WO2019150879A1 - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2019150879A1
WO2019150879A1 PCT/JP2018/048382 JP2018048382W WO2019150879A1 WO 2019150879 A1 WO2019150879 A1 WO 2019150879A1 JP 2018048382 W JP2018048382 W JP 2018048382W WO 2019150879 A1 WO2019150879 A1 WO 2019150879A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
region
semiconductor device
shape
viscous fluid
Prior art date
Application number
PCT/JP2018/048382
Other languages
English (en)
French (fr)
Inventor
建治 竹尾
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/964,663 priority Critical patent/US20210057386A1/en
Priority to DE112018006991.5T priority patent/DE112018006991T5/de
Publication of WO2019150879A1 publication Critical patent/WO2019150879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration

Definitions

  • the present disclosure relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • a semiconductor device such as an arithmetic processing device, a storage device, or a solid-state imaging device formed using a semiconductor such as silicon
  • a semiconductor device a stacked structure is used in which a plurality of substrates are bonded together, and then a through electrode penetrating one substrate is formed to form an electrical connection between the plurality of substrates. It has become.
  • High-aspect-ratio holes or slits are likely to cause problems in semiconductor devices because the etching time during formation tends to be long and the embedding of a resist or the like in the bottom tends to be uneven. Therefore, a technique for suppressing the influence that occurs when forming a high aspect ratio hole or slit has been studied.
  • Patent Document 1 a first hole having a tapered shape in which the diameter of the opening becomes narrower toward the bottom of the hole, and a cylindrical second hole formed in the bottom of the first hole, A technique for forming a through hole for a through electrode penetrating a substrate by providing a substrate is disclosed.
  • the present disclosure proposes a new and improved semiconductor device that can maintain reliability even when the structure is complicated, and a method for manufacturing the semiconductor device.
  • At least one opening is provided on one principal surface of the laminated layer structure, and the planar shape of the one principal surface of the opening protrudes from another region of the planar shape and is folded into an outer shape.
  • a semiconductor device is provided that includes an angular region that includes a bend.
  • the outer shape includes a rectangular region including a bending point, and at least one opening having a planar shape in which the angular region protrudes from another region has a stacked layer structure.
  • a method for manufacturing a semiconductor device including forming on one main surface.
  • the reliability of a semiconductor device can be improved even when the structure is complicated by suppressing the occurrence of defects due to openings formed in one main surface of the layer structure of the semiconductor device with a simpler structure. It is possible to maintain sex.
  • FIG. 3A and 3B are a plan view and a cross-sectional view illustrating an example of a shape of an opening provided in the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 6 is a plan view and a cross-sectional view illustrating another example of the shape of the opening provided in the semiconductor device according to the first embodiment of the present disclosure. It is the top and sectional view showing an example of the shape of the opening provided in the semiconductor device concerning a comparative example. It is a perspective view explaining typically the composition of the semiconductor device concerning a 2nd embodiment of this indication.
  • FIG. 4 is a schematic diagram illustrating a region where an opening to which the technology according to the present disclosure is applied is formed in the solid-state imaging device illustrated in FIG. 3.
  • FIG. 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • FIG. 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • FIG. 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • FIG. 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • FIG. 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • FIG. FIG. 4 is a cross-sectional view showing an example of the shape of an opening provided in the semiconductor device according to the same embodiment.
  • FIG. 4 is a cross-sectional view showing an example of the shape of an opening provided in the semiconductor device according to the same embodiment.
  • FIG. 4 is a cross-sectional view showing an example of the shape of an opening provided in the semiconductor device according to the same embodiment.
  • FIG. 4 is a cross-sectional view showing an example of the shape of an opening provided in the semiconductor device according to the same embodiment.
  • 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • FIG. 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • FIG. 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • FIG. 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • FIG. 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • FIG. 4 is a plan view showing an example of a shape of an opening provided in the semiconductor device according to the embodiment.
  • the semiconductor device includes, for example, a semiconductor substrate, various elements provided on the semiconductor substrate, a plurality of insulating layers stacked on the semiconductor substrate, and a plurality of insulating layers. And various wirings that are provided inside and electrically connect each of the various elements.
  • the insulating layer is formed of an insulating material and is provided as a multilayer structure including a plurality of layers formed on a semiconductor substrate.
  • Various wirings are formed of a conductive material and are provided so as to be embedded in each of the insulating layers.
  • Various wirings provided in each of the insulating layers are electrically connected to each other by an interlayer electrode provided through each of the insulating layers.
  • the semiconductor device is provided as a stacked semiconductor device in which a plurality of semiconductor substrates are stacked, a semiconductor substrate is electrically connected to various elements or wirings provided in each of the stacked semiconductor substrates.
  • An inter-substrate electrode that penetrates the substrate is provided.
  • an opening may be formed in the insulating layer or the semiconductor substrate in order to form electrodes or various wirings, or to separate a predetermined region from other regions.
  • the shape of the opening is a shape with a high aspect ratio such as a small width and a large depth
  • the opening provided in the insulating layer or the semiconductor substrate is a reliability of the semiconductor device as described below. May affect sex.
  • FIG. 2 is a plan view and a cross-sectional view illustrating an example of the shape of an opening provided in the semiconductor device according to the comparative example.
  • the state before application of viscous fluid is shown on the left side of FIG. 2
  • the state after application of viscous fluid is shown on the right side.
  • a viscous fluid 920 such as a resist is allowed to flow on one main surface of a layer structure 900 provided with an opening 910 as shown in FIG.
  • the viscous fluid 920 When the viscous fluid 920 is caused to flow on one main surface of the layer structure 900 provided with the opening 910, the viscous fluid 920 flowing on the one main surface flows into the opening 910, avoiding the opening 910, and on the one main surface. Or flow past the opening 910 without flowing into the opening 910.
  • the viscous fluid 920 in order to allow the viscous fluid 920 to flow into the bottom of the opening 910, it is important to preferentially flow the viscous fluid 920 into the opening 910 and push out the air inside the opening 910 with the viscous fluid 920. .
  • the viscous fluid 920 in order to fill the entire opening 910 with the viscous fluid 120 without a gap, the viscous fluid 920 is preferentially placed in the opening 910 by controlling physical phenomena at the interface between the viscous fluid 920 and air and the contact surface of the opening 910. It is important to create a state that flows into the interior.
  • the planar shape on one main surface is an isotropic circular shape. Therefore, the planar opening 910 disperses the pressure when the viscous fluid 920 flows around the opening 910.
  • the viscous fluid 920 may flow on one main surface avoiding the opening 910 or flow on the opening 910 without flowing into the opening 910 rather than flowing into the opening 910. Is expensive. In such a case, the viscous fluid 920 blocks the upper part of the opening 910 before embedding the entire opening 910 without a gap, and therefore seals the path through which the air inside the opening 910 escapes. Therefore, the viscous fluid 920 blocks the upper portion of the opening 910 while leaving the gap 930 inside the opening 910.
  • the internal pressure of the air gap 930 increases due to expansion of the air in the air gap 930 due to heat treatment or the like subsequent to the manufacturing process, and the hardened viscous fluid 920 ( The resist or the like) may be cracked, or the layer structure 900 may be subjected to unintended stress. Therefore, when a large gap 930 exists in the opening 910, the reliability of the semiconductor device may be reduced.
  • the opening provided in one main surface of the layer structure is provided with a planar shape in which a square region in which a viscous fluid such as a resist easily flows is provided, whereby the viscosity to the inside of the opening is provided. Fluid flow can be facilitated.
  • a specific planar shape of an opening through which such a viscous fluid can easily flow will be described with reference to FIGS. 1A and 1B.
  • the opening provided in one main surface of the layer structure is a conductive material containing a metal or a metal compound such as copper (Cu), aluminum (Al), titanium (Ti), tungsten (W), or tantalum (Ta). It may be used as a through electrode by being embedded in, and embedded in an insulating material such as silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiON), or organic resin, or a void. And may be used as an insulating layer.
  • a metal or a metal compound such as copper (Cu), aluminum (Al), titanium (Ti), tungsten (W), or tantalum (Ta). It may be used as a through electrode by being embedded in, and embedded in an insulating material such as silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiON), or organic resin, or a void. And may be used as an
  • FIG. 1A is a plan view and a cross-sectional view illustrating an example of the shape of the opening provided in the semiconductor device according to the present embodiment
  • FIG. 1B illustrates another example of the shape of the opening provided in the semiconductor device according to the present embodiment. It is the plane and sectional view which show.
  • FIGS. 1A and 1B the state before application of the viscous fluid is shown on the left side and the state after application of the viscous fluid is shown on the right side as opposed to FIGS. 1A and 1B.
  • the semiconductor device includes an opening 110 on one main surface of the laminated layer structure 100.
  • the opening 110 is provided so as to protrude from the other region 111 and is provided in a planar shape including a square region 113 including a bending point in the outer shape.
  • the planar shape of the opening 110 may be a saddle shape in which one point on the outer periphery of the circle is extended outward so that the one point becomes a bending point. Good. At this time, the region stretched so as to protrude from the circular shape corresponds to the square region 113.
  • the planar shape of the opening 110 may be a unidirectional arrow shape in which an arrow head is provided on one of the line segments to be the shaft. At this time, the area of the arrow head corresponds to the square area 113. That is, the square region 113 corresponds to a region including at least one bending point that is a vertex in the outer shape.
  • the square region 113 may correspond to a shape obtained by cutting a region including at least one vertex from a polygonal shape.
  • the opening 110 By forming the opening 110 in an anisotropic plane shape including such a rectangular region 113, the pressure generated when the viscous fluid 120 flows can be concentrated in the rectangular region 113. Accordingly, the viscous fluid 120 easily flows into the opening 110 from the rectangular region 113, so that the viscous fluid 120 flows on one main surface avoiding the opening 110, or does not flow into the opening 110 and does not flow into the opening 110. The possibility of flowing through the top is reduced. Therefore, since the opening 110 can be filled with the viscous fluid 120 in order from the bottom of the opening 110, the entire opening 110 can be filled with the viscous fluid 120 without gaps before the viscous fluid 120 blocks the top of the opening 110. it can.
  • planar shape of the opening 110 may include a curved region 115 whose outer shape is configured by a curve on the other side opposite to the one side where the angular region 113 is provided.
  • the planar shape of the opening 110 when the planar shape of the opening 110 is a saddle shape, a part of the circular shape on the opposite side of the angular region 113 extended so as to protrude from the circular shape is You may correspond to the curve area
  • the planar shape of the opening 110 when the planar shape of the opening 110 is a unidirectional arrow shape, the start point of the arrow existing on the opposite side of the arrow head angular region 113, which is the end point of the arrow, has a curved outer shape. It may correspond to the curved region 115 constituted by
  • the opening 110 has a planar shape in which a curved region 115 is provided on the other side opposite to one side where the angular region 113 is provided, so that air existing in the opening 110 is pushed out by the viscous fluid 120 and escapes. A path can be formed.
  • the isotropic outer shape of the curved region 115 disperses the pressure when the viscous fluid 120 flows, and therefore the viscous fluid 120 hardly flows into the opening 110 in the curved region 115. Therefore, by providing the curved region 115 in the planar shape of the opening 110, the opening 110 selectively causes the viscous fluid 120 to flow into the opening 110 from the angular region 113, and selectively from the curved region 115 to the opening 110. Air existing inside can be escaped. Therefore, the opening 110 having a planar shape including each of the angular region 113 and the curved region 115 can bury the inside of the opening 110 with the viscous fluid 120 without gaps more stably.
  • the technology according to the present disclosure can be applied to any layer structure 100 and the viscous fluid 120 regardless of the layer structure 100 in which the opening 110 is provided and the type of the viscous fluid 120 in which the opening 110 is embedded. It is.
  • the layer structure 100 described above represents any layered member inside the semiconductor device.
  • the layer structure 100 is a layer or substrate having one main surface, and may be any of a known semiconductor substrate, glass substrate, resin substrate, semiconductor layer, insulating layer, or conductor layer.
  • the layer structure 100 may be a semiconductor substrate or semiconductor layer such as silicon, germanium, gallium arsenide (GaAs), indium gallium arsenide (InGaAs), gallium nitride (GaN), or silicon carbide (SiC), and silicon oxide.
  • SiO x silicon nitride (SiN x ), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), tantalum pentoxide (Ta 2 O 5 ), hafnium oxide (HfO) 2 ), an insulating layer such as zircon oxide (ZrO 2 ), ruthenium oxide (RuO 2 ), or lanthanum oxide (La 2 O 3 ).
  • the viscous fluid 120 described above represents, for example, a known organic material or inorganic material that can be a fluid.
  • the viscous fluid 120 includes various resists (or a composition in which various resists are dissolved), an organic resin that is curable or plastic by heat or light, or inorganic glass such as SOG (Spin-On-Glass). Also good.
  • FIG. 3 is a perspective view schematically illustrating the configuration of the semiconductor device according to the second embodiment of the present disclosure.
  • the semiconductor device according to this embodiment is a stacked solid-state imaging device configured by stacking a first substrate 10 and a second substrate 20.
  • the first substrate 10 includes a pixel region 11 provided with a photodiode (PhotoDiode: PD), and a function of photoelectrically converting light incident from the back side of the first substrate 10 with the PD of the pixel region 11. Is realized.
  • the second substrate 20 includes a control area 23 provided with a control circuit that performs signal processing on the signal charges photoelectrically converted by the first substrate 10, and a memory circuit that temporarily stores the signal charges photoelectrically converted by the first substrate 10.
  • the memory area 21 provided is provided.
  • the second substrate 20 realizes a function of converting the signal charge photoelectrically converted by the first substrate 10 into an image signal. Since the first substrate 10 and the second substrate 20 can more appropriately configure the circuits on each substrate so as to correspond to the functions realized by each substrate, the solid-state imaging device can be easily and highly functional. Can be
  • the circuits provided on each of the first substrate 10 and the second substrate 20 are connected to each other by, for example, inter-substrate electrodes provided so as to penetrate either the first substrate 10 or the second substrate 20. Electrically connected.
  • the inter-substrate electrode may be provided in a region surrounding the pixel region 11 while avoiding the pixel region 11.
  • FIG. 4 is a schematic diagram illustrating a region where an opening to which the technique according to the present disclosure is applied is formed in the solid-state imaging device illustrated in FIG. 3.
  • the opening to which the technology according to the present disclosure is applied may be provided, for example, in the peripheral region 13 around the pixel region 11 illustrated in FIG. Specifically, in the peripheral region 13 around the pixel region 11, inter-substrate electrodes for electrically connecting circuits provided on each of the first substrate 10 and the second substrate 20 are arranged at a predetermined interval. A plurality of them are provided. The technology according to the present disclosure may be applied to each of the openings for forming such an inter-substrate electrode.
  • 5A to 5D are plan views showing an example of the shape of the opening provided in the semiconductor device according to the present embodiment.
  • 5A to 5D are schematic views showing an enlarged part of the peripheral region 13 near the apex of the pixel region 11 in FIG. 4, and an arrow R indicates the direction in which the viscous fluid 120 flows.
  • the opening 210 ⁇ / b> A includes a main region 211 where the inter-substrate electrode is formed, and a square region 213 ⁇ / b> A including a bending point on the outer shape and protruding from the main region 211. It may be provided in a planar shape. Specifically, the opening 210A may have a bowl shape in which one point on the outer circumference of the circular main region 211 is extended outward so that the one point becomes a bending point. At this time, the region extended so as to protrude from the circular main region 211 corresponds to the angular region 213A.
  • the angular region 213A may be provided on the side of the main surface 211 facing the direction R in which the viscous fluid 120 such as a resist flows on one main surface of the first substrate 10.
  • the square region 213 ⁇ / b> A may be provided on the upstream side of the flow of the viscous fluid 120 on one main surface of the first substrate 10.
  • the opening 210 ⁇ / b> A has a rectangular region 213 ⁇ / b> A that allows the viscous fluid 120 to easily flow into the opening 210 ⁇ / b> A in the direction in which the viscous fluid 120 flows in on one main surface of the first substrate 10. Can do. Therefore, the opening 210A can make it easier for the viscous fluid 120 to flow into the opening 210A, so that it is possible to more reliably prevent a gap from being generated inside the opening 210A.
  • the opening 210B includes a main region 211 in which the inter-substrate electrode is formed, and a square region 213B that includes a bending point in the outer shape and protrudes from the main region 211. It may be provided in a planar shape. Specifically, the opening 210 ⁇ / b> B may have a shape in which a triangular angular region 213 ⁇ / b> B protrudes from a part of the outer periphery of the circular main region 211.
  • the square region 213B may be provided on the main surface 211 on a side substantially opposite to the direction R in which the viscous fluid 120 such as a resist flows on the one main surface of the first substrate 10.
  • the square region 213 ⁇ / b> B may be provided toward an angle range that is widened by 90 degrees on one side from the direction R in which the viscous fluid 120 such as a resist flows on one main surface of the first substrate 10.
  • the opening 210B has an angle at which the viscous fluid 120 easily flows into the opening 210B on the main surface of the first substrate 10 in the direction in which the viscous fluid 120 such as a resist flows.
  • the region 213B can be arranged. Therefore, the opening 210B can make it easier for the viscous fluid 120 to flow into the opening 210B, so that it is possible to more reliably prevent a gap from being generated inside the opening 210B.
  • the square region 213B faces the side opposite to the side where the pixel region 11 is provided (that is, the outside of the first substrate 10). May be provided. Since the viscous fluid 120 flows from the outside of the first substrate 10, the angular region 213 ⁇ / b> B is directed to the outside of the first substrate 10, so that the viscous fluid 120 does not depend on the flowing direction of the viscous fluid 120. It is possible to make the viscous fluid 120 easily flow into the inside.
  • the opening 210 ⁇ / b> C includes a main region 211 in which the inter-substrate electrode is formed, and a square region 213 ⁇ / b> C that includes a bending point on the outer shape and is provided to protrude from the main region 211. It may be provided in a planar shape. Specifically, the opening 210 ⁇ / b> C may have a shape in which a linear angular region 213 ⁇ / b> C that branches off from a part of the outer periphery of the circular main region 211 projects.
  • the square region 213 ⁇ / b> C is provided in a linear shape or a slit shape whose planar shape is thinner than that of the main region 211.
  • the effective surface area is larger than that of the main region 211, and thus the surface tension acting on the viscous fluid 120 from the layer structure 100 is increased.
  • a capillary phenomenon occurs, so that a force that draws the viscous fluid 120 into the opening 210C is more increased.
  • the square region 213 ⁇ / b> C can make the viscous fluid 120 more easily flow into the opening 210 ⁇ / b> C of the main region 211, and thus can suppress the generation of a gap in the opening 210 ⁇ / b> C.
  • the rectangular region 213C may be provided on the side substantially opposite to the direction R in which the viscous fluid 120 such as a resist flows on the one main surface of the first substrate 10 with respect to the main region 211. Good. Even in such a case, the opening 210C can make it easier for the viscous fluid 120 to flow into the opening 210C. Therefore, it is possible to more reliably prevent a gap from being generated inside the opening 210C.
  • the opening 210D may be provided in a planar shape including a main region 211 where the inter-substrate electrode is formed and a rectangular region 213D connecting each of the main regions 211.
  • the opening 210D may have a shape including a linear angular region 213D that protrudes from a part of the outer periphery of the circular main region 211 and is connected to the main region 211 of the adjacent opening 210D. .
  • the rectangular region 213D connects the main regions 211 of the openings 210D, in the peripheral region 13 near the apex of the pixel region 11, the main regions 211 of the openings 210D arranged in directions orthogonal to each other are connected. Therefore, the outer shape has a bending point.
  • the rectangular region 213D is provided in a linear shape or a slit-like shape whose planar shape is thinner than that of the main region 211, like the rectangular region 213C shown in FIG. 5C.
  • the surface tension acting on the viscous fluid 120 from the layer structure 100 becomes large, as in the angular region 213C shown in FIG. 5C.
  • the capillary fluid phenomenon can cause the viscous fluid 120 to easily flow into the opening 210D of the main region 211, so that the generation of voids in the opening 210D is further suppressed. can do.
  • each of the angular regions 213D connects each of the openings 210D, when the viscous fluid 120 flows into one opening 210D, the viscous fluid 120 flows from the opening 210D to the adjacent opening 210D by the rectangular region 213D. Can guide you. In such a case, if the viscous fluid 120 flows into any of the plurality of openings 210D, the viscous fluid 120 flows into all the openings 210D. Therefore, according to such a planar opening 210D, it is possible to prevent a situation in which the viscous fluid 120 does not flow into the opening 210D at a part of the plurality of openings 210D.
  • each of the openings 210D needs to be electrically separated from each other and have an independent planar shape. Therefore, the rectangular regions 213D that connect each of the openings 210D may be eliminated by embedding an insulating material, etching the entire surface, or the like in a subsequent process.
  • FIGS. 6A and 6B are cross-sectional views showing an example of the shape of the opening provided in the semiconductor device according to the present embodiment.
  • the cross-sectional shape of the opening 210 shown in FIG. 6A may correspond to, for example, the cross-sectional shape of the opening 210A shown in FIG. 5A.
  • the opening 210 shown in FIG. 6A has a planar shape including a main region 211 where the inter-substrate electrode is formed and a rectangular region 213 extended so as to protrude from the circular main region 211. , Provided on one principal surface of the layer structure 100.
  • the opening 210 of the square region 213 may be provided so that the formation depth is shallower than the opening 210 of the main region 211.
  • the opening 210 of the angular region 213 may be provided in a tapered shape such that the formation depth gradually increases in a direction from the bending point of the outer shape toward the center of the main region 211.
  • the surface area of the angular region 213 is increased. Therefore, by reducing the effective contact angle in the angular region 213, the viscous fluid 120 can be reduced. The force drawn into the square region 213 can be further increased. Therefore, the opening 210 having such a cross-sectional shape can make the viscous fluid 120 more easily flow into the opening 210, and thus can suppress the generation of a void in the opening 210.
  • the opening 210 having a cross-sectional shape shown in FIG. 6A can be formed by dry etching the layer structure 100.
  • dry etching an etching gas is less likely to enter a region where the pattern shape to be etched is narrow or small, and thus etching is less likely to proceed than a region where the pattern shape to be etched is wide. Therefore, by forming the opening 210 by dry etching, the cross-sectional shape of the square region 213 whose planar shape is narrower than that of the main region 211 can be formed into a tapered shape as shown in FIG. 6A.
  • the cross-sectional shape of the opening 210 shown in FIG. 6B may correspond to, for example, the cross-sectional shape of the opening 210D shown in FIG. 5D.
  • the opening 210 shown in FIG. 6B has a planar shape including a main region 211 in which an inter-substrate electrode is formed and a rectangular region 213 that connects each of the main regions 211, and is one part of the layer structure 100. It may be provided on the main surface.
  • the opening 210 of the square region 213 may be provided with a shallower formation depth than the opening 210 of the main region 211.
  • each of the openings 210 is electrically isolated from each other by eliminating the rectangular region 213 in a later step. It becomes easy to obtain a flat shape. Specifically, it becomes easy to polish and eliminate the square regions 213 connecting each of the openings 210 by etching back the entire surface in the subsequent process.
  • the cross-sectional opening 210 shown in FIG. 6B can be formed by dry etching in the same manner as the cross-sectional opening 210 shown in FIG. 6A.
  • dry etching due to the microloading effect, an etching depth is shallower in a region having a narrow pattern shape than in a region having a wide pattern shape. Therefore, by forming the opening 210 by dry etching, the cross-sectional shape of the square region 213 whose planar shape is narrower than that of the main region 211 can be set to a shallow formation depth as shown in FIG. 6B.
  • the semiconductor device according to the third embodiment is the stacked solid-state imaging device shown in FIGS. 3 and 4 as in the second embodiment.
  • the opening to which the technology according to the present disclosure is applied may be provided inside the pixel region 11 illustrated in FIG. 4.
  • a plurality of interlayer electrodes that transfer signal charges photoelectrically converted in each pixel to a signal processing circuit are provided at predetermined intervals for each pixel or for each of a plurality of pixels. .
  • the technology according to the present disclosure may be applied to each of the openings for forming such an interlayer electrode.
  • FIG. 7 is a plan view showing an example of the shape of the opening provided in the semiconductor device according to the present embodiment.
  • FIG. 7 is a schematic diagram showing a part of the pixel region 11 of FIG. 4 in an enlarged manner, and an arrow R indicates the direction in which the viscous fluid 120 flows.
  • the opening 310 has a planar shape including a main region 311 in which an interlayer electrode is formed and a square region 313 that protrudes from the main region 311 and connects each of the main regions 311. It may be provided.
  • the opening 310 projects from a part of the outer periphery of the circular main region 311 and a part of the outer periphery of the circular main region 311, and the main region 311 of the adjacent opening 310.
  • It may be a shape including a square region 313 made of a linear shape connected to the.
  • the square regions 313 may be arranged in a tetragonal lattice, for example, in order to connect the main regions 311 of the openings 310 arranged in a tetragonal lattice.
  • the rectangular region 313 may be provided so as to protrude from a part of the outer periphery of the main region 311.
  • the square region 313 is provided in a linear shape or a slit shape whose planar shape is thinner than that of the main region 311.
  • the effective surface area is larger than that of the main region 311, and thus the surface tension acting on the viscous fluid 120 from the layer structure 100 is increased.
  • a capillary phenomenon occurs, so that the force that draws the viscous fluid 120 into the opening 310 is increased.
  • the angular region 313 can make the viscous fluid 120 more easily flow into the opening 310 of the main region 311, and thus it is possible to suppress the generation of a void in the opening 310.
  • the rectangular region 313 connects each of the openings 310, when the viscous fluid 120 flows into one opening 310, the rectangular region 313 is used to move from the opening 310 to the adjacent opening 310. A viscous fluid 120 can be directed. In such a case, the viscous fluid 120 that has flowed into the rectangular region 313 can be guided to the inside of the openings 310 of all the main regions 311 connected by the rectangular region 313. Therefore, according to the opening 310 having such a planar shape, it is possible to prevent a situation in which the viscous fluid 120 does not flow into the opening 310 at a part of the plurality of openings 310.
  • FIGS. 8A and 8B are sectional views showing an example of the shape of the opening provided in the semiconductor device according to the present embodiment.
  • FIGS. 8A and 8B the cross-sectional state of the opening before application of the viscous fluid is shown on the left side as opposed to FIGS. 8A and 8B, and the final cross-sectional state of the opening is shown on the right side.
  • the opening 310 shown in FIGS. 8A and 8B has a layer structure in a planar shape including a main region 311 where an interlayer electrode is formed and a rectangular region 313 protruding from a part of the outer periphery of the circular main region 311. 100 may be provided on one main surface.
  • the rectangular region 313 is provided in a linear shape connected to the main region 311 of the adjacent opening 310, and the opening 310 of the rectangular region 313 has a shallower formation depth than the opening 310 of the main region 311. May be provided.
  • the predetermined layer 301 provided with the opening 310 of the angular region 313 may disappear in a subsequent step.
  • the interlayer electrodes formed in the openings 310 can be electrically separated from each other.
  • the predetermined layer 301 provided with the opening 310 of the square region 313 may be erased by, for example, the entire surface etch-back or CMP (Chemical Mechanical Polishing).
  • the opening 310 of the square region 313 may be embedded with an insulating material 303 in a subsequent step.
  • the interlayer electrodes formed in each of the openings 310 can be electrically separated from each other.
  • the insulating material 303 may fill part of the opening 310 of the main region 311.
  • the embedding of the insulating material into the opening 310 of the square region 313 may be performed by, for example, CVD (Chemical Vapor Deposition) or the like in a selective region using a mask.
  • the opening 310 having the cross-sectional shape shown in FIGS. 8A and 8B can be formed by dry etching the layer structure 100.
  • dry etching due to the microloading effect, an etching depth is shallower in a region having a narrow pattern shape than in a region having a wide pattern shape. Therefore, by forming the opening 310 by dry etching, the cross-sectional shape of the square region 313 whose planar shape is narrower than that of the main region 311 can be set to a shallow formation depth as shown in FIGS. 8A and 8B.
  • the semiconductor device according to the fourth embodiment is the stacked solid-state imaging device shown in FIGS. 3 and 4, as in the second and third embodiments.
  • the opening to which the technology according to the present disclosure is applied may be provided inside the pixel region 11 illustrated in FIG. 4.
  • pixel separation layers that separate the regions of the semiconductor substrate for each pixel are provided in the pixel region 11 in a tetragonal lattice shape.
  • the technology according to the present disclosure may be applied to each of the openings for forming such a pixel separation layer.
  • 9A to 9D are plan views showing an example of the shape of the opening provided in the semiconductor device according to the present embodiment.
  • 9A to 9D are schematic views showing an enlarged part of the pixel region 11 in FIG. 4, and an arrow R indicates the direction in which the viscous fluid 120 flows.
  • the opening 410A has a planar shape including a main region 411 in which a pixel separation layer is formed and a square region 413A provided to protrude outward from the outermost periphery of the main region 411. May be provided.
  • the opening 410 ⁇ / b> A may have a shape in which a linear rectangular region 413 ⁇ / b> A protrudes from the outermost periphery of the main region 411 arranged in a tetragonal lattice at the same interval as the main region 411.
  • the square region 413A is provided in the same thin linear shape or slit shape as the main region 411.
  • the surface tension acting on the viscous fluid 120 from the layer structure 100 is increased, so that a capillary phenomenon occurs, so that the force for drawing the viscous fluid 120 into the opening 410A is increased. Work bigger. Therefore, the rectangular region 413A can make the viscous fluid 120 more easily flow into the opening 410A, and thus can prevent a gap from being generated inside the opening 410A.
  • the rectangular region 413A is provided so as to face the side opposite to the side where the pixel region 11 is provided (that is, the outside of the first substrate 10). According to this, with respect to the viscous fluid 120 flowing from the outside of the first substrate 10 (for example, from the direction R), the rectangular region 413A in which the viscous fluid 120 is likely to flow into the opening 410A is formed in the viscous fluid 120. Can be arranged in the direction of the inflow. Therefore, the rectangular region 413A can make the viscous fluid 120 easily flow into the opening 210B.
  • the opening 410B has a planar shape including a main region 411 where a pixel separation layer is formed and a square region 413B provided to protrude outward from the outermost periphery of the main region 411. May be provided.
  • the opening 410 ⁇ / b> B may have a shape in which a linear angular region 413 ⁇ / b> B protrudes from the outermost periphery of the main region 411 arranged in a tetragonal lattice at a smaller interval than the main region 411.
  • the square region 413B is provided in the same thin linear shape or slit shape as the main region 411. According to this, the rectangular region 413B can facilitate the flow of the viscous fluid 120 into the opening 410B, similarly to the rectangular region 413A shown in FIG. 9A, and therefore there is a gap in the opening 410B. It is possible to suppress the occurrence. However, since the rectangular region 413B is provided at a narrower interval than the rectangular region 413A shown in FIG. 9A, a void is formed inside the opening 410B by making it easier for the viscous fluid 120 to flow into the opening 410B. This can be further suppressed.
  • the opening 410C has a planar shape including a main region 411 where a pixel separation layer is formed and a square region 413C provided to protrude outward from the outermost periphery of the main region 411. May be provided. Specifically, the opening 410C extends from the outermost periphery of the main region 411 arranged in a tetragonal lattice shape to the direction R in which the linear angular region 413C flows at the same interval as the main region 411. The shape which protrudes may be sufficient.
  • the square region 413C is provided in the same thin linear shape or slit shape as the main region 411. According to this, the rectangular region 413C can make the viscous fluid 120 more easily flow into the opening 410C as in the rectangular region 413A shown in FIG. 9A. It is possible to suppress the occurrence.
  • the opening 410 ⁇ / b> C can be arranged in the direction in which the viscous fluid 120 flows in the rectangular region 413 ⁇ / b> C in which the viscous fluid 120 easily flows into the opening 410 ⁇ / b> C on one main surface of the first substrate 10. Therefore, the opening 410C can make it easier for the viscous fluid 120 to flow into the opening 410C, so that it is possible to more reliably prevent a gap from being generated inside the opening 410C.
  • the opening 410D has a planar shape including a main region 411 where a pixel separation layer is formed and a square region 413D provided to protrude outward from the outermost periphery of the main region 411. May be provided.
  • the opening 410D has a shape in which a linear rectangular region 413D with a modified tip protrudes from the outermost periphery of the main region 411 arranged in a tetragonal lattice at the same interval as the main region 411. May be.
  • the square region 413D is provided in a thin linear shape or slit shape similar to the main region 411, and is provided in a planar shape having a finer cross-shaped protrusion at the end of the linear shape.
  • the angular region 413D can further increase the effective surface area and further increase the surface tension acting on the viscous fluid 120 from the layer structure 100 in the cross-shaped protrusion at the tip.
  • the viscous fluid 120 can be drawn more strongly into the opening 410 by capillary action.
  • the rectangular region 413D can further facilitate the flow of the viscous fluid 120 into the opening 410 of the main region 411, and thus can further suppress the generation of a gap in the opening 410.
  • planar shape of the opening provided in the layer structure of the semiconductor device according to the present embodiment is not limited to the specific shape described above.
  • the planar shape of the opening provided in the layer structure of the semiconductor device may be appropriately replaced or changed within the scope of the technical idea described in the claims.
  • the following configurations also belong to the technical scope of the present disclosure.
  • the planar shape of the one principal surface of the opening is a semiconductor device provided with a rectangular region that protrudes from another region of the planar shape and includes a bending point in the outer shape.
  • the planar shape of the one main surface of the opening further includes a curved region whose outer shape is configured by a curve on the other side facing the one side where the angular region is provided.
  • Semiconductor device (3)
  • the said square area is a semiconductor device as described in said (1) or (2) which is the shape which cut out the area
  • the semiconductor device is configured by stacking a plurality of substrates each having a predetermined function, The semiconductor device according to (7), wherein the conductive material constitutes an inter-substrate electrode that electrically connects each of the plurality of substrates.
  • the semiconductor device is a solid-state imaging device, The semiconductor device according to (8), wherein the inter-substrate electrode is provided in a region surrounding a periphery of a pixel region of the solid-state imaging device.
  • the conductive material forms an interlayer electrode that electrically connects each of a plurality of wirings provided via the layer structure.
  • the semiconductor device is a solid-state imaging device,
  • the said interlayer electrode is a semiconductor device as described in said (10) provided for every pixel in the pixel area
  • the semiconductor device is a solid-state imaging device, The semiconductor device according to (13), wherein the opening is provided so as to separate each pixel in a pixel region of the solid-state imaging device.
  • a method for manufacturing a semiconductor device comprising: (16) Filling the inside of the opening with the viscous fluid by applying a viscous fluid on the one principal surface of the layer structure in which the opening is formed; The method for manufacturing a semiconductor device according to (15), further including: (17) Patterning the viscous fluid; Etching the layer structure using the patterned viscous fluid as a mask; The method for manufacturing a semiconductor device according to (16), further including: (18) The method of manufacturing a semiconductor device according to (16) or (17), wherein the angular region is formed on an upstream side in a direction in which the viscous fluid flows when the viscous fluid is applied.
  • Second substrate 10 First substrate 11 Pixel region 13 Peripheral region 20 Second substrate 21 Memory region 23 Control region 100 Layer structure 110, 210, 210A, 210B, 210C, 210D, 310, 410, 410A, 410B, 410C, 410D Opening 113, 213 213A, 213B, 213C, 213D, 313, 413, 413A, 413B, 413C, 413D Square region 115 Curve region 120 Viscous fluid 211, 311, 411 Main region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】構造が複雑化した場合でも信頼性を維持することが可能な半導体装置、及び半導体装置の製造方法を提供する。 【解決手段】積層された層構造の一主面に少なくとも1つ以上の開口を備え、前記開口の前記一主面における平面形状は、前記平面形状の他の領域から突出し、外形に折曲点を含む角状領域を備える、半導体装置。

Description

半導体装置及び半導体装置の製造方法
 本開示は、半導体装置及び半導体装置の製造方法に関する。
 近年、シリコンなどの半導体を用いて形成された演算処理装置、記憶装置、又は固体撮像装置等の半導体装置では、構造が増々複雑化している。例えば、半導体装置では、複数の基板を貼り合わせた後、一方の基板を貫通する貫通電極を形成することで、複数の基板間の電気的な接続を形成するような積層型構造が用いられるようになっている。
 構造が複雑化した半導体装置の製造工程では、形成難度がより高い高アスペクト比のホール又はスリットを形成する必要が生じ得る。高アスペクト比のホール又はスリットは、形成時のエッチング時間が長くなり易く、かつ底部へのレジスト等の埋め込みが不均一になり易いため、半導体装置に不具合を生じさせる要因になり易い。そのため、高アスペクト比のホール又はスリットを形成する際に生じる影響を抑制する技術が検討されている。
 例えば、下記の特許文献1には、開口の直径が穴の底部に向けて細くなるテーパ形状の有する第1の穴と、第1の穴の底部に形成された円筒状の第2の穴とを設けることによって、基板を貫通する貫通電極用の貫通孔を形成する技術が開示されている。
特開2015-182969号公報
 しかし、特許文献1に開示された技術では、第1の穴及び第2の穴の各々を別工程で形成するため、半導体装置の製造工程のコストを増加させてしまう。また、第1の穴及び第2の穴からなる貫通孔は、垂直に掘り抜いた単純な貫通孔と比較して形状及び膜構成が複雑化する。そのため、このような第1の穴及び第2の穴からなる貫通孔を設けた半導体装置では、信頼性が低下する可能性があった。
 そこで、本開示では、構造が複雑化した場合でも信頼性を維持することが可能な、新規かつ改良された半導体装置、及び半導体装置の製造方法を提案する。
 本開示によれば、積層された層構造の一主面に少なくとも1つ以上の開口を備え、前記開口の前記一主面における平面形状は、前記平面形状の他の領域から突出し、外形に折曲点を含む角状領域を備える、半導体装置が提供される。
 また、本開示によれば、外形に折曲点を含む角状領域を備え、前記角状領域が他の領域から突出する平面形状を備える少なくとも1つ以上の開口を、積層された層構造の一主面に形成すること、を含む、半導体装置の製造方法が提供される。
 本開示によれば、半導体装置の層構造の一主面に形成された開口に起因する不具合の発生をより簡易な構造にて抑制することで、構造が複雑化した場合でも、半導体装置の信頼性を維持することが可能である。
 以上説明したように本開示によれば、構造が複雑化した場合でも信頼性を維持することが可能な半導体装置を提供することが可能である。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の第1の実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面及び断面図である。 本開示の第1の実施形態に係る半導体装置に設けられる開口の形状の他の例を示す平面及び断面図である。 比較例に係る半導体装置に設けられる開口の形状の一例を示す平面及び断面図である。 本開示の第2の実施形態に係る半導体装置の構成を模式的に説明する斜視図である。 図3で示した固体撮像装置において、本開示に係る技術を適用する開口が形成される領域を示す模式図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す断面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す断面図である。 本開示の第3の実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す断面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す断面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。 同実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.第1の実施形態
 2.第2の実施形態
  2.1.半導体装置の構成
  2.2.開口の構成
 3.第3の実施形態
 4.第4の実施形態
 <1.第1の実施形態>
 まず、図1A~図2を参照して、本開示の第1の実施形態に係る半導体装置の構成について説明する。
 本実施形態に係る半導体装置は、図示しないが、例えば、半導体基板と、半導体基板に設けられた各種素子と、半導体基板の上に積層された複数の絶縁層と、複数の絶縁層の各々の内部に設けられ、各種素子の各々を電気的に接続する各種配線と、を備える。
 絶縁層は、絶縁材料にて形成され、半導体基板の上に形成された複数層からなる積層構造として設けられる。各種配線は、導電性材料にて形成され、絶縁層の各々の内部に埋め込まれるように設けられる。絶縁層の各々の内部に設けられた各種配線は、絶縁層の各々を貫通して設けられた層間電極によって互いに電気的に接続している。また、半導体装置が複数の半導体基板を積層した積層型半導体装置として設けられる場合、半導体基板には、積層する半導体基板の各々に設けられた各種素子又は配線を電気的に接続するために、半導体基板を貫通する基板間電極が設けられる。
 このような半導体装置では、電極又は各種配線の形成のため、又は所定の領域を他の領域と離隔するため、絶縁層又は半導体基板に開口を形成することがあり得る。しかしながら、開口の形状が、幅は小さく、かつ深さが大きいような高アスペクト比の形状である場合、絶縁層又は半導体基板に設けられた開口は、以下で説明するように、半導体装置の信頼性に影響を及ぼすことがあり得る。
 ここで、図2を参照して、比較例に係る半導体装置において、開口が半導体装置の信頼性に及ぼす影響について説明する。図2は、比較例に係る半導体装置に設けられる開口の形状の一例を示す平面及び断面図である。図2では、図2に正対して左側に粘性流体の塗布前の状態を示し、右側に粘性流体の塗布後の状態を示す。
 図2に示すように、開口910が設けられた層構造900の一主面上に、レジスト等の粘性流体920を流す場合を考える。
 開口910が設けられた層構造900の一主面上に、粘性流体920を流す場合、一主面上を流れる粘性流体920は、開口910の内部に流れ込む、開口910を避けて一主面上を流れる、又は開口910の内部に流れ込まずに開口910上を通過して流れるといういずれかの挙動を取り得る。
 そのため、開口910の底部まで粘性流体920を流入させるためには、開口910の内部に粘性流体920を優先的に流れ込ませ、かつ開口910の内部の空気を粘性流体920で押し出すことが重要である。特に、開口910全体を隙間なく粘性流体120で埋め込むためには、粘性流体920と空気との界面及び開口910の接触面における物理現象を制御することで、優先的に粘性流体920が開口910の内部に流れ込む状態を生み出すことが重要である。
 しかしながら、図2で示す層構造900に設けられた開口910では、一主面上の平面形状が等方的な円形状である。そのため、このような平面形状の開口910では、粘性流体920が流れる際の圧力を開口910の周囲で分散させてしまう。
 したがって、図2では、粘性流体920は、開口910の内部に流れ込むより、開口910を避けて一主面上を流れる、又は開口910の内部に流れ込まずに開口910上を通過して流れる可能性が高い。このような場合、粘性流体920は、開口910全体を隙間なく埋め込む前に、開口910の上部を塞いでしまうため、開口910の内部の空気が逃げる経路を封じてしまう。したがって、粘性流体920は、開口910の内部に空隙930を残したまま、開口910の上部を塞いでしまう。
 開口910の内部に空隙930が存在する場合、製造工程の後段の熱処理等によって空隙930内の空気が膨張することで空隙930の内圧が上昇し、開口910の上部を覆う硬化した粘性流体920(レジスト等)にクラックが生じたり、層構造900に意図しない応力が掛かったりする可能性がある。したがって、開口910の内部に大きな空隙930が存在する場合、半導体装置の信頼性が低下する可能性がある。
 本開示に係る技術は、上記事情を考慮することで想到されたものである。本実施形態に係る半導体装置は、層構造の一主面に設けられた開口を、レジスト等の粘性流体が流れ込みやすい角状領域を設けた平面形状にて設けることにより、開口の内部への粘性流体の流れ込みを促進させることができる。以下では、このような粘性流体が流れ込みやすい開口の具体的な平面形状について、図1A及び図1Bを参照して説明する。なお、層構造の一主面に設けられた開口は、銅(Cu)、アルミニウム(Al)、チタン(Ti)、タングステン(W)又はタンタル(Ta)などの金属又は金属化合物を含む導電性材料にて埋め込まれることで貫通電極として用いられてもよく、酸化シリコン(SiO)、窒化シリコン(SiN)、酸窒化シリコン(SiON)、若しくは有機樹脂などの絶縁材料又は空隙にて埋め込まれることで絶縁層として用いられてもよい。
 図1Aは、本実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面及び断面図であり、図1Bは、本実施形態に係る半導体装置に設けられる開口の形状の他の例を示す平面及び断面図である。図1A及び図1Bでは、図1A及び図1Bに正対して左側に粘性流体の塗布前の状態を示し、右側に粘性流体の塗布後の状態を示す。
 図1A及び図1Bに示すように、本実施形態に係る半導体装置は、積層された層構造100の一主面上に開口110を備える。開口110は、他の領域111から突出して設けられ、外形に折曲点を含む角状領域113を含む平面形状にて設けられる。
 具体的には、図1Aに示すように、開口110の平面形状は、円形状の外周の1点を、該1点が折曲点となるように外側に引き伸ばした雫型形状であってもよい。このとき、円形状から突出するように引き伸ばされた領域が角状領域113に相当する。また、図1Bに示すように、開口110の平面形状は、シャフトとなる線分の一方にアローヘッドが設けられた一方向の矢印形状であってもよい。このとき、アローヘッドの領域が角状領域113に相当する。すなわち、角状領域113は、外形に頂点となる折曲点を少なくとも1つ以上含む領域に相当する。例えば、角状領域113は、多角形形状から少なくとも1つ以上の頂点を含む領域を切り取った形状に相当し得る。
 開口110をこのような角状領域113を含む非等方的な平面形状で形成することによって、粘性流体120が流れる際に生じる圧力を角状領域113に集中させることができる。これにより、粘性流体120は、角状領域113から開口110の内部に流れ込みやすくなるため、粘性流体120が開口110を避けて一主面上を流れる、又は開口110の内部に流れ込まずに開口110上を通過して流れる可能性が低下する。したがって、開口110は、粘性流体120を開口110の底部から順に充填することができるため、粘性流体120が開口110の上部を塞ぐ前に、粘性流体120にて開口110全体を隙間なく埋め込むことができる。
 また、開口110の平面形状は、角状領域113が設けられた一側と対向する他側に、外形が曲線で構成された曲線領域115を含んでもよい。
 具体的には、図1Aに示すように、開口110の平面形状が雫型形状である場合、円形状から突出するように引き伸ばされた角状領域113の反対側の円形状の一部は、外形が曲線で構成された曲線領域115に相当してもよい。また、図1Bに示すように、開口110の平面形状が一方向の矢印形状である場合、矢印の終点であるアローヘッドの角状領域113の反対側に存在する矢印の始点は、外形が曲線で構成された曲線領域115に相当してもよい。
 開口110は、角状領域113が設けられた一側と対向する他側に曲線領域115が設けられる平面形状であることによって、開口110の内部に存在する空気が粘性流体120に押し出されて逃げ出す経路を形成することができる。
 具体的には、曲線領域115の等方的な外形は、粘性流体120が流れる際の圧力を分散させるため、曲線領域115では、粘性流体120が開口110の内部に流入しにくい。そのため、開口110の平面形状に曲線領域115を設けることによって、開口110は、角状領域113から選択的に粘性流体120を開口110の内部に流入させ、曲線領域115から選択的に開口110の内部に存在する空気を逃がすことができる。したがって、角状領域113及び曲線領域115の各々を含む平面形状を有する開口110は、より安定的に開口110の内部を隙間なく粘性流体120にて埋め込むことができる。
 本開示に係る技術は、開口110が設けられる層構造100、及び開口110を埋め込む粘性流体120の種類等に依らずに、いずれの層構造100及び粘性流体120に対しても適用することが可能である。
 そのため、上述した層構造100は、半導体装置の内部のいずれかの層状の部材を表す。具体的には、層構造100は、一主面を有する層又は基板であり、公知の半導体基板、ガラス基板若しくは樹脂基板、又は半導体層、絶縁層若しくは導体層のいずれであってもよい。例えば、層構造100は、シリコン、ゲルマニウム、ガリウムヒ素(GaAs)、インジウムガリウムヒ素(InGaAs)、窒化ガリウム(GaN)若しくはシリコンカーバイド(SiC)等の半導体基板又は半導体層であってもよく、酸化シリコン(SiO)、窒化シリコン(SiN)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)、酸化チタン(TiO)、五酸化二タンタル(Ta)、酸化ハフニウム(HfO)、酸化ジルコン(ZrO)、酸化ルテニウム(RuO)又は酸化ランタン(La)等の絶縁層であってもよい。
 また、上述した粘性流体120は、例えば、流体になり得る公知の有機材料又は無機材料を表す。例えば、粘性流体120は、各種レジスト(又は各種レジストを溶解した組成物)、熱又は光による硬化性又は可塑性を有する有機樹脂、又はSOG(Spin-On-Glass)などの無機ガラスなどであってもよい。
 <2.第2の実施形態>
 次に、図3~図6Bを参照して、本開示の第2の実施形態に係る半導体装置の構成について説明する。
 (2.1.半導体装置の構成)
 まず、図3を参照して、本実施形態に係る半導体装置の構成について説明する。図3は、本開示の第2の実施形態に係る半導体装置の構成を模式的に説明する斜視図である。
 図3に示すように、本実施形態に係る半導体装置は、第1基板10及び第2基板20が積層されることで構成された積層型の固体撮像装置である。
 具体的には、第1基板10は、フォトダイオード(PhotoDiode:PD)が設けられた画素領域11を備え、第1基板10の裏面側から入射した光を画素領域11のPDで光電変換する機能を実現する。第2基板20は、第1基板10で光電変換された信号電荷を信号処理する制御回路が設けられた制御領域23、及び第1基板10で光電変換された信号電荷を一時記憶するメモリ回路が設けられたメモリ領域21等を備える。これにより、第2基板20は、第1基板10で光電変換された信号電荷を画像信号に変換する機能を実現する。第1基板10及び第2基板20は、各基板が実現する機能に対応するように、各基板上の回路をより適切に構成することが可能であるため、固体撮像装置をより容易に高機能化することができる。
 なお、第1基板10及び第2基板20の各々に設けられた回路は、例えば、第1基板10又は第2基板20のいずれかの半導体基板を貫通して設けられた基板間電極によって、互いに電気的に接続される。基板間電極は、例えば、画素領域11を避けて、画素領域11の周囲を囲む領域に設けられてもよい。
 (2.2.開口の構成)
 続いて、図4~図6Bを参照して、本実施形態に係る半導体装置に設けられる開口の形状について説明する。図4は、図3で示した固体撮像装置において、本開示に係る技術を適用する開口が形成される領域を示す模式図である。
 本開示に係る技術が適用される開口は、例えば、図4に示す画素領域11の周囲の周辺領域13に設けられてもよい。具体的には、画素領域11の周囲の周辺領域13には、第1基板10及び第2基板20の各々に設けられた回路を電気的に接続するための基板間電極が所定の間隔を置いて、複数設けられる。本開示に係る技術は、このような基板間電極を形成するための開口の各々に適用されてもよい。
 次に、図5A~図5Dを参照して、基板間電極を形成するための開口の各々の平面形状について具体的に説明する。図5A~図5Dは、本実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。なお、図5A~図5Dは、図4の画素領域11の頂点近傍の周辺領域13の一部を拡大して示した模式図であり、矢印Rは、粘性流体120が流れる方向を示す。
 例えば、図5Aに示すように、開口210Aは、基板間電極が形成される主領域211と、外形に折曲点を含み、主領域211から突出して設けられた角状領域213Aと、を含む平面形状にて設けられてもよい。具体的には、開口210Aは、円形状の主領域211の外周の1点を、該1点が折曲点となるように外側に引き伸ばした雫型形状であってもよい。このとき、円形状の主領域211から突出するように引き伸ばされた領域が角状領域213Aに相当する。
 なお、角状領域213Aは、主領域211に対して、第1基板10の一主面においてレジスト等の粘性流体120が流れる方向Rと対向する側に設けられてもよい。換言すると、角状領域213Aは、第1基板10の一主面における粘性流体120の流れの上流側に設けられていてもよい。このような場合、開口210Aは、第1基板10の一主面において、粘性流体120が流入してくる方向に、開口210Aの内部に粘性流体120を流れ込ませやすい角状領域213Aを配置することができる。したがって、開口210Aは、内部に粘性流体120をより流入させ易くすることができるため、開口210Aの内部に空隙が生じることをより確実に防止することができる。
 例えば、図5Bに示すように、開口210Bは、基板間電極が形成される主領域211と、外形に折曲点を含み、主領域211から突出して設けられた角状領域213Bと、を含む平面形状にて設けられてもよい。具体的には、開口210Bは、円形状の主領域211の外周の一部から三角形状の角状領域213Bが突出する形状であってもよい。
 なお、角状領域213Bは、主領域211に対して、第1基板10の一主面においてレジスト等の粘性流体120が流れる方向Rとほぼ対向する側に設けられてもよい。例えば、角状領域213Bは、第1基板10の一主面においてレジスト等の粘性流体120が流れる方向Rから片側に90度ずつ広げた角度範囲に向かって設けられてもよい。このような場合であっても、開口210Bは、第1基板10の一主面において、レジスト等の粘性流体120が流入してくる方向側に、開口210Bの内部に粘性流体120が流れ込みやすい角状領域213Bを配置することができる。したがって、開口210Bは、内部に粘性流体120をより流入させ易くすることができるため、開口210Bの内部に空隙が生じることをより確実に防止することができる。
 ただし、レジスト等の粘性流体120が流れる方向Rが一定に定まらない場合は、角状領域213Bは、画素領域11が設けられた側と反対側(すなわち、第1基板10の外側)を向くように設けられてもよい。粘性流体120は、第1基板10の外部から流れてくるため、角状領域213Bを第1基板10の外側に向けておくことによって、粘性流体120の流入する方向に依らずに、開口210Bの内部に粘性流体120を流入させ易くすることができる。
 例えば、図5Cに示すように、開口210Cは、基板間電極が形成される主領域211と、外形に折曲点を含み、主領域211から突出して設けられた角状領域213Cと、を含む平面形状にて設けられてもよい。具体的には、開口210Cは、円形状の主領域211の外周の一部から、途中で分枝する線状形状の角状領域213Cが突出する形状であってもよい。
 角状領域213Cは、主領域211よりも平面形状が細い線状形状又はスリット状形状に設けられる。このような角状領域213Cでは、主領域211よりも実効的な表面積が大きくなるため、層構造100から粘性流体120に対して働く表面張力が大きくなる。その結果、角状領域213Cでは、毛細管現象が生じることによって、粘性流体120を開口210Cの内部に引き込む力がより大きく働くことになる。これにより、角状領域213Cは、主領域211の開口210Cの内部に粘性流体120をより流入させ易くすることができるため、開口210Cの内部に空隙が生じることを抑制することができる。
 なお、角状領域213Cは、図5Bと同様に、主領域211に対して、第1基板10の一主面においてレジスト等の粘性流体120が流れる方向Rとほぼ対向する側に設けられてもよい。このような場合でも、開口210Cは、内部に粘性流体120をより流入させ易くすることができるため、開口210Cの内部に空隙が生じることをより確実に防止することができる。
 例えば、図5Dに示すように、開口210Dは、基板間電極が形成される主領域211と、主領域211の各々を接続する角状領域213Dと、を含む平面形状にて設けられてもよい。具体的には、開口210Dは、円形状の主領域211の外周の一部から突出し、隣接する開口210Dの主領域211と接続する線状形状の角状領域213Dを含む形状であってもよい。なお、角状領域213Dは、開口210Dの各々の主領域211を接続するため、画素領域11の頂点近傍の周辺領域13では、互いに直交する方向に配列された開口210Dの主領域211を接続するために、外形に折曲点を有することになる。
 角状領域213Dは、図5Cで示した角状領域213Cと同様に、主領域211よりも平面形状が細い線状形状又はスリット状形状に設けられる。このような角状領域213Dでは、図5Cで示した角状領域213Cと同様に、層構造100から粘性流体120に対して働く表面張力が大きくなる。したがって、角状領域213Dでは、毛細管現象が生じることによって、主領域211の開口210Dの内部に粘性流体120をより流入させ易くすることができるため、開口210Dの内部に空隙が生じることをより抑制することができる。
 また、角状領域213Dは、開口210Dの各々を接続しているため、1つの開口210Dの内部に粘性流体120が流入した場合、角状領域213Dによって開口210Dから隣接する開口210Dへ粘性流体120を導くことができる。このような場合、複数の開口210Dのいずれかの内部に粘性流体120が流れ込めば、すべての開口210Dの内部に粘性流体120が流れ込むことになる。そのため、このような平面形状の開口210Dによれば、複数の開口210Dの一部で、開口210Dの内部に粘性流体120が流れ込んでないという状況を防止することができる。
 なお、開口210Dの内部には、最終的に基板間電極が設けられるため、開口210Dの各々は、最終的に、互いに電気的に離隔され、独立した平面形状となる必要がある。そのため、開口210Dの各々を接続する角状領域213Dは、後段の工程において、絶縁材料の埋め込み、又は全面エッチバック等によって消滅させられてもよい。
 続いて、図6A及び図6Bを参照して、基板間電極を形成するための開口の各々の断面形状について具体的に説明する。図6A及び図6Bは、本実施形態に係る半導体装置に設けられる開口の形状の一例を示す断面図である。
 図6Aに示す開口210の断面形状は、例えば、図5Aで示した開口210Aの断面形状に対応してもよい。具体的には、図6Aに示す開口210は、基板間電極が形成される主領域211と、円形状の主領域211から突出するように引き伸ばされた角状領域213とを含む平面形状にて、層構造100の一主面に設けられる。
 このとき、角状領域213の開口210は、主領域211の開口210に対して、形成深さが浅くなるように設けられてもよい。具体的には、角状領域213の開口210は、外形の折曲点から主領域211の中心に向かう方向に徐々に形成深さが深くなるようなテーパ形状にて設けられてもよい。角状領域213の開口210がこのようなテーパ形状にて設けられる場合、角状領域213の表面積が大きくなるため、角状領域213における実効的な接触角を低減することで、粘性流体120を角状領域213の内部に引き込む力をより大きくすることができる。したがって、このような断面形状の開口210は、内部に粘性流体120をより流入させ易くすることができるため、開口210の内部に空隙が生じることをより抑制することができる。
 なお、図6Aに示す断面形状の開口210は、層構造100をドライエッチングすることによって形成することができる。ドライエッチングでは、エッチングするパターン形状が狭い又は小さい領域には、エッチングガスが侵入しにくいため、エッチングするパターン形状が広い領域よりもエッチングが進みにくい。そのため、ドライエッチングにて開口210を形成することによって、主領域211よりも平面形状が狭い角状領域213の断面形状を図6Aで示すようなテーパ形状とすることができる。
 図6Bに示す開口210の断面形状は、例えば、図5Dで示した開口210Dの断面形状に対応してもよい。具体的には、図6Bに示す開口210は、基板間電極が形成される主領域211と、主領域211の各々を接続する角状領域213とを含む平面形状にて、層構造100の一主面に設けられてもよい。
 このとき、角状領域213の開口210は、主領域211の開口210に対して、より浅い形成深さにて設けられてもよい。角状領域213の開口210がこのような浅い形成深さにて設けられる場合、後段の工程にて角状領域213を消滅させることで、開口210の各々を互いに電気的に離隔された、独立した平面形状とすることが容易になる。具体的には、後段の工程において、開口210の各々を接続する角状領域213を全面エッチバック等によって研磨し、消滅させることが容易になる。
 なお、図6Bに示す断面形状の開口210は、図6Aで示した断面形状の開口210と同様に、ドライエッチングによって形成することができる。ドライエッチングでは、マイクロローディング効果によって、パターン形状が狭い領域は、パターン形状が広い領域よりもエッチングが進みにくいため、エッチング深さが浅くなる。そのため、ドライエッチングにて開口210を形成することによって、主領域211よりも平面形状が狭い角状領域213の断面形状を図6Bで示すような浅い形成深さとすることができる。
 <3.第3の実施形態>
 続いて、図7~図8Bを参照して、本開示の第3の実施形態に係る半導体装置の構成について説明する。
 第3の実施形態に係る半導体装置は、第2の実施形態と同様に、図3及び図4で示した積層型の固体撮像装置である。第3の実施形態に係る半導体装置において、本開示に係る技術を適用する開口は、図4に示す画素領域11の内部に設けられてもよい。具体的には、画素領域11には、画素ごと又は複数の画素ごとに、各画素にて光電変換された信号電荷を信号処理回路に転送する層間電極が所定の間隔を置いて、複数設けられる。本開示に係る技術は、このような層間電極を形成するための開口の各々に適用されてもよい。
 ここで、図7を参照して、層間電極を形成するための開口の各々の平面形状について具体的に説明する。図7は、本実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。なお、図7は、図4の画素領域11の一部を拡大して示した模式図であり、矢印Rは、粘性流体120が流れる方向を示す。
 例えば、図7に示すように、開口310は、層間電極が形成される主領域311と、主領域311から突出し、かつ主領域311の各々を接続する角状領域313とを含む平面形状にて設けられてもよい。
 具体的には、開口310は、円形状の主領域311の外周の一部から突出する線状形状、及び円形状の主領域311の外周の一部から突出し、隣接する開口310の主領域311と接続する線状形状からなる角状領域313を含む形状であってもよい。なお、角状領域313は、四方格子状に配置された開口310の各々の主領域311を接続するため、例えば、四方格子状に配置されてもよい。また、四方格子の最外周に配置された開口310では、角状領域313は、主領域311の外周の一部から突出するように設けられてもよい。
 角状領域313は、主領域311よりも平面形状が細い線状形状又はスリット状形状に設けられる。このような角状領域313では、主領域311よりも実効的な表面積が大きくなるため、層構造100から粘性流体120に対して働く表面張力が大きくなる。その結果、角状領域313では、毛細管現象が生じることによって、粘性流体120を開口310の内部に引き込む力がより大きく働くことになる。これにより、角状領域313は、主領域311の開口310の内部に粘性流体120をより流入させ易くすることができるため、開口310の内部に空隙が生じることを抑制することができる。
 また、角状領域313は、開口310の各々を接続しているため、1つの開口310の内部に粘性流体120が流入した場合、角状領域313を用いて、開口310から隣接する開口310へ粘性流体120を導くことができる。このような場合、角状領域313に流れ込んだ粘性流体120を、角状領域313で接続された全ての主領域311の開口310の内部に導くことができる。そのため、このような平面形状の開口310によれば、複数の開口310の一部で、開口310の内部に粘性流体120が流れ込んでないという状況を防止することができる。
 続いて、図8A及び図8Bを参照して、層間電極を形成するための開口の各々の断面形状について具体的に説明する。図8A及び図8Bは、本実施形態に係る半導体装置に設けられる開口の形状の一例を示す断面図である。図8A及び図8Bでは、図8A及び図8Bに正対して左側に粘性流体の塗布前の開口の断面形状の状態を示し、右側に最終的な開口の断面形状の状態を示す。
 図8A及び図8Bに示す開口310は、層間電極が形成される主領域311と、円形状の主領域311の外周の一部から突出する角状領域313とを含む平面形状にて、層構造100の一主面に設けられてもよい。角状領域313は、隣接する開口310の主領域311と接続する線状形状にて設けられ、角状領域313の開口310は、主領域311の開口310に対して、より浅い形成深さにて設けられてもよい。
 このとき、図8Aに示すように、角状領域313の開口310が設けられた所定の層301は、後段の工程にて消滅してもよい。これにより、開口310の各々を互いに電気的に離隔された、独立した平面形状とすることができるため、開口310に形成される層間電極を互いに電気的に離隔することができる。角状領域313の開口310が設けられた所定の層301は、例えば、全面エッチバック又はCMP(Chemical Mechanical Polishing)によって、消滅されてもよい。
 また、図8Bに示すように、角状領域313の開口310は、後段の工程にて絶縁材料303にて埋め込まれてもよい。これにより、開口310の各々に形成された層間電極を互いに電気的に離隔することができる。なお、絶縁材料303は、主領域311の開口310の一部を埋め込んでいてもよいことは言うまでもない。角状領域313の開口310への絶縁材料の埋め込みは、例えば、マスクを用いた選択的な領域へのCVD(Chemical Vapor Deposiotion)等によって行われてもよい。
 なお、図8A及び8Bに示す断面形状の開口310は、層構造100をドライエッチングすることによって形成することができる。ドライエッチングでは、マイクロローディング効果によって、パターン形状が狭い領域は、パターン形状が広い領域よりもエッチングが進みにくいため、エッチング深さが浅くなる。そのため、ドライエッチングにて開口310を形成することによって、主領域311よりも平面形状が狭い角状領域313の断面形状を図8A及び図8Bで示すような浅い形成深さとすることができる。
 <4.第4の実施形態>
 次に、図9A~図9Dを参照して、本開示の第4の実施形態に係る半導体装置の構成について説明する。
 第4の実施形態に係る半導体装置は、第2及び第3の実施形態と同様に、図3及び図4で示した積層型の固体撮像装置である。第4の実施形態に係る半導体装置において、本開示に係る技術を適用する開口は、図4に示す画素領域11の内部に設けられてもよい。具体的には、画素領域11には、画素ごとに半導体基板の領域を分離する画素分離層が四方格子状に設けられる。本開示に係る技術は、このような画素分離層を形成するための開口の各々に適用されてもよい。
 ここで、図9A~図9Dを参照して、画素分離層を形成するための開口の各々の平面形状について具体的に説明する。図9A~図9Dは、本実施形態に係る半導体装置に設けられる開口の形状の一例を示す平面図である。なお、図9A~図9Dは、図4の画素領域11の一部を拡大して示した模式図であり、矢印Rは、粘性流体120が流れる方向を示す。
 例えば、図9Aに示すように、開口410Aは、画素分離層が形成される主領域411と、主領域411の最外周から外側に突出して設けられた角状領域413Aと、を含む平面形状にて設けられてもよい。具体的には、開口410Aは、四方格子状に配置された主領域411の最外周から線状形状の角状領域413Aが主領域411と同じ間隔で突出する形状であってもよい。
 角状領域413Aは、主領域411と同様の細い線状形状又はスリット状形状にて設けられる。このような線状形状の角状領域413Aは、層構造100から粘性流体120に対して働く表面張力が大きくなるため、毛細管現象が生じることによって、粘性流体120を開口410Aの内部に引き込む力がより大きく働く。そのため、角状領域413Aは、開口410Aの内部に粘性流体120をより流入させ易くすることができるため、開口410Aの内部に空隙が生じることを抑制することができる。
 また、角状領域413Aは、画素領域11が設けられた側と反対側(すなわち、第1基板10の外側)を向くように設けられる。これによれば、第1基板10の外部から(例えば、方向Rから)流れてくる粘性流体120に対して、開口410Aの内部に粘性流体120を流れ込ませやすい角状領域413Aを、粘性流体120が流入してくる方向に配置することができる。したがって、角状領域413Aは、開口210Bの内部に粘性流体120をより流入させ易くすることができる。
 例えば、図9Bに示すように、開口410Bは、画素分離層が形成される主領域411と、主領域411の最外周から外側に突出して設けられた角状領域413Bと、を含む平面形状にて設けられてもよい。具体的には、開口410Bは、四方格子状に配置された主領域411の最外周から線状形状の角状領域413Bが主領域411よりも狭い間隔で突出する形状であってもよい。
 角状領域413Bは、主領域411と同様の細い線状形状又はスリット状形状にて設けられる。これによれば、角状領域413Bは、図9Aで示した角状領域413Aと同様に、開口410Bの内部に粘性流体120をより流入させ易くすることができるため、開口410Bの内部に空隙が生じることを抑制することができる。ただし、角状領域413Bは、図9Aで示した角状領域413Aよりも狭い間隔で設けられるため、開口410Bの内部に粘性流体120をさらに流入させ易くすることで、開口410Bの内部に空隙が生じることをさらに抑制することができる。
 例えば、図9Cに示すように、開口410Cは、画素分離層が形成される主領域411と、主領域411の最外周から外側に突出して設けられた角状領域413Cと、を含む平面形状にて設けられてもよい。具体的には、開口410Cは、四方格子状に配置された主領域411の最外周から線状形状の角状領域413Cが、主領域411と同じ間隔で、粘性流体120が流れる方向Rに向かって突出する形状であってもよい。
 角状領域413Cは、主領域411と同様の細い線状形状又はスリット状形状にて設けられる。これによれば、角状領域413Cは、図9Aで示した角状領域413Aと同様に、開口410Cの内部に粘性流体120をより流入させ易くすることができるため、開口410Cの内部に空隙が生じることを抑制することができる。また、開口410Cは、第1基板10の一主面において、開口410Cの内部に粘性流体120を流れ込ませやすい角状領域413Cを、粘性流体120が流入してくる方向に配置することができる。したがって、開口410Cは、内部に粘性流体120をより流入させ易くすることができるため、開口410Cの内部に空隙が生じることをより確実に防止することができる。
 例えば、図9Dに示すように、開口410Dは、画素分離層が形成される主領域411と、主領域411の最外周から外側に突出して設けられた角状領域413Dと、を含む平面形状にて設けられてもよい。具体的には、開口410Dは、四方格子状に配置された主領域411の最外周から、先端が修飾された線状形状の角状領域413Dが主領域411と同じ間隔で突出する形状であってもよい。
 角状領域413Dは、主領域411と同様の細い線状形状又はスリット状形状にて設けられ、線状形状の先端に十字型のさらに細かい突起部を有する平面形状にて設けられる。これによれば、角状領域413Dは、先端の十字型の突起部において、実効的な表面積をさらに大きくし、層構造100から粘性流体120に対して働く表面張力をさらに大きくすることができる。その結果、角状領域413Dでは、毛細管現象によって開口410の内部により強く粘性流体120を引き込むことができるようになる。これにより、角状領域413Dは、主領域411の開口410の内部に粘性流体120をさらに流入させ易くすることができるため、開口410の内部に空隙が生じることをさらに抑制することができる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 本実施形態に係る半導体装置が層構造中に備える開口の平面形状は、上述した具体的な形状に限定されない。半導体装置が層構造中に備える開口の平面形状は、特許請求の範囲に記載された技術的思想の範疇内において、適宜、置換又は変更されてもよい。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 積層された層構造の一主面に少なくとも1つ以上の開口を備え、
 前記開口の前記一主面における平面形状は、前記平面形状の他の領域から突出し、外形に折曲点を含む角状領域を備える、半導体装置。
(2)
 前記開口の前記一主面における前記平面形状は、前記角状領域が設けられた一側と対向する他側に、外形が曲線で構成された曲線領域をさらに備える、前記(1)に記載の半導体装置。
(3)
 前記角状領域は、多角形形状から少なくとも1つ以上の頂点を含む領域を切り取った形状である、前記(1)又は(2)に記載の半導体装置。
(4)
 前記角状領域は、前記平面形状の一部領域から延伸、折曲、又は分枝する線状形状である、前記(1)又は(2)に記載の半導体装置。
(5)
 前記開口は、前記一主面に複数設けられ、
 前記開口の各々の前記一主面における前記平面形状は、前記角状領域にて互いに連結される、前記(4)に記載の半導体装置。
(6)
 前記角状領域の前記開口は、前記平面形状の他の領域の前記開口よりも開口深さが浅い、前記(1)~(5)のいずれか一項に記載の半導体装置。
(7)
 前記開口の内部は、導電性材料で埋め込まれる、前記(1)~(6)のいずれか一項に記載の半導体装置。
(8)
 前記半導体装置は、所定の機能をそれぞれ有する複数の基板を積層することで構成され、
 前記導電性材料は、前記複数の基板の各々を電気的に接続する基板間電極を構成する、前記(7)に記載の半導体装置。
(9)
 前記半導体装置は、固体撮像装置であり、
 前記基板間電極は、前記固体撮像装置の画素領域の周囲を囲む領域に設けられる、前記(8)に記載の半導体装置。
(10)
 前記導電性材料は、前記層構造を介して設けられた複数の配線の各々を電気的に接続する層間電極を構成する、前記(7)に記載の半導体装置。
(11)
 前記半導体装置は、固体撮像装置であり、
 前記層間電極は、前記固体撮像装置の画素領域内の画素ごと、又は複数の画素ごとに設けられる、前記(10)に記載の半導体装置。
(12)
 前記開口の内部は、空隙又は絶縁材料で埋め込まれる、前記(1)~(6)のいずれか一項に記載の半導体装置。
(13)
 前記開口の前記一主面における前記平面形状は、格子状形状である、前記(12)に記載の半導体装置。
(14)
 前記半導体装置は、固体撮像装置であり、
 前記開口は、前記固体撮像装置の画素領域内の画素の各々を離隔するように設けられる、前記(13)に記載の半導体装置。
(15)
 外形に折曲点を含む角状領域を備え、前記角状領域が他の領域から突出する平面形状を備える少なくとも1つ以上の開口を、積層された層構造の一主面に形成すること、
を含む、半導体装置の製造方法。
(16)
  前記開口が形成された前記層構造の前記一主面の上に粘性流体を塗布することで、前記開口の内部に前記粘性流体を充填すること、
をさらに含む、前記(15)に記載の半導体装置の製造方法。
(17)
 前記粘性流体をパターニングすることと、
 パターニングされた前記粘性流体をマスクに用いて前記層構造をエッチングすることと、
をさらに含む、前記(16)に記載の半導体装置の製造方法。
(18)
 前記角状領域は、前記粘性流体の塗布時に前記粘性流体が流れる方向の上流側に形成される、前記(16)又は(17)に記載の半導体装置の製造方法。
(19)
 前記層構造のエッチング後に、前記開口の前記角状領域が消滅するまで、前記層構造を前記一主面側から研磨すること、
をさらに含む、前記(17)又は(18)に記載の半導体装置の製造方法。
(20)
 前記層構造のエッチング後に、前記開口の前記角状領域を絶縁材料で埋め込むこと、
をさらに含む、前記(17)又は(18)に記載の半導体装置の製造方法。
 10   第1基板
 11   画素領域
 13   周辺領域
 20   第2基板
 21   メモリ領域
 23   制御領域
 100  層構造
 110、210、210A、210B、210C、210D、310、410、410A、410B、410C、410D  開口
 113、213、213A、213B、213C、213D、313、413、413A、413B、413C、413D  角状領域
 115  曲線領域
 120  粘性流体
 211、311、411  主領域

Claims (20)

  1.  積層された層構造の一主面に少なくとも1つ以上の開口を備え、
     前記開口の前記一主面における平面形状は、前記平面形状の他の領域から突出し、外形に折曲点を含む角状領域を備える、半導体装置。
  2.  前記開口の前記一主面における前記平面形状は、前記角状領域が設けられた一側と対向する他側に、外形が曲線で構成された曲線領域をさらに備える、請求項1に記載の半導体装置。
  3.  前記角状領域は、多角形形状から少なくとも1つ以上の頂点を含む領域を切り取った形状である、請求項1に記載の半導体装置。
  4.  前記角状領域は、前記平面形状の一部領域から延伸、折曲、又は分枝する線状形状である、請求項1に記載の半導体装置。
  5.  前記開口は、前記一主面に複数設けられ、
     前記開口の各々の前記一主面における前記平面形状は、前記角状領域にて互いに連結される、請求項4に記載の半導体装置。
  6.  前記角状領域の前記開口は、前記平面形状の他の領域の前記開口よりも開口深さが浅い、請求項1に記載の半導体装置。
  7.  前記開口の内部は、導電性材料で埋め込まれる、請求項1に記載の半導体装置。
  8.  前記半導体装置は、所定の機能をそれぞれ有する複数の基板を積層することで構成され、
     前記導電性材料は、前記複数の基板の各々を電気的に接続する基板間電極を構成する、請求項7に記載の半導体装置。
  9.  前記半導体装置は、固体撮像装置であり、
     前記基板間電極は、前記固体撮像装置の画素領域の周囲を囲む領域に設けられる、請求項8に記載の半導体装置。
  10.  前記導電性材料は、前記層構造を介して設けられた複数の配線の各々を電気的に接続する層間電極を構成する、請求項7に記載の半導体装置。
  11.  前記半導体装置は、固体撮像装置であり、
     前記層間電極は、前記固体撮像装置の画素領域内の画素ごと、又は複数の画素ごとに設けられる、請求項10に記載の半導体装置。
  12.  前記開口の内部は、空隙又は絶縁材料で埋め込まれる、請求項1に記載の半導体装置。
  13.  前記開口の前記一主面における前記平面形状は、格子状形状である、請求項12に記載の半導体装置。
  14.  前記半導体装置は、固体撮像装置であり、
     前記開口は、前記固体撮像装置の画素領域内の画素の各々を離隔するように設けられる、請求項13に記載の半導体装置。
  15.  外形に折曲点を含む角状領域を備え、前記角状領域が他の領域から突出する平面形状を備える少なくとも1つ以上の開口を、積層された層構造の一主面に形成すること、
    を含む、半導体装置の製造方法。
  16.  前記開口が形成された前記層構造の前記一主面の上に粘性流体を塗布することで、前記開口の内部に前記粘性流体を充填すること、
    をさらに含む、請求項15に記載の半導体装置の製造方法。
  17.  前記粘性流体をパターニングすることと、
     パターニングされた前記粘性流体をマスクに用いて前記層構造をエッチングすることと、
    をさらに含む、請求項16に記載の半導体装置の製造方法。
  18.  前記角状領域は、前記粘性流体の塗布時に前記粘性流体が流れる方向の上流側に形成される、請求項16に記載の半導体装置の製造方法。
  19.  前記層構造のエッチング後に、前記開口の前記角状領域が消滅するまで、前記層構造を前記一主面側から研磨すること、
    をさらに含む、請求項17に記載の半導体装置の製造方法。
  20.  前記層構造のエッチング後に、前記開口の前記角状領域を絶縁材料で埋め込むこと、
    をさらに含む、請求項17に記載の半導体装置の製造方法。
PCT/JP2018/048382 2018-01-31 2018-12-27 半導体装置及び半導体装置の製造方法 WO2019150879A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/964,663 US20210057386A1 (en) 2018-01-31 2018-12-27 Semiconductor device and method of manufacturing semiconductor device
DE112018006991.5T DE112018006991T5 (de) 2018-01-31 2018-12-27 Halbleitervorrichtung und halbleitervorrichtungs-herstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018015355A JP2019134074A (ja) 2018-01-31 2018-01-31 半導体装置及び半導体装置の製造方法
JP2018-015355 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019150879A1 true WO2019150879A1 (ja) 2019-08-08

Family

ID=67478081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048382 WO2019150879A1 (ja) 2018-01-31 2018-12-27 半導体装置及び半導体装置の製造方法

Country Status (4)

Country Link
US (1) US20210057386A1 (ja)
JP (1) JP2019134074A (ja)
DE (1) DE112018006991T5 (ja)
WO (1) WO2019150879A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228135A (ja) * 2003-01-20 2004-08-12 Mitsubishi Electric Corp 微細孔への金属埋め込み方法
JP2005033116A (ja) * 2003-07-11 2005-02-03 Sony Corp バイアホール及びバイアホールを有する半導体装置並びに同バイアホールの形成方法。
JP2010232641A (ja) * 2009-03-05 2010-10-14 Tdk Corp 貫通電極の形成方法、及び半導体基板
JP2011044489A (ja) * 2009-08-19 2011-03-03 Toshiba Corp 固体撮像装置及びその製造方法
JP2014099582A (ja) * 2012-10-18 2014-05-29 Sony Corp 固体撮像装置
US20160099267A1 (en) * 2014-10-02 2016-04-07 Samsung Electronics Co., Ltd. Cmos image sensor for reducing dead zone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228135A (ja) * 2003-01-20 2004-08-12 Mitsubishi Electric Corp 微細孔への金属埋め込み方法
JP2005033116A (ja) * 2003-07-11 2005-02-03 Sony Corp バイアホール及びバイアホールを有する半導体装置並びに同バイアホールの形成方法。
JP2010232641A (ja) * 2009-03-05 2010-10-14 Tdk Corp 貫通電極の形成方法、及び半導体基板
JP2011044489A (ja) * 2009-08-19 2011-03-03 Toshiba Corp 固体撮像装置及びその製造方法
JP2014099582A (ja) * 2012-10-18 2014-05-29 Sony Corp 固体撮像装置
US20160099267A1 (en) * 2014-10-02 2016-04-07 Samsung Electronics Co., Ltd. Cmos image sensor for reducing dead zone

Also Published As

Publication number Publication date
JP2019134074A (ja) 2019-08-08
DE112018006991T5 (de) 2020-10-08
US20210057386A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP4439976B2 (ja) 半導体装置およびその製造方法
JP4327644B2 (ja) 半導体装置の製造方法
JP5289830B2 (ja) 半導体装置
JP5149603B2 (ja) 半導体装置の製造方法および半導体装置
TWI600116B (zh) 半導體裝置及半導體裝置之製造方法
TW201034150A (en) Silicon wafer having interconnection metal
TWI612620B (zh) 半導體裝置及半導體裝置之製造方法
TWI840458B (zh) 半導體裝置及其製造方法
JP2018170363A (ja) 半導体装置の製造方法及び半導体装置
US11107726B2 (en) Method for manufacturing bonding pad in semiconductor device
JP2011049303A (ja) 電気部品およびその製造方法
JP6838893B2 (ja) 半導体装置及びその製造方法
JP2010232400A (ja) 半導体基板と半導体基板の製造方法および半導体パッケージ
TWI579968B (zh) 半導體裝置之製造方法及半導體裝置
JP6372524B2 (ja) 半導体装置及びその製造方法
US20190074232A1 (en) Test structure and manufacturing method therefor
WO2019150879A1 (ja) 半導体装置及び半導体装置の製造方法
TWI631782B (zh) 半導體雷射及其製造方法
TWI713783B (zh) 製作半導體裝置的方法
EP3290390A1 (en) Method for preventing excessive etching of edges of an insulator layer
JP2012054342A (ja) 半導体装置およびその製造方法
JP2015228473A (ja) 半導体装置およびその製造方法
JPH01286443A (ja) 半導体装置の製造方法
JP2005197694A (ja) 半導体集積回路の配線製造方法
KR100193889B1 (ko) 반도체 소자의 비아홀 형성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903346

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18903346

Country of ref document: EP

Kind code of ref document: A1