WO2019150547A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2019150547A1
WO2019150547A1 PCT/JP2018/003554 JP2018003554W WO2019150547A1 WO 2019150547 A1 WO2019150547 A1 WO 2019150547A1 JP 2018003554 W JP2018003554 W JP 2018003554W WO 2019150547 A1 WO2019150547 A1 WO 2019150547A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
manufacturing
semiconductor device
diffusion
temperature
Prior art date
Application number
PCT/JP2018/003554
Other languages
English (en)
French (fr)
Inventor
小笠原 淳
広野 六鎗
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to JP2018527261A priority Critical patent/JP6480087B1/ja
Priority to CN201880000706.4A priority patent/CN110352471B/zh
Priority to PCT/JP2018/003554 priority patent/WO2019150547A1/ja
Priority to TW107121194A priority patent/TWI653668B/zh
Publication of WO2019150547A1 publication Critical patent/WO2019150547A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • a diffusion source film containing an aluminum compound and a boron compound as a P-type impurity is formed on a semiconductor substrate, and the semiconductor substrate on which the diffusion source film is formed is heated to form a P-type diffusion layer on the semiconductor substrate.
  • a method for manufacturing a semiconductor device see Japanese Patent Laid-Open No. 2000-286205).
  • aluminum with a large diffusion coefficient is suitable for obtaining a deep diffusion layer with a low concentration of P-type.
  • examples of the aluminum compound include aluminum chloride, aluminum ethoxide, aluminum stearate, etc., but aluminum alone does not diffuse into the semiconductor substrate.
  • the conventional method for manufacturing a semiconductor device has a problem that the medium type of the atmosphere in the diffusion process is limited and the controllability of diffusion of aluminum into the semiconductor substrate is lowered.
  • an object of the present invention is to provide a method for manufacturing a semiconductor device capable of improving controllability of diffusion of aluminum into a semiconductor substrate while expanding choices of medium types of atmosphere in the diffusion process.
  • a method for manufacturing a semiconductor device includes: A dissolution process for preparing an aqueous solution by dissolving aluminum lactate in water; A mixed step of preparing a mixed liquid of the aqueous solution and the organic solvent, and preparing a semiconductor impurity liquid source containing the mixed liquid; After the mixing step, the step of applying the semiconductor impurity liquid source containing the aqueous solution on a semiconductor substrate to form a diffusion source film on the semiconductor substrate; After the coating step, in a first atmosphere, the semiconductor substrate is heat-treated at a first temperature, and a baking step of baking at least the organic solvent in the diffusion source film; After the baking step, in the second atmosphere, the semiconductor substrate is heat-treated at a second temperature higher than the first temperature to diffuse aluminum contained in the diffusion source film into the semiconductor substrate. And a diffusion step of forming a diffusion layer on the semiconductor substrate.
  • the organic solvent has a characteristic of not dissolving the aluminum lactate.
  • the organic solvent is ethanol, acetone, propanol, or ethyl alcohol.
  • the first atmosphere in the firing step is an oxidizing atmosphere.
  • the second atmosphere in the diffusion step is the oxidizing atmosphere.
  • the oxidizing atmosphere is an atmosphere containing oxygen.
  • the coating step is characterized in that the semiconductor impurity liquid source is coated on a semiconductor substrate by a spin coating method.
  • the first temperature in the firing step is in the range of 400 ° C. to 600 ° C.
  • the second temperature in the diffusion step is in a range of 1000 ° C. to 1300 ° C.
  • the semiconductor substrate is an N-type silicon wafer.
  • the method further comprises a peeling step of peeling the film remaining on the semiconductor substrate with a peeling solution after the diffusion step.
  • the stripping solution is hydrofluoric acid.
  • the semiconductor impurity liquid source further includes a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source, and a plurality of inorganic powders
  • the two semiconductor substrates are placed in the first atmosphere in the first atmosphere with the two semiconductor substrates facing each other so that the diffusion source films of the two semiconductor substrates are in contact with each other.
  • Heat treatment at a temperature of 1 In the diffusion step, the two semiconductor substrates are heat-treated at the second temperature in the second atmosphere, When laminating the two semiconductor substrates, the inorganic powder is adjusted by the thickener to adjust the interval between the adjacent inorganic powders in the surface direction of the semiconductor substrate, and the interval between the two semiconductor substrates.
  • the inorganic powder has the characteristic of adjusting the distribution in the surface direction of The inorganic powder is bonded by heating at the second temperature after heating the impurity to the second temperature at which an impurity diffusion source is generated that is higher than the first temperature.
  • the thickener contains cellulose, a derivative of cellulose, or hydroxypropyl cellulose as a main component.
  • the semiconductor substrate is heat-treated at a third temperature lower than the first temperature between the coating step and the baking step so as to evaporate at least the organic solvent and the water in the diffusion source film. It is characterized by pre-baking.
  • a manufacturing method of a semiconductor device includes a dissolving step of dissolving aluminum lactate in water to prepare an aqueous solution, a mixed solution in which an aqueous solution and an organic solvent are mixed, and a semiconductor impurity liquid containing the mixed solution
  • a semiconductor impurity liquid source containing an aqueous solution is applied on the semiconductor substrate to form a diffusion source film on the semiconductor substrate, and after the applying step,
  • the semiconductor substrate is heat-treated at the first temperature, and the baking step of baking at least the organic solvent in the diffusion source film, and after the baking step, the semiconductor substrate is heated in the second atmosphere.
  • aluminum of aluminum lactate which is an aluminum compound, has a characteristic of being diffused alone in the semiconductor substrate.
  • the semiconductor impurity liquid source containing the liquid mixture with an organic solvent (ethanol) can be formed by mixing with water beforehand.
  • aluminum is formed in an atmosphere (oxidizing atmosphere) that is not limited to non-oxidizing property by forming a diffusion source film using aluminum lactate as an aluminum compound in the diffusion step. It will be diffused alone.
  • the controllability of diffusion of aluminum into the semiconductor substrate can be improved while expanding the choices of the medium type of the atmosphere in the diffusion process.
  • FIG. 1 is a diagram showing a configuration example of a semiconductor impurity liquid source in the method for manufacturing a semiconductor device of the present invention.
  • FIG. 2 is a diagram illustrating the steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 3 is a diagram illustrating steps in the method for manufacturing the semiconductor device according to the first embodiment, which are subsequent to FIG. 2.
  • FIG. 4 is a diagram illustrating steps in the method for manufacturing the semiconductor device according to the first embodiment, which are subsequent to FIG. 2.
  • FIG. 5 is a diagram illustrating steps in the method for manufacturing the semiconductor device according to the first embodiment, which are subsequent to FIG. 2.
  • FIG. 6 is a flowchart illustrating the method for manufacturing the semiconductor impurity liquid source according to the second embodiment.
  • FIG. 1 is a diagram showing a configuration example of a semiconductor impurity liquid source in the method for manufacturing a semiconductor device of the present invention.
  • FIG. 2 is a diagram illustrating the steps of the method for manufacturing the semiconductor device according to the first embodiment
  • FIG. 7 is an explanatory diagram for explaining a method for producing a P-type semiconductor impurity liquid source in the method for producing a semiconductor impurity liquid source according to the second embodiment.
  • FIG. 8 is an explanatory diagram for explaining a method for manufacturing an N-type semiconductor impurity liquid source in the method for manufacturing a semiconductor impurity liquid source according to the second embodiment.
  • FIG. 9 is a flowchart illustrating the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating a dropping step in the method for manufacturing a semiconductor device according to the second embodiment.
  • FIG. 11 is a schematic cross-sectional view illustrating the coating process subsequent to FIG. 10 in the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 12 is a schematic cross-sectional view illustrating the drying step subsequent to FIG. 11 in the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 13 is a schematic cross-sectional view illustrating the stacking process continued from FIG. 12 in the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 14 is a schematic cross-sectional view illustrating the firing step subsequent to FIG. 13 in the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 15 is a graph showing a temperature transition in the diffusion process in the method of manufacturing a semiconductor device according to the second embodiment.
  • FIG. 16 is a schematic cross-sectional view showing the deposition step subsequent to FIG. 14 in the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 17 is a schematic cross-sectional view illustrating the diffusion step subsequent to FIG. 16 in the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 18 is a schematic cross-sectional view illustrating the dipping process continued from FIG. 17 in the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 19 is a flowchart showing a method for manufacturing a semiconductor impurity liquid source according to a modification.
  • FIG. 1 is a diagram showing a configuration example of a semiconductor impurity liquid source in a method of manufacturing a semiconductor device according to the present invention.
  • 2 to 5 are diagrams illustrating the steps of the method for manufacturing the semiconductor device according to the first embodiment.
  • the semiconductor device manufacturing method according to the first embodiment includes a “dissolution process”, a “mixing process”, an “application process”, a “baking process”, a “diffusion process”, and “ The “peeling step” is performed in this order.
  • the semiconductor device manufacturing method according to the embodiment will be described below in the order of steps.
  • an aqueous solution A is prepared by dissolving aluminum lactate in water (FIG. 1).
  • aluminum lactate is used as a compound containing impurities as a P-type semiconductor impurity liquid source for diffusing P-type impurities into the semiconductor substrate X.
  • organic solvent described above has at least the property of not dissolving aluminum lactate.
  • this organic solvent is, for example, ethanol, acetone, propanol, or ethyl alcohol.
  • a mixed liquid mixed with an aqueous solution and an organic solvent is prepared, and a semiconductor impurity liquid source Z containing the mixed liquid is manufactured.
  • the semiconductor impurity liquid source Z containing the aqueous solution A is applied on the semiconductor substrate X to form a diffusion source film S on the semiconductor substrate X (FIG. 2, coating process).
  • a semiconductor impurity liquid source is applied onto the semiconductor substrate X by spin coating.
  • the semiconductor substrate X is, for example, an N-type silicon wafer.
  • the semiconductor substrate X is heat treated at a first temperature, firing at least an organic solvent in the diffusion source film Sa (Fig. 3, the firing step) .
  • the first atmosphere described in the firing step is an oxidizing atmosphere.
  • the oxidizing atmosphere is an atmosphere containing oxygen.
  • the first temperature of this firing step is, for example, in the range of 400 ° C. to 600 ° C.
  • the semiconductor substrate X is heat-treated at a third temperature lower than the first temperature between the above-described coating step and the baking step, so that at least the organic in the diffusion source coating Sa You may make it pre-bake so that a solvent and water may be evaporated. This is particularly effective when the organic solvent is a solvent other than ethanol.
  • the semiconductor substrate X is heat-treated at a second temperature higher than the first temperature in the second atmosphere, and the aluminum contained in the diffusion source film Sa is applied to the semiconductor substrate X.
  • a diffusion layer Y is formed on the semiconductor substrate X by diffusion (FIG. 4, diffusion process).
  • the second atmosphere described in the diffusion step is an oxidizing atmosphere.
  • the second temperature described in the diffusion step is in the range of 1000 ° C. to 1300 ° C., for example.
  • stripping solution is, for example, hydrofluoric acid.
  • a plurality (two or more) of semiconductor substrates X may be stacked and processed simultaneously.
  • the semiconductor impurity liquid source Z further includes a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source Z, and a plurality of inorganic powders (for example, powder containing Si). To do.
  • the thickener contains, for example, cellulose, a cellulose derivative, or hydroxypropyl cellulose as a main component.
  • the two semiconductor substrates X are heat-treated at a first temperature (for example, 400 ° C. to 600 ° C.).
  • the two semiconductor substrates X are heat-treated at the second temperature (eg, 1000 ° C. to 1300 ° C.) in the second atmosphere (eg, oxidizing atmosphere).
  • the second temperature eg, 1000 ° C. to 1300 ° C.
  • the second atmosphere eg, oxidizing atmosphere
  • the inorganic powder adjusts the interval between the adjacent inorganic powders in the surface direction of the semiconductor substrate X by the thickener described above, so that the two semiconductor substrates X are aligned. It has the characteristic of adjusting the distribution in the surface direction of the intervals.
  • the inorganic powder is heated at the second temperature after the impurities are heated to the second temperature, which is a temperature higher than the first temperature.
  • the spacing between the two semiconductor substrates X is maintained so that the stripping solution penetrates between the two semiconductor substrates X. Has characteristics.
  • aluminum of aluminum lactate which is an aluminum compound, has a characteristic of being diffused alone in the semiconductor substrate X.
  • the semiconductor impurity liquid source Z containing the liquid mixture with an organic solvent (ethanol) can be formed by mixing with water beforehand.
  • the diffusion source coating Sa is formed using aluminum lactate as the aluminum compound, so that aluminum is diffused alone in an atmosphere (oxidizing atmosphere) that is not limited to non-oxidizing properties. It becomes.
  • controllability of diffusion of aluminum into the semiconductor substrate X can be improved while expanding the choices of the medium type of atmosphere in the diffusion process.
  • the method for manufacturing a semiconductor device includes a dissolving step in which aluminum lactate is dissolved in water to prepare the aqueous solution A, and a mixed solution in which the aqueous solution and the organic solvent are mixed.
  • the semiconductor impurity liquid source Z containing the liquid is mixed, and after the mixing process, the semiconductor impurity liquid source Z containing the aqueous solution is applied on the semiconductor substrate X, and the diffusion source film S is applied on the semiconductor substrate X.
  • a forming step for forming a baking step for baking at least the organic solvent in the diffusion source film Sa by heat-treating the semiconductor substrate X at a first temperature in a first atmosphere after the applying step, and a baking step After that, in the second atmosphere, the semiconductor substrate X is heat-treated at a second temperature higher than the first temperature, and the aluminum contained in the diffusion source film is diffused into the semiconductor substrate and diffused into the semiconductor substrate X.
  • aluminum of aluminum lactate which is an aluminum compound, has a characteristic of being diffused alone in the semiconductor substrate.
  • the semiconductor impurity liquid source Z containing the liquid mixture with an organic solvent (ethanol) can be formed by mixing with water beforehand.
  • aluminum is formed in an atmosphere (oxidizing atmosphere) that is not limited to non-oxidizing property by forming a diffusion source film using aluminum lactate as an aluminum compound in the diffusion step. It will be diffused alone.
  • the controllability of diffusion of aluminum into the semiconductor substrate can be improved while expanding the choices of the medium type of the atmosphere in the diffusion process.
  • the present invention is also applicable to the case where aluminum as a P-type impurity is diffused in a plurality (two or more) of semiconductor substrates by stacking semiconductor substrates.
  • the diffusion process of the first embodiment will be described as a deposition process and a diffusion process.
  • the semiconductor impurity liquid source according to the second embodiment diffuses impurities into a plurality of semiconductor substrates by being heated while being applied between the plurality of stacked semiconductor substrates. In this manner, by diffusing impurities into a plurality of stacked semiconductor substrates, the impurities can be simultaneously diffused into the plurality of semiconductor substrates, so that the impurities can be efficiently diffused.
  • the semiconductor impurity liquid source has a compound (aqueous solution) containing impurities, an organic solvent that dissolves the compound, a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source, and a diameter larger than the impurities.
  • Inorganic powder is mixed and contained.
  • the semiconductor impurity liquid source may further contain water.
  • boric acid, aluminum lactate or the like can be suitably used as the compound containing the impurity.
  • N-type semiconductor impurity liquid source in which an N-type impurity is diffused into a semiconductor substrate
  • pyrophosphoric acid or the like can be suitably used as the compound containing the impurity.
  • Organic solvent has the property of dissolving compounds containing impurities.
  • an organic solvent containing ethanol, acetone, propanol or the like as a main component can be preferably used.
  • Thickener dissolves in an organic solvent and has the property of imparting viscosity to the semiconductor impurity liquid source.
  • the thickener adjusts the spacing between adjacent inorganic powders in the surface direction along the coating surface by the viscosity applied to the semiconductor impurity liquid source when the semiconductor impurity liquid source is applied to the coating surface of the semiconductor substrate. And has a characteristic of adjusting the distribution of impurities on the coated surface.
  • the thickener is heated to the first temperature for drying the semiconductor impurity liquid source, so that the organic solvent precipitates between the adjacent inorganic powders as the organic solvent evaporates, and impurities are deposited on the coated surface. It has the characteristic of maintaining the distribution.
  • the thickener having such characteristics, for example, a thickener containing cellulose or a derivative thereof as a main component can be suitably used. More preferably, the thickener contains hydroxypropyl cellulose.
  • the inorganic powder adjusts the distribution of the spacing between the plurality of semiconductor substrates in the plane direction by adjusting the spacing between adjacent inorganic powders in the plane direction by the thickener. It has the characteristic to do.
  • the inorganic powder is a plurality of semiconductors bonded by heating at a second temperature after the impurity is heated to a second temperature at which an impurity diffusion source that is higher than the first temperature is generated.
  • the spacing between the plurality of semiconductor substrates is maintained, so that the stripping solution penetrates between the plurality of semiconductor substrates.
  • an inorganic powder containing at least one substance selected from the group consisting of Si, SiO 2 , SiC and Si 3 N 4 as a main component is preferably used. it can.
  • hydrofluoric acid or the like can be suitably used as a stripping solution having a property of stripping semiconductor substrates bonded via inorganic powder.
  • FIG. 6 is a flowchart illustrating the method for manufacturing the semiconductor impurity liquid source according to the second embodiment.
  • FIG. 7 is an explanatory diagram for explaining a method of manufacturing a P-type semiconductor impurity liquid source in the method of manufacturing a semiconductor impurity liquid source according to the second embodiment.
  • a compound containing an impurity aqueous solution
  • an organic solvent that dissolves the compound a thickener that dissolves in the organic solvent
  • imparts viscosity to the semiconductor impurity liquid source are mixed (mixing step) (step S1).
  • a mixed liquid of P-type semiconductor impurity liquid source for example, powdered aluminum lactate is mixed with water, and then bathed until the aluminum lactate is dissolved in water, thereby An aluminum liquid is produced.
  • the melting time of the aluminum lactate can be shortened by water bathing while stirring.
  • Aluminum lactate is more soluble in water than organic solvents.
  • boric acid powder is mixed with ethanol and boiled in water until boric acid is dissolved in ethanol, thereby producing a boric acid solution.
  • the melting time of boric acid can be shortened by boiling with stirring.
  • a liquid mixture is produced
  • FIG. 8 is an explanatory diagram for explaining a method for producing an N-type semiconductor impurity liquid source in the method for producing a semiconductor impurity liquid source according to the second embodiment.
  • a mixed liquid is generated by mixing pyrophosphoric acid, an organic solvent, and a thickener.
  • the mixed solution After generating the mixed solution, as shown in FIG. 6, the mixed solution is held in a predetermined atmosphere for a predetermined time in order to stabilize the viscosity of the mixed solution (step S2).
  • step S3 After holding the mixed solution, an inorganic powder having a diameter larger than the impurities is mixed into the mixed solution (step S3). As described above, a semiconductor impurity liquid source can be obtained.
  • FIG. 9 is a flowchart illustrating the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating a dropping step in the method for manufacturing a semiconductor device according to the second embodiment.
  • a semiconductor impurity liquid source is dropped on a semiconductor substrate (step S11).
  • the semiconductor substrate 2 is placed on the coating coater head 3, and the P-type is placed on the coating surface 2 a of the semiconductor substrate 2 by the nozzle 4 from above with respect to the placed semiconductor substrate 2.
  • the semiconductor impurity liquid source 1-P is dropped.
  • the P-type semiconductor impurity liquid source 1-P contains a mixture of a P-type impurity 11-P, an organic solvent 12, a thickener 13, and an inorganic powder 14. Yes.
  • the P-type semiconductor impurity liquid source 1-P may further contain water or ethanol.
  • the semiconductor substrate 2 is, for example, a silicon single crystal substrate.
  • the semiconductor substrate 2 may be diffused with impurities.
  • FIG. 11 is a schematic cross-sectional view showing a coating step subsequent to FIG. 10 in the method for manufacturing the semiconductor device according to the second embodiment.
  • the dropped semiconductor impurity liquid source is applied to the semiconductor substrate as shown in FIG. 9 (step S12).
  • the impurity liquid source 1-P is rotated.
  • the centrifugal force acts on the P-type semiconductor impurity liquid source 1-P by the rotation the P-type semiconductor impurity liquid source 1-P flows from the center side to the peripheral side of the application surface 2a, and the application surface 2a. It is applied to the whole.
  • the moving speed of the inorganic powder 14 toward the peripheral side of the semiconductor substrate 2 can be adjusted by the viscosity imparted to the P-type semiconductor impurity liquid source 1-P by the thickener 13.
  • interval i of the inorganic powder 14 adjacent in the surface direction d along the application surface 2a can be adjusted.
  • the distribution of the P-type impurities 11-P on the coated surface 2a can be adjusted.
  • the distribution of the P-type impurities 11-P on the coating surface 2a can be adjusted uniformly.
  • FIG. 12 is a schematic cross-sectional view showing a drying step following FIG. 11 in the method for manufacturing the semiconductor device according to the second embodiment.
  • the semiconductor impurity liquid source applied to the semiconductor substrate is dried (step S13).
  • a semiconductor substrate 2 coated with a P-type semiconductor impurity liquid source 1-P is placed on a bake plate 5 containing a heating element, and the bake plate 5 is dried at a drying temperature (first temperature). 1).
  • the organic solvent and water are generally evaporated.
  • the thickener 13 is precipitated (that is, solidified) and remains. By depositing the thickener 13, the interval i between the adjacent inorganic powders 14 can be stably maintained by the thickener 13. Thereby, the distribution of the P-type impurity 11-P on the coated surface 2a can be maintained.
  • step S11 to S13 are performed using the surface opposite to the coating surface 2a of the semiconductor substrate 2 as a new coating surface, and the semiconductor impurity liquid source having a different impurity conductivity type. To do.
  • a diffusion source film containing the inorganic powder 14 and the P-type impurity 11 -P can be formed on the semiconductor substrate 2.
  • FIG. 13 is a schematic cross-sectional view illustrating the stacking process continued from FIG. 12 in the method for manufacturing the semiconductor device according to the second embodiment.
  • a plurality of semiconductor substrates are stacked as shown in FIG. 9 (step S14).
  • a plurality of semiconductor substrates 2 are stacked so that the application surfaces of the semiconductor impurity liquid source of the same conductivity type face each other.
  • reference numeral 11-N is an N-type impurity.
  • the interval between the adjacent inorganic powders 14 is not adjusted, the distribution of the inorganic powders 14 is biased, and a portion where the inorganic powders 14 are not locally present between the semiconductor substrates 2 may be generated.
  • the distance between the semiconductor substrates 2 is narrowed by the gravity of the stacked semiconductor substrates 2.
  • the distance between the semiconductor substrates 2 becomes non-uniform in the plane direction, and the arrangement state of impurities between the semiconductor substrates 2 also becomes non-uniform in the plane direction. As a result, it becomes difficult to maintain the uniformity of impurity diffusion.
  • the inorganic powder 14 is the surface of the space
  • the distribution in the direction can be adjusted.
  • the inorganic powder 14 can be adjusted so that the distribution in the surface direction d of the interval between the semiconductor substrates 2 is uniform.
  • the uniformity in the surface direction of the interval between the semiconductor substrates 2 can be enhanced, the uniformity in the surface direction of the arrangement state of impurities between the semiconductor substrates 2 can be enhanced. As a result, the uniformity of impurity diffusion can be improved.
  • FIG. 14 is a schematic cross-sectional view showing a firing step subsequent to FIG. 13 in the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 15 is a graph showing a temperature transition in the diffusion process in the method of manufacturing a semiconductor device according to the second embodiment.
  • a firing process for removing unnecessary substances is performed (step S15).
  • the laminated semiconductor substrate 2 is heated at the firing temperature to remove the thickener 13. More specifically, as shown in FIG. 15, the laminated semiconductor substrate 2 is heated at a constant baking temperature Ta for a predetermined time t ⁇ b> 1 to remove the thickener 13.
  • the P-type impurities 11-P are formed on the surface of the semiconductor substrate 2. It can be arranged as uniformly as possible.
  • FIG. 16 is a schematic cross-sectional view showing a deposition step subsequent to FIG. 14 in the method of manufacturing a semiconductor device according to the second embodiment.
  • a deposition process is performed in which impurities are vitrified to generate a diffusion supply source (step S16).
  • the P-type impurity 11-P is heated to the deposition temperature (for example, the temperature included in the second temperature of the first embodiment), thereby reducing the P-type impurity 11-P.
  • the deposition temperature for example, the temperature included in the second temperature of the first embodiment
  • the P-type impurity 11-P is heated at a constant deposition temperature Tb higher than the firing temperature Ta for a time t2 longer than the firing time t1, so that the P-type impurity 11-P is heated.
  • 11-P is the diffusion source. At this time, the P-type impurity 11-P is diffused to a shallow position.
  • the P-type impurities 11 are formed on the surface of the semiconductor substrate 2.
  • -P can be arranged as uniformly as possible.
  • the P-type impurity 11-P can be diffused as uniformly as possible.
  • N-type impurity 11-N the same applies to the N-type impurity 11-N.
  • the upper and lower semiconductor substrates 2 are joined in a block state.
  • FIG. 17 is a schematic cross-sectional view showing a diffusion step following FIG. 16 in the method of manufacturing the semiconductor device according to the second embodiment.
  • a diffusion process for diffusing impurities to a desired depth is performed (step S17).
  • the P-type impurity 11-P is heated to a diffusion temperature (for example, the temperature included in the second temperature of the first embodiment), thereby causing the P-type impurity 11-P to have a desired depth. Let it diffuse. More specifically, as shown in FIG. 15, the P-type impurity 11-P is heated at a constant diffusion temperature Tc higher than the deposition temperature Tb for a time t3 longer than the deposition time t2, thereby obtaining a P-type impurity. Impurities 11-P are diffused to a desired depth. N-type impurity 11-N is similarly diffused.
  • FIG. 18 is a schematic cross-sectional view illustrating the dipping process continued from FIG. 17 in the method for manufacturing the semiconductor device according to the second embodiment.
  • the laminated semiconductor substrate 2 is immersed in the peeling liquid 6 (step S18).
  • the stripping solution 6 easily penetrates from the location of the outermost inorganic powder 14 toward the center side. be able to.
  • the semiconductor substrate 2 is washed and dried and stripped from the laminated state (step S19).
  • the semiconductor impurity liquid source according to the second embodiment includes a compound containing impurities, an organic solvent that dissolves the compound, and a thickener that dissolves in the organic solvent and imparts viscosity to the semiconductor impurity liquid source. And an inorganic powder having a diameter larger than that of the impurities.
  • the thickener adjusts the interval between the adjacent inorganic powders in the surface direction along the application surface by the viscosity applied to the semiconductor impurity liquid source.
  • the coated surface is deposited between adjacent inorganic powders as the organic solvent evaporates. It has the characteristic of maintaining the distribution of impurities upward.
  • the inorganic powder adjusts the distribution of the spacing between the plurality of semiconductor substrates in the plane direction by adjusting the spacing between adjacent inorganic powders in the plane direction by the thickener. Then, after heating the impurity to a second temperature at which an impurity diffusion supply source that is higher than the first temperature is generated, a plurality of semiconductor substrates bonded by heating at the second temperature are removed from the stripping solution. When exposed to, the spacing between the plurality of semiconductor substrates is maintained, so that the stripping solution penetrates between the plurality of semiconductor substrates.
  • the distribution of impurities on the coating surface is adjusted by the viscosity of the thickener, and the semiconductor impurity liquid source is dried at the first temperature.
  • the thickening agent is deposited between adjacent inorganic powders to maintain the distribution of impurities on the coated surface and stacking a plurality of semiconductor substrates
  • the viscosity of the thickening agent causes a gap in the plane direction.
  • the inorganic powder is adjusted to adjust the distribution in the surface direction of the intervals between the semiconductor substrates, and when exposing a plurality of semiconductor substrates to the release liquid, the separation is performed through the intervals between the semiconductor substrates maintained with the inorganic powder.
  • the liquid can be infiltrated.
  • the dopant film it is necessary to pre-bake the dopant film at a constant temperature so that abnormal combustion does not occur due to abrupt generation of gas due to a large amount of organic binder, but abnormal combustion occurs in the semiconductor impurity liquid source. Since no organic solvent is used, pre-baking before firing is unnecessary. Thereby, the number of processes can be suppressed and the production efficiency can be further improved.
  • FIG. 19 is a flowchart showing a method for manufacturing a semiconductor impurity liquid source according to a modification.
  • stirring may be performed before holding the mixed liquid (step S4).
  • the viscosity of the thickener can be further stabilized by stirring the mixed solution. By stabilizing the viscosity of the thickener, the uniformity of impurity diffusion can be more effectively ensured during the manufacture of the semiconductor device.
  • the mass concentration (wt%) of the inorganic powder with respect to the entire semiconductor impurity liquid source may be lower than the mass concentration (wt%) of the thickener with respect to the entire semiconductor impurity liquid source.
  • the thickener cannot exert its viscosity properly and the semiconductor impurity liquid source becomes difficult to extend. Even if the material of the agent is selected, it is difficult to accurately adjust the viscosity of the thickener.
  • the viscosity of the thickener can be appropriately exhibited. By doing so, the viscosity of the thickener can be accurately adjusted.
  • the mass concentration of the inorganic powder with respect to the entire semiconductor impurity liquid source may be lower than the mass concentration of the organic solvent with respect to the entire semiconductor impurity liquid source.
  • the mass concentration of the inorganic powder is higher than the mass concentration of the organic solvent, the fluidity of the semiconductor impurity liquid source is remarkably impaired, so that even if a thickener that imparts viscosity to the fluid is added , Since there are too few fluids (organic solvents) which should give viscosity, a thickener cannot exhibit viscosity appropriately.
  • the viscosity of the thickener can be accurately adjusted by selecting the material of the thickener to obtain a desired viscosity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

半導体装置の製造方法は、乳酸アルミニウムを水に溶かして水溶液を作製する溶解工程と、水溶液と有機溶剤と混合した混合液を作製し、混合液を含んだ半導体不純物液体ソースを作製する混合工程と、混合工程の後、水溶液を含んだ半導体不純物液体ソースを半導体基板上に塗布して、半導体基板上に拡散源被膜を形成する塗布工程と、塗布工程の後、第1の雰囲気中において、半導体基板を第1の温度で加熱処理して、拡散源被膜中の少なくとも有機溶剤を焼成する焼成工程と、焼成工程の後、第2の雰囲気中において、半導体基板を第1の温度より高い第2の温度で加熱処理して、拡散源被膜に含まれるアルミニウムを半導体基板に拡散させて、半導体基板に拡散層を形成する拡散工程と、を備える。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関する発明である。
 従来、半導体基板上にP型不純物としてアルミニウム化合物とボロン化合物を含む拡散源被膜を形成し、この拡散源被膜が形成された半導体基板を加熱することにより、当該半導体基板にP型拡散層を形成する半導体装置の製造方法がある(特開2000-286205、参照)。
 特に、P型の低い濃度で深い拡散層を得る為には、拡散係数の大きいアルミニウムが適している。
 そして、このような従来の半導体装置の製造方法における拡散方法では、アルミニウム化合物とボロン化合物を溶剤に溶かし、ウェーハ表面に塗布する方法やボロン及びアルミニウム粉末を有機バインダでフィルム状にしたフィルムとシリコンウェーハに密着させて拡散するものがある。
 しかし、これらの従来の半導体装置の製造方法では、窒素等の非酸化性に限定された雰囲気においてアルミニウムとボロンを同時に拡散するものとなり、アルミニウムの単独拡散が難しくなる。
 なお、アルミニウム化合物としては、塩化アルミニウム、アルミニウムエトキシド、ステアリン酸アルミニウム等があるが、単独では、アルミニウムが半導体基板に拡散されない。
 すなわち、従来の半導体装置の製造方法では、拡散工程における雰囲気の媒体種が限定的になり、且つ、アルミニウムの半導体基板への拡散の制御性が低下する問題がある。
 そこで、本発明は、拡散工程における雰囲気の媒体種の選択肢を広げつつ、アルミニウムの半導体基板への拡散の制御性を向上することが可能な半導体装置の製造方法を提供することを目的とする。 
 本発明の一態様に係る実施形態に従った半導体装置の製造方法は、
 乳酸アルミニウムを水に溶かして水溶液を作製する溶解工程と、
 前記水溶液と有機溶剤と混合した混合液を作製し、前記混合液を含んだ半導体不純物液体ソースを作製する混合工程と、
 前記混合工程の後、前記水溶液を含んだ前記半導体不純物液体ソースを半導体基板上に塗布して、前記半導体基板上に拡散源被膜を形成する塗布工程と、
 前記塗布工程の後、第1の雰囲気中において、前記半導体基板を第1の温度で加熱処理して、前記拡散源被膜中の少なくとも前記有機溶剤を焼成する焼成工程と、
 前記焼成工程の後、第2の雰囲気中において、前記半導体基板を前記第1の温度より高い第2の温度で加熱処理して、前記拡散源被膜に含まれるアルミニウムを前記半導体基板に拡散させて、半導体基板に拡散層を形成する拡散工程と、を備える
 ことを特徴とする。
 前記半導体装置の製造方法において、
 前記有機溶剤は、前記乳酸アルミニウムを溶解しない特性を有することを特徴とする。
 前記半導体装置の製造方法において、
 前記有機溶剤は、エタノール、アセトン、プロパノール、又は、エチルアルコールの何れかである
 ことを特徴とする。
 前記半導体装置の製造方法において、
 前記焼成工程の前記第1の雰囲気は、酸化性雰囲気であることを特徴とする。
 前記半導体装置の製造方法において、
 前記拡散工程の前記第2の雰囲気は、前記酸化性雰囲気であることを特徴とする。
 前記半導体装置の製造方法において、
 前記酸化性雰囲気は、酸素を含む雰囲気であることを特徴とする。
 前記半導体装置の製造方法において、
 前記塗布工程は、スピンコート法により前記半導体不純物液体ソースを半導体基板上に塗布する
 ことを特徴とする。
 前記半導体装置の製造方法において、
 前記焼成工程の前記第1の温度は、400℃~600℃の範囲であることを特徴とする。
 前記半導体装置の製造方法において、
 前記拡散工程の前記第2の温度は、1000℃~1300℃の範囲であることを特徴とする。
 前記半導体装置の製造方法において、
 前記半導体基板は、N型シリコンウェーハであることを特徴とする。
 前記半導体装置の製造方法において、
 前記拡散工程の後、前記半導体基板上に残存する膜を剥離液により剥離する剥離工程をさらに備えることを特徴とする。
 前記半導体装置の製造方法において、
 前記剥離液は、フッ酸であることを特徴とする。
 前記半導体装置の製造方法において、
 前記半導体不純物液体ソースは、前記有機溶剤に溶解し且つ前記半導体不純物液体ソースに粘性を付与する増粘剤と、複数の無機粉末と、をさらに含むものであり、
 前記焼成工程において、2つの前記半導体基板の前記拡散源被膜が接触するように前記2つの前記半導体基板を対向させた状態で、前記第1の雰囲気中において、前記2つの前記半導体基板を前記第1の温度で加熱処理し、
 前記拡散工程において、前記第2の雰囲気中において、前記2つの前記半導体基板を前記第2の温度で加熱処理し、
 前記無機粉末は、前記2つの前記半導体基板を積層する際に、前記増粘剤によって前記半導体基板の面方向において隣り合う無機粉末同士の間隔が調整されて、前記2つの前記半導体基板同士の間隔の面方向における分布を調整する特性を有し、
 前記無機粉末は、不純物を前記第1の温度よりも高い温度である不純物の拡散供給源が生成される前記第2の温度に加熱した後、前記第2の温度での加熱によって接合された前記2つの前記半導体基板を前記剥離液に晒す際に、前記2つの前記半導体基板同士の間隔を維持していることで、前記2つの半導体基板間に前記剥離液を浸透させる特性を有し、
 前記剥離工程において、対向する前記2つの前記半導体基板が分離する
 ことを特徴とする。
 前記半導体装置の製造方法において、
 前記増粘剤は、主成分として、セルロース、セルロースの誘導体、又は、ヒドロキシプロピルセルロースを含有する
 ことを特徴とする。
 前記半導体装置の製造方法において、
 前記塗布工程と前記焼成工程の間に、前記第1の温度よりも低い第3の温度で前記半導体基板を加熱処理して、前記拡散源被膜中の少なくとも前記有機溶剤及び前記水を蒸発させるようにプリベークする
 ことを特徴とする。
 本発明の一態様に係る半導体装置の製造方法は、乳酸アルミニウムを水に溶かして水溶液を作製する溶解工程と、水溶液と有機溶剤と混合した混合液を作製し、混合液を含んだ半導体不純物液体ソースを作製する混合工程と、混合工程の後、水溶液を含んだ半導体不純物液体ソースを半導体基板上に塗布して、半導体基板上に拡散源被膜を形成する塗布工程と、塗布工程の後、第1の雰囲気中において、半導体基板を第1の温度で加熱処理して、拡散源被膜中の少なくとも有機溶剤を焼成する焼成工程と、焼成工程の後、第2の雰囲気中において、半導体基板を第1の温度より高い第2の温度で加熱処理して、拡散源被膜に含まれるアルミニウムを半導体基板に拡散させて、半導体基板に拡散層を形成する拡散工程と、を備える。
 そして、拡散工程において、アルミニウム化合物である乳酸アルミニウムのアルミニウムは、半導体基板に単独で拡散される特性を有する。
 そして、当該乳酸アルミニウムは、有機溶剤(エタノール)に溶解しないが、予め水と混合しておくことで、有機溶剤(エタノール)との混合液を含んだ半導体不純物液体ソースを形成することができる。
 このように、本発明の半導体装置の製造方法では、拡散工程において、アルミニウム化合物として乳酸アルミニウムを用いて拡散源被膜を形成することで、非酸化性に限定されない雰囲気(酸化性雰囲気)においてアルミニウムが単独で拡散されることとなる。
 すなわち、本発明の半導体装置の製造方法によれば、拡散工程における雰囲気の媒体種の選択肢を広げつつ、アルミニウムの半導体基板への拡散の制御性を向上することができる。
図1は、本発明の半導体装置の製造方法の半導体不純物液体ソースの構成例を示す図である。 図2は、実施例1に係る半導体装置の製造方法の工程を示す図である。 図3は、図2に続く、実施例1に係る半導体装置の製造方法の工程を示す図である。 図4は、図2に続く、実施例1に係る半導体装置の製造方法の工程を示す図である。 図5は、図2に続く、実施例1に係る半導体装置の製造方法の工程を示す図である。 図6は、本実施例2に係る半導体不純物液体ソースの製造方法を示すフローチャートである。 図7は、本実施例2に係る半導体不純物液体ソースの製造方法において、P型の半導体不純物液体ソースの製造方法を説明するための説明図である。 図8は、本実施例2に係る半導体不純物液体ソースの製造方法において、N型の半導体不純物液体ソースの製造方法を説明するための説明図である。 図9は、本実施例2に係る半導体装置の製造方法を示すフローチャートである。 図10は、本実施例2に係る半導体装置の製造方法において、滴下工程を示す概略断面図である。 図11は、本実施例2に係る半導体装置の製造方法において、図10に続く塗布工程を示す概略断面図である。 図12は、本実施例2に係る半導体装置の製造方法において、図11に続く乾燥工程を示す概略断面図である。 図13は、本実施例2に係る半導体装置の製造方法において、図12に続く積層工程を示す概略断面図である。 図14は、本実施例2に係る半導体装置の製造方法において、図13に続く焼成工程を示す概略断面図である。 図15は、本実施例2に係る半導体装置の製造方法において、拡散プロセスでの温度遷移を示すグラフである。 図16は、本実施例2に係る半導体装置の製造方法において、図14に続くデポジション工程を示す概略断面図である。 図17は、実施例2に係る半導体装置の製造方法において、図16に続く拡散工程を示す概略断面図である。 図18は、実施例2に係る半導体装置の製造方法において、図17に続く浸漬工程を示す概略断面図である。 図19は、変形例に係る半導体不純物液体ソースの製造方法を示すフローチャートである。
 以下、本発明に係る実施形態について図面に基づいて説明する。
 図1は、本発明の半導体装置の製造方法の半導体不純物液体ソースの構成例を示す図である。また、図2ないし図5は、実施例1に係る半導体装置の製造方法の工程を示す図である。
 第1の実施形態に係る半導体装置の製造方法は、図2ないし図5に示すように、「溶解工程」、「混合工程」、「塗布工程」、「焼成工程」、「拡散工程」及び「剥離工程」をこの順序で実施する。以下、実施形態に係る半導体装置の製造方法を工程順に説明する。
 溶解工程
 先ず、乳酸アルミニウムを水に溶かして水溶液Aを作製する(図1)。
 ここでは、半導体基板XにP型の不純物を拡散させるP型の半導体不純物液体ソースとして、不純物の含む化合物としては、乳酸アルミニウムを用いる。
 なお、水溶液Aにおける、乳酸アルミニウムと水の割合は、例えば、乳酸アルミニウム:水=8:100程度に設定される。
 混合工程
 次に、水溶液Aと有機溶剤と混合した混合液を作製し、混合液を含んだ半導体不純物液体ソースZを作製する(図1、混合工程)。
 なお、既述の有機溶剤は、少なくとも、乳酸アルミニウムを溶解しない特性を有する。
 より具体的には、この有機溶剤は、例えば、エタノール、アセトン、プロパノール、又は、エチルアルコールの何れかである。
 以上のようにして、この混合工程において、水溶液と有機溶剤と混合した混合液を作製し、混合液を含んだ半導体不純物液体ソースZを作製する。
 塗布工程
 次に、上記混合工程の後、この塗布工程において、水溶液Aを含んだ半導体不純物液体ソースZを半導体基板X上に塗布して、半導体基板X上に拡散源被膜Sを形成する(図2、塗布工程)。
 なお、この塗布工程においては、スピンコート法により半導体不純物液体ソースを半導体基板X上に塗布する。
 なお、半導体基板Xは、例えば、N型シリコンウェーハである。
 焼成工程
 次に、塗布工程の後、第1の雰囲気中において、半導体基板Xを第1の温度で加熱処理して、拡散源被膜Sa中の少なくとも有機溶剤を焼成する(図3、焼成工程)。
 なお、この焼成工程の既述の第1の雰囲気は、酸化性雰囲気である。
 より具体的には、酸化性雰囲気は、酸素を含む雰囲気である。
 また、この焼成工程の第1の温度は、例えば、400℃~600℃の範囲である。
 なお、必要に応じて、既述の塗布工程とこの焼成工程の間に、上記第1の温度よりも低い第3の温度で半導体基板Xを加熱処理して、拡散源被膜Sa中の少なくとも有機溶剤及び水を蒸発させるようにプリベークするようにしてもよい。有機溶剤がエタノール以外の溶剤の場合は特に有効である。
 拡散工程
 次に、焼成工程の後、第2の雰囲気中において、半導体基板Xを第1の温度より高い第2の温度で加熱処理して、拡散源被膜Saに含まれるアルミニウムを半導体基板Xに拡散させて、半導体基板Xに拡散層Yを形成する(図4、拡散工程)。
 なお、この拡散工程の既述の第2の雰囲気は、酸化性雰囲気である。
 また、この拡散工程の既述の第2の温度は、例えば、1000℃~1300℃の範囲である。
 剥離工程
 次に、上記拡散工程の後、半導体基板X上に残存する膜Sbを剥離液により剥離する(図5、剥離工程)。
 なお、既述の剥離液は、例えば、フッ酸である。
 (複数の半導体基板を積層して同時に処理する例)
 ここで、上記実施例1の半導体装置の製造方法において、例えば、複数(2つ以上)の半導体基板Xを積層して同時に処理するようにしてもよい。
 この場合、半導体不純物液体ソースZは、有機溶剤に溶解し且つ半導体不純物液体ソースZに粘性を付与する増粘剤と、複数の無機粉末(例えば、Siを含む粉末)と、をさらに含むようにする。なお、この増粘剤は、例えば、主成分として、セルロース、セルロースの誘導体、又は、ヒドロキシプロピルセルロースを含有する。
 そして、既述の焼成工程において、2つの半導体基板Xの拡散源被膜が接触するように2つの半導体基板Xを対向させた状態で、該第1の雰囲気中(例えば、酸化性雰囲気)において、2つの半導体基板Xを第1の温度(例えば、400℃~600℃)で加熱処理する。
 さらに、既述の拡散工程において、該第2の雰囲気(例えば、酸化性雰囲気)中において、2つの半導体基板Xを第2の温度(例えば、1000℃~1300℃)で加熱処理する。
 ここで、無機粉末は、2つの半導体基板Xを積層する際に、既述の増粘剤によって半導体基板Xの面方向において隣り合う無機粉末同士の間隔が調整されて、2つの半導体基板X同士の間隔の面方向における分布を調整する特性を有する。
 さらに、当該無機粉末は、不純物を既述の第1の温度よりも高い温度である不純物の拡散供給源が生成される既述の第2の温度に加熱した後、当該第2の温度での加熱によって接合された2つの半導体基板Xを既述の剥離液に晒す際に、2つの半導体基板X同士の間隔を維持していることで、2つの半導体基板X間に当該剥離液を浸透させる特性を有する。
 そして、既述の剥離工程において、対向する2つの半導体基板Xが分離するものである。
 以上のようにして、制御性よくアルミニウムが拡散された半導体装置を製造することができる。
 ここで、既述のように、拡散工程において、アルミニウム化合物である乳酸アルミニウムのアルミニウムは、半導体基板Xに単独で拡散される特性を有する。
 そして、当該乳酸アルミニウムは、有機溶剤(エタノール)に溶解しないが、予め水と混合しておくことで、有機溶剤(エタノール)との混合液を含んだ半導体不純物液体ソースZを形成することができる。
 このように、既述の拡散工程において、アルミニウム化合物として乳酸アルミニウムを用いて拡散源被膜Saを形成することで、非酸化性に限定されない雰囲気(酸化性雰囲気)においてアルミニウムが単独で拡散されることとなる。
 すなわち、拡散工程における雰囲気の媒体種の選択肢を広げつつ、アルミニウムの半導体基板Xへの拡散の制御性を向上することができる。
 以上のように、本発明の実施例1に係る半導体装置の製造方法は、乳酸アルミニウムを水に溶かして水溶液Aを作製する溶解工程と、水溶液と有機溶剤と混合した混合液を作製し、混合液を含んだ半導体不純物液体ソースZを作製する混合工程と、混合工程の後、水溶液を含んだ半導体不純物液体ソースZを半導体基板X上に塗布して、半導体基板X上に拡散源被膜Sを形成する塗布工程と、塗布工程の後、第1の雰囲気中において、半導体基板Xを第1の温度で加熱処理して、拡散源被膜Sa中の少なくとも有機溶剤を焼成する焼成工程と、焼成工程の後、第2の雰囲気中において、半導体基板Xを第1の温度より高い第2の温度で加熱処理して、拡散源被膜に含まれるアルミニウムを半導体基板に拡散させて、半導体基板Xに拡散層Yを形成する拡散工程と、を備える。
 そして、拡散工程において、アルミニウム化合物である乳酸アルミニウムのアルミニウムは、半導体基板に単独で拡散される特性を有する。
 そして、当該乳酸アルミニウムは、有機溶剤(エタノール)に溶解しないが、予め水と混合しておくことで、有機溶剤(エタノール)との混合液を含んだ半導体不純物液体ソースZを形成することができる。
 このように、本発明の半導体装置の製造方法では、拡散工程において、アルミニウム化合物として乳酸アルミニウムを用いて拡散源被膜を形成することで、非酸化性に限定されない雰囲気(酸化性雰囲気)においてアルミニウムが単独で拡散されることとなる。
 すなわち、本発明の半導体装置の製造方法によれば、拡散工程における雰囲気の媒体種の選択肢を広げつつ、アルミニウムの半導体基板への拡散の制御性を向上することができる。
 既述の実施例1では、1つの半導体基板にP型の不純物であるアルミニウムを拡散させる場合について説明した。しかしながら、既述のように、半導体基板を積層させることで、複数(2つ以上)の半導体基板にP型の不純物であるアルミニウムを拡散させる場合についても適用可能である。
 そこで、本実施例2では、半導体基板を積層させることで、複数の半導体基板に所望の不純物を拡散させる場合について、詳細に説明する。なお、本実施例2では、実施例1の拡散工程を、デポジション工程及び拡散工程として、説明する。
 (半導体不純物液体ソース)
 まず、本実施例2に係る半導体不純物液体ソースについて説明する。
 本実施例2に係る半導体不純物液体ソースは、積層された複数の半導体基板間に塗布された状態で加熱されることで、複数の半導体基板に不純物を拡散させるものである。このように、積層状態の複数の半導体基板に不純物を拡散させることで、複数の半導体基板に対して不純物を同時に拡散させることができるので、不純物の拡散を効率的に行うことができる。
 半導体不純物液体ソースは、不純物を含む化合物(水溶液)と、化合物を溶解する有機溶剤と、有機溶剤に溶解し、半導体不純物液体ソースに粘性を付与する増粘剤と、不純物よりも大きい直径を有する無機粉末と、が混合して含有されている。半導体不純物液体ソースは、更に水を含有していてもよい。
 半導体基板にP型の不純物を拡散させるP型の半導体不純物液体ソースの場合、不純物の含む化合物としては、例えば、ほう酸、乳酸アルミニウム等を好適に用いることができる。
 半導体基板にN型の不純物を拡散させるN型の半導体不純物液体ソースの場合、不純物の含む化合物としては、例えば、ピロりん酸等を好適に用いることができる。
 有機溶剤は、不純物を含む化合物を溶解する特性を有する。このような特性を有する有機溶剤としては、例えば、主成分として、エタノール、アセトン又はプロパノール等を含有する有機溶剤を好適に用いることができる。
 増粘剤は、有機溶剤に溶解し、半導体不純物液体ソースに粘性を付与する特性を有する。また、増粘剤は、半導体不純物液体ソースを半導体基板の塗布面に塗布する際に、半導体不純物液体ソースに付与する粘性によって、塗布面に沿った面方向において隣り合う無機粉末同士の間隔を調整して塗布面上への不純物の分布を調整する特性を有する。さらに、増粘剤は、半導体不純物液体ソースを乾燥させる第1の温度に加熱されることで、有機溶剤の蒸発にともなって隣り合う無機粉末同士の間に析出して塗布面上への不純物の分布を維持する特性を有する。
 このような特性を有する増粘剤としては、例えば、主成分として、セルロースまたはその誘導体を含有する増粘剤を好適に用いることができる。増粘剤は、より好ましくは、ヒドロキシプロピルセルロースを含有する。
 無機粉末は、複数の半導体基板を積層する際に、増粘剤によって面方向において隣り合う無機粉末同士の間隔が調整されていることで、複数の半導体基板同士の間隔の面方向における分布を調整する特性を有する。
 また、無機粉末は、不純物を第1の温度よりも高い温度である不純物の拡散供給源が生成される第2の温度に加熱した後、第2の温度での加熱によって接合された複数の半導体基板を剥離液に晒す際に、複数の半導体基板同士の間隔を維持していることで、複数の半導体基板間に剥離液を浸透させる特性を有する。
 このような特性を有する無機粉末としては、例えば、主成分として、Si、SiO、SiCおよびSiからなる群から選択される少なくとも1つの物質を含有する無機粉末を好適に用いることができる。
 また、無機粉末を介して接合された半導体基板同士を剥離する特性を有する剥離液としては、例えば、フッ酸等を好適に用いることができる。
 (半導体不純物液体ソースの製造方法)
 次に、既述した半導体不純物液体ソースを製造するための製造方法について説明する。図6は、本実施例2に係る半導体不純物液体ソースの製造方法を示すフローチャートである。また、図7は、本実施例2に係る半導体不純物液体ソースの製造方法において、P型の半導体不純物液体ソースの製造方法を説明するための説明図である。
 図6に示すように、先ず、不純物を含む化合物(水溶液)と、当該化合物を溶解する有機溶剤と、有機溶剤に溶解(溶解工程)し、半導体不純物液体ソースに粘性を付与する増粘剤と、を混合した混合液を生成(混合工程)する(ステップS1)。
 そして、図7に示すように、P型の半導体不純物液体ソースの混合液を生成する場合、例えば、粉末の乳酸アルミニウムを水に混合させ、乳酸アルミニウムが水に溶解するまで湯煎することで、乳酸アルミニウム液を生成する。このとき、図7に示すように、撹拌しながら湯煎することで、乳酸アルミニウムの溶解時間を短縮させることができる。乳酸アルミニウムは、有機溶剤よりも水に溶解し易い。溶解し易い水に乳酸アルミニウムを溶解させた後に有機溶剤と混合することで、混合液を適切に生成することができる。
 また、図7に示すように、粉末のほう酸をエタノールに混合させ、ほう酸がエタノールに溶解するまで湯煎することで、ほう酸液を生成する。このとき、図7に示すように、撹拌しながら湯煎することで、ほう酸の溶解時間を短縮させることができる。
 そして、図7に示すように、乳酸アルミニウム液と、ほう酸液と、有機溶剤と、増粘剤とを混合することで、混合液を生成する。
 図8は、本実施例2に係る半導体不純物液体ソースの製造方法において、N型の半導体不純物液体ソースの製造方法を説明するための説明図である。
 図8に示すように、N型の半導体不純物液体ソースの混合液を生成する場合、例えば、ピロりん酸と、有機溶剤と、増粘剤とを混合することで、混合液を生成する。
 混合液を生成した後、図6に示すように、混合液の粘性を安定させるために混合液を予め決められた時間所定の雰囲気下で保持する(ステップS2)。
 混合液を保持した後、混合液に、不純物よりも大きい直径を有する無機粉末を混合する(ステップS3)。以上のようにして、半導体不純物液体ソースを得ることができる。
 (半導体装置の製造方法)
 次に、既述した半導体不純物液体ソースを用いた半導体装置の製造方法について説明する。
 図9は、本実施例2に係る半導体装置の製造方法を示すフローチャートである。図10は、本実施例2に係る半導体装置の製造方法において、滴下工程を示す概略断面図である。
 先ず、図9に示すように、半導体基板上に半導体不純物液体ソースを滴下する(ステップS11)。例えば、図10に示すように、塗布コータヘッド3上に半導体基板2を載置し、載置された半導体基板2に対して、上方からノズル4によって半導体基板2の塗布面2a上にP型半導体不純物液体ソース1-Pを滴下する。そして、図10に示すように、P型半導体不純物液体ソース1-Pは、P型不純物11-Pと、有機溶剤12と、増粘剤13と、無機粉末14とが混合して含有されている。なお、P型半導体不純物液体ソース1-Pは、更に、水やエタノールも含有していてもよい。半導体基板2は、例えば、シリコン単結晶基板である。半導体基板2は、不純物が拡散されていてもよい。
 図11は、本実施例2に係る半導体装置の製造方法において、図10に続く塗布工程を示す概略断面図である。
 半導体不純物液体ソースを滴下した後、図9に示すように、滴下された半導体不純物液体ソースを半導体基板に塗布する(ステップS12)。例えば、図11に示すように、塗布コータヘッド3を回転方向rに回転させることで、塗布コータヘッド3上に載置された半導体基板2とともに、半導体基板2の塗布面2a上のP型半導体不純物液体ソース1-Pを回転させる。回転によってP型半導体不純物液体ソース1-Pに遠心力が作用することで、P型半導体不純物液体ソース1-Pは、塗布面2aの中心側から周辺側に向かって流動して、塗布面2a全体に塗布される。
 このとき、増粘剤13によってP型半導体不純物液体ソース1-Pに付与されている粘性によって、半導体基板2の周辺側への無機粉末14の移動速度を調整することができる。これにより、塗布面2aに沿った面方向dにおいて隣り合う無機粉末14同士の間隔iを調整することができる。無機粉末14同士の間隔iを調整することで、塗布面2a上へのP型不純物11-Pの分布を調整することができる。例えば、隣り合う無機粉末14同士の間隔iを均一に調整することで、塗布面2a上へのP型不純物11-Pの分布を均一に調整することができる。
 図12は、本実施例2に係る半導体装置の製造方法において、図11に続く乾燥工程を示す概略断面図である。
 半導体不純物液体ソースを塗布した後、図9に示すように、半導体基板に塗布された半導体不純物液体ソースを乾燥させる(ステップS13)。例えば、図12に示すように、発熱体が内蔵されたベーク板5上に、P型半導体不純物液体ソース1-Pが塗布された半導体基板2を載置し、ベーク板5を乾燥温度(第1の温度)まで加熱する。これにより、有機溶剤および水は概ね蒸発する。一方、図12に示すように、増粘剤13は、析出(すなわち、固化)して残存している。増粘剤13が析出していることで、隣り合う無機粉末14間の間隔iを増粘剤13によって安定的に維持することができる。これにより、塗布面2a上へのP型不純物11-Pの分布を維持することができる。
 半導体不純物液体ソースを乾燥させた後、同様の工程(ステップS11~S13)を、半導体基板2の塗布面2aの反対側の表面を新たな塗布面として、不純物の導電型が異なる半導体不純物液体ソースを用いて行う。
 これにより、半導体基板2上に無機粉末14及びP型不純物11-Pを含む拡散源被膜を形成することができる。
 図13は、本実施例2に係る半導体装置の製造方法において、図12に続く積層工程を示す概略断面図である。
 半導体基板の表裏の塗布面の半導体不純物液体ソースを乾燥させた後、図9に示すように、複数の半導体基板を積層する(ステップS14)。例えば、図13に示すように、複数の半導体基板2を、同じ導電型の半導体不純物液体ソースの塗布面同士を向かい合わせるように積層させる。なお、図13において、符号11-Nは、N型不純物である。
 ここで、もし、隣り合う無機粉末14同士の間隔が調整されていない場合、無機粉末14の分布が偏ることで、局所的に半導体基板2間に無機粉末14が存在しない箇所が生じ得る。この場合、無機粉末14が局所的に存在しない箇所では、積層される半導体基板2の重力によって半導体基板2間の間隔が狭められてしまう。これにより、半導体基板2同士の間隔が面方向において不均一となり、半導体基板2間の不純物の配置状態も面方向において不均一となる。この結果、不純物の拡散の均一性を維持することが困難となる。
 これに対して、本実施形態では、増粘剤13によって面方向dにおいて隣り合う無機粉末14同士の間隔が調整されていることで、無機粉末14は、複数の半導体基板2同士の間隔の面方向における分布を調整することができる。例えば、無機粉末14は、半導体基板2同士の間隔の面方向dにおける分布を均一になるように調整することができる。
 このように、半導体基板2同士の間隔の面方向における均一性を高めることができるので、半導体基板2間の不純物の配置状態の面方向における均一性を高めることができる。この結果、不純物の拡散の均一性を高めることができる。
 次に、図14は、本実施例2に係る半導体装置の製造方法において、図13に続く焼成工程を示す概略断面図である。また、図15は、本実施例2に係る半導体装置の製造方法において、拡散プロセスでの温度遷移を示すグラフである。
 半導体基板を積層させた後、既述の図9に示すように、不要な物質を除去する焼成工程を実施する(ステップS15)。例えば、図14に示すように、積層された半導体基板2を焼成温度で加熱して増粘剤13を除去する。より詳しくは、図15に示すように、積層された半導体基板2を、一定の焼成温度Taで一定時間t1加熱して増粘剤13を除去する。このとき、P型半導体不純物液体ソース1-Pの塗布の際に増粘剤13によって無機粉末14間の間隔iが調整されているので、半導体基板2の表面上にP型不純物11-Pをできるだけ均一に配置することができる。
 ここで、図16は、本実施例2に係る半導体装置の製造方法において、図14に続くデポジション工程を示す概略断面図である。
 焼成の後、図9に示すように、不純物をガラス化して拡散供給源を生成するデポジション工程を実施する(ステップS16)。
 そして、例えば、図16に示すように、P型不純物11-Pをデポジション温度(例えば、実施例1の第2の温度に含まれる温度)に加熱することで、P型不純物11-Pをガラス化して拡散供給源にする。より詳しくは、図15に示すように、P型不純物11-Pを、焼成温度Taよりも高温の一定のデポジション温度Tbで、焼成時間t1よりも長い時間t2加熱することで、P型不純物11-Pを拡散供給源にする。このとき、P型不純物11-Pは、浅い位置までは拡散される。
 ここで、P型半導体不純物液体ソース1-Pの塗布の際に、増粘剤13によって隣り合う無機粉末14間の間隔iが調整されているので、半導体基板2の表面上にP型不純物11-Pをできるだけ均一に配置することができる。これにより、P型不純物11-Pをできるだけ均一に拡散させることができる。このことは、N型不純物11-Nについても同様である。
 また、このとき、上下の半導体基板2同士がブロック状態となって接合される。
 ここで、図17は、本実施例2に係る半導体装置の製造方法において、図16に続く拡散工程を示す概略断面図である。
 デポジション工程を実施した後、図9に示すように、所望の深さまで不純物を拡散させる拡散工程を実施する(ステップS17)。例えば、図17に示すように、P型不純物11-Pを拡散温度(例えば、実施例1の第2の温度に含まれる温度)に加熱することで、P型不純物11-Pを所望の深さまで拡散させる。より詳しくは、図15に示すように、P型不純物11-Pを、デポジション温度Tbよりも高温の一定の拡散温度Tcで、デポジション時間t2よりも長い時間t3加熱することで、P型不純物11-Pを所望の深さまで拡散させる。N型不純物11-Nについても同様に拡散が行われる。
 図18は、本実施例2に係る半導体装置の製造方法において、図17に続く浸漬工程を示す概略断面図である。
 拡散工程を実施した後、図9、図18に示すように、当該剥離工程において、積層された半導体基板2を剥離液6に浸漬させる(ステップS18)。このとき、図18に示すように、無機粉末14によって半導体基板2同士の間隔が維持されているため、剥離液6は、最外周の無機粉末14の箇所から中心側に向かって容易に浸透することができる。
 これにより、半導体基板2同士の剥離が促進されて剥離時間を短縮することができる。
 剥離液への浸漬の後、図9に示すように、半導体基板2を洗浄、乾燥させて積層状態から剥離する(ステップS19)。
 以下、本実施例2によってもたらされる作用について説明する。
 上述したように、本実施例2に係る半導体不純物液体ソースは、不純物を含む化合物と、化合物を溶解する有機溶剤と、有機溶剤に溶解し、半導体不純物液体ソースに粘性を付与する増粘剤と、不純物よりも大きい直径を有する無機粉末と、が混合して含有されている。
 増粘剤は、半導体不純物液体ソースを半導体基板の塗布面に塗布する際に、半導体不純物液体ソースに付与する粘性によって、塗布面に沿った面方向において隣り合う無機粉末同士の間隔を調整して塗布面上への不純物の分布を調整し、半導体不純物液体ソースを乾燥させる第1の温度に加熱されることで、有機溶剤の蒸発にともなって隣り合う無機粉末同士の間に析出して塗布面上への不純物の分布を維持する特性を有する。
 無機粉末は、複数の半導体基板を積層する際に、増粘剤によって面方向において隣り合う無機粉末同士の間隔が調整されていることで、複数の半導体基板同士の間隔の面方向における分布を調整し、不純物を第1の温度よりも高い温度である不純物の拡散供給源が生成される第2の温度に加熱した後、第2の温度での加熱によって接合された複数の半導体基板を剥離液に晒す際に、複数の半導体基板同士の間隔を維持していることで、複数の半導体基板間に剥離液を浸透させる特性を有する。
 このように、本発明によれば、半導体不純物液体ソースを塗布する際に、増粘剤の粘性によって塗布面上への不純物の分布を調整し、半導体不純物液体ソースを第1の温度で乾燥させる際に、増粘剤が隣り合う無機粉末同士の間に析出して塗布面上への不純物の分布を維持し、複数の半導体基板を積層する際に、増粘剤の粘性で面方向の間隔が調整されている無機粉末によって、半導体基板同士の間隔の面方向における分布を調整し、複数の半導体基板を剥離液に晒す際に、無機粉末で維持された半導体基板同士の間隔を介して剥離液を浸透させることができる。
 これにより、不純物の拡散の均一性を確保しつつ半導体基板の剥離の所要時間を短縮して半導体装置の製造効率を向上させることができる。
 また、ドーパントフィルムでは、大量の有機系バインダによるガスが急激に発生して異常燃焼が生じないように、一定温度でドーパントフィルムをプリベークする必要があるところ、半導体不純物液体ソースでは、異常燃焼が生じない有機溶剤を用いているため、焼成の前のプリベークは不要である。これにより、工程数を抑えて製造効率を更に向上させることができる。
 (変形例)
 上述した以外にも、本発明には、種々の変形例を適用することができる。
 図19は、変形例に係る半導体不純物液体ソースの製造方法を示すフローチャートである。例えば、図19に示すように、半導体不純物液体ソースを製造する際に、混合液を保持する前に撹拌してもよい(ステップS4)。混合液を撹拌することで、増粘剤の粘度を更に安定させることができる。増粘剤の粘度を安定させることで、半導体装置の製造の際に、より効果的に不純物の拡散の均一性を確保することができる。
 また、半導体不純物液体ソース全体に対する無機粉末の質量濃度(wt%)は、半導体不純物液体ソース全体に対する増粘剤の質量濃度(wt%)よりも低くてもよい。
 ここで、無機粉末の質量濃度が増粘剤の質量濃度よりも高いと、増粘剤が粘性を適切に発揮できず半導体不純物液体ソースが伸びにくくなるため、所望の粘度を得ようとして増粘剤の材料の選定等を行ったとしても、増粘剤の粘度を正確に調整することが困難である。
 これに対して、無機粉末の質量濃度が増粘剤の質量濃度よりも低ければ、増粘剤が粘性を適切に発揮できるので、所望の粘度を得ようとして増粘剤の材料の選定等を行うことで、増粘剤の粘度を正確に調整することができる。
 また、半導体不純物液体ソース全体に対する無機粉末の質量濃度は、半導体不純物液体ソース全体に対する有機溶剤の質量濃度よりも低くてもよい。
 ここで、無機粉末の質量濃度が有機溶剤の質量濃度よりも高いと、半導体不純物液体ソースの流動性が著しく損なわれた状態になるので、流動体に粘性を付与する増粘剤が加わっても、粘性を付与すべき流動体(有機溶剤)が少な過ぎるので、増粘剤が適切に粘性を発揮できない。
 このため、所望の粘度を得ようとして増粘剤の材料の選定等を行ったとしても、増粘剤の粘度を正確に調整することは困難である。これに対して、無機粉末の質量濃度が有機溶剤の質量濃度よりも低ければ、粘性を付与する十分な有機溶剤を確保することができるので、増粘剤が粘性を適切に発揮できる。このため、所望の粘度を得ようとして増粘剤の材料の選定等を行うことで、増粘剤の粘度を正確に調整することができる。
 なお、既述の実施例1、実施例2、及び変形例に係る半導体装置の製造方法に係る発明は、それぞれ組み合わせるようにして、実施するようにしてもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Z 半導体不純物液体ソース 
X 半導体基板
A 水溶液
S 拡散源被膜
Sa 拡散源被膜
Y 拡散層
1-P P型半導体不純物液体ソース
1-N N型半導体不純物液体ソース
11-P P型不純物
11-N N型不純物
12 有機溶剤
13 増粘剤
14 無機粉末

Claims (15)

  1.  乳酸アルミニウムを水に溶かして水溶液を作製する溶解工程と、
     前記水溶液と有機溶剤と混合した混合液を作製し、前記混合液を含んだ半導体不純物液体ソースを作製する混合工程と、
     前記混合工程の後、前記水溶液を含んだ前記半導体不純物液体ソースを半導体基板上に塗布して、前記半導体基板上に拡散源被膜を形成する塗布工程と、
     前記塗布工程の後、第1の雰囲気中において、前記半導体基板を第1の温度で加熱処理して、前記拡散源被膜中の少なくとも前記有機溶剤を焼成する焼成工程と、
     前記焼成工程の後、第2の雰囲気中において、前記半導体基板を前記第1の温度より高い第2の温度で加熱処理して、前記拡散源被膜に含まれるアルミニウムを前記半導体基板に拡散させて、半導体基板に拡散層を形成する拡散工程と、を備える
     ことを特徴とする半導体装置の製造方法。
  2.  前記有機溶剤は、前記乳酸アルミニウムを溶解しない特性を有することを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記有機溶剤は、エタノール、アセトン、プロパノール、又は、エチルアルコールの何れかである
     ことを特徴とする請求項2に記載の半導体装置の製造方法。
  4.  前記焼成工程の前記第1の雰囲気は、酸化性雰囲気であることを特徴とする請求項3に記載の半導体装置の製造方法。
  5.  前記拡散工程の前記第2の雰囲気は、前記酸化性雰囲気であることを特徴とする請求項4に記載の半導体装置の製造方法。
  6.  前記酸化性雰囲気は、酸素を含む雰囲気であることを特徴とする請求項5に記載の半導体装置の製造方法。
  7.  前記塗布工程は、スピンコート法により前記半導体不純物液体ソースを半導体基板上に塗布する
     ことを特徴とする請求項6に記載の半導体装置の製造方法。
  8.  前記焼成工程の前記第1の温度は、400℃~600℃の範囲であることを特徴とする請求項7に記載の半導体装置の製造方法。
  9.  前記拡散工程の前記第2の温度は、1000℃~1300℃の範囲であることを特徴とする請求項8に記載の半導体装置の製造方法。
  10.  前記半導体基板は、N型シリコンウェーハであることを特徴とする請求項7に記載の半導体装置の製造方法。
  11.  前記拡散工程の後、前記半導体基板上に残存する膜を剥離液により剥離する剥離工程をさらに備えることを特徴とする請求項10に記載の半導体装置の製造方法。
  12.  前記剥離液は、フッ酸であることを特徴とする請求項11に記載の半導体装置の製造方法。
  13.  前記半導体不純物液体ソースは、前記有機溶剤に溶解し且つ前記半導体不純物液体ソースに粘性を付与する増粘剤と、複数の無機粉末と、をさらに含むものであり、
     前記焼成工程において、2つの前記半導体基板の前記拡散源被膜が接触するように前記2つの前記半導体基板を対向させた状態で、前記第1の雰囲気中において、前記2つの前記半導体基板を前記第1の温度で加熱処理し、
     前記拡散工程において、前記第2の雰囲気中において、前記2つの前記半導体基板を前記第2の温度で加熱処理し、
     前記無機粉末は、前記2つの前記半導体基板を積層する際に、前記増粘剤によって前記半導体基板の面方向において隣り合う無機粉末同士の間隔が調整されて、前記2つの前記半導体基板同士の間隔の面方向における分布を調整する特性を有し、
     前記無機粉末は、不純物を前記第1の温度よりも高い温度である不純物の拡散供給源が生成される前記第2の温度に加熱した後、前記第2の温度での加熱によって接合された前記2つの前記半導体基板を前記剥離液に晒す際に、前記2つの前記半導体基板同士の間隔を維持していることで、前記2つの半導体基板間に前記剥離液を浸透させる特性を有し、
     前記剥離工程において、対向する前記2つの前記半導体基板が分離する
     ことを特徴とする請求項11に記載の半導体装置の製造方法。
  14.  前記増粘剤は、主成分として、セルロース、セルロースの誘導体、又は、ヒドロキシプロピルセルロースを含有する
     ことを特徴とする請求項13に記載の半導体装置の製造方法。
  15.  前記塗布工程と前記焼成工程の間に、前記第1の温度よりも低い第3の温度で前記半導体基板を加熱処理して、前記拡散源被膜中の少なくとも前記有機溶剤及び前記水を蒸発させるようにプリベークする
     ことを特徴とする請求項1に記載の半導体装置の製造方法。
PCT/JP2018/003554 2018-02-02 2018-02-02 半導体装置の製造方法 WO2019150547A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018527261A JP6480087B1 (ja) 2018-02-02 2018-02-02 半導体装置の製造方法
CN201880000706.4A CN110352471B (zh) 2018-02-02 2018-02-02 半导体装置的制造方法
PCT/JP2018/003554 WO2019150547A1 (ja) 2018-02-02 2018-02-02 半導体装置の製造方法
TW107121194A TWI653668B (zh) 2018-02-02 2018-06-20 半導體裝置的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003554 WO2019150547A1 (ja) 2018-02-02 2018-02-02 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2019150547A1 true WO2019150547A1 (ja) 2019-08-08

Family

ID=65655852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003554 WO2019150547A1 (ja) 2018-02-02 2018-02-02 半導体装置の製造方法

Country Status (4)

Country Link
JP (1) JP6480087B1 (ja)
CN (1) CN110352471B (ja)
TW (1) TWI653668B (ja)
WO (1) WO2019150547A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023183157A1 (en) * 2022-03-22 2023-09-28 Applied Materials, Inc. Methods for forming charge layers using gas and liquid phase coatings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090734A (ja) * 1998-09-16 2000-03-31 Murata Mfg Co Ltd 導電性ペースト及びそれを用いた太陽電池
JP2000286205A (ja) * 1999-03-29 2000-10-13 Sanken Electric Co Ltd 半導体装置の製造方法
JP2015213168A (ja) * 2014-04-30 2015-11-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ドーパント含有ポリマー膜を用いた基体のドーピング

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019011B2 (ja) * 1996-10-28 2000-03-13 サンケン電気株式会社 半導体装置の製造方法
JP2002299274A (ja) * 2001-04-02 2002-10-11 Sanken Electric Co Ltd 半導体装置の製造方法
JP2006346877A (ja) * 2005-06-13 2006-12-28 Konica Minolta Photo Imaging Inc シリカ分散液、とその生産適性評価方法及び記録媒体の製造方法
CN104517820A (zh) * 2013-09-30 2015-04-15 东京应化工业株式会社 扩散剂组合物及杂质扩散层的形成方法
US9620354B2 (en) * 2014-10-03 2017-04-11 Tokyo Ohka Kogyo Co., Ltd. Method for manufacturing semiconductor substrate with diffusion agent composition
US20160293425A1 (en) * 2015-04-03 2016-10-06 Tokyo Ohka Kogyo Co., Ltd. Method for manufacturing semiconductor substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090734A (ja) * 1998-09-16 2000-03-31 Murata Mfg Co Ltd 導電性ペースト及びそれを用いた太陽電池
JP2000286205A (ja) * 1999-03-29 2000-10-13 Sanken Electric Co Ltd 半導体装置の製造方法
JP2015213168A (ja) * 2014-04-30 2015-11-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ドーパント含有ポリマー膜を用いた基体のドーピング

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023183157A1 (en) * 2022-03-22 2023-09-28 Applied Materials, Inc. Methods for forming charge layers using gas and liquid phase coatings
US11894232B2 (en) 2022-03-22 2024-02-06 Applied Materials, Inc. Methods for forming charge layers using gas and liquid phase coatings

Also Published As

Publication number Publication date
JPWO2019150547A1 (ja) 2020-02-06
TW201935530A (zh) 2019-09-01
CN110352471A (zh) 2019-10-18
CN110352471B (zh) 2022-12-23
JP6480087B1 (ja) 2019-03-06
TWI653668B (zh) 2019-03-11

Similar Documents

Publication Publication Date Title
TW201131010A (en) Tray for CVD and film forming method using the tray
JP6480087B1 (ja) 半導体装置の製造方法
TWI657512B (zh) 半導體裝置的製造方法
JP6472936B1 (ja) 半導体不純物液体ソース、半導体不純物液体ソースの製造方法および半導体装置の製造方法
KR100966832B1 (ko) 반도체 웨이퍼 지지장치의 제조방법
JP2009019238A (ja) CVD−SiC単体膜の製造方法
EP2959036B1 (fr) Procédé de formation d'un siliciure métallique a l'aide d'une solution contenant des ions or et des ions fluor
TWI612567B (zh) 半導體裝置的製造方法
JPS5932054B2 (ja) ド−パントフィルムとその使用方法
JPH11186182A (ja) P型拡散源及びそのp型拡散源を用いた半導体装置の製造方法
JP2011171600A (ja) 不純物拡散成分の拡散方法、および太陽電池の製造方法
TW202027291A (zh) p型雜質擴散組成物與其製造方法、使用所述p型雜質擴散組成物的半導體元件的製造方法及太陽電池
TW201946116A (zh) 雜質擴散組成物、使用其的半導體元件的製造方法及太陽電池的製造方法
TW201920747A (zh) 利用原子層沉積及退火以形成超淺接面之銻與磷共摻雜
WO2018021117A1 (ja) 半導体素子の製造方法および太陽電池の製造方法
JP3019011B2 (ja) 半導体装置の製造方法
JP2730156B2 (ja) 多結晶シリコン膜の形成方法
JP2013105924A (ja) シリコンエピタキシャルウェーハの製造方法
JPH05152236A (ja) 半導体装置の製造方法
JP2002075893A (ja) 液状不純物源材料及びこれを使用した半導体装置の製造方法
JP4073309B2 (ja) レジスト膜の形成方法
JP2000269153A (ja) 不純物塗布拡散剤
JP2003218048A (ja) 液状不純物源材料及びこれを使用した拡散領域形成方法
JPS5961128A (ja) 半導体装置の製造方法
JPS6378519A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527261

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904365

Country of ref document: EP

Kind code of ref document: A1