WO2019147098A1 - 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2019147098A1
WO2019147098A1 PCT/KR2019/001201 KR2019001201W WO2019147098A1 WO 2019147098 A1 WO2019147098 A1 WO 2019147098A1 KR 2019001201 W KR2019001201 W KR 2019001201W WO 2019147098 A1 WO2019147098 A1 WO 2019147098A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
particles
cathode active
primary particles
Prior art date
Application number
PCT/KR2019/001201
Other languages
English (en)
French (fr)
Inventor
김종민
김수현
김진화
윤필상
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020207025019A priority Critical patent/KR102447005B1/ko
Priority to CN201980010098.XA priority patent/CN111656585A/zh
Priority to US16/962,635 priority patent/US20200350582A1/en
Publication of WO2019147098A1 publication Critical patent/WO2019147098A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a cathode active material for a lithium secondary battery and a lithium secondary battery comprising the same.
  • Portable electronic devices, communication devices, and the like are developed, there is a high need for development of a lithium secondary battery having a high energy density.
  • This kind of lithium secondary battery includes a positive electrode and a negative electrode on which an electrode active material layer including an electrode active material is formed on an electrode current collector.
  • Lithium cobalt oxide (Li x CoO 2 ), lithium nickel oxide (Li x NiO 2 ), lithium nickel cobalt oxide (Li x (NiCo) O 2 ), and the like are used as the cathode active material.
  • An oxide such as lithium nickel cobalt manganese oxide (Li x (NiCoMn) O 2 ), spinel type lithium manganese oxide (Li x Mn 2 O 4 ), manganese dioxide (MnO 2 ) or the like or lithium iron phosphate (LixFePO 4 ), lithium manganese phosphate Li x MnPO 4 ), NASICON type phosphates, silicates, or polymer materials can be used.
  • a compound capable of intercalating lithium metal, its alloy or lithium ion can be used.
  • a polymer material or a carbon material can be used, and a graphite system such as artificial or natural graphite, Carbon nanotubes (CNTs), carbon nanofibers (CNFs), carbon nanotubes (CNWs), and the like, as well as non-graphitizable carbon or graphitizable carbon, The same carbon-based compound may be used.
  • One embodiment of the present invention provides a cathode active material for a lithium secondary battery improved in charge / discharge capacity, efficiency, and life characteristics by improving the lithium diffusion degree during charge / discharge and relieving stress due to volume change.
  • Another embodiment provides a lithium secondary battery comprising the cathode active material for the lithium secondary battery.
  • a plurality of primary particles comprises agglomerated secondary particles, wherein the secondary particles have a tangent at a point P where the (003) plane of the primary particle meets the surface of the secondary particle And a primary particle oriented so as to be in a direction perpendicular to the surface of the lithium secondary battery.
  • At least 50% of the primary particles can be oriented so as to be perpendicular to the tangent at the point P where the (003) plane meets the surface of the secondary particle.
  • the average length of the primary particles in the c-axis direction may be in the range of 100 to 200 nm.
  • the ratio of the long side to the short side of the plane perpendicular to the (003) plane of the primary particles may be in the range of 1: 2 to 1:10.
  • the secondary particles may have a radial arrangement having one center or a multi-center radial arrangement having a plurality of centers.
  • the pore volume fraction of micropores of 10 nm or less of the secondary particles may be 10% or more of the total pore volume.
  • the secondary particles may have a pore size decreasing gradually from the core to the surface portion.
  • the secondary particles may have a degree of porosity that gradually decreases from the core to the surface portion.
  • a lithium secondary battery containing the above-mentioned positive electrode, negative electrode and electrolyte interposed therebetween.
  • the lithium diffusion degree is improved at the time of charging and discharging, and the stress due to the volume change is mitigated, whereby a lithium secondary battery improved in charge / discharge capacity, efficiency and lifetime characteristics can be manufactured.
  • FIG. 1 is a schematic view of oriented primary particles constituting a cathode active material for a lithium secondary battery according to one embodiment.
  • FIG. 2 is a perspective view schematically showing a typical structure of a lithium secondary battery according to one embodiment.
  • FIG. 3 is a graph showing the measurement results of the pore volume fraction of the cathode active material according to Example 1 and Comparative Example 1.
  • FIG. 3 is a graph showing the measurement results of the pore volume fraction of the cathode active material according to Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing the results of measurement of lifetime characteristics for coin cells manufactured according to Example 5, Example 6, Comparative Example 3, and Comparative Example 4.
  • FIG. 4 is a graph showing the results of measurement of lifetime characteristics for coin cells manufactured according to Example 5, Example 6, Comparative Example 3, and Comparative Example 4.
  • a plurality of primary particles comprises agglomerated secondary particles, wherein the secondary particles have a tangent at a point P where the (003) plane of the primary particle meets the surface of the secondary particle And a primary particle oriented so as to be in a direction perpendicular to the surface of the lithium secondary battery.
  • FIG. 1 is a schematic view of oriented primary particles constituting a cathode active material for a lithium secondary battery according to one embodiment.
  • FIG. 1 Although only secondary particles composed of two primary particles are shown in FIG. 1, it is needless to say that at least three primary particles may aggregate to form secondary particles.
  • the (003) plane of the primary particles 10 is oriented perpendicular to the tangent at points P1 and P2 where it meets the surface of the secondary particles.
  • the surface of the secondary particle means a spherical surface connecting the points where the long axis (a axis) or the short axis (b axis) of the adjacent primary particles meets the edge of the primary particle.
  • the vertical direction means that the tangents at the points (P1 and P2) where the long axis (a axis) or the short axis (b axis) of the (003) plane meet with the surface of the secondary particles are 90 ° ⁇ 20 ° to each other 90 ° ⁇ 10 °.
  • More than 50%, for example 60% or 70% of the primary particles 10 can be oriented perpendicular to the tangent at point P where the (003) plane meets the surface of the secondary particle have.
  • the primary particles 10 may have a plate shape and the length in the thickness direction of the primary particles (the length in the direction of the c axis) is larger than the plane direction of the primary particles (long axis (a axis) or short axis (b axis) May mean smaller.
  • the (003) plane of the primary particles 10 may be a rectangle, an ellipse, a hexagonal plate-like shape, or an amorphous shape having a long axis (a axis) or a short axis (b axis) But it is not limited thereto.
  • the average length of the planar direction (long axis (a axis) or short axis (b axis)) is 150 to 500 nm, for example, 200 to 380 nm, specifically 290 to 360 nm.
  • the average length in the plane direction means the average length of the major axis length and the minor axis length.
  • the length (length in the c-axis direction) of the primary particles 10 in the thickness direction is 100 to 200 nm, and may be in the range of, for example, 120 to 180 nm, specifically 130 to 150 nm. Since the thickness of the primary particles 10 is small in this way, cracks that may occur during shrinkage expansion are reduced, thereby improving lifetime characteristics and reducing resistance increase.
  • the ratio of the long side to the short side of the plane perpendicular to the (003) plane of the primary particles 10 is from 1: 2 to 1:10, for example, from 1: 2.1 to 1: 5, : 2.9. ≪ / RTI >
  • the primary particles 10 oriented as described above coagulate with each other to form secondary particles 20.
  • the plurality of primary particles 10 may aggregate with each other to provide secondary particles 20 having a radial arrangement structure as shown in Fig.
  • the particle size of the secondary particles 20 may be 2 to 20 ⁇ , for example 8 to 15 ⁇ , specifically about 12 ⁇ .
  • the particle size refers to the average diameter when the secondary particles 20 are spherical. If the secondary particles 20 are elliptical, rod-shaped, amorphous, etc., they represent the major axis length.
  • the (003) plane of the primary particles 10 is oriented so as to be perpendicular to the tangent at the points (P1 and P2) at which the primary particles 10 meet with the surface of the secondary particles 20,
  • the lithium diffusion path between the grain boundaries can be provided relatively on the surface side, and the crystal plane capable of lithium transfer can be exposed to a large extent to enhance the lithium diffusion degree, thereby securing high initial efficiency and capacity. 20), it is possible to suppress the occurrence of cracks.
  • the region including the intermediate layer and the shell is referred to as a "surface portion ", and the total distance from the center to the outermost surface of the secondary particle 20 is 30 to 50% Quot; area ".
  • the "surface portion” may mean an area within 3 [micro] m from the outermost surface of the secondary particle 20.
  • the “shell” may mean an area of 5 to 15% of the total length from the center of the secondary particle 20 to the outermost surface, for example, 10% of the length from the top surface.
  • the "core (core portion)” may mean an area of 50 to 70%, for example 60%, of the total distance from the center to the outermost surface of the secondary particle 20 from the center.
  • "Intermediate layer” represents the remaining region except for the core and the shell.
  • the orientation of the primary particles 10 can be mainly made on the surface portion of the secondary particles 20.
  • the pores formed between the primary particles 10 are also present on the surface portion of the secondary particles 20, Thereby promoting lithium diffusion from the cathode.
  • the plurality of primary particles 10 are arranged toward the center of the primary particle 10 so as to make face contact along the c axis (thickness) direction of the primary particles 10 to form secondary particles 20 having a radial arrangement structure.
  • the secondary particles 20 may have a multi-centered radial arrangement having a plurality of centers.
  • lithium can be easily inserted / inserted into the core (core portion) of the secondary particles 20.
  • the pore volume fraction of the micropores of 10 nm or less of the secondary particles 20 may be at least 10% of the total pore volume.
  • the pore volume fraction can be measured by the BJH desorption method.
  • the fine pores of 10 nm or less may be located on the surface of the secondary particles 20.
  • the secondary particles 20 can be uniformly shrunk and expanded upon insertion / removal of lithium by the primary particles 10 arranged in surface contact with each other, and the secondary particles 20, which is the direction in which the lithium primary particles 10 expand, Micropores exist in the negative side to provide a buffering action.
  • the secondary particles 20 may have a pore size decreasing gradually from the core (central portion) to the surface portion. That is, the core of the secondary particles 20 may have pores having a larger pore size than the surface portion. In this case, the diffusion distance of lithium ions to the core is shortened.
  • the pore size of the core of the secondary particles 20 may be in the range of 150 nm to 1 ⁇ m, for example, 150 nm to 550 nm, and the pore size of the surface portion may be in the range of less than 150 nm, for example, 120 nm or less.
  • the "pore size" indicates the average diameter of the pores when the pores are spherical or circular.
  • the secondary particles 20 include a number of minute pores of several nm in size between the primary particles at the surface portion, and the lithium migration from the electrolyte solution to the cathode active material is maximized through the micropores.
  • the overall porosity of the cathode active material may be between 1% and 8%, for example between 1.5% and 7.3%.
  • the porosity of the surface portion of the cathode active material is smaller than the porosity of the core.
  • the secondary particles 20 may have a degree of porosity that gradually decreases from the core to the surface portion.
  • the porosity of the core may be in the range of 2 to 20%, for example 3.3 to 16.5%, and the surface porosity may be in the range of 0.3% to 0.7%.
  • the porosity is used in the same sense as the porosity volume fraction, and represents the area occupied by the pores with respect to the total area.
  • the cathode active material may be a compound represented by the following general formula (1).
  • M is at least one element selected from the group consisting of boron (B), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), titanium (Ti), vanadium (V), chromium (Cr) ), Zirconium (Zr), and aluminum (Al).
  • 0.95? A? 1.3 for example, 1.0? A? 1.1, 0 ⁇ x? 0.33, for example 0.1? A? 0.33, and 0? Y? 0.5, 0? Z? 0.05, and 0.33? (1-xyz)? 0.95.
  • 0.33? (1-x-y-z)? 0.95 0.95.
  • z in formula (1) may be zero.
  • the cathode active material may include LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , or LiNi 0.85 Co 0.1 Al 0.05 O it may be two days.
  • the cathode active material may be prepared by mixing a lithium precursor and a metal hydroxide precursor at a constant molar ratio and subjecting the resulting mixture to heat treatment in an oxidizing gas atmosphere.
  • the lithium precursor may be, for example, lithium hydroxide, lithium fluoride, lithium carbonate or mixtures thereof.
  • the metal hydroxide precursor includes a core, an intermediate layer and a shell having different porosities from each other.
  • the porosity gradually decreases from the core to the shell, and the intermediate layer and the shell have a structure in which plate primary particles are radially arranged Lt; / RTI >
  • Me (OH) 2 (wherein Me is nickel, cobalt, manganese and M in formula (1)) can be used.
  • the metal hydroxide precursor may be a compound represented by Formula 2 below.
  • M is at least one element selected from the group consisting of boron (B), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), titanium (Ti), vanadium (V), chromium (Cr) ), Copper (Cu), zirconium (Zr), and aluminum (Al)
  • Metal hydroxide precursor of Formula 2 for example, Ni 0.6 Co 0.2 Mn 0.2 (OH ) 2, Ni 0.5 Co 0.2 Mn 0.3 (OH) 2, Ni 0.33 Co 0.33 Mn 0.33 (OH) 2 or Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 .
  • the singly metal hydroxide precursor is reacted with a complexing agent, a pH adjusting agent and a metal raw material for forming a metal hydroxide precursor to form a core of the nickel-based active material precursor; Forming an intermediate layer on top of the core; And forming a surface portion on the intermediate layer.
  • the process conditions such as the concentration and the amount of the metal raw material, the concentration and the amount of the ammonia water as the complexing agent, and the amount of the pH adjusting agent may be different.
  • the core forming process is as follows.
  • the reaction is carried out by adding a metal raw material.
  • a pH adjusting agent may be additionally controlled as needed.
  • the concentration of complexing agent may be from 0.1M to 0.7M, for example from about 0.2M to 0.5M.
  • the concentration of the metal raw material may be 0.1M to 0.5M, for example, 0.3M.
  • the input amount of the metal raw material may be 50 ml / min to 100 ml / min,
  • the intermediate layer forming step formed on the core is as follows.
  • a metal raw material and a complexing agent are added to the reaction product obtained in the above-mentioned core forming step, the pH of the reaction mixture is controlled, and the reaction is carried out.
  • the amount of the metal raw material and the complexing agent are increased and the concentration is increased in order to prevent the growth rate due to the growth of the particles from decreasing after reacting the product obtained in the core forming step for a predetermined time.
  • the concentration of the complexing agent may be, for example, 0.3 M to 1.0 M
  • the dosing amount of the complexing agent may be 8 ml / min to 12 ml / min
  • the amount of the metal raw material may be 90 ml / min to 120 ml / min have.
  • the shell forming process formed on the upper part of the intermediate layer is as follows.
  • the amount and concentration of the metal raw material and the complexing agent are increased in order to prevent the growth rate of the reaction product obtained in the intermediate layer forming process from decreasing after the reaction for a predetermined time.
  • the concentration of the complexing agent may be 0.35 M to 1.0 M
  • the amount of the complexing agent may be 12 ml / min to 18 ml / min
  • the amount of the metal raw material may be 120 ml / min to 150 ml / min.
  • the reaction conditions of the shell-forming process greatly affect the surface depth of the porous layer in the metal hydroxide precursor.
  • the stirring power in each process ranges from 0.1 to 6 kW / m 2 , for example from 1 to 3 kW / m 2 .
  • the agitating power of the intermediate layer forming step and the shell forming step may be reduced as compared with the agitating power of the core forming step and the stirring power of the intermediate layer forming step and the shell forming step may be the same.
  • the pH of the reaction mixture is controlled in the range of 10-12.
  • pH adjusting agent to control the pH of the reaction mixture and serves to form a precipitate from the reaction mixture, such as sodium (NaOH), sodium carbonate (Na 2 CO 3), oxalic acid, sodium (Na 2 C 2 O 4) hydroxide Sodium hydroxide (NaOH) may be preferably used.
  • the concentration of the complexing agent increases sequentially toward the core, the intermediate layer, and the shell forming process, and may range, for example, from 0.1M to 0.7M.
  • the complexing agent serves to control the reaction rate of the precipitate in the coprecipitation reaction, and includes ammonia water, citric acid, and the like, preferably ammonia water.
  • the content of the complexing agent is used at a usual level.
  • the metal hydroxide precursor obtained in the above process is mixed with the lithium precursor. The mixing ratio of the metal hydroxide precursor and the lithium precursor is stoichiometrically controlled so as to prepare the cathode active material of Formula 1 above.
  • the mixing may be dry mixing or may be performed using a mixer or the like.
  • Dry mixing can be carried out using milling.
  • the metal hydroxide precursor used as the starting material is hardly deformed such as pulverization. This requires a process to pre-control the size of the lithium precursor to be mixed with the metal hydroxide precursor.
  • the size (average particle diameter) of the lithium precursor is in the range of 5 to 20 ⁇ ⁇ , for example, about 10 ⁇ ⁇ .
  • a desired nickel-based active material intermediate can be obtained.
  • cooling may be performed to maintain the internal temperature of the mixer at room temperature (25 ° C).
  • the heat treatment is performed in an oxidizing gas atmosphere.
  • the oxidizing gas atmosphere uses an oxidizing gas such as oxygen or air.
  • the oxidizing gas is composed of 10 to 20% by volume of oxygen or air and 80 to 90% by volume of an inert gas.
  • the heat treatment may be performed at 600 to 800 ° C, for example, 650 to 800 ° C.
  • the heating rate during the heat treatment may be 1 to 5 ⁇ ⁇ / min, for example 3 ⁇ ⁇ / min.
  • the heat treatment time varies depending on the high temperature heat treatment temperature and the like, but is carried out for 3 to 10 hours, for example.
  • the lithium secondary battery comprises the cathode active material.
  • the lithium secondary battery includes a positive electrode including the positive electrode active material, a negative electrode, an electrolyte, and a separator.
  • the positive electrode and the negative electrode are produced by applying and drying a composition for forming a positive electrode active material layer and a composition for forming a negative electrode active material layer, respectively, on a current collector.
  • the composition for forming a cathode active material is prepared by mixing a cathode active material, a conductive agent, a binder and a solvent, and the cathode active material is as described above.
  • the binder is added to the binder in an amount of 1 to 50 parts by weight based on 100 parts by weight of the total weight of the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene Ethylene, propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluorine rubber, various copolymers and the like.
  • 0.5 to 5 parts by weight for example, 1 to 5 parts by weight or 2 to 5 parts by weight, based on 100 parts by weight of the total weight of the cathode active material, is used.
  • the content of the binder is in the above range, the binding force of the active material layer to the current collector is good.
  • the conductive agent is not particularly limited as long as it has electrical conductivity without causing a chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbonaceous materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Carbon fluoride; Metal powders such as aluminum and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • graphite such as natural graphite and artificial graphite
  • Carbonaceous materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black
  • Conductive fibers such as carbon fiber and metal fiber
  • Carbon fluoride Carbon fluoride
  • Metal powders such as aluminum and nickel powder
  • Conductive whiskey such as zinc oxide and potassium titanate
  • Conductive metal oxides
  • the conductive agent is used in an amount of 0.5 to 5 parts by weight, for example, 1 to 5 parts by weight or 2 to 5 parts by weight based on 100 parts by weight of the total weight of the cathode active material.
  • the content of the conductive agent is in the above range, the conductivity of the finally obtained electrode is excellent.
  • N-methylpyrrolidone or the like is used as a non-limiting example of the solvent.
  • the solvent is used in an amount of 1 to 10 parts by weight based on 100 parts by weight of the positive electrode active material.
  • the content of the solvent is within the above range, the work for forming the active material layer is easy.
  • the cathode current collector is not particularly limited as long as it has a thickness of 3 to 500 ⁇ and has high conductivity without causing chemical changes in the battery.
  • Examples of the anode current collector include stainless steel, aluminum, nickel, titanium, Or a surface treated with carbon, nickel, titanium or silver on the surface of aluminum or stainless steel can be used.
  • the current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.
  • a negative electrode active material a binder, a conductive agent, and a solvent are mixed to prepare a composition for forming the negative electrode active material layer.
  • the negative electrode active material a material capable of absorbing and desorbing lithium ions is used.
  • the negative electrode active material graphite, a carbon-based material such as carbon, a lithium metal, an alloy thereof, and a silicon oxide-based material may be used.
  • silicon oxide is preferably used.
  • the binder is added in an amount of 0.5 to 50 parts by weight, for example, 1 to 50 parts by weight based on 100 parts by weight of the total weight of the negative electrode active material.
  • Non-limiting examples of such binders may be of the same kind as the anode.
  • the conductive agent is used in an amount of 5 parts by weight or less, for example, 1 to 5 parts by weight based on 100 parts by weight of the total weight of the negative electrode active material.
  • the content of the conductive agent is in the above range, the conductivity of the finally obtained electrode is excellent.
  • the solvent is used in an amount of 1 to 10 parts by weight based on 100 parts by weight of the total weight of the negative electrode active material.
  • the content of the solvent is within the above range, the work for forming the negative electrode active material layer is easy.
  • the conductive agent and the solvent may be the same kinds of materials as those used in preparing the positive electrode.
  • the negative electrode current collector is generally made to have a thickness of 3 to 500 mu m.
  • Such an anode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and may be formed of a material such as copper, stainless steel, aluminum, nickel, titanium, heat-treated carbon, surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used.
  • fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
  • a separator is interposed between the anode and the cathode fabricated according to the above process.
  • the separator has a pore diameter of 0.01 to 10 mu m and a thickness of 5 to 300 mu m.
  • Specific examples include olefin-based polymers such as polypropylene and polyethylene; Or a sheet or nonwoven fabric made of glass fiber or the like is used.
  • a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
  • a non-aqueous electrolyte including a non-aqueous solvent and a lithium salt, an organic solid electrolyte, and an inorganic solid electrolyte may be used.
  • the non-aqueous solvent includes, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, N, N-dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphoric acid, phosphoric acid triester,
  • the solvent include trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, methyl propionate and ethyl propionate
  • An aprotic organic solvent may be used.
  • the lithium salt may be dissolved in the non-aqueous electrolyte.
  • the lithium salt include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, lithium chloro borate, lower aliphatic carboxylic acid lithium, tetraphenyl lithium borate, imide Etc. may be used.
  • organic solid electrolyte examples include, but are not limited to, a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride and the like.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4, Li 4 SiO 4 -LiI -LiOH, Li 3 PO 4 -Li 2 may be used such as S-SiS 2.
  • FIG. 2 is a perspective view schematically showing a typical structure of a lithium secondary battery according to one embodiment.
  • the lithium secondary battery 31 includes a positive electrode 33, a negative electrode 32, and a separator 34 including a positive electrode active material according to one embodiment.
  • the positive electrode 33, the negative electrode 32 and the separator 34 described above are wound or folded and accommodated in the battery case 35. Then, the organic electrolyte is injected into the battery case 35 and the cap assembly 36 is sealed to complete the lithium secondary battery 31.
  • the battery case 35 may have a cylindrical shape, a rectangular shape, a thin film shape, or the like.
  • the lithium secondary battery 30 may be a large-sized thin-film battery.
  • the lithium secondary battery may be a lithium ion battery.
  • a separator may be disposed between the anode and the cathode to form a battery structure.
  • the cell structure is laminated in a bi-cell structure, then impregnated with an organic electrolyte solution, and the obtained result is received in a pouch and sealed to complete a lithium ion polymer battery.
  • a plurality of battery assemblies are stacked to form a battery pack, and such a battery pack can be used for all devices requiring a high capacity and high output. For example, a notebook, a smart phone, an electric vehicle, and the like.
  • the lithium secondary battery has excellent storage stability, lifetime characteristics, and high-rate characteristics at high temperatures, and thus can be used in an electric vehicle (EV).
  • a hybrid vehicle such as a plug-in hybrid electric vehicle (PHEV).
  • PHEV plug-in hybrid electric vehicle
  • Nickel sulfate, cobalt sulfate, and manganese sulfate were used as metal raw materials for forming metal hydroxide precursors in the following manufacturing process.
  • aqueous ammonia (NH 3 ) having a concentration of 0.30 M was added to the reactor.
  • the reaction was initiated at a mixing power of 1.5 kW / m 3 and a reaction temperature of 50 ⁇ at a rate of 90 ml / min and 10 ml / min, respectively, of the metal raw material and complexing agent (ammonia water).
  • the reaction was carried out for 6 hours while adding NaOH.
  • the average size of the obtained core particles was in the range of about 5.5 mu m to 6.5 mu m, and the second step was carried out as follows.
  • the metal raw material and complexing agent were changed at a rate of 100 ml / min and 15 ml / min, respectively, while keeping the reaction temperature at 50 ° C, so that the concentration of the complexing agent was kept at 0.35M.
  • NaOH was added and reacted for 6 hours.
  • the stirring power was lowered by 1.0 kW / m 3 lower than that of the first stage.
  • the third step was carried out as follows, confirming that the average size of the obtained product particles containing the core and the intermediate layer obtained by this reaction was 9 ⁇ to 10 ⁇ .
  • the reaction temperature was maintained at 50 ° C, the metal raw material and the complexing agent were changed at a rate of 150 ml / min and 20 ml / min, respectively, so that the concentration of the complexing agent was maintained at 0.40M.
  • NaOH was added and reacted for 4 hours. The stirring power was maintained at the same level as the second step.
  • the resultant was washed, and the washed product was hot-air dried at about 150 ° C for 24 hours to obtain a metal hydroxide precursor (Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 ).
  • Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 The contents of nickel sulfate, cobalt sulfate and manganese sulfate were changed to obtain metal hydroxide (Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 ) and reacted for 25 hours (first stage: 10 hours, second stage: And the third step: 5 hours), a metal hydroxide precursor (Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 ) was obtained in the same manner as in Production Example 1.
  • Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 The content of nickel sulfate, cobalt sulfate and manganese sulfate was varied to obtain a metal hydroxide precursor (Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 ), and after 25 hours (first stage: 12 hours, second stage: 8 (Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 ) was obtained in the same manner as in Production Example 1 except that the reaction was carried out in the same manner as in Production Example 1,
  • Ni 0.33 Co 0.33 Mn 0.33 (OH) 2 ) The contents of nickel sulfate, cobalt sulfate and manganese sulfate were changed so as to obtain a metal hydroxide precursor (Ni 0.33 Co 0.33 Mn 0.33 (OH) 2 ), and the content was changed to 28 hours (first stage: 11 hours, second stage: (Ni 0.33 Co 0.33 Mn 0.333 (OH) 2 ) was obtained in the same manner as in Production Example 1, except that the reaction was conducted in the same manner as in Production Example 1,
  • LiNi 0.6 Co 0.2 Mn 0.2 (OH) 2 (Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 ) obtained in Production Example 1 and lithium hydroxide (LiOHH 2 O) having an average particle diameter of about 15 ⁇ m were dry-cast at 2,000 rpm (using a high-speed mixer In a molar ratio of 1: 1, and the resulting mixture was subjected to a first heat treatment while maintaining the mixture in an oxygen atmosphere at a temperature of about 800 to 6 hours, followed by a secondary heat treatment at 830 for 6 hours to obtain a cathode active material LiNi 0.6 Co 0.2 Mn 0.2 O 2 was synthesized.
  • the cathode active material LiNi 0.6 Co 0.2 Mn 0.2 O 2 was synthesized in the same manner as in Example 1, except that the heat treatment temperature was changed to 870 ⁇ .
  • the cathode active material LiNi 0.6 Co 0.2 Mn 0.2 O 2 was synthesized in the same manner as in Example 1, except that the heat treatment temperature was changed to 870 ° C.
  • Comparative Preparation Example 1 The procedure of Comparative Preparation Example 1 was repeated except that the metal hydroxide seeds were slowly grown for a period of 80 hours until the seeds reached a desired size.
  • a metal hydroxide precursor Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 ).
  • the pore volume fractions of the cathode active material obtained according to Examples 1 to 4 and the cathode active material prepared according to Comparative Examples 1 and 2 were measured using a BJH desorption method using a surface area and porosity analyzer (ASAP 2020, Micromeritics) . Each of the cathode active materials was pretreated in a nitrogen atmosphere at 300 ° C for 15 minutes and then measured. 3 shows the pore volume fractions of the cathode active materials according to Example 1 and Comparative Example 1.
  • the pore volume fractions of the cathode active materials of Examples 1 and 2 and Comparative Examples 1 and 2 were measured by the BJH Desorption method, The volume fraction of the pores having a pore size of 10 nm or less in comparison is summarized in Table 1.
  • the cathode active material according to Examples 1 and 2 had a volume fraction of pores having a pore size of 10 nm or less of 10% or more, whereas the cathode active material according to Comparative Example 1 and Comparative Example 2 had a pore size of 10 nm or less The volume fraction of pores having a pore size was found to be less than 10%.
  • the slurry for forming the cathode active material layer prepared according to the above procedure was coated on an aluminum foil using a doctor blade to form a thin electrode plate.
  • the slurry was dried at 135 ° C. for 3 hours or more, and then subjected to rolling and vacuum drying. Respectively.
  • a coin half-cell was prepared using the positive electrode and a lithium metal counter electrode as a counter electrode.
  • a coin cell was produced between the positive electrode and the lithium metal counter electrode by injecting an electrolyte through a separator (thickness: about 16 ⁇ m) made of a porous polyethylene (PE) film.
  • the electrolyte used was a solution containing 1.1 M LiPF 6 dissolved in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed in a volume ratio of 3: 5.
  • a coin cell was prepared in the same manner as in Example 1 except that the cathode active material according to Example 2, Comparative Example 1 and Comparative Example 2 was used instead of the cathode active material prepared according to Example 1.
  • the life characteristics of the coin cells prepared according to Examples 5, 6, and 3 and Comparative Example 4 were evaluated as follows: First, charge and discharge were performed once at 0.1 C to proceed formation, After that, the initial charge / discharge characteristics were confirmed at 0.2C charge / discharge cycle and cyclic characteristics were examined by repeating charging / discharging 50 times at 1C. When charging, it starts with CC (constant current) mode, then it is changed to CV (constant voltage), and it is set to cut off at 4.3V and 0.05C, and set to cut off at 3.0V in CC (constant current) mode at discharge. The results are shown in Fig.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

복수의 1차 입자가 응집된 2차 입자를 포함하고, 상기 2차 입자는 상기 1차 입자의 (003)면이 2차 입자의 표면과 만나는 점(P)에서의 접선에 대하여 수직방향이 되도록 배향된 1차 입자를 포함하는 일정 배열 구조를 가지는, 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지가 개시된다.

Description

리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
휴대용 전자기기, 통신기기 등이 발전함에 따라 고에너지 밀도의 리튬 이차전지에 대한 개발의 필요성이 높다.
이러한 종류의 리튬 이차 전지는 전극 집전체 상에 전극 활물질을 포함하는 전극 활물질층이 형성된 양극과 음극을 포함한다. 양극 활물질로는 리튬 이온의 층간 삽입이 가능한 재료가 대부분이며, 리튬 코발트 산화물(LixCoO2), 리튬 니켈 산화물(LixNiO2), 리튬 니켈 코발트 산화물(Lix(NiCo)O2), 리튬 니켈 코발트 망간 산화물(Lix(NiCoMn)O2), 스피넬형 리튬망간 산화물(LixMn2O4), 이산화망간(MnO2) 등과 같은 산화물 또는 리튬 철 인산염(LixFePO4), 리튬 망간 인산염(LixMnPO4) 등과 같은 올리빈(olivine)형이나 NASICON형 인산염(phosphates), 규산염(silicates) 또는 고분자 재료 등을 사용할 수 있다.
음극 활물질로는 리튬 금속이나 그 합금 또는 리튬이온이 층간 삽입(intercalation)될 수 있는 화합물이 사용될 수 있는데, 고분자 재료나 탄소 재료가 사용될 수 있으며, 인조 또는 천연흑연(graphite) 등의 흑연계, 난흑연화성 탄소(non-graphitizable carbon), 또는 이흑연화성 탄소(graphitizable carbon), 탄소나노튜브(carbon nanotube, CNT), 탄소나노섬유(carbon nanofiber, CNF), 탄소나노월(carbon nanowall, CNW) 등과 같은 탄소계 등이 사용될 수 있다.
일 구현예는 충방전시 리튬 확산도가 개선되고 부피변화에 따른 스트레스를 완화시킴으로써 충방전 용량, 효율, 수명 특성 등이 개선된 리튬 이차 전지용 양극 활물질을 제공한다.
다른 구현예는 상기 리튬 이차 전지용 양극 활물질을 포함하는 리튬 이차 전지를 제공한다.
일 구현예에 따르면, 복수의 1차 입자가 응집된 2차 입자를 포함하고, 상기 2차 입자는 상기 1차 입자의 (003)면이 2차 입자의 표면과 만나는 점(P)에서의 접선에 대하여 수직방향이 되도록 배향된 1차 입자를 포함하는 일정 배열 구조를 가지는, 리튬 이차 전지용 양극 활물질이 제공된다.
상기 1차 입자의 50% 이상이 (003)면이 2차 입자의 표면과 만나는 점(P)에서의 접선에 대하여 수직방향이 되도록 배향될 수 있다.
상기 1차 입자의 c축 방향의 평균길이는 100 내지 200nm의 범위에 있을 수 있다.
상기 1차 입자의 (003)면에 대하여 수직인 면의 장변과 단변의 길이의 비는 1:2 내지 1:10의 범위에 있을 수 있다.
상기 2차 입자는 일 중심을 가지는 방사형 배열 구조 또는 복수의 중심을 가지는 다중심 방사형 배열 구조를 가질 수 있다.
상기 2차 입자의 10 nm 이하의 미세 기공의 기공 부피 분율이 전체 기공 부피의 10% 이상일 수 있다.
상기 2차 입자는 코어에서 표면부로 갈수록 순차적으로 감소하는 기공 사이즈를 가질 수 있다.
상기 2차 입자는 코어에서 표면부로 갈수록 순차적으로 감소하는 기공도를 가질 수 있다.
다른 구현예에 따르면, 상술한 양극, 음극 및 이들 사이에 개재된 전해질을 함유하는 리튬 이차 전지가 제공된다.
일 구현예에 따른 리튬 이차 전지용 양극 활물질을 이용하면 충방전시 리튬 확산도가 개선되고 부피변화에 따른 스트레스를 완화시킴으로써 충방전 용량, 효율 및 수명 특성이 개선된 리튬 이차 전지를 제작할 수 있다.
도 1은 일 구현예에 따른 리튬 이차 전지용 양극 활물질을 구성하는 배향된 1차 입자들을 개략적으로 보인 도면이다.
도 2는 일 구현예에 따른 리튬 이차 전지의 대표적인 구조를 개략적으로 도시한 사시도이다.
도 3은 실시예 1과 비교예 1에 따른 양극 활물질의 기공 부피 분율의 측정 결과를 보인 그래프이다.
도 4는 실시예 5, 실시예 6, 비교예 3 및 비교예 4에 따라 제조된 코인 셀에 대하여 수명 특성의 측정 결과를 보인 그래프이다.
이하, 구현예들에 대하여 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 구현예는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다.
일 구현예에 따르면, 복수의 1차 입자가 응집된 2차 입자를 포함하고, 상기 2차 입자는 상기 1차 입자의 (003)면이 2차 입자의 표면과 만나는 점(P)에서의 접선에 대하여 수직방향이 되도록 배향된 1차 입자를 포함하는 일정 배열 구조를 가지는, 리튬 이차 전지용 양극 활물질이 제공된다.
이하에서, 상기 리튬 이차 전지용 양극 활물질을 도 1을 참조하여 설명한다.
도 1은 일 구현예에 따른 리튬 이차 전지용 양극 활물질을 구성하는 배향된 1차 입자들을 개략적으로 보인 도면이다.
도 1에는 2개의 1차 입자들로 구성된 2차 입자만 도시되어 있으나 3개 이상의 1차 입자가 응집하여 2차 입자를 형성할 수 있음은 물론이다. 도 1을 참조하면, 1차 입자(10)의 (003)면이 2차 입자의 표면과 만나는 점(P1, P2)에서의 접선에 대하여 수직방향이 되도록 배향된다.
여기에서 2차 입자의 표면은 인접하는 1차 입자의 장축(a축) 또는 단축(b축)이 1차 입자의 에지(edge)와 만나는 점을 연결한 구상의 면을 의미한다. 또한 수직 방향이라 함은 (003)면의 장축(a축) 또는 단축(b축)과 2차 입자의 표면과 만나는 점(P1, P2)에서의 접선이 서로 90°± 20°, 예를 들어 90°± 10°의 각을 이루면서 교차하는 것을 의미한다.
상기 1차 입자(10)의 50% 이상, 예를 들어 60% 또는 70% 이상이 (003)면이 2차 입자의 표면과 만나는 점(P)에서의 접선에 대하여 수직방향이 되도록 배향될 수 있다.
상기 1차 입자(10)는 플레이트 형상을 가질 수 있으며, 1차 입자의 두께 방향의 길이(c축가 방향의 길이)가 1차 입자의 면방향(장축(a축) 또는 단축(b축))보다 작은 것을 의미할 수 있다. 상기 1차 입자(10)의 (003)면은 장축(a축) 또는 단축(b축)이 서로 상이한 직사각형, 타원형, 육각형 판상형, 무정형이 될 수도 있고 a축과 b축이 서로 동일한 원형 또는 정사각형 형태를 가질 수도 있으며, 이에 한정되는 것은 아니다.
상기 면방향(장축(a축) 또는 단축(b축))의 평균길이는 150 내지 500nm이고, 예를 들어 200 내지 380nm, 구체적으로 290 내지 360nm일 수 있다. 상기 면방향의 평균 길이는 장축 길이와 단축 길이의 평균 길이를 의미한다.
상기 1차 입자(10)의 두께 방향의 길이(c축 방향의 길이)는 100 내지 200nm이고, 예를 들어 120 내지 180nm, 구체적으로 130 내지 150nm의 범위에 있을 수 있다. 이와 같이 1차 입자(10)의 두께가 작기 때문에 수축 팽창시 발생될 수 있는 크랙이 감소되어 수명 특성이 향상되고 저항증가가 줄어든다.
상기 1차 입자(10)의 (003)면에 대하여 수직인 면의 장변과 단변의 비는 1:2 내지 1:10, 예를 들어 1:2.1 내지 1:5, 구체적으로 1:2.3 내지 1:2.9의 범위에 있을 수 있다.
상기와 같이 배향된 1차 입자(10)는 서로 응집하여 2차 입자(20)를 형성한다. 예를 들어 복수의 1차 입자(10)들은 서로 응집하여 도 2에 도시된 바와 같이 방사형 배열구조를 가지는 2차 입자(20)를 제공할 수 있다.
상기 2차 입자(20)의 입자 크기는 2 내지 20㎛, 예를 들어 8 내지 15㎛, 구체적으로 약 12㎛일 수 있다. 여기에서 입자 크기란 2차 입자(20)가 구형인 경우 평균직경을 말한다. 만약 2차 입자(20)가 타원형, 막대형, 무정형 등인 경우에는 장축 길이를 나타낸다.
상기 1차 입자(10)의 (003)면이 2차 입자(20)의 표면과 만나는 점((P1, P2)에서의 접선에 대하여 수직방향이 되도록 배향되는 경우, 2차 입자(20)의 표면부 쪽에 상대적으로 많은 입계 사이의 리튬 확산 통로를 제공할 수 있고 리튬 전달이 가능한 결정면이 많이 노출되어 리튬 확산도가 향상되어 높은 초기효율 및 용량의 확보가 가능하다. 또한 충방전시 2차 입자(20)의 부피 변화에 따른 스트레스를 억제시켜 크랙 발생을 억제할 수 있다.
본 명세서에서 중간층과 쉘을 포함하는 영역을 "표면부"라 하며, 2차 입자(20)의 중심으로부터 최표면까지의 총거리 중, 최표면으로부터 30 내지 50 길이%, 예를 들어 40 길이%의 영역을 의미할 수 있다. 예를 들어 상기 "표면부"는 2차 입자(20)의 최표면에서 3㎛ 이내의 영역을 의미할 수 있다. 또한 "쉘"은 2차 입자(20)의 중심으로부터 최표면까지의 총거리 중, 최표면으로부터 5 내지 15 길이%, 예를 들어 10 길이%의 영역을 의미할 수 있다. 또한 "코어(중심부)"는 2차 입자(20)의 중심으로부터 최표면까지의 총거리 중, 중심으로부터 50 내지 70 길이%, 예를 들어 60 길이%의 영역을 의미할 수 있다. "중간층"은 코어와 쉘을 제외한 나머지 영역을 나타낸다. 본 명세서에서 1차 입자(10)의 배향은 2차 입자(20)의 표면부에서 주로 이루어질 수 있다.
또한 1차 입자(10)들이 도 1에 도시된 바와 같이 서로 면(面)접촉하여 배열되는 경우 1차 입자(10) 사이의 형성된 기공도 2차 입자(20)의 표면부에 존재하게 되어 표면으로부터의 리튬 확산을 촉진시킨다.
상기 복수의 1차 입자(10)는 1차 입자(10)의 c축(두께) 방향을 따라 면(面)접촉을 이루도록 일 중심을 향하여 배열되어 방사형 배열 구조를 가지는 2차 입자(20)를 제공할 수 있다. 다른 구현예에서 상기 2차 입자(20)는 복수의 중심을 가지는 다중심 방사형 배열 구조를 가질 수 있다.
상기와 같이 2차 입자(20)가 일중심 또는 다중심 방사형 배열 구조를 가지는 경우 2차 입자(20)의 코어(중심부)까지 리튬의 탈/삽입이 용이해진다.
일 구현예에서 상기 2차 입자(20)의 10 nm 이하의 미세 기공의 기공 부피 분율이 전체 기공 부피의 10% 이상일 수 있다. 여기에서 기공 부피 분율은 BJH 탈착(desorption)법에 의해 측정될 수 있다. 이러한 10 nm 이하의 미세 기공은 2차 입자(20)의 표면부에 위치할 수 있다. 면접촉하여 배열된 1차 입자(10)들에 의해 리튬 삽입/탈리시 균일한 수축, 팽창이 가능하고, 리튬 탈리시 1차 입자(10)가 팽창하는 방향인 2차 입자(20)의 표면부 쪽에 미세 기공이 존재하여 완충작용을 해준다.
또한 상기 2차 입자(20)는 코어(중심부)에서 표면부로 갈수록 순차적으로 감소하는 기공 사이즈를 가질 수 있다. 즉 상기 2차 입자(20)의 코어에는 표면부에 비하여 큰 기공 사이즈를 갖는 기공이 형성될 수 있다. 이 경우 코어까지의 리튬 이온의 확산거리가 짧아지는 효과가 있다. 상기 2차 입자(20)의 코어의 기공 사이즈는 150nm 내지 1㎛, 예를 들어 150nm 내지 550nm의 범위에 있을 수 있고 표면부의 기공 사이즈는 150nm 미만, 예를 들어 120nm 이하의 범위에 있을 수 있다. 여기에서 "기공 사이즈"는 기공이 구형 또는 원형인 경우 기공 사이즈는 기공의 평균직경을 나타낸다. 기공이 타원형 등인 경우, 기공 사이즈는 장축 길이를 나타낸다. 상기 2차 입자(20)는 표면부에서 1차 입자 사이에 수 nm 크기의 미세기공을 다수 포함하며, 이러한 미세기공을 통하여 전해액에서 양극 활물질로의 리튬 이동이 극대화된다. 상기 양극 활물질의 전체적인 기공도(porosity)는 1% 내지 8 %, 예를 들어 1.5% 내지 7.3 %일 수 있다. 양극 활물질에서 표면부의 기공도는 코어의 기공도에 비하여 작다.
상기 2차 입자(20)는 코어에서 표면부로 갈수록 순차적으로 감소하는 기공도를 가질 수 있다. 코어의 기공도는 2 내지 20 %, 예를 들어 3.3 % 내지 16.5 %이고, 표면부의 기공도는 0.3 % 내지 0.7 %의 범위에 있을 수 있다. 본 명세서에서 기공도는 기공 부피 분율과 동일한 의미로 사용되며, 전체 총면적 대비 기공이 차지하는 면적을 비율로 나타낸 것이다.
상기 양극 활물질은 하기 화학식 1로 표시되는 화합물일 수 있다.
[화학식 1]
Lia(Ni1-x-y-zCoxMnyMz)O2
상기 화학식 1에서,
M은 보론(B), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 티타늄(Ti), 바나듐(V), 크롬(Cr), 철(Fe), 구리(Cu), 지르코늄(Zr) 및 알루미늄(Al)으로 이루어진 그룹에서 선택되는 원소이고,
0.95≤a≤1.3, x≤(1-x-y-z), y≤(1-x-y-z), 0 <x<1, 0≤y<1, 0≤z<1이다.
화학식 1에서 0.95≤a≤1.3, 예를 들어 1.0≤a≤1.1, 0<x≤0.33, 예를 들어 0.1≤a≤0.33, 이고, 0≤y≤0.5, 예를 들어 0.05≤y≤0.3, 0≤z≤0.05, 0.33≤(1-x-y-z) ≤0.95이다. 예를 들어, 화학식 1에서 0.33≤(1-x-y-z) ≤0.95이다.
다른 일 구현예에 의하면, 상기 화학식 1에서 0≤z≤0.05이고, 0<x≤ 0.33이고, 0≤y≤0.33이다.
일 구현예에 의하면, 상기 화학식 1에서 z은 0일 수 있다.
다른 일 구현예에 의하면, 상기 화학식 1에서 0<z≤0.05인 경우 M은 알루미늄일 수 있다.
예를 들어 상기 양극 활물질은 LiNi0.6Co0.2Mn0.2O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.33Co0.33Mn0.33O2, LiNi0.8Co0.1Mn0.1O2, 또는 LiNi0.85Co0.1Al0.05O2일 수 있다.
상기 양극 활물질은 리튬 전구체 및 금속 하이드록사이드 전구체를 일정 몰비로 혼합하여 얻어진 혼합물을 산화성 가스 분위기하에서 열처리하여 제조할 수 있다.
상기 리튬 전구체는 예를 들어 수산화리튬, 플루오르화리튬, 탄산리튬 또는 그 혼합물을 사용할 수 있다.
상기 금속 하이드록사이드 전구체는 기공도가 서로 상이한 코어, 중간층 및 쉘을 포함하고, 코어에서 쉘로 갈수록 기공도가 순차적으로 감소되고 상기 중간층과 쉘은 플레이트형의 1차 입자가 방사형으로 배열된 구조를 가질 수 있다.
상기 금속 하이드록사이드 전구체로는 Me(OH)2(Me는 화학식 1의 니켈, 코발트, 망간 및 M을 함유한다)를 사용할 수 있다.
일 구현예에서 상기 금속 하이드록사이드 전구체는 하기 화학식 2로 표시되는 화합물일 수 있다.
[화학식 2]
(Ni1-x-y-zCoxMnyMz)(OH)2
상기 화학식 2에서, M은 보론(B), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 티타늄(Ti), 바나듐(V), 크롬(Cr), 철(Fe), 구리(Cu), 지르코늄 (Zr) 및 알루미늄(Al)으로 이루어진 그룹에서 선택되는 원소이고,
x≤(1-x-y-z), y≤(1-x-y-z), 0 < x < 1, 0 ≤ y <1, 0 ≤ z <1이다.
화학식 2에서, 0<x≤0.33이고, 0≤y≤0.5, 0≤z≤0.05, 0.33≤(1-x-y-z)≤0.95이다.
화학식 2에서 0.5≤(1-x-y-z)≤0.95일 수 있다.
상기 화학식 2의 금속 하이드록사이드 전구체는 예를 들어 Ni0.6Co0.2Mn0.2(OH)2, Ni0.5Co0.2Mn0.3(OH)2, Ni0.33Co0.33Mn0.33(OH)2 또는 Ni0.8Co0.1Mn0.1(OH)2이 있다.
싱기 금속 하이드록사이드 전구체는 착화제, pH 조절제 및 금속 하이드록사이드 전구체 형성용 금속 원료의 반응을 실시하여 니켈계 활물질 전구체의 코어를 형성하고; 상기 코어의 상부에 중간층을 형성하고; 및 상기 중간층 상부에 표면부를 형성하는 공정에 의해 제조될 수 있다.
상기 코어, 중간층 및 표면부를 형성하는 공정에서 금속 원료의 농도 및 투입량과, 착화제인 암모니아수의 농도 및 투입량 그리고 pH조절제 투입량 등의 공정조건을 달리할 수 있다.
먼저, 코어 형성 공정은 다음과 같다.
반응기에 착화제 및 pH조절제를 부가한 뒤, 금속 원료를 첨가하여 반응을 실시한다. 반응이 진행됨에 따라 반응기내 반응 혼합물의 pH가 달라지면 필요에 따라 pH 조절제를 더 부가하여 제어할 수 있다. 구체적인 공정조건으로, 착화제의 농도는 0.1M 내지 0.7M이고, 예를 들어 약 0.2M 내지 0.5M일 수 있다. 금속 원료의 농도는 0.1M 내지 0.5M, 예를 들어 0.3M일 수 있다. 금속 원료의 투입량은 50 ml/min 내지 100 ml/min일 수 있다,
코어의 상부에 형성되는 중간층 형성 공정은 다음과 같다.
상기 코어 형성 공정에서 얻은 반응 결과물에 금속원료 및 착화제를 부가하고 반응 혼합물의 pH를 제어한 다음, 반응을 실시한다. 특히, 중간층 형성 공정에서는 코어 형성 공정에서 얻어진 생성물을 일정시간 반응 후 입자의 성장에 따른 성장속도가 감소하는 것을 방지하기 위해 금속원료 및 착화제의 투입량과 농도를 증가시킨다. 구체적인 공정조건으로, 착화제의 농도는 예를 들어 0.3 M 내지 1.0 M, 착화제의 투입량은 8 ml/min 내지 12 ml/min, 금속 원료의 투입량은 90 ml/min 내지 120 ml/min일 수 있다.
중간층 상부에 형성되는 쉘 형성 공정은 다음과 같다.
상기 중간층 형성 공정에서 얻은 반응 생성물의 일정시간 반응 후 입자의 성장에 따른 성장속도가 감소하는 것을 방지하기 위해 금속원료 및 착화제의 투입량과 농도를 높여준다. 구체적인 공정조건으로, 착화제의 농도는 0.35 M 내지 1.0 M, 착화제의 투입량은 12 ml/min 내지 18 ml/min, 금속 원료의 투입량은 120 ml/min 내지 150 ml/min일 수 있다. 한편, 쉘 형성 공정의 반응 조건은 금속 수산화물 전구체에서 다공성층의 표면 깊이에 많은 영향을 미친다.
상기 코어, 중간층 및 쉘 형성 공정에서 공통적인 사항은 다음과 같다.
각 공정에서 교반동력은 0.1 내지 6 kW/m2 범위이고, 예를 들어 1 내지 3 kW/m2이다. 상기 중간층 형성 공정 및 쉘 형성 공정의 교반동력은 코어 형성 공정의 교반동력와 비교하여 감소될 수 있으며, 중간층 형성 공정 및 쉘 형성 공정의 교반동력은 동일할 수 있다.
반응 혼합물의 pH는 10 내지 12의 범위로 제어한다. 특히, pH 조절제는 반응 혼합물의 pH를 제어하여 반응 혼합물로부터 침전물을 형성하는 역할을 하며, 예컨대 수산화나트륨(NaOH), 탄산나트륨(Na2CO3), 옥살산나트륨(Na2C2O4) 등을 사용하며, 바람직하게는 수산화나트륨(NaOH)을 이용할 수 있다.
착화제의 농도는 코어, 중간층 및 쉘 형성 공정으로 갈수록 순차적으로 증가하며, 예를 들어 0.1M 내지 0.7M 범위일 수 있다. 특히, 착화제는 공침 반응에서 침전물의 형성 반응 속도를 조절해주는 역할을 하며, 암모니아수, 시트르산(citric acid) 등이 있으며, 바람직하게는 암모니아수를 사용할 수 있다. 한편, 착화제의 함량은 통상적인 수준으로 사용된다.상기 공정으로 얻어진 금속 하이드록사이드 전구체는 리튬 전구체와 혼합된다. 금속 하이드록사이드 전구체와 리튬 전구체의 혼합비는 상기 화학식 1의 양극 활물질을 제조할 수 있도록 화학양론적으로 조절된다.
상기 혼합은 건식 혼합일 수 있고, 믹서 등을 이용하여 실시할 수 있다.
건식 혼합은 밀링을 이용하여 실시할 수 있다. 이 때 밀링 조건을 살펴 보면, 출발물질로 사용한 금속 하이드록사이드 전구체의 미분화 등과 같은 변형이 거의 없도록 실시한다. 이를 위해서는 금속 하이드록사이드 전구체와 혼합되는 리튬 전구체의 사이즈를 미리 제어하는 과정이 필요하다. 리튬 전구체의 사이즈(평균입경)은 5 내지 20㎛, 예를 들어 약 10㎛ 범위이다. 이러한 사이즈를 갖는 리튬 전구체를 금속 하이드록사이드 전구체와 300 내지 3,000rpm으로 밀링을 실시하면 목적하는 니켈계 활물질 중간체를 얻을 수 있다.
상술한 밀링 과정에서 믹서 내부 온도가 30℃ 이상으로 올라가는 경우에는 믹서 내부 온도를 상온(25℃) 범위로 유지할 수 있도록 냉각 과정을 거칠 수 있다.
상기 열처리는 산화성 가스 분위기하에서 실시된다. 상기 산화성 가스 분위기는 산소 또는 공기와 같은 산화성 가스를 이용하며, 예를 들어 상기 산화성 가스는 산소 또는 공기 10 내지 20 부피%와 불활성가스 80 내지 90부피%로 이루어진다.
상기 열처리 공정은 예를 들어 600 내지 800℃, 구체적으로 650 내지 800℃에서 실시될 수 있다. 열처리시 승온속도는 1 내지 5℃/분, 예를 들어 3℃/분일 수 있다. 열처리 시간은 고온 열처리 온도 등에 따라 가변적이지만 예를 들어 3 내지 10시간 동안 실시한다.
일 구현예는 상기 양극 활물질을 포함하는 리튬 이차 전지를 제공한다. 상기 리튬 이차 전지는 상기 양극 활물질을 포함한 양극, 음극, 전해질 및 세퍼레이터를 포함한다.
양극 및 음극은 집전체상에 양극 활물질층 형성용 조성물 및 음극 활물질층 형성용 조성물을 각각 도포 및 건조하여 제작된다.
상기 양극 활물질 형성용 조성물은 양극 활물질, 도전제, 바인더 및 용매를 혼합하여 제조되는데, 상기 양극 활물질로서 상술한 바와 같다.
상기 바인더는, 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 양극 활물질의 총중량 100 중량부를 기준으로 1 내지 50 중량부로 첨가된다. 이러한 바인더의 비제한적인 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다. 그 함량은 양극 활물질의 총중량 100 중량부를 기준으로 하여 0.5 내지 5 중량부, 예를 들어 1 내지 5 중량부 또는 2 내지 5 중량부를 사용한다. 바인더의 함량이 상기 범위일 때 집전체에 대한 활물질층의 결착력이 양호하다.
상기 도전제로는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 도전제의 함량은 양극 활물질의 총중량 100 중량부를 기준으로 하여 0.5 내지 5 중량부, 예를 들어 1 내지 5 중량부 또는 2 내지 5 중량부를 사용한다. 도전제의 함량이 상기 범위일 때 최종적으로 얻어진 전극의 전도도 특성이 우수하다.
상기 용매의 비제한적 예로서, N-메틸피롤리돈 등을 사용한다.
상기 용매의 함량은 양극 활물질 100 중량부를 기준으로 하여 1 내지 10 중량부를 사용한다. 용매의 함량이 상기 범위일 때 활물질층을 형성하기 위한 작업이 용이하다.
상기 양극 집전체는 3 내지 500 ㎛의 두께로서, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 열처리 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
이와 별도로 음극 활물질, 바인더, 도전제, 용매를 혼합하여 음극 활물질층 형성용 조성물을 준비한다.
상기 음극 활물질은 리튬 이온을 흡장 및 방출할 수 있는 물질이 사용된다. 상기 음극 활물질의 비제한적인 예로서, 흑연, 탄소와 같은 탄소계 재료, 리튬 금속, 그 합금, 실리콘 옥사이드계 물질 등을 사용할 수 있다. 일 구현예에서 실리콘 옥사이드를 바람직하게 사용할 수 있다. 상기 바인더는 음극 활물질의 총중량 100중량부를 기준으로 0.5 내지 50 중량부, 예를 들어 1 내지 50 중량부로 첨가된다. 이러한 바인더의 비제한적인 예는 양극과 동일한 종류를 사용할 수 있다.
도전제는 음극 활물질의 총중량 100 중량부를 기준으로 하여 5 중량부 이하, 예를 들어 1 내지 5 중량부를 사용한다. 도전제의 함량이 상기 범위일 때 최종적으로 얻어진 전극의 전도도 특성이 우수하다.
상기 용매의 함량은 음극 활물질의 총중량 100 중량부를 기준으로 하여 1 내지 10 중량부를 사용한다. 용매의 함량이 상기 범위일 때 음극 활물질층을 형성하기 위한 작업이 용이하다.
상기 도전제 및 용매는 양극 제조시와 동일한 종류의 물질을 사용할 수 있다.
상기 음극 집전체로는, 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 열처리 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 과정에 따라 제작된 양극과 음극 사이에 세퍼레이터를 개재한다.
상기 세퍼레이터는 기공 직경이 0.01 내지 10 ㎛이고, 두께는 일반적으로 5 내지 300 ㎛인 것을 사용한다. 구체적인 예로서, 폴리프로필렌, 폴리에틸렌 등의 올레핀계 폴리머; 또는 유리섬유로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 세퍼레이터를 겸할 수도 있다.
상기 전해질로는 비수성 용매와 리튬염을 포함하는 비수계 전해질, 유기 고체 전해질, 무기 고체 전해질 등이 사용될 수 있다.
상기 비수성 용매는 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부티로 락톤, 1,2-디메톡시에탄, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소란, 포름아미드, N,N-디메틸포름아미드, 디옥소란, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다. 상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 비제한적인 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 리튬클로로보레이트, 저급 지방족 카르복실산 리튬, 테트라페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
상기 유기 고체 전해질로는, 비제한적인 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화비닐리덴 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 비제한적인 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등이 사용될 수 있다.
도 2는 일 구현예에 따른 리튬 이차 전지의 대표적인 구조를 개략적으로 도시한 사시도이다.
도 2를 참고하면, 리튬 이차 전지(31)는 일구현예에 따른 양극 활물질을 포함하는 양극(33), 음극(32) 및 세퍼레이터(34)를 포함한다. 상술한 양극(33), 음극(32) 및 세퍼레이터(34)가 와인딩되거나 접혀서 전지케이스(35)에 수용된다. 이어서, 상기 전지케이스(35)에 유기전해액이 주입되고 캡(cap) 어셈블리(36)로 밀봉되어 리튬 이차 전지(31)가 완성된다. 상기 전지 케이스(35)는 원통형, 각형, 박막형 등일 수 있다. 예를 들어, 상기 리튬 이차 전지(30)는 대형 박막형 전지일 수 있다. 상기 리튬 이차 전지는 리튬 이온 전지일 수 있다. 상기 양극 및 음극 사이에 세퍼레이터가 배치되어 전지구조체가 형성될 수 있다. 상기 전지구조체가 바이셀 구조로 적층된 다음, 유기 전해액에 함침되고, 얻어진 결과물이 파우치에 수용되어 밀봉되면 리튬 이온 폴리머 전지가 완성된다. 또한, 상기 전지구조체는 복수개 적층되어 전지 팩을 형성하고, 이러한 전지팩이 고용 량 및 고출력이 요구되는 모든 기기에 사용될 수 있다. 예를 들어, 노트북, 스마트 폰, 전기차량 등에 사용될 수 있다.
또한, 상기 리튬 이차 전지는 고온에서 저장 안정성, 수명특성 및 고율특성이 우수하므로 전기차량(electric vehicle, EV)에 사용될 수 있다. 예를 들어, 플러그인 하이브리드차량(plug-in hybrid electric vehicle, PHEV) 등의 하이브리드 차량에 사용될 수 있다.
이하의 실시예 및 비교예를 통하여 더욱 상세하게 설명된다. 단, 실시예는 예시하기 위한 것으로서 이들만으로 한정되는 것이 아니다.
제조예 1: 금속 하이드록사이드 전구체의 제조
하기 제조과정에서 금속 수산화물 전구체를 형성하는 금속 원료로는 황산니켈, 황산코발트 및 황산망간을 이용하였다.
[제1 단계: 1.5kW/㎥, NH3 0.30M, pH 10 내지 11, 반응시간 6시간]
먼저, 반응기에 농도가 0.30M인 암모니아수(NH3)를 넣었다. 교반동력 1.5kW/㎥, 반응온도 50℃에서 금속원료 및 착화제(암모니아수)를 각각 90 ml/min 및 10 ml/min의 속도로 투입하면서 반응을 시작하였다. pH를 유지하기 위하여 NaOH를 투입하면서 6시간 동안 반응을 실시하였다. 반응 결과 얻어진 코어 입자의 평균 사이즈가 약 5.5㎛ 내지 6.5㎛ 범위인 것을 확인하고 제2 단계를 다음과 같이 실시하였다.
[제2 단계: 1.0kW/㎥, NH3 0.35M, pH 10 내지 11, 반응시간 6시간]
반응온도 50℃를 유지하면서 금속원료 및 착화제를 각각 100ml/min 및 15 ml/min의 속도로 변경하여 투입하여 착화제의 농도가 0.35M이 유지되도록 하였다. pH를 유지하기 위해 NaOH를 투입하면서 6시간 반응하였다. 이 때 교반동력은 제1 단계보다 낮은 1.0kW/㎥ 낮추어 반응을 진행하였다. 이러한 반응을 실시하여 얻어진 코어 및 중간층을 함유한 생성물 입자의 평균 사이즈가 9㎛ 내지 10㎛인 것을 확인하고 제3 단계를 다음과 같이 실시하였다.
[제3 단계: 1.0kW/㎥, NH3 0.40M, pH 10 내지 11, 반응시간 4시간]
반응온도 50℃를 유지하면서 금속원료 및 착화제를 각각 150 ml/min 및 20 ml/min의 속도로 변경하여 투입하여 착화제의 농도가 0.40M이 유지되도록 하였다. pH를 유지하기 위해 NaOH를 투입하면서 4시간 반응하였다. 이때 교반동력은 제2단계와 같게 유지하였다.
[후공정]
후공정은 상기 결과물을 세척한 후, 세척된 결과물을 약 150℃에서 24시간 동안 열풍 건조하여 금속 수산화물 전구체(Ni0.6Co0.2Mn0.2(OH)2)를 얻었다.
제조예 2: 금속 하이드록사이드 전구체의 제조
금속 하이드록사이드(Ni0.5Co0.2Mn0.3(OH)2)를 얻을 수 있도록 황산니켈, 황산코발트 및 황산망간의 함량을 변화시키고 25시간 반응(제1 단계: 10 시간, 제2 단계: 10 시간 및 제3 단계: 5 시간)시키는 것을 제외하고는, 제조예 1과 동일한 방법에 따라 실시하여 금속 하이드록사이드 전구체(Ni0.5Co0.2Mn0.3(OH)2)를 얻었다.
제조예 3: 금속 하이드록사이드 전구체의 제조
금속 하이드록사이드 전구체(Ni0.8Co0.1Mn0.1(OH)2)를 얻을 수 있도록 황산니켈, 황산코발트 및 황산망간의 함량을 변화시키고, 25시간(제1 단계: 12 시간, 제2 단계: 8 시간 및 제3 단계: 5 시간) 반응시키는 것을 제외하고는, 제조예 1과 동일한 방법에 따라 실시하여 방사형이며, 금속 하이드록사이드 전구체(Ni0.8Co0.1Mn0.1(OH)2)를 얻었다.
제조예 4: 금속 하이드록사이드 전구체의 제조
황산니켈(NiSO4·6H2O), 황산코발트(CoSO4·7H2O) 및 질산알루미늄(Al(NO3)3·9H2O)를 85:10:5 몰비로 혼합한 후 18시간(제1 단계: 7 시간, 제2 단계: 5 시간 및 제3 단계: 4 시간) 반응시키는 것을 제외하고는, 제조예 1과 동일한 방법에 따라 실시하여 금속 하이드록사이드 전구체(Ni0.85Co0.1Al0.05(OH)2)를 얻었다.
제조예 5: 금속 하이드록사이드 전구체의 제조
금속 하이드록사이드 전구체(Ni0.33Co0.33Mn0.33(OH)2)를 얻을 수 있도록 황산니켈, 황산코발트 및 황산망간의 함량을 변화시키고, 28시간(제1 단계: 11 시간, 제2 단계: 11 시간 및 제3 단계: 6 시간) 반응시키는 것을 제외하고는, 제조예 1과 동일하게 실시하여 금속 하이드록사이드 전구체(Ni0.33Co0.33Mn0.333(OH)2)를 얻었다.
실시예 1: 양극 활물질의 제조
제조예 1에 따라 얻은 금속 하이드록사이드 전구체(Ni0.6Co0.2Mn0.2(OH)2) 및 평균입경이 약 15 ㎛인 수산화리튬(LiOH·H2O)을 하이 스피드 믹서(high speed mixer)를 이용하여 건식으로 2,000rpm에서 1:1 몰비로 혼합하여 얻어진 혼합물을 산소 분위기의 소성로에서 약 850℃에서 8시간 유지하면서 열처리를 실시하여 양극 활물질 LiNi0.6Co0.2Mn0.2O2을 합성하였다.
실시예 2: 양극 활물질의 제조
제조예 1에 따라 얻은 금속 하이드록사이드 전구체(Ni0.6Co0.2Mn0.2(OH)2) 및 평균입경이 약 15㎛인 수산화리튬(LiOHH2O)을 하이 스피드 믹서(를 이용하여 건식으로 2,000rpm에서 1:1 몰비로 혼합하고 혼합하여 얻어진 혼합물을 산소 분위기의 소성로에서 약 800에서 6시간 동안 유지하면서 1차 열처리를 실시한 후 830 에서 6시간동안 2차 열처리를 실시하여 양극 활물질 LiNi0.6Co0.2Mn0.2O2을 합성하였다.
실시예 3: 양극 활물질의 제조
열처리 온도가 870℃로 변경된 것을 제외하고는, 실시예 1과 동일하게 실시하여 양극 활물질 LiNi0.6Co0.2Mn0.2O2을 합성하였다.
실시예 4: 양극 활물질의 제조
열처리 온도가 870℃로 변경된 것을 제외하고는, 실시예 1과 동일하게 실시하여 양극 활물질 LiNi0.6Co0.2Mn0.2O2를 합성하였다.
비교제조예 1: 금속 하이드록사이드 전구체의 제조
연속식 반응기를 사용하고 입자의 성장속도를 생성된 금속 하이드록사이드 시드(seed)가 원하는 크기가 될 때까지 40시간 동안 성장이 진행되도록 천천히 진행하고, 반응이 정상상태(안정화)가 되면 그 후 오버플로우(overflow)되는 반응물을 수집하여 건조공정을 진행한 것을 제외하고는, 제조예 1과 동일한 과정을 실시하여 금속 하이드록사이드 전구체(Ni0.6Co0.2Mn0.2(OH)2)를 얻었다.
비교제조예 2: 금속 하이드록사이드 전구체의 제조
금속 하이드록사이드 시드(seed)가 원하는 크기가 될 때까지 80시간 동안 성장이 진행되도록 천천히 진행하는 것을 제외하고는, 비교제조예 1과 동일한 방법에 따라 실시하여 금속 하이드록사이드 전구체(Ni0.6Co0.2Mn0.2(OH)2)를 얻었다.
비교예 1: 양극 활물질의 제조
비교제조예 1에 따라 얻은 금속 하이드록사이드 전구체(Ni0.6Co0.2Mn0.2(OH)2) 및 약 15㎛의 평균입경을 갖는 수산화리튬(LiOH)을 건식으로 1:1 몰비로 2,000rpm에서 밀링을 실시하여 혼합하고 이를 소성로의 배기 일부 구간을 열고 공기 분위기에서 약 870℃에서 15시간 동안 열처리를 실시하였다. 1차 열처리된 생성물을 산소 분위기에서 배기를 닫고 약 500℃에서 6시간 동안 2차 열처리를 실시하여 양극 활물질(LiNi0.6Co0.2Mn0.2O2) 2차 입자를 얻었다.
비교예 2: 양극 활물질의 제조
비교제조예 2에 따라 얻은 금속 하이드록사이드 전구체(Ni0.6Co0.2Mn0.2(OH)2) 및 약 15㎛의 평균입경을 갖는 수산화리튬(LiOH)을 건식으로 1:1 몰비로 2,000rpm에서 밀링을 실시하여 혼합하고 이를 소성로의 배기 일부 구간을 열고 공기 분위기에서 약 880℃에서 15시간 동안 열처리를 실시하여 양극 활물질(LiNi0.6Co0.2Mn0.2O2) 2차 입자를 얻었다.
기공 부피 분율 평가
실시예 1 내지 4에 따라 얻은 양극 활물질과 비교예 1 및 2에 따라 제조된 양극 활물질의 기공 부피 분율을 Surface area and porosity analyzer 설비 (ASAP 2020, Micromeritics)를 사용하여 BJH Desorption 법을 사용하여 측정하였다. 각각의 양극 활물질은 300℃, 15분 질소분위기에서 전처리 진행 후 측정을 시행하였다. 이중 실시예 1과 비교예 1에 따른 양극 활물질의 기공 크기별 기공 부피 분율을 도 3에 도시하고, 실시예 1과 2 및 비교예 1과 2의 양극 활물질에서 BJH Desorption 법에 의해 측정된 전체 기공 부피 대비 10nm 이하의 기공사이즈를 가지는 기공의 부피 분율을 표 1에 정리하였다.
기공 부피 분율
실시예 1 12.9 %
실시예 2 15.1 %
비교예 1 7.5 %
비교예 2 6.4 %
표 1을 참고하면, 실시예 1과 실시예 2에 따른 양극 활물질은 10nm 이하의 기공사이즈를 가지는 기공의 부피 분율이 10% 이상임에 비하여 비교예 1과 비교예 2에 따른 양극 활물질은 10nm 이하의 기공사이즈를 가지는 기공의 부피 분율이 10% 미만인 것으로 나타났다.
실시예 5: 코인셀의 제조
실시예 1에 따라 제조된 양극 활물질 LiNi0.6Co0.2Mn0.2O2 96g, 폴리비닐리덴플로라이드 2g 및 용매인 N-메틸피롤리돈 137g 및 도전제인 카본블랙 2g의 혼합물을 믹서기를 이용하여 기포를 제거하여 균일하게 분산된 양극 활물질층 형성용 슬러리를 제조하였다.
상기 과정에 따라 제조된 양극 활물질층 형성용 슬러리를 닥터 블래이드를 사용하여 알루미늄 박상에 코팅하여 얇은 극판 형태로 만든 후, 이를 135℃에서 3시간 이상 건조시킨 후, 압연과 진공 건조 과정을 거쳐 양극을 제작하였다.
상기 양극과 상대극으로서 리튬 금속 대극을 사용하여 코인셀(coin half-cell)을 제조하였다. 상기 양극과 리튬 금속 대극 사이에는 다공질 폴리에틸렌(PE) 필름으로 이루어진 세퍼레이터(두께: 약 16㎛)를 개재하고, 전해액을 주입하여 코인셀을 제작하였다. 이 때, 상기 전해액은 에틸렌카보네이트(EC)와 에틸메틸카보네이트(EMC)를 3:5의 부피비로 혼합한 용매에 용해된 1.1M LiPF6가 포함된 용액을 사용하였다.
실시예 6, 비교예 3 및 비교예 4: 코인셀의 제조
실시예 1에 따라 제조된 양극 활물질 대신 실시예 2, 비교예 1 및 비교예 2에 따른 양극 활물질을 사용하여 실시예 1과 동일한 방법으로 코인 셀을 제조하였다.
상기 실시예 5, 실시예 6, 비교예 3 및 비교예 4에 따라 제조된 코인 셀에 대하여 수명 특성을 다음과 같이 평가하였다: 먼저 0.1C에서 1회 충방전을 하여 화성(formation)을 진행하고 이후 0.2C 충방전 1회로 초기 충방전 특성을 확인하고 1C에서 50회 충방전을 반복하면서 사이클 특성을 살펴보았다. 충전시에는 CC (constant current) 모드로 시작하여 이후 CV (constant voltage)로 바꾸어서 4.3V, 0.05C 에서 컷오프되도록 셋팅을 하였으며 방전시에는 CC (constant current) 모드에서 3.0V에서 컷오프로 셋팅하였다. 그 결과를 도 4에 도시한다.
도 4의 결과에서 실시예 5와 실시예 6에 따른 코인 셀이 비교예 3과 비교예 4에 비하여 수명 특성이 개선되었음을 확인할 수 있다.
이상에서는 도면 및 실시예를 참조하여 일구현예가 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 구현예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 보호범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다.
[부호의 설명]
10: 1차 입자 20: 2차 입자
31: 리튬 이차 전지 32: 음극
33: 양극 34: 세퍼레이터
35: 전지 케이스 36: 캡 어셈블리

Claims (9)

  1. 복수의 1차 입자가 응집된 2차 입자를 포함하고,
    상기 2차 입자는 상기 1차 입자의 (003)면이 2차 입자의 표면과 만나는 점(P)에서의 접선에 대하여 수직방향이 되도록 배향된 1차 입자를 포함하는 일정 배열 구조를 가지는,
    리튬 이차 전지용 양극 활물질.
  2. 제1항에 있어서,
    상기 1차 입자의 50% 이상이 (003)면이 2차 입자의 표면과 만나는 점(P)에서의 접선에 대하여 수직방향이 되도록 배향된, 양극 활물질.
  3. 제1항에 있어서,
    상기 1차 입자의 c축 방향의 평균 길이는 100 내지 200nm에 있는, 리튬 이차 전지용 양극.
  4. 제1항에 있어서,
    상기 1차 입자의 (003)면에 대하여 수직인 면의 장변과 단변의 길이의 비는 1:2 내지 1:10의 범위에 있는, 리튬 이차 전지용 양극.
  5. 제1항에 있어서,
    상기 2차 입자는 일 중심을 가지는 방사형 배열 구조 또는 복수의 중심을 가지는 다중심 방사형 배열 구조를 가지는, 리튬 이차 전지용 양극 활물질.
  6. 제1항에 있어서,
    상기 2차 입자의 10 nm 이하의 미세 기공의 기공 부피 분율이 전체 기공 부피의 10% 이상인, 리튬 이차 전지용 양극 활물질.
  7. 제1항에 있어서,
    상기 2차 입자는 코어에서 표면부로 갈수록 순차적으로 감소하는 기공 사이즈(pore size)를 가지는, 리튬 이차 전지용 양극 활물질.
  8. 제1항에 있어서,
    상기 2차 입자는 코어에서 표면부로 갈수록 순차적으로 감소하는 기공도를 가지는, 리튬 이차 전지용 양극 활물질.
  9. 제1항 내지 제8항 중 어느 한 항의 양극 활물질을 포함하는 양극;
    음극; 및
    이들 사이에 개재된 전해질;
    을 함유하는 리튬 이차 전지.
PCT/KR2019/001201 2018-01-29 2019-01-29 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 WO2019147098A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207025019A KR102447005B1 (ko) 2018-01-29 2019-01-29 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN201980010098.XA CN111656585A (zh) 2018-01-29 2019-01-29 用于锂二次电池的阴极活性物质和包括其的锂二次电池
US16/962,635 US20200350582A1 (en) 2018-01-29 2019-01-29 Cathode active material for lithium secondary battery and lithium secondary battery including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0010990 2018-01-29
KR20180010990 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019147098A1 true WO2019147098A1 (ko) 2019-08-01

Family

ID=67395490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001201 WO2019147098A1 (ko) 2018-01-29 2019-01-29 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지

Country Status (4)

Country Link
US (1) US20200350582A1 (ko)
KR (1) KR102447005B1 (ko)
CN (1) CN111656585A (ko)
WO (1) WO2019147098A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100099337A (ko) * 2005-04-28 2010-09-10 스미토모 긴조쿠 고잔 가부시키가이샤 비수 전해질 리튬 이온 전지용 정극 재료 및 이를 이용한 전지
JP2015076397A (ja) * 2013-10-11 2015-04-20 日本碍子株式会社 リチウム二次電池用正極活物質の製造方法及びそれに用いられる活物質前駆体粉末
KR20160129764A (ko) * 2015-04-30 2016-11-09 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
JP2018014325A (ja) * 2016-07-20 2018-01-25 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
JP2018014326A (ja) * 2016-07-20 2018-01-25 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69712582T2 (de) * 1996-09-20 2003-01-09 Matsushita Electric Industrial Co., Ltd. Aktives Material für die positive Elektrode alkalischer Speicherbatterien
JP3530377B2 (ja) * 1998-03-12 2004-05-24 三洋電機株式会社 リチウム二次電池
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
US9450229B2 (en) * 2013-03-15 2016-09-20 Nissan Motor Co., Ltd. Positive electrode active substance, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
WO2016068594A1 (ko) * 2014-10-28 2016-05-06 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2017062521A1 (en) * 2015-10-05 2017-04-13 Sila Nanotechnologies Inc. Protection of battery electrodes against side reactions
KR102307908B1 (ko) * 2016-07-20 2021-10-05 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
EP3550641A4 (en) * 2016-12-02 2020-08-12 Samsung SDI Co., Ltd ACTIVE NICKEL MATERIAL PRECURSOR FOR SECONDARY LITHIUM BATTERY, PRODUCTION PROCESS OF ACTIVE NICKEL MATERIAL PRECURSOR, ACTIVE NICKEL MATERIAL FOR SECONDARY LITHIUM BATTERY PRODUCED BY THE PROCESS, AND SECONDARY LITHIUM BATTERY HAVING AN ACTIVE MATERIAL CONTAINING A CATHAUOD CONTENT NICKEL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100099337A (ko) * 2005-04-28 2010-09-10 스미토모 긴조쿠 고잔 가부시키가이샤 비수 전해질 리튬 이온 전지용 정극 재료 및 이를 이용한 전지
JP2015076397A (ja) * 2013-10-11 2015-04-20 日本碍子株式会社 リチウム二次電池用正極活物質の製造方法及びそれに用いられる活物質前駆体粉末
KR20160129764A (ko) * 2015-04-30 2016-11-09 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
JP2018014325A (ja) * 2016-07-20 2018-01-25 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含むリチウム二次電池
JP2018014326A (ja) * 2016-07-20 2018-01-25 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池

Also Published As

Publication number Publication date
KR102447005B1 (ko) 2022-09-22
KR20200108080A (ko) 2020-09-16
US20200350582A1 (en) 2020-11-05
CN111656585A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2019112279A2 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2017204466A1 (ko) 음극활물질 및 이를 포함하는 리튬 이차전지
WO2018101807A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
WO2017069410A1 (ko) 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
WO2011087309A2 (ko) 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질.
WO2015012651A1 (ko) 양극 활물질 및 이의 제조방법
WO2011105832A2 (ko) 고용량의 양극활물질 및 이를 포함하는 리튬 이차전지
WO2014021626A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2011105833A9 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2012011785A2 (ko) 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
WO2012138127A2 (ko) 출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지
WO2017069405A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2011081422A9 (ko) 리튬 복합 산화물 및 그 제조 방법.
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2013162086A1 (ko) 출력 향상을 위한 리튬이차전지 복합 전극용 활물질 및 이를 포함하는 리튬이차전지
WO2017069407A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2010047552A2 (ko) 전극 효율 및 에너지 밀도 특성이 개선된 양극 활물질
WO2015034229A1 (ko) 전이금속-피로인산화물 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지 또는 하이브리드 캐패시터
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2016068681A1 (ko) 전이금속 산화물의 전구체, 그 제조방법, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지
WO2021145633A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021125870A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018052210A1 (ko) 리튬이차전지용 산화코발트, 그 제조방법, 이로부터 형성된 리튬이차전지용 리튬코발트산화물 및 이를 포함한 양극을 구비한 리튬이차전지
WO2016108386A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207025019

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19743516

Country of ref document: EP

Kind code of ref document: A1