン基であり、より好ましくは、メチレン基である。
 Lで表される炭素原子数1以上4以下のアルキルアミノ基としては、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ジメチルアミノ基およびジエチルアミノ基が挙げられる。
 Lは、好ましくは、水素原子、エポキシ基または―CH(OH)―CHOHであり、より好ましくは水素原子である。
 式(2)で示される構成単位は、好ましくは、以下のいずれかで示される構成単位である。
Figure JPOXMLDOC01-appb-I000005
 重合体(A1)および重合体(A2)は、それぞれ、2種類以上の前記構成単位(C)を含んでいてもよい。
 重合体(A1)としては、
 構成単位(A)と、
 Rが水素原子またはメチル基であり、Lが-CO-O-であり、LおよびLが単結合であり、Lが―(CH―Rである式(1)で示される構成単位(B)と、
 Rが水素原子またはメチル基であり、Lが-CO-O-であり、Lが炭素原子数1のアルキレン基であり、Lが水素原子である式(2)で示される構成単位(C)とを含む重合体であって、
 該重合体に含まれる全ての構成単位の合計数を100%として、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数が90%以上である重合体
が挙げられる。
 重合体(A2)としては、
 構成単位(A)と、
 Rが水素原子またはメチル基であり、Lが-CO-O-であり、LおよびLが単結合であり、Lが―(CH―Rである式(1)で示される構成単位(B)と、
 Rが水素原子またはメチル基であり、Lが-CO-O-であり、Lが炭素原子数1のアルキレン基であり、Lが水素原子である式(2)で示される構成単位(C)とを含む重合体であって、
 該重合体に含まれる全ての構成単位の合計数を100%として、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数が90%以上である重合体
が挙げられる。
 前記重合体(A1)および前記重合体(A2)における前記構成単位(A)の数は、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数を100%として、70%以上99%以下であり、重合体(A1)または重合体(A2)と、抗菌・防カビ剤(B)とを含む成形体の成形加工性が良好となるので、好ましくは75%以上99%以下であり、より好ましくは80%以上99%以下である。
 前記重合体(A1)および前記重合体(A2)における前記構成単位(B)と前記構成単位(C)の合計数は、前記構成単位(A)と前記構成単位(B)と前記構成単位(C)の合計数を100%として、1%以上30%以下であり、重合体(A1)または重合体(A2)と、抗菌・防カビ剤(B)とを含む成形体の撥水性と撥油性が良好となるので、好ましくは5%以上30%以下であり、より好ましくは10%以上30%以下である。
 前記重合体(A1)および前記重合体(A2)における前記構成単位(B)の数は、前記構成単位(B)と前記構成単位(C)の合計数を100%として、1%以上99%以下であり、重合体(A1)または重合体(A2)と、抗菌・防カビ剤(B)とを含む成形体の撥水性と撥油性が良好となるので、好ましくは10%以上99%以下であり、より好ましくは20%以上99%以下であり、さらに好ましくは50%以上99%以下である。
 前記重合体(A1)および前記重合体(A2)における前記構成単位(C)の数は、前記構成単位(B)と前記構成単位(C)の合計数を100%として、1%以上99%以下であり、重合体(A1)または重合体(A2)と、抗菌・防カビ剤(B)とを含む成形体の成形加工性が良好となるので、好ましくは、5%以上99%以下であり、より好ましくは10%以上99%以下であり、さらに好ましくは20%以上99%以下である。
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の一態様としては、
 前記重合体(A1)と、
 示差走査熱量測定によって観測される融解ピーク温度またはガラス転移温度が50℃以上180℃以下である重合体(但し、重合体(A1)を除く)である重合体(A20)とを含有し、
 前記重合体(A1)と前記重合体(A20)の合計量を100重量%として、重合体(A1)の含有量が1重量%以上99重量%以下であり、重合体(A20)の含有量が1重量%以上99重量%以下である混合物が挙げられる。
 また、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の一態様としては、
 前記重合体(A2)と、
 示差走査熱量測定によって観測される融解ピーク温度またはガラス転移温度が50℃以上180℃以下である重合体(但し、重合体(A2)を除く)である重合体(A21)とを含有し、
 前記重合体(A2)と前記重合体(A21)の合計量を100重量%として、重合体(A2)の含有量が1重量%以上99重量%以下であり、重合体(A21)の含有量が1重量%以上99重量%以下である混合物が挙げられる。
 示差走査熱量測定(DSC)によって観測される前記重合体(A20)および前記重合体(A21)の融解ピーク温度またはガラス転移温度は、50℃以上180℃以下の範囲内にある。
 前記重合体(A20)および前記重合体(A21)の融解ピーク温度は、以下の示差走査熱量測定により測定される融解曲線を、JIS K7121-1987に準拠した方法により解析して得られる融解ピークの極値における温度であり、融解吸熱量が最大となる温度である。
 前記重合体(A20)および前記重合体(A21)のガラス転移温度は、以下の示差走査熱量測定により測定される融解曲線を、JIS K7121-1987に準拠した方法により解析して得られる中間点ガラス転移温度である。
 [示差走査熱量測定方法]
 示差走査熱量計を用いて、窒素雰囲気下で、約5mgの試料を封入したアルミニウムパンを、工程(1)200℃で5分間保持し、工程(2)5℃/分の速度で200℃から-80℃まで降温し、工程(3)-80℃で5分間保持し、工程(4)5℃/分の速度で-80℃から200℃まで昇温する。工程(4)における熱量測定により得られた示差走査熱量測定曲線を融解曲線とする。
 融解ピーク温度が50℃以上180℃以下の範囲内にある重合体(A20)および重合体(A21)としては、例えば、高密度ポリエチレン(HDPE)、高圧法低密度ポリエチレン(LDPE)、エチレン-α-オレフィン共重合体、エチレン-酢酸ビニル共重合体(EVA)、およびポリプロピレン(PP)が挙げられる。
 ガラス転移温度が50℃以上180℃以下の範囲内にある重合体(A20)および重合体(A21)としては、例えば、環状オレフィン重合体(COP)、環状オレフィン共重合体(COC)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、ポリメタクリル酸メチル(PMMA)、ポリビニルアルコール(PVA)、ポリエチレンテレフタラート(PET)、ポリアクリロニトリル(PAN)、ポリアミド6(PA6)、ポリアミド66(PA66)、ポリカーボネート(PC)、ポリフェニレンサルファイド(PPS)、およびポリエーテルエーテルケトン(PEEK)が挙げられる。
 本発明に係る成形体は、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)を一種のみ含有していてもよく、2種類以上含有していてもよい。
[抗菌・防カビ剤(B)]
 本発明に係る成形体に含まれる抗菌・防カビ剤(B)は、25℃の水に対する溶解度の常用対数logSが-0.6よりも小さい抗菌・防カビ剤である。抗菌・防カビ剤(B)のlogSは、好ましくは-1以下であり、より好ましくは-1.5以下である。抗菌・防カビ剤(B)のlogSは、通常-30以上であり、好ましくは-12以上である。
 抗菌・防カビ剤(B)のlogSは、温度25℃、pH6~8である水100gに対して抗菌・防カビ剤(B)が溶解する量(溶解度)S(g/100g)の常用対数であり、logSの数値が小さいほど水に溶解しにくいことを示す。
 抗菌・防カビ剤(B)のlogSは、コンピュータソフトウェアHansen Solubility Parameter in Practice(HSPiP)を用いることにより、文献値等が知られていない抗菌・防カビ剤(B)に関しても、その化学構造から簡便に推算することができる。
 本発明に係る成形体に含まれる抗菌・防カビ剤(B)のlogSは、通常、HSPiP ver5.0.04によって算出された値、または、文献値を用いる。
 但し、本発明に係る成形体に含まれる抗菌・防カビ剤(B)が、イオン性の化合物、電荷移動錯体、無機化合物、水素原子以外の原子数が120を超える化合物、化合物同士で多重水素結合を形成する化合物である場合は、該抗菌・防カビ剤(B)のlogSは、100gの水に溶解する溶質量を測定する溶解度測定により算出した値を用いる。
 本発明に係る成形体に含有される抗菌・防カビ剤(B)としては、例えば
 エチル-2,4-ジヒドロキシ-6-メチルベンゾエート、メチル-2,4-ジヒドロキシ-3,6-ジメチルベンゾエート、イソプロピル-2,4-ジヒドロキシ-6-メチルベンゾエート、3-メトキシ-5-メチルフェニル-2,4-ジヒドロキシ-6-メチルベンゾエート、エチル-2,4-ジヒドロキシ-3,6-ジメチルベンゾエート、エチル-3-ホルミル-2,4-ジヒドロキシ-6-メチルベンゾエート、イソプロピル-3-ホルミル-2,4-ジヒドロキシ-6-メチルベンゾエート、3-ヒドロキシ-5-メチルフェニル-2,4-ジヒドロキシ-6-メチルベンゾエート、3-メチル―4イソプロピルフェノール、3-ヒドロキシ-5-メチルフェニル-2-ジヒドロキシ-4-メトキシ-6-メチルベンゾエート、3-メトキシ-5-メチルフェニル-2-ヒドロキシ-4-メトキシ-6-メチルベンゾエート、3-クロロ-2,6-ジヒドロキシ-4-メチルベンゾエート等のフェノール・アルコール系抗菌・防カビ剤;
 ナリジクス酸、ピリチオン銅、ピリチオン亜鉛等のピリジン・キノリン系抗菌・防カビ剤;
 トリアジン系抗菌・防カビ剤;
 1,2-ベンズイソチアゾリン-3オン、2-メチル-5-クロロ-4-イソチアゾロン錯体、2-n-オクチル-4-イソチアゾリン-3-オン、ジクロロオクチルイソチアゾリノン、エンズイソチアゾリノン等のイソチアゾロン系抗菌・防カビ剤;
 N-(3-ヒドロキシフェニル)ベンゼンカルボアミド、N-(3-ヒドロキシフェニル)ベンズアミド等のアニリド系抗菌・防カビ剤;
 モノブロモシアノアセトアミド、ジブロモシアノアセトアミド等のニトリル系抗菌・防カビ剤;
 チアベンダゾール、2-ベンズイミダゾールカルバミン酸メチル、1-(ブチルカルバモイル)-2-ベンズイミダゾールカルバミン酸メチル等のイミダゾール・チアゾール系抗菌・防カビ剤;
 アルデヒド系抗菌・防カビ剤;
 ベンジルパラベン、ジヨードメチル-p-トリルスルホン等のエステル・スルホン酸エステル系抗菌・防カビ剤;
 テトラメチルチウラムジスルフィド等のジスルフィド化合物、
 マンゼブ、マンネブ、ジネブ、ポリカーバメート等のチオカーバメート化合物、
 1,1-ジブロモ-1-ニトロプロパノール、1,1-ジブロモ-1-ニトロ-2-アセトキシプロパン等のニトロ化合物;
 塩化ベンザルコニウム、塩化ベンゼトニウム、塩化メチルベンゼトニウム、塩化セチルピリジニウム、セトリモニウム、塩化ドファニウム、塩化ジデシルジメチルアンモニウム、臭化ドミフェン等の4級アンモニウム塩;
 プログアニル、クロルヘキシジン、アレキシジン、ポリアミノプロピルビグアニド等のビグアナイド;
 アルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルアミン、ラウリルジメチルベンジルアンモニウムクロライド等の界面活性剤;
 銀担持ゼオライト、銅担持ゼオライト、亜鉛担持ゼオライト、銀担持リン酸カルシウム、銅担持リン酸カルシウム、亜鉛担持リン酸カルシウム、酸化チタン等の無機系抗菌剤;
等が挙げられる。
 これらの中でも、好ましくは、イミダゾール・チアゾール系抗菌・防カビ剤、エステル・スルホン酸エステル系抗菌・防カビ剤、ピリジン・キノリン系抗菌・防カビ剤、フェノール・アルコール系抗菌・防カビ剤、イソチアゾロン系抗菌・防カビ剤、アルデヒド系抗菌・防カビ剤、4級アンモニウム塩、無機系抗菌剤、界面活性剤、ビグアナイド、アニリド系抗菌・防カビ剤またはニトリル系抗菌・防カビ剤であり、より好ましくは、イミダゾール・チアゾール系抗菌・防カビ剤、エステル・スルホン酸エステル系抗菌・防カビ剤、ピリジン・キノリン系抗菌・防カビ剤、フェノール・アルコール系抗菌・防カビ剤またはイソチアゾロン系抗菌・防カビ剤であり、さらに好ましくは、チアベンダゾール、ベンジルパラベン、ピリチオン亜鉛、ジヨードメチル-p-トリルスルホン、3-メチル―4イソプロピルフェノール、ナリジクス酸、2-n-オクチル-4-イソチアゾリン-3-オン、または、1,2-ベンゾイソチアゾール-3(2H)-オンである。
 抗菌・防カビ剤(B)は、担体に担持されていてもよい。
 担体としては、例えば、
 ゼオライト;
 モンモリオナイト;
 活性炭;
 ハイドロキシアパタイト等のリン酸カルシウム系化合物;
 酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化ジルコニウム等の酸化物;
 窒化ケイ素、窒化チタン、窒化アルミニウム、窒化ジルコニウム等の窒化物;
 炭化ケイ素等の非酸化物セラミックス;
 珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、珪藻土等の珪酸塩;
 カオリナイト、ベントナイト、軽石、長石、石英等のアルミナ-シリカ系化合物;
が挙げられる。
 本発明に係る成形体は、抗菌・防カビ剤(B)を一種のみ含有していてもよく、2種類以上含有していてもよい。
[表面自由エネルギー]
 本発明に係る成形体は、表面自由エネルギーの分散力成分γが25mN/m以下であるか、または、表面自由エネルギーの双極子力成分γと水素結合成分γとの和が30mN/m以上である。
 本発明に係る成形体は、好ましくは、γが20mN/m以下であるか、または、γとγとの和が40mN/m以上であり、より好ましくは、γが16mN/m以下であるか、または、γとγとの和が80mN/m以上である。本発明に係る成形体の表面自由エネルギーのγは、通常、0以上である。
 表面自由エネルギーは、分散項(γ)、水素結合項(γ)および双極子項(γ)に分けられる。
 本発明に係る成形体の表面自由エネルギーを算出する方法としては、北崎・畑の方法を用いる。
 北崎・畑の方法では、表面自由エネルギーγが、分散力成分γ、双極子力成分γ、水素結合成分γから成ると仮定し、表面自由エネルギーγを
γ=γ+γ+γ       (1)
と表す。
 この時、液体の表面エネルギーγと、固体の表面エネルギーγと、静的接触角θの関係は、
Figure JPOXMLDOC01-appb-I000006
と表される。
 γの各成分が既知の液体を3種類用いて、それぞれの液体で接触角θを測定し、
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009
関する連立方程式を解くことで、成形体表面の表面自由エネルギーの各成分を求めることができる。
 本発明に係る成形体の表面自由エネルギーの分散力成分γを25mN/m以下であるか、または、表面自由エネルギーの双極子力成分γと水素結合成分γとの和を30mN/m以上とする方法としては、例えば、後述の表面改質剤(C)を成形体に含有させる方法、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の少なくとも一部として、下記の表面改質用熱可塑性樹脂(A’)を成形体に含有させる方法が挙げられる。
 表面改質用熱可塑性樹脂(A’):
 重合体(A1)、重合体(A2)、フルオロアルキル基含有重合体、(メタ)アクリレートに由来する単量体単位が炭素原子数10以上の(メタ)アクリレートに由来する単量体単位であるアクリル系・メタクリル系樹脂、(メタ)アクリレートに由来する単量体単位が炭素原子数10以上の(メタ)アクリレートに由来する単量体単位であるエチレン-(メタ)アクリル酸エステル共重合体およびそのアイオノマー樹脂、ポリエーテル-ポリプロピレンブロック共重合体、ポリエーテルエステルアミド、エチレン-(メタ)アクリル酸樹脂およびそのアイオノマー樹脂、ビニルアルコール系樹脂、または、セルロース樹脂
 (メタ)アクリレートに由来する単量体単位が炭素原子数10以上の(メタ)アクリレートに由来する単量体単位であるアクリル系・メタクリル系樹脂としては、例えば、オクタデシル(メタ)アクリレート重合体、ヘキサデシル(メタ)アクリレート重合体、テトラデシル(メタ)アクリレート重合体が挙げられる。
 (メタ)アクリレートに由来する単量体単位が炭素原子数10以上の(メタ)アクリレートに由来する単量体単位であるエチレン-(メタ)アクリル酸エステル共重合体としては、例えば、エチレン-オクタデシル(メタ)アクリレート共重合体、エチレン-ヘキサデシル(メタ)アクリレート共重合体、エチレン-テトラデシル(メタ)アクリレート共重合体、エチレン-オクタデシル(メタ)アクリレート-メチル(メタ)アクリレート共重合体が挙げられる。
 本発明に係る成形体の表面自由エネルギーの分散力成分γを25mN/m以下とするために、後述の表面改質剤(C)として、例えば、フッ素系界面活性剤、パーフルオロポリエーテル基含有化合物、アルキルシロキシ基含有化合物、フッ素系モノマーを使用することができる。
 本発明に係る成形体の表面自由エネルギーの双極子力成分γと水素結合成分γとの和を30mN/m以上とするために、後述の表面改質剤(C)として、例えば、ポリアルキレンエーテル基含有化合物、ベタイン型化合物、グリセリンモノステアレート等の界面活性剤を使用することができる。
 本発明に係る成形体の表面自由エネルギーの分散力成分γを25mN/m以下とするために、前記表面改質用熱可塑性樹脂(A’)として、重合体(A1)、重合体(A2)、フルオロアルキル基含有重合体、(メタ)アクリレートに由来する単量体単位が炭素原子数10以上の(メタ)アクリレートに由来する単量体単位であるアクリル系・メタクリル系樹脂、または、(メタ)アクリレートに由来する単量体単位が炭素原子数10以上の(メタ)アクリレートに由来する単量体単位であるエチレン-(メタ)アクリル酸エステル共重合体もしくはそのアイオノマー樹脂を使用することができる。
 本発明に係る成形体の表面自由エネルギーの双極子力成分γと水素結合成分γとの和を30mN/m以上とするために、前記表面改質用熱可塑性樹脂(A’)として、ポリエーテル-ポリプロピレンブロック共重合体、ポリエーテルエステルアミド、または、エチレン-(メタ)アクリル酸樹脂もしくはそのアイオノマー樹脂を使用することができる。
 エチレン-(メタ)アクリル酸樹脂のアイオノマー樹脂としては、例えば、エチレン-メタクリル酸共重合体のカリウムアイオノマーが挙げられる。
 前記熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)と抗菌・防カビ剤(B)の合計量を100重量%として、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は70~99.99重量%であり、抗菌・防カビ剤(B)の含有量は0.01~30重量%であってよく、好ましくは、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は90~99.9重量%であり、抗菌・防カビ剤(B)の含有量は0.1~10重量%であり、より好ましくは、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は97~99.9重量%であり、抗菌・防カビ剤(B)の含有量は0.1~3重量%である。
[表面改質剤(C)]
 本発明に係る成形体は、さらに表面改質剤(C)を含んでもよい。本明細書において、「表面改質剤」とは、該表面改質剤の有無により、成形体の表面自由エネルギーが変化する化合物を意味する。
 表面改質剤(C)としては、例えば、
 ノナフルオロ-1-ブタンスルホン酸、トリデカフルオロヘプタン酸、ヘプタデカフルオロオクタンスルホン酸、ヘプタデカフルオロノナン酸、ヘンエイコサフルオロウンデカン酸、2H,2H,3H,3H-ヘプタデカフルオロウンデカン酸、ペンタデカフルオロオクタン酸アンモニウム、ノナフルオロ-1-ブタンスルホン酸リチウム、ヘプタデカフルオロ-1-オクタンスルホン酸カリウム、サーフロンS-431、サーフロンS-461、サーフロンS-420等のフッ素系界面活性剤;
 国際公開公報2014/080873号に記載のパーフルオロポリエーテル基含有化合物;
 アクリル酸 1H,1H,2H,2H-ヘプタデカフルオロデシル等のフッ素系モノマー;
 RSC Adv. 2015,5,53054-53062に記載のアルキルシロキシ基含有化合物;
 特開2017-115044号公報に記載のポリアルキレンエーテル基含有化合物;
 特開2002-069178号公報に記載のベタイン型化合物;
 グリセリンモノステアレート等の界面活性剤;
が挙げられる。
 これらの中でも、好ましくは、フッ素系界面活性剤、パーフルオロポリエーテル基含有化合物、フッ素系モノマー、ポリアルキレンエーテル基含有化合物、ベタイン型化合物または界面活性剤であり、より好ましくは、フッ素系界面活性剤、フッ素系モノマーまたはポリアルキレンエーテル基含有化合物であり、さらに好ましくは、アクリル酸 1H,1H,2H,2H-ヘプタデカフルオロデシル、サーフロンS-431、サーフロンS-461またはサーフロンS-420である。
 本発明に係る成形体が表面改質剤(C)を含有する場合、前記熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)と抗菌・防カビ剤(B)と表面改質剤(C)の合計量を100重量%として、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は30~98.99重量%であり、抗菌・防カビ剤(B)の含有量は0.01~20重量%であり、表面改質剤(C)の含有量は1~50重量%であってよく、好ましくは、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は60~98.9重量%であり、抗菌・防カビ剤(B)の含有量は0.1~10重量%であり、表面改質剤(C)の含有量は1~30重量%であり、より好ましくは、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は75~98.9重量%であり、抗菌・防カビ剤(B)の含有量は0.1~5重量%であり、表面改質剤(C)の含有量は1~20重量%である。
 [クオラムセンシング阻害剤(D)]
 本発明に係る成形体は、さらにクオラムセンシング阻害剤(D)を含有してもよい。
 クオラムセンシング阻害剤は、微生物のクオラムセンシングを阻害する化合物である。
 クオラムセンシングの阻害性は、クオラムセンシングを誘発する物質により色素を産出する菌、生物発光を示す菌等を用いたバイオアッセイによって測定することができる(例えば、Sensors2013,13,5117-5129)。
 Sensors2013,13,5117-5129には、培地中のC. violaceum CV026などのレポーター株に対してクオラムセンシングを誘発するN-ヘキサノイルホモセリンラクトンを添加し、さらに、クオラムセンシング阻害剤であるカフェインを添加した後、保温して菌を培養する。生産された紫色色素(violacein)の量が、カフェインを添加しない場合の紫色色素(violacein)の量に比べ、少ないため、カフェインはクオラムセンシング阻害性を有する、と記載されている。
 クオラムセンシング阻害剤としては、好ましくは、下記のクオラムセンシング阻害剤である。
 Sensors2013,13,5117-5129に記載の方法に基づき、培地中のC. violaceum CV026(レポーター株)に対してN-ヘキサノイルホモセリンラクトンを添加し、さらに、クオラムセンシング阻害剤を添加した後、保温して菌を培養する。生産された紫色色素(violacein)の量が85%以下である(ただし、クオラムセンシング阻害剤を添加することなく、保温して菌を培養し、生産された紫色色素の量を100%とする)クオラムセンシング阻害剤。
 クオラムセンシング阻害剤としては、例えば、
 オイゲノール、メチルオイゲノール、シンナムアルデヒド、けい皮酸、バニリン、イソバニリン、フェルラ酸、クロロゲン酸、カフェ酸、P-クマル酸、けい皮アルデヒド、けい皮酸メチル、フェニルプロピオン酸、2-メトキシけい皮酸、3-メトキシけい皮酸、4-メトキシけい皮酸、3-ブロモけい皮酸、2-フルオロけい皮酸、3-フルオロけい皮酸、3-メチルけい皮酸、4-アセトキシけい皮酸、4-ブロモけい皮酸、4-エトキシけい皮酸、4-フルオロけい皮酸、3,4-ジメトキシけい皮酸、2,3-ジメトキシけい皮酸、2,5-ジメトキシけい皮酸、2,3,4-トリメトキシけい皮酸、3,4,5-トリメトキシけい皮酸、リグニン等のフェニルプロパノイド;
 サリチル酸、バニリン酸、没食子酸、エラグ酸等の安息香酸類縁体;
 1,2,3,4,6-ペンタガロイルグルコース、プニカラギン、ハマメリタンニン、タンニン酸等のタンニン類;
 レスベラトール、プテロスチルベン等のスチルベン類縁体およびポリケタイド;
 クエルセチン、(-)-カテキン、(-)-エピカテキン、(-)-ガロカテキン、(-)-エピガロカテキン、(-)-没食子酸カテキン、(-)-没食子酸エピカテキン、(-)-没食子酸ガロカテキン、(-)-没食子酸エピガロカテキン、ナリンゲニン、フラボン、アピゲニン、クリシン、アカセチン、フラボノール、ケムフェノール、ケルセチン、クェルシトリン、フラバノン、イソサクラネチン、ピノストロビン、エリオジクチオール、シアニジン、マルビジン等のフラボノイド;
 クルクミン等のジアリールヘプタノイド;
 カルバクロール、サルビピソン、アカントスペルモリド、イソリモニン酸、イチャンギン、ベツリン酸、ウルソール酸、ギムネマ酸、プロトアネモニン、オバクノン、デアセチルノミリン酸グルコシド、フィトール等のテルペンおよびテルペノイド;
 アリシン、アホエン、スルフォラファン、アリルイソチオシアネート、イベリン、チアゾリジンジオン、ジフェニルジスルフィド等の硫黄含有化合物;
 インドール、2-メチルトリプトリン等の窒素含有化合物;
 ウンベリフェロン、スコポレチン等のクマリン誘導体;
 プソラレン、アンゲリシン、ベルガモチン、ジヒドロキシベルガモチン等のフラノクマリン類;
 クリソファノール、エモジン、シコニン、プルプリン、エンベリン等のキノン誘導体;
 ベルベリン、ケレリトリン、サンギナリン、レセルピン、カフェイン、オロイジン、ピペリン、ホルデニン等のアルカロイド;
 ピロガロール、マラバリコンC、タキシフォリン、ロスマリン酸等のフェノール類またはポリフェノール類;
 ラムノリピッド、トレハロリピッド、ソホロリピッド、セロビオピッド、ビスコシン、サーファクチン、エマルザン等のクオラムセンシング阻害能を有する界面活性剤;
 ピオシアニン等のフェナジン類;
 ピエリシジンA、グルコピエリシジンA等のユビキノン類縁体;
 リポキシン A4等のエイコサノイド;
 ポリガラクツロン酸等のペクチンなどの多糖類;
 エリスロマイシン等のマクロライド;
 ゼアキサンチン等のカロテノイド;
 ペニシリン酸、パツリン等のマイコトキシン;
 エリスロマイシン等のマクロライド;
 コレステリルクロリド等のステロイド;
 3-フルオロ-4-メチルフェニルボロン酸、2-フルオロ-4-トリフルオロメチルフェニルボロン酸等のボロン酸およびボロン酸誘導体;
 アシル化シクロペンチルアミド N-(3-オキソドデカノイル)-L-ホモセリンラクトン等のラクトン類;
 3,4-ジブロモ-2(5H)-フラノン等のプテノライド;
が挙げられる。
 クオラムセンシング阻害剤(D)の25℃の水に対する溶解度の常用対数logSは、本発明に係る成形体のバイオフィルムの付着を低減する効果の持続性の観点から、好ましくは0.1未満であり、より好ましく0.01以下であり、さらに好ましくは-0.1以下であり、特に好ましくは-0.4以下である。クオラムセンシング阻害剤(D)のlogSは、通常-30以上であり、好ましくは-12以上である。
 クオラムセンシング阻害剤(D)のハンセン溶解度パラメータ(以下、HSPとも表記する)と、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)のハンセン溶解度パラメータ(以下、HSPとも表記する)との距離Raは、好ましくは3.2MPa1/2より大きく、より好ましくは3.5MPa1/2以上であり、さらに好ましくは4.2MPa1/2以上である。Raは、通常、50MPa1/2以下であり、好ましくは35MPa1/2以下である。
 ハンセン溶解度パラメータ(以下、HSPとも表記する)は、下記の(δD、δP、δH)の3次元のパラメータで定義され、下記式(1’)により表される。ハンセンが提唱したこの考え方(理論)は、ハンセン溶解度パラメータ:A User’s Handbook,Second Edition,C.M.Hansen(2007),Taylor and Francis Group,LLC(HSPiPマニュアル)に記載されている。
 HSP=(δD)+(δP)+(δH) ・・・(1’)
 δD:London分散力項
 δP:分子分極項(双極子間力項)
 δH:水素結合項
 δD、δPおよびδHは、例えば、コンピュータソフトウェアHansen Solubility Parameters in Practice(HSPiP)を用いることによって、樹脂(A)およびクオラムセンシング阻害剤(D)の化学構造式から計算することができる。本発明に係る成形体は、HSPiP ver.5.0.04による計算によって得られた値を用いる。
 本発明の成形体に含有される熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)並びにクオラムセンシング阻害剤(D)が、それぞれ、2種類以上の構成単位からなる共重合体である場合、上述のプログラムではハンセン溶解度パラメータを直接算出することはできない。かかる場合には、各構成単位からなる単独重合体のハンセン溶解度パラメータをそれぞれ算出し、算出された各単独重合体のハンセン溶解度パラメータを、共重合体中に含まれる構成単位の体積比で平均した値を共重合体のハンセン溶解度パラメータとした。ここで、「体積比で平均した値」とは、各構成単位からなる単独重合体のハンセン溶解度パラメータであるδD、δPおよびδHのそれぞれに、その構成単位の体積分率を乗じた値を、δD、δPおよびδHのそれぞれについて合計したものをいう。ここで、ある構成単位の「体積分率」とは、(当該構成単位の体積)/(共重合体中の構成単位の総体積)を意味する。
 HSPとHSPとの距離Raは、二つの物質のハンセン溶解度パラメータ(HSP)の距離を示す。Raは、両物質の親和性を表す指標であり、その値が小さいほど両物質の親和性が高いと言える。
 物質αおよび物質βのハンセン溶解度パラメータHSPαおよびHSPβを、
 HSPα=(δDα、δPα、δHα
 HSPβ=(δDβ、δPβ、δHβ
と仮定すれば、HSPαとHSPβとの距離(Ra)は、下記式(2’)により計算することができる。
 Ra=[4×(δDα-δDβ+(δPα-δPβ+(δHα-δHβ1/2 ・・・(2’)
 クオラムセンシング阻害剤(D)は、担体に担持されていてもよい。
 クオラムセンシング阻害剤(D)の担体としては、抗菌・防カビ剤(B)の担体として例示したものが挙げられる。
 本発明に係る成形体が、クオラムセンシング阻害剤(D)をさらに含有する場合、前記熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)と抗菌・防カビ剤(B)とクオラムセンシング阻害剤(D)の合計量を100重量%として、好ましくは、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は40~99.98重量%であり、抗菌・防カビ剤(B)の含有量は0.01~30重量%であり、クオラムセンシング阻害剤(D)の含有量は0.01~30重量%であり、より好ましくは、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は80~99.8重量%であり、抗菌・防カビ剤(B)の含有量は0.1~10重量%であり、クオラムセンシング阻害剤(D)の含有量は0.1~10重量%であり、さらに好ましくは、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は90~99.8重量%であり、抗菌・防カビ剤(B)の含有量は0.1~5重量%であり、クオラムセンシング阻害剤(D)の含有量は0.1~5重量%である。
 本発明に係る成形体が、表面改質剤(C)およびクオラムセンシング阻害剤(D)をさらに含有する場合、前記熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)と抗菌・防カビ剤(B)と表面改質剤(C)とクオラムセンシング阻害剤(D)の合計量を100重量%として、好ましくは、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は10~98.98重量%であり、抗菌・防カビ剤(B)の含有量は0.01~20重量%であり、表面改質剤(C)の含有量が1~50重量%であり、クオラムセンシング阻害剤(D)の含有量は0.01~20重量%であり、より好ましくは、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は50~98.8重量%であり、抗菌・防カビ剤(B)の含有量は0.1~10重量%であり、表面改質剤(C)の含有量が1~30重量%であり、クオラムセンシング阻害剤(D)の含有量は0.1~10重量%であり、さらに好ましくは、熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)の含有量は70~98.8重量%であり、抗菌・防カビ剤(B)の含有量は0.1~5重量%であり、表面改質剤(C)の含有量が1~20重量%であり、クオラムセンシング阻害剤(D)の含有量は0.1~5重量%である。
 本発明に係る成形体は、酸化防止剤、防錆剤、紫外線吸収剤、光安定剤、生物付着防止剤、生物忌避剤、抗生物質、抗ウイルス剤、消臭剤、顔料、難燃剤、帯電防止剤、滑剤、充填剤、可塑剤、核剤、アンチブロッキング剤、発泡剤、乳化剤、光沢剤、結着剤、相溶化剤、重合防止剤、低収縮剤、硬化剤、架橋剤、促進剤、離型剤、増粘剤、繊維等の添加剤を含有してもよい。
 酸化防止剤としては、例えば、フェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、ヒンダードアミン系酸化防止剤が挙げられる。
 フェノール系酸化防止剤としては、例えば、N-オクタデシル-3-(4-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)プロピオネート、2,6-ジ-tert-ブチル-4-メチルフェノール、2,2-チオ-ジエチレン-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリ-エチレングリコール-ビス-[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[2-{3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5・5]ウンデカン、テトラキス{3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオン酸}ペンタエリスリチルエステル、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5ーメチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H、3H、5H)-トリオン、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノ-ル)、4,4’-ブチリデンビス(6-tert-ブチル-3-メチルフェノ-ル)、4,4’-チオビス(6-tert-ブチル-3-メチルフェノ-ル)が挙げられる。
 硫黄系酸化防止剤としては、例えば、3,3’-チオジプロピオン酸ジ-N-ドデシルエステル、3,3’-チオジプロピオン酸ジ-N-テトラデシルエステル、3,3-チオジプロピオン酸ジ-N-オクタデシルエステル、テトラキス(3-ドデシルチオプロピオン酸)ペンタエリスリチルエステルが挙げられる。
 リン系酸化防止剤としては、例えば、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-クミルフェニル)ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスフォナイト、ビス-[2,4-ジ-tert-ブチル,(6-メチル)フェニル]エチルホスファイトが挙げられる。
 ヒンダードアミン系酸化防止剤としては、例えば、セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)エステル、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}-1,6-ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]が挙げられる。
 防錆剤としては、例えば、アルカノールアミン、第四アンモニウム塩、アルカンチオール、イミダゾリン、メタバナジン酸ナトリウム、クエン酸ビスマス、フェノール誘導体、ポリアルケニルアミン、アルキルイミダゾリン誘導体、ジアノアルキルアミン、カルボン酸アミド、アルキレンジアミン、ピリミジンおよびこれらのカルボン酸、ナフテン酸、スルホン酸複合体、亜硝酸カルシウム、アルキルアミンとエステル、ポリアルコール、ポリフェノール、アルカノールアミン、モリブデン酸ナトリウム、タングステン酸ナトリウム、亜硝酸ナトリウム、ホスホン酸ナトリウム、クロム酸ナトリウム、ケイ酸ナトリウム、ゼラチン、カルボン酸のポリマー、脂肪族アミン、脂肪族ジアミン、芳香族アミン、芳香族ジアミン、エトキシ化アミン、イミダゾール、ベンズイミダゾール、ニトロ化合物、ホルムアルデヒド、アセチレンアルコール、脂肪族チオール、脂肪族スルフィド、芳香族チオール、芳香族スルフィド、スルホキシド、チオ尿素、アセチレンアルコール、2-メルカプトベンズイミダゾール、アミンまたは第四級アンモニウム塩とハロゲンイオンの混合物、アセチレンチオールおよびスルフィド、ジベンジルスルホキシド、アルキルアミンとヨウ化カリウムの混合物、亜硝酸ジシクロヘキシルアミン、安息香酸シクロヘキシルアミン、ベンゾトリアゾール、タンニンとリン酸ナトリウムの混合物、トリエタノールアミンとラウリルサルコシンとベンゾトリアゾールとの混合物、アルキルアミンとベンゾトリアゾールと亜硝酸ナトリウムとリン酸ナトリウムとの混合物が挙げられる。
 紫外線吸収剤および光安定剤としては、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(Α,Α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、メチル-3-[3-tert-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオネート-ポリエチレングリコール、ヒドロキシフェニルベンゾトリアゾール誘導体、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5[(ヘキシル)オキシ]-フェノール、2-エトキシ-2’-エチル-オキサリック酸ビスアニリドが挙げられる。
 生物付着防止剤としては、例えば、テトラメチルチウラムジサルファイド、ビス(N,N-ジメチルジチオカルバミン酸)亜鉛、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、ジクロロ-N-((ジメチルアミノ)スルフォニル)フルオロ-N-(P-トリル)メタンスルフェンアミド、ピリジン-トリフェニルボラン、N,N-ジメチル-N’-フェニル-N’-(フルオロジクロロメチルチオ)スルファミド、チオシアン酸第一銅、酸化第一銅、テトラブチルチウラムジサルファイド、2,4,5,6-テトラクロロイソフタロニトリル、ジンクエチレンビスジチオカーバーメート、2,3,5,6-テトラクロロ-4-(メチルスルホニル)ピリジン、N-(2,4,6-トリクロロフェニル)マレイミド、ビス(2-ピリジンチオール-1-オキシド)亜鉛塩、ビス(2-ピリジンチオール-1-オキシド)銅塩、2-メチルチオ-4-tert-ブチルアミノ-6-シクロプロピルアミノ-S-トリアジン、アルキルピリジン化合物、グラミン系化合物、イソトニル化合物が挙げられる。
 消臭剤としては、例えば、有機酸類、脂肪酸金属類、金属化合物、シクロデキストリン類、多孔質体が挙げられる。
 有機酸類としては、例えば、乳酸、コハク酸、リンゴ酸、クエン酸、マレイン酸、マロン酸、エチレンジアミンポリ酢酸、アルカン-1,2-ジカルボン酸、アルケン-1,2-ジカルボン酸、シクロアルカン-1,2-ジカルボン酸、シクロアルケン-1,2-ジカルボン酸、ナフタレンスルホン酸が挙げられる。
 脂肪酸金属類としては、例えば、ウンデシレン酸亜鉛、2-エチルヘキサン酸亜鉛、リシノール酸亜鉛が挙げられる。
 金属化合物としては、例えば、酸化鉄、硫酸鉄、酸化亜鉛、硫酸亜鉛、塩化亜鉛、酸化銀、酸化鋼、金属(鉄、銅等)クロロフィリンナトリウム、金属(鉄、銅、コバルト等)フタロシアニン、金属(鉄、銅、コバルト等)テトラスルホン酸フタロシアニン、二酸化チタン、可視光応答型二酸化チタン(窒素ドープ型等)が挙げられる。
 シクロデキストリン類としては、例えば、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、そのメチル誘導体、ヒドロキシプロピル誘導体、グルコシル誘導体、マルトシル誘導体が挙げられる。
 多孔質体を構成する成分としては、例えば、ポリ不飽和カルボン酸、芳香族系ポリマー、キチン、キトサン、活性炭、シリカゲル、活性アルミナ、ゼオライト、セラミック等が挙げられる。
 ポリ不飽和カルボン酸としては、例えば、ポリメタクリル酸、ポリアクリル酸が挙げられる。
 芳香族系ポリマーとしては、例えば、ポリジビニルベンゼン、スチレン-ジビニルベンゼン-ビニルピリジン共重合体、ジビニルベンゼン-ビニルピリジン共重合体が挙げられる。
 顔料としては、例えば、カーボンブラック、酸化チタン、フタロシアニン系顔料、キナクリドン系顔料、イソインドリノン系顔料、ペリレン顔料、ペリニン系顔料、キノフタロン系顔料、ジケトピロロ-ピロール系顔料、ジオキサジン系顔料、ジスアゾ縮合系顔料、ペンズイミダゾロン系顔料が挙げられる。
 難燃剤としては、例えば、デカブロモビフェニル、三酸化アンチモン、リン系難燃剤、水酸化アルミニウムが挙げられる。
 帯電防止剤としては、例えば、カチオン界面活性剤、両性界面活性剤、アニオン界面活性剤、ノニオン界面活性剤が挙げられる。
 カチオン界面活性剤としては、例えば、4級アンモニウム塩、第1級アミン塩、第2級アミン塩、第3級アミン塩、第4級アミン塩、ピリジン誘導体が挙げられる。
 両性界面活性剤としては、例えば、ベタイン型界面活性剤、カルボン酸誘導体、イミダゾリン誘導等が挙げられる。
 アニオン界面活性剤としては、例えば、リン酸アルキル型界面活性剤、硫酸化油、石鹸、硫酸化エステル油、硫酸化アミド油、オレフィンの硫酸化エステル塩類、脂肪アルコール硫酸エステル塩類、アルキル硫酸エステル塩、脂肪酸エチルスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルベンゼンスルホン酸塩、琉拍酸エステルスルホン酸塩、燐酸エステル塩が挙げられる。
 ノニオン界面活性剤としては、例えば、多価アルコールの部分的脂肪酸エステル、脂肪アルコールのエチレンオキサイド付加物、脂肪酸のエチレンオキサイド付加物、脂肪アミノまたは脂肪酸アミドのエチレンオキサイド付加物、アルキルフェノールのエチレンオキサイド付加物、多価アルコールの部分的脂肪酸エステルのエチレンオキサイド付加物、ポリエチレングリコール等が挙げられる。
 硬化剤としては、例えば、t-ブチルパーオキシベンゾエート、t-アミルパーオキシベンゾエート、1,1-ジメチルブチルパーオキシベンゾエート、1,1,2-トリメチルプロピルパーオキシベンゾエート、1,1,3,3-テトラメチルブチルパーオキシベンゾエート等の第三級(C4-C10)アルキルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート、1,1-ジメチルブチルパーオキシ-2-エチルヘキサノエート;1,1,2-トリメチルプロピルパーオキシ-2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1-ジメチルブチルパーオキシピバレート、1,1,2-トリメチルプロピルパーオキシピバレート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、1,1-ジメチルブチルパーオキシ-3,5,5-トリメチルヘキサノエート、1,1,2-トリメチルプロピルパーオキシ-3,5,5-トリメチルヘキサノエート等の第三級(C4-C10)アルキルパーオキシ分岐(C4-C10)アルキルエステル;メチルエチルケトンパーオキサイド、メチルイソプロピルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド類;t-ブチルパーオキシイソプロピルカーボネート、t-アミルパーオキシイソプロピルカーボネート、1,1-ジメチルブチルパーオキシイソプロピルカーボネート、1,1,2-トリメチルプロピルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、t-アミルパーオキシー2-エチルヘキシルカーボネート、1,1-ジメチルブチルパーオキシー2-エチルヘキシルカーボネート、1,1,2-トリメチルパーオキシプロピルカーボネート、1,1,3,3-テトラメチルブチルパーオキシー2-エチルヘキシルカーボネート等のパーオキシモノカーボネート類;o-ジイソプロピルベンゼンモノヒドロパーオキサイド、m-ジイソプロピルベンゼンモノヒドロパーオキサイド、p-ジイソプロピルベンゼンモノヒドロパーオキサイド、o-ジイソプロピルベンゼンジヒドロパーオキサイド、m-ジイソプロピルベンゼンジヒドロパーオキサイド、p-ジイソプロピルベンゼンジヒドロパーオキサイド等のヒドロパーオキサイド類;が挙げられる。
 架橋剤としては、例えば、ジビニルベンゼン、トリビニルベンゼン、エチレングリコールジ(メタ)クリレート、多官能イソシアネート、ブタ-1,3-ジエン、ジビニルベンゼン、ジアリルフタレート、ジヒドロジシクロペンタジエニルアクリレート、マレイン酸ジアリル、(メタ)アクリル酸アリルが挙げられる。
 重合禁止剤としては、例えば、パラベンゾキノン、トルキノン、ナフトキノン、フェナンスラキノン、2,5ジフェニルパラベンゾキノン等のキノン類;トルハイドロキノン、ハイドロキノン、ターシャリブチルカテコール、モノターシャリブチルハイドロキノン、2,5ジターシャリブチルハイドロキノン等のハイドロキノン類;ハイドロキノンモノメチルエーテル、2,6-ジ-t-ブチル-p-クレゾール等のモノフェノール類;が挙げられる。
 低収縮剤としては、例えば、ポリスチレン、ポリメチルメタクリレート、ポリ酢酸ビニル、飽和ポリエステル、スチレン-ブタジエン系ゴム等の熱可塑性樹脂が挙げられる。
 促進剤としては、例えば、ナフテン酸コバルト、オクテン酸コバルト、ナフテン酸マンガン、ナフテン酸銅、オクテン酸コバルト、オクテン酸銅等が挙げられる。
 離型剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム等のような金属石ケンや、フッ素系の有機化合物、リン酸系の化合物等が挙げられる。
 増粘剤としては、例えば、マグネシウム、カルシウム等の酸化物または水酸化物が挙げられる。
 繊維としては、例えば、ガラスチョップドストランド、ミルドガラスファイバー、ロービングガラス等が挙げられる。
 本発明に係る成形体の製造方法は特に限定されない。
 熱可塑性樹脂である樹脂(A)と、抗菌・防カビ剤(B)と、必要に応じて表面改質剤(C)、クオラムセンシング阻害剤(D)、その他の添加剤を溶融混練した後、冷却することによって組成物を製造してもよく、これらを溶融混練した後、ペレタイザーにてペレットとして組成物を製造してもよい。
 また、予め、熱可塑性樹脂である樹脂(A)と、抗菌・防カビ剤(B)と、必要に応じて表面改質剤(C)、クオラムセンシング阻害剤(D)、その他の添加剤を溶融混練し、高濃度のマスターバッチを調製した後、さらに、熱可塑性樹脂である樹脂(A)を加えて加熱溶融混練して、組成物を製造してもよい。
 また、熱硬化性樹脂である樹脂(A)のモノマーまたはプレポリマーと、抗菌・防カビ剤(B)と、必要に応じて表面改質剤(C)、クオラムセンシング阻害剤(D)、その他の添加剤を混合することによって組成物を製造してもよく、さらに重合することで組成物を製造してもよい。重合方法としては、例えば、塊状重合、キャスト重合、溶液重合、懸濁重合、乳化重合等の方法が挙げられる。
 次に、上記の方法で得られた組成物を原料として、成形体とすることができる。
 本発明の成形体を得る方法は特に限定されず、例えば、射出成形法、押出成形法、真空成型法、圧空成形法、プレス成形法、トランスファー成形、注型成形、圧縮成形、積層成形等の成形方法が挙げられる。
 本発明に係る成形体としては、例えば、射出成形体、押出成形体、真空成型体、圧空成形体、プレス成形体、フィルム等が挙げられる。本発明に係る成形体は、単層構造でもよく、多層構造でもよい。
[多層構造体]
 本発明に係る成形体と、本発明に係る成形体以外の成形体とを積層して多層構造体多層構造体としてもよい。多層構造体において、本発明に係る成形体は、該多層構造体の少なくとも一方の表層であることが好ましい。本発明に係る成形体以外の成形体を構成する材料としては、例えば、樹脂、金属、紙、皮革等が挙げられる。多層構造体は、本発明に係る成形体と、本発明に係る成形体以外の成形体とを張り合わせて製造することが可能である。
[バイオフィルム付着量の測定]
 本発明の成形体表面に付着したバイオフィルムの量を測定する方法は、素材にバイオフィルムを形成させる工程、形成したバイオフィルムを定量する工程で構成される。
 測定に用いるバイオフィルムは、様々な環境に存在するバイオフィルムを採取して、そのまま用いることができる。また、バイオフィルムを形成することが知られている菌を、単独または複数種を混合して測定に用いることができる。バイオフィルムは、形成する環境によって、含まれる菌の種類が異なり、採取する時期や環境条件によっても菌の種類が異なる。そのため、同じ素材を測定しても測定ごとに違う結果になる可能性がある。そのため、素材のバイオフィルム付着性評価では、定量性、再現性の点から、バイオフィルムを形成することが知られている菌を、単独または数種のみを混合して測定に用いることが好ましい。
 バイオフィルム付着量の測定に用いる菌は、バイオフィルム形成能を有する菌であれば特に制限されるものではない。測定に用いる菌としては、例えば、シュードモナス(Pseudomonas)属細菌、ブレバンディモナス(Brevundimonas)属細菌、メチロバクテリウム(Methylobacterium)属細菌、バチルス(Bacillus)属細菌、スタフィロコッカス(Staphylococcus)属細菌が挙げられる。測定に用いる菌は、定量性、再現性の点から、培養が容易で、素材への付着量が多く、また弱い水流程度では素材から剥離しないものが好ましい。これらの特性を有する菌としては、スタフィロコッカス・エピデルミディス(Staphylococcus epidermidis)ATCC35984またはブレバンディモナス・ディミヌタ(Brevundimonas diminuta)NBRC14213が好ましい。
 バイオフィルムを素材に形成させる方法としては、バイオフィルムが形成している場所に素材を設置することにより、素材にバイオフィルムを形成させることができる。また、一般的な微生物の培養手法を用いて、培養液中に素材を浸漬することにより素材にバイオフィルムを形成させることもできる。バイオフィルム付着量の測定では、定量性、再現性の点から、一般的な微生物の培養手法を用いることが好ましく、温度や培地等の条件を一定にする、バイオフィルムを形成させるための培養容器、培地を滅菌する等、雑菌が混入しない条件とすることがより好ましい。
 バイオフィルムを素材に形成させるための培養条件は、温度、通気、振とう或いは静置等の物理的条件、培地成分、濃度、pH等の栄養的条件、培養に用いる容器の素材、サイズ、その他条件が、菌が増殖する範囲であれば適宜設定することができる。バイオフィルムを形成させる素材の形状、サイズは、培養容器に収納でき、また培養液に浸漬できる範囲であれば適宜設定することができる。
 素材に形成したバイオフィルムの付着量は、素材に付着した状態のまま、または素材から回収して測定することができる。バイオフィルムの検出方法としては、バイオフィルムを水に懸濁して菌数を計数する方法、染色試薬によりバイオフィルムを染色する方法が挙げられるが、測定操作の簡便さ、定量性、再現性の点から、バイオフィルムを染色する方法が好ましい。バイオフィルムを染色する試薬としては、例えば、クリスタルバイオレット、メチレンブルー、フクシン、アクリジンオレンジ、DAPI、アルシアンブルーが挙げられるが、測定操作の簡便さ、定量性、再現性の点から、クリスタルバイオレットが好ましい。
 本発明に係る成形体を以下の物品として用いることにより、該物品表面へのバイオフィルム付着量を低減することができる。
 本発明の成形体を適用できる物品としては、例えば、
 食器、各種調理器具、保存容器、浄水ポッド、浄水器、排水口、三角コーナー、シンクの各種部品、貯水ポッド、断熱ポッド、ラップ、キッチンフード等の台所用部材および台所用品;洗面台、洗面器、排水栓、ヘアキャッチャー、排水トラップ等の洗面用部材;
浴室壁、浴槽、蛇口、鏡等の浴室用部材;洗濯用部材;便座、便座のフタ、便器等のトイレ用部材;各種配管;各種パッキン;貯水タンク、貯水槽、太陽熱温水器、水槽、プール等の各種貯水物品・設備;食品用包材、化粧品用包材等の各種包装材料;換気扇、窓枠、網戸、サッシ、人工大理石等の各種屋内設備;送電線、アンテナ、屋根材、住宅外壁、窓ガラス等の屋外設備;エアコン、エアコンドレンパン、各種ホース、空調設備の熱交換器、加湿装置、乾燥器、冷蔵庫、食洗機、食器乾燥機、洗濯機、掃除機、ドリンクサーバー、コーヒーサーバー、電子レンジ、アイロン、スチーマー、アロマディフューザー、ホームクリーニング機、高圧洗浄機、ポット、ウェアラブルデバイス等の各種電気機器およびその付属する物品;鼻腔栄養チューブ、創傷接触層、カテーテル、チューブステント、ペースメーカーシェル、心臓弁、整形外科用インプラント、歯周インプラント、歯列矯正器、他の歯列矯正器具、入れ歯、歯冠、フェイスマスク、コンタクトレンズ、眼内レンズ、軟組織インプラント、外科用器具、縫合糸、蝸牛インプラント、鼓室形成チューブ、シャント、術後廃液チューブ、廃液デバイス、気管内チューブ、心臓弁、絆創膏、創傷包帯、他のインプラント可能デバイス、並びに他の留置デバイス、人工皮膚、人工筋肉等の各種医療用物品;船舶、ロープ、漁網、漁具、浮き子、ブイ等の漁業部材;火力・原子力発電所の給排水口等の水中構造物;海水ポンプ等の海水利用機器類;メガフロート、湾岸道路、海底トンネル等の発電設備および港湾・湾岸設備;運河・水路における各種海洋土木工事の汚泥拡散防止膜等の土木設備;橋梁、道路鏡、看板、交通標識、各種表示装置、広告塔、防音壁、橋梁、ガードレール、トンネル等の屋外設備;植物ポッド、土壌、灌水チューブ、配管、ビニールハウス等の農業資材;テレビ、スマートフォン、タブレットPC、パソコン、タッチパネルディスプレイ等の表示装置;
が挙げられる。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、発明の詳細な説明および実施例および比較例における各項目の測定値は、下記の方法で測定した。
[接触角測定および表面自由エネルギーの算出]
 成形体の表面自由エネルギーは、表面自由エネルギーが既知の複数の液体の静的接触角を測定することにより求めることができる。
 協和界面科学社製DM-501を用いて、θ/2法にて、成形体に対する液体の接触角を測定した。成形体に対する液体の接触角が測定される液体として純水、ヘキサデカンおよびジヨードエタンを用い、液滴量は2μlとした。成形体に対する各々の液体の接触角から、前記の北崎・畑の方法を用いて、成形体の表面自由エネルギーを算出した。
[logS]
 下記のA法またはB法を用いて、抗菌・防カビ剤(B)のlogSを算出した。
[A法]
 抗菌・防カビ剤(B)の25℃の水100gに溶解する量S(g/100g)の常用対数logSは、コンピュータソフトウェアHansen Solubility Parameter in Practice(HSPiP)ver5.0.04によって算出した値を用いた。
[B法]
 100mlのナスフラスコへ、攪拌子および水100mlを加え、ホットスターラーを用いて25℃に加温した。撹拌子を用いて100rpmで攪拌しながら、抗菌・防カビ剤(B)を添加し、添加から1時間経過後に目視で未溶解物を確認できた濃度から、25℃の水100gに溶解する量S(g/100g)の常用対数logSを算出した。なお、抗菌・防カビ剤(B)を1mg添加した際に未溶解物が確認できた場合は、logS < ―3とした。
<バイオフィルム付着試験>
[培地および測定用溶液の調製]
・前培養用培地(NBRC802培地)
 ハイポリペプトン(日本製薬株式会社製)10gと、酵母エキス(DIFCO社製)2gと、MgSO・7HO(ナカライテスク株式会社製)1gとを1000mL容メディウム瓶に加え、次いで超純水1000mLを加え、各成分を溶解させた。得られた溶液のpHを1mol/LNaOH溶液で7.0に調整した後、オートクレーブを用いて121℃で20分間滅菌し、前培養用培地とした。
・本培養用培地(R2A培地)
 R2A培地(日本製薬株式会社製)3.2gを1000mL容メディウム瓶に加え、次いで超純水1000mLを加えて溶解させた。得られた溶液を、オートクレーブを用いて121℃で20分間滅菌し、本培養用培地とした。
・バイオフィルム染色液(0.2質量%クリスタルバイオレット溶液:CV溶液)
 クリスタルバイオレット(ナカライテスク株式会社製)2gを1000mL容メディウム瓶に加え、次いで超純水1000mLを加えて溶解させ、バイオフィルム染色液とした。
・染色バイオフィルム溶出液(2.0質量%ドデシル硫酸ナトリウム溶液:SDS溶液)
 ドデシル硫酸ナトリウム(ナカライテスク株式会社製)20gを1000mL容メディウム瓶に加え、次いで超純水1000mLを加えて溶解させ、染色バイオフィルム溶出液とした。
[バイオフィルム付着量測定用の凍結保存菌株の調製]
 バイオフィルム付着量の測定に用いる菌株として、アメリカン・タイプカルチャー・コレクション(ATCC)よりスタフィロコッカス・エピデルミディス(Staphylococcus epidermidis)ATCC35984(以下、菌A)を、製品評価技術基盤機構(NBRC)よりブレバンディモナス・ディミヌタ(Brevundimonas diminuta)NBRC14213(以下、菌B)を、それぞれ凍結乾燥アンプルとして入手した。オートクレーブを用いて121℃で20分間滅菌した培養用プラスチックキャップが装着された18φ試験管に、前培養用培地を3mL分注した。この試験管に凍結乾燥アンプル中の菌体全量を接種し、接種済み試験管を用意した。この接種済み試験管を振とう培養機に装着し、温度30℃、振とう数200回/分で3日間培養して、培養液を得た。培養液にグリセロールを終濃度が30質量%となるように加え、これを凍結保存用チューブに分注して凍結保存菌株を調製した。調製された凍結保存菌株は、-80℃の超低温冷凍庫で保存した。
[前培養液の調製]
 オートクレーブを用いて121℃で20分間滅菌した培養用プラスチックキャップが装着された18φ試験管に、前培養用培地を3mL分注した。これに凍結保存菌株を0.03mL接種した。振とう培養機に接種済み試験管を装着し、温度30℃、振とう数200回/分で3日間培養して、前培養液とした。
[本培養液の調製]
 前培養液の波長660nmでの濁度を分光光度計UV-1800(島津製作所社製:以下、分光光度計)を用いて測定した。本培養用培地1000mLに、濁度が0.01となる液量の前培養液を接種して混合し、本培養液とした。
[試験片の調製]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)からなるシート、並びに、各実施例の組成物からなるシートのそれぞれについて、下記バイオフィルム付着試験を行った。バイオフィルム付着試験の試験片としては、20mm×20mm×1mm厚さの試験片を用いた。試験片は、表面の汚れを除くため、薄めた中性洗剤で洗浄し、表面の雑菌を死滅させるため、エタノールに数秒間浸漬して殺菌した。
[バイオフィルム付着量の測定]
 滅菌済み50mL容ポリプロピレン製遠沈管(以下、遠沈管ともいう)に殺菌済み試験片を加え、次いで接種済み本培養用培地15mLを分注した。これをエアージャケット式インキュベーター内に設置して30℃で3日間静置培養した。その後、遠沈管から試験片をピンセットで取り出し、遠沈管に付いた余分な培養液をペーパータオルで吸い取った。100mLビーカーに純水を50mL程度加えた後、取り出された試験片を純水に浸漬して軽く揺すって試験片を洗浄した。洗浄された試験片を取り出し、試験片に付いた余分な水分をペーパータオルで吸い取った。
 20mL容ポリプロピレン製サンプル管にバイオフィルム染色液を10mL加えた。洗浄された試験片をバイオフィルム染色液に30分以上浸漬して染色した。バイオフィルム染色液から試験片を取り出し、試験片に付いた余分なバイオフィルム染色液をペーパータオルで吸い取った。100mLビーカーに純水を50mL程度加えた後、取り出された試験片を純水に浸漬して軽く揺すって試験片を洗浄した。洗浄された試験片を取り出し、試験片に付いた余分な水分をペーパータオルで吸い取った。
 遠沈管に染色バイオフィルム溶出液を15mL加えた。染色した試験片を染色バイオフィルム溶出液に30分以上浸漬して、試験片からクリスタルバイオレットを溶出させた。得られた溶出液を1mL容分光計セルに設置し、分光光度計を用いて、波長570nmの吸光度を測定した。吸光度が大きいほど、バイオフィルムの付着量が多いことを意味する。各実施例の組成物からなるシートの前記吸光度(以下、「A(成形体)」と表記する)と、各実施例の組成物に含まれる下記TPE、下記ABS、下記PP、下記m-PPE、下記架橋PMMA、下記不飽和ポリエステルまたは下記ポリウレタンからなるシートの前記吸光度(以下、「A(TPE、ABS、PP、m-PPE、架橋PMMA、不飽和ポリエステルまたはポリウレタン)」)から下式により、該実施例の組成物の「バイオフィルム低減率」とを求めた。
Figure JPOXMLDOC01-appb-I000010
 「バイオフィルム低減率」が大きいほど、下記TPE、下記ABS、下記PP、下記m-PPE、下記架橋PMMA、下記不飽和ポリエステルまたは下記ポリウレタンからなるシートへのバイオフィルム付着量に対し、組成物からなるシートのバイオフィルム付着量が少ないことを意味する。
[製造例1]
 オートクレーブ式反応器にて、反応温度195℃、反応圧力160MPaで、ラジカル重合開始剤としてtert-ブチルパーオキシピバレートを用いて、エチレンとメチルアクリレートを共重合して、エチレン-メチルアクリレート共重合体を得た。
[製造例2]
 攪拌機およびフィンガーバッフルを備えた内容積0.3Lのセパラブルフラスコ内を窒素ガスで置換した後、製造例1で得られたエチレン-メチルアクリレート:40.00g、1H,1H,2H,2H-トリデカフルオロ-1-オクタノール(東京化成工業株式会社製):50.44gとを加え、オイルバス温度を130℃に設定し10kPa減圧下にて3時間加熱攪拌を行った。その後、そこへ、窒素ガス雰囲気下でオルトチタン酸テトラ(iso-プロピル)(日本曹達株式会社製):0.41gを加え、オイルバス温度を140℃に設定し10~1kPa減圧下にて42時間加熱攪拌を行い、エチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレート-メチルアクリレート共重合体を得た。
[実施例1]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてオレフィン系熱可塑性エラストマー(TPE、住友化学株式会社製、エスポレックス 4272)と製造例2で得たエチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレートとの混合物を、抗菌・防カビ剤(B)としてチアベンダゾール(東京化成工業株式会社製)を用いた。TPE96.5重量%と、エチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレート3重量%と、チアベンダゾール0.5重量%とを、ラボプラストミル(株式会社東洋精機製作所製、R100)を用いて200℃で溶融混練することで樹脂組成物を得た。
 溶融混練された樹脂組成物を、縦150mm×横150mm×厚み1mmのスペーサーの枠内に投入し、該スペーサーを2枚の0.5mm厚のアルミニウム板で挟み、更に2枚の2mm厚のステンレス板で挟んだ。得られた試料をプレス板の設定を210℃とした熱プレス成形機中に設置し、5分間予熱後、10MPaまで昇圧し5分間保圧した後、30℃、10MPaで5分間冷却して、厚さ1mmのシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表2に示す。
[実施例2]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてオレフィン系熱可塑性エラストマー(TPE、住友化学株式会社製、エスポレックス 4272)を、抗菌・防カビ剤(B)としてチアベンダゾールを、表面改質剤(C)としてサーフロンS-431(フッ素系界面活性剤、AGCセイミケミカル株式会社製)を用いた。TPE94.5重量%と、チアベンダゾール0.5重量%と、サーフロンS-431 5重量%としたこと以外は、実施例1と同様にして、樹脂組成物およびシートを作製した。
 該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表2に示す。
[実施例3]
 表面改質剤(C)として、サーフロンS-461(フッ素系界面活性剤、AGCセイミケミカル株式会社製)を用いたこと以外は、実施例2と同様にして、樹脂組成物およびシートを作製した。
 該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表2に示す。
[実施例4]
 抗菌・防カビ剤(B)として、PBM-OK(主成分:ジヨードメチル-パラ-トリルスルホン、株式会社MIC製)を用いたこと以外は、実施例1と同様にして、樹脂組成物およびシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表3に示す。
[実施例5]
 抗菌・防カビ剤(B)として、ベンジルパラベン(東京化成工業株式会社製)を用いたこと以外は、実施例1と同様にして、樹脂組成物およびシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表3に示す。
[実施例6]
 抗菌・防カビ剤(B)として、FK-C(主成分:ジンクピリチオン、住化エンバイロメンタルサイエンス株式会社製)を用いたこと以外は、実施例1と同様にして、樹脂組成物およびシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表3に示す。
[実施例7]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてアクリロニトリル-ブタジエン-スチレン共重合体(ABS、日本エイアンドエル株式会社製、クララスチック MTK)と製造例2で得たエチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレートとの混合物を、抗菌・防カビ剤(B)としてチアベンダゾールを用いた。ABS94.5重量%と、エチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレート共重合体5重量%と、チアベンダゾール0.5重量%とを、ラボプラストミル(株式会社東洋精機製作所製、R100)を用いて210℃で溶融混練することで樹脂組成物を得た。
 溶融混練された樹脂組成物を、縦150mm×横150mm×厚み1mmのスペーサーの枠内に投入し、該スペーサーを2枚の0.5mm厚のアルミニウム板で挟み、更に2枚の2mm厚のステンレス板で挟んだ。得られた試料をプレス板の設定を220℃とした熱プレス成形機中に設置し、5分間予熱後、10MPaまで昇圧し5分間保圧した後、30℃、10MPaで5分間冷却して、厚さ1mmのシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(ABS)とから算出したバイオフィルム低減率を表4に示す。
[実施例8]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてアクリロニトリル-ブタジエン-スチレン共重合体(ABS、日本エイアンドエル株式会社製、クララスチック MTK)を、抗菌・防カビ剤(B)としてチアベンダゾールを、表面改質剤(C)としてサーフロンS-420を用いた。ABS94.5重量%と、チアベンダゾール0.5重量%と、サーフロンS-420 5重量%としたこと以外は、実施例7と同様にして、樹脂組成物およびシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(ABS)とから算出したバイオフィルム低減率を表4に示す。
[実施例9]
 抗菌・防カビ剤(B)として、ベンジルパラベンを用いたこと以外は、実施例7と同様にして、樹脂組成物およびシートを作製した。
 該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(ABS)とから算出したバイオフィルム低減率を表4に示す。
[実施例10]
 抗菌・防カビ剤(B)として、PBM-OKを用いたこと以外は、実施例7と同様にして、樹脂組成物およびシートを得た。
 該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(ABS)とから算出したバイオフィルム低減率を表4に示す。
[実施例11]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてTPEと製造例2で得たエチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレートとの混合物を、抗菌・防カビ剤(B)としてナリジクス酸(東京化成工業株式会社製)を用いた。TPE94重量%と、エチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレート3重量%と、ナリジクス酸3重量%とを、ラボプラストミルを用いて200℃で溶融混練することで樹脂組成物を得た。
 溶融混練された樹脂組成物を、縦150mm×横150mm×厚み1mmのスペーサーの枠内に投入し、該スペーサーを2枚の0.5mm厚のアルミニウム板で挟み、更に2枚の2mm厚のステンレス板で挟んだ。得られた試料をプレス板の設定を210℃とした熱プレス成形機中に設置し、5分間予熱後、10MPaまで昇圧し5分間保圧した後、30℃、10MPaで5分間冷却して、厚さ1mmのシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表5に示す。
[実施例12]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてTPEと製造例2で得たエチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレートとの混合物を、抗菌・防カビ剤(B)として1,2-ベンゾイソチアゾール-3(2H)-オン(東京化成工業株式会社製)を用いた。TPE94重量%と、エチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレート3重量%と、1,2-ベンゾイソチアゾール-3(2H)-オン3重量%とを、ラボプラストミルを用いて200℃で溶融混練することで樹脂組成物を得た。
 溶融混練された樹脂組成物を、縦150mm×横150mm×厚み1mmのスペーサーの枠内に投入し、該スペーサーを2枚の0.5mm厚のアルミニウム板で挟み、更に2枚の2mm厚のステンレス板で挟んだ。得られた試料をプレス板の設定を210℃とした熱プレス成形機中に設置し、5分間予熱後、10MPaまで昇圧し5分間保圧した後、30℃、10MPaで5分間冷却して、厚さ1mmのシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表5に示す。
[実施例13]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてポリプロピレン(PP、住友化学株式会社製、住友ノーブレン、FLX-80E4)と製造例2で得たエチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレートとの混合物を、抗菌・防カビ剤(B)としてチアベンダゾール(TBZ、東京化成工業株式会社製)を用いた。PP94重量%と、エチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレート5重量%と、TBZ 1重量%とを、ラボプラストミルを用いて200℃で溶融混練することで樹脂組成物を得た。
 溶融混練された樹脂組成物を、縦150mm×横150mm×厚み1mmのスペーサーの枠内に投入し、該スペーサーを2枚の0.5mm厚のアルミニウム板で挟み、更に2枚の2mm厚のステンレス板で挟んだ。得られた試料をプレス板の設定を210℃とした熱プレス成形機中に設置し、5分間予熱後、10MPaまで昇圧し5分間保圧した後、30℃、10MPaで5分間冷却して、厚さ1mmのシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(PP)とから算出したバイオフィルム低減率を表5に示す。
[実施例14]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)として変性ポリフェニレンエーテル(m-PPE、三菱エンジニアリングプラスチック社製、ユピエース AH-40)と製造例2で得たエチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレートとの混合物を、抗菌・防カビ剤(B)としてTBZを用いた。m-PPE94重量%と、エチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレート5重量%と、TBZ 1重量%とを、ラボプラストミルを用いて200℃で溶融混練することで樹脂組成物を得た。
 溶融混練された樹脂組成物を、縦150mm×横150mm×厚み1mmのスペーサーの枠内に投入し、該スペーサーを2枚の0.5mm厚のアルミニウム板で挟み、更に2枚の2mm厚のステンレス板で挟んだ。得られた試料をプレス板の設定を210℃とした熱プレス成形機中に設置し、5分間予熱後、10MPaまで昇圧し5分間保圧した後、30℃、10MPaで5分間冷却して、厚さ1mmのシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(m-PPE)とから算出したバイオフィルム低減率を表5に示す。
[実施例15]
 実施例6と同様に抗菌・防カビ剤(B)として、FK-C(主成分:ジンクピリチオン、住化エンバイロメンタルサイエンス株式会社製)を用いたこと以外は、実施例1と同様にして、樹脂組成物およびシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Bを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表6に示す。
[実施例16]
 実施例5と同様に抗菌・防カビ剤(B)として、ベンジルパラベン(東京化成工業株式会社製)を用いたこと以外は、実施例1と同様にして、樹脂組成物およびシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Bを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表6に示す。
[実施例17]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)として架橋PMMAを、抗菌・防カビ剤(B)として2-n-オクチル-4-イソチアゾリン-3-オン(OIT、東京化成工業株式会社製)を、表面改質剤(C)としてアクリル酸 1H,1H,2H,2H-ヘプタデカフルオロデシル(東京化成工業株式会社製)を用いた。ガラス製容器へ、メタクリル酸メチル(以下、MMAと呼ぶ。住友化学株式会社製)82.4質量部、エチレングリコールジメタクリレート(以下、1Gと呼ぶ。新中村化学工業株式会社製)4.4質量部、ジ-(2-エチルヘキシル)スルホコハク酸ナトリウム(三洋化成工業株式会社製)0.08質量部、テルピノレン(ヤスハラケミカル株式会社製)0.01質量部、2,2’-アゾビスイソブチロニトリル(大塚化学株式会社製)0.08質量部、2-n-オクチル-4-イソチアゾリン-3-オン(以下、OITと呼ぶ。東京化成工業株式会社製)3質量部、アクリル酸 1H,1H,2H,2H-ヘプタデカフルオロデシル(東京化成工業株式会社製)10質量部を加え、マグネチックスターラーで15分間攪拌することにより溶液を得た。得られた溶液を、2枚のガラス板で厚さ2.5mmの塩化ビニル樹脂製ガスケットを挟むことにより構成されたセルに注液した後、片方のガラス板が鉛直下側、もう一方のガラス板が鉛直上側になるようにオーブンの中に設置し、室温で30分間静置した。その後、下記加熱条件に従って加熱し、メタクリル酸メチルとエチレングリコールジメタクリレートとアクリル酸 1H,1H,2H,2H-ヘプタデカフルオロデシルとを重合させることで、厚さ2mmの架橋メタクリルシートを得た。
(加熱条件)
 ステップ1:22分かけて25℃から55℃まで加熱
 ステップ2:55℃のまま720分間保持
 ステップ3:40分かけて55℃から115℃まで加熱
 ステップ4:115℃のまま120分間保持
 ステップ5:75分かけて115℃から25℃まで冷却
 該シートに含有される抗菌・防カビ剤(B)のlogSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(架橋PMMA)とから算出したバイオフィルム低減率を表7に示す。なお、シートを形成した際の鉛直下側の面を評価した。
[実施例18]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)として不飽和ポリエステルを、抗菌・防カビ剤(B)としてクロロタロニル(東京化成工業株式会社製)を、表面改質剤(C)としてサーフロン S-431(フッ素系界面活性剤、AGCセイミケミカル株式会社製)用いた。ガラス製容器へ、ユピカ2035P(不飽和ポリエステル樹脂とスチレンの混合物、日本ユピカ株式会社)84質量部、クロロタロニル5質量部、サーフロンS-43110質量部、硬化剤としてメチルエチルケトンパーオキサイド(東京化成工業株式会社製)1質量部を加え、メカニカルスターラーを用いて1分間攪拌することにより溶液を得た。得られた溶液を、縦150mm×横150mm×厚み2mmのエチレン-メチルメタクリレート共重合体製の枠(内枠:縦140mm×横140mm×厚み2mm)を、2枚の縦200mm×横200mm×厚み5mmのガラス板で挟むことで構成されたセルに注液した後、片方のガラス板が鉛直下側、もう一方のガラス板が鉛直上側になるようにオーブンの中に設置し、室温で30分間静置した。その後、100℃で2時間加熱し、不飽和ポリエステルとスチレンとを重合させることで厚さ2mmの不飽和ポリエステルシートを得た。
 該シートに含有される抗菌・防カビ剤(B)のlogSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(不飽和ポリエステル)とから算出したバイオフィルム低減率を表7に示す。なお、シートを形成した際の鉛直下側の面を評価した。
[比較例1]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてTPEと製造例2で得たエチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレートとの混合物を、抗菌・防カビ剤(B)としてメチルパラベンを用いた。TPE96.5重量%と、エチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレート3重量%と、メチルパラベン0.5重量%とを、ラボプラストミルを用いて200℃で溶融混練することで樹脂組成物を得た。
 溶融混練された樹脂組成物を、縦150mm×横150mm×厚み1mmのスペーサーの枠内に投入し、該スペーサーを2枚の0.5mm厚のアルミニウム板で挟み、更に2枚の2mm厚のステンレス板で挟んだ。得られた試料をプレス板の設定を210℃とした熱プレス成形機中に設置し、5分間予熱後、10MPaまで昇圧し5分間保圧した後、30℃、10MPaで5分間冷却して、厚さ1mmのシートを作製した。
 該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表8に示す。
[比較例2]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてTPE 99.5重量%を、抗菌・防カビ剤(B)としてPBM-OK 0.5重量%を用いたこと以外は、比較例1と同様にして、樹脂組成物およびシートを作製した。
 該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表8に示す。
[比較例3]
 抗菌・防カビ剤(B)として、ソルビン酸(東京化成工業株式会社製)を用いたこと以外は、比較例1と同様にして、組成物およびシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表8に示す。
[比較例4]
 抗菌・防カビ剤(B)として、4’-ヒドロキシアセトアニリド(東京化成工業株式会社製)を用いたこと以外は、比較例1と同様にして、樹脂組成物およびシートを作製した。
 該シートに含有される抗菌・防カビ剤(B)の25℃の水への溶解度の常用対数logSを表1に示す。また、該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表8に示す。
[比較例5]
 抗菌・防カビ剤(B)としてバクテキラー BM-102TG(富士ケミカル株式会社製)を用いたこと以外は、比較例2と同様にして、組成物およびシートを作製した。
 該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表8に示す。
[比較例6]
熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてABSと製造例2で得たエチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレートとの混合物を、抗菌・防カビ剤(B)としてメチルパラベンを用いた。ABS94.5重量%と、エチレン-1H,1H,2H,2H-トリデカフルオロ-1-オクチルアクリレート5重量%と、メチルパラベン0.5重量%とを、ラボプラストミルを用いて210℃で溶融混練することで樹脂組成物を得た。
 溶融混練された樹脂組成物を、縦150mm×横150mm×厚み1mmのスペーサーの枠内に投入し、該スペーサーを2枚の0.5mm厚のアルミニウム板で挟み、更に2枚の2mm厚のステンレス板で挟んだ。得られた試料をプレス板の設定を220℃とした熱プレス成形機中に設置し、5分間予熱後、10MPaまで昇圧し5分間保圧した後、30℃、10MPaで5分間冷却して、厚さ1mmのシートを作製した。
 該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(ABS)とから算出したバイオフィルム低減率を表9に示す。
[比較例7]
 熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)としてABSを用いたこと以外は、比較例2と同様にして、組成物およびシートを作製した。
 該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(ABS)とから算出したバイオフィルム低減率を表9に示す。
[比較例8]
 抗菌・防カビ剤(B)としてソルビン酸を用いたこと以外は、比較例6と同様にして、組成物およびシートを作製した。
 該シートの表面自由エネルギー、および、評価菌種として菌Aを用いたバイオフィルム付着試験後のA(成形体)とA(ABS)とから算出したバイオフィルム低減率を表9に示す。
[比較例9]
 比較例1と同様にして、組成物およびシートを作製した。
 該シートの表面自由エネルギー、および、評価菌種として菌Bを用いたバイオフィルム付着試験後のA(成形体)とA(TPE)とから算出したバイオフィルム低減率を表9に示す。
Figure JPOXMLDOC01-appb-T000011

Figure JPOXMLDOC01-appb-T000012

Figure JPOXMLDOC01-appb-T000013

Figure JPOXMLDOC01-appb-T000014

Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016

Figure JPOXMLDOC01-appb-T000017

Figure JPOXMLDOC01-appb-T000018

Figure JPOXMLDOC01-appb-T000019

 本発明によれば、バイオフィルムの付着を低減することができる成形体を提供することができる。

Claims (2)

  1.  熱可塑性樹脂および熱硬化性樹脂からなる群から選ばれる少なくとも1つの樹脂(A)と、抗菌・防カビ剤(B)とを含み、
     前記抗菌・防カビ剤(B)の25℃の水に対する溶解度の常用対数logSが-0.6より小さく、
     表面自由エネルギーの分散力成分γが25mN/m以下であるか、または、表面自由エネルギーの双極子力成分γと水素結合成分γとの和が30mN/m以上である、成形体。
  2.  前記樹脂(A)が熱可塑性樹脂である、請求項1に記載の組成物。
PCT/JP2019/004786 2018-02-13 2019-02-12 成形体 WO2019159865A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500471A JP7363763B2 (ja) 2018-02-13 2019-02-12 成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-022839 2018-02-13
JP2018022839 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159865A1 true WO2019159865A1 (ja) 2019-08-22

Family

ID=67618618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004786 WO2019159865A1 (ja) 2018-02-13 2019-02-12 成形体

Country Status (2)

Country Link
JP (1) JP7363763B2 (ja)
WO (1) WO2019159865A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015718A (ja) * 2018-07-11 2020-01-30 Toto株式会社 水まわり部材
CN112175865A (zh) * 2020-09-29 2021-01-05 中国农业科学院农产品加工研究所 缺陷短波单胞菌及其应用和降解真菌毒素的方法
JP6843302B1 (ja) * 2020-01-24 2021-03-17 三菱電機株式会社 防汚性部材、空気調和機及び防汚性部材の製造方法
WO2021193349A1 (ja) * 2020-03-24 2021-09-30 住友化学株式会社 親水撥油重合体
CN114479403A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种阻燃抗菌聚合物合金材料及其制备方法和应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313017A (ja) * 1993-04-30 1994-11-08 Japan Synthetic Rubber Co Ltd 抗菌性樹脂および抗菌性樹脂組成物
JPH08253690A (ja) * 1995-03-14 1996-10-01 Hagiwara Giken:Kk 抗菌性樹脂組成物
JPH1081855A (ja) * 1996-06-12 1998-03-31 Medical Concepts Dev Inc 抗菌性を有する無溶剤型ホットメルト接着剤組成物
JPH1121378A (ja) * 1997-07-04 1999-01-26 Otsuka Chem Co Ltd 抗菌もしくは抗黴性樹脂組成物及びその用途
JPH11279350A (ja) * 1998-03-30 1999-10-12 Sanyo Electric Co Ltd 抗菌防カビ性樹脂組成物
JP2002508800A (ja) * 1997-07-04 2002-03-19 アクアカルチャー、シーアールシー、リミテッド 抗汚れ重合体組成物
JP2007287683A (ja) * 2006-03-23 2007-11-01 Furukawa Electric Co Ltd:The 電気ケーブル用絶縁部品
US20100240800A1 (en) * 2009-03-20 2010-09-23 Dash Multi-Corp Biocidal elastomeric compositions and methods of making the same
JP2011020945A (ja) * 2009-07-14 2011-02-03 Idemitsu Technofine Co Ltd 防かび性を有する床部材
JP2011116919A (ja) * 2009-12-07 2011-06-16 Techno Polymer Co Ltd 芳香族ビニル系樹脂組成物
JP2012031329A (ja) * 2010-08-02 2012-02-16 Mitsubishi Chemicals Corp 生分解性樹脂組成物及びそれを成形してなる成形体
JP2013129951A (ja) * 2011-11-25 2013-07-04 Toray Opelontex Co Ltd ポリウレタン弾性繊維およびその製造方法
JP2013163885A (ja) * 2012-01-12 2013-08-22 Toray Opelontex Co Ltd ポリウレタン弾性繊維およびその製造方法
JP2014188940A (ja) * 2013-03-28 2014-10-06 Dainippon Printing Co Ltd 積層シート及び発泡積層シート
JP2015516382A (ja) * 2012-03-28 2015-06-11 ランクセス・ドイチュランド・ゲーエムベーハー 可塑化pvcのための殺真菌剤配合物
JP2017081842A (ja) * 2015-10-27 2017-05-18 住化エンバイロメンタルサイエンス株式会社 抗菌粉体組成物

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313017A (ja) * 1993-04-30 1994-11-08 Japan Synthetic Rubber Co Ltd 抗菌性樹脂および抗菌性樹脂組成物
JPH08253690A (ja) * 1995-03-14 1996-10-01 Hagiwara Giken:Kk 抗菌性樹脂組成物
JPH1081855A (ja) * 1996-06-12 1998-03-31 Medical Concepts Dev Inc 抗菌性を有する無溶剤型ホットメルト接着剤組成物
JPH1121378A (ja) * 1997-07-04 1999-01-26 Otsuka Chem Co Ltd 抗菌もしくは抗黴性樹脂組成物及びその用途
JP2002508800A (ja) * 1997-07-04 2002-03-19 アクアカルチャー、シーアールシー、リミテッド 抗汚れ重合体組成物
JPH11279350A (ja) * 1998-03-30 1999-10-12 Sanyo Electric Co Ltd 抗菌防カビ性樹脂組成物
JP2007287683A (ja) * 2006-03-23 2007-11-01 Furukawa Electric Co Ltd:The 電気ケーブル用絶縁部品
US20100240800A1 (en) * 2009-03-20 2010-09-23 Dash Multi-Corp Biocidal elastomeric compositions and methods of making the same
JP2011020945A (ja) * 2009-07-14 2011-02-03 Idemitsu Technofine Co Ltd 防かび性を有する床部材
JP2011116919A (ja) * 2009-12-07 2011-06-16 Techno Polymer Co Ltd 芳香族ビニル系樹脂組成物
JP2012031329A (ja) * 2010-08-02 2012-02-16 Mitsubishi Chemicals Corp 生分解性樹脂組成物及びそれを成形してなる成形体
JP2013129951A (ja) * 2011-11-25 2013-07-04 Toray Opelontex Co Ltd ポリウレタン弾性繊維およびその製造方法
JP2013163885A (ja) * 2012-01-12 2013-08-22 Toray Opelontex Co Ltd ポリウレタン弾性繊維およびその製造方法
JP2015516382A (ja) * 2012-03-28 2015-06-11 ランクセス・ドイチュランド・ゲーエムベーハー 可塑化pvcのための殺真菌剤配合物
JP2014188940A (ja) * 2013-03-28 2014-10-06 Dainippon Printing Co Ltd 積層シート及び発泡積層シート
JP2017081842A (ja) * 2015-10-27 2017-05-18 住化エンバイロメンタルサイエンス株式会社 抗菌粉体組成物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015718A (ja) * 2018-07-11 2020-01-30 Toto株式会社 水まわり部材
JP6843302B1 (ja) * 2020-01-24 2021-03-17 三菱電機株式会社 防汚性部材、空気調和機及び防汚性部材の製造方法
WO2021149249A1 (ja) * 2020-01-24 2021-07-29 三菱電機株式会社 防汚性部材、空気調和機及び防汚性部材の製造方法
WO2021193349A1 (ja) * 2020-03-24 2021-09-30 住友化学株式会社 親水撥油重合体
CN115362182A (zh) * 2020-03-24 2022-11-18 住友化学株式会社 亲水拒油聚合物
CN112175865A (zh) * 2020-09-29 2021-01-05 中国农业科学院农产品加工研究所 缺陷短波单胞菌及其应用和降解真菌毒素的方法
CN112175865B (zh) * 2020-09-29 2022-04-08 中国农业科学院农产品加工研究所 缺陷短波单胞菌及其应用和降解真菌毒素的方法
CN114479403A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种阻燃抗菌聚合物合金材料及其制备方法和应用

Also Published As

Publication number Publication date
JPWO2019159865A1 (ja) 2021-01-28
JP7363763B2 (ja) 2023-10-18

Similar Documents

Publication Publication Date Title
JP7290146B2 (ja) 組成物および成形体
JP7363763B2 (ja) 成形体
JP7114922B2 (ja) バイオフィルム生成抑制用組成物
US20030022576A1 (en) Microbicidal wallcoverings
EP1293123A1 (de) Biozide Retardierungsformulierungen
US7579389B2 (en) Antimicrobial acrylic polymer
DE19921900A1 (de) Verfahren zur Herstellung inhärent mikrobizider Polymeroberflächen
US8491878B2 (en) Sanitizing formulation
EP1532201B1 (en) Antimicrobial acrylic polymer
JPS63297471A (ja) 硬い表面のための改良された消毒剤ポリマーコーテイング
US20040076674A1 (en) Method for thermally assisted antimicrobial surface treatment
DE602004013914D1 (de) Fäulnisverhinderndes Mittel und dessen Herstellung
DE19921899A1 (de) Mikrobizide Copolymere
WO2011074188A1 (ja) 透明膜形成液状抗菌剤組成物
US20040092421A1 (en) Microbicidal fluid systems using antimicrobial polymers
WO2021193349A1 (ja) 親水撥油重合体
JP2010275196A (ja) 透明膜形成液状抗菌剤組成物
DE19921902A1 (de) Mikrobizide Copolymere
WO2024043326A1 (ja) 親水撥油重合体
CN109293807A (zh) 一种长效抗菌防霉聚乙烯醇及其制备方法与应用
WO2024043327A1 (ja) 重合体、樹脂組成物、成形体および重合体の製造方法
JPH10120821A (ja) 抗菌性樹脂組成物
CN103951892B (zh) 儿童塑料浴盆
YULIA Influence of hydrophilic additives on antimicrobial properties of tungsten trioxide in polypropylene matrix
Golitsyna Influence of hydrophilic additives on antimicrobial properties of tungsten trioxide in polypropylene matrix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500471

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753702

Country of ref document: EP

Kind code of ref document: A1