WO2024058265A1 - 共役ジエン系重合体、重合体組成物、架橋物、及びタイヤ - Google Patents

共役ジエン系重合体、重合体組成物、架橋物、及びタイヤ Download PDF

Info

Publication number
WO2024058265A1
WO2024058265A1 PCT/JP2023/033680 JP2023033680W WO2024058265A1 WO 2024058265 A1 WO2024058265 A1 WO 2024058265A1 JP 2023033680 W JP2023033680 W JP 2023033680W WO 2024058265 A1 WO2024058265 A1 WO 2024058265A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
conjugated diene
mass
repeating unit
polymerization
Prior art date
Application number
PCT/JP2023/033680
Other languages
English (en)
French (fr)
Inventor
瀚洋 秦
Original Assignee
株式会社Eneosマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Eneosマテリアル filed Critical 株式会社Eneosマテリアル
Publication of WO2024058265A1 publication Critical patent/WO2024058265A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • Conjugated diene polymers such as styrene-butadiene rubber (SBR) have good properties such as heat resistance, abrasion resistance, mechanical strength, and moldability, so they are used in pneumatic tires, vibration-proof rubber, hoses, etc. Widely used in various rubber products.
  • conjugated diene polymers are produced by emulsion polymerization or solution polymerization.
  • Patent Document 1 discloses, as a conjugated diene polymer produced by solution polymerization, a modified conjugated diene polymer containing butadiene units and styrene units and having modified terminals. Furthermore, Patent Document 2 discloses that emulsion polymerization is carried out using 1,3-butadiene and styrene, and a conjugated diene polymer obtained thereby and a cationic polymer such as polydiallylmethylamine and its ammonium salt are used. and silica is disclosed.
  • the present disclosure has been made in view of the above problems, and its main purpose is to provide a high-strength crosslinked product and a conjugated diene-based polymer from which a high-strength crosslinked product can be obtained.
  • the repeating unit (a) derived from a conjugated diene compound is 45 to 99% by mass
  • the repeating unit (b) derived from an aromatic vinyl compound is 0 to 40% by mass, based on all repeating units.
  • a conjugated diene polymer having 1 to 30% by mass of a repeating unit (c) derived from a monomer having a partial structure represented by the following formula (1) is provided.
  • n is 0 or 1
  • R 1 represents a single bond or a hydrocarbylene group having 1 to 20 carbon atoms
  • R 2 to R 4 are each independently hydrogen or a carbon number of 1 to 20 represents a hydrocarbyl group
  • * represents a bond to the polymer main chain.
  • a polymer composition containing the above conjugated diene polymer and a crosslinking agent. Further, according to another aspect of the present disclosure, a crosslinked product obtained from the above polymer composition is provided. Furthermore, according to another aspect of the present disclosure, there is provided a tire that uses the above-mentioned crosslinked product at least in part.
  • the conjugated diene polymer of the present disclosure contains 45 to 99% by mass of repeating units (a) derived from a conjugated diene compound and 0 to 40% by mass of repeating units (b) derived from an aromatic vinyl compound, based on all repeating units. It is a polymer (hereinafter also referred to as "polymer (P)") having 1 to 30 mass% of repeating units (c) having a partial structure represented by the above formula (1).
  • polymer (P) will be explained in detail.
  • the repeating unit (a) is a structural unit derived from a conjugated diene compound.
  • conjugated diene compounds include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, 2-phenyl-1 , 3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like.
  • 1,3-butadiene, isoprene, and 2,3-dimethyl-1,3-butadiene are preferable because they can achieve various properties particularly required in tire applications, and they are good for processability and hysteresis loss reduction. 1,3-butadiene is particularly preferred since it can improve the following properties in a well-balanced manner.
  • the number of conjugated diene compounds constituting the repeating unit (a) may be one or two or more.
  • the content of the repeating unit (a) is 45 to 99% by mass based on the total amount of repeating units constituting the polymer (P) (hereinafter also referred to as "total repeating units"). be. If the content of the repeating unit (a) is less than 45% by mass, processability and low hysteresis loss characteristics tend to be insufficient when applied to tires. In addition, when the content of the repeating unit (a) exceeds 99% by mass, the content of the repeating unit (c) in the polymer (P) is small, and the strength improvement effect due to the introduction of the repeating unit (c) is not sufficiently achieved. They tend not to be able to obtain it.
  • the content of the repeating unit (a) is preferably 48% by mass or more, more preferably 55% by mass or more, even more preferably 60% by mass or more, and 65% by mass or more, based on the total repeating units of the polymer (P). % or more is even more preferable. Further, the content of the repeating unit (a) is preferably 95% by mass or less, more preferably 90% by mass or less, based on all repeating units of the polymer (P).
  • the repeating unit (b) is a structural unit derived from an aromatic vinyl compound.
  • aromatic vinyl compounds include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, vinylethylbenzene, divinylbenzene, Trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethyl ether, N,N-dimethylaminoethylstyrene, N,N-dimethylaminomethylstyrene, 2-ethylstyrene , 3-ethylstyrene, 4-ethylstyrene, 2-t-butyrene, 2-t-buty
  • aromatic vinyl compounds styrene and ⁇ -methylstyrene are preferred since they are highly effective in increasing the strength of the polymer (rubber).
  • the number of aromatic vinyl compounds constituting the repeating unit (b) may be one type or two or more types.
  • the content of the repeating unit (b) in the polymer (P) is 0 to 40% by mass based on all repeating units of the polymer (P).
  • the content of the repeating unit (b) exceeds 40% by mass, the low hysteresis loss property tends to be insufficient when used as a crosslinked product (specifically, a crosslinked rubber). Therefore, the content of the repeating unit (b) is preferably 37% by mass or less, more preferably 35% by mass or less, and even more preferably 30% by mass or less, based on all the repeating units of the polymer (P).
  • the polymer (P) may be a polymer that does not have the repeating unit (b) (that is, the content of the repeating unit (b) is 0% by mass).
  • the polymer (P) into a copolymer containing a conjugated diene compound unit and an aromatic vinyl compound unit, since the strength of the polymer can be further increased.
  • the content of the repeating unit (b) is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more, based on all the repeating units of the polymer (P). Note that the content of the repeating unit (b) in the polymer is a value measured by a 1 H-NMR device.
  • the repeating unit (c) is a repeating unit having a partial structure represented by the following formula (1).
  • n is 0 or 1
  • R 1 represents a single bond or a hydrocarbylene group having 1 to 20 carbon atoms
  • R 2 to R 4 are each independently hydrogen or a carbon number of 1 to 20 represents a hydrocarbyl group
  • * represents a bond to the polymer main chain.
  • the hydrocarbylene group having 1 to 20 carbon atoms represented by R 1 is a linear or branched alkanediyl group having 1 to 20 carbon atoms, or a cycloalkylene group having 5 to 20 carbon atoms. Examples thereof include an alkylene group, an arylene group having 6 to 20 carbon atoms, and an aralkylene group having 7 to 20 carbon atoms.
  • R 1 is preferably a single bond or a linear or branched alkanediyl group having 1 to 20 carbon atoms, more preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms.
  • the hydrocarbyl group having 1 to 20 carbon atoms represented by R 2 to R 4 includes a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, and a cycloalkyl group having 6 to 20 carbon atoms. Examples include an aryl group having 20 carbon atoms and an aralkyl group having 7 to 20 carbon atoms.
  • R2 is preferably a hydrogen atom or a linear or branched alkyl group having 1 to 20 carbon atoms; A branched alkyl group is more preferred.
  • R 3 and R 4 are preferably a hydrogen atom or a linear or branched alkyl group having 1 to 20 carbon atoms, and more preferably a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.
  • the two hydroxyl groups are each bonded to two adjacent carbons and to carbons forming an aliphatic hydrocarbon structure.
  • the distance between the hydroxyl groups is constant.
  • the carbon to which the hydroxyl groups are bonded is a carbon forming an aliphatic hydrocarbon structure, the distance between the hydroxyl groups can flexibly change due to rotation of the bond. This makes it easier for the two hydroxyl groups in the repeating unit (c) to maintain a distance suitable for interaction with other hydroxyl groups and the reinforcing filler. It is believed that this results in higher elongation and fracture strength than in the case where the carbon to which the hydroxyl group is bonded forms an aromatic ring.
  • the repeating unit (c) has the advantage that the partial structure represented by the above formula (1) can be more easily introduced into the side chain of the polymer, and the content of the repeating unit (c) in the polymer (P) can be reduced.
  • it is a structural unit derived from a monomer having a partial structure represented by the above formula (1) (hereinafter also referred to as "monomer (mc)”) because it is easy to adjust.
  • the monomer (mc) examples include 1,2-dihydroxyethyl (meth)acrylate, 1,2-dihydroxypropyl (meth)acrylate, 2,3-dihydroxypropyl (meth)acrylate, 1,2-dihydroxy Butyl (meth)acrylate, 2,3-dihydroxybutyl (meth)acrylate, 3,4-dihydroxybutyl (meth)acrylate, 2,3-dihydroxy-1-methylpropyl (meth)acrylate, 1,2-dihydroxy 5- Ethylhexyl (meth)acrylate, 9,10-dihydroxydecyl (meth)acrylate, 4,5-dihydroxy-2-pentenoic acid, tert-butyl 4,5-dihydroxy-2-hexenoate, 5,6-dihydroxy-7- ethyl octenoate, Methyl 5,6-dihydroxy-8-nonenoate, Methyl N-methyl-4,5-dihydroxy-2-octenehydr
  • n in the above formula (1) is preferably 1.
  • (meth)acrylic acid dihydroxyalkyl ester can be preferably used as the monomer (mc).
  • the number of monomers (mc) constituting the repeating unit (c) may be one or more.
  • (meth)acrylate includes acrylate and methacrylate.
  • (Meth)acrylic is meant to include acrylic and methacryl.
  • the content of the repeating unit (c) in the polymer (P) is 1 to 30% by mass based on all repeating units in the polymer (P).
  • the content of the repeating unit (c) is less than 1% by mass, the effect of the repeating unit (c) is difficult to manifest, and there is a tendency that the strength of the polymer cannot be sufficiently improved.
  • the content of the repeating unit (c) exceeds 30% by mass, rubber elasticity tends not to be exhibited. Therefore, the content of the repeating unit (c) is preferably 1.5% by mass or more, more preferably 2% by mass or more, based on all the repeating units of the polymer (P).
  • the content of the repeating unit (c) is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less, based on all repeating units of the polymer (P).
  • the content of the structural unit (c) in the polymer is a value measured by a 1 H-NMR device.
  • the polymer (P) contains a conjugated diene compound, an aromatic vinyl compound, and a compound other than the monomer (mc) (hereinafter also referred to as "other monomer”) as a monomer unit constituting the polymer (P). It may further have a repeating unit derived from ).
  • other monomers include ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile, methacrylonitrile, and ⁇ -ethyl acrylonitrile; Saturated carboxylic acids; unsaturated carboxylic esters such as methyl (meth)acrylate and ethyl (meth)acrylate; and the like.
  • the content of repeating units derived from other monomers is determined based on the total repeating units of the polymer (P) in terms of improving low hysteresis loss characteristics, strength, and processability. , is preferably 15% by mass or less, more preferably 5% by mass or less, even more preferably 3% by mass or less, even more preferably 1% by mass or less.
  • the polymerization method for producing the polymer (P) is not particularly limited, and examples thereof include bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization, and the like. Among these polymerization methods, emulsion polymerization using an aqueous medium as a polymerization medium is preferred.
  • a known method can be applied to emulsion polymerization. Specifically, for example, monomers are dispersed in an aqueous medium (preferably water) using an emulsifier, polymerization is performed in the presence of a polymerization initiator, and after a desired polymerization conversion rate is reached, a polymerization terminator is added. An example is a method in which polymerization is stopped by adding a polymer.
  • a monomer mixture containing a conjugated diene compound and a monomer (mc) as monomers and an aromatic vinyl compound as an optional component is preferably used.
  • emulsifiers examples include anionic surfactants, nonionic surfactants, and amphoteric surfactants.
  • Anionic surfactants are usually used to obtain stable emulsified dispersions.
  • anionic surfactant for example, a long chain fatty acid salt having 10 or more carbon atoms, a rosinate salt, a benzenesulfonate containing a straight chain alkyl group, etc. are used.
  • fluorine-based surfactants can also be used.
  • the emulsifier one type can be used alone or two or more types can be used in combination.
  • radical polymerization initiators and the like that are generally used in emulsion polymerization can be used.
  • the polymerization initiator include benzoyl peroxide, lauroyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, pinane hydroperoxide, paramenthane hydroperoxide, trimethylbicycloheptyl hydroperoxide, di-tert-butyl Organic peroxides such as peroxide and dicumyl peroxide can be used.
  • diazo compounds such as azobisisobutyronitrile, inorganic peroxides such as potassium persulfate, and redox catalysts such as combinations of these peroxides and ferrous sulfate are used. You can also do that.
  • the polymerization initiator one kind can be used alone or two or more kinds can be used in combination.
  • the amount of the polymerization initiator used is usually 0.01 parts by weight or more, preferably 0.05 to 1.0 parts by weight, based on 100 parts by weight of the total amount of monomers used for polymerization.
  • a chain transfer agent may be used to adjust the molecular weight of the polymer (P).
  • chain transfer agents include alkyl mercaptans such as tert-dodecylmercaptan and n-dodecylmercaptan, carbon tetrachloride, thioglycols, diterpenes, terpinolenes, ⁇ -terpinenes, and ⁇ -methylstyrene dimer.
  • the chain transfer agent one type can be used alone or two or more types can be used in combination.
  • the amount of the chain transfer agent used is usually 0.05 parts by weight or more, preferably 0.1 to 15 parts by weight, based on 100 parts by weight of the total amount of monomers used in the polymerization.
  • chelating agents such as sodium ethylenediaminetetraacetate, glycine, and alanine
  • electrolytes such as potassium chloride, sodium phosphate, potassium phosphate, and potassium sulfate
  • active agents such as sodium formaldehyde sulfoxylate and ferrous sulfate
  • Additives such as pH adjusters such as ammonia, sodium hydroxide, and potassium hydroxide
  • oxygen scavengers such as styrenated phenol, hindered phenol, imidazoles, paraphenylenediamine, and sodium hydrosulfite may be added as appropriate. good.
  • the polymerization method may be a continuous method or a batch method.
  • Polymerization can be carried out using a reactor from which oxygen has been removed, usually at a temperature of 0 to 100°C, preferably 0 to 80°C.
  • the polymerization time is preferably 1 to 24 hours, more preferably 2 to 12 hours.
  • operating conditions such as temperature and stirring can be changed as appropriate, and some monomers may be added to the reaction vessel during the polymerization.
  • the polymerization conversion rate is preferably suppressed to 85% or less, more preferably 80% or less. In particular, it is preferable to stop the polymerization when the polymerization conversion rate is in the range of 30 to 70%.
  • Polymerization can be stopped by adding a polymerization terminator when a desired polymerization conversion rate is reached. Examples of the polymerization terminator include hydroxylamine compounds such as hydroxylamine and N,N-diethylhydroxylamine; and quinone compounds such as hydroquinone.
  • a method such as steam distillation, if necessary, to obtain a latex in which the polymer (P) is dispersed in a dispersion medium.
  • the weight average molecular weight (Mw) of the polymer (P) obtained by the above polymerization is preferably 1.0 ⁇ 10 5 or more.
  • Mw is 1.0 ⁇ 10 5 or more, it is preferable because it tends to have sufficiently high shape stability, tensile strength, and abrasion resistance when it is made into a crosslinked product (specifically, a crosslinked rubber).
  • the Mw of the polymer (P) is more preferably 1.2 ⁇ 10 5 or more, and still more preferably 1.5 ⁇ 10 5 or more.
  • the Mw of the polymer (P) is preferably 1.0 ⁇ 10 8 or less. It is preferable that the Mw is 1.0 ⁇ 10 8 or less because it tends to ensure sufficient processability of the polymer composition containing the polymer (P).
  • the Mw of the polymer (P) is more preferably 2.5 ⁇ 10 7 or less, still more preferably 1.0 ⁇ 10 7 or less, even more preferably 2.0 ⁇ 10 6 or less.
  • the preferable range of Mw of the polymer (P) can be determined by appropriately selecting the above preferable upper limit and lower limit.
  • the preferable range of Mw of the polymer (P) is 1.0 ⁇ 10 5 to 1.0 ⁇ 10 8 , the more preferable range is 1.0 ⁇ 10 5 to 2.5 ⁇ 10 7 , and even more preferable range is 1.0 ⁇ 10 5 to 1.0 ⁇ 10 8 .
  • the range is 1.0 ⁇ 10 5 to 1.0 ⁇ 10 7 , and the even more preferable range is 1.0 ⁇ 10 5 to 2.0 ⁇ 10 6 .
  • the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the number average molecular weight (Mn) of the polymer (P) is preferably 3.0 or more, more preferably 3.0 or more, from the viewpoint of ease of production. It is 2 or more. Further, the molecular weight distribution (Mw/Mn) is preferably 8.0 or less from the viewpoint of improving various performances of the crosslinked product.
  • Mw and Mn of the polymer (P) are polystyrene equivalent values measured by gel permeation chromatography (GPC).
  • the vinyl bond content of the polymer (P) is preferably 10 to 25% by mass. It is preferable that the vinyl bond content is 10% by mass or more, since wet grip properties can be sufficiently improved when used as a crosslinked rubber. Further, it is preferable that the vinyl bond content is 25% by mass or less, since a crosslinked rubber exhibiting good fuel efficiency can be obtained.
  • the vinyl bond content of the polymer (P) is more preferably 11% by mass or more, still more preferably 12% by mass or more, and even more preferably 13% by mass or more. Moreover, the vinyl bond content of the polymer (P) is more preferably 22% by mass or less, still more preferably 20% by mass or less, and even more preferably 18% by mass or less.
  • vinyl bond content is a value indicating the content ratio of repeating units having 1,2-bonds to the total amount of repeating units derived from butadiene in the polymer (P), and 1 H - This is a value measured by an NMR device.
  • the method for producing the polymer (P) includes copolymerizing a monomer having a reactive functional group ((meth)acrylic acid, etc.) with a conjugated diene compound and, if necessary, an aromatic vinyl compound. It can also be obtained by reacting the copolymer with a compound having a group that reacts with the reactive functional group and having a hydroxyl group on an adjacent carbon.
  • a polymer composition for producing a crosslinked product (crosslinked rubber) used in the production of tires and the like can be obtained.
  • the polymer composition may contain fillers (reinforcing fillers), other rubber components, and the like.
  • Crosslinking Agent examples include sulfur, sulfur halides, organic peroxides, quinone dioximes, organic polyamine compounds, alkylphenol resins having a methylol group, etc., and sulfur is usually used.
  • the amount of sulfur is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass, based on 100 parts by mass of the total amount of the rubber components contained in the polymer composition.
  • the reinforcing filler is used to increase the strength of the crosslinked product obtained by crosslinking the polymer (P).
  • examples of reinforcing fillers include silica; carbon black; inorganic compounds represented by the following formula (2) (hereinafter also referred to as "inorganic compounds (M)"); reinforcing fibers (for example, glass fibers, carbon fibers, etc.); inorganic fibers; organic fibers such as nylon and polyester); and the like.
  • the reinforcing filler is preferably at least one selected from the group consisting of silica, carbon black, and an inorganic compound (M).
  • M 1 is at least one member selected from the group consisting of a specific metal such as aluminum, magnesium, titanium, and calcium, an oxide of a specific metal, and a hydroxide of a specific metal.
  • n is an integer from 1 to 5
  • m is an integer from 0 to 10
  • k is an integer from 2 to 10
  • i is an integer from 0 to 10.
  • silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), colloidal silica, precipitated silica, calcium silicate, aluminum silicate, and the like.
  • wet silica is particularly preferred from the viewpoint of improving the fracture properties of crosslinked rubber and achieving both wet grip properties and low hysteresis loss properties (low rolling resistance).
  • High Dispersible Type silica from the viewpoint of not only improving dispersibility in the polymer composition but also improving physical properties and processability.
  • silica one type can be used individually or two or more types can be used in combination.
  • carbon black examples include GPF, FEF, HAF, ISAF, SAF, etc., but are not particularly limited.
  • the polymer composition may further contain various reinforcing fillers such as clay and calcium carbonate as inorganic fillers.
  • the inorganic compound (M) examples include aluminum oxide, alumina monohydrate, aluminum hydroxide, aluminum carbonate, aluminum silicate, aluminum calcium oxide (Al 2 O 3 ⁇ CaO ⁇ 2SiO 4 etc.); as compounds where the specific metal is magnesium, such as magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium silicate, magnesium calcium silicate (CaMgSiO 4 ), talc, etc.; where the specific metal is titanium
  • examples of the compound include titanium oxide
  • examples of compounds where the specific metal is calcium include calcium oxide, calcium hydroxide, calcium carbonate, calcium silicate, and the like.
  • the reinforcing filler one of silica, carbon black, and inorganic compound (M) may be used alone, or two or more of these may be used in combination.
  • the polymer composition of the present disclosure preferably contains silica as a reinforcing filler, in that it has a high effect of improving tire properties in combination with a conjugated diene polymer, and among these, wet silica, dry silica, and colloidal silica are preferred. It is preferable to use When using a reinforcing filler, the amount of the reinforcing filler in the polymer composition (the total amount if two or more types are included) is 100% of the total amount of the rubber component contained in the polymer composition. It is preferably 25 to 130 parts by weight, more preferably 30 to 110 parts by weight.
  • the polymer composition may further contain a rubber component (hereinafter also referred to as "other rubber component”) different from the polymer (P).
  • a rubber component hereinafter also referred to as “other rubber component”
  • the term “rubber component” refers to a polymer that can be cured to obtain a cured product exhibiting rubber elasticity.
  • the cured product exhibits the property of causing large deformation (for example, deformation that stretches more than twice as much when stretched at room temperature) with a small force at room temperature, and rapidly returning to almost its original shape when the force is removed.
  • the other rubber component may be a polymer that does not have at least one of the repeating unit (a) and the repeating unit (c), and its type is not particularly limited.
  • Other rubber components include, for example, butadiene rubber (BR, such as high-cis BR with cis-1,4 bonds of 90% or more), styrene-butadiene rubber (SBR), natural rubber (NR), isoprene rubber (IR), Examples include styrene isoprene copolymer rubber, butadiene isoprene copolymer rubber, and modified SBR (for example, nitrogen-containing SBR, terminally modified SBR, etc.).
  • the amount of other rubber components to be blended is preferably 70 parts by mass or less, more preferably It is 60 parts by mass or less, more preferably 50 parts by mass or less.
  • the polymer composition may contain, for example, anti-aging agents, zinc white, stearic acid, softeners, vulcanization accelerators, silane coupling agents, compatibilizers, vulcanization aids, process oils, Various additives commonly used in polymer compositions for producing crosslinked products (crosslinked rubber), such as processing aids and scorch inhibitors, can be blended. These blending amounts can be appropriately selected depending on the various components within a range that does not impair the effects of the present disclosure.
  • the polymer composition of the present disclosure can be mixed with optional components such as a reinforcing filler, etc. in an open kneader (e.g., rolls) or in a closed kneader (e.g., a Banbury mixer). It can be produced by mixing (specifically kneading) using a kneader such as ).
  • the rubber component containing the polymer (P) and additives (hereinafter also referred to as "first additives") other than the vulcanization compounding agents (crosslinking agent, vulcanization accelerator, vulcanization aid) are mixed.
  • the first additive contains at least a reinforcing filler.
  • the kneading temperature in the first step is appropriately set depending on the melting point, glass transition point, etc. of the rubber component.
  • the first additive is mixed with the rubber component, which increases the strength of the rubber product after vulcanization, improves the kneading processability of the polymer composition, and suppresses radicals generated during kneading. It is possible to sufficiently obtain effects such as preventing the deterioration of the rubber component caused by this.
  • a vulcanization compounding agent is added to the kneaded material, and the mixture is melt-kneaded using a kneader (second step).
  • a crosslinked rubber as a crosslinked product can be obtained by molding the polymer composition obtained in the second step and then crosslinking (vulcanizing) it.
  • a crosslinked product (specifically a crosslinked rubber) obtained using the polymer composition of the present disclosure can be applied to various rubber products.
  • various rubber products include tire applications such as tire treads, undertreads, carcass, sidewalls, and bead parts; sealing materials such as packings, gaskets, weather strips, and O-rings; automobiles, ships, aircraft, and railways. Interior and exterior skin materials for various vehicles such as; Building materials; Anti-vibration rubber for industrial machinery and equipment; Various hoses and hose covers such as diaphragms, rolls, radiator hoses, and air hoses; Power transmission belts, etc. linings; dust boots; medical equipment materials; fenders; insulating materials for electric wires; and other industrial products.
  • a crosslinked product obtained by crosslinking the polymer (P) has high strength and is less likely to lose its strength due to heat. Therefore, the polymer (P) is particularly suitable as a material for one or both of the tread and sidewall of a tire.
  • the polymer (P) is preferable because it allows the tire constituent members to be made thinner by increasing the strength of the rubber material, thereby saving resources.
  • Tires can be manufactured according to conventional methods.
  • a tread or sidewall can be made by mixing the polymer (P) and other ingredients as necessary in a kneading machine, making a sheet, placing it in a predetermined position according to a conventional method, and vulcanizing it. At least one of them is formed, and a pneumatic tire is obtained.
  • [3] The conjugated diene polymer of [1] or [2], which has a polystyrene-equivalent weight average molecular weight (Mw) of 100,000 to 2,000,000, as measured by gel permeation chromatography.
  • Mw polystyrene-equivalent weight average molecular weight
  • [4] A polymer composition containing the conjugated diene polymer according to any one of [1] to [3] and a crosslinking agent.
  • the polymer composition of [4] further containing a filler.
  • [6] A crosslinked product obtained from the polymer composition of [4] or [5].
  • [7] A tire using the crosslinked product of [6] at least in part.
  • Example 2 Synthesis of vicinal diol-containing conjugated diene polymer B
  • Conjugated diene containing vicinal diol was prepared in the same manner as in Example 1 except that the amount of 1,3-butadiene used was changed to 491 g and the amount of 2,3-dihydroxypropyl methacrylate was changed to 28 g for the polymerization recipe. A system polymer B was obtained.
  • Example 3 Synthesis of vicinal diol-containing conjugated diene polymer C
  • Conjugated diene containing vicinal diol was prepared in the same manner as in Example 1 except that the amount of 1,3-butadiene used was changed to 309 g and the amount of 2,3-dihydroxypropyl methacrylate was changed to 210 g for the polymerization recipe. A system polymer C was obtained.
  • Example 4 Synthesis of vicinal diol-containing conjugated diene polymer D
  • the same method as in Example 1 was used except that the amount of 1,3-butadiene used was changed to 463 g and 56 g of 9,10-dihydroxydecyl methacrylate was used instead of 2,3-dihydroxypropyl methacrylate.
  • a vicinal diol-containing conjugated diene polymer D was obtained.
  • vulcanization accelerator CZ was manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd. and has the trade name "Noxela CZ”.
  • the product name “Kinkain Seal Fine Powder Sulfur 200 Mesh” manufactured by Tsurumi Chemical Industry Co., Ltd. was used.
  • Examples 1 to 4 When examined in more detail, Examples 1 to 4 exhibited high strength physical properties with a good balance of tensile stress (M100), tensile strength (TB), elongation at break (EB), and tensile product. In contrast, the crosslinked product of Comparative Example 1 using a conjugated diene polymer with a low repeating unit (c) content of 0.2%, and the conjugated diene polymer having no repeating unit (c) were used. Although the crosslinked product of Comparative Example 4 had good tensile stress (M100), the tensile strength (TB), elongation at break (EB), and tensile product were lower than those of Examples 1 to 4.
  • M100 tensile stress
  • TB tensile strength
  • EB elongation at break
  • the crosslinked product of Comparative Example 2 using a conjugated diene polymer with a high repeating unit (c) content of 40% had a high tensile stress (M100), and also had a high elongation at break (EB) and tensile strength. was low.
  • the crosslinked product of Comparative Example 3 using a conjugated diene polymer into which a repeating unit having only one hydroxyl group was introduced in place of the repeating unit (c) had tensile strength (TB) and tensile product of Example 1 to It was lower than 4.
  • the rubber component, filler, silane coupling agent, extender oil, stearic acid, anti-aging agent, and zinc oxide were blended and kneaded under the conditions of 60 rpm and a kneading time of 4 minutes.
  • a resin was also added and kneaded.
  • a vulcanization accelerator and sulfur were added to the mixer, the set temperature was adjusted to 70°C, and the mixture was rotated. Compounds were obtained by kneading at several 60 rpm and kneading time for 1.5 minutes.
  • the temperature of the kneaded material discharged from the mixer at the time of discharge was all 100° C. or lower.
  • each obtained compound was vulcanized and molded using a vulcanization press at 160° C. for a predetermined period of time to obtain a vulcanized rubber as a crosslinked product.
  • the following physical properties were evaluated using the obtained vulcanized rubber. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

全繰り返し単位に対し、共役ジエン化合物に由来する繰り返し単位(a)を45~99質量%、芳香族ビニル化合物に由来する繰り返し単位(b)を0~40質量%、及び、式(1)で表される部分構造を有する繰り返し単位(c)を1~30質量%有する、共役ジエン系重合体、並びに、その重合体を架橋して得られる架橋物とする。

Description

共役ジエン系重合体、重合体組成物、架橋物、及びタイヤ
[関連出願の相互参照]
 本出願は、2022年9月16日に出願された日本特許出願番号2022-147890号に基づく優先権を主張し、その全体が参照により本明細書に組み込まれる。
 本開示は、共役ジエン系重合体、重合体組成物、架橋物、及びタイヤに関する。
 スチレンブタジエンゴム(SBR)等の共役ジエン系重合体は、耐熱性や耐摩耗性、機械的強度、成形加工性等の各種特性が良好であることから、空気入りタイヤや防振ゴム、ホース等の各種ゴム製品に広く使用されている。一般に、共役ジエン系重合体は、乳化重合や溶液重合により製造される。
 特許文献1には、溶液重合により製造される共役ジエン系重合体として、ブタジエン単位及びスチレン単位を含み、末端が変性された変性共役ジエン系重合体が開示されている。また、特許文献2には、1,3-ブタジエンとスチレンとを用いて乳化重合を行い、これにより得られた共役ジエン系重合体と、ポリジアリルメチルアミン及びそのアンモニウム塩等のカチオン性高分子と、シリカとを含むシリカ充填ゴム組成物を得ることが開示されている。
特開2019-182996号公報 特開2004-256801号公報
 消費者の環境に対する意識の高まりから、省資源化を図るべく、ゴム材料の更なる高強度化が求められている。
 本開示は、上記課題に鑑みてなされたものであり、高強度な架橋物及び高強度な架橋物を得ることができる共役ジエン系重合体を提供することを主たる目的とする。
 本開示によれば一つの態様において、全繰り返し単位に対し、共役ジエン化合物に由来する繰り返し単位(a)を45~99質量%、芳香族ビニル化合物に由来する繰り返し単位(b)を0~40質量%、及び、下記式(1)で表される部分構造を有する単量体に由来する繰り返し単位(c)を1~30質量%有する、共役ジエン系重合体が提供される。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、nは0又は1であり、Rは単結合又は炭素数1~20のヒドロカルビレン基を表し、R~Rはそれぞれ独立に水素又は炭素数1~20のヒドロカルビル基を表し、*はポリマー主鎖への結合手であることを表す。)
 本開示によれば別の1つの態様において、上記共役ジエン系重合体及び架橋剤を含有する重合体組成物が提供される。
 また、本開示によれば別の1つの態様において、上記の重合体組成物より得られる架橋物が提供される。
 さらに、本開示によれば別の1つの態様において、上記の架橋物を、少なくとも一部に使用したタイヤが提供される。
 本開示によれば、高強度な架橋物を得ることができる共役ジエン系重合体を提供することができる。
 以下、本開示の実施に関連する事項について詳細に説明する。なお、本明細書において、「~」を用いて記載された数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む意味である。本開示は、以下に記載された実施形態に限定されるものではなく、本開示の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
≪共役ジエン系重合体≫
 本開示の共役ジエン系重合体は、全繰り返し単位に対し、共役ジエン化合物に由来する繰り返し単位(a)を45~99質量%、芳香族ビニル化合物に由来する繰り返し単位(b)を0~40質量%、及び、上記式(1)で表される部分構造を有する繰り返し単位(c)を1~30質量%有する重合体(以下、「重合体(P)」ともいう)である。以下、重合体(P)について詳細に説明する。
・繰り返し単位(a)
 繰り返し単位(a)は、共役ジエン化合物に由来する構造単位である。共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの中でも、特にタイヤ用途において要求される各種特性を良好にできる点で、1,3-ブタジエン、イソプレン、及び2,3-ジメチル-1,3-ブタジエンが好ましく、加工性とヒステリシスロス低減とをバランス良く改善できる点で、1,3-ブタジエンが特に好ましい。繰り返し単位(a)を構成する共役ジエン化合物は、1種でもよく2種以上でもよい。
 重合体(P)において、繰り返し単位(a)の含有量は、重合体(P)を構成する繰り返し単位の全量(以下、「全繰り返し単位」ともいう)に対して、45~99質量%である。繰り返し単位(a)の含有量が45質量%未満であると、タイヤ用途に適用した場合に加工性及び低ヒステリシスロス特性が十分でない傾向がある。また、繰り返し単位(a)の含有量が99質量%を超えると、重合体(P)における繰り返し単位(c)の含有量が少なく、繰り返し単位(c)の導入による強度の改善効果を十分に得ることができない傾向がある。したがって、繰り返し単位(a)の含有量は、重合体(P)の全繰り返し単位に対して、48質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上が更に好ましく、65質量%以上がより更に好ましい。また、繰り返し単位(a)の含有量は、重合体(P)の全繰り返し単位に対して、95質量%以下が好ましく、90質量%以下がより好ましい。
・繰り返し単位(b)
 繰り返し単位(b)は、芳香族ビニル化合物に由来する構造単位である。芳香族ビニル化合物としては、例えばスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン等が挙げられる。芳香族ビニル化合物としては、重合体(ゴム)の強度を高める効果が高い点で、これらのうち、スチレン及びα-メチルスチレンが好ましい。繰り返し単位(b)を構成する芳香族ビニル化合物は、1種でもよく2種以上でもよい。
 重合体(P)における繰り返し単位(b)の含有量は、重合体(P)の全繰り返し単位に対して、0~40質量%である。繰り返し単位(b)の含有量が40質量%を超えると、架橋物(具体的には架橋ゴム)とした場合に低ヒステリシスロス特性が十分でない傾向がある。したがって、繰り返し単位(b)の含有量は、重合体(P)の全繰り返し単位に対して、37質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下が更に好ましい。重合体(P)は、繰り返し単位(b)を有しない(すなわち、繰り返し単位(b)の含有量が0質量%である)重合体であってもよい。その一方で、重合体(P)を共役ジエン化合物単位と芳香族ビニル化合物単位とを含む共重合体することにより、重合体の強度を一層高めることができる点で好ましい。繰り返し単位(b)の含有量は、重合体(P)の全繰り返し単位に対して、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が更に好ましい。なお、重合体における繰り返し単位(b)の含有量は、H-NMR装置により測定される値である。
・繰り返し単位(c)
 繰り返し単位(c)は、下記式(1)で表される部分構造を有する繰り返し単位である。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、nは0又は1であり、Rは単結合又は炭素数1~20のヒドロカルビレン基を表し、R~Rはそれぞれ独立に水素又は炭素数1~20のヒドロカルビル基を表し、*はポリマー主鎖への結合手であることを表す。)
 上記式(1)において、Rで表される炭素数1~20のヒドロカルビレン基としては、炭素数1~20の直鎖状又は分岐状のアルカンジイル基、炭素数5~20のシクロアルキレン基、炭素数6~20のアリーレン基、炭素数7~20のアラルキレン基が挙げられる。
 上記式(1)で表される部分構造(すなわち側鎖)の動きが規制されることを抑制し、重合体(P)を用いて得られる架橋物の強度をより高めることができる点で、Rは、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基が好ましく、炭素数1~20の直鎖状又は分岐状のアルカンジイル基がより好ましい。
 R~Rで表される炭素数1~20のヒドロカルビル基としては、炭素数1~20の直鎖状又は分岐状のアルキル基、炭素数5~20のシクロアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基が挙げられる。
 架橋物の強度をより高めることができる点で、Rは水素原子又は炭素数1~20の直鎖状若しくは分岐状のアルキル基が好ましく、水素原子又は炭素数1~3の直鎖状若しくは分岐状のアルキル基がより好ましい。
 R及びRは、水素原子又は炭素数1~20の直鎖状若しくは分岐状のアルキル基が好ましく、水素原子又は炭素数1~12の直鎖状若しくは分岐状のアルキル基がより好ましい。
 ここで、繰り返し単位(c)において、2つの水酸基はそれぞれ、隣接する2個の炭素であって、かつ脂肪族炭化水素構造を形成する炭素に結合している。水酸基が結合する炭素が芳香族環を形成する場合は、水酸基同士の距離が一定である。これに対し、水酸基が結合する炭素が脂肪族炭化水素構造を形成する炭素の場合は、結合の回転により水酸基同士の距離が柔軟に変化し得る。このことにより、繰り返し単位(c)中の2つの水酸基はそれぞれ、他の水酸基や補強性充填剤との相互作用に適した距離を取りやすくなる。これにより、水酸基が結合する炭素が芳香族環を形成する場合よりも、高い伸びや破壊強度を示すものと考えている。
 繰り返し単位(c)は、上記式(1)で表される部分構造を重合体の側鎖に対し、より簡便に導入できる点や、重合体(P)における繰り返し単位(c)の含有量を調整しやすい点で、好ましくは、上記式(1)で表される部分構造を有する単量体(以下、「単量体(mc)」ともいう)に由来する構造単位である。
 単量体(mc)の具体例としては、1,2-ジヒドロキシエチル(メタ)アクリレート、1,2-ジヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピル(メタ)アクリレート、1,2-ジヒドロキシブチル(メタ)アクリレート、2,3-ジヒドロキシブチル(メタ)アクリレート、3,4-ジヒドロキシブチル(メタ)アクリレート、2,3-ジヒドロキシ-1-メチルプロピル(メタ)アクリレート、1,2-ジヒドロキシ5-エチルヘキシル(メタ)アクリレート、9,10-ジヒドロキシデシル(メタ)アクリレート、4,5-ジヒドロキシ-2-ペンテン酸、4,5-ジヒドロキシ-2-ヘキセン酸tert-ブチル、5,6-ジヒドロキシ-7-オクテン酸エチル、
5,6-ジヒドロキシ-8-ノネン酸メチル、N-メチル-4,5-ジヒドロキシ-2-オクテンヒドロキサム酸メチル、2,3-ジヒドロキシ-1-ブテン、24,25-ジヒドロキシダンマラ-20-エン-3-オン等が挙げられる。
 反応性の高さから、上記式(1)中のnは1が好ましい。また、単量体(mc)としては(メタ)アクリル酸ジヒドロキシアルキルエステルを好ましく使用することができる。繰り返し単位(c)を構成する単量体(mc)は、1種でもよく2種以上でもよい。なお、本明細書において、「(メタ)アクリレート」は、アクリレート及びメタクリレートを包含する意味である。「(メタ)アクリル」は、アクリル及びメタクリルを包含する意味である。
 重合体(P)における繰り返し単位(c)の含有量は、重合体(P)の全繰り返し単位に対して、1~30質量%である。繰り返し単位(c)の含有量が1質量%未満であると、繰り返し単位(c)の効果が発現しにくく、重合体の強度向上を十分に図ることができない傾向がある。繰り返し単位(c)の含有量が30質量%を超えると、ゴム弾性が発現しなくなる傾向がある。このため、繰り返し単位(c)の含有量は、重合体(P)の全繰り返し単位に対して、1.5質量%以上が好ましく、2質量%以上がより好ましい。また、繰り返し単位(c)の含有量は、重合体(P)の全繰り返し単位に対して、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましい。なお、重合体における構造単位(c)の含有量は、H-NMR装置により測定される値である。
 重合体(P)は、重合体(P)を構成する単量体単位として、共役ジエン化合物、芳香族ビニル化合物及び単量体(mc)以外の化合物(以下、「他の単量体」ともいう)に由来する繰り返し単位を更に有していてもよい。他の単量体としては、例えばアクリロニトリル、メタクリロニトリル、α-エチルアクリロニトリル等のα,β-不飽和ニトリル化合物;(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の不飽和カルボン酸エステル;等が挙げられる。重合体(P)において、他の単量体に由来する繰り返し単位の含有量は、低ヒステリシスロス特性、強度及び加工性を良好にできる点で、重合体(P)の全繰り返し単位に対して、15質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましく、1質量%以下であることがより更に好ましい。
<重合体(P)の製造方法>
 重合体(P)を製造するための重合法は特に限定されず、例えば、塊状重合、懸濁重合、乳化重合、溶液重合等が挙げられる。重合法は、これらのうち、重合媒体として水系媒体を使用する乳化重合が好ましい。乳化重合としては公知の方法を適用することができる。具体的には、例えば、単量体を乳化剤により水系媒体中(好ましくは水中)に分散させ、重合開始剤の存在下で重合を行い、所望の重合転化率に達した後、重合停止剤を添加して重合を停止させる方法が挙げられる。
 重合体(P)の製造に際しては、単量体として、共役ジエン化合物及び単量体(mc)を含み、任意成分として芳香族ビニル化合物を含む単量体混合物が好ましく使用される。
 乳化剤としては、アニオン系界面活性剤、ノニオン系界面活性剤、及び両性界面活性剤等が挙げられる。安定な乳化分散液を得るために、通常、アニオン系界面活性剤が使用される。アニオン系界面活性剤としては、例えば、炭素数10以上の長鎖脂肪酸塩、ロジン酸塩、直鎖アルキル基含有ベンゼンスルホン酸塩等が用いられる。具体的には、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸、オクチルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ドデシルジフェニルオキシドスルホン酸及びドデシルジフェニルエーテルジスルホン酸等のカリウム塩及びナトリウム塩等が挙げられる。また、フッ素系の界面活性剤を使用することもできる。乳化剤としては、1種単独で又は2種以上を組み合わせて用いることができる。
 重合開始剤としては、一般に乳化重合において使用されるラジカル重合開始剤等を用いることができる。重合開始剤としては、例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、tert-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、ピナンヒドロペルオキシド、パラメンタンヒドロパーオキサイド、トリメチルビシクロヘプチルハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、及びジクミルパーオキサイド等の有機過酸化物を使用することができる。また、アゾビスイソブチロニトリルに代表されるジアゾ化合物、過硫酸カリウムに代表される無機過酸化物、及びこれら過酸化物と硫酸第一鉄との組み合せに代表されるレドックス系触媒等を用いることもできる。重合開始剤としては、1種単独で又は2種以上を組み合わせて使用できる。重合開始剤の使用量は、重合に用いる単量体の全量100質量部に対し、通常0.01質量部以上であり、好ましくは0.05~1.0質量部である。
 重合に際しては、重合体(P)の分子量を調整するために連鎖移動剤を使用してもよい。連鎖移動剤としては、tert-ドデシルメルカプタン、n-ドデシルメルカプタン等のアルキルメルカプタン、四塩化炭素、チオグリコール類、ジテルペン、ターピノーレン、γ-テルピネン類及びα-メチルスチレンダイマー等が挙げられる。連鎖移動剤としては、1種単独で又は2種以上を組み合わせて用いることができる。連鎖移動剤の使用量は、重合に用いる単量体の全量100質量部に対し、通常0.05質量部以上であり、好ましくは0.1~15質量部である。
 なお、乳化重合に際しては、エチレンジアミン四酢酸ナトリウム、グリシン、アラニン等のキレート剤;塩化カリウム、リン酸ナトリウム、リン酸カリウム、硫酸カリウム等の電解質;ナトリウムホルムアルデヒドスルホオキシレート、硫酸第一鉄等の活性剤;アンモニア、水酸化ナトリウム、水酸化カリウム等のpH調整剤;スチレン化フェノール、ヒンダードフェノール、イミダゾール類、パラフェニレンジアミン、ナトリウムハイドロサルファイト等の酸素除去剤等の添加剤を適宜加えてもよい。
 乳化重合による重合体(P)の製造において、重合方式は連続式でもよく、回分式でもよい。重合は、酸素を除去した反応器を用いて、通常0~100℃の温度で、好ましくは0~80℃で行うことができる。重合時間は、1~24時間が好ましく、2~12時間がより好ましい。また、反応途中において、温度や撹拌等の操作条件等を適宜に変更することもできるし、一部の単量体を重合途中で反応容器に投入してもよい。
 重合反応において、重合転化率が大きくなるとゲル化することがある。したがって、重合転化率は、85%以下に抑えることが好ましく、80%以下がより好ましい。特に、重合転化率が30~70%の範囲で重合を停止させることが好ましい。重合の停止は、所望の重合転化率に達した時点で重合停止剤を添加することによって行うことができる。重合停止剤としては、ヒドロキシルアミン、N,N-ジエチルヒドロキシルアミン等のヒドロキシルアミン化合物;ヒドロキノン等のキノン化合物等が挙げられる。重合停止後、必要に応じて、水蒸気蒸留等の方法により反応系から未反応単量体を除去することにより、重合体(P)が分散媒中に分散されたラテックスを得ることができる。
 上記重合により得られる重合体(P)の重量平均分子量(Mw)は、好ましくは1.0×10以上である。Mwが1.0×10以上であると、架橋物(具体的には架橋ゴム)としたときに形状安定性、引張強度及び耐摩耗性を十分に高くできる傾向にあり好ましい。重合体(P)のMwは、より好ましくは1.2×10以上であり、更に好ましくは1.5×10以上である。また、重合体(P)のMwは、好ましくは1.0×10以下である。Mwが1.0×108以下であると、重合体(P)を含有する重合体組成物の加工性を十分に確保できる傾向にあり好ましい。重合体(P)のMwは、より好ましくは2.5×107以下であり、更に好ましくは1.0×10以下であり、より更に好ましくは2.0×10以下である。
 重合体(P)のMwの好ましい範囲は、上記の好ましい上限値及び下限値を適宜選択して定めることができる。重合体(P)のMwの好ましい範囲は、1.0×10~1.0×10であり、より好ましい範囲は1.0×10~2.5×10であり、更に好ましい範囲は1.0×10~1.0×10であり、より更に好ましい範囲は1.0×10~2.0×10である。
 重合体(P)の数平均分子量(Mn)に対するMwの比で表される分子量分布(Mw/Mn)は、製造容易性の観点から、好ましくは3.0以上であり、より好ましくは3.2以上である。また、分子量分布(Mw/Mn)は、架橋物の各種性能を良好にする観点から、好ましくは8.0以下である。なお、本明細書において、重合体(P)のMw及びMnは、ゲルパーミエーションクロマトグラフ(GPC)により測定したポリスチレン換算値である。
 重合体(P)のビニル結合含量は、10~25質量%であることが好ましい。ビニル結合含量が10質量%以上であると、架橋ゴムとした場合にウェットグリップ特性を十分に高くできる点で好ましい。また、ビニル結合含量が25質量%以下であると、良好な低燃費性能を示す架橋ゴムを得ることができる点で好ましい。重合体(P)のビニル結合含量は、11質量%以上がより好ましく、12質量%以上が更に好ましく、13質量%以上がより更に好ましい。また、重合体(P)のビニル結合含量は、22質量%以下がより好ましく、20質量%以下が更に好ましく、18質量%以下がより更に好ましい。なお、本明細書において「ビニル結合含量」は、重合体(P)中のブタジエンに由来する繰り返し単位の全量に対する、1,2-結合を有する繰り返し単位の含有割合を示す値であり、H-NMR装置により測定される値である。
 重合体(P)の製造方法としては、上記の他に、共役ジエン化合物及び必要に応じて芳香族ビニル化合物と、反応性官能基を有する単量体((メタ)アクリル酸等)を共重合させて共重合体を得た後に、上記反応性官能基と反応する基を有し、かつ隣接する炭素に水酸基を有する化合物と上記共重合体とを反応させることによって得ることもできる。
≪重合体組成物≫
 重合体(P)に架橋剤等を配合することにより、タイヤ等の製造に用いられる架橋物(架橋ゴム)を製造するための重合体組成物を得ることができる。重合体組成物は、フィラー(補強性充填剤)や他のゴム成分等を含んでいてもよい。
(架橋剤)
 本開示の重合体組成物に含まれる架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられ、通常、硫黄が使用される。硫黄の配合量は、重合体組成物に含まれるゴム成分の合計量100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。
(フィラー(補強性充填剤))
 補強性充填剤は、重合体(P)を架橋することにより得られる架橋物の強度を高めるために使用される。補強用充填剤としては、例えばシリカ;カーボンブラック;下記式(2)で表される無機化合物(以下、「無機化合物(M)」ともいう);強化用繊維(例えば、ガラス繊維や炭素繊維等の無機系繊維;ナイロンやポリエステル等の有機系繊維);等が挙げられる。これらのうち、補強用充填剤は、シリカ、カーボンブラック及び無機化合物(M)よりなる群から選ばれる少なくとも1種が好ましい。
 nM・mSiO・iHO  …(2)
(式(2)中、Mは、アルミニウム、マグネシウム、チタン及びカルシウムのいずれかである特定金属、特定金属の酸化物及び特定金属の水酸化物よりなる群から選ばれる少なくとも1種である。nは1~5の整数であり、mは0~10の整数であり、kは2~10の整数であり、iは0~10の整数である。)
 シリカとしては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ、沈降シリカ、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。これらのうち、架橋ゴムの破壊特性の改良効果や、ウェットグリップ性と低ヒステリシスロス特性(低転がり抵抗性)との両立の観点から、湿式シリカが特に好ましい。また、高分散型(High Dispersible Type)のシリカを使用することも、重合体組成物中における分散性を良好にできるとともに物性及び加工性を向上できる観点から好ましい。なお、シリカとしては、1種を単独で又は2種以上を組み合わせて用いることができる。カーボンブラックとしては、GPF、FEF、HAF、ISAF、SAF等が挙げられるが、特に限定されるものではない。また、重合体組成物には、無機フィラーとしてシリカやカーボンブラックの他に、クレー、炭酸カルシウムなどの各種の補強性充填剤が更に配合されていてもよい。
 無機化合物(M)の具体例としては、特定金属がアルミニウムである化合物として、酸化アルミニウム、アルミナ一水和物、水酸化アルミニウム、炭酸アルミニウム、ケイ酸アルミニウム、酸化アルミニウムカルシウム(Al・CaO・2SiO等)等を;特定金属がマグネシウムである化合物として、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、ケイ酸マグネシウム、ケイ酸マグネシウムカルシウム(CaMgSiO)、タルク等を;特定金属がチタンである化合物として、酸化チタン等を;特定金属がカルシウムである化合物として、酸化カルシウム、水酸化カルシウム、炭酸カルシウム、ケイ酸カルシウム等を、それぞれ挙げることができる。
 補強性充填剤としては、シリカ、カーボンブラック及び無機化合物(M)のうち1種を単独で使用してもよく、これらのうちの2種以上を組み合わせて使用してもよい。共役ジエン系重合体との組み合わせにおいてタイヤ特性の改善効果が高い点で、本開示の重合体組成物は、補強性充填剤としてシリカを含むことが好ましく、中でも湿式シリカ、乾式シリカ、コロイダルシリカを用いることが好ましい。補強性充填剤を使用する場合、重合体組成物中における補強性充填剤の配合量(2種以上含有する場合にはその合計量)は、重合体組成物に含まれるゴム成分の全体量100質量部に対して、好ましくは25~130質量部、より好ましくは30~110質量部である。
(他のゴム成分)
 重合体組成物には、重合体(P)とは異なるゴム成分(以下、「他のゴム成分」ともいう)が更に配合されていてもよい。なお、本明細書において「ゴム成分」とは、硬化等によりゴム弾性を示す硬化物を得ることが可能な重合体をいう。当該硬化物は、室温において小さな力で大きな変形(例えば、室温で伸ばすと2倍以上に伸びる変形)を起こし、力を取り除くと急速にほぼ元の形状に戻る性質を示す。
 他のゴム成分は、繰り返し単位(a)及び繰り返し単位(c)の少なくとも一方を有しない重合体であればよく、その種類は特に限定されない。他のゴム成分としては、例えば、ブタジエンゴム(BR、例えばシス-1,4結合が90%以上のハイシスBR等)、スチレンブタジエンゴム(SBR)、天然ゴム(NR)、イソプレンゴム(IR)、スチレンイソプレン共重合体ゴム、ブタジエンイソプレン共重合体ゴム、変性SBR(例えば、窒素含有SBR、末端変性SBR等)が挙げられる。他のゴム成分の配合量は、重合体組成物に含まれるゴム成分(重合体(P)及び他のゴム成分)の合計量100質量部に対して、好ましくは70質量部以下、より好ましくは60質量部以下、更に好ましくは50質量部以下である。
 重合体組成物には、上記した成分の他に、例えば老化防止剤、亜鉛華、ステアリン酸、軟化剤、加硫促進剤、シランカップリング剤、相溶化剤、加硫助剤、プロセスオイル、加工助剤、スコーチ防止剤など、架橋物(架橋ゴム)製造用の重合体組成物において一般に使用される各種添加剤を配合することができる。これらの配合量は、本開示の効果を損なわない範囲において、各種成分に応じて適宜選択することができる。
≪重合体組成物及び架橋ゴムの製造≫
 本開示の重合体組成物は、ゴム成分のほか、補強性充填剤等といった、必要に応じて配合される成分を、開放式混練機(例えば、ロール)、密閉式混練機(例えば、バンバリーミキサー)等の混練機を用いて混合(具体的には混練)することにより製造できる。
 混練工程ではまず、重合体(P)を含むゴム成分と、加硫系配合剤(架橋剤、加硫促進剤、加硫助剤)以外の添加剤(以下、「第1の添加剤」ともいう)とを、混練機を使用して溶融混練する(第1の工程)。第1の添加剤は、少なくとも補強用充填剤を含んでいることが好ましい。第1の工程における混練温度は、ゴム成分の融点やガラス転移点等に応じて適宜設定される。この溶融混練により、第1の添加剤がゴム成分と混合され、加硫後のゴム製品の強度を高めたり、重合体組成物の混練加工性を良好なものとしたり、混練時に生じたラジカルに起因するゴム成分の劣化を防止したりする等の効果を十分に得ることができる。
 続いて、第1の工程により得られた混練物を必要に応じて室温に戻した後、混練物に加硫系配合剤を加え、混練機を使用して溶融混練する(第2の工程)。第2の工程により得られた重合体組成物を成形加工し、その後架橋(加硫)することにより架橋物としての架橋ゴムを得ることができる。
≪架橋物及びタイヤ≫
 本開示の重合体組成物を用いて得られる架橋物(具体的には架橋ゴム)は、各種ゴム製品に適用可能である。各種ゴム製品の具体例としては、例えばタイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;パッキン、ガスケット、ウェザーストリップ、O-リング等のシール材;自動車、船舶、航空機、鉄道等の各種車両用の内外装表皮材;建築材料;産業機械用や設備用等の防振ゴム類;ダイヤフラム、ロール、ラジエータホース、エアーホース等の各種ホース及びホースカバー類;動力伝達用ベルト等のベルト類;ライニング;ダストブーツ;医療用機器材料;防舷材;電線用絶縁材料;その他の工業品等が挙げられる。
 重合体(P)を架橋させてなる架橋物は高強度であり、しかも熱による強度の低下が生じにくい。したがって、重合体(P)は、特にタイヤのトレッド及びサイドウォールの一方又は両方の材料として好適である。重合体(P)によれば、ゴム材料の高強度化によってタイヤの構成部材を薄くでき、省資源化を図ることができる点で好ましい。
 タイヤの製造は常法に従い行うことができる。例えば、重合体(P)及び必要に応じて配合される成分を混練機で混合し、シート状にしたものを、常法に従い所定位置に配置して加硫成形することによりトレッド又はサイドウォールの少なくとも一方が形成され、空気入りタイヤが得られる。
 以上詳述した本実施形態によれば、以下の手段が提供される。
[1] 全繰り返し単位に対し、共役ジエン化合物に由来する繰り返し単位(a)を45~99質量%、芳香族ビニル化合物に由来する繰り返し単位(b)を0~40質量%、及び、上記式(1)で表される構造を有する単量体に由来する繰り返し単位(c)を1~30質量%有する、共役ジエン系重合体。
[2] 上記式(1)中のRが、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基である、[1]の共役ジエン系重合体。
[3] ゲルパーミエーションクロマトグラフで測定した、ポリスチレン換算の重量平均分子量(Mw)が100,000~2,000,000である、[1]又は[2]の共役ジエン系重合体。
[4] [1]~[3]のいずれかの共役ジエン系重合体及び架橋剤を含有する重合体組成物。
[5] 更に、フィラーを含有する[4]の重合体組成物。
[6] [4]又は[5]の重合体組成物より得られる架橋物。
[7] [6]の架橋物を、少なくとも一部に使用したタイヤ。
 以下、実施例に基づいて具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。重合体の各種物性値の測定方法を以下に示す。
[繰り返し単位(c)含有量(%)]、[結合スチレン含量(%)]、[ビニル結合含量(%)]:400MHzのH-NMR装置により求めた。6.0~7.5ppmの積分値をA、5.1~6.0ppmの積分比をB、4.5~5.1ppmの積分値をC、3.4~4.3ppmの積分値をDとし、酸素原子に隣接する炭素原子に結合している水素原子数をm、繰り返し単位(c)を構成する単量体(mc)の分子量をMとした場合に、それぞれ以下の式に従って計算した。
[繰り返し単位(c)含有量(%)]=(20D/m×M)/(4A×104)+5(2B+C)×54+(20D/m)×M}×100
[結合スチレン含量(%)]=(4A×104)/{(4A×104)+5(2B+C)×54+(20D/n)×M}×100
[ビニル結合含量(%)]=2C/(2C+B)×100
[重量平均分子量]:ゲルパーミエーションクロマトグラフ(HLC-8320GPC(商品名)、東ソー社製)を使用して得られたGPC曲線の保持時間から、ポリスチレン換算で求めた。
(測定条件)
 カラム;商品名「GMHXL」(東ソー社製)2本
 カラム温度;40℃
 移動相;テトラヒドロフラン
 流速;0.4mL/分
 サンプル濃度;10mg/20mL
1.共役ジエン系重合体の合成
[実施例1:ビシナルジオール含有共役ジエン系重合体Aの合成]
 窒素置換された内容積5Lのリアクターに、水1.5L、ドデシルジフェニルエーテルジスルホン酸ナトリウム49g、塩化カリウム1.24g、エチレンジアミン四酢酸ナトリウム塩(キレート剤)0.35g、及びナトリウムハイドロサルファイト0.35gを添加した。続いて、エチレンジアミン酢酸ナトリウム塩0.44g、硫酸第一鉄0.18g、ナトリウムホルムアルデヒドスルホオキシレート0.70gを含んだ水を25mL、tert-ドデシルメルカプタン2.45g、1,3-ブタジエン512g、スチレン181g、及び2,3-ジヒドロキシプロピルメタクリレート7gを仕込んだ。330rpmにて撹拌を行い、反応器内容物の温度を10℃に調整後、ピナンヒドロペルオキシド1.33gを添加して重合を開始した。重合は温度コントロール条件(10℃)で実施した。重合転化率が70%に達した時点で、6.2%N,N-ジエチルヒドロキシルアミン水溶液を4.94mL添加し、重合反応を停止させた。ストリップタンクにて、-0.1MPaまで減圧した後、60℃に昇温し、30分間ストリッピングを行い、残留モノマーを除去し、ラテックスを得た。
 次いで、50℃の温水9.15Lに、塩化カルシウム89g、水酸化カリウム4.2gを加えて溶解させ、さらに上記重合で得られたラテックスを水溶液に投入することで、ゴム成分を凝固させた。その後、50℃、50℃、20℃で順に水洗を行い、130℃に調温したロールによりゴムを乾燥することで、ビシナルジオール含有共役ジエン系重合体Aを得た。
[実施例2:ビシナルジオール含有共役ジエン系重合体Bの合成]
 重合処方につき、1,3-ブタジエンの使用量を491gに変更し、2,3-ジヒドロキシプロピルメタクリレートの使用量を28gに変更した点以外は実施例1と同様の方法によりビシナルジオール含有共役ジエン系重合体Bを得た。
[実施例3:ビシナルジオール含有共役ジエン系重合体Cの合成]
 重合処方につき、1,3-ブタジエンの使用量を309gに変更し、2,3-ジヒドロキシプロピルメタクリレートの使用量を210gに変更した点以外は実施例1と同様の方法によりビシナルジオール含有共役ジエン系重合体Cを得た。
[実施例4:ビシナルジオール含有共役ジエン系重合体Dの合成]
 重合処方につき、1,3-ブタジエンの使用量を463gに変更し、2,3-ジヒドロキシプロピルメタクリレートに代えて9,10-ジヒドロキシデシルメタクリレートを56g使用した点以外は実施例1と同様の方法によりビシナルジオール含有共役ジエン系重合体Dを得た。
[比較例1:ビシナルジオール含有共役ジエン系重合体Eの合成]
 1,3-ブタジエンの使用量を518gに変更し、2,3-ジヒドロキシプロピルメタクリレートの使用量を1gに変更した点以外は実施例1と同様の方法によりビシナルジオール含有共役ジエン系重合体Eを得た。
[比較例2:ビシナルジオール含有共役ジエン系重合体Fの合成]
 重合に使用するモノマー及び量を、1,3-ブタジエン239g、スチレン181g及び2,3-ジヒドロキシプロピルメタクリレート280gに変更した点以外は実施例1と同様の方法によりビシナルジオール含有共役ジエン系重合体Fを得た。
[比較例3:ヒドロキシ含有共役ジエン系重合体Gの合成]
 重合処方につき、2,3-ジヒドロキシプロピルメタクリレートに代えて3-ヒドロキシプロピルメタクリレートを28g使用した点以外は実施例2と同様の方法によりヒドロキシ含有共役ジエン系重合体Gを得た。
[比較例4:非変性共役ジエン系重合体Hの合成]
 窒素置換された内容積100Lのリアクターに、水36.8L、ドデシルジフェニルエーテルジスルホン酸ナトリウム1190g、塩化カリウム6.7g、エチレンジアミン四酢酸ナトリウム塩(キレート剤)8.5g、及びナトリウムハイドロサルファイト8.5gを添加した。続いて、エチレンジアミン酢酸ナトリウム塩10.6g、硫酸第一鉄4.3g、ナトリウムホルムアルデヒドスルホオキシレート17.0gを含んだ水を638mL、tert-ドデシルメルカプタン51g、1,3-ブタジエン11883g、及びスチレン4403gを仕込んだ。330rpmにて撹拌を行い、反応器内容物の温度を10℃に調整後、ピナンヒドロペルオキシド17.0gを添加して重合を開始した。重合は温度コントロール条件(10℃)で実施した。重合転化率が70%に達した時点で、6.2%N,N-ジエチルヒドロキシルアミン水溶液を1.65L添加し、重合反応を停止させた。ストリップタンクにて、-0.1MPaまで減圧した後、60℃に昇温し、30分間ストリッピングを行い、残留モノマーを除去し、ラテックスを得た。
 次いで、50℃の温水183Lに、塩化カルシウム1.79kgを加えて溶解させ、さらに上記重合で得られたラテックスを水溶液に投入することで、ゴム成分を凝固させた。その後、50℃、50℃、20℃で順に水洗を行い、90℃に調温した熱風乾燥器によりゴムを乾燥することで、非変性共役ジエン系重合体Hを得た。
2.重合体組成物及び架橋物の製造並びに評価
[実施例1~4及び比較例1~4]
 上記で製造した共役ジエン系重合体A~Hをそれぞれ用いて、表1に示す配合処方により各成分を配合し、これを混練りすることによって重合体組成物を製造した。混練りは以下の方法で行った。温度制御装置を付属したプラストミル(内容量:250mL)を使用し、充填率72%、回転数60rpmの条件で、共役ジエン系重合体(A~H)、加硫促進剤及び硫黄を配合し混練りした。得られた重合体組成物を成型し、160℃で所定時間、加硫プレスにて加硫して、架橋物(加硫ゴム)を得た。
 得られた架橋物(加硫ゴム)を用いて以下の引張試験を行った。引張試験による評価結果を表1に示した。
(引張試験)
 JIS K6251:2017に準拠し、ダンベル形状3号の試験片を使用して、100%伸び時における引張応力(M100)、引張強さ(TB)、切断時伸び(EB)、及び抗張積(=TB×EB)の半値(=TB×EB÷2)を求めた。
Figure JPOXMLDOC01-appb-T000004
 表1中、「加硫促進剤CZ」は、大内新興化学工業株式会社製、商品名「ノクセラーCZ」を使用した。「イオウ」は、鶴見化学工業社製、商品名「金華院印微粉硫黄200メッシュ」を使用した。
 表1に示す結果から、2個の水酸基が隣接する炭素に結合した部分構造を有する構造単位を一定割合含有する共役ジエン系重合体を用いた架橋物は、比較例の架橋物よりも高強度であるといえる。
 より詳細に検討すると、実施例1~4は、引張応力(M100)、引張強さ(TB)、切断時伸び(EB)及び抗張積のバランスが良く、高強度な物性を示した。これに対し、繰り返し単位(c)の含有量が0.2%と少ない共役ジエン系重合体を用いた比較例1の架橋物、及び繰り返し単位(c)を有しない共役ジエン系重合体を用いた比較例4の架橋物は、引張応力(M100)は良好であったものの、引張強さ(TB)、切断時伸び(EB)及び抗張積が実施例1~4に比べて低かった。また、繰り返し単位(c)の含有量が40%と多い共役ジエン系重合体を用いた比較例2の架橋物は、引張応力(M100)が高く、また切断時伸び(EB)及び抗張積が低かった。繰り返し単位(c)に代えて水酸基を1つのみ有する繰り返し単位を導入した共役ジエン系重合体を用いた比較例3の架橋物は、引張強さ(TB)及び抗張積が実施例1~4に比べて低かった。
<フィラーを含有する重合体組成物及び架橋物の製造並びに評価>
[実施例5~9及び比較例5~7]
 表2に示す配合処方により各成分を配合し、これを混練りすることによってフィラーを含有する重合体組成物を製造した。混練は以下の方法で行った。
 温度制御装置を付属したバッチ式ミキサー(東洋精機製作所社製;商品名ラボプラストミル)を使用し、一段目の混練として、設定温度を100℃に温調して、充填率70%、回転数60rpm、混練時間4分の条件で、ゴム成分、フィラー、シランカップリング剤、伸展油、ステアリン酸、老化防止剤及び酸化亜鉛を配合して混練りした。なお、実施例8,9及び比較例7では更に樹脂も配合して混練りした。
 次いで、二段目の混練として、一段目の混練により得られた混練物を室温まで冷却後、加硫促進剤及び硫黄を上記ミキサーに配合し、設定温度を70℃に温調して、回転数60rpm、混練時間1.5分の条件で混練することにより、配合物をそれぞれ得た。ミキサーから排出された混練物の排出時の温度はいずれも100℃以下であった。次に、得られた各配合物を160℃で所定時間、加硫プレスにて加硫成形を行うことにより、架橋物として加硫ゴムを得た。得られた加硫ゴムを用いて、以下の物性評価を行った。結果を表2に示す。
[配合物性の評価方法]
・強度(TB×EB÷2)
 加硫ゴムを測定用試料として、JIS K6251:2010に準拠して引張試験を行った。ここでは、試験サンプルとしてダンベル状3号形を用いて、破断時の応力(TB、単位:MPa)及び破断時の伸び(EB、単位:%)を室温で測定した。また、測定値を用いて抗張積(=TB×EB)の半値を算出した。算出結果については、実施例5,6については比較例5を100とした指数、実施例7については比較例6を100とした指数、実施例8,9については比較例7を100とした指数で表し、それぞれ表2に示した。数値が大きいほど高強度であることを示す。
Figure JPOXMLDOC01-appb-T000005
 表2中、使用した試薬等の詳細は以下の通りである。
1)ENEOSマテルリアル社製 BR01、2)ソルベイ社製 ZEOSIL 1165MP、3)三菱化学社製 ダイヤブラックN330、4)昭和電工株式会社製、商標「ハイジライトH-43M」、5)エボニック社製Si75、6)ENEOS社製 T-REZ PR802、7)ENEOS社製 プロセスオイル T-DAE、8)精工化学社製 オゾノン6C、9)大内新興化学工業社製 ノクセラーD、10)大内新興化学工業社製 ノクセラーCZ-G
 表2中、重合体A~D及び重合体Hはそれぞれ、実施例1~4、比較例4で合成した共役ジエン系重合体を表す。
 表2に示す結果から、2個の水酸基が隣接する炭素に結合した単量体に由来する繰り返し単位を所定の割合で有する重合体(P)をフィラー等と配合し、これにより得られた配合物を架橋した架橋物は、重合体(P)とは異なる重合体のみをゴム成分として用いた比較例の架橋物よりも高強度であるといえる。

Claims (7)

  1.  全繰り返し単位に対し、共役ジエン化合物に由来する繰り返し単位(a)を45~99質量%、芳香族ビニル化合物に由来する繰り返し単位(b)を0~40質量%、及び、下記式(1)で表される部分構造を有する繰り返し単位(c)を1~30質量%有する、共役ジエン系重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、nは0又は1であり、Rは単結合又は炭素数1~20のヒドロカルビレン基を表し、R~Rはそれぞれ独立に水素又は炭素数1~20のヒドロカルビル基を表し、「*」はポリマー主鎖への結合手であることを表す。)
  2.  上記式(1)中のRが、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基である、請求項1に記載の共役ジエン系重合体。
  3.  ゲルパーミエーションクロマトグラフで測定した、ポリスチレン換算の重量平均分子量(Mw)が100,000~2,000,000である、請求項1又は請求項2に記載の共役ジエン系重合体。
  4.  請求項1に記載の共役ジエン系重合体及び架橋剤を含有する重合体組成物。
  5.  更に、フィラーを含有する請求項4に記載の重合体組成物。
  6.  請求項4又は請求項5に記載の重合体組成物より得られる架橋物。
  7.  請求項6に記載の架橋物を、少なくとも一部に使用したタイヤ。
PCT/JP2023/033680 2022-09-16 2023-09-15 共役ジエン系重合体、重合体組成物、架橋物、及びタイヤ WO2024058265A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022147890 2022-09-16
JP2022-147890 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024058265A1 true WO2024058265A1 (ja) 2024-03-21

Family

ID=90275323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033680 WO2024058265A1 (ja) 2022-09-16 2023-09-15 共役ジエン系重合体、重合体組成物、架橋物、及びタイヤ

Country Status (1)

Country Link
WO (1) WO2024058265A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310867A (ja) * 1992-05-07 1993-11-22 Terumo Corp 血液適合性ブロック共重合体
WO2016043005A1 (ja) * 2014-09-17 2016-03-24 富士フイルム株式会社 パターン形成方法、電子デバイスの製造方法、電子デバイス、ブロック共重合体、及び、ブロック共重合体の製造方法
WO2020110793A1 (ja) * 2018-11-26 2020-06-04 セントラル硝子株式会社 感光性樹脂組成物、含フッ素樹脂硬化物の製造方法、含フッ素樹脂、含フッ素樹脂膜、バンク及び表示素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310867A (ja) * 1992-05-07 1993-11-22 Terumo Corp 血液適合性ブロック共重合体
WO2016043005A1 (ja) * 2014-09-17 2016-03-24 富士フイルム株式会社 パターン形成方法、電子デバイスの製造方法、電子デバイス、ブロック共重合体、及び、ブロック共重合体の製造方法
WO2020110793A1 (ja) * 2018-11-26 2020-06-04 セントラル硝子株式会社 感光性樹脂組成物、含フッ素樹脂硬化物の製造方法、含フッ素樹脂、含フッ素樹脂膜、バンク及び表示素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MORI H., HIRAO, AKIRA ; NAKAHAMA, SEIICHI ; SENSHU, KAZUHISA: "SYNTHESIS AND SURFACE CHARACTERIZATION OF HYDROPHILIC-HYDROPHOBIC BLOCK COPOLYMERS CONTAINING POLY(2,3-DIHYDROXYPROPYL METHACRYLATE).", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 27, no. 15, 18 July 1994 (1994-07-18), US , pages 4093 - 4100, XP000456650, ISSN: 0024-9297, DOI: 10.1021/ma00093a010 *

Similar Documents

Publication Publication Date Title
US6057397A (en) Rubber composition and process for preparing the same
US6114432A (en) Diene rubber composition
US11124631B2 (en) Rubber compositions
JP7458146B2 (ja) ゴム組成物
WO2019151126A1 (ja) 組成物、架橋成形体及びタイヤ
WO2019151127A1 (ja) 組成物、架橋成形体及びタイヤ
JPH09183820A (ja) ジエン系ゴム及びその製造方法
JP2010095724A (ja) 官能化ジエンゴムを含み、ミクロゲルを含むゴム混合物、これらの混合物の製造方法、ならびに使用
JP2002201309A (ja) ゴム組成物及びその製造方法
JP5548615B2 (ja) ゴム組成物及びそれを用いたタイヤ
JPWO2014185398A1 (ja) 重合体組成物、架橋重合体、タイヤ及び重合体
JP2019094390A (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋体及びタイヤ
JP2011148956A (ja) ゴム組成物及び該ゴム組成物を用いたトレッド及びタイヤ
US9127146B2 (en) Rubber composition and tire using the same
JP5121300B2 (ja) ゴム組成物及びそれを用いた空気入りタイヤ
WO2024058265A1 (ja) 共役ジエン系重合体、重合体組成物、架橋物、及びタイヤ
JP7299908B2 (ja) タイヤ用ゴム組成物、タイヤおよび成形体
KR102450695B1 (ko) 중합체 조성물, 가교 중합체 및, 타이어
WO2021049377A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP2002020543A (ja) ゴム組成物
WO2023127910A1 (ja) 共役ジエン系重合体及びその製造方法、並びにゴムベール
JP2019206697A (ja) 重合体組成物及びその製造方法、並びにタイヤ
WO2022004336A1 (ja) 変性共役ジエン系重合体及びゴムベール
JP4670132B2 (ja) 共役ジエン系重合体及びその製法
JP3216267B2 (ja) 加硫性ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865614

Country of ref document: EP

Kind code of ref document: A1