WO2019150539A1 - ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法 - Google Patents

ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法 Download PDF

Info

Publication number
WO2019150539A1
WO2019150539A1 PCT/JP2018/003469 JP2018003469W WO2019150539A1 WO 2019150539 A1 WO2019150539 A1 WO 2019150539A1 JP 2018003469 W JP2018003469 W JP 2018003469W WO 2019150539 A1 WO2019150539 A1 WO 2019150539A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rope
detection signal
measurement
detection
change
Prior art date
Application number
PCT/JP2018/003469
Other languages
English (en)
French (fr)
Inventor
健二 飯島
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019568509A priority Critical patent/JP6879389B2/ja
Priority to CN201880085091.XA priority patent/CN111542753B/zh
Priority to EP18903186.7A priority patent/EP3748351A4/en
Priority to US16/959,592 priority patent/US11358836B2/en
Priority to PCT/JP2018/003469 priority patent/WO2019150539A1/ja
Priority to KR1020207017754A priority patent/KR102361456B1/ko
Publication of WO2019150539A1 publication Critical patent/WO2019150539A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1215Checking means specially adapted for ropes or cables
    • B66B7/123Checking means specially adapted for ropes or cables by analysing magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/85Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields using magnetographic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/87Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields using probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Definitions

  • the present invention relates to a wire rope inspection device, a wire rope inspection system, and a wire rope inspection method.
  • wire rope inspection devices are known.
  • such a wire rope inspection device is disclosed in Japanese Patent No. 5044445.
  • Japanese Patent No. 5044545 discloses a wire rope monitoring system (wire rope) including a detection coil that detects a leakage magnetic flux of a wire rope and a control unit that detects a state of the wire rope based on a detection signal acquired by the detection coil. Inspection apparatus) is disclosed.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a wire rope inspection apparatus and a wire rope inspection system capable of accurately detecting damage to a wire rope. And providing a wire rope inspection method.
  • the wire rope has unique magnetic characteristics.
  • the inventor of the present application indicates that the output at each position in the longitudinal direction of the wire rope is approximately equal to the measurement by the wire rope inspection device that detects a change in the magnetic field of the wire rope due to the inherent magnetic characteristics of the wire rope. The knowledge that it becomes the same (measured with good reproducibility) was obtained. In other words, it was found that the output, which was conventionally regarded as mere noise data (noise) other than the output at the damaged portion when the wire rope was damaged before and after the measurement, was a unique value that could be measured with good reproducibility.
  • the output of the wire rope inspection device based on the unique magnetic characteristics of the wire rope depends on the uniformity of the twist and the amount of steel in the cross-sectional position perpendicular to the longitudinal direction of the wire rope. The knowledge that it changes depending on it was also obtained.
  • the wire rope inspection apparatus includes a detection coil that detects a change in the magnetic field of the wire rope, a first detection signal acquired by the detection coil in the first measurement, and a second after the first measurement.
  • a control unit that detects a state of the wire rope based on a difference at substantially the same position as the second detection signal acquired by the detection coil in the measurement.
  • the first detection signal by the first measurement and the second measurement by the second measurement can be obtained with substantially the same output by being configured as described above. Because the difference between the two detection signals at substantially the same position eliminates the output of the damaged portion of the wire rope that has occurred after the first measurement, the wire rope noise data can be canceled. It is possible to detect damage to the wire rope that has occurred after the first measurement without being influenced by the characteristic change). As a result, in the output waveform based on the detection signal, it is possible to output the wire rope damaged and non-damaged in a clearly distinguishable manner, so that the wire rope can be detected accurately. be able to. That is, the difference in the output of the damaged portion of the wire rope in the output waveform can be relatively increased and the amount of change in the output of the non-damaged portion can be relatively decreased in the output waveform due to the above difference. Can be detected with high accuracy.
  • the detection coil is configured to detect a change in unique magnetic characteristics of the wire rope
  • the control unit includes a first detection signal, a second detection signal, and the like.
  • a magnetic field applying unit that adjusts the magnetization direction of the wire rope by applying a magnetic field to the wire rope in a direction crossing the direction in which the wire rope extends is further provided.
  • the magnetic field applying unit can apply a magnetic field to the wire rope in advance to adjust the magnetization of the portion free of damage to the wire rope. Reproducibility can be further improved. As a result, the change in the inherent magnetic characteristics of the wire rope can be more reliably canceled by the difference. That is, it is possible to detect the damage of the wire rope by reducing the influence of the noise data.
  • the wire rope inspection apparatus preferably further includes a storage unit that stores detection information in which each of the first detection signal and the second detection signal is associated with the position information of the wire rope, and the control unit Is configured to obtain detection information from the storage unit, substantially match the positions where the wire ropes are detected in the first measurement and the second measurement, and obtain a difference between the first detection signal and the second detection signal. It is configured. If comprised in this way, the memory
  • the control unit corrects the sensitivity of the detection coil and corrects the position where the wire rope is detected with respect to the first detection signal or the second detection signal. After performing at least one, it is comprised so that the difference of a 1st detection signal and a 2nd detection signal may be acquired. If comprised in this way, even when 1st measurement and 2nd measurement are performed in mutually different temperature environments etc. by sensitivity correction, the sensitivity range of the detection coil in the 1st measurement and 2nd measurement is matched. Therefore, it is possible to further reduce the amount of change in the output acquired based on the difference between the first detection signal and the second detection signal.
  • the influence of the position shift can be suppressed, so that the first detection signal and the second detection signal The amount of change in output acquired by the difference can be made smaller. Thereby, damage to the wire rope can be detected with higher accuracy.
  • a wire rope inspection system includes an inspection device that includes a detection coil that detects a change in the magnetic field of a wire rope, a first detection signal acquired by the detection coil in the first measurement, and a first measurement signal And a control device that detects the state of the wire rope based on a difference at substantially the same position as the second detection signal acquired by the detection coil in the subsequent second measurement.
  • the first detection signal based on the first measurement and the second detection signal based on the second measurement that can obtain substantially the same outputs can be obtained by configuring as described above.
  • the wire rope noise data can be canceled by the difference in position, except for the output of the damaged portion of the wire rope that occurred after the first measurement, so the influence of the wire rope noise data (changes in inherent magnetic properties) It is possible to detect the damage of the wire rope that has occurred after the first measurement without receiving.
  • the output waveform based on the detection signal it is possible to output the wire rope damaged and non-damaged in a clearly distinguishable manner, so that the wire rope can be detected accurately.
  • a wire rope inspection system capable of being provided can be provided.
  • the difference in the output of the damaged portion of the wire rope in the output waveform can be relatively increased and the amount of change in the output of the non-damaged portion can be relatively decreased in the output waveform due to the above difference. It is possible to provide a wire rope inspection system capable of accurately detecting.
  • the inspection device is configured to detect a change in the inherent magnetic property of the wire rope by the detection coil, and the control device includes the first detection signal and the first detection signal.
  • the control device includes the first detection signal and the first detection signal.
  • a wire rope inspection method includes a step of performing a first measurement for detecting a change in a magnetic field of a wire rope by a detection coil and acquiring a first detection signal, and a detection coil after the first measurement.
  • the state of the wire rope based on the step of performing the second measurement for detecting the change in the magnetic field of the wire rope and acquiring the second detection signal, and the difference between the first detection signal and the second detection signal at substantially the same position And a step of detecting.
  • the first detection signal by the first measurement and the second detection signal by the second measurement which are configured as described above, can obtain substantially the same outputs.
  • the wire rope noise data can be canceled by the difference in position, except for the output of the damaged portion of the wire rope that occurred after the first measurement, so the influence of the wire rope noise data (changes in inherent magnetic properties) It is possible to detect the damage of the wire rope that has occurred after the first measurement without receiving. As a result, in the output waveform based on the detection signal, it is possible to output the wire rope damaged and non-damaged in a clearly distinguishable manner, so that the wire rope can be detected accurately. It is possible to provide a method for inspecting a wire rope.
  • the difference in the output of the damaged portion of the wire rope in the output waveform can be relatively increased and the amount of change in the output of the non-damaged portion can be relatively decreased in the output waveform due to the above difference. It is possible to provide a wire rope inspection method capable of accurately detecting.
  • the wire rope inspection method preferably, in the step of detecting the state of the wire rope, by obtaining a difference at substantially the same position between the first detection signal and the second detection signal, Cancels output based on changes in intrinsic magnetic properties. If comprised in this way, the output based on the change of the intrinsic
  • damage to the wire rope can be accurately detected as described above.
  • the wire rope inspection apparatus 100 is configured to inspect a wire rope W that is an inspection object.
  • the wire rope inspection device 100 is configured to periodically inspect the wire rope W.
  • the wire rope inspection device 100 is configured to inspect the wire rope W for damage.
  • the damage to the wire rope W is caused by gaps in the detection direction caused by threads, local wear, wire breakage, dents, corrosion, cracks, breaks, etc. (when a scratch or the like occurs inside the wire rope W).
  • This is a broad concept including a change in cross-sectional area, rust of wire rope W, welding burn, mixing of impurities, change in magnetic permeability caused by composition change, and other parts where wire rope W is non-uniform.
  • the wire rope inspection apparatus 100 inspects the wire rope W while relatively moving along the surface of the wire rope W that is an inspection object.
  • the wire rope W is used for the elevator E.
  • the elevator E includes a car part E1, a hoisting machine E2 that winds up the wire rope W to raise and lower the car part E1, and a position sensor E3 that detects the position of the car part E1 (wire rope W).
  • the inspection is performed with the movement of the wire rope W while the wire rope inspection device 100 is fixed.
  • the wire rope W is disposed so as to extend in the X direction at the position of the wire rope inspection apparatus 100.
  • the wire rope inspection apparatus 100 includes a detection unit 1 and an electronic circuit unit 2.
  • the detection unit 1 includes a differential coil 10 having a pair of receiving coils 11 and 12 and an excitation coil 13.
  • the electronic circuit unit 2 includes a control unit 21, a reception I / F 22, a storage unit 23, an excitation I / F 24, a power supply circuit 25, and a communication unit 26.
  • the wire rope inspection apparatus 100 includes a magnetic field application unit 4 (see FIG. 4).
  • the differential coil 10 is an example of the “detection coil” in the claims.
  • the external device 300 is connected to the wire rope inspection device 100 via the communication unit 26.
  • the external device 300 includes a communication unit 301, an analysis unit 302, and a display unit 303.
  • the external device 300 is configured to receive measurement data of the wire rope W by the wire rope inspection device 100 via the communication unit 301.
  • the external device 300 is configured to analyze the type of damage such as wire breakage and cross-sectional area change by the analysis unit 302 based on the received measurement data of the wire rope W.
  • the external device 300 is configured to display the analysis result on the display unit 303. Further, the external device 300 is configured to perform abnormality determination based on the analysis result and display the result on the display unit 303.
  • the wire rope inspection apparatus 100 is configured to detect a change in the magnetic field (magnetic flux) of the wire rope W by the differential coil 10. In the vicinity of the coil of the wire rope inspection apparatus 100, a DC magnetizer is not arranged.
  • the change in the magnetic field refers to a temporal change in the strength of the magnetic field detected by the detection unit 1 by moving the wire rope W and the detection unit 1 relative to each other, and a change in the magnetic field applied to the wire rope W over time. This is a wide concept including a temporal change in the strength of the magnetic field detected by the detection unit 1 by changing.
  • the wire rope inspection device 100 is included in the detection signal of the wire rope W based on detection signals (for example, a first detection signal and a second detection signal described later) obtained by measurement at two time points that are different from each other in time. Noise data (changes in intrinsic magnetic properties) are removed. Details will be described later.
  • the wire rope W is formed by knitting (for example, strand knitting) a wire material having magnetism.
  • the wire rope W is a magnetic body made of a long material extending in the X direction.
  • the wire rope W is monitored for state (presence or absence of scratches or the like) in order to prevent cutting due to deterioration. Then, the wire rope W whose deterioration has progressed from a predetermined amount is replaced.
  • the wire rope W has unique magnetic characteristics. Inherent magnetic properties are magnets that change due to differences in the uniformity of twisting and the amount of steel in the cross-sectional position orthogonal to the longitudinal direction (X direction) of the wire rope W. It is a characteristic. Here, the twist uniformity of the wire rope W and the uniformity of the amount of the steel material do not substantially change with time (or hardly change with time). Therefore, since the wire rope W has unique magnetic characteristics, the output at each position in the longitudinal direction (X direction) of the wire rope W for each measurement at different time points by the wire rope inspection apparatus 100 is It becomes almost the same (measured with good reproducibility).
  • the output at a predetermined position in the longitudinal direction of the wire rope W obtained by the first measurement by the wire rope inspection apparatus 100 is substantially the same.
  • Magnetic field application unit 4 applies a magnetic field in advance in the Y direction (a direction intersecting the direction in which the wire rope W extends) to the wire rope W that is the inspection object, and the wire rope that is a magnetic body. The size and direction of the magnetization of W are adjusted.
  • Magnetic field application unit 4 includes a first magnetic field application unit including magnets 41 and 42 and a second magnetic field application unit including magnets 43 and 44.
  • the first magnetic field application unit (magnets 41 and 42) is disposed on one side (X1 direction side) in the direction in which the wire rope W extends with respect to the detection unit 1.
  • the second magnetic field application unit (magnets 43 and 44) is disposed on the other side (X2 direction side) of the direction in which the wire rope W extends with respect to the detection unit 1.
  • the first magnetic field application unit (magnets 41 and 42) is configured to apply a magnetic field in the Y2 direction parallel to the plane intersecting the direction (X direction) in which the wire rope W extends.
  • the second magnetic field application unit (magnets 43 and 44) is configured to apply a magnetic field in parallel to the plane intersecting the direction in which the wire rope W extends (X direction) and in the Y1 direction. That is, the magnetic field application unit 4 is configured to apply a magnetic field in a direction substantially orthogonal to the X direction, which is the longitudinal direction of the long material.
  • the differential coil 10 (receiver coils 11 and 12) and the excitation coil 13 are arranged along the longitudinal direction with the extending direction of the wire rope W, which is a magnetic body made of a long material, as the central axis. Each is wound a plurality of times. Further, the differential coil 10 and the excitation coil 13 are coils including a conductor portion formed so as to be cylindrical along the X direction (longitudinal direction) in which the wire rope W extends. Therefore, the surface formed by the conductive wire portion wound around the differential coil 10 and the excitation coil 13 is substantially orthogonal to the longitudinal direction. The wire rope W passes through the inside of the differential coil 10 and the excitation coil 13.
  • the differential coil 10 is provided inside the excitation coil 13. In addition, arrangement
  • the receiving coil 11 of the differential coil 10 is disposed on the X1 direction side.
  • the receiving coil 12 of the differential coil 10 is disposed on the X2 direction side.
  • the receiving coils 11 and 12 are arranged with an interval of about several mm to several cm.
  • the excitation coil 13 excites the magnetization state of the wire rope W. Specifically, a configuration is such that a magnetic field generated based on the excitation AC current is applied along the X direction inside the excitation coil 13 when an excitation AC current is passed through the excitation coil 13.
  • the differential coil 10 is configured to transmit the differential signals of the pair of receiving coils 11 and 12. Specifically, the differential coil 10 is configured to detect a change in the magnetic field of the wire rope W and transmit a differential signal. The differential coil 10 is configured to detect a change in the magnetic field in the X direction of the wire rope W that is an inspection target and output a detection signal (voltage). That is, the differential coil 10 detects a change in the magnetic field in the X direction that intersects the Y direction with respect to the wire rope W to which the magnetic field is applied in the Y direction by the magnetic field applying unit 4. The differential coil 10 is configured to output a differential signal (voltage) based on the detected change in the magnetic field in the X direction of the wire rope W. Further, the differential coil 10 is arranged so that substantially all of the magnetic field generated by the excitation coil 13 can be detected (input).
  • the total magnetic flux of the wire rope W (a value obtained by multiplying the magnetic field by the magnetic permeability and the area) becomes small at the portion where the defect (such as a scratch) exists.
  • the receiving coil 11 is located at a place where there is a defect (such as a scratch)
  • the amount of magnetic flux passing through the receiving coil 12 changes as compared with the receiving coil 11, so that the detection voltage of the differential coil 10
  • the absolute value of the difference increases.
  • the differential signal in a portion free from defects (such as scratches) is substantially zero.
  • a clear signal (signal with a good S / N ratio) representing the presence of a defect (such as a scratch) is detected in the differential coil 10.
  • the electronic circuit unit 2 can detect the presence of a defect (such as a scratch) in the wire rope W based on the value of the differential signal.
  • the control unit 21 of the electronic circuit unit 2 illustrated in FIG. 3 is configured to control each unit of the wire rope inspection apparatus 100.
  • the control unit 21 includes a processor such as a CPU (Central Processing Unit), a memory, an AD converter, and the like.
  • a processor such as a CPU (Central Processing Unit), a memory, an AD converter, and the like.
  • the control unit 21 is configured to receive the differential signal of the differential coil 10 and detect the state of the wire rope W.
  • the control unit 21 is configured to perform control for exciting the excitation coil 13.
  • the control unit 21 is configured to transmit the detection result of the state of the wire rope W to the external device 300 via the communication unit 26.
  • the reception I / F 22 is configured to receive the differential signal from the differential coil 10 and transmit it to the control unit 21. Specifically, the reception I / F 22 includes an amplifier. The reception I / F 22 is configured to amplify the differential signal of the differential coil 10 and transmit the amplified signal to the control unit 21.
  • the excitation I / F 24 is configured to receive a signal from the control unit 21 and control the supply of power to the excitation coil 13. Specifically, the excitation I / F 24 controls the supply of power from the power supply circuit 25 to the excitation coil 13 based on a control signal from the control unit 21.
  • the control unit 21 determines the difference at substantially the same position between the first detection signal acquired by the differential coil 10 in the first measurement and the second detection signal acquired by the differential coil 10 in the second measurement after the first measurement. Is configured to detect the state of the wire rope W. Specifically, the control unit 21 obtains a difference at substantially the same position between the first detection signal and the second detection signal so as to cancel the output based on a change in the inherent magnetic characteristic of the wire rope W. It is configured.
  • control unit 21 is configured to determine whether or not the wire rope W is defective.
  • the control unit 21 has a function of determining the size of a defect (such as a scratch) in the wire rope W.
  • the control unit 21 is configured to acquire the speed of relative movement of the wire rope W with respect to the detection unit 1.
  • the control unit 21 may be configured to acquire the position of the elevator E from the position sensor E3.
  • a position sensor (not shown) for detecting the position of the wire rope W may be provided in the wire rope inspection apparatus 100 itself.
  • the storage unit 23 is configured to store detection information in which the control unit 21 associates the position information of the wire rope W with each of the first detection signal and the second detection signal.
  • the control unit 21 acquires the detection information from the storage unit 23, substantially matches the positions where the wire ropes W are detected in the first measurement and the second measurement, and sets the first detection signal and the second detection signal. It is configured to obtain the difference.
  • the storage unit 23 can be configured by an HDD or an SSD.
  • the control unit 21 corrects the sensitivity of the differential coil 10 and the position where the wire rope W is detected with respect to the second detection signal, and then performs the first detection signal and the second detection signal. It is comprised so that the difference with may be acquired.
  • is a correction coefficient for the sensitivity of the differential coil 10.
  • may be set to a predetermined value according to, for example, the environmental temperature where the differential coil 10 is placed.
  • may be a ratio obtained by comparing representative peaks in the output waveforms of the first detection signal and the second detection signal.
  • ⁇ x is a value for correcting the position of the wire rope W in the longitudinal direction (X direction).
  • ⁇ x may be, for example, the magnitude of displacement of the detection position in the longitudinal direction (X direction) of the wire rope W obtained by comparing representative peaks in the output waveform.
  • ⁇ and ⁇ x are set so that the variance of y (x) is minimized.
  • f 0 (x) has a unique output waveform for each wire rope W in the initial state.
  • the specific output waveform is determined by the change in the permeability of the wire, the change in the density of the wire as the wire rope W, the change in the wire diameter at the time of manufacturing the wire rope W, and at the time of handling the wire rope W. It depends on the application of plastic deformation and magnetic change.
  • the control unit 21 detects this signal and detects a rapid permeability change of the wire rope W. Further, the control unit 21 detects an abrupt structural change of the wire rope W based on the abrupt permeability change of the wire rope W.
  • the inspection method for the wire rope W mainly includes three steps (first step, second step, and third step). Hereinafter, it demonstrates in order.
  • the inspection method of the wire rope W includes a first step of performing a first measurement in which a differential coil 10 detects a change in the magnetic field of the wire rope W and acquires a first detection signal.
  • the first measurement may be performed before the wire rope W is used for the elevator E, or may be performed after the use is started.
  • an output waveform as shown in FIG. 6A is obtained.
  • the inspection method of the wire rope W includes a second step of performing a second measurement of acquiring a second detection signal by detecting a change in the magnetic field of the wire rope W by the differential coil 10 after the first measurement.
  • the length between the first measurement and the second measurement is not a relatively long period (for example, several decades) in which the wire rope W is cut or the like, but is an extent that the progress of damage to the wire rope W can be confirmed.
  • the predetermined period (for example, several months) is preferably set.
  • the wire rope W is measured (inspected) under the same conditions as the first measurement. For example, in the second measurement, the wire rope W is moved with respect to the wire rope inspection apparatus 100 at the same speed as the first measurement.
  • the inspection method of the wire rope W includes a third step of detecting the state of the wire rope W based on the difference between the first detection signal and the second detection signal at substantially the same position.
  • the output based on the change in the inherent magnetic characteristics of the wire rope W is canceled by acquiring the difference at the substantially same position between the first detection signal and the second detection signal.
  • an output waveform as shown in FIG. 6C is obtained.
  • the output waveform of FIG. 6C is compared with the output waveform of FIG. 6B, the amount of change in the output of the damaged portion of the wire rope W is relatively large, and the amount of change in the output of the non-damaged portion is relative. It turns out that it is getting smaller. That is, the output waveform in FIG. 6C is output in a manner that allows the wire rope damaged portion and the non-damaged portion to be more clearly distinguished than the output waveform in FIG. 6B.
  • the damaged wire rope W can be detected.
  • the output waveform based on the detection signal the damaged portion of the wire rope W and the non-damaged portion can be output in a clearly distinguishable manner so that damage to the wire rope W can be accurately performed. Can be detected. That is, the output difference of the damaged portion of the wire rope W in the output waveform can be relatively increased and the output change of the non-damaged portion can be relatively decreased in the output waveform. Can be accurately detected.
  • the differential coil 10 is configured to detect a change in the inherent magnetic characteristics of the wire rope W
  • the control unit 21 includes the first detection signal, the second detection signal, and the like. Are obtained so as to cancel the output based on the change in the inherent magnetic characteristics of the wire rope W. Thereby, the output based on the change of the intrinsic
  • the magnetic field application unit 4 that adjusts the magnetization direction of the wire rope W by applying a magnetic field to the wire rope W in a direction intersecting the direction in which the wire rope W extends is further provided.
  • a magnetic field can be applied in advance to the wire rope W by the magnetic field application unit 4 and the magnetization of the portion without damage or the like of the wire rope W can be adjusted. Reproducibility can be further improved. As a result, the change in the inherent magnetic characteristics of the wire rope W can be more reliably canceled by the difference. That is, it is possible to detect damage to the wire rope W by reducing the influence of noise data.
  • the control unit 21 further includes the storage unit 23 that stores detection information in which each of the first detection signal and the second detection signal is associated with the position information of the wire rope W.
  • the detection information is acquired from the storage unit 23, the positions where the wire ropes W are detected in the first measurement and the second measurement are substantially matched with each other, and the difference between the first detection signal and the second detection signal is acquired. It is configured.
  • storage part 23 which memorize
  • the control unit 21 corrects the sensitivity of the differential coil 10 and corrects the position where the wire rope W is detected with respect to the first detection signal or the second detection signal. After performing at least one, it is comprised so that the difference of a 1st detection signal and a 2nd detection signal may be acquired.
  • the sensitivity range of the differential coil 10 in the first measurement and the second measurement can be matched by the sensitivity correction. Therefore, the change amount of the output acquired by the difference between the first detection signal and the second detection signal can be further reduced.
  • the influence of the position shift can be suppressed, so the first detection signal and the second detection signal. It is possible to further reduce the amount of change in output acquired based on the difference between and. Thereby, damage to the wire rope W can be detected with higher accuracy.
  • the wire rope inspection system 200 of the second embodiment receives a detection signal from the inspection device 100a as an external device 300a.
  • a detection signal from the inspection device 100a as an external device 300a.
  • An example in which the state of the wire rope W is detected by the external device 300a will be described.
  • symbol is attached
  • the external device 300a is an example of the “control device” in the claims.
  • the wire rope inspection system 200 includes an inspection apparatus 100a and an external apparatus 300a as shown in FIG.
  • the inspection apparatus 100a includes a differential coil 10, an excitation coil 13, a control unit 21a, a reception I / F 22, an excitation I / F 24, a power supply circuit 25, and a communication unit 26.
  • the control unit 21a performs control to transmit the first detection signal acquired by the first measurement and the second detection signal acquired by the second measurement to the external device 300a via the communication unit 26.
  • the external device 300a includes a communication unit 301, an analysis unit 302, a display unit 303, and a control unit 304.
  • the control unit 304 acquires the first detection signal and the second detection signal via the communication unit 301. Based on the difference at substantially the same position between the first detection signal acquired by the first measurement in the inspection apparatus 100a and the second detection signal acquired by the second measurement in the inspection apparatus 100a, the control unit 304 uses the wire rope W ( (See FIG. 2).
  • the noise data of the wire rope W can be canceled and the damage of the wire rope W can be detected with high accuracy.
  • the present invention is not limited to this.
  • the wire rope inspection apparatus includes an example of a configuration including a magnetic field application unit.
  • the present invention is not limited to this.
  • the wire rope inspection apparatus may not include the magnetic field application unit.
  • the example which acquired the difference of a 1st detection signal and a 2nd detection signal after performing sensitivity correction by the control part was shown in the said 1st and 2nd embodiment, this invention is not limited to this. . In the present invention, the sensitivity correction may not be performed by the control unit.
  • the position correction may not be performed by the control unit.
  • the wire rope inspection device is connected to an external device.
  • the present invention is not limited to this.
  • the wire rope inspection device may be used independently without being connected to an external device.
  • inspected the wire rope was shown by moving a wire rope with respect to the fixed (it does not move) wire rope inspection apparatus (inspection apparatus).
  • the present invention is not limited to this.
  • the wire rope may be inspected by moving the wire rope inspection device (inspection device) with respect to the fixed (not moving) wire rope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

このワイヤロープ検査装置(100)は、第1測定において差動コイル(10)により取得した第1検知信号と、第1測定の後の第2測定において差動コイルにより取得した第2検知信号との略同じ位置における差分に基づいて、ワイヤロープ(W)の状態を検知する制御部21と、を備える。

Description

ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法
 本発明は、ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法に関する。
 従来、ワイヤロープ検査装置が知られている。たとえば、このようなワイヤロープ検査装置は、特許第5044545号公報に開示されている。
 特許第5044545号公報には、ワイヤロープの漏洩磁束を検知する検知コイルと、検知コイルにより取得した検知信号に基づいてワイヤロープの状態を検知する制御部とを備えるワイヤロープの監視システム(ワイヤロープ検査装置)が開示されている。
特許第5044545号公報
 しかしながら、特許第5044545号公報に記載のワイヤロープの監視システム(ワイヤロープ検査装置)では、ワイヤロープの損傷がない箇所であっても、検知コイルにより、漏洩磁束の変化が雑音データ(ノイズ)として検知されるという不都合がある。その結果、雑音データの影響を受けてワイヤロープの損傷を精度よく検出することが困難であるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、ワイヤロープの損傷を精度よく検出することが可能なワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法を提供することである。
 上記目的を達成するために、本願発明者が鋭意検討した結果、ワイヤロープが固有の磁気特性を有することを新たに見い出した。そして、本願発明者は、ワイヤロープが固有の磁気特性を有することにより、ワイヤロープの磁界の変化を検知するワイヤロープ検査装置による測定毎に、ワイヤロープの長手方向の各位置における出力が、略同じになる(再現性よく計測される)という知見を得た。すなわち、測定前後でワイヤロープを損傷した際の損傷箇所における出力以外の従来より単なる雑音データ(ノイズ)として捉えていた出力が、再現性よく計測可能な固有の値であるという知見を得た。なお、ワイヤロープの固有の磁気特性に基づくワイヤロープ検査装置の出力は、ワイヤロープの長手方向に直交する断面位置における撚(よ)りの均一度や、鋼材の量の均一度などの違いに依存して変化するという知見も得た。
 この発明の第1の局面によるワイヤロープ検査装置は、ワイヤロープの磁界の変化を検知する検知コイルと、第1測定において検知コイルにより取得した第1検知信号と、第1測定の後の第2測定において検知コイルにより取得した第2検知信号との略同じ位置における差分に基づいて、ワイヤロープの状態を検知する制御部と、を備える。
 上記の知見に基づき、この発明の第1の局面によるワイヤロープ検査装置では、上記のように構成することによって、互いに略同じ出力が得られる第1測定による第1検知信号および第2測定による第2検知信号の略同じ位置における差分により、第1測定後に生じたワイヤロープの損傷箇所の出力を除いて、ワイヤロープの雑音データをキャンセルすることができるので、ワイヤロープの雑音データ(固有の磁気特性の変化)の影響を受けずに第1測定後に生じたワイヤロープの損傷を検出することができる。その結果、検知信号に基づく出力波形において、ワイヤロープの損傷箇所と非損傷箇所とをより明確に区別可能な態様でメリハリを付けて出力することができるので、ワイヤロープの損傷を精度よく検出することができる。すなわち、上記差分により、出力波形において、ワイヤロープの損傷箇所の出力の変化量を相対的に大きくし、非損傷箇所の出力の変化量を相対的に小さくすることができるので、ワイヤロープの損傷を精度よく検出することができる。
 上記第1の局面によるワイヤロープ検査装置において、好ましくは、検知コイルにより、ワイヤロープの固有の磁気特性の変化を検知するように構成され、制御部は、第1検知信号と第2検知信号との略同じ位置における差分を取得することにより、ワイヤロープの固有の磁気特性の変化に基づく出力をキャンセルするように構成されている。このように構成すれば、ワイヤロープの固有の磁気特性の変化に基づく出力をキャンセルして、ワイヤロープの損傷を精度よく検出することができる。
 上記第1の局面によるワイヤロープ検査装置において、好ましくは、ワイヤロープに対して、ワイヤロープの延びる方向に交差する方向に磁界を印加することによりワイヤロープの磁化の方向を整える磁界印加部をさらに備える。このように構成すれば、磁界印加部によりワイヤロープに対して予め磁界を印加して、ワイヤロープの損傷等のない部分の磁化を整えることができるので、ワイヤロープ検査装置による測定毎の出力の再現性をより向上させることができる。その結果、差分によってワイヤロープの固有の磁気特性の変化をより確実にキャンセルすることができる。すなわち、雑音データの影響をより小さくしてワイヤロープの損傷を検出することができる。
 上記第1の局面によるワイヤロープ検査装置において、好ましくは、第1検知信号および第2検知信号のそれぞれと、ワイヤロープの位置情報とを関連付けた検知情報を記憶する記憶部をさらに備え、制御部は、記憶部から検知情報を取得して、第1測定および第2測定においてワイヤロープを検知した位置を互いに略一致させて、第1検知信号と第2検知信号との差分を取得するように構成されている。このように構成すれば、検知情報を記憶する記憶部により、第1検知信号と第2検知信号との略同じ位置における差分を容易に取得することができる。
 上記第1の局面によるワイヤロープ検査装置において、好ましくは、制御部は、第1検知信号または第2検知信号に対して、検知コイルの感度の補正、および、ワイヤロープを検知した位置の補正の少なくとも一方を行った上で、第1検知信号と第2検知信号との差分を取得するように構成されている。このように構成すれば、感度補正により、第1測定および第2測定が互いに異なる温度環境などで行われた場合でも、第1測定および第2測定の際の検知コイルの感度レンジを整合させることができるので、第1検知信号と第2検知信号との差分により取得される出力の変化量をより小さくすることができる。また、位置補正により、第1測定および第2測定が互いにワイヤロープのずれた位置で行われた場合でも、位置ずれの影響を抑制することができるので、第1検知信号と第2検知信号との差分により取得される出力の変化量をより小さくすることができる。これにより、ワイヤロープの損傷をより一層精度よく検出することができる。
 この発明の第2の局面によるワイヤロープ検査システムは、ワイヤロープの磁界の変化を検知する検知コイルを含む検査装置と、第1測定において検知コイルにより取得した第1検知信号と、第1測定の後の第2測定において検知コイルにより取得した第2検知信号との略同じ位置における差分に基づいて、ワイヤロープの状態を検知する制御装置とを備える。
 この発明の第2の局面によるワイヤロープ検査システムでは、上記のように構成することによって、互いに略同じ出力が得られる第1測定による第1検知信号および第2測定による第2検知信号の略同じ位置における差分により、第1測定後に生じたワイヤロープの損傷箇所の出力を除いて、ワイヤロープの雑音データをキャンセルすることができるので、ワイヤロープの雑音データ(固有の磁気特性の変化)の影響を受けずに第1測定後に生じたワイヤロープの損傷を検出することができる。その結果、検知信号に基づく出力波形において、ワイヤロープの損傷箇所と非損傷箇所とをより明確に区別可能な態様でメリハリを付けて出力することができるので、ワイヤロープの損傷を精度よく検出することが可能なワイヤロープ検査システムを提供することができる。すなわち、上記差分により、出力波形において、ワイヤロープの損傷箇所の出力の変化量を相対的に大きくし、非損傷箇所の出力の変化量を相対的に小さくすることができるので、ワイヤロープの損傷を精度よく検出することが可能なワイヤロープ検査システムを提供することができる。
 上記第2の局面によるワイヤロープ検査システムにおいて、好ましくは、検査装置は、検知コイルにより、ワイヤロープの固有の磁気特性の変化を検知するように構成され、制御装置は、第1検知信号と第2検知信号との略同じ位置における差分を取得することにより、ワイヤロープの固有の磁気特性の変化に基づく出力をキャンセルするように構成されている。このように構成すれば、ワイヤロープの固有の磁気特性の変化に基づく出力をキャンセルして、ワイヤロープの損傷を精度よく検出することが可能なワイヤロープ検査システムを提供することができる。
 この発明の第3の局面によるワイヤロープ検査方法は、検知コイルによりワイヤロープの磁界の変化を検知して第1検知信号を取得する第1測定を行う工程と、第1測定の後に、検知コイルによりワイヤロープの磁界の変化を検知して第2検知信号を取得する第2測定を行う工程と、第1検知信号と第2検知信号との略同じ位置における差分に基づいて、ワイヤロープの状態を検知する工程とを備える。
 この発明の第3の局面によるワイヤロープ検査方法では、上記のように構成することによって、互いに略同じ出力が得られる第1測定による第1検知信号および第2測定による第2検知信号の略同じ位置における差分により、第1測定後に生じたワイヤロープの損傷箇所の出力を除いて、ワイヤロープの雑音データをキャンセルすることができるので、ワイヤロープの雑音データ(固有の磁気特性の変化)の影響を受けずに第1測定後に生じたワイヤロープの損傷を検出することができる。その結果、検知信号に基づく出力波形において、ワイヤロープの損傷箇所と非損傷箇所とをより明確に区別可能な態様でメリハリを付けて出力することができるので、ワイヤロープの損傷を精度よく検出することが可能なワイヤロープ検査方法を提供することができる。すなわち、上記差分により、出力波形において、ワイヤロープの損傷箇所の出力の変化量を相対的に大きくし、非損傷箇所の出力の変化量を相対的に小さくすることができるので、ワイヤロープの損傷を精度よく検出することが可能なワイヤロープ検査方法を提供することができる。
 上記第3の局面によるワイヤロープ検査方法において、好ましくは、ワイヤロープの状態を検知する工程では、第1検知信号と第2検知信号との略同じ位置における差分を取得することにより、ワイヤロープの固有の磁気特性の変化に基づく出力をキャンセルする。このように構成すれば、ワイヤロープの固有の磁気特性の変化に基づく出力をキャンセルして、ワイヤロープの損傷を精度よく検出することが可能なワイヤロープ検査方法を提供することができる。
 本発明によれば、上記のように、ワイヤロープの損傷を精度よく検出することができる。
第1実施形態によるワイヤロープ検査装置の構成を示す概略図である。 第1実施形態によるワイヤロープ検査装置により検査されるワイヤロープが使用されるエレベータを示した模式図である。 第1実施形態によるワイヤロープ検査装置の制御的な構成を示すブロック図である。 第1実施形態による磁性体検査装置の磁界印加部および検出部の構成を説明するための図である。 第1実施形態によるワイヤロープの固有の磁気特性について説明するための図である。 第1実施形態によるワイヤロープ検査装置により取得された第1検知信号と、第2検知信号と、第1検知信号および第2検知信号の差分との出力波形をそれぞれ示した図である。 第2実施形態によるワイヤロープ検査システムの制御的な構成を示すブロック図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
 [第1実施形態]
 図1~図6を参照して、第1実施形態によるワイヤロープ検査装置100の構成について説明する。
(ワイヤロープ検査装置の構成)
 図1に示すように、ワイヤロープ検査装置100は、検査対象物であるワイヤロープWを検査するように構成されている。ワイヤロープ検査装置100は、ワイヤロープWを定期的に検査するように構成されている。ワイヤロープ検査装置100は、ワイヤロープWの損傷を検査するように構成されている。
 なお、ワイヤロープWの損傷とは、スレ、局所的磨耗、素線断線、凹み、腐食、亀裂、折れ等により生じる検知方向に対する(ワイヤロープW内部で傷等が生じた場合の空隙に起因するものを含む)断面積の変化、ワイヤロープWの錆、溶接焼け、不純物の混入、組成変化等により生じる透磁率の変化、その他ワイヤロープWが不均一となる部分を含む広い概念である。
 図2に示すように、ワイヤロープ検査装置100は、検査対象物であるワイヤロープWの表面に沿って相対移動させながら、ワイヤロープWを検査する。ワイヤロープWは、エレベータEに使用されている。エレベータEは、カゴ部E1と、ワイヤロープWを巻き上げてカゴ部E1を昇降させる巻上機E2と、カゴ部E1(ワイヤロープW)の位置を検知する位置センサE3とを備えている。エレベータEでは、ワイヤロープWが巻上機E2により移動されるため、ワイヤロープ検査装置100を固定した状態で、ワイヤロープWの移動に伴って、検査が行われる。ワイヤロープWは、ワイヤロープ検査装置100の位置において、X方向に延びるように配置されている。
 図3に示すように、ワイヤロープ検査装置100は、検出部1と、電子回路部2とを備えている。検出部1は、一対の受信コイル11および12を有する差動コイル10と、励振コイル13とを含んでいる。電子回路部2は、制御部21と、受信I/F22と、記憶部23と、励振I/F24と、電源回路25と、通信部26とを含んでいる。また、ワイヤロープ検査装置100は、磁界印加部4(図4参照)を備えている。なお、差動コイル10は、請求の範囲の「検知コイル」の一例である。
 ワイヤロープ検査装置100には、通信部26を介して外部装置300が接続されている。
 図1に示すように、外部装置300は、通信部301と、解析部302と、表示部303とを備えている。外部装置300は、通信部301を介して、ワイヤロープ検査装置100によるワイヤロープWの計測データを受信するように構成されている。また、外部装置300は、受信したワイヤロープWの計測データに基づいて、解析部302により、素線断線、断面積変化などの損傷の種類を解析するように構成されている。また、外部装置300は、解析結果を、表示部303に表示するように構成されている。また、外部装置300は、解析結果に基づいて、異常判定を行い、表示部303に結果を表示するように構成されている。
 図4に示すように、ワイヤロープ検査装置100は、差動コイル10によりワイヤロープWの磁界(磁束)の変化を検知するように構成されている。ワイヤロープ検査装置100のコイル近傍には、直流磁化器が配置されないように構成されている。
 なお、磁界の変化とは、ワイヤロープWと検出部1とを相対移動させることによる検出部1で検知される磁界の強さの時間的な変化、および、ワイヤロープWに印加する磁界を時間変化させることによる検出部1で検知される磁界の強さの時間的な変化を含む広い概念である。
 ワイヤロープ検査装置100は、時間的に互いに異なる2つの時点における測定により得られた検知信号(たとえば、後述する第1検知信号および第2検知信号)に基づいて、ワイヤロープWの検知信号に含まれる雑音データ(固有の磁気特性の変化)を除去するように構成されている。詳細については後述する。
(ワイヤロープの構成、特性)
 ワイヤロープWは、磁性を有する素線材料が編みこまれる(たとえば、ストランド編みされる)ことにより形成されている。ワイヤロープWは、X方向に延びる長尺材からなる磁性体である。ワイヤロープWは、劣化による切断が起こるのを防ぐために、状態(傷等の有無)を監視されている。そして、劣化が所定量より進行したワイヤロープWは、交換される。
 ワイヤロープWは、固有の磁気特性を有している。固有の磁気特性とは、ワイヤロープWの長手方向(X方向)に直交する断面位置における撚(よ)りの均一度や、鋼材の量の均一度などの違いに起因して、変化する磁気特性である。ここで、ワイヤロープWの撚りの均一度や、鋼材の量の均一度は、経時的に略変化することがない(もしくは経時的に大きく変化しにくい)。したがって、ワイヤロープWは、固有の磁気特性を有することにより、ワイヤロープ検査装置100による時間的に互いに異なる時点における測定毎に、ワイヤロープWの長手方向(X方向)の各位置における出力が、略同じになる(再現性よく計測される)。
 具体的には、図5(A)に示すように、ワイヤロープ検査装置100による第1測定により得られたワイヤロープWの長手方向の所定位置における出力と、図5(B)に示すように、第1測定の後の第2測定により得られたワイヤロープWの長手方向の所定位置における出力とが略同じになる。
 したがって、ワイヤロープの長手方向(X方向)の略同じ位置における差分を取得すると、固有の雑音データが除去された図5(C)に示すような振幅の小さな出力波形が得られる。すなわち、第1測定時および第2測定時におけるワイヤロープWの互いの固有の磁気特性の変化に基づく出力がキャンセルされて、図5(C)に示すような比較的平坦な出力波形が得られる。このような結果は、第1測定と第2測定との間の期間が、比較的短い期間(数秒、数分)および比較的長い期間(数ヶ月、数年)のいずれの場合でも、同様に得られる。なお、ワイヤロープWが固有の磁気特性を有することは、本発明の発明者が鋭意検討した結果、見出した知見である。
(磁界印加部の構成)
 図4に示すように、磁界印加部4は、検査対象物であるワイヤロープWに対して予めY方向(ワイヤロープWの延びる方向に交差する方向)に磁界を印加し磁性体であるワイヤロープWの磁化の大きさおよび方向を整えるように構成されている。また、磁界印加部4は、磁石41および42を含む第1磁界印加部と、磁石43および44を含む第2磁界印加部とを含んでいる。第1磁界印加部(磁石41および42)は、検出部1に対して、ワイヤロープWの延びる方向の一方側(X1方向側)に配置されている。また、第2磁界印加部(磁石43および44)は、検出部1に対して、ワイヤロープWの延びる方向の他方側(X2方向側)に配置されている。
 第1磁界印加部(磁石41および42)は、ワイヤロープWの延びる方向(X方向)に交差する面に平行かつY2方向に磁界を印加するように構成されている。第2磁界印加部(磁石43および44)は、ワイヤロープWの延びる方向(X方向)に交差する面に平行かつY1方向に磁界を印加するように構成されている。すなわち、磁界印加部4は、長尺材の長手方向であるX方向と略直交する方向に磁界を印加するように構成されている。
(検出部の構成)
 差動コイル10(受信コイル11および12)と、励振コイル13とは、図3に示すように、長尺材からなる磁性体であるワイヤロープWの延びる方向を中心軸として、長手方向に沿うようにそれぞれ複数回巻回されている。また、差動コイル10および励振コイル13は、ワイヤロープWの延びるX方向(長手方向)に沿って円筒形となるように形成される導線部分を含むコイルである。したがって、差動コイル10および励振コイル13の巻回される導線部分の形成する面は、長手方向に略直交している。ワイヤロープWは、差動コイル10および励振コイル13の内部を通過する。また、差動コイル10は、励振コイル13の内側に設けられている。なお、差動コイル10および励振コイル13の配置はこれに限られない。差動コイル10の受信コイル11は、X1方向側に配置されている。また、差動コイル10の受信コイル12は、X2方向側に配置されている。受信コイル11および12は、数mm~数cm程度の間隔を隔てて配置されている。
 励振コイル13は、ワイヤロープWの磁化の状態を励振する。具体的には、励振コイル13に励振交流電流が流されることにより、励振コイル13の内部において、励振交流電流に基づいて発生する磁界がX方向に沿って印加されるように構成されている。
 差動コイル10は、一対の受信コイル11および12の差動信号を送信するように構成されている。具体的には、差動コイル10は、ワイヤロープWの磁界の変化を検知して差動信号を送信するように構成されている。差動コイル10は、検査対象物であるワイヤロープWのX方向の磁界の変化を検知して検知信号(電圧)を出力するように構成されている。すなわち、差動コイル10は、磁界印加部4によりY方向に磁界が印加されたワイヤロープWに対して、Y方向に交差するX方向の磁界の変化を検知する。また、差動コイル10は、検知したワイヤロープWのX方向の磁界の変化に基づく差動信号(電圧)を出力するように構成されている。また、差動コイル10は、励振コイル13によって発生する磁界の略全てが検知可能に(入力される様に)配置されている。
 ワイヤロープWに欠陥(傷等)が存在する場合は、欠陥(傷等)のある部分でワイヤロープWの全磁束(磁界に透磁率と面積とを掛けた値)が小さくなる。その結果、たとえば、受信コイル11が、欠陥(傷等)のある場所に位置する場合、受信コイル12を通る磁束量が受信コイル11と比較して変化するため、差動コイル10による検知電圧の差の絶対値(差動信号)が大きくなる。一方、欠陥(傷等)のない部分での差動信号は略ゼロとなる。このように、差動コイル10において、欠陥(傷等)の存在をあらわす明確な信号(S/N比の良い信号)が検知される。これにより、電子回路部2は、差動信号の値に基づいてワイヤロープWの欠陥(傷等)の存在を検出することが可能である。
(電子回路部の構成)
 図3に示す電子回路部2の制御部21は、ワイヤロープ検査装置100の各部を制御するように構成されている。具体的には、制御部21は、CPU(中央処理装置)などのプロセッサ、メモリ、AD変換器などを含んでいる。
 制御部21は、差動コイル10の差動信号を受信して、ワイヤロープWの状態を検知するように構成されている。また、制御部21は、励振コイル13を励振させる制御を行うように構成されている。また、制御部21は、通信部26を介して、ワイヤロープWの状態の検知結果を外部装置300に送信するように構成されている。
 受信I/F22は、差動コイル10からの差動信号を受信して、制御部21に送信するように構成されている。具体的には、受信I/F22は、増幅器を含んでいる。また、受信I/F22は、差動コイル10の差動信号を増幅して、制御部21に送信するように構成されている。
 励振I/F24は、制御部21からの信号を受信して、励振コイル13に対する電力の供給を制御するように構成されている。具体的には、励振I/F24は、制御部21からの制御信号に基づいて、電源回路25から励振コイル13への電力の供給を制御する。
 制御部21は、第1測定において差動コイル10により取得した第1検知信号と、第1測定の後の第2測定において差動コイル10により取得した第2検知信号との略同じ位置における差分に基づいて、ワイヤロープWの状態を検知するように構成されている。具体的には、制御部21は、第1検知信号と第2検知信号との略同じ位置における差分を取得することにより、ワイヤロープWの固有の磁気特性の変化に基づく出力をキャンセルするように構成されている。
 また、制御部21は、ワイヤロープWに欠陥があるか否かを判定するように構成されている。また、制御部21は、ワイヤロープWの欠陥(傷等)の大きさを判定する機能を有している。また、制御部21は、検出部1に対するワイヤロープWの相対移動の速度を取得するように構成されている。たとえば、制御部21は、エレベータEの位置を位置センサE3から取得するように構成されていてもよい。この他、ワイヤロープ検査装置100自体にワイヤロープWの位置を検知する位置センサ(図示せず)が設けられていてもよい。記憶部23は、制御部21により、ワイヤロープWの位置情報と、第1検知信号および第2検知信号のそれぞれとを関連付けた検知情報を記憶するように構成されている。
 制御部21は、記憶部23から検知情報を取得して、第1測定および第2測定において、ワイヤロープWを検知した位置を互いに略一致させて、第1検知信号と第2検知信号との差分を取得するように構成されている。記憶部23は、HDDまたはSSDなどにより構成することが可能である。
 また、制御部21は、第2検知信号に対して、差動コイル10の感度の補正、および、ワイヤロープWを検知した位置の補正を行った上で、第1検知信号と第2検知信号との差分を取得するように構成されている。たとえば、次式により、第1検知信号f(x)と第2検知信号f(x)との差分から、出力データy(x)を取得する。
 α×f(x-Δx)-f(x)=y(x)
 上記αは、差動コイル10の感度の補正係数である。αは、たとえば、差動コイル10が置かれる環境温度などに応じて所定の値が設定されてもよい。この他、αは、第1検知信号および第2検知信号の出力波形中の代表となるピークを比較して得られる比としてもよい。また、上記Δxは、ワイヤロープWの長手方向(X方向)の位置補正のための値である。Δxは、たとえば、出力波形中の代表となるピークを比較して得られるワイヤロープWの長手方向(X方向)の検知位置のずれの大きさとしてもよい。αおよびΔxは、y(x)の分散が最も小さくなるように設定される。f(x)は、たとえば、初期状態においては、個々のワイヤロープWに対して固有の出力波形を有している。固有の出力波形は、ワイヤロープWの製造時では、素線の透磁率の変化、ワイヤロープWとしての素線の粗密の変化、素線径の変化などによって決まり、ワイヤロープWの取り扱い時では、塑性変形の付与、磁気的な変化などによって決まる。
 ここで、制御部21によるワイヤロープWの欠陥の判定方法を説明する。ワイヤロープWの局所に断線やさびがある場合、差動コイル10の受信コイル11および12を通過する磁束が変化する。また、差動コイル10から出力される差動信号は、受信コイル11および12の差分の信号であるため、その差が信号としてあらわれる。制御部21は、この信号を検知して、ワイヤロープWの急激な透磁率変化を検知する。また、制御部21は、ワイヤロープWの急激な透磁率変化に基づいて、ワイヤロープWの急激な構造的変化を検知する。
(ワイヤロープ検査方法)
 次に、図6(A)~(C)を参照して、ワイヤロープWの検査方法について説明する。ワイヤロープWの検査方法は、主に3つの工程(第1工程、第2工程、第3工程)を備えている。以下、順に説明する。
〈第1工程について〉
 ワイヤロープWの検査方法は、差動コイル10によりワイヤロープWの磁界の変化を検知して第1検知信号を取得する第1測定を行う第1工程を備えている。第1測定は、ワイヤロープWをエレベータEに使用を開始する前に行ってもよいし、使用を開始した後に行ってもよい。第1工程により、図6(A)に示すような出力波形が得られる。
〈第2工程について〉
 ワイヤロープWの検査方法は、第1測定の後に、差動コイル10によりワイヤロープWの磁界の変化を検知して第2検知信号を取得する第2測定を行う第2工程を備えている。なお、第1測定と、第2測定との間の長さは、ワイヤロープWの切断などが生じる比較的長い期間(たとえば数十年)ではなく、ワイヤロープWの損傷の進行を確認できる程度の所定期間(たとえば数ヶ月)に設定するのが好ましい。また、第2測定では、第1測定と同じ条件で、ワイヤロープWの測定(検査)が行われる。たとえば、第2測定では、第1測定と同じ速度でワイヤロープ検査装置100に対してワイヤロープWを移動させる。また、第2測定では、第1測定と同じワイヤロープWの位置から測定(検査)を開始して、第1測定と同じワイヤロープWの位置で測定(検査)を終了する。第2工程により、図6(B)に示すような出力波形が得られる。
 図6(B)の出力波形からは、ワイヤロープWに3箇所の損傷があることがわかる。すなわち、第1測定後かつ第2測定前に、ワイヤロープWに3箇所の損傷が発生したことがわかる。また、図6(B)の出力波形からは、損傷箇所以外の部分の出力は、図6(A)に示す出力波形と略同じであることがわかる。
〈第3工程について〉
 ワイヤロープWの検査方法は、第1検知信号と第2検知信号との略同じ位置における差分に基づいて、ワイヤロープWの状態を検知する第3工程を備えている。第3工程では、第1検知信号と第2検知信号との略同じ位置における差分を取得することにより、ワイヤロープWの固有の磁気特性の変化に基づく出力をキャンセルする。第3工程により、図6(C)に示すような出力波形が得られる。
 図6(C)の出力波形を、図6(B)の出力波形と比較すると、ワイヤロープWの損傷箇所の出力の変化量が相対的に大きくなり、非損傷箇所の出力の変化量を相対的に小さくなっていることがわかる。すなわち、図6(C)の出力波形は、図6(B)の出力波形よりも、ワイヤロープの損傷箇所と非損傷箇所とをより明確に区別可能な態様で出力している。
(第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、互いに略同じ出力が得られる第1測定による第1検知信号および第2測定による第2検知信号の略同じ位置における差分により、第1測定後に生じたワイヤロープWの損傷箇所の出力を除いて、ワイヤロープWの雑音データをキャンセルすることができるので、ワイヤロープWの雑音データ(固有の磁気特性の変化)の影響を受けずに第1測定後に生じたワイヤロープWの損傷を検出することができる。その結果、検知信号に基づく出力波形において、ワイヤロープWの損傷箇所と非損傷箇所とをより明確に区別可能な態様でメリハリを付けて出力することができるので、ワイヤロープWの損傷を精度よく検出することができる。すなわち、上記差分により、出力波形において、ワイヤロープWの損傷箇所の出力の変化量を相対的に大きくし、非損傷箇所の出力の変化量を相対的に小さくすることができるので、ワイヤロープWの損傷を精度よく検出することができる。
 第1実施形態では、上記のように、差動コイル10により、ワイヤロープWの固有の磁気特性の変化を検知するように構成され、制御部21は、第1検知信号と第2検知信号との略同じ位置における差分を取得することにより、ワイヤロープWの固有の磁気特性の変化に基づく出力をキャンセルするように構成されている。これにより、ワイヤロープWの固有の磁気特性の変化に基づく出力をキャンセルして、ワイヤロープWの損傷を精度よく検出することができる。
 第1実施形態では、上記のように、ワイヤロープWに対して、ワイヤロープWの延びる方向に交差する方向に磁界を印加することによりワイヤロープWの磁化の方向を整える磁界印加部4をさらに備える。これにより、磁界印加部4によりワイヤロープWに対して予め磁界を印加して、ワイヤロープWの損傷等のない部分の磁化を整えることができるので、ワイヤロープ検査装置100による測定毎の出力の再現性をより向上させることができる。その結果、差分によってワイヤロープWの固有の磁気特性の変化をより確実にキャンセルすることができる。すなわち、雑音データの影響をより小さくしてワイヤロープWの損傷を検出することができる。
 第1実施形態では、上記のように、第1検知信号および第2検知信号のそれぞれと、ワイヤロープWの位置情報とを関連付けた検知情報を記憶する記憶部23をさらに備え、制御部21は、記憶部23から検知情報を取得して、第1測定および第2測定においてワイヤロープWを検知した位置を互いに略一致させて、第1検知信号と第2検知信号との差分を取得するように構成されている。これにより、検知情報を記憶する記憶部23により、第1検知信号と第2検知信号との略同じ位置における差分を容易に取得することができる。
 第1実施形態では、上記のように、制御部21は、第1検知信号または第2検知信号に対して、差動コイル10の感度の補正、および、ワイヤロープWを検知した位置の補正の少なくとも一方を行った上で、第1検知信号と第2検知信号との差分を取得するように構成されている。これにより、感度補正により、第1測定および第2測定が互いに異なる温度環境などで行われた場合でも、第1測定および第2測定の際の差動コイル10の感度レンジを整合させることができるので、第1検知信号と第2検知信号との差分により取得される出力の変化量をより小さくすることができる。また、位置補正により、第1測定および第2測定が互いにワイヤロープWのずれた位置で行われた場合でも、位置ずれの影響を抑制することができるので、第1検知信号と第2検知信号との差分により取得される出力の変化量をより小さくすることができる。これにより、ワイヤロープWの損傷をより一層精度よく検出することができる。
 [第2実施形態]
 次に、図2および図7を参照して、第2実施形態によるワイヤロープ検査システム200の構成について説明する。この第2実施形態のワイヤロープ検査システム200は、ワイヤロープ検査装置100の制御部21によりワイヤロープWの状態を検知した上記第1実施形態と異なり、検査装置100aからの検知信号を外部装置300aに送信して、外部装置300aによりワイヤロープWの状態を検知する例について説明する。なお、上記第1実施形態と同一の構成については、図中において同じ符号を付して図示し、その説明を省略する。また、外部装置300aは、請求の範囲の「制御装置」の一例である。
 第2実施形態におけるワイヤロープ検査システム200は、図7に示すように、検査装置100aと、外部装置300aとを備えている。
 検査装置100aは、差動コイル10と、励振コイル13と、制御部21aと、受信I/F22と、励振I/F24と、電源回路25と、通信部26とを備えている。制御部21aは、通信部26を介して、第1測定により取得した第1検知信号と、第2測定により取得した第2検知信号とを外部装置300aに送信する制御を行う。
 外部装置300aは、通信部301と、解析部302と、表示部303と、制御部304とを備えている。制御部304は、通信部301を介して、第1検知信号と第2検知信号とを取得する。制御部304は、検査装置100aにおける第1測定により取得した第1検知信号と、検査装置100aにおける第2測定により取得した第2検知信号との略同じ位置における差分に基づいて、ワイヤロープW(図2参照)の状態を検知するように構成されている。
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
(第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
 第2実施形態では、上記第1実施形態と同様に、ワイヤロープWの雑音データをキャンセルして、ワイヤロープWの損傷を精度よく検出することができる。
 第2実施形態のその他の効果は、上記第1実施形態と同様である。
 (変形例)
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく、請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記第1および第2実施形態では、ワイヤロープをエレベータに使用した例を示したが、本発明はこれに限られない。本発明では、ワイヤロープを、クレーン、吊り橋およびロボットなどのエレベータ以外の構成に使用してもよい。
 また、上記第1および第2実施形態では、ワイヤロープ検査装置が磁界印加部を備える構成の例を示したが、本発明はこれに限られない。本発明では、ワイヤロープ検査装置は磁界印加部を備えていなくてもよい。
 また、上記第1および第2実施形態では、制御部により感度補正を行った上で第1検知信号および第2検知信号の差分を取得した例を示したが、本発明はこれに限られない。本発明では、制御部により感度補正を行わなくてもよい。
 また、上記第1および第2実施形態では、制御部により位置補正を行った上で第1検知信号および第2検知信号の差分を取得した例を示したが、本発明はこれに限られない。本発明では、制御部により位置補正を行わなくてもよい。
 また、上記第1実施形態では、ワイヤロープ検査装置は外部装置に接続されている構成の例を示したが、本発明はこれに限られない。本発明では、ワイヤロープ検査装置は、外部装置に接続されずに、独立して用いられてもよい。
 また、上記第1および第2実施形態では、固定された(移動することのない)ワイヤロープ検査装置(検査装置)に対してワイヤロープを移動させることにより、ワイヤロープを検査した例を示したが、本発明はこれに限られない。本発明では、固定された(移動することのない)ワイヤロープに対してワイヤロープ検査装置(検査装置)を移動させることにより、ワイヤロープを検査してもよい。
 4 磁界印加部
 10 差動コイル(検知コイル)
 21、304 制御部
 23 記憶部
 100 ワイヤロープ検査装置
 100a 検査装置
 200 ワイヤロープ検査システム
 300a 外部装置(制御装置)
 W ワイヤロープ

Claims (9)

  1.  ワイヤロープの磁界の変化を検知する検知コイルと、
     第1測定において前記検知コイルにより取得した第1検知信号と、前記第1測定の後の第2測定において前記検知コイルにより取得した第2検知信号との略同じ位置における差分に基づいて、前記ワイヤロープの状態を検知する制御部と、を備える、ワイヤロープ検査装置。
  2.  前記検知コイルにより、前記ワイヤロープの固有の磁気特性の変化を検知するように構成され、
     前記制御部は、前記第1検知信号と前記第2検知信号との略同じ位置における差分を取得することにより、前記ワイヤロープの固有の磁気特性の変化に基づく出力をキャンセルするように構成されている、請求項1に記載のワイヤロープ検査装置。
  3.  前記ワイヤロープに対して、前記ワイヤロープの延びる方向に交差する方向に磁界を印加することにより前記ワイヤロープの磁化の方向を整える磁界印加部をさらに備える、請求項1に記載のワイヤロープ検査装置。
  4.  前記第1検知信号および前記第2検知信号のそれぞれと、前記ワイヤロープの位置情報とを関連付けた検知情報を記憶する記憶部をさらに備え、
     前記制御部は、前記記憶部から前記検知情報を取得して、前記第1測定および前記第2測定において前記ワイヤロープを検知した位置を互いに略一致させて、前記第1検知信号と前記第2検知信号との差分を取得するように構成されている、請求項1に記載のワイヤロープ検査装置。
  5.  前記制御部は、前記第1検知信号または前記第2検知信号に対して、前記検知コイルの感度の補正、および、前記ワイヤロープを検知した位置の補正の少なくとも一方を行った上で、前記第1検知信号と前記第2検知信号との差分を取得するように構成されている、請求項1に記載のワイヤロープ検査装置。
  6.  ワイヤロープの磁界の変化を検知する検知コイルを含む検査装置と、
     第1測定において前記検知コイルにより取得した第1検知信号と、前記第1測定の後の第2測定において前記検知コイルにより取得した第2検知信号との略同じ位置における差分に基づいて、前記ワイヤロープの状態を検知する制御装置とを備える、ワイヤロープ検査システム。
  7.  前記検査装置は、前記検知コイルにより、前記ワイヤロープの固有の磁気特性の変化を検知するように構成され、
     前記制御装置は、前記第1検知信号と前記第2検知信号との略同じ位置における差分を取得することにより、前記ワイヤロープの固有の磁気特性の変化に基づく出力をキャンセルするように構成されている、請求項6に記載のワイヤロープ検査システム。
  8.  検知コイルによりワイヤロープの磁界の変化を検知して第1検知信号を取得する第1測定を行う工程と、
     前記第1測定の後に、前記検知コイルにより前記ワイヤロープの磁界の変化を検知して第2検知信号を取得する第2測定を行う工程と、
     前記第1検知信号と前記第2検知信号との略同じ位置における差分に基づいて、前記ワイヤロープの状態を検知する工程とを備える、ワイヤロープ検査方法。
  9.  前記ワイヤロープの状態を検知する工程では、前記第1検知信号と前記第2検知信号との略同じ位置における差分を取得することにより、前記ワイヤロープの固有の磁気特性の変化に基づく出力をキャンセルする、請求項8に記載のワイヤロープ検査方法。
     
PCT/JP2018/003469 2018-02-01 2018-02-01 ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法 WO2019150539A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019568509A JP6879389B2 (ja) 2018-02-01 2018-02-01 ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法
CN201880085091.XA CN111542753B (zh) 2018-02-01 2018-02-01 钢缆检查装置、钢缆检查系统以及钢缆检查方法
EP18903186.7A EP3748351A4 (en) 2018-02-01 2018-02-01 METAL CABLE INSPECTION DEVICE, METAL CABLE INSPECTION SYSTEM AND METAL CABLE INSPECTION PROCESS
US16/959,592 US11358836B2 (en) 2018-02-01 2018-02-01 Wire rope inspection device, wire rope inspection system, and wire rope inspection method
PCT/JP2018/003469 WO2019150539A1 (ja) 2018-02-01 2018-02-01 ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法
KR1020207017754A KR102361456B1 (ko) 2018-02-01 2018-02-01 와이어 로프 검사 장치, 와이어 로프 검사 시스템 및 와이어 로프 검사 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003469 WO2019150539A1 (ja) 2018-02-01 2018-02-01 ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法

Publications (1)

Publication Number Publication Date
WO2019150539A1 true WO2019150539A1 (ja) 2019-08-08

Family

ID=67478649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003469 WO2019150539A1 (ja) 2018-02-01 2018-02-01 ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法

Country Status (6)

Country Link
US (1) US11358836B2 (ja)
EP (1) EP3748351A4 (ja)
JP (1) JP6879389B2 (ja)
KR (1) KR102361456B1 (ja)
CN (1) CN111542753B (ja)
WO (1) WO2019150539A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021152939A1 (ja) * 2020-01-28 2021-08-05
JP2021169354A (ja) * 2020-04-15 2021-10-28 株式会社島津製作所 エレベータ用ワイヤロープ検査装置、エレベータ用ワイヤロープ検査システム、およびエレベータ用ワイヤロープ検査方法
US20220050152A1 (en) * 2020-08-17 2022-02-17 Shimadzu Corporation Magnetic Material Inspection Device
JP2022035922A (ja) * 2020-08-19 2022-03-04 エンキア カンパニー リミテッド 省電力ワイヤロープの安全診断方法及びシステム
US20220212894A1 (en) * 2019-06-05 2022-07-07 Shimadzu Corporation Wire rope inspection system and wire rope inspection method
WO2023053512A1 (ja) * 2021-09-28 2023-04-06 株式会社島津製作所 ワイヤロープ検査装置およびワイヤロープ検査方法
JP7443960B2 (ja) 2020-07-03 2024-03-06 株式会社島津製作所 ワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法
JP7452316B2 (ja) 2020-07-31 2024-03-19 株式会社島津製作所 ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884516B2 (en) * 2018-06-25 2024-01-30 Otis Elevator Company Health monitoring of elevator system tension members
JP7260512B2 (ja) * 2020-08-17 2023-04-18 株式会社日立ビルシステム ワイヤロープの検査方法および装置
CN112034033B (zh) * 2020-08-21 2023-12-19 浙江工业大学 基于磁场原理的分离式钢筋非均匀锈蚀监测传感器
DE102020127250A1 (de) * 2020-10-15 2022-04-21 Pierre Verreet Verfahren und Vorrichtung zur Überwachung der Integrität einer Drahtseilanordnung
US11506632B2 (en) * 2020-10-20 2022-11-22 Obshchestvo s ogranichennoi otvetstvennostiu “INTRON PLIUS” Method for predicting a residual operating life of a steel rope
CN112834605B (zh) * 2021-03-09 2023-07-14 马勇男 钢丝帘布检测方法
CN113740413B (zh) * 2021-08-24 2023-09-29 华中科技大学 一种基于磁导率扰动测量的钢板分层缺陷检测方法及系统
JP2023037489A (ja) * 2021-09-03 2023-03-15 株式会社島津製作所 ワイヤロープ検査方法、ワイヤロープ検査システム、および、ワイヤロープ検査装置
CN117607244B (zh) * 2024-01-22 2024-04-30 河南工学院 多敏感阵列的起重机钢丝绳弱磁在线监测方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133731A (en) * 1996-11-07 2000-10-17 Case Technologies Ltd. Method and apparatus for the on-line measurement of the strength of metal cables
JP2002116187A (ja) * 2000-10-06 2002-04-19 Mitsui Miike Mach Co Ltd 鋼索用磁気探傷装置および感磁性素子解析方法
JP2008026126A (ja) * 2006-07-20 2008-02-07 Hitachi Building Systems Co Ltd ワイヤーロープの探傷装置
JP2011203092A (ja) * 2010-03-25 2011-10-13 Nifutei:Kk センサ、検査装置、および検査方法
JP5044545B2 (ja) 2006-04-04 2012-10-10 東京製綱株式会社 ワイヤロープの遠隔監視システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044545Y2 (ja) 1972-01-07 1975-12-18
JP2733088B2 (ja) * 1989-03-30 1998-03-30 石川島建機株式会社 鋼索の磁気探傷装置
KR0163959B1 (ko) * 1991-10-26 1999-05-01 후지무라 마사야 와류탐상 장치
JPH09210968A (ja) * 1996-02-06 1997-08-15 Electron Kiyooto:Kk ワイヤーロープの損傷検出器
JP2001153845A (ja) 1999-11-24 2001-06-08 Kyosan Electric Mfg Co Ltd ワイヤロープ探傷器
KR100946285B1 (ko) * 2008-01-09 2010-03-11 이경규 와전류를 이용한 와이어 로프 검사 장치
KR101263550B1 (ko) * 2008-04-14 2013-05-13 미쓰비시덴키 가부시키가이샤 와이어 로프 탐상 장치
JP6193077B2 (ja) * 2012-10-30 2017-09-06 東京製綱株式会社 ワイヤロープの検査装置
US10352683B2 (en) * 2014-04-02 2019-07-16 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Canada Device for analysis of synthetic rope or cable, and method of use
CN106461611B (zh) * 2014-04-28 2019-12-27 东京制纲株式会社 钢丝绳的检查装置
CN107430090B (zh) * 2015-03-11 2020-06-23 三菱电机株式会社 绳索损伤诊断检查装置和绳索损伤诊断检查方法
US10724992B2 (en) * 2016-03-24 2020-07-28 Mitsubishi Electric Corporation Wire rope flaw detector and adjustment method therefor
CN105675713B (zh) * 2016-04-06 2018-08-07 山西慧达澳星科技有限公司 一种电梯曳引钢带无损检测装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133731A (en) * 1996-11-07 2000-10-17 Case Technologies Ltd. Method and apparatus for the on-line measurement of the strength of metal cables
JP2002116187A (ja) * 2000-10-06 2002-04-19 Mitsui Miike Mach Co Ltd 鋼索用磁気探傷装置および感磁性素子解析方法
JP5044545B2 (ja) 2006-04-04 2012-10-10 東京製綱株式会社 ワイヤロープの遠隔監視システム
JP2008026126A (ja) * 2006-07-20 2008-02-07 Hitachi Building Systems Co Ltd ワイヤーロープの探傷装置
JP2011203092A (ja) * 2010-03-25 2011-10-13 Nifutei:Kk センサ、検査装置、および検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748351A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220212894A1 (en) * 2019-06-05 2022-07-07 Shimadzu Corporation Wire rope inspection system and wire rope inspection method
US11772935B2 (en) 2019-06-05 2023-10-03 Shimadzu Corporation Wire rope inspection system and wire rope inspection method
WO2021152939A1 (ja) * 2020-01-28 2021-08-05 株式会社島津製作所 ワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法
JPWO2021152939A1 (ja) * 2020-01-28 2021-08-05
JP7318749B2 (ja) 2020-01-28 2023-08-01 株式会社島津製作所 ワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法
JP7276233B2 (ja) 2020-04-15 2023-05-18 株式会社島津製作所 エレベータ用ワイヤロープ検査装置、エレベータ用ワイヤロープ検査システム、およびエレベータ用ワイヤロープ検査方法
JP2021169354A (ja) * 2020-04-15 2021-10-28 株式会社島津製作所 エレベータ用ワイヤロープ検査装置、エレベータ用ワイヤロープ検査システム、およびエレベータ用ワイヤロープ検査方法
JP7443960B2 (ja) 2020-07-03 2024-03-06 株式会社島津製作所 ワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法
JP7452316B2 (ja) 2020-07-31 2024-03-19 株式会社島津製作所 ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法
US20220050152A1 (en) * 2020-08-17 2022-02-17 Shimadzu Corporation Magnetic Material Inspection Device
US11493574B2 (en) * 2020-08-17 2022-11-08 Shimadzu Corporation Magnetic material inspection device
JP7109517B2 (ja) 2020-08-19 2022-07-29 エンキア カンパニー リミテッド 省電力ワイヤロープの安全診断方法及びシステム
JP2022035922A (ja) * 2020-08-19 2022-03-04 エンキア カンパニー リミテッド 省電力ワイヤロープの安全診断方法及びシステム
WO2023053512A1 (ja) * 2021-09-28 2023-04-06 株式会社島津製作所 ワイヤロープ検査装置およびワイヤロープ検査方法

Also Published As

Publication number Publication date
JP6879389B2 (ja) 2021-06-02
CN111542753B (zh) 2024-01-30
JPWO2019150539A1 (ja) 2020-09-03
CN111542753A (zh) 2020-08-14
US11358836B2 (en) 2022-06-14
KR102361456B1 (ko) 2022-02-14
EP3748351A1 (en) 2020-12-09
KR20200088439A (ko) 2020-07-22
EP3748351A4 (en) 2021-09-01
US20210380372A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2019150539A1 (ja) ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法
WO2018138850A1 (ja) 磁性体の検査装置および磁性体の検査方法
WO2019171667A1 (ja) 磁性体検査装置
JP7187855B2 (ja) 磁性体検査システム、磁性体検査装置および磁性体検査方法
JP7119788B2 (ja) 磁性体の検査装置
WO2020246131A1 (ja) ワイヤロープ検査システムおよびワイヤロープ検査方法
JP7172135B2 (ja) 磁性体検査装置
JP7027927B2 (ja) 磁性体検査装置
JP2019168253A (ja) 磁性体検査システム、磁性体検査装置および磁性体検査方法
JP7081446B2 (ja) 磁性体検査装置および磁性体検査システム
JP7371791B2 (ja) ワイヤロープ検査装置およびワイヤロープ検査システム
US11493574B2 (en) Magnetic material inspection device
JP7095808B2 (ja) ワイヤロープ検査システムおよびワイヤロープ検査方法
JP7200697B2 (ja) ワイヤロープ検査装置およびワイヤロープ検査方法
CN107576720B (zh) 铁磁细长构件浅层损伤磁发射检测方法及磁发射检测系统
JP7318749B2 (ja) ワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法
US11480546B2 (en) Magnetic material inspection system, magnetic material inspection device, and magnetic material inspection method
JP7276233B2 (ja) エレベータ用ワイヤロープ検査装置、エレベータ用ワイヤロープ検査システム、およびエレベータ用ワイヤロープ検査方法
JP2019200157A (ja) 磁性体検査システムおよびプログラム
JP7452316B2 (ja) ワイヤロープ検査装置、ワイヤロープ検査システムおよびワイヤロープ検査方法
US9310337B2 (en) Non-destructive inspection device for pressure containers using leakage-flux measurement
JP2003004708A (ja) 自己比較方式の渦流探傷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568509

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207017754

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018903186

Country of ref document: EP

Effective date: 20200901