WO2019155972A1 - 高分子化合物の製造方法 - Google Patents

高分子化合物の製造方法 Download PDF

Info

Publication number
WO2019155972A1
WO2019155972A1 PCT/JP2019/003280 JP2019003280W WO2019155972A1 WO 2019155972 A1 WO2019155972 A1 WO 2019155972A1 JP 2019003280 W JP2019003280 W JP 2019003280W WO 2019155972 A1 WO2019155972 A1 WO 2019155972A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
group
organic solvent
polymer compound
mpa
Prior art date
Application number
PCT/JP2019/003280
Other languages
English (en)
French (fr)
Inventor
宏樹 寺井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201980011523.7A priority Critical patent/CN111683993B/zh
Priority to KR1020207025308A priority patent/KR20200119832A/ko
Priority to EP19751536.4A priority patent/EP3750944A4/en
Publication of WO2019155972A1 publication Critical patent/WO2019155972A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines

Definitions

  • the present invention relates to a method for producing a polymer compound.
  • a material of a light emitting element such as an organic electroluminescence (hereinafter also referred to as “organic EL”) element
  • a polymer compound is used as a material of a light emitting element.
  • the polymer compound preferably has a low polydispersity (Mw / Mn).
  • the polymer compound can be synthesized, for example, by subjecting an aromatic diboronic acid and an aromatic dihalide to a Suzuki coupling reaction in the presence of a transition metal complex.
  • Non-Patent Document 1 reports a method of synthesizing a polymer compound by subjecting a diboronic acid of fluorene and a dibromo form of triarylamine to a Suzuki coupling reaction.
  • this method it has been difficult to obtain a polymer compound having a sufficiently low polydispersity.
  • a method for reducing the polydispersity of the polymer compound for example, there are a method using an adsorbent such as a chromatograph and a method of extracting from a solid such as Soxhlet, but these are not always satisfactory.
  • An object of the present invention is to provide a method for producing a polymer compound having a sufficiently low polydispersity.
  • a method for producing a polymer compound comprising the step of bringing a solution containing the polymer compound into contact with a mixed solvent composed of two or more organic solvents to precipitate the polymer compound,
  • the two or more organic solvents comprise a first organic solvent and a second organic solvent different from each other,
  • the first organic solvent is one or more selected from the solvent A
  • the second organic solvent is one or more selected from the solvent A and the solvent B.
  • the method further includes a solvent treatment step of adding a third organic solvent after the precipitation step, wherein the third organic solvent is one or more selected from the solvent C [1] to [7]
  • the manufacturing method as described in any one of: [Solvent C] A solvent in which the Hansen solubility parameter polar term P3 (MPa 0.5 ) is 10 ⁇ P3 and / or the Hansen solubility parameter hydrogen bond term H3 (MPa 0.5 ) is 10 ⁇ H3.
  • the polymer compound is a polymer compound comprising a structural unit represented by the formula (1):
  • Ar 1 and Ar 2 each independently represent a divalent aromatic hydrocarbon group, a divalent heterocyclic group, or a group in which a divalent aromatic hydrocarbon group and a divalent heterocyclic group are bonded; These groups may have a substituent.
  • Ar 3 represents a monovalent aromatic hydrocarbon group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a represents an integer of 0 to 2.
  • a method for adjusting the polydispersity of a polymer compound comprising a precipitation step in which a polymer compound is precipitated by bringing a solution containing the polymer compound into contact with a mixed solvent composed of two or more organic solvents,
  • the two or more organic solvents include a first organic solvent and a second organic solvent different from each other,
  • the first organic solvent is one or more selected from the solvent A
  • the second organic solvent is one or more selected from the solvent A and the solvent B.
  • a polymer compound having a sufficiently low polydispersity can be produced.
  • the polydispersity of the polymer compound can also be adjusted.
  • the polymer compound produced by the method of the present invention is suitably used as a material for an organic EL device.
  • the “hydrogen atom” may be a light hydrogen atom or a deuterium atom.
  • Alkyl group means a linear, branched or cyclic alkyl group.
  • the number of carbon atoms in the linear alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20.
  • the number of carbon atoms in the branched and cyclic alkyl group is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20.
  • alkyl group examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isoamyl, 2-ethylbutyl, n- Hexyl group, cyclohexyl group, n-heptyl group, cyclohexylmethyl group, cyclohexylethyl group, n-octyl group, 2-ethylhexyl group, 3-n-propylheptyl group, n-decyl group, 3,7-dimethyloctyl group, Examples include 2-ethyloctyl group, 2-n-hexyl-decyl group, n-dodecyl group and the like.
  • the “alkyl group” may have a substituent, and examples of the substituent include a fluorine atom, a cyano group, an aryl group, a monovalent heterocyclic group, an alkoxy group, an aryloxy group, a substituted amino group, Examples thereof include a carboxyl group, an esterified carboxyl group, an alkenyl group, an alkynyl group, and a metal complex-containing group.
  • the “alkyl group” may have 1 to 20 substituents selected from these substituents.
  • Examples of the substituted alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, a perfluorooctyl group, a 3-phenylpropyl group, and a 3- (4-methylphenyl) propyl group. , 3- (3,5-di-n-hexylphenyl) propyl group, 6-ethyloxyhexyl group and the like.
  • Aryl group means a monovalent group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, and more preferably 6 to 10.
  • Examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a 1-pyrenyl group, a 2-pyrenyl group, and a 4-pyrenyl group. 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group and the like.
  • the “aryl group” may have a substituent.
  • the substituent include a fluorine atom, a cyano group, an alkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, an aryloxy group, and a substituent.
  • substituents include an amino group, a carboxyl group, an esterified carboxyl group, an alkenyl group, an alkynyl group, and a metal complex-containing group.
  • the “aryl group” may have 1 to 10 substituents selected from these substituents.
  • the substituted aryl group include a pentafluorophenyl group, a 4-hexylphenyl group, and a 4-phenylphenyl group.
  • Alkoxy group means a linear, branched or cyclic alkoxy group.
  • the straight-chain alkoxy group usually has 1 to 40 carbon atoms, preferably 4 to 10 carbon atoms.
  • the number of carbon atoms in the branched and cyclic alkoxy group is usually 3 to 40, preferably 4 to 10.
  • alkoxy group examples include methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, isobutyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, Examples include cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-nonyloxy group, n-decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group and the like.
  • the “alkoxy group” may have a substituent.
  • the substituent include a fluorine atom, a cyano group, an aryl group, a monovalent heterocyclic group, an alkoxy group, an aryloxy group, a substituted amino group, Examples thereof include a carboxyl group, an esterified carboxyl group, an alkenyl group, an alkynyl group, and a metal complex-containing group.
  • the “alkoxy group” may have 1 to 10 substituents selected from these substituents.
  • Aryloxy group means a monovalent group in which one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon is replaced with an oxygen atom.
  • the number of carbon atoms of the aryloxy group is usually 6 to 60, preferably 7 to 48.
  • Examples of the aryloxy group include phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1-pyrenyloxy group and the like.
  • the “aryloxy group” may have a substituent.
  • substituents include a fluorine atom, a cyano group, an alkyl group, a monovalent heterocyclic group, an alkoxy group, an aryloxy group, and a substituted amino group.
  • the “aryloxy group” may have 1 to 10 substituents selected from these substituents.
  • the substituted aryloxy group include a pentafluorophenoxy group, a 4-hexylphenoxy group, and a 4-phenylphenoxy group.
  • “Substituted amino group” means an amino group having two substituents.
  • the substituent include an alkyl group, an aryl group (the aryl group may have an alkyl group), a monovalent heterocyclic group, and the like.
  • the substituted amino group include a dialkylamino group, a diarylamino group, and a di (mono or dialkylaryl) amino group. Specific examples include a dimethylamino group, a diethylamino group, a diphenylamino group, and a bis ( 4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, bis (3,5-di-tert-butylphenyl) amino group and the like.
  • esterified carboxyl group means a group represented by the formula: —COOR ′ (R ′ represents an alkyl group, an aryl group, a monovalent heterocyclic group, etc.).
  • R ′ represents an alkyl group, an aryl group, a monovalent heterocyclic group, etc.
  • esterified carboxyl group include an alkyloxycarbonyl group and an aryloxycarbonyl group. Specifically, for example, a group represented by —CO 2 CH 3 , —CO 2 C 2 H 5 And a group represented by —CO 2 C 6 H 5 and the like.
  • the “alkenyl group” may be linear, branched or cyclic.
  • the number of carbon atoms of the straight-chain alkenyl group is usually 2-30, preferably 2-20.
  • the number of carbon atoms in the branched and cyclic alkenyl group is usually 3 to 30, preferably 4 to 20.
  • Examples of the alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 2-buten-1-yl group, 3-buten-1-yl group, 1-cyclohexenyl group, 1-norbornyl group, And 2-norbornyl group.
  • the “alkenyl group” may have a substituent.
  • the substituent include a fluorine atom, a cyano group, an aryl group, a monovalent heterocyclic group, an alkoxy group, an aryloxy group, a substituted amino group, Examples thereof include a carboxyl group, an esterified carboxyl group, and a metal complex-containing group.
  • the “alkenyl group” may have 1 to 20 substituents selected from these substituents.
  • Examples of the substituted alkenyl group include a 2-phenylethenyl group, a 4-octyl-2-phenylethenyl group, and the like.
  • alkynyl group may be linear, branched or cyclic.
  • the straight-chain alkynyl group usually has 2 to 30 carbon atoms, preferably 2 to 20 carbon atoms.
  • the number of carbon atoms in the branched and cyclic alkynyl group is usually 4 to 30, preferably 4 to 20.
  • Examples of the alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butyn-1-yl group, and 3-butyn-1-yl group.
  • the “alkynyl group” may have a substituent.
  • the substituent include a fluorine atom, a cyano group, an aryl group, a monovalent heterocyclic group, an alkoxy group, an aryloxy group, a substituted amino group, Examples thereof include a carboxyl group, an esterified carboxyl group, and a metal complex-containing group.
  • the “alkynyl group” may have 1 to 20 substituents selected from these substituents.
  • Examples of the substituted alkynyl group include a 2-phenylethynyl group, a 4-octyl-2-phenylethynyl group, and the like.
  • a monovalent aromatic hydrocarbon group means a monovalent group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aromatic hydrocarbon is usually 6 to 60, preferably 6 to 20, and more preferably 6 to 10.
  • Examples of the monovalent aromatic hydrocarbon group include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 1-pyrenyl, and 2-pyrenyl. Group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group and the like.
  • the “monovalent aromatic hydrocarbon group” may have a substituent.
  • the substituent include a halogen atom (particularly a fluorine atom), a cyano group, an alkyl group, and an aryl group (the aryl group is , Optionally having 1 to 3 substituents selected from the group consisting of alkyl groups and alkoxy groups), monovalent heterocyclic groups, alkoxy groups, aryloxy groups, substituted amino groups, alkylene groups (dimethylene) Group, trimethylene group, etc.).
  • the “monovalent aromatic hydrocarbon group” may have 1 to 10 substituents selected from these substituents.
  • the substituted monovalent aromatic hydrocarbon group include a 2-phenylphenyl group, a 3-phenylphenyl group, a 4-phenylphenyl group, and a benzocyclobutenyl group.
  • “Divalent aromatic hydrocarbon group” means a divalent group obtained by removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon, and a group consisting of the divalent group. It means a divalent group in which a plurality (for example, 2 to 5) selected are bonded. The number of carbon atoms of the divalent aromatic hydrocarbon group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18.
  • divalent aromatic hydrocarbon group examples include phenylene group, naphthalenediyl group, anthracenediyl group, phenanthrene diyl group, dihydrophenanthenediyl group, naphthacene diyl group, fluorenediyl group, pyrenediyl group, perylene diyl group, chrysenediyl group.
  • the “divalent aromatic hydrocarbon group” may have a substituent.
  • the substituent include a fluorine atom, a cyano group, an alkyl group, and an aryl group (the aryl group is an alkyl group, an alkoxy group, 1 to 5 substituents selected from the group consisting of a group, a phenyl group and an alkylphenyl group), a monovalent heterocyclic group, an alkoxy group, an aryloxy group, a substituted amino group, a carboxyl group , Esterified carboxyl group, alkenyl group, alkynyl group, metal complex-containing group and the like.
  • the “divalent aromatic hydrocarbon group” may have 1 to 10 substituents selected from these substituents. Examples of the divalent aromatic hydrocarbon group which may have the substituent include groups represented by formulas (A-1) to (A-20).
  • R represents a hydrogen atom, a fluorine atom, a cyano group, an alkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, an aryloxy group, a substituted amino group, a carboxyl group, an esterified carboxyl group, An alkenyl group, an alkynyl group, or a metal complex-containing group is represented.
  • R When R is a substitutable group, it may have a substituent. When a plurality of R are present, they may be the same or different. Adjacent Rs may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. ]
  • the “monovalent heterocyclic group” means a monovalent group obtained by removing one hydrogen atom from a hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. To do. Among monovalent heterocyclic groups, it is a monovalent group obtained by removing one hydrogen atom from a hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from an aromatic heterocyclic compound. A “monovalent aromatic heterocyclic group” is preferable.
  • Examples of the “monovalent heterocyclic group” include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidyl group, quinolyl group, isoquinolyl group, pyrimidinyl group, triazinyl group and the like.
  • Aromatic heterocyclic compound '' means, for example, oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzosilole, A compound in which the heterocycle itself such as dibenzophosphole exhibits aromaticity; even if the heterocycle itself such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, benzopyran does not exhibit aromaticity, the aromatic ring is condensed to the heterocycle. It means any compound that is cyclized; and a compound in which a plurality of these compounds are bonded.
  • the “monovalent heterocyclic group” may have a substituent, and examples of the substituent include a halogen atom (particularly a fluorine atom), a cyano group, an alkyl group, an aryl group, and a monovalent heterocyclic group. , An alkoxy group, an aryloxy group, a substituted amino group, an alkylene group, and the like.
  • the monovalent heterocyclic group may have 1 to 5 substituents selected from these substituents.
  • “Divalent heterocyclic group” means a divalent group obtained by removing two hydrogen atoms from a hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. To do. Among divalent heterocyclic groups, it is a divalent group obtained by removing two hydrogen atoms from a hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from an aromatic heterocyclic compound. “Divalent aromatic heterocyclic group” is preferable.
  • divalent heterocyclic group examples include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, furan, thiophene, Two of the hydrogen atoms directly bonded to the carbon atom or hetero atom constituting the ring from aromatic heterocyclic compounds such as azole, diazole, triazole, oxazole, oxadiazole, thiazole, thiadiazole, etc. And a divalent group in which a plurality (for example, 2 to 4) selected from the group consisting of the divalent group and the divalent group removed are bonded.
  • the “divalent heterocyclic group” may have a substituent.
  • the substituent include a fluorine atom, a cyano group, an alkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, and an aryl group. Examples thereof include an oxy group, a substituted amino group, a carboxyl group, an esterified carboxyl group, an alkenyl group, an alkynyl group, and a metal complex-containing group.
  • the divalent heterocyclic group may have 1 to 5 substituents selected from these substituents.
  • the divalent heterocyclic group which may have the substituent is preferably a group represented by formula (A-21) to formula (A-45).
  • R represents the same meaning as described above. When a plurality of R are present, they may be the same or different. ]
  • the “group in which a divalent aromatic hydrocarbon group and a divalent heterocyclic group are bonded” includes one or more of the above-described divalent aromatic hydrocarbon groups and the above-mentioned divalent heterocycle. It means a divalent group in which one or more of the cyclic groups are arbitrarily bonded. What was mentioned above is mentioned as a bivalent aromatic hydrocarbon group and a bivalent heterocyclic group.
  • the “group in which a divalent aromatic hydrocarbon group and a divalent heterocyclic group are bonded” may have a substituent, and on the divalent aromatic hydrocarbon group that is a partial structure thereof, Fluorine atom, cyano group, alkyl group, aryl group, monovalent heterocyclic group, alkoxy group, aryloxy group, substituted amino group, carboxyl group, esterified carboxyl group, alkenyl group, alkynyl group and metal described above It may have 1 to 10 substituents selected from a complex-containing group, and on the divalent heterocyclic group which is another partial structure, the above-described fluorine atom, cyano group, alkyl group, 1 to 5 selected from aryl group, monovalent heterocyclic group, alkoxy group, aryloxy group, substituted amino group, carboxyl group, esterified carboxyl group, alkenyl group, alkynyl group and metal complex-containing group It may have a substituent.
  • Metal complex-containing group means a group containing a complex formed from a metal atom (M) and a ligand coordinated thereto, and includes, for example, those represented by formulas (C-1) to (C-4) Examples include groups represented by any of them.
  • Ring A represents a cyclic structure containing a nitrogen atom which may have a substituent.
  • Ring B represents a cyclic structure containing a carbon atom which may have a substituent.
  • R represents the same meaning as described above.
  • Examples of ring A include nitrogen-containing aromatic rings, and specific examples include pyridine, quinoline, isoquinoline, pyrimidine, pyrazine, and imidazole.
  • Examples of the ring B include an aromatic ring and a heteroaromatic ring, and specific examples include benzene, naphthalene, dibenzofuran, dibenzothiophene, and the like.
  • Ring A and “Ring B” may have a substituent.
  • the substituent include a fluorine atom, a cyano group, an alkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, Examples thereof include an aryloxy group, a substituted amino group, a carboxyl group, an esterified carboxyl group, an alkenyl group, and an alkynyl group.
  • “Ring A” and “Ring B” may have 1 to 4 substituents selected from these substituents.
  • R is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and even more preferably a methyl group.
  • Examples of the metal complex-containing group include groups represented by formulas (C-11) to (C-14).
  • the “metal complex-containing group” may have a substituent.
  • substituents include a fluorine atom, a cyano group, an alkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, and an aryloxy group. And substituted amino groups.
  • the “metal complex-containing group” may have 1 to 10 substituents selected from these substituents.
  • the method for producing a polymer compound of the present invention comprises a step of bringing a solution containing the polymer compound into contact with a mixed solvent composed of two or more organic solvents to precipitate the polymer compound.
  • the mixed solvent composed of the two or more organic solvents is composed of a first organic solvent and a second organic solvent different from each other, and the first organic solvent is one or more selected from the solvent A.
  • the second organic solvent is one or more selected from the solvent A and the solvent B: [Solvent A] A solvent in which the Hansen solubility parameter polar term P1 (MPa 0.5 ) is 0 ⁇ P1 ⁇ 10 and the Hansen solubility parameter hydrogen bond term H1 (MPa 0.5 ) is 0 ⁇ H1 ⁇ 10, [Solvent B] A solvent in which the Hansen solubility parameter polar term P2 (MPa 0.5 ) is 10 ⁇ P2 and / or the Hansen solubility parameter hydrogen bond term H2 (MPa 0.5 ) is 10 ⁇ H2.
  • Hansen Solubility Parameter The value of “HANSEN SOLUBILITY PARAMETERS A User's Handbook Second Edition” is used for the polar term and the hydrogen bond term of the Hansen solubility parameter used in the present invention. Solvents not listed here can be determined according to the Hansen Solubility Parameters in Practice (HSPiP) program (2nd edition). The values of the polar term and hydrogen bond term of the Hansen solubility parameter in this specification represent values at 25 ° C.
  • the polymer compound is precipitated by bringing a solution containing the polymer compound into contact with a mixed solvent composed of two or more organic solvents.
  • the two or more organic solvents used in the precipitation step include a first organic solvent and a second organic solvent that are different from each other.
  • the first organic solvent is one or more (preferably one or two) selected from the following solvent A, and the second organic solvent is selected from the following [solvent A] and [solvent B]. 1 type or more (preferably 1 type or 2 types).
  • the solvent A easily dissolves the polymer compound, that is, a good solvent for the polymer compound, the Hansen solubility parameter has a polar term P1 (MPa 0.5 ) of 0 ⁇ P1 ⁇ 10, and the Hansen solubility parameter.
  • the hydrogen bond term H1 (MPa 0.5 ) is 0 ⁇ H1 ⁇ 10.
  • the range of P1 of the solvent A is 0 or more, further 0.5 or more, further 1 or more, particularly 4 or more, 10 or less, further 8 or less, further 6 or less, especially 5 or less.
  • the range of H1 of the solvent A is 0 or more, further 0.5 or more, and further 1 or more, and is 10 or less, further 9 or less, further 8 or less, especially 5 or less.
  • Solvent A is not particularly limited as long as P1 and H1 are organic solvents satisfying the above numerical range.
  • the solvent A for example, 0 ⁇ P1 ⁇ 5 and 0 ⁇ H1 ⁇ 4 (hereinafter referred to as [solvent A1]), 5 ⁇ P1 ⁇ 10, and 4 ⁇ And a solvent satisfying H1 ⁇ 10 (hereinafter referred to as [solvent A2]).
  • the solvent A is an organic solvent that satisfies the above conditions, and includes, for example, a ketone solvent, an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent (the aromatic hydrocarbon has a substituent such as an alkyl group or an alkoxy group). May be selected), halogenated aliphatic hydrocarbon solvents, halogenated aromatic hydrocarbon solvents, ether solvents and the like.
  • Preferred examples of the solvent A include toluene, xylene, tetrahydrofuran, dioxane, methyl ethyl ketone, methyl isobutyl ketone, heptane and the like, and particularly preferred is toluene.
  • the solvent B is a solvent that hardly dissolves the polymer compound, that is, a poor solvent for the polymer compound, and the polar term P2 (MPa 0.5 ) of the Hansen solubility parameter is 10 ⁇ P2 and / or hydrogen of the Hansen solubility parameter.
  • the range of P2 of the solvent B is usually more than 4, more than 6, and further more than 10.
  • the upper limit is not particularly limited and is, for example, 40 or less, and further 30 or less.
  • the H2 range of solvent B is usually more than 4, more than 6 and even more than 10.
  • the upper limit is not particularly limited and is, for example, 40 or less, and further 30 or less.
  • Solvent B is not particularly limited as long as P2 and / or H2 satisfy the above numerical range.
  • a solvent satisfying 10 ⁇ P2 and 10 ⁇ H2 hereinafter referred to as [solvent B1]
  • [solvent B1] a solvent satisfying 10 ⁇ P2 and 10 ⁇ H2
  • the solvent B is an organic solvent that satisfies the above conditions.
  • a nitrile solvent, a ketone solvent, a sulfoxide solvent, an amide solvent, an alcohol solvent (particularly an alcohol having 1 to 6 carbon atoms), a carboxylic acid solvent It can be selected from among solvents and the like.
  • solvent B More preferable examples of the solvent B include methanol, ethanol, 2-propanol, acetone, dimethyl sulfoxide, and N, N-dimethylformamide, and particularly preferable is methanol.
  • the first organic solvent is one or more selected from the solvent A, A combination in which the second organic solvent is one or more selected from the solvent B; the first organic solvent is one or more selected from the solvent A, and the second organic solvent is selected from the solvent B1 Combinations that are at least species; combinations in which the first organic solvent is at least one selected from solvent A1 and the second organic solvent is at least one selected from solvent B1 are included.
  • More preferable combinations of the first organic solvent and the second organic solvent include, for example, toluene and methanol, toluene and acetone, methyl isobutyl ketone and methyl ethyl ketone, heptane and 2-propanol, dioxane and N, N-dimethylformamide, methyl ethyl ketone. And dimethyl sulfoxide.
  • the mixed solvent of two or more organic solvents is one or more selected from solvent A (especially solvent A1) in which the first organic solvent is a good solvent for the polymer compound, and the second organic solvent is a polymer. It is preferable that 1 or more types selected from the solvent B (especially solvent B1) which is a poor solvent with respect to a compound are included.
  • More preferable combinations of the first organic solvent and the second organic solvent include, for example, toluene and methanol, toluene and acetone, heptane and 2-propanol, dioxane and N, N-dimethylformamide, methyl ethyl ketone and dimethyl sulfoxide, and the like.
  • a combination is mentioned, and a particularly preferable combination is toluene and methanol.
  • the amounts of the first organic solvent and the second organic solvent used in the mixed solvent composed of two or more organic solvents are as follows.
  • the amount of the first organic solvent used is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more in the mixed solvent from the viewpoint of reducing the polydispersity of the polymer compound. preferable. Further, from the viewpoint of precipitating the polymer compound in the precipitation step, the content in the mixed solvent is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the amount of the second organic solvent used is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less in the mixed solvent from the viewpoint of reducing the polydispersity of the polymer compound. preferable. Further, from the viewpoint of precipitating the polymer compound in the precipitation step, the content in the mixed solvent is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more.
  • the mass ratio of the first organic solvent and the second organic solvent is, for example, 1/4 to 9/1, and preferably 3/7 to 4/1. 2/3 to 7/3 is more preferable.
  • the former mode is preferred.
  • the solution containing the polymer compound may be a solution obtained by dissolving a solid polymer compound in a solvent, or a post-reaction solution obtained by polymerization reaction from a monomer. It may be a solution after purification. Examples of the purification of the solution after the reaction include known purification methods such as liquid separation, chromatography, distillation and the like.
  • the polydispersity of the polymer compound to be precipitated is changed by changing the mass ratio of the first organic solvent and the second organic solvent (first organic solvent / second organic solvent).
  • first organic solvent / second organic solvent the mass ratio of the first organic solvent (toluene) and the second organic solvent (acetone) is 1/1 and 1/3, respectively, and the precipitated polymer compound (P4)
  • the polydispersities are 1.9 and 2.4, respectively.
  • the mass ratios of the first organic solvent (methyl ethyl ketone) and the second organic solvent (dimethyl sulfoxide) were 4/1, 3/2 and 1/1, respectively.
  • the polydispersities of the polymer compounds (P21 to P23) are 1.6, 1.7 and 2.1, respectively. That is, in the precipitation step, as the mass ratio of the first organic solvent and the second organic solvent (first organic solvent / second organic solvent) increases, the polydispersity of the polymer compound that precipitates decreases ( Close to 1). Thus, in the precipitation step, by adjusting the mass ratio of the first organic solvent and the second organic solvent (first organic solvent / second organic solvent), a high molecular weight having a desired molecular weight and polydispersity can be obtained. Molecular compounds can be obtained.
  • the solvent of the solution containing the polymer compound is not particularly limited as long as it can dissolve the polymer compound, that is, a good solvent for the polymer compound.
  • the solvent mentioned in the first organic solvent that is, one or more selected from the solvent A (particularly, one or two) can be mentioned.
  • Preferable examples include toluene, xylene, tetrahydrofuran, anisole, dimethoxybenzene, cyclohexylbenzene, a mixed solvent thereof, and the like, and particularly preferable examples include toluene, tetrahydrofuran, and a mixed solvent thereof.
  • the concentration of the polymer compound in the solution containing the polymer compound is not particularly limited, and can usually be set based on the solubility of the polymer compound in the solvent.
  • the concentration is usually 0.05% by mass to 15% by mass, preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 5% by mass.
  • the temperature of the liquid mixture in the precipitation step is usually ⁇ 100 ° C. to 200 ° C., preferably 0 ° C. to 150 ° C., more preferably 10 ° C. to 100 ° C., and further preferably 15 ° C. to 40 ° C. It is particularly preferably 20 to 30 ° C.
  • the precipitation step is preferably performed while stirring the mixed solution.
  • the stirring time is usually 1 minute to 100 hours, preferably 30 minutes to 10 hours.
  • the precipitation step can be repeated a plurality of times as necessary, and can be repeated, for example, about 2 to 5 times. Thereby, a polymer compound having a lower polydispersity can be obtained.
  • the amount of the mixed solvent composed of two or more organic solvents is usually 1 part by mass or more, preferably 2 parts by mass or more, more preferably 3 parts by mass with respect to 1 part by mass of the solution containing the polymer compound. It is not less than 1000 parts by mass, preferably not more than 1000 parts by mass, preferably not more than 300 parts by mass, and more preferably not more than 100 parts by mass.
  • the polymer compound is a compound obtained by polymerizing a predetermined monomer and having two or more repeating units derived from the monomer (hereinafter also referred to as structural units).
  • the polymer compound has a molecular weight distribution and a weight average molecular weight (Mw) in terms of polystyrene is in the range of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • Mw weight average molecular weight
  • the molecular weight analysis follows the description in the examples.
  • examples of the polymer compound include a polymer compound composed of a structural unit represented by the formula (1).
  • Ar 1 and Ar 2 each independently represent a divalent aromatic hydrocarbon group, a divalent heterocyclic group, or a group in which a divalent aromatic hydrocarbon group and a divalent heterocyclic group are bonded; These groups may have a substituent.
  • Ar 3 represents a monovalent aromatic hydrocarbon group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a represents an integer of 0 to 2.
  • Ar 1 and Ar 2 are preferably a divalent aromatic hydrocarbon group or a divalent heterocyclic group, more preferably a divalent aromatic hydrocarbon group, and these groups are substituents. (In particular, they are an alkyl group and an aryl group, and these groups may further have a substituent).
  • the divalent aromatic hydrocarbon group represented by Ar 1 and Ar 2 is represented by the formula (A-1) to the formula (A-3), the formula (A-8) or the formula (A-9). And a group represented by formula (A-1) or formula (A-9) is more preferable.
  • the divalent heterocyclic group represented by Ar 1 and Ar 2 is preferably a group represented by the formula (A-24) or the formula (A-35). In the formula (1), a is preferably 0 or 1.
  • Examples of the structural unit represented by the formula (1) include structural units represented by the formula (1-1) to the formula (1-20), and the formula (1-1) to the formula (1-4) And a structural unit represented by formula (1-9) to formula (1-11), formula (1-15), formula (1-16) or formula (1-20) is preferred, and formula (1-1) A structural unit represented by formula (1-3), formula (1-9) to formula (1-11), formula (1-15), or formula (1-20) is more preferable.
  • the structural unit represented by Formula (1) is not limited to these exemplary structural units.
  • R represents the same meaning as described above. When a plurality of R are present, they may be the same or different. ]
  • the polymer compound composed of the structural unit represented by the formula (1) includes a polymer compound composed of one or more structural units selected from the above structural units.
  • the polymer compound composed of the structural unit represented by the formula (1) can be obtained, for example, by polymerizing a monomer containing a chlorine atom or a bromine atom.
  • a polymerization method for example, a method of polymerizing a monomer by a Suzuki coupling reaction, a method of polymerizing by a Buchwald coupling reaction, a method of polymerizing by a Stille coupling reaction, a method of polymerizing by a Kumada coupling reaction, or a polymerization by a Yamamoto coupling reaction
  • the method of polymerizing by a Suzuki coupling reaction and the method of polymerizing by a Buchwald coupling reaction are preferred from the viewpoint of ease of structure control.
  • a step of further adding a solvent may be provided.
  • This solvent treatment step is performed after the precipitation step (that is, after the polymer compound is precipitated by bringing the polymer compound-containing solution into contact with a mixed solvent of two or more organic solvents), the third organic solvent.
  • a step of performing a treatment such as adding and stirring.
  • the third organic solvent examples include one or more (preferably one or two) solvents selected from the following [Solvent C].
  • the solvent C is preferably a solvent that hardly dissolves the polymer compound, that is, a poor solvent for the polymer compound.
  • a solvent in which the Hansen solubility parameter polar term P3 (MPa 0.5 ) is 10 ⁇ P3 and / or the Hansen solubility parameter hydrogen bond term H3 (MPa 0.5 ) is 10 ⁇ H3. It is done.
  • the range of P3 of solvent C is usually more than 4, more than 6, and further more than 10.
  • the upper limit is not particularly limited and is, for example, 40 or less, and further 30 or less.
  • the range of H3 of solvent C is usually more than 4, more than 6, and even more than 10.
  • the upper limit is not particularly limited and is, for example, 40 or less, and further 30 or less.
  • Solvent C is not particularly limited as long as it is a solvent satisfying the numerical range of P3 and / or H3.
  • a solvent where 10 ⁇ P3 and 10 ⁇ H3 are exemplified.
  • the solvent C can be selected from, for example, nitrile solvents, ketone solvents, sulfoxide solvents, amide solvents, alcohol solvents (particularly alcohols having 1 to 6 carbon atoms), carboxylic acid solvents, and the like. .
  • solvent C More preferable examples of the solvent C include methanol, ethanol, 2-propanol, acetone, dimethyl sulfoxide, N, N-dimethylformamide and the like, and methanol is particularly preferable.
  • Desirable specific examples of the third organic solvent are desirably the same as the preferable specific examples of the second organic solvent. Furthermore, the third organic solvent is preferably the same as the second organic solvent.
  • the third organic solvent is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and further preferably 1.5 parts by mass or more with respect to 1 part by mass of the first organic solvent used in the precipitation step. . Moreover, 20 mass parts or less are preferable, and 10 mass parts or less are more preferable.
  • the liquid mixture temperature in the solvent treatment step is usually ⁇ 100 ° C. to 200 ° C., preferably 0 ° C. to 150 ° C., more preferably 10 ° C. to 100 ° C., and further preferably 15 ° C. to 40 ° C. It is particularly preferably 20 to 30 ° C.
  • the solvent treatment step is preferably performed while stirring the mixed solution after the precipitation step.
  • the stirring time is usually 1 minute to 100 hours, preferably 30 minutes to 10 hours.
  • High molecular compound According to the production method of the present invention, the low molecular weight component contained in the high molecular compound is effectively removed, so that the polydispersity (Mw / Mn) is sufficiently small (ie, close to 1). Molecular compounds can be obtained.
  • the polydispersity of the obtained polymer compound can be adjusted by changing the ratio of the first organic solvent and the second organic solvent in the mixed solvent in the precipitation step, it has a desired polydispersity.
  • a polymer compound can also be obtained. Therefore, the polymer compound obtained by this production method is suitably used as a material for an organic EL element, a material for an organic photoelectric conversion element, a material for an organic transistor element, or the like.
  • a manufacturing method of a light emitting device of the present invention is a manufacturing method of a light emitting device having an anode, a cathode and an organic layer, wherein the polymer compound manufactured by the manufacturing method of the polymer compound is used. It is a manufacturing method of a light emitting element including the process of forming the organic layer using. Examples of the organic layer include a hole transport layer, a hole injection layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the organic layer can be formed by, for example, a wet method or a dry method.
  • the polystyrene equivalent weight average molecular weight (Mw), polystyrene equivalent number average molecular weight (Mn), and polydispersity (Mw / Mn) of the polymer compound were determined by gel permeation chromatography (GPC).
  • the analysis conditions are as follows. Measuring device: HLC-8320GPC (manufactured by Tosoh Corporation) Column: PLgel 10 ⁇ m MIXED-B (manufactured by Tosoh Corporation) Column temperature: 40 ° C Mobile phase: Tetrahydrofuran Flow rate: 0.5 mL / min Detection wavelength: 228 nm
  • Example 2 Precipitation treatment A was performed in the same manner as in Example 1 except that a mixed solvent of 5 g of toluene and 5 g of acetone was used instead of the mixed solvent of 5 g of toluene and 5 g of methanol.
  • Example 3 Precipitation treatment A was performed in the same manner as in Example 1 except that a mixed solvent of 2.5 g of toluene and 7.5 g of acetone was used instead of the mixed solvent of 5 g of toluene and 5 g of methanol.
  • Example 5 After making the inside of the reaction vessel an inert gas atmosphere, the compound (M1) (4.3 mmol), the compound (M2) (4.4 mmol), dichlorobis [tris (2-methoxyphenyl) phosphine] palladium (0.026 mmol), Toluene (41 g) and 20% by mass tetraethylammonium hydroxide aqueous solution (30 g) were added, and the mixture was stirred at reflux temperature for 3 hours. Toluene was added to the solution after polymerization to prepare a 1% by mass solution.
  • Example 7 Precipitation treatment B was performed in the same manner as in Example 6 except that instead of the mixed solvent of 8 g of toluene and 2 g of methanol, a mixed solvent of 6 g of toluene and 4 g of methanol was used.
  • Example 8 Precipitation treatment B was performed in the same manner as in Example 6 except that a mixed solvent of 8 g of methyl isobutyl ketone and 2 g of methyl ethyl ketone was used instead of the mixed solvent of 8 g of toluene and 2 g of methanol.
  • Precipitation treatment B was performed in the same manner as in Example 6 except that instead of the mixed solvent of 8 g of toluene and 2 g of methanol, a mixed solvent of 6 g of methyl isobutyl ketone and 4 g of methyl ethyl ketone was used.
  • Precipitation treatment B was performed in the same manner as in Example 6 except that a mixed solvent of 4 g of methyl isobutyl ketone and 6 g of methyl ethyl ketone was used instead of the mixed solvent of 8 g of toluene and 2 g of methanol.
  • Precipitation treatment B was carried out in the same manner as in Example 6 except that a mixed solvent of 2 g of methyl isobutyl ketone and 8 g of methyl ethyl ketone was used instead of the mixed solvent of 8 g of toluene and 2 g of methanol.
  • Example 13 Precipitation treatment C was performed in the same manner as in Example 12 except that a mixed solvent of 6 g of heptane and 4 g of 2-propanol was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Example 14 Precipitation C was performed in the same manner as in Example 12 except that a mixed solvent of 4 g of heptane and 6 g of 2-propanol was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Example 15 Precipitation treatment C was performed in the same manner as in Example 12 except that a mixed solvent of 4 g of dioxane and 6 g of N, N-dimethylformamide was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Example 16 Precipitation treatment C was carried out in the same manner as in Example 12 except that a mixed solvent of 2 g of dioxane and 8 g of N, N-dimethylformamide was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Example 17 Precipitation treatment C was carried out in the same manner as in Example 12 except that a mixed solvent of 8 g of methyl ethyl ketone and 2 g of dimethyl sulfoxide was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Example 18 Precipitation C was performed in the same manner as in Example 12 except that a mixed solvent of 6 g of methyl ethyl ketone and 4 g of dimethyl sulfoxide was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Example 19 Precipitation C was carried out in the same manner as in Example 12 except that a mixed solvent of 4 g of methyl ethyl ketone and 6 g of dimethyl sulfoxide was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Example 20 Precipitation C was performed in the same manner as in Example 12 except that a mixed solvent of 5 g of toluene and 5 g of methanol was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Example 21 After performing the same precipitation treatment C as in Example 20, 5 g of methanol was added to the slurry after precipitation, and the mixture was further stirred for 30 minutes.
  • Example 22 After performing the same precipitation treatment C as in Example 20, 12.5 g of methanol was added to the slurry after precipitation, and the mixture was further stirred for 30 minutes.
  • Example 23 Precipitation C was performed in the same manner as in Example 12 except that a mixed solvent of 2.5 g of toluene and 7.5 g of methanol was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Example 24 After performing the same precipitation treatment C as in Example 23, 12.5 g of methanol was added to the slurry after precipitation, and the mixture was further stirred for 30 minutes.
  • Precipitation treatment C was carried out in the same manner as in Example 12 except that a mixed solvent of 7.5 g of acetone and 2.5 g of methanol was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Precipitation treatment C was carried out in the same manner as in Example 12 except that a mixed solvent of 5 g of acetone and 5 g of methanol was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Precipitation C was performed in the same manner as in Example 12 except that a mixed solvent of 2.5 g of acetone and 7.5 g of methanol was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Precipitation C was carried out in the same manner as in Example 12 except that a mixed solvent of 7.5 g of ethanol and 2.5 g of methanol was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Precipitation treatment C was carried out in the same manner as in Example 12 except that a mixed solvent of 5 g of ethanol and 5 g of methanol was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • Precipitation C was carried out in the same manner as in Example 12 except that a mixed solvent of 2.5 g of ethanol and 7.5 g of methanol was used instead of the mixed solvent of 8 g of heptane and 2 g of 2-propanol.
  • the polydispersity of the polymer compound that precipitates by changing the mass ratio of the first organic solvent and the second organic solvent (first organic solvent / second organic solvent). It became clear that can be adjusted.
  • the mass ratio of the first organic solvent (toluene) and the second organic solvent (acetone) is 1/1 and 1/3, respectively, and the precipitated polymer compound ( The polydispersities of P4) were 1.9 and 2.4, respectively.
  • the mass ratios of the first organic solvent (methyl ethyl ketone) and the second organic solvent (dimethyl sulfoxide) were 4/1, 3/2 and 1/1, respectively.
  • the polydispersities of the polymer compounds (P21 to P23) were 1.6, 1.7 and 2.1, respectively.
  • the method of the present invention can produce a polymer compound having a sufficiently low polydispersity. Therefore, the polymer compound produced by this method is suitably used as a material for organic EL elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Electroluminescent Light Sources (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本発明は、多分散度が十分に小さい高分子化合物の製造方法を提供することを目的とする。高分子化合物を含む溶液と2種以上の有機溶媒からなる混合溶媒とを接触させて高分子化合物を沈殿させる工程を含む高分子化合物の製造方法であって、該2種以上の有機溶媒は、互いに異なる第1の有機溶媒及び第2の有機溶媒を含み、該第1の有機溶媒は、溶媒Aから選択される1種以上であり、該第2の有機溶媒は、溶媒A及び溶媒Bから選択される1種以上である、製造方法: [溶媒A]ハンセン溶解度パラメータの極性項P1(MPa0.5)が0≦P1≦10であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が0≦H1≦10である溶媒、 [溶媒B]ハンセン溶解度パラメータの極性項P2(MPa0.5)が10<P2、及び/又は、ハンセン溶解度パラメータの水素結合項H2(MPa0.5)が10<H2である溶媒。

Description

高分子化合物の製造方法
 本発明は、高分子化合物の製造方法に関する。
 有機エレクトロルミネッセンス(以下、「有機EL」とも表記する)素子等の発光素子の材料として、例えば、高分子化合物が用いられている。当該素子の特性を向上させるために、当該高分子化合物は多分散度(Mw/Mn)が小さいことが望ましい。
 高分子化合物は、例えば、遷移金属錯体の存在下、芳香族ジボロン酸と芳香族ジハロゲン化物とを鈴木カップリング反応させることにより合成することができる。例えば、非特許文献1には、フルオレンのジボロン酸とトリアリールアミンのジブロモ体とを、鈴木カップリング反応させて高分子化合物を合成する方法が報告されている。しかし、この方法では、多分散度が十分に小さい高分子化合物を得ることが困難であった。
 高分子化合物の多分散度を小さくする方法として、例えば、クロマトグラフ等の吸着材を用いる方法、ソックスレー等の固体から抽出する方法があるが、いずれも必ずしも満足できるものではない。
RSC Advances, 2015, 5, p101826-101833
 本発明は、多分散度が十分に小さい高分子化合物の製造方法を提供することを目的とする。
 本発明は、以下の[1]~[10]を提供する。
 [1]高分子化合物を含む溶液と2種以上の有機溶媒からなる混合溶媒とを接触させて高分子化合物を沈殿させる工程を含む高分子化合物の製造方法であって、
 該2種以上の有機溶媒は、互いに異なる第1の有機溶媒及び第2の有機溶媒からなり、
 該第1の有機溶媒は、溶媒Aから選択される1種以上であり、該第2の有機溶媒は、溶媒A及び溶媒Bから選択される1種以上である、製造方法:
[溶媒A]
ハンセン溶解度パラメータの極性項P1(MPa0.5)が0≦P1≦10であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が0≦H1≦10である溶媒、
[溶媒B]
ハンセン溶解度パラメータの極性項P2(MPa0.5)が10<P2、及び/又は、ハンセン溶解度パラメータの水素結合項H2(MPa0.5)が10<H2である溶媒。
 [2]前記第1の有機溶媒が、溶媒Aから選択される1種以上であり、前記第2の有機溶媒が、溶媒Bから選択される1種以上である、[1]に記載の製造方法。
 [3]前記第1の有機溶媒が、溶媒Aから選択される1種以上であり、前記第2の有機溶媒が、溶媒B1から選択される1種以上である、[2]に記載の製造方法:
[溶媒B1]
ハンセン溶解度パラメータの極性項P2(MPa0.5)が10<P2、及び、ハンセン溶解度パラメータの水素結合項H2(MPa0.5)が10<H2である溶媒。
 [4]前記第1の有機溶媒が、溶媒A1から選択される1種以上であり、前記第2の有機溶媒が、溶媒B1から選択される1種以上である、[3]に記載の製造方法:
[溶媒A1]
ハンセン溶解度パラメータの極性項P1(MPa0.5)が0≦P1≦5であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が0≦H1≦4である溶媒。
 [5]前記第1の有機溶媒が、溶媒Aから選択される1種以上であり、前記第2の有機溶媒が、溶媒Aから選択される1種以上である、[1]に記載の製造方法。
 [6]前記第1の有機溶媒が、溶媒Aから選択される1種以上であり、前記第2の有機溶媒が、溶媒A2から選択される1種以上である、[5]に記載の製造方法:
[溶媒A2]
ハンセン溶解度パラメータの極性項P1(MPa0.5)が5<P1≦10であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が4<H1≦10である溶媒。
 [7]前記第1の有機溶媒が、溶媒A2から選択される1種以上であり、前記第2の有機溶媒が、溶媒A2から選択される1種以上である、[6]に記載の製造方法。
 [8]前記沈殿工程の後に、さらに第3の有機溶媒を添加する溶媒処理工程を含み、該第3の有機溶媒が溶媒Cから選択される1種以上である、[1]~[7]のいずれか一項に記載の製造方法:
[溶媒C]
ハンセン溶解度パラメータの極性項P3(MPa0.5)が10<P3、及び/又は、ハンセン溶解度パラメータの水素結合項H3(MPa0.5)が10<H3である溶媒。
 [9]前記高分子化合物が、式(1)で表される構成単位からなる高分子化合物である、[1]~[8]のいずれか一項に記載の製造方法:
Figure JPOXMLDOC01-appb-I000002
[式中、
 Ar及びArは、それぞれ独立に、2価の芳香族炭化水素基、2価の複素環基、又は2価の芳香族炭化水素基と2価の複素環基が結合した基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは各々同一又は異なっていてもよい。
 Arは、1価の芳香族炭化水素基、又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは各々同一又は異なっていてもよい。
 aは、0~2の整数を表す。]。
 [10]高分子化合物を含む溶液と2種以上の有機溶媒からなる混合溶媒とを接触させて高分子化合物を沈殿させる沈殿工程を含む高分子化合物の多分散度を調整する方法であって、
 該2種以上の有機溶媒は、互いに異なる第1の有機溶媒及び第2の有機溶媒を含み、
 該第1の有機溶媒は、溶媒Aから選択される1種以上であり、該第2の有機溶媒は、溶媒A及び溶媒Bから選択される1種以上である、調整方法:
[溶媒A]
ハンセン溶解度パラメータの極性項P1(MPa0.5)が0≦P1≦10であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が0≦H1≦10である溶媒、
[溶媒B]
ハンセン溶解度パラメータの極性項P2(MPa0.5)が10<P2、及び/又は、ハンセン溶解度パラメータの水素結合項H2(MPa0.5)が10<H2である溶媒。
 [11]陽極、陰極及び有機層を有する発光素子の製造方法であって、[1]~[9]のいずれか一項に記載の高分子化合物の製造方法で製造された高分子化合物を用いて前記有機層を形成する工程を含む、発光素子の製造方法。
 本発明の方法によれば、多分散度が十分に小さい高分子化合物を製造することができる。本発明の方法によれば高分子化合物の多分散度を調整することもできる。本発明の方法で製造される高分子化合物は、有機EL素子の材料等として好適に用いられる。
1.共通する用語の説明
 本明細書において使用する用語を以下に説明する。
 「水素原子」は、軽水素原子であっても重水素原子であってもよい。
 「アルキル基」とは、直鎖、分岐及び環状のアルキル基を意味する。直鎖のアルキル基の炭素原子数は、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐及び環状のアルキル基の炭素原子数は、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。当該アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、2-エチルブチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、n-オクチル基、2-エチルヘキシル基、3-n-プロピルヘプチル基、n-デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-n-ヘキシル-デシル基、n-ドデシル基等が挙げられる。
 「アルキル基」は置換基を有していてもよく、当該置換基としては、例えば、フッ素原子、シアノ基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、アルケニル基、アルキニル基、金属錯体含有基等が挙げられる。「アルキル基」はこれらの置換基から選択される1~20個の置換基を有していてもよい。当該置換アルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-n-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基等が挙げられる。
 「アリール基」とは、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた1価の基を意味する。アリール基の炭素原子数は、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。当該アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基等が挙げられる。
 「アリール基」は置換基を有していてもよく、当該置換基としては、例えば、フッ素原子、シアノ基、アルキル基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、アルケニル基、アルキニル基、金属錯体含有基等が挙げられる。「アリール基」はこれらの置換基から選択される1~10個の置換基を有していてもよい。当該置換アリール基としては、例えば、ペンタフルオロフェニル基、4-ヘキシルフェニル基、4-フェニルフェニル基等が挙げられる。
 「アルコキシ基」とは、直鎖、分岐及び環状のアルコキシ基を意味する。直鎖のアルコキシ基の炭素原子数は、通常1~40であり、好ましくは4~10である。分岐及び環状のアルコキシ基の炭素原子数は、通常3~40であり、好ましくは4~10である。当該アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基等が挙げられる。
 「アルコキシ基」は置換基を有していてもよく、当該置換基としては、例えば、フッ素原子、シアノ基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、アルケニル基、アルキニル基、金属錯体含有基等が挙げられる。「アルコキシ基」はこれらの置換基から選択される1~10個の置換基を有していてもよい。
 「アリールオキシ基」とは、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を酸素原子に置き換えた1価の基を意味する。アリールオキシ基の炭素原子数は、通常6~60であり、好ましくは7~48である。当該アリールオキシ基としては、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基等が挙げられる。
 「アリールオキシ基」は置換基を有していてもよく、当該置換基としては、例えば、フッ素原子、シアノ基、アルキル基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、アルケニル基、アルキニル基、金属錯体含有基等が挙げられる。「アリールオキシ基」はこれらの置換基から選択される1~10個の置換基を有していてもよい。当該置換アリールオキシ基としては、例えば、ペンタフルオロフェノキシ基、4-ヘキシルフェノキシ基、4-フェニルフェノキシ基等が挙げられる。
 「置換アミノ基」は、2つの置換基を有するアミノ基を意味する。当該置換基としては、例えば、アルキル基、アリール基(該アリール基はアルキル基を有していてもよい)、1価の複素環基等が挙げられる。当該置換アミノ基としては、例えば、ジアルキルアミノ基、ジアリールアミノ基、ジ(モノ又はジアルキルアリール)アミノ基が挙げられ、具体的には、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基等が挙げられる。
 「エステル化されたカルボキシル基」とは、式:-COOR'(R'は、アルキル基、アリール基、1価の複素環基等を表す。)で表される基を意味する。当該エステル化されたカルボキシル基としては、例えば、アルキルオキシカルボニル基、アリールオキシカルボニル基が挙げられ、具体的には、例えば、-COCHで表される基、-COで表される基、-COで表される基等が挙げられる。
 「アルケニル基」は、直鎖、分岐及び環状のいずれでもよい。直鎖のアルケニル基の炭素原子数は、通常2~30であり、好ましくは2~20である。分岐及び環状のアルケニル基の炭素原子数は、通常3~30であり、好ましくは4~20である。当該アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテン-1-イル基、3-ブテン-1-イル基、1-シクロヘキセニル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。
 「アルケニル基」は置換基を有していてもよく、当該置換基としては、例えば、フッ素原子、シアノ基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、金属錯体含有基等が挙げられる。「アルケニル基」はこれらの置換基から選択される1~20個の置換基を有していてもよい。当該置換アルケニル基としては、例えば、2-フェニルエテニル基、4-オクチル-2-フェニルエテニル基等が挙げられる。
 「アルキニル基」は、直鎖、分岐及び環状のいずれでもよい。直鎖のアルキニル基の炭素原子数は、通常2~30であり、好ましくは2~20である。分岐及び環状のアルキニル基の炭素原子数は、通常4~30であり、好ましくは4~20である。当該アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチン-1-イル基、3-ブチン-1-イル基等が挙げられる。
 「アルキニル基」は置換基を有していてもよく、当該置換基としては、例えば、フッ素原子、シアノ基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、金属錯体含有基等が挙げられる。「アルキニル基」はこれらの置換基から選択される1~20個の置換基を有していてもよい。当該置換アルキニル基としては、例えば、2-フェニルエチニル基、4-オクチル-2-フェニルエチニル基等が挙げられる。
 「1価の芳香族炭化水素基」とは、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた1価の基を意味する。芳香族炭化水素の炭素原子数は、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。当該1価の芳香族炭化水素基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基等が挙げられる。
 「1価の芳香族炭化水素基」は置換基を有していてもよく、当該置換基としては、例えば、ハロゲン原子(特にフッ素原子)、シアノ基、アルキル基、アリール基(当該アリール基は、アルキル基及びアルコキシ基からなる群から選ばれる1~3個の置換基を有していてもよい)、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、アルキレン基(ジメチレン基、トリメチレン基等)等が挙げられる。「1価の芳香族炭化水素基」はこれらの置換基から選択される1~10個の置換基を有していてもよい。当該置換された1価の芳香族炭化水素基としては、例えば、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、ベンゾシクロブテニル基等が挙げられる。
 「2価の芳香族炭化水素基」とは、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた2価の基、及び当該2価の基からなる群から選ばれる複数個(例えば、2~5個)が結合した2価の基を意味する。2価の芳香族炭化水素基の炭素原子数は、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。当該2価の芳香族炭化水素基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基等が挙げられる。
 「2価の芳香族炭化水素基」は置換基を有していてもよく、当該置換基としては、例えば、フッ素原子、シアノ基、アルキル基、アリール基(当該アリール基は、アルキル基、アルコキシ基、フェニル基及びアルキルフェニル基からなる群から選ばれる1~5個の置換基を有していてもよい)、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、アルケニル基、アルキニル基、金属錯体含有基等が挙げられる。「2価の芳香族炭化水素基」はこれらの置換基から選択される1~10個の置換基を有していてもよい。当該置換基を有していてもよい2価の芳香族炭化水素基としては、例えば、式(A-1)~式(A-20)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-I000003
 [式中、Rは、水素原子、フッ素原子、シアノ基、アルキル基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、アルケニル基、アルキニル基、金属錯体含有基を表す。Rは、置換可能な基である場合、置換基を有していてもよい。Rが複数存在する場合、それらは同一でも異なっていてもよい。隣接するR同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 「1価の複素環基」とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち1個の水素原子を除いた1価の基を意味する。1価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち1個の水素原子を除いた1価の基である「1価の芳香族複素環基」が好ましい。「1価の複素環基」としては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基、ピリミジニル基、トリアジニル基等が挙げられる。
 「芳香族複素環式化合物」とは、例えば、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾシロール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物;フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物;並びにそれらの化合物が複数結合した化合物のいずれをも意味する。
 「1価の複素環基」は置換基を有していてもよく、当該置換基としては、例えば、ハロゲン原子(特にフッ素原子)、シアノ基、アルキル基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、アルキレン基等が挙げられる。1価の複素環基は、これらの置換基から選択される1~5個の置換基を有していてもよい。
 「2価の複素環基」とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基を意味する。2価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基である「2価の芳香族複素環基」が好ましい。「2価の複素環基」としては、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾール、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール等の芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基、及び当該2価の基からなる群から選ばれる複数(例えば、2~4個)が結合した2価の基が挙げられる。
 「2価の複素環基」は置換基を有していてもよく、当該置換基としては、例えば、フッ素原子、シアノ基、アルキル基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、アルケニル基、アルキニル基、金属錯体含有基等が挙げられる。2価の複素環基は、これらの置換基から選択される1~5個の置換基を有していてもよい。当該置換基を有していてもよい2価の複素環基として好ましくは、式(A-21)~式(A-45)で表される基である。
Figure JPOXMLDOC01-appb-I000004
 [式中、Rは前記と同じ意味を表す。Rが複数存在する場合、それらは同一でも異なっていてもよい。]
 「2価の芳香族炭化水素基と2価の複素環基とが結合した基」としては、上述した2価の芳香族炭化水素基の1個又は2個以上と、上述した2価の複素環基の1個又は2個以上とが任意に結合した2価の基を意味する。2価の芳香族炭化水素基及び2価の複素環基としては、上述したものが挙げられる。
 「2価の芳香族炭化水素基と2価の複素環基とが結合した基」は置換基を有していてもよく、その部分構造である2価の芳香族炭化水素基上には、上述した、フッ素原子、シアノ基、アルキル基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、アルケニル基、アルキニル基及び金属錯体含有基から選択される1~10個の置換基を有していてもよく、他の部分構造である2価の複素環基上には、上述した、フッ素原子、シアノ基、アルキル基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、アルケニル基、アルキニル基及び金属錯体含有基から選択される1~5個の置換基を有していてもよい。
 「金属錯体含有基」は、金属原子(M)とそれに配位する配位子とから形成される錯体を含む基を意味し、例えば、式(C-1)~式(C-4)のいずれかで表される基等が挙げられる。
Figure JPOXMLDOC01-appb-I000005
 [式中、MはIrまたはPtである。MがIrのとき、m=2であり、MがPtのとき、m=1である。環Aは置換基を有していてもよい窒素原子を含む環状構造を表す。環Bは置換基を有していてもよい炭素原子を含む環状構造を表す。Rは、前記と同じ意味を表す。]
 環Aとしては、例えば、含窒素芳香族環が挙げられ、具体的には、ピリジン、キノリン、イソキノリン、ピリミジン、ピラジン、イミダゾール等が挙げられる。環Bとしては、例えば、芳香族環及び複素芳香族環が挙げられ、具体的には、ベンゼン、ナフタレン、ジベンゾフラン、ジベンゾチオフェン等が挙げられる。
 「環A」及び「環B」は置換基を有していてもよく、当該置換基としては、例えば、フッ素原子、シアノ基、アルキル基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基、カルボキシル基、エステル化されたカルボキシル基、アルケニル基、アルキニル基等が挙げられる。「環A」及び「環B」はこれらの置換基から選択される1~4個の置換基を有していてもよい。
 Rとしては、アルキル基が好ましく、炭素原子数が1~4のアルキル基がより好ましく、メチル基がさらに好ましい。
 金属錯体含有基としては、例えば、式(C-11)~式(C-14)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000006
 「金属錯体含有基」は置換基を有していてもよく、当該置換基としては、例えば、フッ素原子、シアノ基、アルキル基、アリール基、1価の複素環基、アルコキシ基、アリールオキシ基、置換アミノ基等が挙げられる。「金属錯体含有基」はこれらの置換基から選択される1~10個の置換基を有していてもよい。
2.本発明の高分子化合物の製造方法
 本発明の高分子化合物の製造方法は、高分子化合物を含む溶液と、2種以上の有機溶媒からなる混合溶媒とを接触させて高分子化合物を沈殿させる工程を含み、該2種以上の有機溶媒からなる混合溶媒は、互いに異なる第1の有機溶媒及び第2の有機溶媒からなり、該第1の有機溶媒は溶媒Aから選択される1種以上であり、該第2の有機溶媒は溶媒A及び溶媒Bから選択される1種以上であることを特徴とする:
[溶媒A]
ハンセン溶解度パラメータの極性項P1(MPa0.5)が0≦P1≦10であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が0≦H1≦10である溶媒、
[溶媒B]
ハンセン溶解度パラメータの極性項P2(MPa0.5)が10<P2、及び/又は、ハンセン溶解度パラメータの水素結合項H2(MPa0.5)が10<H2である溶媒。
 本発明の製造方法により、多分散度の十分に小さい高分子化合物を得ることができる。
2.1 ハンセン溶解度パラメータ
 本発明で用いるハンセン溶解度パラメータの極性項及び水素結合項は、「HANSEN SOLUBILITY PARAMETERS A User’s Handbook Second Edition」の値を使用する。ここに記載されていない溶媒については、実用ハンセン溶解度パラメータ(HSPiP:Hansen Solubility Parameters in Practice)プログラム(第2版)に従って決定することができる。本明細書におけるハンセン溶解度パラメータの極性項及び水素結合項の値は、25℃における値を表す。
2.2 沈殿工程
 沈殿工程では、高分子化合物を含む溶液と、2種以上の有機溶媒からなる混合溶媒とを接触させて高分子化合物を沈殿させる。この沈殿工程で用いる2種以上の有機溶媒は、互いに異なる第1の有機溶媒及び第2の有機溶媒からなる。
 第1の有機溶媒は、下記溶媒Aから選択される1種以上(好ましくは、1種又は2種)であり、第2の有機溶媒は、下記[溶媒A]及び[溶媒B]から選択される1種以上(好ましくは、1種又は2種)である。
[溶媒A]
 溶媒Aは、高分子化合物を溶解し易いもの、即ち高分子化合物に対する良溶媒であり、ハンセン溶解度パラメータの極性項P1(MPa0.5)が0≦P1≦10であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が0≦H1≦10である溶媒である。
 溶媒AのP1の範囲は、0以上、さらに0.5以上、よりさらに1以上、特に4以上であり、また10以下、さらに8以下、よりさらに6以下、特に5以下である。
 溶媒AのH1の範囲は、0以上、さらに0.5以上、よりさらに1以上であり、また10以下、さらに9以下、よりさらに8以下、特に5以下である。
 溶媒Aは、P1及びH1が上記の数値範囲を満たす有機溶媒であれば特に限定はない。溶媒Aの一態様として、例えば、0≦P1≦5であり、及び、0≦H1≦4である溶媒(以下[溶媒A1]と表記する)、5<P1≦10であり、及び、4<H1≦10である溶媒(以下[溶媒A2]と表記する)等が挙げられる。
 溶媒Aは、上記の条件を満たす有機溶媒であり、例えば、ケトン系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒(該芳香族炭化水素はアルキル基、アルコキシ基等の置換基を有していてもよい)、ハロゲン化脂肪族炭化水素系溶媒、ハロゲン化芳香族炭化水素系溶媒、エーテル系溶媒等の中から選択することができる。
 溶媒Aの具体例を以下に示す。
Figure JPOXMLDOC01-appb-T000007
 溶媒Aの好ましいものとして、例えば、トルエン、キシレン、テトラヒドロフラン、ジオキサン、メチルエチルケトン、メチルイソブチルケトン、ヘプタン等が挙げられ、特に好ましいものとしてトルエンが挙げられる。
[溶媒B]
 溶媒Bは、高分子化合物を溶解し難いもの、即ち高分子化合物に対する貧溶媒であり、ハンセン溶解度パラメータの極性項P2(MPa0.5)が10<P2、及び/又は、ハンセン溶解度パラメータの水素結合項H2(MPa0.5)が10<H2である溶媒である。
 溶媒BのP2の範囲は、通常、4を超えて、さらに6を超えて、よりさらに10を超えている。上限は特に限定はなく、例えば、40以下、さらに30以下である。
 溶媒BのH2の範囲は、通常、4を超えて、さらに6を超えて、よりさらに10を超えている。上限は特に限定はなく、例えば、40以下、さらに30以下である。
 溶媒Bは、P2及び/又はH2が上記の数値範囲を満たす溶媒であれば特に限定はない。溶媒Bの一態様として、例えば、10<P2、及び、10<H2である溶媒(以下[溶媒B1]と表記する)等が挙げられる。
 溶媒Bは、上記の条件を満たす有機溶媒であり、例えば、ニトリル系溶媒、ケトン系溶媒、スルホキシド系溶媒、アミド系溶媒、アルコール系溶媒(特に炭素原子数1~6のアルコール)、カルボン酸系溶媒等の中から選択することができる。
 溶媒Bの具体例を以下に示す。
Figure JPOXMLDOC01-appb-T000008
 溶媒Bのより好ましいものとして、例えば、メタノール、エタノール、2-プロパノール、アセトン、ジメチルスルホキシド、N,N-ジメチルホルムアミドが挙げられ、特に好ましいものとしてメタノールが挙げられる。
 2種以上の有機溶媒からなる混合溶媒における、第1の有機溶媒及び第2の有機溶媒の組み合わせの好ましいものとして、例えば、第1の有機溶媒が溶媒Aから選択される1種以上であり、第2の有機溶媒が溶媒Bから選択される1種以上である組み合わせ;第1の有機溶媒が溶媒Aから選択される1種以上であり、第2の有機溶媒が溶媒B1から選択される1種以上である組み合わせ;第1の有機溶媒が溶媒A1から選択される1種以上であり、第2の有機溶媒が溶媒B1から選択される1種以上である組み合わせ等が挙げられる。
 或いは、他の好ましい組み合わせとして、例えば、第1の有機溶媒が溶媒Aから選択される1種以上であり、第2の有機溶媒が溶媒A2から選択される1種以上である組み合わせ;第1の有機溶媒が溶媒A2から選択される1種以上であり、第2の有機溶媒が溶媒A2から選択される1種以上である組み合わせ等が挙げられる。
 第1の有機溶媒と第2の有機溶媒のより好ましい組み合わせとしては、例えば、トルエンとメタノール、トルエンとアセトン、メチルイソブチルケトンとメチルエチルケトン、ヘプタンと2-プロパノール、ジオキサンとN,N-ジメチルホルムアミド、メチルエチルケトンとジメチルスルホキシド等が挙げられる。
 2種以上の有機溶媒の混合溶媒は、第1の有機溶媒が高分子化合物に対し良溶媒である溶媒A(特に溶媒A1)から選択される1種以上と、第2の有機溶媒が高分子化合物に対し貧溶媒である溶媒B(特に溶媒B1)から選択される1種以上を含んでいることが好ましい。
 第1の有機溶媒と第2の有機溶媒のさらにより好ましい組み合わせとしては、例えば、トルエンとメタノール、トルエンとアセトン、ヘプタンと2-プロパノール、ジオキサンとN,N-ジメチルホルムアミド、メチルエチルケトンとジメチルスルホキシド等の組み合わせが挙げられ、特に好ましい組み合わせとしてはトルエンとメタノールである。
 2種以上の有機溶媒からなる混合溶媒中における、第1の有機溶媒及び第2の有機溶媒の使用量は以下の通りである。
 第1の有機溶媒の使用量は、高分子化合物の多分散度を小さくする観点からは、該混合溶媒中、20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましい。また、高分子化合物を沈殿工程で析出させる観点からは、該混合溶媒中、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。
 第2の有機溶媒の使用量は、高分子化合物の多分散度を小さくする観点からは、該混合溶媒中、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下がさらに好ましい。また、高分子化合物を沈殿工程で析出させる観点からは、該混合溶媒中、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。
 第1の有機溶媒及び第2の有機溶媒の質量比(第1の有機溶媒/第2の有機溶媒)としては、例えば1/4~9/1であり、3/7~4/1が好ましく、2/3~7/3がより好ましい。
 沈殿工程は、高分子化合物を含む溶液を2種以上の有機溶媒からなる混合溶媒に添加する態様、2種以上の有機溶媒からなる混合溶媒を高分子化合物を含む溶液に添加する態様のいずれをも包含する。沈殿する高分子化合物の性状及びその取扱性等の観点から、前者の態様であることが好ましい。
 高分子化合物を含む溶液は、固体の高分子化合物を溶媒に溶解させたものであっても、単量体から重合反応して得た反応後溶液であっても、反応後溶液から高分子化合物を精製した精製後溶液であってもよい。反応後溶液の精製としては、分液、クロマトグラフィー、蒸留等の公知の精製方法が挙げられる。
 沈殿工程により、高分子化合物中に含まれる低分子量成分を効果的に除去することができるため、多分散度(Mw/Mn)が低い(即ち、1に近い)高分子化合物を得ることができる。
 また、沈殿工程において、第1の有機溶媒及び第2の有機溶媒の質量比(第1の有機溶媒/第2の有機溶媒)を変えることで、沈殿する高分子化合物の多分散度を変化させることができる。例えば、実施例2及び3では、第1の有機溶媒(トルエン)及び第2の有機溶媒(アセトン)の質量比はそれぞれ1/1及び1/3であり、沈殿した高分子化合物(P4)の多分散度はそれぞれ1.9及び2.4となる。また、実施例17、18及び19では、第1の有機溶媒(メチルエチルケトン)及び第2の有機溶媒(ジメチルスルホキシド)の質量比はそれぞれ4/1、3/2及び1/1であり、沈殿した高分子化合物(P21~P23)の多分散度はそれぞれ1.6、1.7及び2.1となる。即ち、沈殿工程では、第1の有機溶媒及び第2の有機溶媒の質量比(第1の有機溶媒/第2の有機溶媒)が大きくなるほど、沈殿する高分子化合物の多分散度が小さくなる(1に近くなる)。これより、沈殿工程において、第1の有機溶媒及び第2の有機溶媒の質量比(第1の有機溶媒/第2の有機溶媒)を調整することで、所望の分子量及び多分散度を有する高分子化合物を得ることができる。
 高分子化合物を含む溶液の溶媒は、高分子化合物を溶解し得るもの、即ち高分子化合物の良溶媒であれば特に限定はない。例えば、第1の有機溶媒で挙げられた溶媒、即ち、溶媒Aから選択される1種以上(特に、1種又は2種)を挙げることができる。好ましいものとして、例えば、トルエン、キシレン、テトラヒドロフラン、アニソール、ジメトキシベンゼン、シクロヘキシルベンゼン、それらの混合溶媒等が挙げられ、特に好ましいものとしてトルエン、テトラヒドロフラン、それらの混合溶媒が挙げられる。
 高分子化合物を含む溶液における高分子化合物の濃度は、特に限定はなく、通常、高分子化合物の溶媒に対する溶解度に基づいて設定できる。該濃度は、通常、0.05質量%~15質量%であり、0.1質量%~10質量%が好ましく、0.5質量%~5質量%がより好ましい。
 沈殿工程の混合液の温度は、通常、-100℃~200℃であり、好ましくは0℃~150℃であり、より好ましくは10℃~100℃であり、さら好ましくは15℃~40℃であり、特に好ましくは20℃~30℃である。
 沈殿工程は混合液を撹拌しながら行うのが好ましい。撹拌時間は、通常、1分~100時間であり、好ましくは30分~10時間である。
 沈殿工程は、必要に応じて複数回繰り返して実施することができ、例えば2~5回程度繰り返して実施することができる。これにより、多分散度のより小さい高分子化合物を取得することができる。
 2種以上の有機溶媒からなる混合溶媒の使用量は、高分子化合物を含む溶液1質量部に対して、通常、1質量部以上であり、好ましくは2質量部以上であり、より好ましくは3質量部以上であり、また、通常、1000質量部以下であり、好ましくは300質量部以下であり、より好ましくは100質量部以下である。
 高分子化合物は、所定のモノマーを重合して得られ、該モノマー由来の繰り返し単位(以下、構成単位とも表記する)を2個以上有する化合物である。該高分子化合物は、分子量分布を有し、ポリスチレン換算の重量平均分子量(Mw)が、1×10~1×10の範囲である。分子量の分析は、実施例の記載に従う。
 具体的には、高分子化合物としては、例えば、式(1)で表される構成単位からなる高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000009
[式中、
 Ar及びArは、それぞれ独立に、2価の芳香族炭化水素基、2価の複素環基、又は2価の芳香族炭化水素基と2価の複素環基が結合した基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは各々同一又は異なっていてもよい。
 Arは、1価の芳香族炭化水素基、又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは各々同一又は異なっていてもよい。
 aは、0~2の整数を表す。]
 式(1)中、Ar及びArとしては、2価の芳香族炭化水素基又は2価の複素環基が好ましく、2価の芳香族炭化水素基がより好ましく、これらの基は置換基(特には、アルキル基及びアリール基であり、これらの基は更に置換基を有していてもよい。)を有していてもよい。
 Ar及びArで表される2価の芳香族炭化水素基としては、式(A-1)~式(A-3)、式(A-8)又は式(A-9)で表される基が好ましく、式(A-1)又は式(A-9)で表される基がより好ましい。
 Ar及びArで表される2価の複素環基としては、式(A-24)又は式(A-35)で表される基が好ましい。
 式(1)中、aは、0又は1であることが好ましい。
 式(1)で表される構成単位の例として、式(1-1)~式(1-20)で表される構成単位が挙げられ、式(1-1)~式(1-4)、式(1-9)~式(1-11)、式(1-15)、式(1-16)又は式(1-20)で表される構成単位が好ましく、式(1-1)~式(1-3)、式(1-9)~式(1-11)、式(1-15)又は式(1-20)で表される構成単位がより好ましい。ただし、式(1)で表される構成単位は、これらの例示構成単位に限定されるわけではない。
Figure JPOXMLDOC01-appb-I000010
 [式中、Rは、前記と同じ意味を表す。Rが複数存在する場合、それらは同一でも異なっていてもよい。]
 式(1)で表される構成単位からなる高分子化合物は、上記の構成単位から選ばれる1種又は2種以上の構成単位からなる高分子化合物を包含する。
 式(1)で表される構成単位からなる高分子化合物は、例えば、塩素原子又は臭素原子を含有するモノマーを重合することによって得ることができる。重合方法として、例えば、モノマーをSuzukiカップリング反応により重合する方法、Buchwaldカップリング反応により重合する方法、Stilleカップリング反応により重合する方法、Kumadaカップリング反応により重合する方法、Yamamotoカップリング反応により重合する方法等が挙げられるが、Suzukiカップリング反応により重合する方法及びBuchwaldカップリング反応により重合する方法が、構造制御のしやすさの観点から好ましい。
2.3 溶媒処理工程
 上記の沈殿工程の後に、沈殿した高分子化合物の取扱性を向上させるなど後処理をし易くするために、さらに溶媒を添加して処理する工程を設けてもよい。この溶媒処理工程は、沈殿工程の終了後(即ち、高分子化合物を含む溶液を、2種以上の有機溶媒の混合溶媒と接触させて高分子化合物を沈殿させた後)、第3の有機溶媒を添加して攪拌するなどの処理を行う工程である。
 第3の有機溶媒は、下記[溶媒C]から選択される1種以上(好ましくは、1種又は2種)の溶媒が挙げられる。
 [溶媒C]
 溶媒Cは、高分子化合物を溶解し難いもの、即ち高分子化合物に対する貧溶媒であることが好ましい。具体的には、ハンセン溶解度パラメータの極性項P3(MPa0.5)が10<P3、及び/又は、ハンセン溶解度パラメータの水素結合項H3(MPa0.5)が10<H3である溶媒が挙げられる。
 溶媒CのP3の範囲は、通常、4を超えて、さらに6を超えて、よりさらに10を超えている。上限は特に限定はなく、例えば、40以下、さらに30以下である。
 溶媒CのH3の範囲は、通常、4を超えて、さらに6を超えて、よりさらに10を超えている。上限は特に限定はなく、例えば、40以下、さらに30以下である。
 溶媒Cは、上記P3及び/又はH3の数値範囲を満たす溶媒であれば特に限定はない。溶媒Cの一態様として、例えば、10<P3、及び10<H3である溶媒等が挙げられる。
 溶媒Cは、例えば、ニトリル系溶媒、ケトン系溶媒、スルホキシド系溶媒、アミド系溶媒、アルコール系溶媒(特に炭素原子数1~6のアルコール)、カルボン酸系溶媒等の中から選択することができる。
 溶媒Cのより好ましいものとして、例えば、メタノール、エタノール、2-プロパノール、アセトン、ジメチルスルホキシド、N,N-ジメチルホルムアミド等が挙げられ、特に好ましいものとしてメタノールが挙げられる。
 第3の有機溶媒の好ましい具体例は、第2の有機溶媒の好ましい具体例と同じであることが望ましい。さらに、第3の有機溶媒は、第2の有機溶媒と同一であることが好ましい。
 第3の有機溶媒は、沈殿工程で用いた第1の有機溶媒1質量部に対して、0.5質量部以上が好ましく、1質量部以上がより好ましく、1.5質量部以上がさらに好ましい。また、20質量部以下が好ましく、10質量部以下がより好ましい。
 溶媒処理工程の混合液温度は、通常、-100℃~200℃であり、好ましくは0℃~150℃であり、より好ましくは10℃~100℃であり、さら好ましくは15℃~40℃であり、特に好ましくは20℃~30℃である。
 溶媒処理工程は沈殿工程後の混合液を撹拌しながら行うのが好ましい。撹拌時間は、通常、1分~100時間であり、好ましくは30分~10時間である。
3.高分子化合物
 本発明の製造方法によれば、高分子化合物に含まれる低分子量成分が効果的に除去されるため、多分散度(Mw/Mn)が十分に小さい(即ち、1に近い)高分子化合物を得ることができる。また、沈殿工程において混合溶媒における第1の有機溶媒と第2の有機溶媒の比率を変えることにより、得られる高分子化合物の多分散度を調整することができるため、所望の多分散度を有する高分子化合物を得ることもできる。そのため、本製造方法で得られる高分子化合物は、有機EL素子の材料、有機光電変換素子の材料、有機トランジスタ素子の材料等として好適に用いられる。
4.本発明の発光素子の製造方法
 本発明の発光素子の製造方法は、陽極、陰極及び有機層を有する発光素子の製造方法であって、前記高分子化合物の製造方法で製造された高分子化合物を用いて前記有機層を形成する工程を含む、発光素子の製造方法である。
 有機層は、例えば、正孔輸送層、正孔注入層、発光層、電子輸送層、電子注入層が挙げられる。
 有機層の形成は、例えば、湿式法、乾式法で行うことができる。
 以下、本発明を更に詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 <分子量分析>
 高分子化合物のポリスチレン換算の重量平均分子量(Mw)、ポリスチレン換算の数平均分子量(Mn)、多分散度(Mw/Mn)は、ゲルパーミエーションクロマトグラフィ(GPC)により求めた。
 分析条件は以下の通り。
 測定装置:HLC-8320GPC(東ソー株式会社製)
 カラム:PLgel 10μm MIXED-B(東ソー株式会社製)
 カラム温度:40℃
 移動相:テトラヒドロフラン
 流量:0.5mL/分
 検出波長:228nm
 <実施例1>
 下記式(A)で表されるMw/Mn=3.5、Mw=2.4×10である高分子化合物(P1)をトルエンに溶解させ、2.5gの1質量%溶液を調製した。この溶液を、撹拌混合しているトルエン5gとメタノール5gの混合溶媒に22℃で滴下し、さらに30分撹拌して高分子化合物を沈殿させた(以下、「沈殿処理A」と表記する。)。析出した高分子化合物(P2)はMw/Mn=2.9、Mw=2.5×10であった。
Figure JPOXMLDOC01-appb-I000011
[式中、nは繰り返し単位数を表す。]
 <実施例2>
 トルエン5gとメタノール5gの混合溶媒に代えて、トルエン5gとアセトン5gの混合溶媒とした以外は、実施例1と同様に沈殿処理Aを行った。析出した高分子化合物(P3)はMw/Mn=1.9、Mw=2.6×10であった。
 <実施例3>
 トルエン5gとメタノール5gの混合溶媒に代えて、トルエン2.5gとアセトン7.5gの混合溶媒とした以外は、実施例1と同様に沈殿処理Aを行った。析出した高分子化合物(P4)はMw/Mn=2.4、Mw=2.5×10であった。
 <実施例4>
 前記式(A)で表されるMw/Mn=3.5、Mw=2.4×10である高分子化合物(P1)をテトラヒドロフランに溶解させ、2.5gの1質量%溶液を調製した。この溶液を、撹拌混合しているトルエン7.5gとメタノール2.5gの混合溶媒に22℃で滴下し、さらに30分撹拌した。析出した高分子化合物(P5)はMw/Mn=2.2、Mw=2.9×10であった。
 <実施例5>
 反応容器内を不活性ガス雰囲気とした後、化合物(M1)(4.3mmol)、化合物(M2)(4.4mmol)、ジクロロビス[トリス(2-メトキシフェニル)ホスフィン]パラジウム(0.026mmol)、トルエン(41g)、及び20質量%水酸化テトラエチルアンモニウム水溶液(30g)を加え、還流温度で3時間撹拌した。重合後溶液にトルエンを加えて1質量%溶液を調製した。その後、分液して水層を除去し、塩酸水溶液、アンモニア水溶液、水の順番で洗浄した。こうして前記式(A)で表されるMw/Mn=3.7、Mw=2.5×10である高分子化合物(P6)のトルエン溶液400gを得た。
 このトルエン溶液2.5gを、撹拌混合しているトルエン5gとメタノール5gの混合溶媒に22℃で滴下し、さらに30分撹拌した。析出した高分子化合物(P7)はMw/Mn=2.9、Mw=2.7×10であった。
Figure JPOXMLDOC01-appb-I000012
 <実施例6>
 下記式(B)で表されるMw/Mn=2.3、Mw=1.3×10である高分子化合物(P8)をトルエンに溶解させ、2.5gの1質量%溶液を調製した。この溶液を、撹拌混合しているトルエン8gとメタノール2gの混合溶媒に22℃で滴下し、さらに30分撹拌して、高分子化合物を沈殿させた(以下、「沈殿処理B」と表記する。)。析出した高分子化合物(P9)はMw/Mn=1.9、Mw=1.4×10であった。
Figure JPOXMLDOC01-appb-I000013
[式中、nは繰り返し単位数を表す。]
 <実施例7>
 トルエン8gとメタノール2gの混合溶媒に代えて、トルエン6gとメタノール4gの混合溶媒とした以外は、実施例6と同様に沈殿処理Bを行った。析出した高分子化合物(P10)はMw/Mn=2.0、Mw=1.4×10であった。
 <実施例8>
 トルエン8gとメタノール2gの混合溶媒に代えて、メチルイソブチルケトン8gとメチルエチルケトン2gの混合溶媒とした以外は、実施例6と同様に沈殿処理Bを行った。析出した高分子化合物(P11)はMw/Mn=1.5、Mw=2.1×10であった。
 <実施例9>
 トルエン8gとメタノール2gの混合溶媒に代えて、メチルイソブチルケトン6gとメチルエチルケトン4gの混合溶媒とした以外は、実施例6と同様に沈殿処理Bを行った。析出した高分子化合物(P12)はMw/Mn=1.6、Mw=2.1×10であった。
 <実施例10>
 トルエン8gとメタノール2gの混合溶媒に代えて、メチルイソブチルケトン4gとメチルエチルケトン6gの混合溶媒とした以外は、実施例6と同様に沈殿処理Bを行った。析出した高分子化合物(P13)はMw/Mn=1.7、Mw=2.1×10であった。
 <実施例11>
 トルエン8gとメタノール2gの混合溶媒に代えて、メチルイソブチルケトン2gとメチルエチルケトン8gの混合溶媒とした以外は、実施例6と同様に沈殿処理Bを行った。析出した高分子化合物(P14)はMw/Mn=1.7、Mw=2.0×10であった。
 <実施例12>
 下記式(C)で表されるMw/Mn=2.6、Mw=1.0×10である高分子化合物(P15)をトルエンに溶解させ、2.5gの1質量%溶液を調製した。この溶液を、撹拌混合しているヘプタン8gと2-プロパノール2gの混合溶媒に22℃で滴下し、さらに30分撹拌して、高分子化合物を沈殿させた(以下、「沈殿処理C」と表記する。)た。析出した高分子化合物(P16)はMw/Mn=1.9、Mw=1.1×10であった。
Figure JPOXMLDOC01-appb-I000014
[式中、nは繰り返し単位数を表す。]
 <実施例13>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、ヘプタン6gと2-プロパノール4gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P17)はMw/Mn=2.0、Mw=1.1×10であった。
 <実施例14>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、ヘプタン4gと2-プロパノール6gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P18)はMw/Mn=2.2、Mw=1.0×10であった。
 <実施例15>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、ジオキサン4gとN,N-ジメチルホルムアミド6gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P19)はMw/Mn=1.5、Mw=1.4×10であった。
 <実施例16>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、ジオキサン2gとN,N-ジメチルホルムアミド8gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P20)はMw/Mn=1.7、Mw=1.2×10であった。
 <実施例17>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、メチルエチルケトン8gとジメチルスルホキシド2gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P21)はMw/Mn=1.6、Mw=1.4×10であった。
 <実施例18>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、メチルエチルケトン6gとジメチルスルホキシド4gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P22)はMw/Mn=1.7、Mw=1.1×10であった。
 <実施例19>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、メチルエチルケトン4gとジメチルスルホキシド6gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P23)はMw/Mn=2.1、Mw=1.1×10であった。
 <実施例20>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、トルエン5gとメタノール5gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P24)はMw/Mn=1.9、Mw=1.0×10であった。
 <実施例21>
 実施例20と同じ沈殿処理Cを行った後、沈殿後のスラリーにメタノール5gを加えてさらに30分撹拌した。析出した高分子化合物(P25)はMw/Mn=2.0、Mw=1.0×10であった。
 <実施例22>
 実施例20と同じ沈殿処理Cを行った後、沈殿後のスラリーにメタノール12.5gを加えてさらに30分撹拌した。析出した高分子化合物(P26)はMw/Mn=2.1、Mw=1.0×10であった。
 <実施例23>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、トルエン2.5gとメタノール7.5gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P27)はMw/Mn=2.2、Mw=1.0×10であった。
 <実施例24>
 実施例23と同じ沈殿処理Cを行った後、沈殿後のスラリーにメタノール12.5gを加えてさらに30分撹拌した。析出した高分子化合物(P28)はMw/Mn=2.2、Mw=1.0×10であった。
 <比較例1>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、アセトン7.5gとメタノール2.5gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P29)はMw/Mn=2.6、Mw=1.0×10であった。
 <比較例2>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、アセトン5gとメタノール5gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P30)はMw/Mn=2.6、Mw=1.0×10であった。
 <比較例3>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、アセトン2.5gとメタノール7.5gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P31)はMw/Mn=2.6、Mw=1.0×10であった。
 <比較例4>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、エタノール7.5gとメタノール2.5gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P32)はMw/Mn=2.6、Mw=1.0×10であった。
 <比較例5>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、エタノール5gとメタノール5gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P33)はMw/Mn=2.6、Mw=1.0×10であった。
 <比較例6>
 ヘプタン8gと2-プロパノール2gの混合溶媒に代えて、エタノール2.5gとメタノール7.5gの混合溶媒とした以外は、実施例12と同様に沈殿処理Cを行った。析出した高分子化合物(P34)はMw/Mn=2.6、Mw=1.0×10であった。
 上記実施例及び比較例で得られた高分子化合物の多分散度の結果を以下に示す。
Figure JPOXMLDOC01-appb-T000015
 上記表に示すように、本発明の沈殿工程を採用する実施例1~24では、高分子化合物の多分散度を小さくできることが明らかとなった。一方、比較例1~6では、高分子化合物の多分散度は小さくならず変化しなかった。
 また、本発明の沈殿工程において、第1の有機溶媒及び第2の有機溶媒の質量比(第1の有機溶媒/第2の有機溶媒)を変えることで、沈殿する高分子化合物の多分散度を調整できることが明らかとなった。
 具体的には、実施例2及び3では、第1の有機溶媒(トルエン)及び第2の有機溶媒(アセトン)の質量比はそれぞれ1/1及び1/3であり、沈殿した高分子化合物(P4)の多分散度はそれぞれ1.9及び2.4となった。また、実施例17、18及び19では、第1の有機溶媒(メチルエチルケトン)及び第2の有機溶媒(ジメチルスルホキシド)の質量比はそれぞれ4/1、3/2及び1/1であり、沈殿した高分子化合物(P21~P23)の多分散度はそれぞれ1.6、1.7及び2.1となった。これより、沈殿工程では、第1の有機溶媒及び第2の有機溶媒の質量比(第1の有機溶媒/第2の有機溶媒)が大きくなるほど、沈殿する高分子化合物の多分散度が小さくなる(1に近くなる)ことが分かった。
 本発明の方法は、多分散度が十分に小さい高分子化合物を製造することができる。そのため、本方法で製造される高分子化合物は、有機EL素子の材料等として好適に用いられる。

Claims (11)

  1. 高分子化合物を含む溶液と2種以上の有機溶媒からなる混合溶媒とを接触させて高分子化合物を沈殿させる工程を含む高分子化合物の製造方法であって、
     該2種以上の有機溶媒は、互いに異なる第1の有機溶媒及び第2の有機溶媒からなり、
     該第1の有機溶媒は、溶媒Aから選択される1種以上であり、該第2の有機溶媒は、溶媒A及び溶媒Bから選択される1種以上である、製造方法:
    [溶媒A]
    ハンセン溶解度パラメータの極性項P1(MPa0.5)が0≦P1≦10であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が0≦H1≦10である溶媒、
    [溶媒B]
    ハンセン溶解度パラメータの極性項P2(MPa0.5)が10<P2、及び/又は、ハンセン溶解度パラメータの水素結合項H2(MPa0.5)が10<H2である溶媒。
  2. 前記第1の有機溶媒が、溶媒Aから選択される1種以上であり、前記第2の有機溶媒が、溶媒Bから選択される1種以上である、請求項1に記載の製造方法。
  3. 前記第1の有機溶媒が、溶媒Aから選択される1種以上であり、前記第2の有機溶媒が、溶媒B1から選択される1種以上である、請求項2に記載の製造方法:
    [溶媒B1]
    ハンセン溶解度パラメータの極性項P2(MPa0.5)が10<P2、及び、ハンセン溶解度パラメータの水素結合項H2(MPa0.5)が10<H2である溶媒。
  4. 前記第1の有機溶媒が、溶媒A1から選択される1種以上であり、前記第2の有機溶媒が、溶媒B1から選択される1種以上である、請求項3に記載の製造方法:
    [溶媒A1]
    ハンセン溶解度パラメータの極性項P1(MPa0.5)が0≦P1≦5であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が0≦H1≦4である溶媒。
  5. 前記第1の有機溶媒が、溶媒Aから選択される1種以上であり、前記第2の有機溶媒が、溶媒Aから選択される1種以上である、請求項1に記載の製造方法。
  6. 前記第1の有機溶媒が、溶媒Aから選択される1種以上であり、前記第2の有機溶媒が、溶媒A2から選択される1種以上である、請求項5に記載の製造方法:
    [溶媒A2]
    ハンセン溶解度パラメータの極性項P1(MPa0.5)が5<P1≦10であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が4<H1≦10である溶媒。
  7. 前記第1の有機溶媒が、溶媒A2から選択される1種以上であり、前記第2の有機溶媒が、溶媒A2から選択される1種以上である、請求項6に記載の製造方法。
  8. 前記沈殿工程の後に、さらに第3の有機溶媒を添加する溶媒処理工程を含み、該第3の有機溶媒が溶媒Cから選択される1種以上である、請求項1~7のいずれか一項に記載の製造方法:
    [溶媒C]
    ハンセン溶解度パラメータの極性項P3(MPa0.5)が10<P3、及び/又は、ハンセン溶解度パラメータの水素結合項H3(MPa0.5)が10<H3である溶媒。
  9. 前記高分子化合物が、式(1)で表される構成単位からなる高分子化合物である、請求項1~8のいずれか一項に記載の製造方法:
    Figure JPOXMLDOC01-appb-I000001
    [式中、
     Ar及びArは、それぞれ独立に、2価の芳香族炭化水素基、2価の複素環基、又は2価の芳香族炭化水素基と2価の複素環基が結合した基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは各々同一又は異なっていてもよい。
     Arは、1価の芳香族炭化水素基、又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは各々同一又は異なっていてもよい。
     aは、0~2の整数を表す。]。
  10. 高分子化合物を含む溶液と2種以上の有機溶媒からなる混合溶媒とを接触させて高分子化合物を沈殿させる沈殿工程を含む高分子化合物の多分散度を調整する方法であって、
     該2種以上の有機溶媒は、互いに異なる第1の有機溶媒及び第2の有機溶媒を含み、
     該第1の有機溶媒は、溶媒Aから選択される1種以上であり、該第2の有機溶媒は、溶媒A及び溶媒Bから選択される1種以上である、調整方法:
    [溶媒A]
    ハンセン溶解度パラメータの極性項P1(MPa0.5)が0≦P1≦10であり、及び、ハンセン溶解度パラメータの水素結合項H1(MPa0.5)が0≦H1≦10である溶媒、
    [溶媒B]
    ハンセン溶解度パラメータの極性項P2(MPa0.5)が10<P2、及び/又は、ハンセン溶解度パラメータの水素結合項H2(MPa0.5)が10<H2である溶媒。
  11. 陽極、陰極及び有機層を有する発光素子の製造方法であって、請求項1~9のいずれか一項に記載の高分子化合物の製造方法で製造された高分子化合物を用いて前記有機層を形成する工程を含む、発光素子の製造方法。
PCT/JP2019/003280 2018-02-09 2019-01-31 高分子化合物の製造方法 WO2019155972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980011523.7A CN111683993B (zh) 2018-02-09 2019-01-31 高分子化合物的制造方法
KR1020207025308A KR20200119832A (ko) 2018-02-09 2019-01-31 고분자 화합물의 제조 방법
EP19751536.4A EP3750944A4 (en) 2018-02-09 2019-01-31 POLYMER COMPOUND MANUFACTURING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022547A JP6411686B1 (ja) 2018-02-09 2018-02-09 高分子化合物の製造方法
JP2018-022547 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019155972A1 true WO2019155972A1 (ja) 2019-08-15

Family

ID=63920610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003280 WO2019155972A1 (ja) 2018-02-09 2019-01-31 高分子化合物の製造方法

Country Status (5)

Country Link
EP (1) EP3750944A4 (ja)
JP (1) JP6411686B1 (ja)
KR (1) KR20200119832A (ja)
CN (1) CN111683993B (ja)
WO (1) WO2019155972A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7320405B2 (ja) * 2018-09-28 2023-08-03 住友化学株式会社 高分子化合物の製造方法
JP7132189B2 (ja) * 2019-07-26 2022-09-06 テイ・エス テック株式会社 車両用内装部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236224A (ja) * 1988-07-27 1990-02-06 Japan Synthetic Rubber Co Ltd 重合体の回収方法
JP2008138133A (ja) * 2006-12-05 2008-06-19 Fujifilm Corp レジスト用樹脂の製造方法、該製造方法によって製造されたレジスト用樹脂、該樹脂を含有するレジスト組成物及びそれを用いたパターン形成方法
JP2010010246A (ja) * 2008-06-25 2010-01-14 Sumitomo Chemical Co Ltd 有機光電変換素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG94878A1 (en) * 2001-07-30 2003-03-18 Sumitomo Chemical Co Polymeric fluorescent substance and polymer light-emitting device using the same
TW200944560A (en) * 2007-10-25 2009-11-01 Fujifilm Corp Organic pigment fine particles and method for producing the same, pigment dispersion composition containing the same, photocurable composition, ink jet ink, and color filter using the same and method for producing the color filter
GB201418876D0 (en) * 2014-10-23 2014-12-03 Cambridge Display Tech Ltd Organic light emitting device
EP3496174B1 (en) * 2014-11-13 2024-06-12 Sumitomo Chemical Company, Limited Ink composition and photoelectric conversion element produced using same
JP6607940B2 (ja) * 2015-06-30 2019-11-20 富士フイルム株式会社 パターン形成方法、及び電子デバイスの製造方法
TWI738775B (zh) * 2016-05-13 2021-09-11 日商住友化學股份有限公司 光阻組成物及製造光阻圖案之方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236224A (ja) * 1988-07-27 1990-02-06 Japan Synthetic Rubber Co Ltd 重合体の回収方法
JP2008138133A (ja) * 2006-12-05 2008-06-19 Fujifilm Corp レジスト用樹脂の製造方法、該製造方法によって製造されたレジスト用樹脂、該樹脂を含有するレジスト組成物及びそれを用いたパターン形成方法
JP2010010246A (ja) * 2008-06-25 2010-01-14 Sumitomo Chemical Co Ltd 有機光電変換素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"HANSEN SOLUBILITY PARAMETERS A User's Handbook"
RSC ADVANCES, vol. 5, 2015, pages 101826 - 101833
See also references of EP3750944A4

Also Published As

Publication number Publication date
EP3750944A4 (en) 2021-11-24
JP2019137782A (ja) 2019-08-22
CN111683993B (zh) 2023-12-19
JP6411686B1 (ja) 2018-10-24
EP3750944A1 (en) 2020-12-16
KR20200119832A (ko) 2020-10-20
CN111683993A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
JP5375161B2 (ja) 組成物およびそれを用いた有機光電変換素子
JP5303896B2 (ja) 高分子化合物およびそれを用いた有機光電変換素子
JP6411686B1 (ja) 高分子化合物の製造方法
WO2020066510A1 (ja) 高分子化合物及び発光素子の製造方法
CN110235266B (zh) 组合物和使用该组合物得到的发光元件
KR102529488B1 (ko) 고분자 화합물의 제조 방법
JP2009215349A (ja) 高分子化合物およびそれを用いた有機光電変換素子
JP6566109B1 (ja) 高分子化合物、高分子化合物の製造方法及び発光素子
KR20210133980A (ko) 발광 소자
JP7091030B2 (ja) 高分子化合物の製造方法
JP2018113476A (ja) 組成物
JP6332581B1 (ja) 組成物及び該組成物を用いて得られる発光素子
JP2007211171A (ja) 新規な芳香族重合体
CN116134112A (zh) 组合物以及发光元件
WO2023003038A1 (ja) 有機エレクトロニクス材料及び有機エレクトロニクス素子
JP2021080401A (ja) 高分子化合物を含む組成物、該高分子化合物の製造方法及び該高分子化合物を用いてなる発光素子の製造方法
JP2012214731A (ja) 芳香族高分子化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207025308

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019751536

Country of ref document: EP

Effective date: 20200909