WO2019151127A1 - 組成物、架橋成形体及びタイヤ - Google Patents

組成物、架橋成形体及びタイヤ Download PDF

Info

Publication number
WO2019151127A1
WO2019151127A1 PCT/JP2019/002417 JP2019002417W WO2019151127A1 WO 2019151127 A1 WO2019151127 A1 WO 2019151127A1 JP 2019002417 W JP2019002417 W JP 2019002417W WO 2019151127 A1 WO2019151127 A1 WO 2019151127A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
composition
mass
group
parts
Prior art date
Application number
PCT/JP2019/002417
Other languages
English (en)
French (fr)
Inventor
拓海 足立
薫平 小林
拓哉 佐野
天斗 福本
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2019151127A1 publication Critical patent/WO2019151127A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a composition, a crosslinked molded article, and a tire.
  • Copolymers of conjugated diene compounds and aromatic vinyl compounds have good properties such as heat resistance, wear resistance, mechanical strength, and moldability, so pneumatic tires, hoses, anti-vibration rubber, etc. It is used for various applications.
  • Patent Document 1 discloses a conjugated diene rubber whose terminal is modified with a functional group. End-modified conjugated diene rubber has better compatibility with fillers as reinforcing agents such as carbon black and silica compared to unmodified conjugated diene rubber, so it can suppress heat generation and improve fuel efficiency. Is possible.
  • some aspects according to the present invention can improve work efficiency by effectively suppressing cold flow by solving at least a part of the above problems, and are excellent in high strength and wear resistance. It is an object of the present invention to provide a composition for producing a molded body.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • composition according to the present invention is: A polymer (A) having a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound; Water (B), Containing
  • the polymer (A) may be a polymer containing butadiene as the conjugated diene compound and having a vinyl bond content of a structural unit derived from the butadiene of 60 mol% or less.
  • One aspect of the tire according to the present invention is:
  • the crosslinked molded body of the above application example is used as a material of at least dread or sidewall.
  • composition of the present invention it is possible to improve the working efficiency by suppressing the cold flow, and it is possible to produce a crosslinked molded article having high strength and excellent wear resistance.
  • a numerical range described using “to” means that numerical values described before and after “to” are included as a lower limit value and an upper limit value.
  • room temperature is a temperature of 1 to 30 ° C., but is a temperature of 25 ° C. particularly when a test or the like is performed.
  • (Meth) acrylic is a concept encompassing both “acrylic” and “methacrylic”. Further, “ ⁇ (meth) acrylate” is a concept encompassing both “ ⁇ acrylate” and “ ⁇ methacrylate”.
  • composition contains a polymer (A) having a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound, and water (B),
  • each component contained in the composition according to the present embodiment will be described in detail.
  • Polymer (A) The polymer (A) contained in the composition according to this embodiment has a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound. A polymer (A) may have other structural units other than the said structural unit. The polymer (A) may be either a random copolymer or a block copolymer.
  • the content ratio of the polymer (A) in the composition according to the present embodiment is preferably 50 parts by mass or more, more preferably 55 parts by mass or more and 99.99 parts by mass when the total solid content of the composition is 100 parts by mass. It is 998 parts by mass or less.
  • the polymer (A) has a structural unit derived from a conjugated diene compound.
  • the conjugated diene compound include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, 2-phenyl- 1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like can be mentioned, and one or more selected from these can be used.
  • 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene are preferred.
  • the content ratio of the structural unit derived from the conjugated diene compound in the polymer (A) is preferably 50 to 95 parts by mass when the total structural unit of the polymer (A) is 100 parts by mass. More preferably, it is 95 parts by mass.
  • the content ratio of the structural unit derived from the conjugated diene compound is in the above range, it becomes easy to produce a crosslinked molded article having an excellent balance between high strength and wear resistance.
  • the polymer (A) has a structural unit derived from an aromatic vinyl compound.
  • the aromatic vinyl compound include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, and 4-t-butyl.
  • Styrene 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether, N, N -Dimethylaminoethylstyrene, N, N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-t-butylstyrene, 3-t-butylstyrene, 4-t-butylstyrene , Vinyl xylene, vinyl naphthalate , Vinylpyridine, diphenylethylene, tertiary amino group-containing diphenylethylene (for example, 1- (4-N, N-dimethyla
  • the content ratio of the structural unit derived from the aromatic vinyl compound in the polymer (A) is preferably 5 to 40 parts by mass when the total structural unit of the polymer (A) is 100 parts by mass, The amount is more preferably 10 to 40 parts by mass, and particularly preferably 10 to 35 parts by mass.
  • the content ratio of the structural unit derived from the aromatic vinyl compound is in the above range, it becomes easy to produce a crosslinked molded article having an excellent balance between high strength and wear resistance.
  • the polymer (A) may have other structural units other than the above structural units.
  • Examples of other structural units include repeating units derived from non-conjugated olefins.
  • Examples of the non-conjugated olefin include unsaturated carboxylic acid esters, unsaturated carboxylic acids, ⁇ , ⁇ -unsaturated nitrile compounds, propylene, and ethylene.
  • the total structural unit of the polymer (A) is 100 parts by mass, the other structural unit is preferably less than 25 parts by mass, and more preferably 15 parts by mass or less.
  • the unsaturated carboxylic acid ester is preferably a (meth) acrylic acid ester.
  • (meth) acrylic acid esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, (meth ) N-butyl acrylate, i-butyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth ) 2-ethylhexyl acrylate, n-octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acryl
  • unsaturated carboxylic acid examples include mono- or dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and the like. One type selected from these That can be the end. In particular, at least one selected from acrylic acid, methacrylic acid and itaconic acid is preferable.
  • ⁇ , ⁇ -unsaturated nitrile compound examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile, vinylidene cyanide, and one or more selected from these. Can be. Of these, at least one selected from acrylonitrile and methacrylonitrile is preferable, and acrylonitrile is particularly preferable.
  • the polymer (A) may further have a structural unit derived from the compound shown below.
  • examples of such compounds include fluorine-containing compounds having an ethylenically unsaturated bond such as vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene; ethylenically unsaturated carboxylic acids such as (meth) acrylamide and N-methylolacrylamide.
  • Acid alkyl amides Monoalkyl esters; Monoamides; Aminoethylacrylamide, dimethylaminomethylmethacrylamide, Methylaminopropylmethacrylamide Examples thereof include aminoalkylamides of ethylenically unsaturated carboxylic acids such as, and can be one or more selected from these.
  • the polymer (A) can be produced by a known synthesis method, but a solution polymerization method is particularly preferred. Moreover, as a polymerization form, you may use any of a batch type and a continuous type. In the case of using the solution polymerization method, as an example of a specific polymerization method, monomers such as a conjugated diene compound and an aromatic vinyl compound in an organic solvent are used as a polymerization initiator and a randomizer used as necessary. The method of superposing
  • the randomizer can be used for the purpose of adjusting the content (vinyl content) of vinyl bonds (1,2-bonds and 3,4-bonds). Randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di (tetrahydrofuryl) propane, 2- (2-ethoxyethoxy) -2-methylpropane, triethylamine, pyridine, N -Methylmorpholine, tetramethylethylenediamine and the like, and one or more selected from these can be used.
  • the iodine value of the polymer (A) is controlled by reducing the content of structural units derived from conjugated diene compounds and increasing the content of structural units derived from aromatic vinyl compounds and other structural units. can do. Further, the iodine value of the polymer may be controlled by hydrogenating a double bond in the polymer (hereinafter also referred to as “hydrogenation”) by a known method.
  • the iodine value of the polymer (A) When the iodine value of the polymer (A) is controlled by hydrogenation, it can be arbitrarily selected by changing the amount of the catalyst, the hydrogen pressure during the reaction, and the reaction time, but the structural unit derived from the conjugated diene compound
  • the hydrogenation rate is preferably in the range of 70 to 99%.
  • the hydrogenation rate is a value obtained by measurement by 1 H-NMR.
  • the polymer (A) is composed of an amino group, a carboxyl group, an oxazoline group, a group having a carbon-nitrogen double bond, a nitrogen-containing heterocyclic group, a phosphino group, a thiol group, and a hydrocarbyloxysilyl group at its end. It can also have one or more functional groups selected. By having such a functional group, for example, when applied to tire applications, the dispersibility of a reinforcing filler such as silica can be effectively improved, and the low hysteresis loss characteristic can be improved.
  • amino group means a primary amino group (—NH 2 ), a secondary amino group (—NHR, where R is a hydrocarbon group), and a tertiary amino group (—NRR ′, where R , R ′ represents any one of hydrocarbon groups).
  • the “carboxyl group” is a concept including not only —COOH but also —COOM (M is a monovalent metal ion) and an acetic anhydride segment.
  • the amino group, carboxyl group, oxazoline group, phosphino group, thiol group and the like may be protected by a protecting group such as a trisubstituted hydrocarbylsilyl group.
  • the iodine value of the polymer (A) is from 10 to 100, preferably from 10 to 80, and more preferably from 10 to 70.
  • the cold flow phenomenon tends to be reduced.
  • the iodine value is not within the above range, the main chain contains many unsaturated bonds, resulting in a decrease in the entanglement density of the main chain, or a decrease in crystallinity due to the ethylene chain being broken by the unsaturated bond, etc. It is considered that the shape retention of the polymer (A) is lowered due to the influence of the above.
  • the heat resistance tends to be deteriorated, and it may not be able to withstand a processing step at a high temperature such as coextrusion. This is considered to be an effect of the unsaturated bond contained in the polymer (A) reacting at a high temperature and denatured.
  • the iodine value of the polymer (A) in the present invention can be measured according to the method described in “JIS K 0070: 1992”. Since the iodine value is a value that represents the amount of halogen that reacts with 100 g of the target substance in terms of grams of iodine, the unit of iodine value is “g / 100 g”. In this specification, for example, “the iodine value is 10 to 100” means “the iodine value is 10 to 100 g / 100 g”.
  • the “vinyl bond content” in the present invention means a conjugated diene compound that is incorporated in the polymer (A) (before hydrogenation) in a 1, 2, or 1,4 bond bonding mode. It is the total ratio (on a mol% basis) of units incorporated in 1, 2 bonds and 3, 4 bonds among the derived structural units.
  • the vinyl bond content of the polymer (A) is preferably 60 mol% or less, more preferably 50 mol% or less, and particularly preferably 40 mol% or less. When the vinyl bond content is in the above range, the mechanical strength and wear resistance of the obtained molded product tend to be further improved.
  • the vinyl bond content (1,2 bond content and 3,4 bond content) can be calculated from the 1 H-NMR spectrum.
  • the polymer (A) is particularly preferably a polymer containing a structural unit derived from butadiene and having a vinyl bond content of the structural unit derived from butadiene of 60 mol% or less.
  • the weight average molecular weight (Mw) of the polymer (A) is preferably 1 ⁇ 10 5 to 1 ⁇ 10 6 , more preferably 1.5 ⁇ 10 5 to 5 ⁇ 10 5 , and 2 ⁇ 10. Particularly preferred is 5 to 4 ⁇ 10 5 .
  • the “weight average molecular weight” refers to a polystyrene equivalent weight average molecular weight measured by GPC (gel permeation chromatography).
  • the average ethylene chain length of the polymer (A) is 2 to 20, preferably 2 to 10, and more preferably 2 to 7.
  • the average ethylene chain length of the polymer (A) is in the above range, a crosslinked molded article having excellent mechanical strength and wear resistance can be obtained.
  • the average ethylene chain length is less than the above range, it indicates that more short chain branches and the like are introduced into the molecular chain, and crystallization by the ethylene chain is inhibited. There is a tendency to be inferior in wear resistance.
  • the average ethylene chain length exceeds the above range, workability and impact resistance may be deteriorated.
  • the average ethylene chain length is also referred to as the average 1,4-butylene chain length.
  • the number of 1,4-butylene units and the number of chains can be determined by 13 C-NMR and calculated from the following formula.
  • the average ethylene chain length of the copolymer as shown in the following formula is 1,4 butylene units in total and the number of chains is 4, so the average ethylene chain length is 2.
  • a known means can be adopted, and for example, it can be controlled by adding a potassium compound together with a polymerization initiator.
  • the aromatic vinyl compound introduced into the polymer (A) can be randomly arranged or a single chain of the aromatic vinyl compound can be added.
  • the average ethylene chain length of the polymer (A) can be controlled.
  • the potassium compound include potassium alkoxide, potassium phenoxide, potassium salt of organic carboxylic acid, potassium salt of organic sulfonic acid, potassium salt of organic phosphorous acid, and the like.
  • the composition according to the present embodiment contains water (B).
  • the content ratio of water (B) in the composition according to this embodiment is 0.05% by mass or more and 2.0% by mass or less, preferably 0.1% by mass or more and 1.5% by mass or less, More preferably, it is 0.2 mass% or more and 1.2 mass% or less.
  • the content ratio of water (B) in the composition When the content ratio of water (B) in the composition is within the above range, when the composition is molded, the moldability becomes excellent, and the cold flow of the molded product can be suppressed. If the content ratio of water (B) in the composition exceeds the above range, cold flow of the molded body may be easily generated, and water is heated to form bubbles, and bubbles are broken on the surface of the molded body. There is a possibility of failure (siriburst leak). When the content ratio of water (B) in the composition is less than the above range, the composition may be overdried and rubber may be burned, and the moldability of the composition tends to deteriorate.
  • the content ratio of water (B) in the composition is determined by heating the composition at a temperature and time suitable for the polymer to be used, using a dryer such as a dehumidifying dryer, a vacuum dryer, or a hot air dryer. Can be controlled. If the drying temperature is high and the drying time is long, the amount of water can be greatly reduced, but the composition may cause alteration such as scorch. Further, when the drying temperature is low and the drying time is short, the moisture content tends to increase. In any case, the content ratio of water (B) can be controlled by controlling the drying temperature and the drying time in this way.
  • a composition for a cross-linked molded body and a cross-linked molded body is a polymer other than the crosslinking agent and the polymer (A), if necessary, in order to prepare a cross-linked molded body.
  • crosslinking agent examples include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, alkylphenol resins having a methylol group, and one or more selected from these are used. can do.
  • sulfur when sulfur is used as the crosslinking agent, the amount is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polymer (A).
  • Examples of the polymer other than the polymer (A) include butadiene rubber (BR, such as high cis BR having 90% or more of cis-1,4 bonds, BR containing syndiotactic-1,2-polybutadiene (SPB)), styrene butadiene, and the like.
  • BR butadiene rubber
  • SPB syndiotactic-1,2-polybutadiene
  • SBR rubber
  • NR natural rubber
  • IR isoprene rubber
  • styrene isoprene copolymer rubber butadiene isoprene copolymer rubber, and the like.
  • One or more selected from these may be used. it can.
  • the filler examples include various reinforcing fillers such as carbon black, silica, clay, and calcium carbonate, and one or more selected from these can be used. Among these, carbon black, silica, or a combination of carbon black and silica is preferable. When carbon black or silica is used as the filler, the content of silica and / or carbon black is preferably 20 to 130 parts by mass with respect to 100 parts by mass of the polymer (A).
  • the vulcanization accelerator is not particularly limited, and examples thereof include sulfenamide-based, guanidine-based, thiuram-based, thiourea-based, thiazole-based, dithiocarbamic acid-based, xanthogenic acid-based and dithiophosphoric acid-based compounds, preferably 2 -Mercaptobenzothiazole, dibenzothiazyl disulfide, N-cyclohexyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide N-oxyethylene-2-benzothiazole sulfenamide, N, N′-diisopropyl-2-benzothiazole sulfenamide, diphenylguanidine, diortolylguanidine, orthotolylbisguanidine and the like.
  • the content of the vulcanization accelerator is usually 0.1 to 5 parts
  • stearic acid is usually used as the vulcanization aid or processing aid.
  • the content ratio of the vulcanization aid and the processing aid is usually 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer (A).
  • the composition for crosslinked molded bodies can be produced by kneading the above components using a kneader such as an open kneader (for example, a roll) or a closed kneader (for example, a Banbury mixer).
  • a kneader such as an open kneader (for example, a roll) or a closed kneader (for example, a Banbury mixer).
  • the composition for a crosslinked molded body produced in this manner can be applied to various products as a crosslinked molded body by crosslinking (vulcanizing) by heating or the like after the molding process.
  • tire applications such as tire treads, under treads, carcass, sidewalls, and bead parts; seal materials such as packings, gaskets, weather strips, O-rings; various vehicles such as automobiles, ships, aircraft, and railways Interior and exterior skin materials for building; building materials; anti-vibration rubbers for industrial machinery and equipment; various hoses and hose covers such as diaphragms, rolls, radiator hoses and air hoses; belts such as power transmission belts; Dust boots; Medical equipment materials; Fenders; Wire insulation materials; Other industrial products.
  • a vulcanized molded body obtained by using the above-mentioned composition for a crosslinked molded body can be suitably used as a material for tire treads and sidewalls because it has high strength and excellent wear resistance.
  • the tire can be manufactured according to a conventional method.
  • a material for a sidewall the composition for a cross-linked molded body is mixed with a kneader, and the sheet-like material is placed outside the carcass according to a conventional method and vulcanized and molded.
  • a pneumatic tire is obtained.
  • Example 1 3.1.1. Production of Polymer A1 An autoclave reactor with an internal volume of 50 liters purged with nitrogen was charged with 25600 g of cyclohexane, 76.8 g of tetrahydrofuran, 160 g of styrene, and 2976 g of 1,3-butadiene. After the temperature of the reactor contents was adjusted to 45 ° C., a cyclohexane solution containing n-butyllithium (72.44 mmol) was added to initiate polymerization. The polymerization was carried out under adiabatic conditions and the maximum temperature reached 85 ° C.
  • the polymer (A1) obtained above was dried by changing the drying time with a hot roll to prepare the composition used in Example 1.
  • the water content of the composition thus prepared was measured using an automatic heating and vaporization moisture measuring system (AQS-22320A manufactured by Hiranuma Sangyo Co., Ltd.) at a heating temperature of 150 ° C. and a nitrogen gas flow rate of 200 mL / min. .
  • the obtained composition for a crosslinked molded article was molded and vulcanized with a vulcanizing press at 160 ° C. for a predetermined time to obtain a crosslinked molded article.
  • Example 5 An autoclave reactor with an internal volume of 50 liters purged with nitrogen was charged with 25600 g of cyclohexane, 76.8 g of tetrahydrofuran, 480 g of styrene, and 2656 g of 1,3-butadiene. After adjusting the temperature of the reactor contents to 45 ° C., a cyclohexane solution containing n-butyllithium (37.97 mmol) was added to initiate polymerization. The polymerization was carried out under adiabatic conditions and the maximum temperature reached 85 ° C.
  • Comparative Example 1 A polymer P1 was obtained by the same operation as in Example 1 except that the polymerization formulation was changed as shown in Table 1. Except for using the polymer P1 instead of the polymer A1, a composition was prepared in the same manner as in Example 1 so as to have the composition described in Table 2, and a crosslinked molded product was produced and evaluated. The results are shown in Table 2.
  • Comparative Example 2 Polymerization reaction and desolvation were carried out by the same polymerization formulation and operation as in Example 4 except that the hydrogenation reaction was not carried out to obtain a polymer P2. Except for using the polymer P2 instead of the polymer A1, a composition was prepared in the same manner as in Example 1 so as to have the composition described in Table 2, and a crosslinked molded product was produced and evaluated. The results are shown in Table 2.
  • Comparative Example 3 A polymer P3 was obtained by the same polymerization prescription and operation as in Example 4 except that the integrated hydrogen flow rate in the reaction was reduced. Except for using the polymer P3 in place of the polymer A1, a composition was prepared in the same manner as in Example 1 so as to have the composition described in Table 2, and a crosslinked molded product was produced and evaluated. The results are shown in Table 2.
  • Comparative Example 4 A polymer P4 was obtained by the same polymerization formulation and operation as in Example 4 except that the temperature of the hot roll for drying was 95 ° C. Except for using the polymer P4 in place of the polymer A1, a composition was prepared in the same manner as in Example 1 so as to have the composition described in Table 2, and a crosslinked molded product was produced and evaluated. The results are shown in Table 2.
  • Table 1 shows the polymerization prescription of each polymer.
  • Table 2 shows the composition of each composition and each evaluation result.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

コールドフローを効果的に抑制することにより作業効率を向上できると共に、高強度かつ耐摩耗性に優れた成形体を作成するための組成物を提供する。 本発明に係る組成物は、共役ジエン化合物に由来する構造単位と、芳香族ビニル化合物に由来する構造単位とを有する重合体(A)と、水(B)と、を含有し、前記重合体(A)の平均エチレン連鎖長が2~20個であり、前記重合体(A)のヨウ素価が10~100であり、前記重合体(A)の含有量をMa(質量部)、前記水(B)の含有量をMb(質量部)とした場合に、Ma/Mb=50~2000である。

Description

組成物、架橋成形体及びタイヤ
 本発明は、組成物、架橋成形体及びタイヤに関する。
 共役ジエン化合物と芳香族ビニル化合物との共重合体は、耐熱性、耐摩耗性、機械的強度、成形加工性等の各種特性が良好であることから、空気入りタイヤやホース、防振ゴムなどの各種用途に使用されている。
 例えば空気入りタイヤとしては、二酸化炭素の排出による地球温暖化等の環境事情や、省資源・省エネルギーに対する意識の向上、昨今におけるガソリンの価格高騰等の経済事情などにより低燃費性能の向上が要求されている。こうした要求に応えるべく、従来、種々の共役ジエン系ゴムが提案されている(例えば、特許文献1参照)。特許文献1には、末端を官能基で変性した共役ジエン系ゴムについて開示されている。末端変性した共役ジエン系ゴムは、未変性の共役ジエン系ゴムと比べて、カーボンブラックやシリカ等の補強剤としてのフィラーとの相性が良いことから、発熱を抑えて低燃費性能を向上させることが可能となる。
特開2003-171418号公報
 しかしながら、従来の共役ジエン系ゴムは、コールドフローが発生しやすく、特に架橋前の原料ゴムのベール形状安定性が十分とはいえなかった。
 そこで、本発明に係る幾つかの態様は、上記課題の少なくとも一部を解決することで、コールドフローを効果的に抑制することにより作業効率を向上できると共に、高強度かつ耐摩耗性に優れた成形体を作成するための組成物を提供することを課題とする。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明に係る組成物の一態様は、
 共役ジエン化合物に由来する構造単位と、芳香族ビニル化合物に由来する構造単位とを有する重合体(A)と、
 水(B)と、
を含有し、
 前記重合体(A)の平均エチレン連鎖長が2~20個であり、
 前記重合体(A)のヨウ素価が10~100であり、
 前記重合体(A)の含有量をMa(質量部)、前記水(B)の含有量をMb(質量部)とした場合に、Ma/Mb=50~2000である。
 [適用例2]
 上記適用例の組成物において、
 前記重合体(A)が、前記共役ジエン化合物としてブタジエンを含み、前記ブタジエンに由来する構造単位のビニル結合含量が60モル%以下の重合体であることができる。
 [適用例3]
 上記適用例の組成物において、
 前記重合体(A)の末端に、アミノ基、炭素-窒素二重結合を有する基、窒素含有複素環基、ホスフィノ基、チオール基及びヒドロカルビルオキシシリル基からなる群より選ばれる一種以上の官能基を有することができる。
 [適用例4]
 本発明に係る架橋成形体の一態様は、
 上記適用例の組成物を用いて作成されたものである。
 [適用例5]
 本発明に係るタイヤの一態様は、
 上記適用例の架橋成形体を、少なくともドレッドまたはサイドウォールの材料として用いたものである。
 本発明に係る組成物によれば、コールドフローを抑制することにより作業効率を向上させることができると共に、高強度かつ耐摩耗性に優れた架橋成形体を製造することができる。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、以下に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
 本明細書において、「~」を用いて記載された数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む意味である。
 本明細書において、「室温」とは、1~30℃の温度であるが、特に試験等を行う場合には25℃の温度である。
 「(メタ)アクリル~」とは、「アクリル~」および「メタクリル~」の双方を包括する概念である。また、「~(メタ)アクリレート」とは、「~アクリレート」および「~メタクリレート」の双方を包括する概念である。
 1.組成物
 本実施形態に係る組成物は、共役ジエン化合物に由来する構造単位と芳香族ビニル化合物に由来する構造単位とを有する重合体(A)と、水(B)と、を含有し、前記重合体(A)の平均エチレン連鎖長が2~20個であり、前記重合体(A)のヨウ素価が10~100であり、前記重合体(A)の含有量をMa(質量部)、前記水(B)の含有量をMb(質量部)とした場合に、Ma/Mb=50~2000である。
 以下、本実施形態に係る組成物に含有される各成分について詳細に説明する。
 1.1.重合体(A)
 本実施形態に係る組成物に含まれる重合体(A)は、共役ジエン化合物に由来する構造単位と、芳香族ビニル化合物に由来する構造単位とを有する。重合体(A)は、上記構造単位以外のその他の構造単位を有してもよい。重合体(A)は、ランダム共重合体及びブロック共重合体のいずれであってもよい。
 本実施形態に係る組成物中の重合体(A)の含有割合は、組成物の全固形分を100質量部としたときに、好ましくは50質量部以上、より好ましくは55質量部以上99.998質量部以下である。
 以下、重合体(A)を構成する構造単位について説明する。
 1.1.1.共役ジエン化合物に由来する構造単位
 重合体(A)は、共役ジエン化合物に由来する構造単位を有する。共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等を挙げることができ、これらのうちから選択される1種以上であることができる。これらの中でも、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンが好ましい。
 重合体(A)中の共役ジエン化合物に由来する構造単位の含有割合は、重合体(A)の全構成単位を100質量部とした場合に、50~95質量部であることが好ましく、60~95質量部であることがより好ましい。共役ジエン化合物に由来する構造単位の含有割合が前記範囲にあると、高強度と耐摩耗性のバランスに優れた架橋成形体を製造することが容易となる。
 1.1.2.芳香族ビニル化合物に由来する構造単位
 重合体(A)は、芳香族ビニル化合物に由来する構造単位を有する。芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、4-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレン)等を挙げることができ、これらのうちから選択される1種以上であることができる。芳香族ビニル化合物としては、これらの中でもスチレン及び2-メチルスチレンが好ましい。
 重合体(A)中の芳香族ビニル化合物に由来する構造単位の含有割合は、重合体(A)の全構成単位を100質量部とした場合に、5~40質量部であることが好ましく、10~40質量部であることがより好ましく、10~35質量部であることが特に好ましい。芳香族ビニル化合物に由来する構造単位の含有割合が前記範囲にあると、高強度と耐摩耗性のバランスに優れた架橋成形体を製造することが容易となる。
 1.1.3.その他の構造単位
 重合体(A)は、上記構造単位以外のその他の構造単位を有してもよい。その他の構造単位としては、例えば非共役オレフィン等に由来する繰り返し単位が挙げられる。非共役オレフィンとしては、不飽和カルボン酸エステル、不飽和カルボン酸、α,β-不飽和ニトリル化合物、プロピレン、エチレン等が挙げられる。その他の構造単位は、重合体(A)の全構造単位を100質量部とした場合に、25質量部未満とすることが好ましく、15質量部以下とすることがより好ましい。
 上記不飽和カルボン酸エステルとしては、(メタ)アクリル酸エステルであることが好ましい。このような(メタ)アクリル酸エステルの具体例としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸i-アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリルなどを挙げることができ、これらのうちから選択される1種以上であることができる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル及び(メタ)アクリル酸2-エチルヘキシルから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。
 上記不飽和カルボン酸の具体例としては、例えばアクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等のモノまたはジカルボン酸を挙げることができ、これらの中から選択される1種以上であることができる。特に、アクリル酸、メタクリル酸及びイタコン酸から選択される1種以上であることが好ましい。
 上記α,β-不飽和ニトリル化合物の具体例としては、例えばアクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エチルアクリロニトリル、シアン化ビニリデンなどを挙げることができ、これらから選択される1種以上であることができる。これらのうち、アクリロニトリル及びメタクリロニトリルから選択される1種以上であることが好ましく、アクリロニトリルであることが特に好ましい。
 また、重合体(A)は、以下に示す化合物に由来する構成単位をさらに有してもよい。このような化合物としては、例えばフッ化ビニリデン、四フッ化エチレン、六フッ化プロピレン等のエチレン性不飽和結合を有する含フッ素化合物;(メタ)アクリルアミド、N-メチロールアクリルアミド等のエチレン性不飽和カルボン酸のアルキルアミド;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;エチレン性不飽和ジカルボン酸の酸無水物;モノアルキルエステル;モノアミド;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミド等のエチレン性不飽和カルボン酸のアミノアルキルアミド等を挙げることができ、これらのうちから選択される1種以上であることができる。
 1.1.4.重合体(A)の製造方法
 重合体(A)は、公知の合成法により製造することができるが、溶液重合法が特に好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、共役ジエン化合物及び芳香族ビニル化合物等の単量体を、重合開始剤及び必要に応じて用いられるランダマイザーの存在下で重合する方法が挙げられる。例えば特許第5402112号公報、特許第5731216号公報、国際公開第2014/014052号等に記載の公知の方法に従って製造することができる。重合開始剤としては、例えば特開2006-274178号公報に記載された重合開始剤を使用することができる。
 ランダマイザーは、ビニル結合(1,2-結合及び3,4-結合)の含有率(ビニル含量)の調整等を目的として用いることができる。ランダマイザーとしては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン等が挙げられ、これらのうちから選択される1種以上であることができる。
 なお、重合体(A)のヨウ素価は、共役ジエン化合物に由来する構造単位の含有量を低減し、芳香族ビニル化合物に由来する構造単位やその他の構造単位の含有量を増大させることにより制御することができる。また、公知の方法により重合体中の二重結合を水素添加(以下、「水添」ともいう。)することにより、重合体のヨウ素価を制御してもよい。
 重合体(A)のヨウ素価を水素添加により制御する場合、触媒の量、反応時の水素圧力及び反応時間を変えることにより任意に選定することができるが、共役ジエン化合物に由来する構造単位の水素添加率が70~99%の範囲であることが好ましい。なお、水素添加率はH-NMRで測定して得られた値である。
 重合体(A)は、その末端等にアミノ基、カルボキシル基、オキサゾリン基、炭素-窒素二重結合を有する基、窒素含有複素環基、ホスフィノ基、チオール基及びヒドロカルビルオキシシリル基からなる群より選ばれる一種以上の官能基を有することもできる。このような官能基を有することにより、例えばタイヤ用途に適用した場合に、シリカ等の補強充填剤の分散性を効果的に改善でき、低ヒステリシスロス特性を向上させることが可能となる。なお、本明細書において「アミノ基」とは、1級アミノ基(-NH)、2級アミノ基(-NHR、ただしRは炭化水素基)及び3級アミノ基(-NRR’、ただしR、R’は炭化水素基)のうちいずれか一つを指す。「カルボキシル基」とは、-COOHだけでなく、-COOM(Mは一価の金属イオン)や無水酢酸セグメントをも含む概念である。アミノ基、カルボキシル基、オキサゾリン基、ホスフィノ基及びチオール基等は、例えば3置換のヒドロカルビルシリル基等の保護基によって保護されていてもよい。
 1.1.5.重合体(A)の特性
<ヨウ素価>
 重合体(A)のヨウ素価は、10~100であり、10~80であることが好ましく、10~70であることがより好ましい。ヨウ素価が前記範囲にあると、コールドフロー現象を低減できる傾向がある。ヨウ素価が前記範囲にない場合、主鎖に不飽和結合が多く含まれることで主鎖の絡み合い密度が低下したり、エチレン連鎖が不飽和結合で分断されることにより結晶性が低下する、などの影響により重合体(A)の形状保持性が低下すると考えられる。また、ヨウ素価が前記範囲にない場合、耐熱性も悪化する傾向が認められ、共押出のような高温での加工工程に耐えられない場合がある。これは重合体(A)に含まれる不飽和結合が高温で反応し、変質する影響と考えられる。
 なお、本発明における重合体(A)のヨウ素価は、「JIS K 0070:1992」に記載の方法に準じて測定することができる。ヨウ素価は、対象となる物質100gと反応するハロゲンの量をヨウ素のグラム数に換算して表す値であるので、ヨウ素価の単位は「g/100g」となる。本明細書において、例えば、「ヨウ素価が10~100である」とは、「ヨウ素価が10~100g/100g」である旨を意味する。
<ビニル結合含量>
 本発明における「ビニル結合含量」とは、(水添前の)重合体(A)中に1,2結合、3,4結合及び1,4結合の結合様式で組み込まれている共役ジエン化合物に由来する構造単位のうち、1,2結合及び3,4結合で組み込まれている単位の合計割合(モル%基準)である。重合体(A)のビニル結合含量は、60モル%以下であることが好ましく、50モル%以下であることがより好ましく、40モル%以下であることが特に好ましい。ビニル結合含量が前記範囲にあると、得られる成形体の機械的強度及び耐摩耗性がさらに向上する傾向にある。ビニル結合含量(1,2結合含量及び3,4結合含量)は、H-NMRスペクトルから算出することができる。
 なお、重合体(A)が、ブタジエンに由来する構造単位を含み、前記ブタジエンに由来する構造単位のビニル結合含量が60モル%以下の重合体であることが特に好ましい。ブタジエンに由来する構造単位のビニル結合含量を60モル%以下にすることで、得られる成形体の機械的強度及び耐摩耗性が非常に良好となるだけでなく、タイヤ用途としたときのグリップ特性も良好となる傾向がある。
<重量平均分子量(Mw)>
 重合体(A)の重量平均分子量(Mw)は、1×10~1×10であることが好ましく、1.5×10~5×10であることがより好ましく、2×10~4×10であることが特に好ましい。重合体(A)の重量平均分子量(Mw)が前記範囲にあると、組成物の加工性に優れ、高強度及び耐摩耗性に優れた成形体が得られやすい。なお、「重量平均分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリスチレン換算の重量平均分子量のことを指す。
<平均エチレン連鎖長>
 重合体(A)の平均エチレン連鎖長は、2~20個であり、2~10個であることが好ましく、2~7個であることがより好ましい。重合体(A)の平均エチレン連鎖長が前記範囲にあると、機械的強度及び耐摩耗性に優れた架橋成形体を得ることができる。平均エチレン連鎖長が前記範囲未満である場合、分子鎖中に短鎖分岐等がより多く導入されていることを示し、エチレン鎖による結晶化が阻害されるので、架橋成形体の機械的強度及び耐摩耗性に劣る傾向がある。一方、平均エチレン連鎖長が前記範囲を超える場合、加工性、耐衝撃性が悪化するおそれがある。平均エチレン連鎖長は、平均1,4-ブチレン連鎖長ともいい、13C-NMRにより1,4-ブチレンのユニット数及び連鎖数を求め、下記式から算出することができる。
 (平均エチレン連鎖長)=(1,4-ブチレンユニット数)/(1,4-ブチレン連鎖数)
 例えば、下記式に示すような共重合体の平均エチレン連鎖長は、1,4-ブチレンユニットが合計8ユニットであり、連鎖数が4つであるから、平均エチレン連鎖長は2となる。
Figure JPOXMLDOC01-appb-C000001
 重合体(A)の平均エチレン連鎖長を調整する方法としては、公知の手段を採ることができるが、例えば、重合開始剤とともにカリウム化合物を添加することにより制御することができる。重合開始剤とともにカリウム化合物を添加することで、重合体(A)中に導入される芳香族ビニル化合物をランダムに配列したり、芳香族ビニル化合物の単連鎖を付与したりすることができ、これにより重合体(A)の平均エチレン連鎖長を制御することができる。カリウム化合物としては、カリウムアルコキシド、カリウムフェノキシド、有機カルボン酸のカリウム塩、有機スルホン酸のカリウム塩、有機亜リン酸のカリウム塩等が挙げられる。
 1.2.水(B)
 本実施形態に係る組成物は、水(B)を含有する。本実施形態に係る組成物における水(B)の含有割合は、0.05質量%以上2.0質量%以下であり、0.1質量%以上1.5質量%以下であることが好ましく、0.2質量%以上1.2質量%以下であることがより好ましい。また、本実施形態に係る組成物において、重合体(A)の含有量をMa(質量部)、水(B)の含有量をMb(質量部)とした場合に、Ma/Mb=50~2000であり、Ma/Mb=67~1000であることが好ましく、Ma/Mb=83~500であることがより好ましい。
 組成物中の水(B)の含有割合が前記範囲であると、組成物を成形する際に、成形加工性に優れるようになり、成形体のコールドフローを抑制することができる。組成物中の水(B)の含有割合が前記範囲を超えると、成形体のコールドフローが発生しやすくなるおそれがあり、また水が加熱されて気泡となり、成形体表面で破泡して外観不良(シリバーストリーク)となる可能性がある。組成物中の水(B)の含有割合が前記範囲未満であると、過乾燥になり、ゴム焼けを起こすおそれがあり、また組成物の成形加工性が悪化しやすくなる。
 組成物中の水(B)の含有割合は、組成物を脱湿乾燥機、減圧乾燥機、熱風乾燥機などの乾燥機を用い、使用する重合体に適した温度及び時間で加熱処理して制御することができる。乾燥温度が高く、乾燥時間が長いと水分量を大幅に減少させることができるが、組成物がスコーチなどの変質を引き起こす可能性がある。また、乾燥温度が低く、乾燥時間が短いと、水分含有率が増大する傾向がある。いずれにしても、このように乾燥温度と乾燥時間を制御することにより、水(B)の含有割合を制御することができる。
 2.架橋成形体用組成物及び架橋成形体
 架橋成形体用組成物とは、架橋成形体を作成するために、上記の組成物へ必要に応じて、架橋剤、重合体(A)以外の重合体、フィラー、老化防止剤、亜鉛華、軟化剤、加硫促進剤、シランカップリング剤、相溶化剤、加硫助剤、加工助剤、プロセス油、スコーチ防止剤など、タイヤ用ゴム組成物において一般に使用される各種添加剤を配合した組成物のことをいう。これらの添加剤の配合割合は、本発明の効果を損なわない範囲で、適宜選択することができる。
 架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられ、これらのうちから選択される1種以上を使用することができる。例えば、架橋剤として硫黄を用いる場合、重合体(A)100質量部に対して、0.1~5質量部であることが好ましい。
 重合体(A)以外の重合体としては、ブタジエンゴム(BR、例えばシス-1,4結合90%以上のハイシスBR、シンジオタクチック-1,2-ポリブタジエン(SPB)含有BRなど)、スチレンブタジエンゴム(SBR)、天然ゴム(NR)、イソプレンゴム(IR)、スチレンイソプレン共重合体ゴム、ブタジエンイソプレン共重合体ゴム等が挙げられ、これらのうちから選択される1種以上を使用することができる。
 フィラーとしては、カーボンブラック、シリカ、クレー、炭酸カルシウム等の各種の補強性充填剤が挙げられ、これらのうちから選択される1種以上を使用することができる。これらの中でも、カーボンブラック、シリカ、又はカーボンブラックとシリカとの併用が好ましい。フィラーとしてカーボンブラックやシリカを用いる場合、重合体(A)100質量部に対して、シリカ及び/又はカーボンブラックの含有量は20~130質量部であることが好ましい。
 加硫促進剤としては、特に限定されないが、例えばスルフェンアミド系、グアニジン系、チウラム系、チオウレア系、チアゾール系、ジチオカルバミン酸系、キサントゲン酸系、ジチオリン酸系の化合物が挙げられ、好ましくは2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビスグアニジンなどが挙げられる。加硫促進剤の含有割合は、重合体(A)100質量部に対して、通常、0.1~5質量部であり、好ましくは0.4~4質量部である。
 加硫助剤又は加工助剤としては、通常、ステアリン酸が用いられる。加硫助剤及び加工助剤の含有割合は、重合体(A)100質量部に対して、通常0.5~5質量部である。
 架橋成形体用組成物は、上記成分を、開放式混練機(例えば、ロール)、密閉式混練機(例えば、バンバリーミキサー)等の混練機を用いて混練することにより製造することができる。
 このようにして製造された架橋成形体用組成物は、成形加工後に加熱等により架橋(加硫)することによって、架橋成形体として各種製品に適用可能である。具体的には、例えばタイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;パッキン、ガスケット、ウェザーストリップ、O-リング等のシール材;自動車、船舶、航空機、鉄道等の各種車両用の内外装表皮材;建築材料;産業機械用や設備用等の防振ゴム類;ダイヤフラム、ロール、ラジエータホース、エアーホース等の各種ホース及びホースカバー類;動力伝達用ベルトなどのベルト類;ライニング;ダストブーツ;医療用機器材料;防舷材;電線用絶縁材料;その他の工業品等の用途に適用できる。特に、上記架橋成形体用組成物を用いて得られる加硫成形体は、高強度かつ耐摩耗性に優れているため、タイヤのトレッド及びサイドウォール用の材料として好適に用いることができる。
 タイヤの製造は、常法に従い行うことができる。例えばサイドウォール用の材料とする場合には、上記架橋成形体用組成物を混練機で混合し、シート状にしたものを、常法に従いカーカスの外側に配して加硫成形することにより、サイドウォールゴムとして形成され、空気入りタイヤが得られる。
 3.実施例
 以下、本発明を実施例に基づいて具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。
 3.1.実施例1
 3.1.1.重合体A1の製造
 窒素置換した内容積50リットルのオートクレーブ反応器に、シクロヘキサン25600g、テトラヒドロフラン76.8g、スチレン160g、1,3-ブタジエン2976gを仕込んだ。反応器内容物の温度を45℃に調整した後、n-ブチルリチウム(72.44mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点で、ブタジエン64gを追添し、さらに1分間重合させた後、四塩化ケイ素2.64gを加え、15分間撹拌した。
 次いで、反応液を80℃以上にして反応器内に水素を導入し、その後、[ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド](「[クロロビス(2,4-シクロペンタジエニル)チタン(IV)フルフリルアルコキシド]」ともいう。)を2.96g、ジエチルアルミニウムクロライド1.32g、及びn-ブチルリチウム1.28gを加え、水素圧0.7MPa以上を保つようにして水添反応を行った。所定の水素積算流量に到達後、反応液を室温、常圧に戻して反応器より抜き出した。
 次いで、脱溶媒槽の液相の温度:95℃で、2時間スチームストリッピング(スチーム温度:190℃)により反応液の脱溶媒を行い、110℃に調温された熱ロールにより乾燥を行うことで重合体A1を得た。
 3.1.2.評価方法
<スチレン含量の評価>
 重合体A1を四塩化炭素に溶解し、500MHzのH-NMRスペクトルからスチレン含量を算出した。結果を表2に示す。
<ビニル結合(1,2結合及び3,4結合)量の評価>
 重合体A1の500MHzのH-NMRスペクトルからビニル結合(1,2結合及び3,4結合)量を算出した。結果を表2に示す。
<ヨウ素価の評価>
 重合体A1を「JIS K 0070:1992」に記載の方法に準じてヨウ素価を算出した。結果を表2に示す。
<重量平均分子量(Mw)の評価>
 下記条件のゲルパーミエーションクロマトグラフィー(GPC)を使用して得られたGPC曲線の最大ピークの頂点に相当する保持時間から、ポリスチレン換算で求めた。結果を表2に示す。
  カラム;商品名「GMHXL」(東ソー社製)2本
  カラム温度;40℃
  移動相;テトラヒドロフラン
  流速;1.0ml/分
  サンプル濃度;10mg/20ml
<平均エチレン連鎖長の評価>
 13C-NMRにより1,4-ブチレンのユニット数及び連鎖数を求め、下記式から平均エチレン連鎖長を算出した。結果を表2に示す。
 (平均エチレン連鎖長)=(1,4-ブチレンユニット数)/(1,4-ブチレン連鎖数)
 3.1.3.組成物の調製及び評価
 上記で得られた重合体(A1)を熱ロールによる乾燥時間を変更して乾燥を行い、実施例1で使用する組成物を作製した。なお、このようにして作製した組成物の水分含有量は、自動加熱気化水分測定システム(平沼産業株式会社製 AQS-22320A)を使用し、加熱温度150℃、窒素ガス流量200mL/分で測定した。
<コールドフロー>
 得られた組成物を70℃に保持し、圧力24.1kPaの条件で、6.35mmのオリフィスから押し出した。押し出し開始の10分後から、さらに90分間の、重合体A1の押し出し量(mg)を測定した。測定結果は後述する比較例3を100とした指数で示し、値が大きいほど、形状安定性が悪く、取扱いが困難となる。結果を表2に示す。
 3.1.4.架橋成形体の製造
 温度制御装置付きプラストミル(内容量:250ml)を用いて、充填率72%、回転数60rpmの条件で、上記で得られた組成物100質量部、シリカ(ソルベイ社製、商品名「ZEOSIL 1165MP」)45質量部、シランカップリング剤(エボニック社製、商品名「Si75」)3.6質量部、ステアリン酸(ADEKA社製)2.0質量部、老化防止剤(大内新興化学工業社製、商品名「ノクラック810NA」)1.0質量部及び酸化亜鉛3.0質量部を配合して一段目の混練りを行った。次いで、室温まで冷却後、硫黄1.5質量部及び加硫促進剤(大内新興化学工業社製、商品名「ノクセラーCZ」)1.8質量部、加硫促進剤(大内新興化学工業社製、商品名「ノクセラーD」)1.5質量部を配合し、二段目の混練りを行って架橋成形体用組成物を製造した。
 得られた架橋成形体用組成物を成形し、160℃で所定時間、加硫プレスにて加硫して架橋成形体を得た。
 3.1.5.架橋成形体の評価
<引張試験>
 得られた架橋成形体を用いて、JIS K6251に準拠して引張試験を行った。ここでは、試験サンプルとしてダンベル状3号形を用いて、破断時の応力(TB)及び破断時の伸び(EB)を室温で測定した。TB及びEBの数値が大きいほど破断強度が大きく、材料の機械的強度が高く良好であることを示す。結果を表2に示す。
<耐摩耗性試験>
 得られた架橋成形体を測定用試料とし、DIN摩耗試験機(東洋精機社製)を用いて、JIS K6264-2:2005に準拠し、荷重10Nで25℃にて測定した。測定結果は比較例3を100とした指数で示し、数値が大きいほど耐摩耗性が良好であることを示す。結果を表2に示す。
 3.2.実施例2~4
 表1に記載の組成に変更した以外は実施例1と同じ操作により、それぞれ重合体A2、A3、A4を得た。重合体A1に代えてそれぞれ重合体A2、A3、A4を用いて表2に記載の組成に変更した以外は、実施例1と同様にして各組成物を調製し、各架橋成形体を製造して評価した。結果を表2に示す。
 3.3.実施例5
 窒素置換した内容積50リットルのオートクレーブ反応器に、シクロヘキサン25600g、テトラヒドロフラン76.8g、スチレン480g、1,3-ブタジエン2656gを仕込んだ。反応器内容物の温度を45℃に調整した後、n-ブチルリチウム(37.97mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点で、ブタジエン64gを追加し、さらに1分間重合させた後、N,N-ジメチルアミノプロピルメチルジエトキシシラン6.3gを含むシクロヘキサン溶液を加え、15分間反応させた。
 次いで、反応液を80℃以上にして系内に水素を導入し、その後、[ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド]2.65g、ジエチルアルミニウムクロライド3.99g、及びn-ブチルリチウム1.12gを加え、水素圧0.7MPa以上を保つようにして水添反応させた。所定の水素積算流量に到達後、反応液を常温、常圧に戻して反応容器より抜き出した。
 その後、実施例1と同様の操作により反応液の脱溶媒を行い、110℃に調温された熱ロールにより乾燥を行うことで重合体A5を得た。
 重合体A1に代えて重合体A5を用いた点以外は、実施例1と同様にして表2に記載の組成となるように組成物を調製し、架橋成形体を製造して評価した。結果を表2に示す。
 3.4.比較例1
 重合処方を表1に記載の通りに変更した以外は、実施例1と同じ操作により重合体P1を得た。重合体A1に代えて重合体P1を用いた点以外は、実施例1と同様にして表2に記載の組成となるように組成物を調製し、架橋成形体を製造して評価した。結果を表2に示す。
 3.5.比較例2
 水添反応を行わなかった以外は実施例4と同じ重合処方及び操作により、重合反応及び脱溶媒を行い、重合体P2を得た。重合体A1に代えて重合体P2を用いた点以外は、実施例1と同様にして表2に記載の組成となるように組成物を調製し、架橋成形体を製造して評価した。結果を表2に示す。
 3.6.比較例3
 反応における水素積算流量を少なくした点以外は、実施例4と同じ重合処方及び操作により重合体P3を得た。重合体A1に代えて重合体P3を用いた点以外は、実施例1と同様にして表2に記載の組成となるように組成物を調製し、架橋成形体を製造して評価した。結果を表2に示す。
 3.7.比較例4
 乾燥を行う熱ロールの温度を95℃にした以外は、実施例4と同じ重合処方及び操作により重合体P4を得た。重合体A1に代えて重合体P4を用いた点以外は、実施例1と同様にして表2に記載の組成となるように組成物を調製し、架橋成形体を製造して評価した。結果を表2に示す。
 3.8.評価結果
 表1に各重合体の重合処方を示す。表2に各組成物の組成及び各評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2から明らかなように、共役ジエン化合物に由来する構造単位及び芳香族ビニル化合物に由来する構造単位を含有し、平均エチレン連鎖長が2~20個かつヨウ素価が10~100である重合体と、特定量の水とを有する組成物は、コールドフローが効果的に抑制できることがわかった。また、該組成物を含む架橋成形体用組成物から製造された架橋成形体は、材料の機械的強度及び耐摩耗性が改良されることがわかった。
 

Claims (5)

  1.  共役ジエン化合物に由来する構造単位と、芳香族ビニル化合物に由来する構造単位とを有する重合体(A)と、
     水(B)と、
    を含有し、
     前記重合体(A)の平均エチレン連鎖長が2~20個であり、
     前記重合体(A)のヨウ素価が10~100であり、
     前記重合体(A)の含有量をMa(質量部)、前記水(B)の含有量をMb(質量部)とした場合に、Ma/Mb=50~2000である、組成物。
  2.  前記重合体(A)が、前記共役ジエン化合物としてブタジエンを含み、前記ブタジエンに由来する構造単位のビニル結合含量が60モル%以下の重合体である、請求項1に記載の組成物。
  3.  前記重合体(A)の末端に、アミノ基、炭素-窒素二重結合を有する基、窒素含有複素環基、ホスフィノ基、チオール基及びヒドロカルビルオキシシリル基からなる群より選ばれる一種以上の官能基を有する、請求項1または請求項2に記載の組成物。
  4.  請求項1ないし請求項3のいずれか一項に記載の組成物を用いて作成された架橋成形体。
  5.  請求項4に記載の架橋成形体を、少なくともドレッドまたはサイドウォールの材料として用いたタイヤ。
     
PCT/JP2019/002417 2018-01-31 2019-01-25 組成物、架橋成形体及びタイヤ WO2019151127A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-014992 2018-01-31
JP2018014992 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151127A1 true WO2019151127A1 (ja) 2019-08-08

Family

ID=67479209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002417 WO2019151127A1 (ja) 2018-01-31 2019-01-25 組成物、架橋成形体及びタイヤ

Country Status (2)

Country Link
TW (1) TW201936651A (ja)
WO (1) WO2019151127A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950723A1 (en) 2020-08-03 2022-02-09 Asahi Kasei Kabushiki Kaisha Rubber composition, and tire
WO2022034865A1 (ja) 2020-08-11 2022-02-17 旭化成株式会社 包装成形体、架橋用ゴム組成物、包装成形体の製造方法、架橋用ゴム組成物の製造方法、及びタイヤ用トレッド
WO2022065509A1 (ja) 2020-09-28 2022-03-31 旭化成株式会社 ベール成形体
EP3988327A1 (en) 2020-10-16 2022-04-27 Asahi Kasei Kabushiki Kaisha Crosslinking rubber composition, method for producing crosslinked rubber, and tread for tire
WO2022091982A1 (ja) 2020-10-30 2022-05-05 旭化成株式会社 ゴム組成物、及びタイヤ
WO2022123939A1 (ja) 2020-12-08 2022-06-16 旭化成株式会社 水添ジエン重合体、ベール、ゴム組成物、及びタイヤ
WO2022149471A1 (ja) 2021-01-07 2022-07-14 旭化成株式会社 架橋用ゴム組成物、タイヤ用ゴム組成物、タイヤのサイドウォール用成形体、シート、タイヤのサイドウォールの製造方法、タイヤのサイドウォール
WO2022163152A1 (ja) 2021-01-28 2022-08-04 旭化成株式会社 ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド
WO2023038095A1 (ja) 2021-09-13 2023-03-16 日本エラストマー株式会社 架橋ゴム組成物、架橋ゴム組成物の製造方法
WO2023171191A1 (ja) 2022-03-10 2023-09-14 旭化成株式会社 共役ジエン系重合体、共役ジエン系重合体組成物、及び共役ジエン系重合体架橋物
US11905357B2 (en) 2020-06-26 2024-02-20 Asahi Kasei Kabushiki Kaisha Molded bale of rubber composition, method for producing molded bale of rubber composition, crosslinking rubber composition, and tread for tire
US11905395B2 (en) 2020-06-26 2024-02-20 Asahi Kasei Kabushiki Kaisha Molded bale of rubber composition, method for producing molded bale, crosslinking rubber composition, and tread for tire
US11912858B2 (en) 2020-07-03 2024-02-27 Asahi Kasei Kabushiki Kaisha Molded bale of rubber-like block copolymer, rubber composition, crosslinking rubber composition, and tread for tire
EP4364963A1 (en) 2022-11-07 2024-05-08 Sumitomo Rubber Industries, Ltd. Tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023409A (ja) * 1983-07-20 1985-02-06 Japan Synthetic Rubber Co Ltd スチレン−ブタジエン共重合体ゴム
JP2000053706A (ja) * 1998-08-07 2000-02-22 Jsr Corp 水添共役ジオレフィン系重合体
WO2017014282A1 (ja) * 2015-07-22 2017-01-26 Jsr株式会社 水添共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
WO2017090421A1 (ja) * 2015-11-26 2017-06-01 Jsr株式会社 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
WO2017150645A1 (ja) * 2016-03-03 2017-09-08 Jsr株式会社 水添共役ジエン系ゴム、ゴム組成物、架橋ゴム及びタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023409A (ja) * 1983-07-20 1985-02-06 Japan Synthetic Rubber Co Ltd スチレン−ブタジエン共重合体ゴム
JP2000053706A (ja) * 1998-08-07 2000-02-22 Jsr Corp 水添共役ジオレフィン系重合体
WO2017014282A1 (ja) * 2015-07-22 2017-01-26 Jsr株式会社 水添共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
WO2017090421A1 (ja) * 2015-11-26 2017-06-01 Jsr株式会社 水添共役ジエン系重合体の製造方法、水添共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
WO2017150645A1 (ja) * 2016-03-03 2017-09-08 Jsr株式会社 水添共役ジエン系ゴム、ゴム組成物、架橋ゴム及びタイヤ

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11905395B2 (en) 2020-06-26 2024-02-20 Asahi Kasei Kabushiki Kaisha Molded bale of rubber composition, method for producing molded bale, crosslinking rubber composition, and tread for tire
US11905357B2 (en) 2020-06-26 2024-02-20 Asahi Kasei Kabushiki Kaisha Molded bale of rubber composition, method for producing molded bale of rubber composition, crosslinking rubber composition, and tread for tire
US11912858B2 (en) 2020-07-03 2024-02-27 Asahi Kasei Kabushiki Kaisha Molded bale of rubber-like block copolymer, rubber composition, crosslinking rubber composition, and tread for tire
EP3950723A1 (en) 2020-08-03 2022-02-09 Asahi Kasei Kabushiki Kaisha Rubber composition, and tire
WO2022034865A1 (ja) 2020-08-11 2022-02-17 旭化成株式会社 包装成形体、架橋用ゴム組成物、包装成形体の製造方法、架橋用ゴム組成物の製造方法、及びタイヤ用トレッド
KR20230056039A (ko) 2020-09-28 2023-04-26 아사히 가세이 가부시키가이샤 베일 성형체
WO2022065509A1 (ja) 2020-09-28 2022-03-31 旭化成株式会社 ベール成形体
EP3988327A1 (en) 2020-10-16 2022-04-27 Asahi Kasei Kabushiki Kaisha Crosslinking rubber composition, method for producing crosslinked rubber, and tread for tire
WO2022091982A1 (ja) 2020-10-30 2022-05-05 旭化成株式会社 ゴム組成物、及びタイヤ
KR20230054715A (ko) 2020-10-30 2023-04-25 아사히 가세이 가부시키가이샤 고무 조성물 및 타이어
KR20230093295A (ko) 2020-12-08 2023-06-27 아사히 가세이 가부시키가이샤 수소 첨가 디엔 중합체, 베일, 고무 조성물 및 타이어
WO2022123939A1 (ja) 2020-12-08 2022-06-16 旭化成株式会社 水添ジエン重合体、ベール、ゴム組成物、及びタイヤ
KR20230079269A (ko) 2021-01-07 2023-06-05 아사히 가세이 가부시키가이샤 가교용 고무 조성물, 타이어용 고무 조성물, 타이어의 사이드 월용 성형체, 시트, 타이어의 사이드 월의 제조 방법, 타이어의 사이드 월
WO2022149471A1 (ja) 2021-01-07 2022-07-14 旭化成株式会社 架橋用ゴム組成物、タイヤ用ゴム組成物、タイヤのサイドウォール用成形体、シート、タイヤのサイドウォールの製造方法、タイヤのサイドウォール
KR20230128075A (ko) 2021-01-28 2023-09-01 아사히 가세이 가부시키가이샤 고무상 중합체, 고무상 중합체의 제조 방법, 고무 조성물및 타이어용 트레드
WO2022163152A1 (ja) 2021-01-28 2022-08-04 旭化成株式会社 ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド
WO2023038095A1 (ja) 2021-09-13 2023-03-16 日本エラストマー株式会社 架橋ゴム組成物、架橋ゴム組成物の製造方法
WO2023171191A1 (ja) 2022-03-10 2023-09-14 旭化成株式会社 共役ジエン系重合体、共役ジエン系重合体組成物、及び共役ジエン系重合体架橋物
EP4364963A1 (en) 2022-11-07 2024-05-08 Sumitomo Rubber Industries, Ltd. Tire

Also Published As

Publication number Publication date
TW201936651A (zh) 2019-09-16

Similar Documents

Publication Publication Date Title
WO2019151127A1 (ja) 組成物、架橋成形体及びタイヤ
WO2019151126A1 (ja) 組成物、架橋成形体及びタイヤ
JP5728807B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
JP5871011B2 (ja) 変性共役ジエン系重合体及びその製造方法
JP5282531B2 (ja) 水添共役ジエン系重合ゴムの製造方法、水添共役ジエン系重合ゴム、及びその組成物、並びにゴム成形品
WO2015064646A1 (ja) 架橋ゴム、タイヤ用部材、防振用部材、ベルト用部材及びゴム組成物
JP6627295B2 (ja) 空気入りタイヤ
JP7494173B2 (ja) 重合体組成物、架橋重合体、及びタイヤ
CN111051352A (zh) 改性共轭二烯系聚合物、橡胶组合物、轮胎和制造改性共轭二烯系聚合物的方法
EP2998362B1 (en) Polymer composition, crosslinked polymer, tire, and polymer
WO2021020189A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP2022075724A (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP2018021145A (ja) ゴム組成物及びタイヤ
JPWO2009151103A1 (ja) ゴム組成物及びそれを用いたタイヤ
TWI812819B (zh) 聚合物組成物、其製造方法、交聯體、其製造方法及輪胎
CN112739762B (zh) 橡胶组合物和轮胎
JP4057123B2 (ja) 重合体の製造方法、重合体及びその重合体を用いたゴム組成物
JP2008260943A (ja) 変性重合体の製造方法、変性重合体及びその変性重合体を用いたゴム組成物
JP2003221471A (ja) ゴム組成物およびその製造方法
WO2021049377A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP2008285555A (ja) ゴム組成物及びそれを用いた空気入りタイヤ
JP7458373B2 (ja) 重合体組成物、架橋重合体、及びタイヤ
WO2023127910A1 (ja) 共役ジエン系重合体及びその製造方法、並びにゴムベール
WO2024058265A1 (ja) 共役ジエン系重合体、重合体組成物、架橋物、及びタイヤ
WO2022080450A1 (ja) ゴムベール及びその製造方法、重合体組成物、架橋体及びタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP