WO2019156006A1 - 変性ビニルアルコール系重合体及び懸濁重合用分散安定剤 - Google Patents

変性ビニルアルコール系重合体及び懸濁重合用分散安定剤 Download PDF

Info

Publication number
WO2019156006A1
WO2019156006A1 PCT/JP2019/003739 JP2019003739W WO2019156006A1 WO 2019156006 A1 WO2019156006 A1 WO 2019156006A1 JP 2019003739 W JP2019003739 W JP 2019003739W WO 2019156006 A1 WO2019156006 A1 WO 2019156006A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
polymerization
general formula
modified vinyl
monomer
Prior art date
Application number
PCT/JP2019/003739
Other languages
English (en)
French (fr)
Inventor
渡辺 亘
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to US16/759,300 priority Critical patent/US11345768B2/en
Priority to EP19750271.9A priority patent/EP3686224B1/en
Priority to ES19750271T priority patent/ES2948789T3/es
Priority to SG11202003752UA priority patent/SG11202003752UA/en
Priority to CN201980005441.1A priority patent/CN111295401B/zh
Priority to JP2019570726A priority patent/JP6830554B2/ja
Publication of WO2019156006A1 publication Critical patent/WO2019156006A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F18/02Esters of monocarboxylic acids
    • C08F18/04Vinyl esters
    • C08F18/08Vinyl acetate

Definitions

  • the present invention relates to a modified vinyl alcohol polymer.
  • the present invention also relates to a dispersion stabilizer for suspension polymerization, particularly a dispersion stabilizer suitable for suspension polymerization of vinyl compounds, particularly vinyl chloride.
  • dispersion stabilizers such as polyvinyl alcohol and methylol.
  • Dispersion stabilizers such as cellulose, vinyl acetate / maleic anhydride copolymer and gelatin are used.
  • PVA polyvinyl alcohol
  • Patent Documents 1 to 3 As a dispersion stabilizer for suspension polymerization of vinyl compounds, a method of using a modified PVA having a low polymerization degree, a low saponification degree, a specific oxyalkylene group in a side chain, and the like has been proposed (Patent Documents 1 to 3). reference).
  • the dispersion stabilizers described in Patent Documents 1 to 3 have the required performance, specifically, (1) resin particles having few coarse particles, and (2) resin particles having a uniform particle size as much as possible. (3) A resin having a high porosity is obtained, and as a result, the removal of the monomer component is facilitated, and the resin becomes a resin with a high plasticizer absorbency. It is hard to say that satisfactory performance has been obtained.
  • an object of the present invention is to provide a dispersion stabilizer for suspension polymerization that satisfies the required performances of (1) to (3) above in suspension polymerization of vinyl compounds such as vinyl chloride.
  • alkylene-modified group a predetermined polyoxyalkylene unit (hereinafter referred to as “alkylene-modified group”) has a modification rate of 0.01 mol% to 5 mol%.
  • a modified vinyl alcohol polymer having a polyoxyalkylene unit represented by the general formula (I) in the side chain and a carbonyl unit represented by the general formula (II) at the main chain end.
  • the moles of the monomer unit having a polyoxyalkylene unit represented by the general formula (I) in the side chain with respect to the total number of moles of the monomer unit constituting the main chain of the modified vinyl alcohol polymer.
  • a modified vinyl alcohol system having a number ratio of 0.01 mol% to 5 mol% and a ratio of the number of moles of the carbonyl unit represented by the general formula (II) of 0.01 mol% to 0.5 mol% It is a polymer.
  • R 1 and R 2 are each independently a methyl group, an ethyl group or a hydrogen atom, and R 3 is a methyl group or a hydrogen atom.
  • N represents the number of repeating units and an integer of 1 ⁇ n ⁇ 70.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 9 carbon atoms, one of R 5 and R 6 is a methyl group or an ethyl group, and the other is a hydrogen atom, and m is the number of repeating units. Represents an integer of 1 ⁇ m ⁇ 30.
  • the modified vinyl alcohol polymer according to the present invention has an ether bond and / or a carbon-carbon bond between the polyoxyalkylene unit represented by the general formula (I) and the main polyvinyl alcohol chain. Intervene.
  • the modified vinyl alcohol polymer according to the present invention has a monomer unit represented by the general formula (III). (In the formula, R 1 , R 2 , R 3 , R 5 , R 6 , n and m are as defined in formula (I).)
  • the carbonyl unit contains a formyl group.
  • the modified vinyl alcohol polymer according to the present invention has a viscosity average polymerization degree of 300 to 5000 and a saponification degree of 65 mol% to 90 mol%.
  • the present invention is a dispersion stabilizer for suspension polymerization containing the modified vinyl alcohol polymer according to the present invention.
  • a vinyl compound monomer or a vinyl compound monomer and a monomer copolymerizable therewith
  • This is a method for producing a vinyl-based resin which comprises carrying out suspension polymerization by dispersing a mixture in water.
  • the vinyl ester monomer is used as an unsaturated monomer having a polyoxyalkylene unit represented by general formula (I) in the presence of an aldehyde having a carbonyl unit represented by general formula (II). It is the manufacturing method of the modified vinyl alcohol polymer which concerns on this invention including the process of copolymerizing with a monomer and obtaining a modified vinyl ester polymer.
  • the step of obtaining a modified vinyl ester polymer is performed while introducing a gas containing oxygen.
  • the dispersion stabilizer for suspension polymerization according to the present invention When suspension polymerization of a vinyl compound is performed using the dispersion stabilizer for suspension polymerization according to the present invention, resin particles with little formation of coarse particles and high particle size uniformity can be obtained. Furthermore, since the formation of coarse particles is small, blocking during polymerization is suppressed, and particles with high uniformity in particle diameter can be obtained, thereby reducing scale adhesion. In addition, since polymer particles having high porosity can be obtained, the plasticizer absorbability and the demonomerization are excellent. As described above, the dispersion stabilizer for suspension polymerization of the present invention can have the required performance which is difficult to achieve with the prior art.
  • the dispersion stabilizer for suspension polymerization of the present invention has a polyoxyalkylene unit represented by the following general formula (I) in the side chain and a carbonyl represented by the following general formula (II) at the main chain terminal. It contains a modified vinyl alcohol polymer (modified PVA) having units.
  • modified PVA modified vinyl alcohol polymer
  • R 1 and R 2 are each independently a methyl group, an ethyl group or a hydrogen atom, and R 3 is a methyl group or a hydrogen atom.
  • N represents the number of repeating units and an integer of 1 ⁇ n ⁇ 70.
  • R 5 and R 6 is a methyl group or an ethyl group, and the other is a hydrogen atom, m represents the number of repeating units and is an integer of 1 ⁇ m ⁇ 30.
  • the modified PVA preferably has two or more different units in the side chain as shown in the general formula (I).
  • the unit of repeating unit number m is butylene oxide (R 5 is a hydrogen atom, R 6 is an ethyl group), and the unit of repeating unit number n is ethylene oxide (both R 1 and R 2 are hydrogen atoms).
  • Some units or units with a repeating unit number m are propylene oxide (R 5 is a hydrogen atom, R 6 is a methyl group), and units with a repeating unit number n are ethylene oxide (both R 1 and R 2 are hydrogen atoms). And the like.
  • the unit where the number of repeating units is m and the unit where the number of repeating units is n may be either random or block arrangement, but the physical properties based on the alkylene-modified group are more. From the viewpoint of being more easily expressed, a block arrangement is preferable.
  • n is preferably 10 or more, more preferably 15 or more, and more preferably 20 or more. Further, n is preferably 70 or less, and more preferably 60 or less.
  • M is preferably 3 or more, more preferably 5 or more. Further, m is preferably 25 or less, and more preferably 20 or less.
  • R 4 of the carbonyl unit represented by the general formula (II) in the modified PVA is a hydrogen atom or an alkyl group having 1 to 9 carbon atoms. If the number of carbon atoms in R 4 exceeds 9, the amount of unsaturated double bonds generated due to the carbonyl unit is reduced, resulting in a modified PVA with poor dispersion performance and the required physical properties are not fully expressed. Therefore, the number of carbon atoms in R 4 is preferably 9 or less, more preferably 8 or less, still more preferably 6 or less, and even more preferably 5 or less. R 4 may be linear or branched.
  • preferable R 4 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group.
  • t-pentyl group hexyl group, isohexyl group, heptyl group, octyl group and the like.
  • the structure of the connection part between the polyoxyalkylene unit represented by the general formula (I) and the carbon atom constituting the main polyvinyl alcohol chain is not particularly limited, but it may be an ester or an amide. Since the connecting portion can be cleaved during the saponification process of the modified vinyl ester polymer described later, it is preferable not to have a structure that is easily hydrolyzed, specifically through an ether bond and / or a carbon-carbon bond. Are preferably connected.
  • the dispersion stabilizer for suspension polymerization of the present invention contains, in one embodiment, a modified vinyl alcohol polymer (modified PVA) having a monomer unit represented by the general formula (III).
  • modified PVA modified vinyl alcohol polymer
  • R 1 , R 2 , R 3 , R 5 , R 6 , m and n are the same as those in the general formula (I).
  • the above-mentioned modified PVA depends on the type of alkylene-modified group represented by the general formula (I), but it is important that the alkylene modification rate is 0.01 mol% or more and 5 mol% or less. If the alkylene modification rate exceeds 5 mol%, the proportion of hydrophobic groups contained in one molecule of the modified PVA increases, and the water solubility of the modified PVA decreases, making it difficult to use as a dispersion stabilizer for suspension polymerization. It becomes. Therefore, the alkylene modification rate is important to be 5 mol% or less, preferably 4 mol% or less, and more preferably 2 mol% or less.
  • the alkylene modification rate is less than 0.01 mol%, the water solubility is excellent, but the number of modifying groups contained in the modified PVA is small, and the required physical properties are not sufficiently exhibited. Therefore, it is important that the alkylene modification rate is 0.01 mol% or more, preferably 0.05 mol% or more, and more preferably 0.1 mol% or more.
  • the alkylene modification rate is the number of moles of the monomer unit having the polyoxyalkylene unit represented by the general formula (I) in the side chain with respect to the total number of moles of the monomer unit constituting the main chain of the modified PVA.
  • the alkylene modification rate can be determined by proton NMR.
  • the modified PVA is saponified to a saponification degree of 99.95 mol% or more, and then thoroughly washed with methanol to prepare a modified PVA for analysis.
  • the prepared modified PVA for analysis is dissolved in heavy water, and a few drops of a heavy NaOH aqueous solution is added to adjust the pH to 14, followed by measurement at 80 ° C. using proton NMR.
  • the integral value of the methylene group of the main chain of the modified PVA is b
  • the integral value of the oxyethylene unit is a
  • the modification rate is calculated as ⁇ a / (4 ⁇ x) ⁇ / (b / 2) ⁇ 100 (mol%) in view of the number of protons (2H for methylene group and 4H for ethylene group).
  • the integral value of the methylene group of the main chain of the modified PVA is b
  • the integral value of the oxybutylene unit or oxypropylene unit is c
  • the terminal of the oxypropylene unit or oxybutylene unit is more than the alkylene modification rate calculated from the oxyethylene unit. Since the alkylene modification rate calculated based on the integral value of the peak attributed to the methyl group has higher measurement accuracy, if there is a difference between the two values, the terminal methyl group of the oxypropylene unit or oxybutylene unit The alkylene modification rate calculated based on the integrated value of the assigned peak is adopted.
  • the modified PVA needs to have a carbonyl terminal modification rate of 0.01 mol% to 0.5 mol%.
  • the carbonyl terminal modification rate is less than 0.01 mol%, the unsaturated double bond starting point due to the carbonyl terminal is reduced or the protective colloid property is lowered. As a result, a vinyl resin having an appropriate particle size. Cannot be obtained. Therefore, the carbonyl terminal modification rate needs to be 0.01 mol% or more, preferably 0.02 mol% or more, and more preferably 0.04 mol% or more.
  • the carbonyl terminal modification rate exceeds 0.5 mol%, the amount of polymer ends increases, so the degree of polymerization decreases, the protective colloid properties decrease, or the chemical becomes unstable, and the viscosity of the aqueous solution increases. Or gelled. Therefore, the carbonyl terminal modification rate is required to be 0.5 mol% or less, preferably 0.45 mol% or less, and more preferably 0.4 mol% or less.
  • the carbonyl terminal modification rate is the ratio (mol%) of the number of moles of the carbonyl unit represented by the general formula (II) with respect to the total number of moles of the monomer unit constituting the main chain of the modified PVA.
  • the carbonyl terminal modification rate can be determined by proton NMR.
  • the modified PVA is completely saponified to a saponification degree of 99.95 mol% or more, and then thoroughly washed with methanol to prepare a modified PVA for analysis.
  • any terminal is calculated from the integrated value of the peak indicating the carbonyl terminal, based on the integrated value of the peak of the methylene group (1.2 to 1.8 ppm) of the main chain of the modified PVA.
  • R 4 methyl group, 2.15 to 2.25 ppm, and when R 4 has 2 or more carbon atoms, the integral value of the peak of 0.95 to 1.10 ppm which is a terminal methyl group is calculated.
  • the formyl group is calculated by the integral value of the peak of 9.2 to 9.8 ppm.
  • the viscosity average degree of polymerization of the modified PVA is preferably 300 or more, more preferably 400 or more, and more preferably 500 or more in order to increase the dispersion stability when the vinyl compound is subjected to suspension polymerization. Even more preferred.
  • the viscosity average degree of polymerization of the modified PVA is preferably 5000 or less, more preferably 4000 or less, and more preferably 3000 or less in order to prevent the aqueous solution viscosity from becoming high and difficult to handle. Even more preferably, it is still more preferably 2000 or less, still more preferably 1500 or less.
  • Viscosity average degree of polymerization is measured according to JIS K6726: 1994. That is, it is obtained from the intrinsic viscosity [ ⁇ ] measured in water at 30 ° C. after completely saponifying and purifying the modified PVA.
  • the degree of saponification of the modified PVA is preferably 60 mol% or more, more preferably 65 mol% or more, and even more preferably 70 mol% or more in order to increase water solubility and facilitate handling. preferable. Further, the degree of saponification of the modified PVA is preferably 99.9 mol% or less in order to increase the porosity of the particles obtained when the vinyl compound is subjected to suspension polymerization and to increase the plasticizer absorbability. % Or less is more preferable, and 80 mol% or less is even more preferable.
  • the degree of saponification of the modified PVA is measured according to JIS K6726: 1994. That is, it can be determined by quantifying the residual acetic acid group (mol%) in the sample with sodium hydroxide and subtracting it from 100.
  • the method for producing the modified PVA according to the present invention is not particularly limited, but in one embodiment of the method for producing the modified PVA according to the present invention, a vinyl ester monomer represented by vinyl acetate is represented by the general formula (II).
  • a modified vinyl ester polymer by copolymerizing with an unsaturated monomer having a polyoxyalkylene unit represented by the general formula (I) in the presence of an aldehyde having a carbonyl unit of A step of saponifying the ester polymer.
  • Examples of the unsaturated monomer that induces a modified structure having two or more different repeating units represented by formula (I) include polyoxyalkylene alkenyl ether, polyoxyalkylene mono (meth) acrylamide, and polyoxyalkylene mono (meth). Examples include allyl ether, polyoxyalkylene monovinyl ether, and polyoxyalkylene mono (meth) acrylate.
  • ethers represented by the following general formula (IV) are more preferably used in terms of reactivity and performance.
  • Specific examples of the polyoxyalkylene alkenyl ether represented by the general formula (IV) include polyoxybutylene polyoxyethylene alkenyl ether.
  • R 1 , R 2 , R 3 , R 5 , R 6 , m, and n are the same as those in the general formula (I).
  • vinyl ester monomers examples include vinyl formate, vinyl formate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, and vinyl versatate. Is mentioned.
  • the method for deriving the terminal in which R 4 is an alkyl group having 1 to 9 carbon atoms in the general formula (II) is not particularly limited, but the polymerization is performed in the presence of a corresponding aldehyde when radically polymerizing a vinyl ester monomer.
  • a simple and efficient method is to saponify the vinyl ester polymer by dissolving the obtained polymer in alcohols and then treating with an alkali such as sodium hydroxide or ammonia, or an acid such as hydrochloric acid or paratoluenesulfonic acid. Is.
  • aldehyde examples include acetaldehyde, propionaldehyde, butyraldehyde, pentylaldehyde, hexylaldehyde, heptylaldehyde, octylaldehyde, nonylaldehyde, and decanaldehyde.
  • acetaldehyde, propionaldehyde, and butyraldehyde are particularly preferably used from the viewpoint of easy removal of the residue from the reaction system and performance.
  • the method for deriving the formyl terminal in which R 4 is a hydrogen atom in the general formula (II) is not particularly limited, but a method in which PVA is oxidatively cleaved with an oxidizing agent (Patent Document: JP 2000-86992 A), Examples thereof include a method of polymerizing in the presence of formaldehyde, a method of saponifying a vinyl ester polymer obtained by polymerizing in the presence of oxygen, and the like. Among them, there is a method of polymerizing in the presence of an aldehyde while introducing a gas containing oxygen (typically blowing) when radically polymerizing a vinyl ester monomer, and saponifying the resulting vinyl ester polymer.
  • a gas containing oxygen typically blowing
  • the concept of “introducing a gas containing oxygen” refers to additionally sending oxygen from outside the reaction system into the reaction system, and oxygen due to air or the like initially exists in the reaction system. However, the oxygen is not treated as introduced oxygen.
  • the temperature at which the vinyl ester monomer is copolymerized with the unsaturated monomer having a polyoxyalkylene unit represented by formula (I) in the presence of an aldehyde having a carbonyl unit of formula (II) is as follows: Although not specifically limited, 0 degreeC or more and 200 degrees C or less are preferable, and 30 degreeC or more and 150 degrees C or less are more preferable. A copolymerization temperature lower than 0 ° C. is not preferable because a sufficient polymerization rate cannot be obtained. Moreover, when the temperature which performs superposition
  • the polymerization method employed for carrying out this copolymerization may be any of batch polymerization, semi-batch polymerization, continuous polymerization, and semi-continuous polymerization.
  • the polymerization method an arbitrary method can be adopted from known methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • the modified species to be used often have water-solubility or surface-active ability that affects the polymer particle size, so it is not suspension polymerization or emulsion polymerization that needs to control the polymer particle size, but in the presence of an alcohol solvent or A solution polymerization method or a bulk polymerization method in which polymerization is performed without using a solvent is preferably employed.
  • an alcohol solvent used in the bulk polymerization method or the solution polymerization method, methanol, ethanol, isopropanol and the like can be used, but are not limited thereto. These solvents may be used alone or in combination of two or more.
  • the polymerization initiator for radical polymerization of the vinyl ester monomer is not particularly limited, but azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobis (4-methoxy-2, 4-dimethylvaleronitrile), azo compounds such as azobisdimethylvaleronitrile, azobismethoxyvaleronitrile, acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl- Peroxides such as 2-peroxyphenoxyacetate, percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate, t-butyl Peroxy neodecanoate, alpha-cumyl peroxyneodecanoate
  • an antioxidant such as citric acid may be added to the polymerization system in an amount of 1 ppm to 100 ppm (with respect to the mass of the vinyl ester monomer) for the purpose of preventing coloring.
  • the saponification method for producing the modified PVA according to the present invention is not particularly limited, and it is preferable to use the polymer obtained by the above-described method in combination with an alcohol as a solvent according to a conventional method.
  • the alcohol include methanol, ethanol, butanol and the like.
  • the concentration of the polymer in the alcohol can be selected from the range of 20 to 50% by mass.
  • Alkali catalysts such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, potassium methylate and other alkali metal hydroxides and alcoholates can be used as the alkali catalyst, and as the acid catalyst, hydrochloric acid, An inorganic acid aqueous solution such as sulfuric acid and an organic acid such as p-toluenesulfonic acid can be used. These catalysts must be used in an amount of 1 to 100 mmol equivalents relative to the vinyl ester monomer. In such a case, the saponification temperature is not particularly limited, but is usually in the range of 10 to 70 ° C., and preferably in the range of 30 to 50 ° C. The reaction is usually carried out over 1 to 3 hours.
  • the dispersion stabilizer for suspension polymerization of the present invention may contain PVA other than the above modified PVA and other various additives as long as the gist of the present invention is not impaired.
  • the additive include polymerization regulators such as aldehydes, halogenated hydrocarbons and mercaptans; polymerization inhibitors such as phenol compounds, sulfur compounds and N-oxide compounds; pH regulators; cross-linking agents; An antifungal agent, an antiblocking agent, and an antifoaming agent.
  • the dispersion stabilizer for suspension polymerization of the present invention preferably contains 10% by mass or more of modified PVA, more preferably contains 30% by mass or more, and 70% by mass. It is still more preferable to contain more than%.
  • the dispersion stabilizer for suspension polymerization of the present invention can be suitably used particularly for suspension polymerization of vinyl compounds.
  • vinyl compounds include vinyl halides such as vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; acrylic acid, methacrylic acid, esters and salts thereof; maleic acid, fumaric acid, esters and anhydrides thereof; Examples include styrene, acrylonitrile, vinylidene chloride, vinyl ether and the like.
  • the dispersion stabilizer for suspension polymerization of the present invention is particularly preferably used in suspension polymerization of vinyl chloride alone or together with a monomer capable of copolymerizing vinyl chloride with vinyl chloride. Used.
  • Monomers that can be copolymerized with vinyl chloride include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylic esters such as methyl (meth) acrylate and ethyl (meth) acrylate; ethylene, ⁇ -olefins such as propylene; unsaturated dicarboxylic acids such as maleic anhydride and itaconic acid; acrylonitrile, styrene, vinylidene chloride, vinyl ether and the like.
  • vinyl esters such as vinyl acetate and vinyl propionate
  • (meth) acrylic esters such as methyl (meth) acrylate and ethyl (meth) acrylate
  • ethylene, ⁇ -olefins such as propylene
  • unsaturated dicarboxylic acids such as maleic anhydride and itaconic acid
  • acrylonitrile, styrene, vinylidene chloride, vinyl ether and the like
  • the dispersion stabilizer for suspension polymerization of the present invention is suitable for producing a vinyl chloride resin for softness in terms of producing vinyl chloride resin particles having excellent plasticizer absorbability, but is excellent in demonomerization, particle size distribution, etc. Therefore, it can be applied to the production of rigid vinyl chloride resin.
  • the dispersion stabilizer for suspension polymerization of the present invention can be used alone or in combination with other stabilizers such as cellulose derivatives and surfactants.
  • the dispersion stabilizer for suspension polymerization of the present invention By using the dispersion stabilizer for suspension polymerization of the present invention, it is always possible to obtain a vinyl chloride resin having excellent physical properties such as the resin particles are porous, the particle size distribution is uniform, and the fisheye is small.
  • examples of the polymerization method of the vinyl compound will be described in detail, but the method is not limited thereto.
  • the polymerization initiator may be those conventionally used for the polymerization of vinyl compounds, such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate and the like.
  • perester compounds such as t-butylperoxyneodecanoate, ⁇ -cumylperoxyneodecanoate, t-butylperoxyneodecanoate, acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethyl Peroxides such as pentyl-2-peroxyphenoxyacetate, azo compounds such as azobis-2,4-dimethylvaleronitrile, azobis (4-methoxy-2,4-dimethylvaleronitrile), potassium persulfate, Ammonium sulfate, hydrogen peroxide, etc. Germany or in combination can be used.
  • a polymerization regulator e.g., a chain transfer agent, a gelation improver, an antistatic agent, a PH regulator and the like that are used as appropriate for the polymerization of the vinyl compound.
  • the charging ratio of each component and the polymerization temperature for carrying out the polymerization of the vinyl compound may be determined in accordance with the conditions conventionally employed in the suspension polymerization of the vinyl compound, and there is no particular limitation.
  • the viscosity average polymerization degree was 720, the saponification degree was 71 mol%, and the alkylene modification rate was 0.16 mol%.
  • the carbonyl terminal modification rate was 0.20 mol%, and the formyl terminal modification rate was 0.013 mol%.
  • the average particle size is measured according to JIS Z8815: 1994, 60 mesh (aperture 250 ⁇ m), 80 mesh (aperture 180 ⁇ m), 100 mesh (aperture 150 ⁇ m), 150 mesh (aperture 106 ⁇ m), 200 mesh ( Using a sieve with a mesh opening of 75 ⁇ m, the particle diameter (D50) with a cumulative frequency of 50% (mass basis) is the average particle diameter, the particle diameter (D80) with a cumulative frequency of 80% (mass basis) and a cumulative frequency of 20% (mass) The difference in the particle size (D20) of the “standard” was defined as the particle size distribution.
  • the plasticizer absorption was measured by the following procedure. Glass fiber was packed in the bottom of an aluminum alloy container having an inner diameter of 25 mm and a depth of 85 mm, and 10 g of vinyl chloride resin was charged. To this, 15 mL of a plasticizer (dioctyl phthalate, hereinafter referred to as DOP) was added and allowed to stand for 30 minutes to allow the DOP to sufficiently penetrate into the vinyl chloride resin. Thereafter, excess DOP was centrifuged at an acceleration of 1500 G, and the mass of DOP absorbed in 10 g of vinyl chloride resin was measured and converted to DOP mass parts (phr) per 100 mass parts of vinyl chloride resin.
  • DOP dioctyl phthalate
  • Example 2 The polymerization can was charged with 2500 g of vinyl acetate, 35 g of normal butyraldehyde, and 235 g of monomer A as a modified species. After the system was purged with nitrogen for 30 minutes, 0.2 g of azobisisobutyronitrile was charged into the polymerization vessel, polymerized at 65 to 70 ° C. for 8 hours, and then cooled to stop the polymerization. Next, unreacted vinyl acetate was removed by a conventional method, and the resulting polymer was saponified with sodium hydroxide by a conventional method to prepare a dispersion stabilizer.
  • the viscosity average polymerization degree was 750
  • the saponification degree was 72 mol%
  • the alkylene modification rate was 0.15 mol%
  • the carbonyl terminal modification rate was 0.20 mol%
  • the formyl terminal modification rate was 0 mol%. Evaluation was performed by carrying out suspension polymerization of vinyl chloride under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used.
  • Example 3 A polymerization can was charged with 1700 g of vinyl acetate, 17 g of acetaldehyde, 500 g of methanol, and 107 g of monomer A as a modified species. Charge 0.2g of azobisisobutyronitrile into the polymerization vessel, and heat while blowing oxygen-nitrogen mixed gas (oxygen concentration 6vol%, total oxygen amount 0.08mol% with respect to vinyl acetate) into the gas phase directly above the polymerization solution. Then, the polymerization was carried out at 65 to 70 ° C. for 9 hours and then cooled to stop the polymerization.
  • oxygen-nitrogen mixed gas oxygen concentration 6vol%, total oxygen amount 0.08mol% with respect to vinyl acetate
  • Example 4 A polymerization can was charged with 1700 g of vinyl acetate, 17 g of acetaldehyde, 500 g of methanol, and 107 g of monomer A as a modified species. After the system was purged with nitrogen for 30 minutes, 0.2 g of azobisisobutyronitrile was charged into the polymerization vessel, polymerized at 65 to 70 ° C. for 9 hours, and then cooled to stop the polymerization. Next, unreacted vinyl acetate was removed by a conventional method, and the resulting polymer was saponified with sodium hydroxide by a conventional method to prepare a dispersion stabilizer.
  • the viscosity average polymerization degree was 700
  • the saponification degree was 72 mol%
  • the alkylene modification rate was 0.13 mol%
  • the carbonyl terminal modification rate was 0.09 mol%
  • the formyl terminal modification rate was 0 mol%.
  • the suspension polymerization of vinyl chloride was carried out under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used for evaluation.
  • Example 5 The modified vinyl acetate polymer obtained in Example 4 was saponified by adjusting the amount of sodium hydroxide to prepare a dispersion stabilizer.
  • the viscosity average polymerization degree was 700
  • the saponification degree was 79 mol%
  • the alkylene modification rate was 0.13 mol%
  • the carbonyl terminal modification rate was 0.09 mol%
  • the formyl terminal modification rate was 0 mol%.
  • the suspension polymerization of vinyl chloride was carried out under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used for evaluation.
  • Example 6 A polymerization can was charged with 1700 g of vinyl acetate, 17 g of acetaldehyde, 350 g of methanol, and 107 g of monomer A as a modified species. After the system was purged with nitrogen for 30 minutes, 0.2 g of azobisisobutyronitrile was charged into the polymerization vessel, polymerized at 65 to 70 ° C. for 9 hours, and then cooled to stop the polymerization. Next, unreacted vinyl acetate was removed by a conventional method, and the resulting polymer was saponified with sodium hydroxide by a conventional method to prepare a dispersion stabilizer.
  • the viscosity average polymerization degree, saponification degree, and modification rate of the obtained dispersion stabilizer were measured by the above-described analysis method.
  • the viscosity average polymerization degree was 850, the saponification degree was 71 mol%, and the alkylene modification rate was 0.14 mol%.
  • the carbonyl terminal modification rate was 0.07 mol%, and the formyl terminal modification rate was 0 mol%.
  • the suspension polymerization of vinyl chloride was carried out under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used for evaluation.
  • Example 7 A polymerization can was charged with 1700 g of vinyl acetate, 34 g of acetaldehyde, 350 g of methanol, and 214 g of monomer A as a modified species. After the system was purged with nitrogen for 30 minutes, 0.2 g of azobisisobutyronitrile was charged into the polymerization vessel, polymerized at 65 to 70 ° C. for 9 hours, and then cooled to stop the polymerization. Next, unreacted vinyl acetate was removed by a conventional method, and the resulting polymer was saponified with sodium hydroxide by a conventional method to prepare a dispersion stabilizer.
  • the viscosity average polymerization degree was 440
  • the saponification degree was 70 mol%
  • the alkylene modification rate was 0.26 mol%
  • the carbonyl terminal modification rate was 0.14 mol%
  • the formyl terminal modification rate was 0 mol%.
  • the suspension polymerization of vinyl chloride was carried out under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used for evaluation.
  • 180 g was charged into a polymerization can.
  • 0.2 g of azobisisobutyronitrile was charged into the polymerization vessel, polymerized at 65 to 70 ° C.
  • the viscosity average polymerization degree was 840
  • the saponification degree was 73 mol%
  • the alkylene modification rate was 0.24 mol%
  • the carbonyl terminal modification rate was 0.08 mol%
  • the formyl terminal modification rate was 0 mol%.
  • the suspension polymerization of vinyl chloride was carried out under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used for evaluation.
  • the viscosity average polymerization degree was 650
  • the saponification degree was 72 mol%
  • the alkylene modification rate was 0.11 mol%
  • the carbonyl terminal modification rate was 0.08 mol%
  • the formyl terminal modification rate was 0 mol%.
  • the suspension polymerization of vinyl chloride was carried out under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used for evaluation.
  • Example 1 As a modified species, 1700 g of vinyl acetate, 1133 g of methanol, and 159.9 g of the same monomer A as in Example 1 were charged into a polymerization vessel, and the system was purged with nitrogen for 30 minutes. 0.3 g of azobisisobutyronitrile was charged into a polymerization vessel, polymerized at 60 ° C. for 9 hours, and then cooled to stop the polymerization. Thereafter, a dispersion stabilizer was prepared according to Example 1. The viscosity average polymerization degree, saponification degree, and modification rate of the obtained dispersion stabilizer were measured by the analysis method described above. Moreover, the suspension polymerization of vinyl chloride was carried out under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used for evaluation.
  • the above polymerization rate refers to a value measured by a polymer concentration measurement method.
  • the polymerization solution is sampled during the polymerization, the weight is measured, the polymer concentration of the polymerization solution is calculated based on the weight of the polymer obtained by distilling off the monomer and the solvent, and the amount of polymer relative to the monomer is obtained for polymerization Calculate the rate.
  • Example 3 (Comparative Example 3) 3000 g of vinyl acetate and 42 g of a modified species of normal butyraldehyde were charged into a polymerization vessel, and the system was purged with nitrogen for 30 minutes. 0.3 g of azobisisobutyronitrile was charged into a polymerization vessel, polymerized at 65 to 75 ° C. for 6 hours, and then cooled to stop the polymerization. Thereafter, a dispersion stabilizer was prepared according to Example 1. The viscosity average polymerization degree, saponification degree, and modification rate of the obtained dispersion stabilizer were measured by the analysis method described above. Moreover, the suspension polymerization of vinyl chloride was carried out under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used for evaluation.
  • a dispersion stabilizer was prepared in the same manner as in Example 1.
  • the viscosity average polymerization degree, saponification degree, and modification rate of the obtained dispersion stabilizer were measured by the analysis method described above.
  • the suspension polymerization of vinyl chloride was carried out under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used for evaluation.
  • proton NMR of the obtained dispersion stabilizer was measured, but a peak derived from a modified species observed with polyvinyl acetate was not observed with polyvinyl alcohol.
  • the total amount of methanol added until the polymerization was stopped was 1066 g, and the total amount of monomer B was 44.6 g.
  • a dispersion stabilizer was prepared in the same manner as in Example 1.
  • the viscosity average polymerization degree, saponification degree, and modification rate of the obtained dispersion stabilizer were measured by the analysis method described above.
  • the suspension polymerization of vinyl chloride was carried out under the same conditions as in Example 1 except that the obtained dispersion stabilizer was used for evaluation.
  • proton NMR of the obtained dispersion stabilizer was measured, but a peak derived from a modified species observed with polyvinyl acetate was not observed with polyvinyl alcohol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

ビニル系化合物の懸濁重合に際して、(1)樹脂粒子中に粗大粒子が少ないこと、(2)できるだけ粒子径が均一な樹脂粒子が得られ、スケール付着を防止できること、(3)高いポロシティを有する樹脂が得られ、結果としてモノマー成分の除去が容易になり、かつ可塑剤の吸収性の高い樹脂となるといった要求性能を充足する懸濁重合用分散安定剤を提供する。側鎖に一般式(I)に示すポリオキシアルキレン単位を有し、且つ、主鎖末端に一般式(II)に示すカルボニル単位を有する変性ビニルアルコール系重合体であって、変性ビニルアルコール系重合体の主鎖を構成する単量体単位の全モル数に対し、一般式(I)に示すポリオキシアルキレン単位を側鎖に有する前記単量体単位のモル数の割合が0.01モル%~5モル%であり、かつ、一般式(II)に示すカルボニル単位のモル数の割合が0.01モル%~0.5モル%である変性ビニルアルコール系重合体。

Description

変性ビニルアルコール系重合体及び懸濁重合用分散安定剤
 本発明は、変性ビニルアルコール系重合体に関する。また、本発明は、懸濁重合用分散安定剤、とりわけビニル化合物、特に塩化ビニルの懸濁重合に適した分散安定剤に関するものである。
 塩化ビニル単量体又は塩化ビニル単量体とこれに共重合し得る単量体との混合物を懸濁重合する場合において、各種の分散安定剤を使用することは必須であり、ポリビニルアルコール、メチロールセルロース、酢酸ビニル/無水マレイン酸共重合物、ゼラチン等の分散安定剤が用いられているが、なかでもポリビニルアルコール(PVA)は優れた性質を有しており、一般に最も使用されている。例えば、ビニル系化合物の懸濁重合用分散安定剤として、低重合度、低けん化度、側鎖に特定のオキシアルキレン基を有する変性PVAを用いる方法等が提案されている(特許文献1~3参照)。
特開昭59-155408号公報 国際公開第2010/113568号 国際公開第2013/115239号
 しかしながら、特許文献1~3に記載された分散安定剤は、要求される性能、具体的には、(1)樹脂粒子中に粗大粒子が少ないこと、(2)できるだけ粒子径が均一な樹脂粒子が得られ、スケール付着を防止できること、(3)高いポロシティを有する樹脂が得られ、結果としてモノマー成分の除去が容易になり、かつ可塑剤の吸収性の高い樹脂となることに対して、必ずしも満足すべき性能が得られているとは言いがたい。
 そこで、本発明は、塩化ビニルのようなビニル系化合物の懸濁重合に際して、上記(1)~(3)の要求性能を充足する懸濁重合用分散安定剤を提供することを目的とする。
 本発明者等は、上記の課題を解決すべく鋭意研究を重ねた結果、所定のポリオキシアルキレン単位(以下、「アルキレン変性基」という。)を0.01モル%~5モル%の変性率で側鎖に有し、かつカルボニル単位を0.01モル%~0.5モル%の変性率で主鎖末端に有する変性ビニルアルコール系重合体をビニル系化合物の懸濁重合用分散安定剤として使用することが有効であることを見出した。
 従って、本発明は一側面において、側鎖に一般式(I)に示すポリオキシアルキレン単位を有し、且つ、主鎖末端に一般式(II)に示すカルボニル単位を有する変性ビニルアルコール系重合体であって、変性ビニルアルコール系重合体の主鎖を構成する単量体単位の全モル数に対し、一般式(I)に示すポリオキシアルキレン単位を側鎖に有する前記単量体単位のモル数の割合が0.01モル%~5モル%であり、かつ、一般式(II)に示すカルボニル単位のモル数の割合が0.01モル%~0.5モル%である変性ビニルアルコール系重合体である。
Figure JPOXMLDOC01-appb-C000003
(式中、R1及びR2はそれぞれ独立にメチル基又はエチル基又は水素原子であり、R3はメチル基又は水素原子である。nは繰り返し単位数を表し、1≦n≦70の整数である。また、R4は水素原子又は炭素数1~9のアルキル基を表す。R5及びR6は一方がメチル基又はエチル基であり、他方が水素原子である。mは繰り返し単位数を表し、1≦m≦30の整数である。)
 本発明に係る変性ビニルアルコール系重合体は一実施形態において、一般式(I)に示す前記ポリオキシアルキレン単位と主鎖のポリビニルアルコール鎖との間に、エーテル結合及び/又は炭素-炭素結合が介在する。
 本発明に係る変性ビニルアルコール系重合体は更に別の一実施形態において、一般式(III)で表される単量体単位を有する。
Figure JPOXMLDOC01-appb-C000004
(式中、R1、R2、R3、R5、R6、n及びmは一般式(I)で定義した通りである。)
 本発明に係る変性ビニルアルコール系重合体は更に別の一実施形態において、前記カルボニル単位がホルミル基を含む。
 本発明に係る変性ビニルアルコール系重合体は更に別の一実施形態において、粘度平均重合度が300~5000であり、けん化度が65モル%~90モル%である。
 本発明は別の一側面において、本発明に係る変性ビニルアルコール系重合体を含有する懸濁重合用分散安定剤である。
 本発明は更に別の一側面において、本発明に係る懸濁重合用分散安定剤を用いて、ビニル系化合物単量体、又はビニル系化合物単量体とそれに共重合し得る単量体との混合物を水中に分散させて懸濁重合を行うことを含むビニル系樹脂の製造方法である。
 本発明は更に別の一側面において、ビニルエステル系単量体を、一般式(II)のカルボニル単位を有するアルデヒドの共存下で、一般式(I)に示すポリオキシアルキレン単位を有する不飽和単量体と共重合して変性ビニルエステル系重合体を得る工程を含む本発明に係る変性ビニルアルコール系重合体の製造方法である。
 本発明に係る変性ビニルアルコール系重合体の製造方法は一実施形態において、変性ビニルエステル系重合体を得る工程を、酸素を含む気体を導入しながら実施する。
 本発明の懸濁重合用分散安定剤を用いてビニル系化合物の懸濁重合を行った場合には、粗大粒子の形成が少なく、粒子径の均一性が高い樹脂粒子が得られる。さらに、粗大粒子の形成が少ないために重合時のブロック化が抑制され、粒子径の均一性が高い粒子が得られることからスケール付着が低減する。加えて、高いポロシティを有する重合体粒子が得られる為、可塑剤吸収性及び脱モノマー性に優れる。このように、本発明の懸濁重合用分散安定剤は従来技術では達成することが難しかった要求性能を兼備することができる。
 本発明の懸濁重合用分散安定剤は一実施形態において、側鎖に下記一般式(I)に示すポリオキシアルキレン単位を有し、且つ、主鎖末端に下記一般式(II)に示すカルボニル単位を有する変性ビニルアルコール系重合体(変性PVA)を含有する。
一般式(I):
Figure JPOXMLDOC01-appb-C000005
(式中、R1及びR2はそれぞれ独立にメチル基又はエチル基又は水素原子であり、R3はメチル基又は水素原子である。nは繰り返し単位数を表し、1≦n≦70の整数である。R5及びR6は一方がメチル基又はエチル基であり、他方が水素原子である。mは繰り返し単位数を表し、1≦m≦30の整数である。)
 上記変性PVAは側鎖に一般式(I)に示すように異なるユニットを二種類以上持つことが好ましい。具体的には、繰り返し単位数mのユニットがブチレンオキサイド(R5が水素原子、R6がエチル基)であり、繰り返し単位数nのユニットがエチレンオキサイド(R1、R2共に水素原子)であるものや、繰り返し単位数mのユニットがプロピレンオキサイド(R5が水素原子、R6がメチル基)であり、繰り返し単位数nのユニットがエチレンオキサイド(R1、R2共に水素原子)であるもの等が挙げられる。ここで、繰り返し単位数がmであるユニットと、繰り返し単位数がnであるユニットは、ランダム的及びブロック的な配置のどちらの形態になっていてもよいが、アルキレン変性基に基づく物性がより一層発現しやすい観点から、ブロック的な配置であることが好ましい。
nは10以上が好ましく、15以上がより好ましく、20以上がより好ましい。また、nは70以下が好ましく、60以下がより好ましい。
 mは3以上が好ましく、5以上がより好ましい。また、mは25以下が好ましく、20以下がより好ましい。
一般式(II):
Figure JPOXMLDOC01-appb-C000006
(R4は水素原子又は炭素数1~9のアルキル基を表す。)
 上記変性PVA中の一般式(II)に示すカルボニル単位のR4は、水素原子又は炭素数が1~9のアルキル基であることが重要である。R4の炭素数が9を越えると、カルボニル単位に起因する不飽和二重結合生成量が少なくなる為、分散性能の乏しい変性PVAとなり、要求物性が十分に発現しない。そこで、R4の炭素数は9以下であることが好ましく、8以下であることがより好ましく、6以下であることが更により好ましく、5以下であることが更により好ましい。R4は直鎖状でも分岐鎖状でもよい。好ましいR4の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、オクチル基などが挙げられる。
 本発明の変性PVAにおいて、一般式(I)に示す前記ポリオキシアルキレン単位と、主鎖のポリビニルアルコール鎖を構成する炭素原子との接続部の構造は特に制限されないが、エステルやアミドのような接続部であると、後述する変性ビニルエステル系重合体のけん化の過程で切断され得るため、加水分解されやすい構造を持たないほうが好ましく、具体的にはエーテル結合及び/又は炭素-炭素結合を介して接続されていることが好ましい。
 従って、本発明の懸濁重合用分散安定剤は一実施形態において、一般式(III)で表される単量体単位を有する変性ビニルアルコール系重合体(変性PVA)を含有する。
Figure JPOXMLDOC01-appb-C000007
(一般式(III)中、R1、R2、R3、R5、R6、m、nは上記の一般式(I)と同様である。)
 上記変性PVAは、一般式(I)で示されるアルキレン変性基の種類にも依存するが、アルキレン変性率が0.01モル%以上5モル%以下であることが重要である。アルキレン変性率が5モル%を超えると、変性PVA一分子当りに含まれる疎水基の割合が高くなり、該変性PVAの水溶性が低下するため、懸濁重合用分散安定剤として用いることが困難となる。よって、アルキレン変性率は5モル%以下であることが重要であり、4モル%以下であることが好ましく、2モル%以下であることがより好ましい。一方、アルキレン変性率が0.01モル%未満の場合、水溶性は優れているものの、該変性PVA中に含まれる変性基の数が少なく、要求物性が十分に発現しない。よって、アルキレン変性率は0.01モル%以上であることが重要であり、0.05モル%以上であることが好ましく、0.1モル%以上であることがより好ましい。
 アルキレン変性率とは、変性PVAの主鎖を構成する単量体単位の全モル数に対する、上記一般式(I)で示されるポリオキシアルキレン単位を側鎖に有する前記単量体単位のモル数の割合(モル%)である。アルキレン変性率はプロトンNMRで求めることができる。具体的には、変性PVAをけん化度99.95モル%以上にけん化した後、十分にメタノール洗浄を行い、分析用の変性PVAを作製する。作製した分析用の変性PVAを重水に溶解し、更にNaOH重水溶液を数滴加えpH=14にした後、プロトンNMRを用いて80℃で測定する。
 オキシエチレンユニット(例:R1=H、R2=H)から算出する場合、変性PVAの主鎖のメチレン基に帰属される1.2~1.8ppmのピークの積分値と、オキシエチレンユニットに帰属される3.6~3.7ppmのピークの積分値とから常法により含有量を算出する。具体的には、変性PVAの主鎖のメチレン基の積分値をbとし、オキシエチレンユニットの積分値をa、一般式(I)に示すポリオキシアルキレン単位中のオキシエチレンユニットの繰り返し単位数の平均値をxとすると、プロトン数(メチレン基は2H、エチレン基は4H)を鑑み、変性率は{a/(4×x)}/(b/2)×100(mol%)と計算される。例えば、a=1、x=1、b=100の場合は、1.0mol%と計算される。
 また、オキシブチレン又はオキシプロピレンユニットから算出する場合、変性PVAの主鎖のメチレン基に帰属される1.2~1.8ppmのピークの積分値と、オキシブチレンユニット(R5=H、R6=CH2CH3(又はR5=CH2CH3、R6=H))又はオキシプロピレンユニット(R5=H、R6=CH3(又はR5=CH3、R6=H))の末端メチル基に帰属される0.80~0.95ppmのピークの積分値とから常法により含有量を算出する。具体的には、変性PVAの主鎖のメチレン基の積分値をbとし、オキシブチレンユニット又はオキシプロピレンユニットの積分値をc、一般式(I)に示すポリオキシアルキレン単位中のオキシブチレンユニット又はオキシプロピレンユニットの繰り返し単位数の平均値をyとすると、プロトン数(メチレン基は2H、メチル基は3H)を鑑み、変性率は{c/(3×y)}/(b/2)×100(mol%)と計算される。例えば、c=1、y=1、b=100の場合は、0.67mol%と計算される。
 なお、変性PVAが側鎖にオキシエチレンユニットと、オキシプロピレンユニット又はオキシブチレンユニットとの双方を有する場合は、オキシエチレンユニットから算出されるアルキレン変性率よりも、オキシプロピレンユニット又はオキシブチレンユニットの末端メチル基に帰属されるピークの積分値に基づいて算出されるアルキレン変性率のほうが測定精度が高いため、両者の値に相違がある場合には、オキシプロピレンユニット又はオキシブチレンユニットの末端メチル基に帰属されるピークの積分値に基づいて算出されるアルキレン変性率を採用することとする。
 また、上記変性PVAは、カルボニル末端変性率が、0.01モル%~0.5モル%である必要がある。カルボニル末端変性率が0.01モル%未満の場合はカルボニル末端に起因する不飽和二重結合起点が減少したり保護コロイド性が低下したりするため、結果として適度な粒子径を有するビニル系樹脂は得られない。そこで、カルボニル末端変性率は0.01モル%以上であることが必要であり、0.02モル%以上であることが好ましく、0.04モル%以上であることがより好ましい。また、カルボニル末端変性率が0.5モル%を超える場合、ポリマーの末端量が増えるため重合度が低くなって保護コロイド性が低下したり、化学的に不安定となり、水溶液の粘度が高くなったり、ゲル化したりする場合がある。そこで、カルボニル末端変性率は0.5モル%以下であることが必要であり、0.45モル%以下であることが好ましく、0.4モル%以下であることがより好ましい。
 カルボニル末端変性率とは、変性PVAの主鎖を構成する単量体単位の全モル数に対する、一般式(II)に示すカルボニル単位のモル数の割合(モル%)である。カルボニル末端変性率はプロトンNMRで求めることができる。具体的には、変性PVAをけん化度99.95モル%以上に完全にけん化した後、十分にメタノール洗浄を行い、分析用の変性PVAを作製する。作製した分析用の変性PVAを重水に溶解し、更にNaOH重水溶液を数滴加えpH=14にした後、80℃で測定し1H-NMRスペクトルを得る。但し、R4が水素原子であるホルミル末端を測定する場合はけん化不要であり、そのまま分析する。何れの末端の含有量も変性PVAの主鎖のメチレン基(1.2~1.8ppm)のピークの積分値を基準として、カルボニル末端を示すピークの積分値から算出する。R4=メチル基の場合は2.15~2.25ppm、R4が炭素数2以上の際は末端メチル基である0.95~1.10ppmのピークの積分値で算出する。また、ホルミル基は9.2~9.8ppmのピークの積分値で算出する。具体的には、各末端測定用の1H-NMRスペクトルにおいて、変性PVAの主鎖のメチレン基の積分値をbとし、カルボニル末端の積分値をdとすると、プロトン数(メチレン基は2、カルボニル末端は見ているピークがメチル基なのでX=3、但しホルミル末端はX=1)を鑑み、カルボニル末端変性率は(d/X)/(b/2)×100(mol%)と計算される。
 変性PVAの粘度平均重合度は、ビニル系化合物を懸濁重合する際の分散安定性を高めるために300以上であることが好ましく、400以上であることが更により好ましく、500以上であることが更により好ましい。また、変性PVAの粘度平均重合度は水溶液粘度が高くなって取り扱いが困難になるのを防止するために5000以下であることが好ましく、4000以下であることがより好ましく、3000以下であることが更により好ましく、2000以下であることが更により好ましく、1500以下であることが更により好ましい。
 粘度平均重合度は、JIS K6726:1994に準拠して測定される。すなわち、変性PVAを完全にけん化し、精製した後、30℃の水中で測定した極限粘度[η]から求める。
 変性PVAのけん化度は、水溶性を高くして取り扱いやすくするために、60モル%以上であることが好ましく、65モル%以上であることがより好ましく、70モル%以上であることが更により好ましい。また、変性PVAのけん化度は、ビニル系化合物を懸濁重合した際に得られる粒子のポロシティを高めて可塑剤吸収性を高めるために、99.9モル%以下であることが好ましく、90モル%以下であることがより好ましく、80モル%以下であることが更により好ましい。
 変性PVAのけん化度は、JIS K6726:1994に準拠して測定される。すなわち、水酸化ナトリウムで試料中の残存酢酸基(モル%)を定量し、100から差し引くことで求めることができる。
 本発明に係る変性PVAの製造方法は特に制限されないが、本発明に係る変性PVAの製造方法の一実施形態においては、酢酸ビニルに代表されるビニルエステル系単量体を、一般式(II)のカルボニル単位を有するアルデヒドの共存下で、一般式(I)に示すポリオキシアルキレン単位を有する不飽和単量体と共重合して変性ビニルエステル系重合体を得る工程と、得られた変性ビニルエステル系重合体をけん化する工程を含む。
 一般式(I)で示される異なる繰り返し単位を二種類以上もつ変性構造を誘導する不飽和単量体としてはポリオキシアルキレンアルケニルエーテル、ポリオキシアルキレンモノ(メタ)アクリルアミド、ポリオキシアルキレンモノ(メタ)アリルエーテル、ポリオキシアルキレンモノビニルエーテル、ポリオキシアルキレンモノ(メタ)アクリレートが挙げられ、具体的には、ポリオキシブチレンポリオキシエチレンモノアクリルアミド、ポリオキシプロピレンポリオキシエチレンモノアクリルアミド、ポリオキシブチレンポリオキシプロピレンモノアクリルアミド、ポリオキシプロピレンポリオキシエチレンモノアクリルアミド、ポリオキシブチレンポリオキシエチレンモノメタクリルアミド、ポリオキシプロピレンポリオキシエチレンモノメタクリルアミド、ポリオキシブチレンポリオキシプロピレンモノメタクリルアミド、ポリオキシプロピレンポリオキシエチレンモノメタクリルアミド、ポリオキシブチレンポリオキシエチレンアルケニルエーテル、ポリオキシプロピレンポリオキシエチレンアルケニルエーテル、ポリオキシブチレンポリオキシプロピレンアルケニルエーテル、ポリオキシプロピレンポリオキシエチレンアルケニルエーテル、ポリオキシブチレンポリオキシエチレンモノアリルエーテル、ポリオキシプロピレンポリオキシエチレンモノアリルエーテル、ポリオキシブチレンポリオキシプロピレンモノアリルエーテル、ポリオキシプロピレンポリオキシエチレンモノアリルエーテル、ポリオキシブチレンポリオキシエチレンモノビニルエーテル、ポリオキシプロピレンポリオキシエチレンモノビニルエーテル、ポリオキシブチレンポリオキシプロピレンモノビニルエーテル、ポリオキシプロピレンポリオキシエチレンモノビニルエーテル、ポリオキシブチレンポリオキシエチレンモノアクリレート、ポリオキシプロピレンポリオキシエチレンモノアクリレート、ポリオキシブチレンポリオキシプロピレンモノアクリレート、ポリオキシプロピレンポリオキシエチレンモノアクリレート、ポリオキシブチレンポリオキシエチレンモノメタクリレート、ポリオキシプロピレンポリオキシエチレンモノメタクリレート、ポリオキシブチレンポリオキシプロピレンモノメタクリレート、ポリオキシプロピレンポリオキシエチレンモノメタクリレートなどが挙げられる。なかでも、下記の一般式(IV)に示すようなエーテルが反応性や性能の面から更に好適に用いられる。一般式(IV)に示すようなポリオキシアルキレンアルケニルエーテルの具体例としては、ポリオキシブチレンポリオキシエチレンアルケニルエーテルが挙げられる。
Figure JPOXMLDOC01-appb-C000008
(一般式(IV)中、R1、R2、R3、R5、R6、m、nは上記一般式(I)と同様である。)
 ビニルエステル系単量体としては、酢酸ビニルの他、蟻酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル及びバーサティック酸ビニル等が挙げられる。
 一般式(II)でR4が炭素数1~9のアルキル基である末端を誘導する方法は特に限定されないが、ビニルエステル系単量体をラジカル重合する際に対応するアルデヒド共存下で重合し、得られた重合体をアルコール類に溶解した上で水酸化ナトリウムやアンモニア等のアルカリ、あるいは塩酸やパラトルエンスルホン酸等の酸で処理してビニルエステル系重合体をけん化する方法が簡便で効率的である。アルデヒドの具体例としては、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンチルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、オクチルアルデヒド、ノニルアルデヒド、デカンアルデヒドが挙げられる。なかでも、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒドが残分を反応系内から除去しやすい面や性能面から特に好適に用いられる。
 また、本発明に係る変性PVAにおいて、一般式(II)に示すカルボニル単位はR4が炭素数1~9のアルキルと共に、R4が水素原子であるホルミル末端をもつことが好ましい。
 一般式(II)でR4が水素原子であるホルミル末端を誘導する方法は特に限定されないが、PVAを酸化剤によって主鎖を酸化開裂させる方法(特許文献:特開2000-86992号公報)やホルムアルデヒドを共存させて重合させる方法、酸素の共存下で重合させて得られるビニルエステル系重合体をけん化する方法等が挙げられる。中でも、ビニルエステル系単量体をラジカル重合する際に、酸素を含む気体を導入(典型的には吹き込み)しながらアルデヒド共存下で重合し、得られたビニルエステル系重合体をけん化する方法が生産性や原材料の取り扱いの観点から好ましい。本発明において、「酸素を含む気体を導入」するという概念は、反応系外から反応系内に追加的に酸素を送り込むことを指し、反応系内に空気等に起因する酸素が当初存在しても、その酸素は導入された酸素としては取り扱わない。
 ビニルエステル系単量体を、一般式(II)のカルボニル単位を有するアルデヒドの共存下で、一般式(I)に示すポリオキシアルキレン単位を有する不飽和単量体と共重合する際の温度は特に限定されないが、0℃以上200℃以下が好ましく、30℃以上150℃以下がより好ましい。共重合を行う温度が0℃より低い場合は、十分な重合速度が得られないため好ましくない。また、重合を行う温度が200℃より高い場合、目的とするPVAが得られにくい。共重合を行う際に採用される温度を0℃以上200℃以下に制御する方法としては、水等の適当な熱媒を用いた外部ジャケットにより制御する方法等が挙げられる。
 本共重合を行うのに採用される重合方式としては、回分重合、半回分重合、連続重合、半連続重合のいずれでもよい。重合方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等公知の方法の中から、任意の方法を採用することができる。その中でも、用いる変性種は重合粒子径に影響を与える水溶性や界面活性能を持つことが多いため重合粒子径を制御する必要のある懸濁重合及び乳化重合ではなく、アルコール系溶媒存在下又は溶媒を用いないで重合を行う溶液重合法や塊状重合法が好適に採用される。塊状重合法又は溶液重合法に用いられるアルコール系溶媒としては、メタノール、エタノール、イソプロパノール等を用いることができるが、これらに限定されるものではない。またこれらの溶媒は単独で使用してもよいし、2種類以上のものを併用することもできる。
 ビニルエステル系単量体をラジカル重合する際の重合開始剤は、特に限定するものではないが、アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、アゾビスジメチルバレロニトリル、アゾビスメトキシバレロニトリルなどのアゾ化合物、アセチルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルシクロヘキシルスルホニルパーオキサイド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテートなどの過酸化物、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネートなどのパーカーボネート化合物、t-ブチルパーオキシネオデカノエート、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエートなどのパーエステル化合物などを単独で又は二種以上組み合わせて使用することができる。
 また、共重合を高い温度で行った場合、ビニルエステル系単量体の分解に起因するPVAの着色等が見られることがある。その場合には着色防止の目的で重合系にクエン酸のような酸化防止剤を1ppm以上100ppm以下(ビニルエステル系単量体の質量に対して)程度添加することはなんら差し支えない。
 本発明に係る変性PVAを製造する際のけん化方法も特に限定されるものではなく、前述した方法で得られた重合体を、常法に従い、アルコール類を溶媒兼用で用いることが好ましい。アルコールとしてはメタノール、エタノール、ブタノール等が挙げられる。アルコール中の重合体の濃度は20~50質量%の範囲から選ぶことができる。アルカリ触媒としては水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート等のアルカリ金属の水酸化物やアルコラートの如きアルカリ触媒を用いることができ、酸触媒としては、塩酸、硫酸等の無機酸水溶液、p-トルエンスルホン酸等の有機酸を用いることができる。これら触媒の使用量はビニルエステル系単量体に対して1~100ミリモル当量にすることが必要である。かかる場合、けん化温度は特に制限はないが、通常10~70℃の範囲であり、好ましくは30~50℃の範囲から選ぶのが望ましい。反応は通常1~3時間にわたって行われる。
 本発明の懸濁重合用分散安定剤は、本発明の趣旨を損なわない範囲で、上記変性PVA以外のPVAや、その他の各種添加剤を含有してもよい。該添加剤としては、例えば、アルデヒド類、ハロゲン化炭化水素類、メルカプタン類などの重合調節剤;フェノール化合物、イオウ化合物、N-オキサイド化合物などの重合禁止剤;pH調整剤;架橋剤;防腐剤;防黴剤、ブロッキング防止剤;消泡剤等が挙げられる。本発明の効果を有意に発揮するという観点から、本発明の懸濁重合用分散安定剤は変性PVAを10質量%以上含有することが好ましく、30質量%以上含有することがより好ましく、70質量%以上含有することが更により好ましい。
 本発明の懸濁重合用分散安定剤は、特にビニル系化合物の懸濁重合に好適に用いることができる。ビニル系化合物としては、塩化ビニル等のハロゲン化ビニル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸、メタクリル酸、これらのエステル及び塩;マレイン酸、フマル酸、これらのエステル及び無水物;スチレン、アクリロニトリル、塩化ビニリデン、ビニルエーテル等が挙げられる。これらの中でも、本発明の懸濁重合用分散安定剤は、特に好適には塩化ビニルを単独で、又は塩化ビニルを塩化ビニルと共重合することが可能な単量体と共に懸濁重合する際に用いられる。塩化ビニルと共重合することができる単量体としては、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチルなどの(メタ)アクリル酸エステル;エチレン、プロピレンなどのα-オレフィン;無水マレイン酸、イタコン酸などの不飽和ジカルボン酸類;アクリロニトリル、スチレン、塩化ビニリデン、ビニルエーテル等が挙げられる。
 本発明の懸濁重合用分散安定剤は、可塑剤吸収性の優れた塩化ビニル樹脂粒子を製造する点では軟質用塩化ビニル樹脂の製造に適しているが、脱モノマー性、粒度分布等に優れている点から硬質用塩化ビニル樹脂の製造にも適用できる。
 本発明の懸濁重合用分散安定剤は、単独でもまた他の安定剤、例えばセルロース系誘導体、界面活性剤等と併用することができる。
 本発明の懸濁重合用分散安定剤を使用することにより、樹脂粒子が多孔性であり、粒径分布が均一でフィッシュアイが少ない等物性の非常に優れた塩化ビニル樹脂が常に得られる。以下、ビニル系化合物の重合法について例を挙げ具体的に説明するが、これらに限定されるものではない。
 塩化ビニル樹脂粒子等のビニル系化合物の樹脂粒子を製造する場合には、ビニル系化合物単量体に対し、上述の懸濁重合用分散安定剤を0.01質量%~0.3質量%、好ましくは0.04質量%~0.15質量%添加する。また、ビニル系化合物と水の比は質量比でビニル系化合物:水=1:0.9~1:3とすることができ、好ましくはビニル系化合物:水=1:1~1:1.5である。
 重合開始剤は、ビニル系化合物の重合に従来使用されているものでよく、これにはジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物、t-ブチルパーオキシネオデカノエート、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート等のパーエステル化合物、アセチルシクロヘキシルスルホニルパーオキサイド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等の過酸化物、アゾビス-2,4-ジメチルバレロニトリル、アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物、更には過硫酸カリウム、過硫酸アンモニウム、過酸化水素等を単独又は組み合わせて使用することができる。
 更に、ビニル系化合物の重合に適宜使用される重合調整剤、連鎖移動剤、ゲル化改良剤、帯電防止剤、PH調整剤等を添加することも任意である。
 ビニル系化合物の重合を実施するに当たっての各成分の仕込み割合、重合温度等はビニル系化合物の懸濁重合で従来採用されている条件に準じて定めればよく、特に限定する理由は存在しない。
 以下、本発明について実施例を挙げて更に詳しく説明する。
(実施例1)
 酢酸ビニル2800g、ノルマルブチルアルデヒド39.2g、変性種として一般式(IV)で示され、m=5~9、n=45~55であるポリオキシアルキレンアルケニルエーテル(花王社提供ラテムルPD-450、以下「単量体A」という。)263gを重合缶に仕込んだ。単量体Aについてm=5~9、n=45~55であることは製造元に確認し、また、NMRにより確認した。アゾビスイソブチロニトリル0.2gを重合缶に仕込み、酸素-窒素混合ガス(酸素濃度6vol%、酢酸ビニルに対する酸素総量0.08モル%)を重合液直上の気相中に吹き込みながら加熱して、65~70℃で8時間重合した後冷却して重合を停止した。次いで常法により未反応の酢酸ビニルを除去し、得られた重合体を常法により水酸化ナトリウムでけん化して分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定したところ、粘度平均重合度は720、けん化度は71モル%、アルキレン変性率は0.16モル%、カルボニル末端変性率は0.20モル%、ホルミル末端変性率は0.013モル%であった。
〈塩化ビニルの懸濁重合〉
 攪拌器を備えた容量30Lのステンレス製オートクレーブ中に攪拌下30℃の水12kg、上記で得た分散安定剤6.5g、重合開始剤としてt-ブチルパーオキシネオデカノエートを4.6g、α-クミルパーオキシネオデカノエートを1g仕込んだ。オートクレーブを真空で脱気した後、塩化ビニル単量体を5kg加え、57℃で4時間重合した。
〈塩化ビニル樹脂の評価〉
 得られた塩化ビニル樹脂の平均粒径、粒度分布、可塑剤吸収量、及びかさ比重について以下の方法で評価した。
 平均粒径の測定はJIS Z8815:1994に準拠して、60メッシュ(目開き250μm)、80メッシュ(目開き180μm)、100メッシュ(目開き150μm)、150メッシュ(目開き106μm)、200メッシュ(目開き75μm)の篩を用いて、累積頻度50%(質量基準)の粒子径(D50)を平均粒径、累積頻度80%(質量基準)の粒子径(D80)と累積頻度20%(質量基準)の粒子径(D20)の差を粒度分布とした。
 かさ比重は、JIS K6720-2:1999に準拠して測定した。
 可塑剤吸収量は以下の手順で測定した。内径25mm、深さ85mmのアルミニウム合金製容器の底にグラスファイバーを詰め、塩化ビニル樹脂10gを投入した。これに可塑剤(ジオクチルフタレート、以下DOPとする)15mLを加え、30分放置してDOPを塩化ビニル樹脂に充分浸透させた。その後1500Gの加速度下に過剰のDOPを遠心分離し、塩化ビニル樹脂10gに吸収されたDOPの質量を測定して、塩化ビニル樹脂100質量部当たりのDOP質量部(phr)に換算した。
(実施例2)
 酢酸ビニル2500g、ノルマルブチルアルデヒド35g、変性種として単量体A235gを重合缶に仕込んだ。30分間系内を窒素置換した後、アゾビスイソブチロニトリル0.2gを重合缶に仕込み、65~70℃で8時間重合した後冷却して重合を停止した。次いで常法により未反応の酢酸ビニルを除去し、得られた重合体を常法により水酸化ナトリウムでけん化して分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定したところ、粘度平均重合度は750、けん化度は72モル%、アルキレン変性率は0.15モル%、カルボニル末端変性率は0.20モル%、ホルミル末端変性率は0モル%であった。得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
(実施例3)
 酢酸ビニル1700g、アセトアルデヒド17g、メタノール500g、変性種として単量体A107gを重合缶に仕込んだ。アゾビスイソブチロニトリル0.2gを重合缶に仕込み、酸素-窒素混合ガス(酸素濃度6vol%、酢酸ビニルに対する酸素総量0.08モル%)を重合液直上の気相中に吹き込みながら加熱して、65~70℃で9時間重合した後冷却して重合を停止した。次いで常法により未反応の酢酸ビニルを除去し、得られた重合体を常法により水酸化ナトリウムでけん化して分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定したところ、粘度平均重合度は680、けん化度は71モル%、アルキレン変性率は0.13モル%、カルボニル末端変性率は0.10モル%、ホルミル末端変性率は0.012モル%であった。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
(実施例4)
 酢酸ビニル1700g、アセトアルデヒド17g、メタノール500g、変性種として単量体A107gを重合缶に仕込んだ。30分間系内を窒素置換した後、アゾビスイソブチロニトリル0.2gを重合缶に仕込み、65~70℃で9時間重合した後冷却して重合を停止した。次いで常法により未反応の酢酸ビニルを除去し、得られた重合体を常法により水酸化ナトリウムでけん化して分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定したところ、粘度平均重合度は700、けん化度は72モル%、アルキレン変性率は0.13モル%、カルボニル末端変性率は0.09モル%、ホルミル末端変性率は0モル%であった。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
(実施例5)
 実施例4で得た変性酢酸ビニル重合体に対し、水酸化ナトリウム量を調整してけん化を行なって分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定したところ、粘度平均重合度は700、けん化度は79モル%、アルキレン変性率は0.13モル%、カルボニル末端変性率は0.09モル%、ホルミル末端変性率は0モル%であった。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
(実施例6)
 酢酸ビニル1700g、アセトアルデヒド17g、メタノール350g、変性種として単量体A107gを重合缶に仕込んだ。30分間系内を窒素置換した後、アゾビスイソブチロニトリル0.2gを重合缶に仕込み、65~70℃で9時間重合した後冷却して重合を停止した。次いで常法により未反応の酢酸ビニルを除去し、得られた重合体を常法により水酸化ナトリウムでけん化して分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定したところ、粘度平均重合度は850、けん化度は71モル%、アルキレン変性率は0.14モル%、カルボニル末端変性率は0.07モル%、ホルミル末端変性率は0モル%であった。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
(実施例7)
 酢酸ビニル1700g、アセトアルデヒド34g、メタノール350g、変性種として単量体A214gを重合缶に仕込んだ。30分間系内を窒素置換した後、アゾビスイソブチロニトリル0.2gを重合缶に仕込み、65~70℃で9時間重合した後冷却して重合を停止した。次いで常法により未反応の酢酸ビニルを除去し、得られた重合体を常法により水酸化ナトリウムでけん化して分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定したところ、粘度平均重合度は440、けん化度は70モル%、アルキレン変性率は0.26モル%、カルボニル末端変性率は0.14モル%、ホルミル末端変性率は0モル%であった。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
(実施例8)
 酢酸ビニル2400g、アセトアルデヒド24g、メタノール267g、変性種として、m=5~9、n=15~25であるポリオキシアルキレンアルケニルエーテル(花王社提供ラテムルPD-420、以下「単量体A’」という。)180gを重合缶に仕込んだ。単量体A’についてm=5~9、n=15~25であることは製造元に確認し、また、NMRにより確認した。30分間系内を窒素置換した後、アゾビスイソブチロニトリル0.2gを重合缶に仕込み、65~70℃で8時間重合した後冷却して重合を停止した。次いで常法により未反応の酢酸ビニルを除去し、得られた重合体を常法により水酸化ナトリウムでけん化して分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定したところ、粘度平均重合度は840、けん化度は73モル%、アルキレン変性率は0.24モル%、カルボニル末端変性率は0.08モル%、ホルミル末端変性率は0モル%であった。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
(実施例9)
 酢酸ビニル2200g、アセトアルデヒド22g、メタノール793g、変性種として、m=15~25、n=15~25であるポリエチレングリコールポリプロピレングリコールアリルエーテル(日油社提供ユニループPKA-5013、以下「単量体A’’」という。)102gを重合缶に仕込んだ。単量体A’’についてm=15~25、n=15~25であることは製造元に確認し、また、NMRにより確認した。30分間系内を窒素置換した後、アゾビスイソブチロニトリル0.2gを重合缶に仕込み、65~70℃で8時間重合した後冷却して重合を停止した。次いで常法により未反応の酢酸ビニルを除去し、得られた重合体を常法により水酸化ナトリウムでけん化して分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定したところ、粘度平均重合度は650、けん化度は72モル%、アルキレン変性率は0.11モル%、カルボニル末端変性率は0.08モル%、ホルミル末端変性率は0モル%であった。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
(比較例1)
 酢酸ビニル1700g、メタノール1133g、変性種として実施例1と同様の単量体A159.9gを重合缶に仕込み、30分間系内を窒素置換した。アゾビスイソブチロニトリル0.3gを重合缶に仕込み、60℃で9時間重合した後冷却して重合を停止した。その後、実施例1に準じて分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定した。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
(比較例2)
 酢酸ビニル1650g、水1980g、分散剤のポリビニルアルコール1.4g、変性種のノルマルブチルアルデヒド21.5g、及び0.4gのアゾビスイソブチロニトリルを重合缶に仕込み、酸素-窒素混合ガス(酸素濃度6vol%、酢酸ビニルに対する酸素総量0.08モル%)を重合液直上の気相中に吹き込みながら加熱して60℃で重合せしめ、重合率90%に達した時点で重合を停止した。次いで常法により未重合の酢酸ビニルを除去し、得られた重合体をメタノールに溶解し、常法により水酸化ナトリウムでけん化して分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定した。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
 上記の重合率はポリマー濃度測定法で測定される値を指す。つまり、重合中に重合液をサンプリングしてその重量を測り、モノマー及び溶媒を留去して得られるポリマーの重量を元に重合液のポリマー濃度を算出して、モノマーに対するポリマー量を求めて重合率を算出する。
(比較例3)
 酢酸ビニル3000g、変性種のノルマルブチルアルデヒド42gを重合缶に仕込み、30分間系内を窒素置換した。アゾビスイソブチロニトリル0.3gを重合缶に仕込み、65~75℃で6時間重合した後冷却して重合を停止した。その後、実施例1に準じて分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定した。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。
(比較例4)
 酢酸ビニル1600g、メタノール605g、変性種としてポリオキシプロピレンアクリレート(日油株式会社提供ブレンマー PP800、以下「単量体B」という。)0.7gを重合缶に仕込み、30分間系内を窒素置換した。また、単量体Bをメタノールに溶解して濃度10質量%としたコモノマー溶液を調製し、窒素ガスのバブリングにより窒素置換した。アゾビスイソブチロニトリル2.5gを重合缶に仕込み、コモノマー溶液を滴下して60℃で9時間重合した後冷却して重合を停止した。重合を停止するまで加えた、メタノールの総量は1066g、単量体Bの総量は44.6gであった。その後は、実施例1と同様にして分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定した。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。なお、得られた分散安定剤のプロトンNMRを測定したが、ポリ酢酸ビニルで観測された変性種由来のピークはポリビニルアルコールでは観測されなかった。
(比較例5)
 酢酸ビニル1600g、アセトアルデヒド16g、変性種として単量体B0.7gを重合缶に仕込み、30分間系内を窒素置換した。また、単量体Bをメタノールに溶解して濃度10質量%としたコモノマー溶液を調製し、窒素ガスのバブリングにより窒素置換した。アゾビスイソブチロニトリル2.5gを重合缶に仕込み、コモノマー溶液を滴下して60℃で9時間重合した後冷却して重合を停止した。重合を停止するまで加えた、メタノールの総量は1066g、単量体Bの総量は44.6gであった。その後は、実施例1と同様にして分散安定剤を作製した。得られた分散安定剤の粘度平均重合度、けん化度及び変性率を先述した分析法によって測定した。また、得られた分散安定剤を使用した以外は実施例1と同様の条件で塩化ビニルの懸濁重合を実施し、評価を行なった。なお、得られた分散安定剤のプロトンNMRを測定したが、ポリ酢酸ビニルで観測された変性種由来のピークはポリビニルアルコールでは観測されなかった。
 結果を表1に示す。比較例1ではカルボニル末端誘導変性種を使用しなかったため、塩化ビニル樹脂粒子が粗大化し、粒子径の均一性が悪かった。カルボニル末端誘導変性種及びホルミル末端誘導変性種(重合中に導入した酸素)を使用した比較例2及びカルボニル末端誘導変性種のみを使用した比較例3の分散安定剤を使用しても、これらの特性すべてを改善することはできなかった。実施例で使用したポリオキシアルキレン単量体変性種に類似する変性種を使用した比較例4や5でも、これらの特性すべてを改善することはできなかった。共重合した変性種がけん化で切断されたためと考えられる。これに対して、実施例1~9に係る分散安定剤を使用すると塩化ビニル樹脂中に粗大粒子の形成が少なく、粒子径の均一性が高い粒子が得られたことが分かる。また、可塑剤吸収性に優れており、さらに、重合時のブロック化やスケール付着が低減し、脱モノマー性に優れた重合体粒子が得られた。よって、実施例1~9に係る分散安定剤は工業的に極めて有利なものである。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011

Claims (9)

  1.  側鎖に一般式(I)に示すポリオキシアルキレン単位を有し、且つ、主鎖末端に一般式(II)に示すカルボニル単位を有する変性ビニルアルコール系重合体であって、
    変性ビニルアルコール系重合体の主鎖を構成する単量体単位の全モル数に対し、一般式(I)に示すポリオキシアルキレン単位を側鎖に有する前記単量体単位のモル数の割合が0.01モル%~5モル%であり、かつ、一般式(II)に示すカルボニル単位のモル数の割合が0.01モル%~0.5モル%である変性ビニルアルコール系重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2はそれぞれ独立にメチル基又はエチル基又は水素原子であり、R3はメチル基又は水素原子である。nは繰り返し単位数を表し、1≦n≦70の整数である。また、R4は水素原子又は炭素数1~9のアルキル基を表す。R5及びR6は一方がメチル基又はエチル基であり、他方が水素原子である。mは繰り返し単位数を表し、1≦m≦30の整数である。)
  2.  一般式(I)に示す前記ポリオキシアルキレン単位と主鎖のポリビニルアルコール鎖との間に、エーテル結合及び/又は炭素-炭素結合が介在する請求項1に記載の変性ビニルアルコール系重合体。
  3.  一般式(III)で表される単量体単位を有する請求項1又は2に記載の変性ビニルアルコール系重合体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1、R2、R3、R5、R6、n及びmは一般式(I)で定義した通りである。)
  4.  前記カルボニル単位がホルミル基を含む請求項1~3の何れか一項に記載の変性ビニルアルコール系重合体。
  5.  粘度平均重合度が300~5000であり、けん化度が65モル%~90モル%である請求項1~4の何れか一項に記載の変性ビニルアルコール系重合体。
  6.  請求項1~5の何れか一項に記載の変性ビニルアルコール系重合体を含有する懸濁重合用分散安定剤。
  7.  請求項6に記載された懸濁重合用分散安定剤を用いて、ビニル系化合物単量体、又はビニル系化合物単量体とそれに共重合し得る単量体との混合物を水中に分散させて懸濁重合を行うことを含むビニル系樹脂の製造方法。
  8.  ビニルエステル系単量体を、一般式(II)のカルボニル単位を有するアルデヒドの共存下で、一般式(I)に示すポリオキシアルキレン単位を有する不飽和単量体と共重合して変性ビニルエステル系重合体を得る工程を含む請求項1~5の何れか一項に記載の変性ビニルアルコール系重合体の製造方法。
  9.  変性ビニルエステル系重合体を得る工程を、酸素を含む気体を導入しながら実施する請求項8に記載の変性ビニルアルコール系重合体の製造方法。
PCT/JP2019/003739 2018-02-08 2019-02-01 変性ビニルアルコール系重合体及び懸濁重合用分散安定剤 WO2019156006A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/759,300 US11345768B2 (en) 2018-02-08 2019-02-01 Modified vinyl alcohol-based polymer and dispersion stabilizer for suspension polymerization
EP19750271.9A EP3686224B1 (en) 2018-02-08 2019-02-01 Modified vinyl alcohol polymer and dispersion stabilizer for suspension polymerization
ES19750271T ES2948789T3 (es) 2018-02-08 2019-02-01 Polímero de alcohol vinílico modificado y estabilizador de dispersión para polimerización en suspensión
SG11202003752UA SG11202003752UA (en) 2018-02-08 2019-02-01 Modified vinyl alcohol-based polymer and dispersion stabilizer for suspension polymerization
CN201980005441.1A CN111295401B (zh) 2018-02-08 2019-02-01 改性乙烯醇系聚合物以及悬浮聚合用分散稳定剂
JP2019570726A JP6830554B2 (ja) 2018-02-08 2019-02-01 変性ビニルアルコール系重合体及び懸濁重合用分散安定剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-021366 2018-02-08
JP2018021366 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019156006A1 true WO2019156006A1 (ja) 2019-08-15

Family

ID=67548540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003739 WO2019156006A1 (ja) 2018-02-08 2019-02-01 変性ビニルアルコール系重合体及び懸濁重合用分散安定剤

Country Status (8)

Country Link
US (1) US11345768B2 (ja)
EP (1) EP3686224B1 (ja)
JP (1) JP6830554B2 (ja)
CN (1) CN111295401B (ja)
ES (1) ES2948789T3 (ja)
SG (1) SG11202003752UA (ja)
TW (1) TWI785204B (ja)
WO (1) WO2019156006A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125020A1 (ja) * 2019-12-17 2021-06-24 デンカ株式会社 ポリビニルアルコール系樹脂組成物、懸濁重合用分散安定剤及びビニル系樹脂の製造方法
WO2021206128A1 (ja) * 2020-04-07 2021-10-14 デンカ株式会社 変性ビニルアルコール系重合体、懸濁重合用分散安定剤及びビニル系化合物の重合方法
JPWO2022097572A1 (ja) * 2020-11-04 2022-05-12
EP4091704A4 (en) * 2020-01-16 2023-06-07 Mitsubishi Chemical Corporation POLYVINYL ALCOHOL RESIN, POLYVINYL ALCOHOL RESIN MANUFACTURE PROCESS, DISPERSANT AND SUSPENSION POLYMERIZATION DISPERSANT

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445686A (en) * 1977-08-11 1979-04-11 Nippon Synthetic Chem Ind Co Ltd:The Dispersion stabilizer for suspension polymerization of vinly compound
JPS59155408A (ja) 1983-02-22 1984-09-04 Nippon Synthetic Chem Ind Co Ltd:The 変性ポリビニルアルコ−ルの製造方法
JPH05105702A (ja) * 1991-08-06 1993-04-27 Nippon Synthetic Chem Ind Co Ltd:The 塩化ビニルの懸濁重合用分散安定剤、その製造法及び塩化ビニルの懸濁重合法
JPH111505A (ja) * 1997-06-11 1999-01-06 Nippon Synthetic Chem Ind Co Ltd:The 分散安定剤
JPH11217413A (ja) * 1998-02-04 1999-08-10 Nippon Synthetic Chem Ind Co Ltd:The ビニル系化合物の懸濁重合用分散助剤
JP2000086992A (ja) 1998-09-09 2000-03-28 Unitika Chem Co Ltd セラミックス用バインダー
WO2010113568A1 (ja) 2009-04-01 2010-10-07 株式会社クラレ 懸濁重合用分散安定剤
WO2010113569A1 (ja) * 2009-04-01 2010-10-07 株式会社クラレ 懸濁重合用分散安定剤
WO2013115239A1 (ja) 2012-01-30 2013-08-08 株式会社クラレ 懸濁重合用分散安定剤
JP2014136796A (ja) * 2013-01-18 2014-07-28 Kuraray Co Ltd ポリオキシアルキレン変性ビニルアセタール系重合体、その製造方法及び組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561243B2 (ja) 1974-07-05 1981-01-12
JP3995584B2 (ja) * 2002-12-11 2007-10-24 株式会社クラレ ビニル系化合物の懸濁重合用分散安定剤の製造法
ES2297104T3 (es) * 2002-12-11 2008-05-01 Kuraray Co., Ltd. Estabilizante de dispersion para polimerizacion en suspension de compuestos vinilicos y metodo para la preparacion del mismo.
WO2014014009A1 (ja) * 2012-07-19 2014-01-23 株式会社クラレ 懸濁重合用分散安定剤及びビニル系樹脂の製造方法
TWI669318B (zh) 2014-11-12 2019-08-21 日商可樂麗股份有限公司 懸浮聚合用分散安定劑及乙烯系樹脂之製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445686A (en) * 1977-08-11 1979-04-11 Nippon Synthetic Chem Ind Co Ltd:The Dispersion stabilizer for suspension polymerization of vinly compound
JPS59155408A (ja) 1983-02-22 1984-09-04 Nippon Synthetic Chem Ind Co Ltd:The 変性ポリビニルアルコ−ルの製造方法
JPH05105702A (ja) * 1991-08-06 1993-04-27 Nippon Synthetic Chem Ind Co Ltd:The 塩化ビニルの懸濁重合用分散安定剤、その製造法及び塩化ビニルの懸濁重合法
JPH111505A (ja) * 1997-06-11 1999-01-06 Nippon Synthetic Chem Ind Co Ltd:The 分散安定剤
JPH11217413A (ja) * 1998-02-04 1999-08-10 Nippon Synthetic Chem Ind Co Ltd:The ビニル系化合物の懸濁重合用分散助剤
JP2000086992A (ja) 1998-09-09 2000-03-28 Unitika Chem Co Ltd セラミックス用バインダー
WO2010113568A1 (ja) 2009-04-01 2010-10-07 株式会社クラレ 懸濁重合用分散安定剤
WO2010113569A1 (ja) * 2009-04-01 2010-10-07 株式会社クラレ 懸濁重合用分散安定剤
WO2013115239A1 (ja) 2012-01-30 2013-08-08 株式会社クラレ 懸濁重合用分散安定剤
JP2014136796A (ja) * 2013-01-18 2014-07-28 Kuraray Co Ltd ポリオキシアルキレン変性ビニルアセタール系重合体、その製造方法及び組成物

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125020A1 (ja) * 2019-12-17 2021-06-24 デンカ株式会社 ポリビニルアルコール系樹脂組成物、懸濁重合用分散安定剤及びビニル系樹脂の製造方法
CN114555696A (zh) * 2019-12-17 2022-05-27 电化株式会社 聚乙烯醇系树脂组合物、悬浮聚合用分散稳定剂以及乙烯基系树脂的制造方法
EP4079769A4 (en) * 2019-12-17 2023-10-11 Denka Company Limited POLYVINYL ALCOHOL-BASED RESIN COMPOSITION, DISPERSION STABILIZER USED FOR SUSPENSION POLYMERIZATION, AND METHOD FOR PRODUCING VINYL-BASED RESIN
CN114555696B (zh) * 2019-12-17 2024-03-05 电化株式会社 聚乙烯醇系树脂组合物、悬浮聚合用分散稳定剂以及乙烯基系树脂的制造方法
JP7483754B2 (ja) 2019-12-17 2024-05-15 デンカ株式会社 ポリビニルアルコール系樹脂組成物、懸濁重合用分散安定剤及びビニル系樹脂の製造方法
EP4091704A4 (en) * 2020-01-16 2023-06-07 Mitsubishi Chemical Corporation POLYVINYL ALCOHOL RESIN, POLYVINYL ALCOHOL RESIN MANUFACTURE PROCESS, DISPERSANT AND SUSPENSION POLYMERIZATION DISPERSANT
WO2021206128A1 (ja) * 2020-04-07 2021-10-14 デンカ株式会社 変性ビニルアルコール系重合体、懸濁重合用分散安定剤及びビニル系化合物の重合方法
CN115298228A (zh) * 2020-04-07 2022-11-04 电化株式会社 改性乙烯醇系聚合物、悬浮聚合用分散稳定剂以及乙烯基系化合物的聚合方法
JPWO2022097572A1 (ja) * 2020-11-04 2022-05-12
WO2022097572A1 (ja) * 2020-11-04 2022-05-12 株式会社クラレ 懸濁重合用分散剤及びビニル系重合体の製造方法
JP7321394B2 (ja) 2020-11-04 2023-08-04 株式会社クラレ 懸濁重合用分散剤及びビニル系重合体の製造方法

Also Published As

Publication number Publication date
US20210179757A1 (en) 2021-06-17
TWI785204B (zh) 2022-12-01
ES2948789T3 (es) 2023-09-19
EP3686224A1 (en) 2020-07-29
JP6830554B2 (ja) 2021-02-17
CN111295401B (zh) 2023-04-04
JPWO2019156006A1 (ja) 2020-08-27
EP3686224B1 (en) 2023-05-17
SG11202003752UA (en) 2020-05-28
US11345768B2 (en) 2022-05-31
EP3686224A4 (en) 2020-11-11
TW201940530A (zh) 2019-10-16
CN111295401A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
JP6830554B2 (ja) 変性ビニルアルコール系重合体及び懸濁重合用分散安定剤
TWI752115B (zh) 改質乙烯醇系聚合物及其製造方法
EP3505546B1 (en) Modified vinyl alcohol polymer, and diffusion stabilizer for suspension polymerization
WO2021206128A1 (ja) 変性ビニルアルコール系重合体、懸濁重合用分散安定剤及びビニル系化合物の重合方法
WO2010113568A1 (ja) 懸濁重合用分散安定剤
JP7483754B2 (ja) ポリビニルアルコール系樹脂組成物、懸濁重合用分散安定剤及びビニル系樹脂の製造方法
JP7488818B2 (ja) 変性ビニルアルコール系重合体及び懸濁重合用分散安定剤
JP6491403B1 (ja) 変性ビニルアルコール系重合体の製造方法
WO2023162603A1 (ja) 変性ビニルアルコール系重合体及びその製造方法、懸濁重合用分散安定剤、並びにビニル系樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570726

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019750271

Country of ref document: EP

Effective date: 20200424

NENP Non-entry into the national phase

Ref country code: DE