WO2019146524A1 - 回路装置および電力変換装置 - Google Patents

回路装置および電力変換装置 Download PDF

Info

Publication number
WO2019146524A1
WO2019146524A1 PCT/JP2019/001496 JP2019001496W WO2019146524A1 WO 2019146524 A1 WO2019146524 A1 WO 2019146524A1 JP 2019001496 W JP2019001496 W JP 2019001496W WO 2019146524 A1 WO2019146524 A1 WO 2019146524A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal spacer
metal
circuit board
printed circuit
cooler
Prior art date
Application number
PCT/JP2019/001496
Other languages
English (en)
French (fr)
Inventor
矢原 寛之
健太 藤井
雄二 白形
智仁 福田
熊谷 隆
中島 浩二
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980008400.8A priority Critical patent/CN111656519A/zh
Priority to JP2019567043A priority patent/JP7004749B2/ja
Priority to US16/963,294 priority patent/US11350517B2/en
Publication of WO2019146524A1 publication Critical patent/WO2019146524A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/064Fluid cooling, e.g. by integral pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2036Permanent spacer or stand-off in a printed circuit or printed circuit assembly
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components

Definitions

  • the present invention relates to a circuit device and a power conversion device, and more particularly to miniaturization and high heat dissipation mounting technology of power electronic equipment.
  • Japanese Patent Application Laid-Open No. 2006-253205 discloses an example in which an aluminum tube having a coolant flow passage is integrally laminated on a non-component mounting surface of a printed circuit board via an insulating layer. (Patent Document 1).
  • cream solder paste obtained by adding flux to solder powder is screen-printed on a printed circuit board with a uniform thickness.
  • components for surface mounting are placed on the printed circuit board by a mounter or the like. After that, it is put in a furnace, the solder is melted, and the printed circuit board and the component for surface mounting are joined.
  • the present invention has been made in view of the above problems. It is an object of the present invention to provide a circuit device capable of greatly improving the heat dissipation of a printed circuit board without increasing the size thereof, and a power conversion device including the circuit device.
  • the circuit device of the present embodiment includes a printed circuit board, a mounting component, a non-solid metal spacer, a cooler, and a resin layer.
  • the mounting component is at least partially disposed on at least one major surface of the printed circuit board.
  • the non-solid metal spacer is disposed on at least one major surface of the printed circuit board.
  • the cooler is located opposite the non-solid metal spacer printed circuit board.
  • the resin layer is disposed between the non-solid metal spacer and the cooler.
  • the non-solid metal spacer has a shape capable of forming at least one hollow portion between the printed circuit board and the cooler.
  • the non-solid metal spacer disposed between the printed circuit board and the cooler functions as a heat spreader of the printed circuit board and a thermal bridge of the printed circuit board and the cooler.
  • the non-solid metal spacer greatly improves the heat dissipation of the printed circuit board without increasing the size of the circuit device. Accordingly, it is possible to provide a circuit device in which a large current flows to a mounting component or the like mounted on a printed circuit board or a component is mounted on the printed circuit board at a high density, and a power conversion device including the same.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a circuit apparatus according to a first example of Embodiment 1; It is a schematic perspective view which shows the structure of the circuit apparatus which concerns on Embodiment 1 centering on the part of mounting components and a non-solid metal spacer.
  • 5 is a schematic perspective view showing a first example of the configuration of the non-solid metal spacer according to Embodiment 1.
  • FIG. 5 is a schematic perspective view showing a second example of the configuration of the non-solid metal spacer according to Embodiment 1.
  • FIG. 7 is a schematic perspective view showing a third example of the configuration of the non-solid metal spacer according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a circuit apparatus according to a first example of Embodiment 1; It is a schematic perspective view which shows the structure of the circuit apparatus which concerns on Embodiment 1 centering on the part of mounting components and a non-solid metal spacer.
  • 5 is
  • FIG. 7 is a schematic cross-sectional view showing the configuration of a circuit apparatus according to a second example of the first embodiment.
  • FIG. 7 is a schematic cross-sectional view showing the configuration of a circuit apparatus according to a third example of the first embodiment.
  • FIG. 16 is a schematic cross-sectional view showing a configuration of a circuit apparatus according to a fourth example of Embodiment 1; It is a schematic perspective view which shows the 5th example of a structure of the non-solid metal spacer which concerns on Embodiment 1.
  • FIG. 16 is a schematic cross-sectional view showing the configuration of a circuit apparatus according to a fifth example of Embodiment 1; It is a schematic perspective view which shows the structure of the circuit apparatus which concerns on the 5th example of Embodiment 1 centering on the part of mounting components and a non-solid metal spacer.
  • FIG. 16 is a schematic cross-sectional view showing the configuration of a circuit apparatus according to a first example of Embodiment 2; It is a schematic perspective view which shows the 1st example of a structure of the circuit apparatus which concerns on Embodiment 2 centering on the part of mounting components and a non-solid metal spacer.
  • FIG. 21 is a schematic cross-sectional view of a circuit device according to a fourth example of the second embodiment, in particular, a partial region of the non-solid metal spacer and the printed board cut away.
  • FIG. 13 is a schematic cross-sectional view showing the configuration of a circuit device in accordance with Embodiment 3.
  • FIG. 16 is a schematic cross-sectional view showing the configuration of a circuit device in accordance with a fourth embodiment. It is a schematic perspective view which shows the structure of the circuit apparatus which concerns on Embodiment 4 centering on parts other than a cooler.
  • FIG. 18 is a schematic cross-sectional view showing the configuration of the circuit device in accordance with the fifth embodiment. It is a schematic perspective view which shows the structure of the circuit apparatus based on Embodiment 5 centering on the part of mounting components and a non-solid metal spacer. It is a schematic perspective view which shows the structure of the circuit apparatus which concerns on Embodiment 6 centering on the part of mounting components and a non-solid metal spacer.
  • FIG. 21 is a schematic cross-sectional view showing a configuration of a circuit device in accordance with a sixth embodiment.
  • FIG. 18 is a schematic cross-sectional view showing a configuration of a circuit device in accordance with a seventh embodiment. It is a schematic perspective view which shows the structure of the circuit apparatus based on Embodiment 7 centering on the part of mounting components and a non-solid metal spacer.
  • FIG. 21 is a block diagram showing a configuration of a power conversion system to which the power conversion device in accordance with the eighth embodiment is applied.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a circuit apparatus according to a first example of the first embodiment.
  • FIG. 2 is a schematic perspective view showing the configuration of the circuit apparatus according to the first embodiment centering on parts of mounted components and non-solid metal spacers.
  • 3 to 6 are schematic perspective views showing first to fourth examples of the configuration of the non-solid metal spacer according to the first embodiment.
  • metal spacers 5A and 5B according to a first example of the present embodiment, which will be described later in particular, are shown.
  • a circuit device 1A1 includes a printed circuit board 2, a semiconductor component 3 as a mounting component, an electronic component 4 as another component, and A metal spacer 5 as a real metal spacer and a cooler 6 are mainly included.
  • the printed circuit board 2 is a flat member having one main surface 2A and the other main surface 2B, and the other main surface 2B disposed on the opposite side of the one main surface 2A.
  • the printed circuit board 2 preferably has, for example, one main surface 2A and the other main surface 2B in a rectangular shape in a plan view, but is not limited thereto.
  • the printed board 2 includes at least one conductor layer 21, an insulating layer 22 and a through hole 23.
  • the conductor layer 21 extends along the one main surface 2A and the other main surface 2B of the printed circuit board 2.
  • the conductor layer 21 includes four conductor layers 21A, 21B, 21C, and 21D in the example of FIG. 1, but the number of conductor layers is not limited thereto, and may be three or less or five or more. Good.
  • the conductor layers 21A, 21B, 21C, and 21D are spaced from each other in this order from the top to the bottom in FIG. In FIG. 1, conductor layers 21B and 21C extend entirely along one main surface 2A of printed circuit board 2, while conductor layers 21A and 21D extend in a direction along one main surface 2A of printed circuit board 2.
  • the present invention is not limited to such a configuration, and the conductor layers 21B and 21C may be extended to only a part in the direction along one main surface 2A, and the conductor layers 21A and 21D may also be entirely along the one main surface 2A You may extend it to
  • the insulating layer 22 is a region which is a base of the printed circuit board 2 and made of an insulating material. It is divided into three insulating layers 22A, 22B and 22C by the conductor layers 21A to 21D. In the example of FIG. 1, the insulating layers 22A, 22B and 22C are disposed in this order from the top to the bottom.
  • the surface of the uppermost portion of the insulating layer 22A in FIG. 1 and the surface of the uppermost portion of the conductor layer 21A are twisted, and this surface forms one main surface 2A of the entire printed board 2 There is.
  • the lowermost surface of the insulating layer 22C in FIG. 1 and the lowermost surface of the conductor layer 21D are twisted, and this surface forms the other main surface 2B of the entire printed circuit board 2 ing.
  • the through hole 23 is a portion extending to the main surface of the printed circuit board 2 including the conductor layer 21 and the insulating layer 22 so as to penetrate the printed circuit board 2 from one main surface 2A to the other main surface 2B.
  • Through holes 23 extend in a direction intersecting (for example, at right angles with) one main surface 2A of printed circuit board 2 from one main surface 2A to the other main surface 2B.
  • the through hole 23 is a region of a columnar cavity which is connected to the conductor layers 21A, 21B, 21C, 21D, and is formed inside a cylindrical conductor layer extending in a direction intersecting the one main surface 2A.
  • the conductor layer portion of through hole 23 enables selective connection between conductor layers 21A, 21B, 21C, and 21D.
  • the cylindrical conductor layer forming the side wall of through hole 23 has, for example, a cylindrical shape, and transmits the heat transmitted to conductor layer 21A from the upper side of one main surface 21A to conductor layers 21B, 21C, 21D. be able to.
  • the conductor layers 21A, 21B, 21C, 21D, and the cylindrical conductor layers outside the through holes 23 it is preferable to use a metal material with low electrical resistance such as copper.
  • a metal material with low electrical resistance such as copper.
  • an insulating resin layer obtained by impregnating a glass fiber cloth such as FR4 with epoxy or the like and thermally curing it.
  • the semiconductor component 3 as a mounting component is at least a part of which is disposed on at least one of the main surfaces 2A of the printed circuit board 2. In the circuit device 1A1, the whole is disposed on one of the main surfaces 21A of the printed circuit board 2.
  • the semiconductor component 3 includes a semiconductor element 31, a base plate 32, a resin package 33, and a lead frame 34.
  • the semiconductor component 3 in the circuit device 1A1 is sealed in, for example, a surface mount IC package such as TO-252.
  • the semiconductor element 31 is formed of a field effect transistor made of a semiconductor material such as silicon (Si), silicon carbide (SiC), gallium nitride (GaN) or the like. However, the semiconductor element 31 may be configured using a semiconductor element other than a field effect transistor such as a diode or an IGBT (Insulated Gate Bipolar Transistor).
  • the base plate 32 is a plate-like member made of a metal material of high thermal conductivity such as copper.
  • the semiconductor element 31 is mounted on the upper surface of the base plate 32, and the lower surface is connected to the printed circuit board 2.
  • the resin package 33 is disposed so as to cover the semiconductor element 31 on the base plate 32 and part of the side surface of the base plate 32. Thus, the resin package 33 seals the semiconductor element 31.
  • the resin package 33 is made of an epoxy resin material containing a filler such as a heat conductive ceramic.
  • the lead frame 34 is for electrically connecting the semiconductor element 31 and the outside thereof.
  • the lead frame 34 is a member made of a metal material with low electrical resistance such as copper. However, the surface of the metal material of the lead frame 34 is plated with tin or the like.
  • the lead frame 34 is electrically connected to the conductor layer 21E.
  • the conductor layer 21E is a part of the conductor layer 21 similarly to the conductor layer 21A, and the uppermost surface thereof forms one of the main surfaces 2A of the printed board 2.
  • the conductor layer 21E is electrically insulated from the conductor layers 21A to 21D via the insulating layer 22A.
  • the base plate 32 of the semiconductor element 31 is electrically connected to the conductor layer 21A of one of the main surfaces 2A via the solder layer 7.
  • the electronic component 4 is disposed on the other main surface 2 B of the printed circuit board 2.
  • the electronic component 4 is preferably any one selected from the group consisting of semiconductor components, magnetic components, and resistance components.
  • a semiconductor component is used as the electronic component 4.
  • the electronic component 4 is electrically connected to the conductor layer 21D of the other main surface 2B via the solder layer 7.
  • the metal spacer 5 is disposed on at least one main surface 2A of the printed circuit board 2.
  • the circuit device 1A1 of FIG. 1 has two metal spacers 5 of a metal spacer 5A as a first non-solid metal spacer and a metal spacer 5B as a second non-solid metal spacer.
  • the metal spacer 5A is disposed on one main surface 2A of the printed circuit board 2 at a distance from the semiconductor component 3.
  • the metal spacer 5 ⁇ / b> B is disposed on the other main surface 2 ⁇ / b> B of the printed board 2 at a distance from the electronic component 4.
  • the metal spacer 5A is bonded to the conductor layer 21A on the one main surface 2A by the solder layer 7 as a first bonding material.
  • the metal spacer 5B is bonded to the conductor layer 21D of the other main surface 2B by the solder layer 7 as a first bonding material.
  • the shapes and the like of the metal spacers 5A and 5B will be described later.
  • the melting point of the solder layer 7 as the first bonding material for bonding the metal spacer 5 and the printed board 2 is preferably less than the melting point of the metal material constituting the metal spacers 5A and 5B.
  • a low melting point alloy containing, for example, tin, gold, silver, nickel or the like is used as the solder layer 7.
  • a thin thermal interface material such as thermal conductive grease or the like, or a conductive adhesive such as silver paste may be used.
  • the cooler 6 is disposed on the side opposite to the printed circuit board 2 of the metal spacer 5. Specifically, a cooler 6A as a first cooler is provided on the main surface 2A opposite to the printed circuit board 2 of the metal spacer 5A, that is, on one side. Further, a cooler 6B as a second cooler is provided on the main surface 2B opposite to the printed circuit board 2 of the metal spacer 5B, that is, on the other side. That is, circuit device 1A1 of FIG. 1 has two coolers 6 of cooler 6A and cooler 6B.
  • the coolers 6A and 6B are, for example, metal comb heat sinks.
  • the coolers 6A and 6B are arranged such that their base surfaces face the printed circuit board 2.
  • the coolers 6A and 6B are not limited thereto. That is, as the coolers 6A and 6B, a liquid cooling jacket or a heat pipe type heat sink may be used. Alternatively, as the coolers 6A and 6B, a metal plate connected to a liquid cooling jacket or a heat pipe type heat sink may be used.
  • the semiconductor component 3 and the metal spacer 5A are disposed between the cooler 6A and the printed circuit board 2.
  • the metal spacer 5A is disposed to be inserted between the cooler 6A and the printed circuit board 2 in the vertical direction of FIG.
  • the metal spacer 5B is disposed to be inserted between the cooler 6B and the printed circuit board 2 in the vertical direction of FIG.
  • the resin layer 8 is disposed in the region where the semiconductor component 3 and the metal spacer 5A are disposed, ie, the region between the printed board 2 and the cooler 6A. Similarly, the resin layer 8 is disposed in the region where the electronic component 4 and the metal spacer 5B are disposed, ie, the region between the printed board 2 and the cooler 6B.
  • the resin layer 8 is preferably arranged, for example, to embed the metal spacers 5A and 5B, but is not limited thereto.
  • “embed” means that the resin layer 8 is disposed so as to cover and fill the surfaces of the metal spacers 5A, 5B so as not to fill the hollow portions formed in the metal spacers 5A, 5B described later.
  • the resin layer 8 of FIG. 1 is embedded in the area in which the metal spacer 5A is disposed so as to be in contact with the surfaces of the printed board 2 and the cooler 6A. Similarly, the resin layer 8 is embedded in the area in which the metal spacer 5B is disposed so as to be in contact with the surfaces of the printed circuit board 2 and the cooler 6B.
  • the resin layer 8 is formed of a resin material excellent in thermal conductivity. Specifically, it is formed of a resin material such as epoxy or silicone.
  • the resin layer 8 is enhanced in thermal conductivity by containing a filler and the like, and has electrical insulation.
  • a filler silicon oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ) is used.
  • the above-mentioned silicon oxide or aluminum oxide has higher thermal conductivity and higher electrical insulation than resin materials such as epoxy or silicone.
  • the resin layer 8 is formed by supplying the area between the printed circuit board 2 and the coolers 6A and 6B using potting (casting sealing) or transfer molding. Therefore, the resin layer 8 and the coolers 6A and 6B, and the resin layer 8 and the printed circuit board 2 are bonded without particularly via the bonding layer.
  • the resin layer 8 may be supplied to the entire region between the printed circuit board 2 and the coolers 6A and 6B as shown in FIG. However, among the regions where the resin layer 8 is formed, particularly in the region 8A where the thickness between the cooler 6A and the metal spacer 5A is thin, high thermal conductivity with higher thermal conductivity than other regions in the resin layer 8 A conductive resin layer may be disposed. Similarly, in the region 8B where the thickness between the cooler 6B and the metal spacer 5B is thin among the regions where the resin layer 8 is formed, high heat conductivity is higher than in other regions in the resin layer 8 A conductive resin layer may be disposed. In this case, resin layer 8 is not arranged as shown in FIG.
  • a sheet-like resin member may be disposed in the regions 8A and 8B. In that case, uncured sheet-like resin members are disposed in the regions 8A and 8B, and then they are cured. The coolers 6A, 6B and the metal spacers 5A, 5B are bonded by the regions 8A, 8B of the resin member thus cured.
  • region 8A, 8B is not limited to the above hardenable things.
  • a curable gel sheet or the like is used as a sheet-like resin member in the regions 8A and 8B, and the printed board 2 and the coolers 6A and 6B are insulated in the region of the resin layer 8 other than the regions 8A and 8B.
  • Other fixing members may be provided separately. That is, an insulating material other than the resin material may be disposed in the region other than the above regions 8A and 8B.
  • the metal spacers 5A and 5B have a rectangular outer shape and have a shape capable of forming at least one hollow portion 5C between the printed circuit board 2 and the coolers 6A and 6B.
  • metal spacers 5A and 5B have a plurality of hollow portions 5C extending in a columnar shape, for example, so as to penetrate the depth direction in FIGS. 1 and 2. It is preferable that a plurality of hollow portions 5C be formed spaced apart from each other in the direction along one main surface 2A of FIG. In FIGS.
  • hollow portions 5C are formed as an example, but not limited to this, four or less or six or more hollow portions 5C may be formed. Further, the hollow portion 5C is in the form of a square pole in FIG. 1 and FIG. The hollow state is maintained without the resin material of the resin layer 8 covering the metal spacers 5A, 5B entering the hollow portion 5C.
  • non-solid means that the main-body part which consists of metal materials among metal spacer 5A, 5B is not solid here. That is, it is assumed that the hollow portion 5C in which no metal material is present may be filled with a material other than the metal material forming the main portion of the metal spacers 5A and 5B.
  • the metal spacers 5A and 5B are formed of a metal material having high thermal conductivity. Specifically, it is formed of a metal material such as copper, aluminum, iron, nickel, tin, magnesium, zinc or an alloy composed of two or more metal materials selected from the above group. Alternatively, the metal spacers 5A and 5B may be formed of a clad material in which the one metal material and the two or more metal materials are combined. By using such a material, the metal spacers 5A and 5B can efficiently transfer the heat of the printed circuit board 2 to the coolers 6A and 6B.
  • the metal spacers 5A and 5B may have a plating layer of tin, electroless nickel, or the like formed on the surface thereof. As a result, the metal spacers 5A and 5B can have good solder wettability.
  • FIGS. 1 and 2 only one metal spacer 5A is provided. However, not only this but multiple metal spacers 5B may be installed. The same applies to the metal spacer 5B.
  • the flat tube 5A1 has a rectangular parallelepiped shape.
  • the flat tube 5A1 may have a configuration in which, for example, five hollow portions 5C extending in the form of a quadrangular prism are formed at intervals in the left-right direction of the figure so as to penetrate the depth direction in FIG.
  • the present invention is not limited to this, and the metal spacer 5A may have, for example, the configuration shown in FIG. 4 to FIG. The same applies to the metal spacer 5B.
  • the flat tube 5A refers to one in which the overall horizontal dimension of the metal spacer 5A of FIG. 3 is longer than the vertical dimension (thickness direction).
  • metal spacer 5A is arranged so that, for example, five rectangular tubes 5A2, 5A3, 5A4, 5A5 and 5A6 extending in the depth direction of the figure adhere to each other, as a whole as a whole.
  • the flat tube 5A may have substantially the same appearance as that of the flat tube 5A.
  • a hollow portion 5C in the same manner as the hollow portion 5C formed in the flat tube 5A in FIG. 3 is formed to penetrate in the depth direction in FIG.
  • metal spacer 5A may be configured to have a pair of metal flat plates 5A7 and 5A8 opposed to each other and a corrugated metal plate 5A9 provided therebetween.
  • the corrugated metal plate 5A9 has an aspect of drawing a wave shape of a curve when viewed from the front in FIG.
  • the corrugated metal plate 5A9 reciprocates between the flat plates 5A7 and the flat metal plate 5A8 in a fixed cycle in the lateral direction of the drawing while contacting the flat plates 5A7 and 5A8.
  • a plurality of hollow portions 5C are formed between the metal flat plates 5A7 and 5A8 and the corrugated metal plate 5A9, penetrating the entire area occupied by the metal flat plates 5A7 and 5A8 in the depth direction of the drawing.
  • the corrugated metal plate 5A9 of the metal spacer 5A of FIG. 5 may be in the form of a rectangular wave when viewed from the front. Also in this case, the rectangular wave-like metal plate 5A9 reciprocates between these flat plates in a constant cycle in the horizontal direction of the drawing while being in contact with the metal flat plates 5A7 and 5A8. Thus, a plurality of hollow portions 5C are formed between the flat metal plates 5A7 and 5A8 and the corrugated metal plate 5A9, as in FIG.
  • the hollow portion 5C has the upper side (cooler 6A side) and the lower side (printed board 2 side) both in any of the examples of FIGS.
  • the main body of the metal spacer 5A is formed to have a pair of first portions of a metal wall extending along one main surface 2A.
  • the metal wall as the first portion corresponds to a pair of flat metal plates 5A7 and 5A8 in FIGS. 5 and 6 so as to surround the hollow portion 5C from the upper side and the lower side. For this reason, the pair of first portions are opposed to each other at an interval in the longitudinal direction. Further, one of the pair of first portions, that is, the first portion disposed on the printed board 2 side is bonded to the printed board 2.
  • the hollow portion 5C has a metal wall portion constituting the main body of the metal spacer 5A on both the left side and the right side in any of FIGS. Is formed.
  • This metal wall is a plurality of second portions extending in a direction intersecting (substantially orthogonal) one main surface 2A in FIGS. 3 and 4, and a pair of regions between the first portions is paired. Extends from each of the first portions of the first and second portions in a direction intersecting the one major surface 2A.
  • This second portion corresponds to the corrugated metal plate 5A9 that forms the hollow portion 5C together with the metal flat plates 5A7 and 5A8 in FIGS. 5 and 6.
  • the corrugated metal plates 5A9 are arranged at intervals in the width direction with respect to the direction along the one main surface 2A. That is, in the metal spacer 5A of this embodiment, the hollow portion 5C is surrounded by the metal wall constituting the main body of the metal spacer 5A from the upper and lower sides and the left and right sides in any of FIGS. Is formed. The above applies to the metal spacer 5B.
  • the hollow portion 5C of the metal spacer 5A constitutes the metal spacer 5B main body on both the lower side (cooler 6B side) and the upper side (printed board 2 side), a portion of the metal wall along one main surface 2A It is formed to have. Furthermore, the hollow portions 5C of the metal spacer 5A are formed by the widthwise spacing of the pair of second portions adjacent to each other among the plurality of second portions.
  • the whole of the metal spacers 5A and 5B including the metal flat plates 5A7 and 5A8 and the corrugated metal plate 5A9 is formed of the above-described metal material.
  • the metal flat plates 5A7 and 5A8 and the corrugated metal plate 5A9 can be formed by a low cost press method.
  • the pair of flat metal plates 5A7 and 5A8 and the corrugated metal plate 5A9 can be connected by the same metal material as the low melting point metal that constitutes the solder layer 7. Therefore, in manufacturing the circuit device 1A1, it is preferable that a reflow process be performed simultaneously with the printed circuit board 2 in a state where, for example, solder paste is applied to opposing surfaces of the flat metal plates 5A7 and 5A8 and the corrugated metal plate 5A9 is set. In this way, the printed circuit board 2 and the metal spacer 5A can be integrally formed by one reflow process, and at the same time, the printed circuit board 2 and the metal spacer 5A, 5B are solder layers 7 as shown in FIG. Can be connected with
  • the metal spacer 5A described above has a thickness equal to or larger than that of the semiconductor component 3 in the vertical direction of FIG. 1 intersecting the one main surface 2A of the printed circuit board 2. That is, metal spacer 5A and semiconductor component 3 are both connected on one main surface 2A of printed circuit board 2. Therefore, the top surface of the metal spacer 5A in FIG. 1 is disposed above the top surface of the semiconductor component 3 in FIG. Similarly, the metal spacer 5B has a thickness equal to or greater than that of the electronic component 4 in the vertical direction of FIG. 1 intersecting the other main surface 2B of the printed circuit board 2. That is, metal spacer 5 ⁇ / b> B and electronic component 4 are both connected on the other main surface 2 ⁇ / b> B of printed circuit board 2.
  • the lowermost surface of the metal spacer 5B in FIG. 1 is disposed below the lowermost surface of the electronic component 4 in FIG.
  • the metal spacers 5A and 5B thicker than the mounting parts in this manner, the entire surfaces of the coolers 6A and 6B facing the metal spacers 5A and 5B can be made flat (intentionally provided with the uneven portion) Can be formed). For this reason, coolers 6A and 6B can be manufactured more simply.
  • the portion of the metal wall as the second portion of the metal spacers 5A and 5B is not limited to the planar shape extending linearly in the above cross-sectional view. That is, the second portion may be, for example, lattice-like or honeycomb-like. Having a plurality (as many as possible) of second portions transmitting heat from the printed circuit board 2 to the coolers 6A and 6B, and making the area between the metal spacers 5A and 5B and the coolers 6A and 6B as large as possible It is preferable that the layer 8 be covered and the resin layer 8 be in good heat conduction between the metal spacer and the cooler.
  • the insulating resin layer has poor thermal conductivity. Therefore, when using an insulating resin layer, it is important to reduce the thermal resistance between the printed circuit board and the cooler. For that purpose, the technique which diffuses the heat which generate
  • the first comparative example it is conceivable to use a heat dissipation mechanism which dissipates heat from the mounted parts to the outside through a package of epoxy resin or the like of about 0.2 W / mK to 10 W / mK.
  • this first comparative example has a problem that the cooling efficiency is not good.
  • the thickness of the insulating resin layer is about 3 mm, and the cross-sectional area of the heat transfer region is about 1 cm 2 .
  • the thermal resistance on the surface side of the package is 10 K / W.
  • the heat resistance is 10 times or more of 1.0 K / W, which is a general heat resistance value of the TO-252 package, and thus hardly makes sense as a heat transfer path.
  • the thermal resistance per unit area on the component mounting surface side is per unit area on the non-component mounting surface side It is more than eight times the thermal resistance. Therefore, in order to realize the same thermal resistance as the non-component mounting surface side on the component mounting surface side, an area eight times as large as the non-component mounting surface side is required on the component mounting surface side. Thus, the cooling effect by the heat radiation of the printed circuit board on the component mounting surface side is weakened.
  • a third comparative example it is also possible to radiate the heat of the printed circuit board to the cooler side by sandwiching a metal spacer having a high thermal conductivity between the printed circuit board and the cooler.
  • a metal spacer having a high thermal conductivity between the printed circuit board and the cooler.
  • the temperature hardly rises during soldering. Therefore, in order to reduce the heat capacity of the metal spacer, it is necessary to make it a small thin plate. It is because it will become difficult to connect a printed circuit board and a cooler via a spacer by soldering, such as reflow, if it does not do so.
  • the metal spacer 5A is provided on at least one of the main surfaces 2A of the printed circuit board 2.
  • the metal spacer 5A functions as a heat spreader on one main surface 2A of the printed circuit board 2 and as a thermal bridge between the cooler 6A and the printed circuit board 2. That is, the heat transferred to the metal spacer 5A is transferred from there to the cooler 6A via the resin layer 8. Therefore, the printed circuit board 2 can be cooled efficiently.
  • the metal spacer 5A reliably has a hollow portion 5C.
  • the metal spacer 5A of the present embodiment has a hollow portion 5C. Therefore, even when the thickness of the metal spacer 5A in the direction along the distance between the printed board 2 and the cooler 6A is increased, the increase in the heat capacity of the metal spacer 5A can be suppressed. Therefore, the temperature time constant ⁇ of the metal spacer 5A can be reduced compared to a thick plate or the like which does not have the hollow portion 5C having the same volume as that of the metal spacer 5A. Further, the formation of the hollow portion 5C reduces the mass of the metal spacer 5A. Therefore, the metal spacer 5A can be easily soldered to the printed circuit board 2 by an inexpensive means such as a reflow process.
  • metal spacer 5A has, for example, a quadrangular prism-like hollow portion 5C as shown in FIG. 3 by a plurality of second portions (outer wall portions) arranged at intervals in the width direction with respect to the direction along one main surface 2A. . Therefore, the metal spacer 5A has a metal wall as an outer wall portion of the hollow portion 5C, and the metal wall is disposed so as to connect the printed circuit board 2 and the cooler 6A. Therefore, the heat of the printed circuit board 2 can be dissipated to the cooler 6A by a short path via the metal wall. Therefore, the metal spacer 5A can efficiently cool the printed circuit board 2. The same applies to the metal spacer 5B on the other main surface 2B of the printed circuit board 2.
  • printed circuit board 2 includes a conductor layer 21 along one main surface 2A, and metal spacer 5A is a conductor layer 21 (conductor layer 21A in FIG. 1) It is joined by the solder layer 7.
  • the metal spacer 5A can function as a thermal diffusion plate which spreads the heat of the printed board 2 in the direction along the one main surface 2A. For this reason, the heat of the printed circuit board 2 can be efficiently transmitted to the cooler 6A by the metal spacer 5A.
  • the metal spacer 5B on the other main surface 2B of the printed circuit board 2.
  • the melting point of the solder layer 7 is lower than the melting point of the metal material constituting the metal spacer 5A. For this reason, the solder layer 7 can be used for joining with the printed circuit board 2 within the temperature range in which the metal spacer 5A can heat.
  • mounting components can not be mounted on one of the main surfaces. Further, in this case, if the mounting component is temporarily mounted on the other main surface of the printed circuit board, the mounting component causes unevenness on the other main surface. For this reason, it is difficult to connect a cooler over a large area on the other main surface. For this reason, it is difficult to use the other main surface top as a cooling part of a printed circuit board.
  • an uneven shape is generated on the main surface of the printed circuit board on which the mounting component is mounted.
  • the component mounting surface of the printed circuit board can be cooled by using a cooler having a complicated shape following the uneven shape.
  • the cooler needs to be manufactured by using die casting which requires an expensive mold or by performing complicated cutting. This may result in high cost.
  • the cooler 6A is disposed on the side opposite to the printed circuit board 2 of the metal spacer 5A. Therefore, it is possible to suppress a decrease in layout efficiency due to the arrangement that only cooler 6A occupies on one main surface 2A of printed circuit board 2. Therefore, both on one main surface 2A and the other main surface 2B can be used as a cooling portion of printed circuit board 2. Moreover, the cooling efficiency by the cooler 6A can be enhanced without increasing the size of the circuit device 1A1.
  • metal spacer 5A as a first non-solid metal spacer is provided on one main surface 2A, and a second non-solid metal spacer is provided on the other main surface 2B.
  • the metal spacers 5B are disposed respectively. For this reason, not only one of the main surface side of the printed circuit board 2 but also the one and the other main surface sides can be efficiently cooled. That is, in the circuit device 1A1, the heat dissipation can be greatly improved without increasing the size of the printed circuit board 2. Therefore, the circuit device 1A1 can endure the heat generation density nearly twice as large as that when cooled from only one of the main surface sides, without increasing the size of the printed circuit board 2 or significantly increasing the weight.
  • the metal spacer 5 of the present embodiment is formed of a relatively inexpensive metal material such as copper or aluminum.
  • a relatively inexpensive metal material such as copper or aluminum.
  • the base plate 32 in FIG. 1 is connected to the conductor layer 21A of the printed circuit board 2 through the solder layer 7.
  • the through holes 23 electrically connect the conductor layer 21A and the conductor layer 21D.
  • the metal spacer 5B is connected to the conductor layer 21D via the solder layer 7. Since it has such a configuration, the metal spacer 5B functions as a heat diffusion plate which spreads the heat of the semiconductor component 3 in the direction along the other main surface 2B. Therefore, the heat spread in the direction along the other main surface 2B of the printed circuit board 2 in the metal spacer 5B can be efficiently conducted to the cooler 6B.
  • the metal spacer 5A is connected to the conductor layer 21A through the solder layer 7. Since it has such a configuration, the metal spacer 5A functions as a heat diffusion plate which spreads the heat of the semiconductor component 3 in the direction along the one main surface 2A. Therefore, the heat spread in the direction along one main surface 2A of printed circuit board 2 in metal spacer 5A can be efficiently transmitted to cooler 6A.
  • metal spacers 5A and 5B and semiconductor component 3 in FIG. 1 are connected via conductor layers 21A to 21D of printed circuit board 2 through small thermal resistances formed by through holes 23 and the like.
  • thermal resistances formed by through holes 23 and the like There is an effect of increasing the heat capacity in a pseudo manner. Therefore, it is possible to suppress a rapid temperature rise of the semiconductor component 3 caused by the large heat generation of the semiconductor component 3 instantaneously. It is also possible to suppress the decrease in the reliability of the semiconductor component 3 due to the repetition of such thermal shock.
  • the semiconductor component 3 and the metal spacer 5A are connected by the solder layer 7 as a first bonding material. For this reason, in the present embodiment, the heat generation of the semiconductor component 3 is efficiently and promptly transmitted to the metal spacer 5A through the solder layer 7.
  • FIG. 7 is a schematic cross-sectional view showing a configuration of a circuit apparatus according to a second example of the first embodiment.
  • circuit device 1A2 of the second example of the present embodiment basically has the same configuration as circuit device 1A1 (see FIG. 1) of the first example. The same reference numerals will be assigned and the description thereof will not be repeated.
  • spacer through holes 5D are formed in part of the surfaces of the metal spacers 5A, 5B facing the respective coolers 6A, 6B.
  • the circuit device 1A2 differs from the circuit device 1A1 in this point.
  • Spacer through hole 5D is a portion of the metal wall along one main surface 2A of metal spacers 5A, 5B so as to reach hollow portion 5C from the outermost surface facing coolers 6A, 6B of metal spacers 5A, 5B.
  • a hole passing through the A plurality of spacer through holes 5D are formed in each of the metal spacers 5A and 5B. More specifically, it is preferable that one or more of each of the plurality of hollow portions 5C formed in each of the metal spacers 5A, 5B be formed.
  • the circuit device 1A2 has the following effects. That is, resin layer 8 arranged to embed metal spacers 5A, 5B is filled, for example, by potting, into the region between printed circuit board 2 and coolers 6A, 6B. At this time, the potting material forming the resin layer 8 enters from the spacer through holes 5D also into the hollow portions 5C formed in the metal spacers 5A and 5B. That is, the hollow portion 5C is easily filled with the potting material constituting the resin layer 8. Therefore, the regions between the printed circuit board 2 and the coolers 6A and 6B can be well thermally conducted by the metal spacers 5A and 5B.
  • FIG. 8 is a schematic cross-sectional view showing a configuration of a circuit apparatus according to a third example of the first embodiment.
  • the circuit device 1A3 of the third example of the present embodiment basically has the same configuration as the circuit device 1A2 (see FIG. 7) of the second example. The same reference numerals will be assigned and the description thereof will not be repeated.
  • the spacer through holes 5D are formed in part of the surfaces of the metal spacers 5A and 5B facing the printed circuit board 2.
  • the circuit device 1A3 is different from the circuit device 1A2 in which the spacer through holes 5D are formed on the coolers 6A, 6B side of the metal spacers 5A, 5B.
  • the spacer through holes 5D are formed of metal walls along one main surface 2A of the metal spacers 5A, 5B so as to reach the hollow portion 5C from the outermost surfaces of the metal spacers 5A, 5B facing the printed circuit board 2. It is a hole passing through the part. Also in this case, as in FIG. 7, the plurality of spacer through holes 5D are provided in each of the metal spacers 5A, 5B (one or more for each of the plurality of hollow portions 5C formed in each of the metal spacers 5A, 5B) It is formed.
  • the spacer through hole 5D is provided on the printed circuit board 2 side, the following effects can be obtained. That is, resin layer 8 arranged to embed metal spacers 5A and 5B is filled in the region between printed circuit board 2 and coolers 6A and 6B by, for example, a reflow process. At this time, the spacer through hole 5D can be used, for example, as an air vent hole in the hollow portion 5C.
  • the spacer through holes 5D of the metal spacers 5A and 5B in each of the above-described examples can be formed by any processing method selected from the group consisting of, for example, pressing, etching, and laser processing.
  • FIG. 9 is a schematic cross-sectional view showing a configuration of a circuit apparatus according to a fourth example of the first embodiment.
  • the circuit device 1A4 of the fourth example of the present embodiment basically has the same configuration as the circuit device 1A1 (see FIG. 1) of the first example, the same components are used. The same reference numerals will be assigned and the description thereof will not be repeated.
  • the metal spacer 5A has a thinner thickness than the semiconductor component 3 in the vertical direction of FIG. 9 intersecting the one main surface 2A of the printed circuit board 2. That is, metal spacer 5A and semiconductor component 3 are both connected on one main surface 2A of printed circuit board 2. Therefore, the uppermost surface of the metal spacer 5A in FIG.
  • the metal spacer 5B has a thickness thinner than the electronic component 4 in the vertical direction of FIG. 1 intersecting the other main surface 2B of the printed circuit board 2. That is, metal spacer 5 ⁇ / b> B and electronic component 4 are both connected on the other main surface 2 ⁇ / b> B of printed circuit board 2. Therefore, the lowermost surface of the metal spacer 5B in FIG. 1 is disposed above the lowermost surface of the electronic component 4 in FIG.
  • coolers 6A and 6B in FIG. 9 have projections 6C that project toward the metal spacers 5A and 5B at portions facing the metal spacers 5A and 5B.
  • the coolers 6A and 6B having such shapes are preferably formed by die casting, extrusion molding, cutting, etc., but are not limited thereto.
  • the circuit device 1A4 differs from the circuit device 1A1 in the above points.
  • the circuit device 1A4 has the following effects. That is, even when the thickness of the metal spacers 5A and 5B is smaller than the thickness of the semiconductor component 3 and the electronic component 4, sufficient cooling efficiency from the printed circuit board 2 to the coolers 6A and 6B can be secured.
  • the thickness in the vertical direction in FIG. 9 of the resin layer 8 between the metal spacers 5A and 5B is preferably thicker than that in FIG. Alternatively, as shown in FIG.
  • FIG. 10 is a schematic perspective view showing a fifth example of the configuration of the non-solid metal spacer according to the first embodiment.
  • a metal spacer 5A according to a fifth example of the present embodiment includes a flat metal plate 5A8 and a comb-shaped portion 5A10.
  • the comb-shaped portion 5A10 is a first region having a comb shape. That is, comb-shaped portion 5A10 includes flat plate portions facing each other such that their main surfaces are substantially parallel to metal flat plate 5A8. Further, the comb-shaped portion 5A10 includes a portion which branches from its flat plate portion so as to be aligned at certain intervals in the left-right direction of FIG. 10 and which extends to the lower side of FIG.
  • the comb-shaped portion 5A10 is configured to have a comb-like side shape by the flat plate portion described above and a plurality of portions branched therefrom.
  • metal flat plate 5A8 is a flat plate-like second region connected to be in contact with the lowermost portion of the portion of comb-shaped portion 5A10 extending downward in FIG.
  • the tip of the branched portion of the comb-shaped portion 5A10 is joined and integrated with the main surface of the flat metal plate 5A8, whereby a plurality of hollow portions 5C are formed therebetween.
  • the hollow portion 5C extends in a columnar shape so as to penetrate in the depth direction of FIG.
  • the metal flat plate 5A8 has an area larger than that of the comb-shaped portion 5A10 in plan view. Specifically, metal flat plate 5A8 has a region overlapping with comb-shaped portion 5A10 in a planar manner and connected thereto, and a region extending on the left side of FIG.
  • FIG. 11 is a schematic cross-sectional view showing a configuration of a circuit apparatus according to a fifth example of the first embodiment.
  • FIG. 12 is a schematic perspective view showing a configuration of a circuit apparatus according to a fifth example of the first embodiment centering on parts of mounted components and non-solid metal spacers.
  • circuit apparatus 1A5 of the fifth example of the present embodiment basically has the same configuration as circuit apparatus 1A1 (see FIG. 1) of the first example, and thus the same configuration. Elements are given the same reference numerals and the description thereof will not be repeated.
  • the portion of flat metal plate 5A8 constituting metal spacer 5A is connected by solder layer 7 onto one main surface 2A. Therefore, the metal flat plate 5A8 of the metal spacer 5A is joined to the conductor layer 21A through the solder layer 7.
  • the flat metal plate 5A8 of the metal spacer 5A of the circuit device 1A5 extends from the region overlapping in plan with the comb-shaped portion 5A8 to the region outside the same. Therefore, the metal flat plate 5A8 planarly overlaps with the semiconductor component 3 in a region outside the region overlapping planarly with the comb-shaped portion 5A10. That is, the semiconductor component 3 is mounted on a region outside the region overlapping the comb shaped portion 5A10 in plan view of the metal flat plate 5A8.
  • the semiconductor component 3 and the flat metal plate 5A8 of the metal spacer 5A are connected by the solder layer 7 as a second bonding material. More specifically, the upper main surface of metal flat plate 5A8 which does not overlap with comb-shaped portion 5A10 is joined to base plate 32 and resin package 33 of semiconductor component 3 by solder layer 7 as a second joining material. .
  • the solder layer 7 is a layer of a bonding material made of the same material as the solder layer 7 as the first bonding material which extends from the region overlapping the comb-shaped portion 5A10 directly below the metal flat plate 5A8 to the region on the left thereof. That is, in the region directly below the semiconductor component 3, the metal flat plate 5 A 8 is sandwiched between the solder layer 7 from the upper and lower bidirectional sides.
  • the circuit device 1A5 having the above configuration exhibits the following effects.
  • the flat metal plate 5A8 of the metal spacer 5A, and in particular the base plate 32 and the resin package 33 of the semiconductor component 3 are connected via the solder layer 7 disposed directly on the flat metal plate 5A8 in FIG. As a result, the heat generation of the semiconductor component 3 is efficiently and promptly transmitted to the metal spacer 5A through the solder layer 7.
  • metal spacers 5A and 5B are formed of aluminum.
  • copper is plated on the surfaces of metal spacers 5A and 5B and then bonded to printed circuit board 2 with solder layer 7. Is more preferred.
  • the inside of the cylindrical through hole 23 may be hollow.
  • the inside of the cylindrical through hole 23 may be filled with a plating film or a solder.
  • air does not enter the inside of the through hole 23. Therefore, even when metal spacers 5A and 5B are connected to one main surface 2A and the other main surface 2B of printed circuit board 2 by a reflow process, generation of voids due to air expansion in through hole 23 Can be suppressed.
  • the solder layer 7 connecting the printed circuit board 2 and the coolers 6A and 6B is present, it is possible to suppress a connection failure due to a void entering the solder layer 7.
  • the distance between the metal spacer 5A and the base plate 32 may be reduced, and both may be directly connected by the solder layer 7. Thereby, the thermal resistance between the metal spacers 5A and 5B and the semiconductor component 3 can be reduced. Therefore, the heat generation of the semiconductor component 3 can be efficiently transmitted to the coolers 6A and 6B.
  • the metal spacers 5A and 5B may have a thin insulating layer formed on their surfaces using a heat conductive resin and an oxide film. In that case, even if voids due to air or the like enter the resin layer 8 or the metal spacers 5A, 5B and the coolers 6A, 6B contact each other, the electrical insulation between the printed circuit board 2 and the cooler 6 You can keep
  • the solder layer 7 as a second bonding material for connecting the base plate 32 of the semiconductor component 3 and the metal flat plate 5A8 of the metal spacer 5A is the conductor layer 21A of the printed board 2 and the metal flat plate 5A8.
  • the second bonding material it is preferable to use, as the second bonding material, a high temperature solder or a conductive adhesive which does not melt in the reflow process as the solder layer 7 of the second bonding material. Thereby, position shift etc. of the semiconductor component 3 by the reflow process of the solder layer 7 as the first bonding material can be suppressed.
  • solder layer 7 as the first bonding material connecting the conductor layer 21 of the printed board 2 and the metal flat plate 5A8 uses high temperature solder or the like, and the second bonding material can be melted in the reflow process. Solders that are not high temperature solders may be used.
  • FIG. 13 is a schematic cross-sectional view showing the configuration of the circuit apparatus according to the first example of the second embodiment.
  • FIGS. 14 to 16 are schematic perspective views showing the configuration of the circuit apparatus according to the second embodiment centering on parts of mounted components and non-solid metal spacers.
  • the aspect of the metal spacer 5A of FIG. 14 corresponds to the aspect of the metal spacer 5A of FIG.
  • the metal spacer 5A of FIGS. 15 and 16 shows a modification of the metal spacer 5A of FIG. 14, which generally corresponds to FIGS. 5 and 6 of the first embodiment.
  • circuit device 1B1 of the first example of the present embodiment basically has the same configuration as circuit device 1A1 of FIG. 1 of the first embodiment, the same components are identical. The symbol of is attached and the description is not repeated.
  • the hollow portion 5C of the metal spacer 5A is formed to have the portion of the metal wall along one main surface 2A constituting the main body of the metal spacer 5A only on the upper side (cooler 6A side) It is done.
  • the circuit device 1B1 has one main surface 2A in which the hollow portion 5C of the metal spacer 5A constitutes the metal spacer 5A main body on both the upper side (cooler 6A side) and the lower side (print board 2 side). It is structurally different from the circuit device 1A1 formed so as to have a portion of the metal wall along.
  • metal spacer 5A shown in FIG. 13 is a first portion where flat tube 5A1 of metal spacer 5A expands in the direction along one main surface 2A of printed circuit board 2 And a portion of the flat metal plate 5A7.
  • metal spacers 5A in FIGS. 13 and 14 extend from metal flat plate 5A7 in the direction intersecting with one main surface 2A (direction from metal flat plate 5A7 toward printed circuit board 2), and mutually extend in the direction along one main surface 2A. It has branch parts 5A11 as a plurality of second parts spaced apart in the width direction.
  • the metal flat plate 5A7 and the branch portion 5A11 of FIG. 13 form the comb-shaped portion 5A10 of FIG. 10 described above.
  • Branch portion 5A11 is joined to conductor layer 21A of printed circuit board 2 via, for example, solder layer 7.
  • the metal spacer 5A in the circuit device 1B1 of FIGS. 13 and 14 has a portion which is disposed on the printed substrate 2 side of the metal spacer 5A of FIGS. 1 and 2 (FIGS. 3 and 4) and extends along this.
  • the configuration is a comb-shaped portion.
  • the metal spacer 5A of FIGS. 13 and 14 has a width direction interval between a plurality of branched portions 5A11 sandwiched by a pair of adjacent branched portions 5A11 and is surrounded by the printed board 2 and the metal flat plate 5A7.
  • the hollow portion 5C is formed.
  • metal spacer 5A in circuit device 1B2 basically has the same configuration as metal spacer 5A in FIG. 5, but differs in that metal flat plate 5A8 is not provided. That is, like the branched portion 5A11 of FIG. 14, the corrugated metal plate 5A9 of FIG. 15 is directly joined to the printed circuit board 2 via, for example, the solder layer 7.
  • a hollow portion 5C is formed by the corrugated metal plate 5A9 and the flat metal plate 5A7 and the printed board 2 which sandwich the corrugated metal plate 5A9 from above and below. That is, in the metal spacer 5A of this example, the metal flat plate 5A7 is disposed as the first portion, and the corrugated metal plate 5A9 is disposed as the second portion.
  • metal spacer 5A in circuit device 1B3 basically has the same configuration as metal spacer 5A in FIG. 6, but differs in that metal flat plate 5A8 is not provided. That is, the rectangular corrugated metal plate 5A9 of FIG. 16 is directly bonded to the printed circuit board 2 via, for example, the solder layer 7 in the same manner as the branched portion 5A11 of FIG. A hollow portion 5C is formed by the corrugated metal plate 5A9 and the flat metal plate 5A7 and the printed board 2 which sandwich the corrugated metal plate 5A9 from above and below. That is, in the metal spacer 5A of this example, the metal flat plate 5A7 is disposed as the first portion, and the corrugated metal plate 5A9 is disposed as the second portion.
  • metal spacer 5A has been described above, the same applies to the metal spacer 5B.
  • the heat generation from the semiconductor component 3 is transmitted to the conductor layer 21A, and the entire end of the metal spacer 5A from the tip of the branch portion 5A11 of the metal spacer 5A connected to the conductor layer 21A. It is transmitted to. The heat is further transferred from the metal spacer 5A to the cooler 6A via the resin layer 8.
  • metal spacer 5A of the present embodiment functions as a heat spreader on one main surface 2A of printed circuit board 2 and a thermal bridge between cooler 6A and printed circuit board 2 as in the first embodiment. Do.
  • the metal spacer 5A can function as a heat diffusion plate which spreads the heat of the printed board 2 in the direction along the one main surface 2A. For this reason, the heat of the printed circuit board 2 is efficiently transmitted to the cooler 6A through the metal spacer 5A. The same applies to the metal spacer 5B on the other main surface 2B of the printed circuit board 2.
  • the metal spacers 5A and 5B of the circuit devices 1B1 to 1B3 of the present embodiment have comb-shaped portions, and the tip portions thereof are directly bonded to the printed circuit board 2. Therefore, in the present embodiment, unlike in the case where the metal spacers 5A and 5B have a portion along the one main surface 2A on the printed board 2 side as in the first embodiment, a metal flat portion 5A8 or the like is used.
  • the spacers 5 do not close the through holes 23 provided in the printed circuit board 2. Therefore, even if the air inside the through hole 23 expands during the reflow process, the air can be discharged from the end in the extending direction of the through hole 23 on the metal spacer 5A side. For this reason, it is possible to suppress a connection failure between the printed board 2 and the metal spacers 5A, 5B due to a void entering the solder layer 7 between the printed board 2 and the metal spacers 5A, 5B.
  • the metal spacers 5A and 5B having the branched portion 5A11 or the corrugated metal plate 5A9 as the second portion in the present embodiment are manufactured by a processing method such as press molding. Further, the material of the metal spacers 5A and 5B is formed of a metal material having high thermal conductivity such as copper or aluminum as in the first embodiment. Therefore, the metal material can be obtained inexpensively and easily. Furthermore, the metal spacer 5A of FIG. 16 does not include the flat metal plate 5A8 included in the metal spacer 5A of FIG. Therefore, the metal spacer 5A of FIG. 16 can be manufactured at lower cost than the metal spacer 5A of FIG.
  • FIG. 17 is a schematic cross-sectional view of a circuit device according to a fourth example of the second embodiment, in particular, a partial region of the non-solid metal spacer and the printed board cut away.
  • the circuit device 1B4 of the fourth example of the present embodiment basically has the same configuration as the circuit device 1B1 (see FIGS. 13 and 14) of the first example, and therefore the same configuration Elements are given the same reference numerals and the description thereof will not be repeated.
  • the photoresist layer 20 is formed on the area of the conductor layer 21A of the printed board 2 other than the area connected to the branch portion 5A11 by the solder layer 7.
  • the photoresist layer 20 is formed on the conductor layer 21A inside the hollow portion 5C formed by the metal spacer 5A.
  • the photoresist layer 20 is formed on the conductor layer 21A outside the metal spacer 5A.
  • a photoresist layer 20 may be formed on the conductor layer 21D at the same position as described above on the metal spacer 5B side.
  • the solder layer 7 is not formed on the entire surface of the conductor layer 21A (21D).
  • the solder layer 7 is disposed only on a region of the conductor layer 21A (21D) to which the lowermost portion of the metal spacer 5 is particularly connected.
  • a photoresist layer 20 is formed on the surface of the region of the conductor layer 21A that does not contribute to the connection with the metal spacer 5.
  • a so-called solder fillet is formed in the solder layer 7 immediately below the branch portion 5A11 of the metal spacer 5 so that its width gradually widens toward the conductor layer 21 side.
  • solder fillet is formed in the solder layer 7, the heat radiation efficiency between the metal spacer 5 and the conductor layer 21 can be further improved as compared with the case where the solder fillet is not formed.
  • the formation of the solder fillet on the solder layer 7 can suppress the metal spacer 5 from being installed at a position deviated from the position where it should be originally installed.
  • the second embodiment is basically the same as the first embodiment except for the points described above, and therefore the description will not be repeated here.
  • FIG. 18 is a schematic cross-sectional view showing the configuration of the circuit apparatus according to the third embodiment.
  • circuit device 1C of the present embodiment basically has the same configuration as circuit device 1A1 of FIG. 1 of the first embodiment, the same components are denoted by the same reference numerals. I will not repeat the explanation.
  • the semiconductor component 3 is sealed, for example, in a general-purpose insertion-mounted IC package such as TO220 or TO-3P.
  • the lower surface of the base plate 32 constituting the semiconductor component 3 is screwed or the like onto the surface of the second portion (the portion extending in the direction intersecting the one main surface 2A) which is the metal wall of the metal spacer 5A. It is connected using. Therefore, in the circuit device 1C, the whole of the semiconductor component 3 is joined so as to be rotated by about 90 ° with respect to the semiconductor component 3 of the circuit device 1A1. That is, in the circuit device 1C, the base plate 32 of the semiconductor component 3 extends along the thickness direction of the printed circuit board 2 and spreads. In this point, the circuit device 1C is different from the circuit device 1A1 in which the lower surface of the base plate 32 is connected to one of the main surfaces 2A of the printed circuit board 2.
  • the entire semiconductor component 3 is rotated with respect to the semiconductor component 3 of the circuit device 1A1.
  • the dimension in the thickness direction of the metal spacer 5A joined on the one main surface 2A is thick so as to match the dimension in the extension direction of the base plate 32. Therefore, in the circuit device 1C, the hollow portion 5C of the metal spacer 5A is longer in the vertical direction intersecting the one main surface 2A than the dimension in the horizontal direction along the one main surface 2A of the printed board 2 ing.
  • the volume of the hollow portion 5C is larger in this embodiment compared to the other embodiments.
  • the side walls extending in the vertical direction are provided so as to have hollow portions 5C of the same number (five) or more as the other embodiments in this embodiment as well. It is provided.
  • the lead frame 34 included in the semiconductor component 3 extends in the direction along the base plate 32 (vertical direction in FIG. 18) as shown in FIG. 9 and then curves to extend along one main surface 2A. It extends in the left-right direction of FIG. 18, further curves from there, and extends along the thickness direction of the printed circuit board 2.
  • a part of the lead frame 34 extending along the thickness direction of the printed board 2 is inserted into one of the plurality of through holes 23 formed in the printed board 2.
  • the lead frame 34 inserted into the through hole 23 is electrically connected to the conductor layer 21 E of the printed board 2 by the solder layer 7.
  • the lead frame 34 extends in the through hole 23 to the other main surface 2B of the printed circuit board 2 and further extends into the resin layer 8 on the lower side of FIG.
  • the semiconductor device 3 is mounted on the printed circuit board 2 by inserting the lead frame 34 into the through hole 23 in this manner. That is, the semiconductor component 3 is a so-called insertion mounting type.
  • the lead frame 34 is electrically connected to the conductor layer 21E of the printed circuit board 2 so that the semiconductor component 3 is mounted on the printed circuit board 2 in the circuit device 1A1. , 1B1 is different.
  • the surface temperature of the solder layer 7 rises because the heat of the printed board 2 is transferred from the lead frame 34 of the semiconductor component 3 to the solder layer 7 joining the lead frame 34 and the printed board 2 There is. Also in this case, the printed circuit board 2 and the semiconductor component 3 can be cooled using the metal spacer 5A. Therefore, metal spacers 5A and 5B can be formed from the one main surface 2A side which is the component mounting surface side into which lead frame 34 of printed circuit board 2 is inserted and the other main surface 2B side opposite thereto. It can be used to cool the printed circuit board 2.
  • one main surface 2A side of the printed circuit board 2 is It is possible to efficiently cool on the other main surface 2B side. For this reason, the circuit device 1C can endure the heat generation density nearly twice as large as that in the case of cooling from only one of the main surface sides without increasing the size of the printed circuit board 2.
  • the third embodiment is basically the same as the first embodiment except for the points described above, and therefore the description will not be repeated here.
  • FIG. 19 is a schematic cross-sectional view showing the configuration of the circuit apparatus according to the fourth embodiment.
  • FIG. 20 is a schematic perspective view showing the configuration of the circuit device according to the fourth embodiment focusing on the portion other than the cooler in the circuit device of FIG.
  • circuit device 1D of the present embodiment basically has the same configuration as circuit device 1A1 of FIG. 1 of the first embodiment, the same components are identical. It attaches and does not repeat the explanation.
  • a magnetic component 9 is used as a mounting component in place of the semiconductor component 3 in each of the above embodiments.
  • the magnetic component 9 as the mounting component extends in the vertical direction of FIG. 19 from the region above the one main surface 2A of the printed circuit board 2 to the region below the other main surface 2B of the printed substrate 2 in the vertical direction of FIG. It extends to Here, the region above the one main surface 2A of the printed circuit board 2 in the drawing is a region where the resin layer 8 is supplied and aligned with the metal spacer 5A along the one main surface 2A. Further, the area below the other main surface 2B of the printed board 2 in the drawing is an area in which the resin layer 8 is supplied and aligned with the metal spacer 5B along the other main surface 2B.
  • the magnetic component 9 extends from the region aligned with the metal spacer 5A along the main surface 2A supplied with the resin layer 8, from the one main surface 2A to the other main surface 2B in the printed board 2, and further the resin layer 8 are supplied and extend along one main surface 2A to a region aligned with the metal spacer 5A.
  • the magnetic component 9 extends from above the one main surface 2A to penetrate the inside of the printed circuit board 2.
  • the magnetic component 9 is, for example, a magnetic core inserted in the hollow portion of the conductor layer 21 and the insulating layer 22 of the coil pattern 24 formed of the conductor layer 21 and the insulating layer 22 of the printed board 2.
  • the magnetic component 9 is made of ferrite or the like, and functions as a transformer and a reactor together with the coil pattern 24 formed on the printed circuit board 2 described above.
  • hollow portions 5C of metal spacers 5A and 5B have one main surface 2A more than the dimension in the left-right direction along one main surface 2A of printed circuit board 2
  • the vertical dimension that intersects the is longer.
  • the present invention is not limited to such an aspect, and the hollow portions 5C of the metal spacers 5A and 5B are also in the left-right direction along one main surface 2A of the printed board 2 as in the first and second embodiments.
  • the dimension may be longer than the dimension in the vertical direction intersecting with one of the main surfaces 2A. That is, the metal spacer 5A may be formed thicker so that the top of the metal spacer 5A is disposed above the top of the magnetic component 9.
  • the metal spacer 5A may be thin so that the top of the metal spacer 5A is located below the top of the magnetic component 9.
  • the metal spacer 5B may be formed thicker so that the lowermost portion of the metal spacer 5B is disposed below the lowermost portion of the magnetic component 9.
  • the metal spacer 5B may be formed thin so that the lowermost portion of the metal spacer 5B is disposed above the lowermost portion of the magnetic component 9.
  • FIG. 19 through holes 23 extending to penetrate printed board 2 from one main surface 2A to the other main surface 2B are not shown.
  • Through holes 23 may be formed to extend through the holes.
  • the circuit device 1D of the present embodiment the heat generated in the coil pattern 24 and the like formed on the printed circuit board 2 is transmitted to the coolers 6A and 6B via the magnetic component 9. The heat is also transferred to the coolers 6A and 6B via the metal spacers 5A and 5B. Therefore, the circuit device 1D can efficiently cool the printed circuit board 2 without increasing the size of the printed circuit board 2.
  • the fourth embodiment is basically the same as the first embodiment except for the points described above, and therefore the description will not be repeated here.
  • FIG. FIG. 21 is a schematic cross-sectional view showing the configuration of the circuit apparatus according to the fifth embodiment.
  • FIG. 22 is a schematic perspective view showing the configuration of the circuit apparatus according to the fifth embodiment centering on parts of mounted components and non-solid metal spacers.
  • circuit device 1E of the present embodiment basically has the same configuration as circuit device 1B1 of FIG. 13 of the second embodiment, the same components have the same configuration. It attaches and does not repeat the explanation.
  • the semiconductor component 3 as a mounting component is disposed in the hollow portion 5C of the metal spacer 5A.
  • the circuit device 1E is different in construction from the first to fourth embodiments in which the semiconductor component 3 is disposed on one main surface 2A outside the hollow portion 5C.
  • the metal spacer 5A be bonded on one main surface 2A in the hollow portion 5C.
  • the metal spacer 5A of the present embodiment is configured to have a metal wall portion only on the upper side (cooler 6A side) of the hollow portion 5C. Is preferred. That is, it is preferable that the tip end of the branched portion 5A11 be directly bonded to the printed circuit board 2.
  • the semiconductor component 3 is disposed in the hollow portion 5C of the metal spacer 5A. Therefore, the semiconductor component 3 is not disposed outside the metal spacer 5A. Therefore, the area in which the resin layer 8 fills the entire area from the printed circuit board 2 to the cooler 6A in the vertical direction of FIG. Therefore, in the present embodiment, cooling is performed via resin layer 8 from one main surface 2A of printed circuit board 2 using the base portion of metal spacer 8A having a larger area than in the first to fourth embodiments. It becomes possible to connect with the vessel 6A.
  • the circuit device 1E can efficiently transfer heat from the printed circuit board 2 to the cooler 6A. Therefore, it is possible to provide the circuit device 1E that can withstand an increase in output power without increasing the size of the printed circuit board 2.
  • the semiconductor component 3 is covered by the metal spacer 5A from above.
  • the metal spacer 5A surrounding this can also be effective in suppressing the emission of electromagnetic noise from the mounted component such as the semiconductor component 3 to the outside.
  • the semiconductor component 3 is disposed in the hollow portion 5C of the metal spacer 5A.
  • the present invention is not limited to this, and other mounting components such as a capacitor or a resistor may be disposed in the hollow portion 5C.
  • electronic component 4 may be arranged in hollow portion 5C of metal spacer 5B.
  • FIG. 23 is a schematic perspective view showing the configuration of the circuit apparatus according to the sixth embodiment centering on parts of mounted components and non-solid metal spacers.
  • FIG. 24 is a schematic cross-sectional view showing the configuration of the circuit apparatus according to the sixth embodiment. In other words, FIG. 24 shows the configuration of the circuit device of a portion along line XXIV-XXIV in FIG. 23 for the whole including coolers 6A and 6B.
  • circuit device 1F of the present embodiment basically has the same configuration as circuit device 1B1 of the second embodiment and circuit device 1E of the fifth embodiment. Therefore, the same components as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will not be repeated.
  • the cut and raised portion 10 is formed in a part of the metal spacer 5A having the comb-shaped portion.
  • the present embodiment is different in configuration from the other embodiments having no such cut-and-raised portion 10 of the metal spacer 5A.
  • cut and raised portion 10 is, for example, a metal along one main surface 2A constituting the main body of metal spacer 5A on the upper side (cooler 6A side) of hollow portion 5C of metal spacer 5A. It is formed by cutting off a portion of the wall. As shown in FIG. 24, a portion of the metal wall on the top surface of this cut-out metal spacer 5A is bent to form a portion to be joined to the side wall of metal spacer 5A and one main surface 2A below it. . Thus, the cut and raised portion 10 is formed. In this manner, the cut and raised portion 10 is a mode in which a part of the metal spacer 5A is bent to form a branched portion 5A11 (see FIG. 14) of the metal spacer 5A, and is joined to the printed board 2 via the solder layer 7 or the like. There is. Thus, as in the second and fifth embodiments, a metal spacer 5A having a branched portion 5A11 is formed.
  • the cut and raised portion 10 may be bent in an L-shape to form the hollow portion 5C of the metal spacer 5A, as shown in the cross-sectional view of FIG.
  • the portion which is disposed outside the cut and raised portion 10 and forms the side wall of the hollow portion 5C of the metal spacer 5A before being cut off has its top surface, side surface and bottom surface It may have a configuration bent by about 90 ° so as to be integrated.
  • the semiconductor component 3 be disposed in the hollow portion 5C of the metal spacer 5A.
  • the metal spacer 5A has the effect of suppressing the emission of electromagnetic noise from the mounted component such as the semiconductor component 3 to the outside.
  • the heat transferred from the semiconductor component 3 to the printed board 2 is transferred to the metal spacer 5A through the cut and raised portion 10.
  • the heat which spreads hollow part 5C is transmitted to cooler 6A via resin layer 8 of a field embedded in resin layer 8 without being closed to a metal wall.
  • the circuit device 1F As described above, in the circuit device 1F, the area ratio occupied by the resin layer 8 in plan view is larger than that in the other embodiments. Therefore, the circuit device 1F can efficiently transfer heat from the printed circuit board 2 to the cooler 6A by utilizing the high thermal conductivity of the resin layer 8. Therefore, it is possible to provide the circuit device 1F that can withstand an increase in output power without increasing the size of the printed circuit board 2.
  • the cut and raised portion 10 is not limited to the metal spacer 5A, but may be formed on the metal spacer 5B.
  • FIG. 25 is a schematic cross-sectional view showing the configuration of the circuit apparatus according to the seventh embodiment.
  • FIG. 26 is a schematic perspective view showing the configuration of the circuit apparatus according to the seventh embodiment centering on parts of mounted components and non-solid metal spacers.
  • circuit device 1G of the present embodiment basically has the same configuration as circuit device 1A1 of the first embodiment, the same components are denoted by the same reference numerals. I will not repeat the explanation.
  • the hollow portion 5C extends along the one main surface 2A from the region 35 adjacent to the semiconductor component 3 to the region 25 adjacent to the end face 2E of the printed circuit board 2 as shown in FIGS. Extends in the left-right direction.
  • the metal spacers 5A and 5B have a plurality of hollow portions 5C extending in a columnar shape so as to penetrate the left and right direction in FIGS. Therefore, a plurality of hollow portions 5C are formed spaced apart from each other in the depth direction of FIGS.
  • a cooler connection portion 6D is provided as the cooler 6 in addition to the cooler 6A and the cooler 6B.
  • the cooler connection portion 6D extends in the vertical direction (thickness direction) of FIG. 25 intersecting the one main surface 2A so as to connect the end portions of the cooler 6A and the cooler 6B.
  • the end portions of the cooler 6A and the cooler 6B are the rightmost regions in FIG. That is, in FIG. 25, the cooler connection portion 6D is provided in the rightmost region of the lowermost surface facing the cooler 6B of the cooler 6A and the leftmost region of the uppermost surface facing the cooler 6A of the cooler 6B. The end faces as the top and bottom surfaces of are connected.
  • the cooler connection 6D is separate from the cooler 6A and the cooler 6B, and the lowermost end of the cooler 6A and the uppermost end of the cooler 6B are the uppermost surface of the cooler connection 6D and the uppermost surface of the cooler connection 6D.
  • the end face as the lowermost surface may be connected.
  • the cooler connection 6D is disposed between the cooler 6A and the cooler 6B in the vertical direction of FIG.
  • the cooler connection 6D may be formed integrally with the cooler 6A and the cooler 6B so as to have the shape shown in FIG.
  • the right side end face of cooler 6A and cooler 6B is connected to the side surface of cooler connection portion 6D extending in the vertical direction in FIG. Good.
  • the cooler connection 6D is disposed to the right of the cooler 6A and the cooler 6B on the right side of FIG. 25 in its entirety.
  • the hollow portion 5C extends along the one main surface 2A from the area 35 adjacent to the semiconductor component 3 to the area 25 adjacent to the cooler connection portion 6D. It extends in the left and right direction of FIGS.
  • the present embodiment is structurally different from the first to sixth embodiments in which the hollow portion 5C extends in the direction intersecting the direction connecting the regions 35 and 25.
  • the coolers 6A and 6B in the present embodiment may be metal plates such as copper or aluminum which is a material of high thermal conductivity.
  • the coolers 6A and 6B of the present embodiment may be ceramic plates such as aluminum nitride.
  • the coolers 6A and 6B of the present embodiment may be a heat diffusion plate provided with a heat pipe or a paper chamber.
  • the plate materials of the above-described respective materials may be appropriately combined.
  • the coolers 6A, 6B of the present embodiment are various types of auxiliary coolers.
  • the cooler connection portion 6D in the present embodiment is a main cooler by air cooling, water cooling or the like.
  • the cooler connection portion 6D may also be made of the same material as the cooler 6A, 6B.
  • the coolers 6A and 6B in the respective circuit devices of the first to sixth embodiments may be made of the same material as the coolers 6A and 6B of the present embodiment.
  • the coolers 6A, 6B are connected to a cooler connection 6D as a main cooler. For this reason, the heat transferred to the coolers 6A, 6B is conducted to the inside of the coolers 6A, 6B and then transferred to the cooler connection 6D. As a result, the amount of heat transferred from the metal spacer 5 on the side far from the cooler connection 6D of the metal spacers 5A and 5B to any one of the coolers 6A and 6B is reduced. More heat can be transmitted to either of the coolers 6A and 6B from the metal spacer 5 on the side closer to the cooler connection portion 6D among the metal spacers 5A and 5B. Thereby, the semiconductor component 3 and the printed circuit board 2 can be cooled efficiently.
  • the direction in which the hollow portion 5C of the circuit device 1A1 extends is rotated by about 90 ° in plan view.
  • the extending direction of the hollow portions 5C of the coolers 6A and 6B in each circuit device of the above-described first to sixth embodiments may be the same as that in FIG. 25.
  • the hollow portion 5C of the metal spacer 5A and the hollow portion 5C of the metal spacer 5B extend in substantially the same direction in plan view. That is, in the circuit device 1G, the hollow portion 5C of the metal spacer 5A and the hollow portion 5C of the metal spacer 5B both extend in the left-right direction in each drawing. However, only one of the hollow portions 5C of the metal spacers 5A and 5B may extend in the left-right direction of FIGS. 25 and 26, and the other may extend in the depth direction of the paper surface of FIGS. That is, hollow portion 5C of metal spacer 5A and hollow portion 5C of metal spacer 5B may be configured to intersect each other, for example, so as to be orthogonal to each other in plan view.
  • the hollow portion 5C extends along one main surface 2A from the region 35 adjacent to the mounting component to the region 25 adjacent to the end face 2E of the printed circuit board 2 (adjacent to the cooler connection 6D). It extends to In general, the non-solid metal spacers 5A and 5B have higher thermal conductivity in the direction in which the hollow portion 5C extends in plan view than in the direction orthogonal to the direction in which the hollow portion 5C extends in plan view. That is, the non-solid metal spacers 5A and 5B have thermal conductivity anisotropy.
  • the heat generation of the semiconductor component 3 can be transmitted from the region 35 to the region 25 with higher efficiency. Therefore, in the circuit device 1G, heat can be efficiently transmitted from the metal spacers 5A, 5B to the coolers 6A, 6B. Therefore, in the circuit device 1G, the inclination of the temperature distribution of the metal spacer 5 is reduced.
  • the circuit devices according to the above-described first to seventh embodiments are applied to a power conversion device.
  • the present invention is not limited to a specific power converter, the case where the present invention is applied to a three-phase inverter will be described below as an eighth embodiment.
  • FIG. 27 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to the present embodiment is applied.
  • the power conversion system shown in FIG. 27 includes a power supply 1000, a power conversion device 2000, and a load 3000.
  • the power supply 1000 is a DC power supply, and supplies DC power to the power conversion device 2000.
  • the power supply 1000 can be configured by various things, and can be configured by, for example, a DC system, a solar cell, or a storage battery, or as a rectifier circuit or an AC / DC converter connected to an AC system. It is also good. Further, the power supply 1000 may be configured by a DC / DC converter that converts DC power output from the DC system into predetermined power.
  • Power converter 2000 is a three-phase inverter connected between power supply 1000 and load 3000, converts DC power supplied from power supply 1000 into AC power, and supplies AC power to load 3000.
  • Power converter 2000 as shown in FIG. 27, outputs to main conversion circuit 2010 a main conversion circuit 2010 that converts input DC power into AC power and outputs the same, and a control signal that controls main conversion circuit 2010. And a control circuit 2030.
  • the load 3000 is a three-phase motor driven by AC power supplied from the power conversion device 2000.
  • the load 3000 is not limited to a specific application, and is a motor mounted on various electric devices, and is used as, for example, a hybrid car, an electric car, a rail car, an elevator, or a motor for an air conditioner.
  • the main conversion circuit 2010 includes a switching element and a free wheeling diode (not shown), converts the DC power supplied from the power source 1000 into AC power by switching the switching element, and supplies the AC power to the load 3000.
  • the main conversion circuit 2010 according to the present embodiment is a two-level three-phase full bridge circuit, and is used for six switching elements and respective switching elements. It can be composed of six anti-parallel freewheeling diodes.
  • At least one of each switching element and each free wheeling diode of the main conversion circuit 2010 is configured by the semiconductor module 2020 corresponding to the power module of any of the above-described first to seventh embodiments, ie, the semiconductor component 3 or the like.
  • Six switching elements are connected in series for every two switching elements to constitute upper and lower arms, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit.
  • the output terminals of the upper and lower arms, ie, the three output terminals of the main conversion circuit 2010, are connected to the load 3000.
  • the main conversion circuit 2010 includes a drive circuit (not shown) for driving at least one of the above-described switching elements and each free wheeling diode (hereinafter referred to as “(each) switching element”).
  • the drive circuit may be incorporated in the semiconductor module 2020, or may be configured separately from the semiconductor module 2020.
  • the drive circuit generates a drive signal for driving the switching element of the main conversion circuit 2010 and supplies it to the control electrode of the switching element of the main conversion circuit 2010. Specifically, in accordance with a control signal from a control circuit 2030 described later, a drive signal to turn on the switching element and a drive signal to turn off the switching element are output to the control electrodes of the switching elements.
  • the drive signal When the switching element is maintained in the ON state, the drive signal is a voltage signal (ON signal) higher than the threshold voltage of the switching element, and when the switching element is maintained in the OFF state, the drive signal is a voltage signal lower than the threshold voltage of the switching element (Off signal).
  • the control circuit 2030 controls the switching elements of the main conversion circuit 2010 so that the desired power is supplied to the load 3000. Specifically, based on the power to be supplied to the load 3000, the time (on-time) in which each switching element of the main conversion circuit 2010 should be turned on is calculated. For example, the main conversion circuit 2010 can be controlled by PWM control that modulates the on time of the switching element according to the voltage to be output. Then, a control command (control signal) is given to the drive circuit included in the main conversion circuit 2010 so that the on signal is output to the switching element to be turned on at each time point and the off signal is output to the switching element to be turned off. Output The drive circuit outputs an on signal or an off signal as a drive signal to the control electrode of each switching element in accordance with the control signal.
  • the power module of the circuit device according to the first to seventh embodiments is applied as the switching element of the main conversion circuit 2010 and the free wheeling diode. For this reason, it is possible to realize the operation effect such as the improvement of the cooling efficiency as described above.
  • the present invention is not limited to this, and can be applied to various power conversion devices.
  • a two-level power converter is used, but a three-level or multi-level power converter may be used.
  • the present invention is applied to a single-phase inverter. You may apply it.
  • the present invention can be applied to a DC / DC converter or an AC / DC converter.
  • the power conversion device to which the present invention is applied is not limited to the case where the load described above is a motor, and, for example, a power supply of an electric discharge machine or a laser machine, or an induction heating cooker or a noncontacting device feeding system It can also be used as a device, and can also be used as a power conditioner of a solar power generation system, a storage system, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

大型化させることなくプリント基板の放熱性を大きく向上させることが可能な回路装置(1A1)は、プリント基板(2)と、実装部品(3)と、非中実金属スペーサ(5)と、冷却器(6)と、樹脂層(8)とを備える。実装部品(3)はプリント基板(2)の少なくとも一方の主表面(2A,2B)上に少なくとも一部が配置される。非中実金属スペーサ(5)はプリント基板(2)の少なくとも一方の主表面(2A)上に配置される。冷却器(6)は非中実金属スペーサ(5)のプリント基板(2)と反対側に配置される。樹脂層(8)は非中実金属スペーサ(5)と冷却器(6)との間に配置される。非中実金属スペーサ(5)はプリント基板(2)と冷却器(6)との間に少なくとも1つの中空部分(5C)を形成可能な形状を有する。

Description

回路装置および電力変換装置
 本発明は回路装置および電力変換装置に関し、特に、パワーエレクトロニクス機器の小型化および高放熱実装技術に関するものである。
 従来の回路装置として、プリント基板の非部品実装面に、絶縁層を介して、冷却液の流通路を有するアルミニウム製のチューブが一体として積層されている例が、たとえば特開2006-253205号公報(特許文献1)に開示されている。
 ところで、一般に、安価なはんだ付け手段であるリフロー法では、まずはんだ粉末にフラックスを加えたクリーム状のはんだペーストが均等な厚みでプリント基板にスクリーン印刷される。次に、表面実装用の部品がマウンター等でプリント基板上に配置される。そののちに、炉の中に入れてはんだが溶融され、プリント基板と表面実装用の部品とが接合される。
 以上のリフロー法で用いられる表面実装用の部品の多くは、プリント基板と接する実装面側に、熱拡散機能を有するベースプレートが備えられる。一方、表面実装用部品の非実装面側は、電気絶縁性を有する熱伝導率の低い樹脂製のパッケージにて封止されている。このため表面実装用部品を非実装面側から効率的に冷却することは困難である。そのため、上記の特開2006-253205号公報においては、実装される部品内で発生した熱をプリント基板に伝導させ、そのプリント基板の非部品実装面に接続された冷却器を用いて冷却する方法が用いられている。
特開2006-253205号公報
 大電流を使用するパワー回路としての電力変換装置等においては、小型高効率化に対する要求が年々強まっている。このため電力変換装置に含まれる回路装置の小型化大容量化が非常に重要となっている。
 小型化大容量化の要求に対応するためには、特開2006-253205号公報のように、プリント基板と冷却器との間を絶縁性樹脂層で接続する必要がある。しかし絶縁性樹脂層は熱伝導性が良好でない。このため絶縁性樹脂層を用いる場合、プリント基板と冷却器との間の熱抵抗を低減することが重要である。そのためには、プリント基板内で発生する熱を拡散させ、極力広い伝熱断面積を用いて冷却器側へ伝熱する技術が必要となる。しかし伝熱断面積を大きくするためにプリント基板が大型化すれば、それに応じて回路装置全体が大型化する。そのような回路装置の大型化を避け、かつプリント基板から冷却器側への冷却効率を高める必要がある。
 本発明は以上の課題に鑑みなされたものである。その目的は、大型化させることなくプリント基板の放熱性を大きく向上させることが可能な回路装置、およびこれを含む電力変換装置を提供することである。
 本実施の形態の回路装置は、プリント基板と、実装部品と、非中実金属スペーサと、冷却器と、樹脂層とを備える。実装部品はプリント基板の少なくとも一方の主表面上に少なくとも一部が配置される。非中実金属スペーサはプリント基板の少なくとも一方の主表面上に配置される。冷却器は非中実金属スペーサのプリント基板と反対側に配置される。樹脂層は非中実金属スペーサと冷却器との間に配置される。非中実金属スペーサはプリント基板と冷却器との間に少なくとも1つの中空部分を形成可能な形状を有する。
 本発明によれば、プリント基板と冷却器との間に配置される非中実金属スペーサが、プリント基板のヒートスプレッダおよびプリント基板と冷却器のサーマルブリッジとして機能する。非中実金属スペーサは、回路装置を大型化させることなくプリント基板の放熱性を大きく向上させる。これにより、プリント基板に実装される実装部品などに大電流を流したり、プリント基板に部品を高密度に実装させたりした回路装置およびこれを含む電力変換装置を提供することができる。
実施の形態1の第1例に係る回路装置の構成を示す概略断面図である。 実装部品および非中実金属スペーサの部分を中心に実施の形態1に係る回路装置の構成を示す概略斜視図である。 実施の形態1に係る非中実金属スペーサの構成の第1例を示す概略斜視図である。 実施の形態1に係る非中実金属スペーサの構成の第2例を示す概略斜視図である。 実施の形態1に係る非中実金属スペーサの構成の第3例を示す概略斜視図である。 実施の形態1に係る非中実金属スペーサの構成の第4例を示す概略斜視図である。 実施の形態1の第2例に係る回路装置の構成を示す概略断面図である。 実施の形態1の第3例に係る回路装置の構成を示す概略断面図である。 実施の形態1の第4例に係る回路装置の構成を示す概略断面図である。 実施の形態1に係る非中実金属スペーサの構成の第5例を示す概略斜視図である。 実施の形態1の第5例に係る回路装置の構成を示す概略断面図である。 実装部品および非中実金属スペーサの部分を中心に実施の形態1の第5例に係る回路装置の構成を示す概略斜視図である。 実施の形態2の第1例に係る回路装置の構成を示す概略断面図である。 実装部品および非中実金属スペーサの部分を中心に実施の形態2に係る回路装置の構成の第1例を示す概略斜視図である。 実装部品および非中実金属スペーサの部分を中心に実施の形態2に係る回路装置の構成の第2例を示す概略斜視図である。 実装部品および非中実金属スペーサの部分を中心に実施の形態2に係る回路装置の構成の第3例を示す概略斜視図である。 実施の形態2の第4例に係る回路装置の、特に非中実金属スペーサおよびプリント基板の一部領域が切り取られた概略断面図である。 実施の形態3に係る回路装置の構成を示す概略断面図である。 実施の形態4に係る回路装置の構成を示す概略断面図である。 冷却器以外の部分を中心に実施の形態4に係る回路装置の構成を示す概略斜視図である。 実施の形態5に係る回路装置の構成を示す概略断面図である。 実装部品および非中実金属スペーサの部分を中心に実施の形態5に係る回路装置の構成を示す概略斜視図である。 実装部品および非中実金属スペーサの部分を中心に実施の形態6に係る回路装置の構成を示す概略斜視図である。 実施の形態6に係る回路装置の構成を示す概略断面図である。 実施の形態7に係る回路装置の構成を示す概略断面図である。 実装部品および非中実金属スペーサの部分を中心に実施の形態7に係る回路装置の構成を示す概略斜視図である。 実施の形態8に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。
 以下、本発明の実施の形態について図に基づいて説明する。
 実施の形態1.
 まず本実施の形態の回路装置の構成について、図1~図6を用いて説明する。図1は実施の形態1の第1例に係る回路装置の構成を示す概略断面図である。図2は実装部品および非中実金属スペーサの部分を中心に実施の形態1に係る回路装置の構成を示す概略斜視図である。図3~図6は実施の形態1に係る非中実金属スペーサの構成の第1例~第4例を示す概略斜視図である。なお図2では特に後述する本実施の形態の第1例の金属スペーサ5A,5Bが示される。
 図1および図2を参照して、本実施の形態の第1例の回路装置1A1は、プリント基板2と、実装部品としての半導体部品3と、その他の部品としての電子部品4と、非中実金属スペーサとしての金属スペーサ5と、冷却器6とを主に有している。
 プリント基板2は、一方の主表面2Aおよび他方の主表面2Bを有し、一方の主表面2Aの反対側に他方の主表面2Bが配置される、平板形状の部材である。プリント基板2は平面視においてたとえば矩形状の一方の主表面2Aおよび他方の主表面2Bを有することが好ましいがこれに限られない。
 プリント基板2は、少なくとも1つの導体層21と、絶縁層22と、スルーホール23とを含んでいる。導体層21は、プリント基板2の一方の主表面2Aおよび他方の主表面2Bに沿うように拡がっている。導体層21としては、図1の例においては4つの導体層21A,21B,21C,21Dを含んでいるが、これに限らず導体層の数は任意であり、3つ以下でも5つ以上でもよい。導体層21A,21B,21C,21Dは図1においてはこの順に上側から下側へ、互いに間隔をあけて配置されている。なお図1においては導体層21B,21Cはプリント基板2の一方の主表面2Aに沿う方向の全体に拡がっているが、導体層21A,21Dはプリント基板2の一方の主表面2Aに沿う方向の一部に拡がっている。ただしこのような構成に限らず、導体層21B,21Cも一方の主表面2Aに沿う方向の一部のみに拡がってもよいし、導体層21A,21Dも一方の主表面2Aに沿う方向の全体に拡がってもよい。
 絶縁層22はプリント基板2の土台となる、絶縁材料からなる領域である。導体層21A~21Dにより3つの絶縁層22A,22B,22Cに区画されている。図1の例においては絶縁層22A,22B,22Cがこの順に上側から下側へ配置されている。なおここでは、図1の絶縁層22Aの最上部の表面と、導体層21Aの最上部の表面とがツライチとなっており、この表面がプリント基板2全体の一方の主表面2Aを形成している。同様にここでは、図1の絶縁層22Cの最下部の表面と、導体層21Dの最下部の表面とがツライチとなっており、この表面がプリント基板2全体の他方の主表面2Bを形成している。
 スルーホール23は、導体層21および絶縁層22からなるプリント基板2の本体に対し、一方の主表面2Aから他方の主表面2Bまでプリント基板2を貫通するように延びる部分である。スルーホール23は、一方の主表面2Aから他方の主表面2Bまでプリント基板2の一方の主表面2Aに交差(たとえば直交)する方向に延びる。スルーホール23は、導体層21A,21B,21C,21Dと接続し、一方の主表面2Aに交差する方向に延びる筒状の導体層の内部に形成される柱状の空洞の領域である。スルーホール23の導体層の部分は、導体層21A,21B,21C,21Dとの間を選択的に接続することを可能とする。スルーホール23の側壁を構成する上記の筒状の導体層は、たとえば円筒状であり、一方の主表面21Aの上方から導体層21Aに伝えられた熱を、導体層21B,21C,21Dに伝えることができる。
 導体層21A,21B,21C,21D、およびスルーホール23の外側の筒状の導体層には、銅などの電気抵抗の低い金属材料が用いられることが好ましい。絶縁層22A,22B,22Cには、FR4などのガラス繊維布にエポキシ等を含浸させて熱硬化させた絶縁性の樹脂層が用いられることが好ましい。
 実装部品としての半導体部品3は、プリント基板2の少なくとも一方の主表面2A上に少なくとも一部が配置されるものである。回路装置1A1においては、プリント基板2の一方の主表面21A上にその全体が配置されている。半導体部品3は、半導体素子31と、ベースプレート32と、樹脂パッケージ33と、リードフレーム34とにより構成されている。回路装置1A1における半導体部品3は、たとえばTO-252のような表面実装式のICパッケージに封止されている。
 半導体素子31は、シリコン(Si)、炭化珪素(SiC)、窒化ガリウム(GaN)などの半導体材料からなる電界効果型のトランジスタにより構成される。しかし半導体素子31はダイオードまたはIGBT(Insulated Gate Bipolar Transistor)など、電界効果型のトランジスタとは別の半導体素子を用いて構成されてもよい。ベースプレート32は銅などの高熱伝導率の金属材料からなる板状の部材である。ベースプレート32の上側の表面上に半導体素子31が載置されており、下側の表面はプリント基板2に接続されている。樹脂パッケージ33はベースプレート32上の半導体素子31、およびベースプレート32の側面の一部を覆うように配置されている。これにより樹脂パッケージ33は半導体素子31を封止している。樹脂パッケージ33は、熱伝導性セラミックなどのフィラーなどを含むエポキシ系の樹脂材料により構成されている。
 リードフレーム34は、半導体素子31とその外部とを電気的に接続するためのものである。リードフレーム34は、銅などの電気抵抗の低い金属材料からなる部材である。ただしリードフレーム34の当該金属材料の表面は、スズなどによりめっきが施されている。回路装置1A1においてはリードフレーム34は導体層21Eと電気的に接続されている。なお導体層21Eは導体層21Aと同様に導体層21の一部でありその最上面がプリント基板2の一方の主表面2Aを形成している。導体層21Eは導体層21A~21Dとは絶縁層22Aを介して電気的に絶縁されている。半導体素子31のベースプレート32は、一方の主表面2Aの導体層21Aと、はんだ層7を介して電気的に接続されている。
 電子部品4は、プリント基板2の他方の主表面2B上に配置されるものである。電子部品4は半導体部品、磁性部品、抵抗部品からなる群から選択されるいずれかであることが好ましい。本実施の形態においては電子部品4として半導体部品が用いられている。電子部品4は、他方の主表面2Bの導体層21Dと、はんだ層7を介して電気的に接続されている。
 金属スペーサ5は、プリント基板2の少なくとも一方の主表面2A上に配置されている。図1の回路装置1A1は、第1の非中実金属スペーサとしての金属スペーサ5Aと、第2の非中実金属スペーサとしての金属スペーサ5Bとの2つの金属スペーサ5を有している。金属スペーサ5Aは、半導体部品3と互いに間隔をあけて、プリント基板2の一方の主表面2A上に配置されている。金属スペーサ5Bは、電子部品4と互いに間隔をあけて、プリント基板2の他方の主表面2B上に配置されている。
 金属スペーサ5Aは、一方の主表面2A上の導体層21Aと、第1の接合材としてのはんだ層7により接合されている。金属スペーサ5Bは、他方の主表面2Bの導体層21Dと、第1の接合材としてのはんだ層7により接合されている。金属スペーサ5A,5Bの形状等については後述する。
 金属スペーサ5とプリント基板2とを接合する上記第1の接合材としてのはんだ層7は、その融点が金属スペーサ5A,5Bを構成する金属材料の融点未満であることが好ましい。具体的には、はんだ層7としてはたとえばスズ、金、銀、ニッケルなどを含む低融点合金が用いられる。なおはんだ層7としては、上記の代わりに、熱伝導グリースなどの薄く熱伝導性が高い熱界面材料、または銀ペーストなどの導電性接着剤などが用いられてもよい。
 冷却器6は、金属スペーサ5のプリント基板2と反対側に配置されている。具体的には、金属スペーサ5Aのプリント基板2と反対側すなわち一方の主表面2A上には、第1の冷却器としての冷却器6Aを有している。また金属スペーサ5Bのプリント基板2と反対側すなわち他方の主表面2B上には、第2の冷却器としての冷却器6Bを有している。すなわち図1の回路装置1A1は、冷却器6Aと冷却器6Bとの2つの冷却器6を有している。
 冷却器6A,6Bはたとえば金属製の櫛型ヒートシンクである。冷却器6A,6Bは、それぞれのベース面がプリント基板2と対向するように配置されている。しかしながら冷却器6A,6Bとしてはそれに限られない。すなわち冷却器6A,6Bとして、液冷ジャケットまたはヒートパイプ式ヒートシンクが用いられてもよい。あるいは冷却器6A,6Bとして、液冷ジャケットまたはヒートパイプ式ヒートシンクに接続された金属板などが用いられてもよい。
 以上より、半導体部品3および金属スペーサ5Aは、冷却器6Aとプリント基板2との間に配置されている。言い換えれば、金属スペーサ5Aは、図1の上下方向に関して、冷却器6Aとプリント基板2との間に挿入されるように配置されている。同様に、金属スペーサ5Bは、図1の上下方向に関して、冷却器6Bとプリント基板2との間に挿入されるように配置されている。
 この半導体部品3および金属スペーサ5Aが配置される領域、すなわちプリント基板2と冷却器6Aとの間の領域には、樹脂層8が配置されている。同様に、電子部品4と金属スペーサ5Bが配置される領域、すなわちプリント基板2と冷却器6Bとの間の領域には、樹脂層8が配置されている。樹脂層8は、たとえば金属スペーサ5A,5Bを埋設するように配置されていることが好ましいがこれに限られない。ここで埋設とは、後述する金属スペーサ5A,5Bに形成される中空部分内を充填しないように、金属スペーサ5A,5Bの表面を覆い埋めるように樹脂層8が配置されることを意味する。
 図1の樹脂層8は、プリント基板2および冷却器6Aの表面に接するように、これらの間の金属スペーサ5Aが配置される領域を埋設している。同様に樹脂層8は、プリント基板2および冷却器6Bの表面に接するように、これらの間の金属スペーサ5Bが配置される領域を埋設している。
 樹脂層8は熱伝導性に優れた樹脂材料により形成される。具体的には、エポキシまたはシリコーンなどの樹脂材料により形成される。樹脂層8は、フィラーなどが含まれることにより熱伝導性が高められているとともに、電気絶縁性を有している。上記のフィラーとしては、酸化珪素(SiO2)または酸化アルミニウム(Al23)などが用いられる。上記の酸化珪素または酸化アルミニウムは、エポキシまたはシリコーンなどの樹脂材料よりも熱伝導率が高く、電気絶縁性が高い。
 樹脂層8は、ポッティング(注型封止)またはトランスファーモールド法を用いて、プリント基板2と、冷却器6A,6Bとの間の領域に供給することにより形成される。したがって樹脂層8と冷却器6A,6Bとの間、および樹脂層8とプリント基板2との間は、特に接合層を介することなく接合される。
 なお樹脂層8は、図1に示すようにプリント基板2と冷却器6A,6Bとの間の領域の全体に供給されてもよい。しかし樹脂層8の形成される領域のうち、特に冷却器6Aと金属スペーサ5Aとの間の厚みが薄い領域8Aには、樹脂層8内の他の領域よりもいっそう熱伝導率の高い高熱伝導性樹脂層が配置されてもよい。同様に樹脂層8の形成される領域のうち、特に冷却器6Bと金属スペーサ5Bとの間の厚みが薄い領域8Bには、樹脂層8内の他の領域よりもいっそう熱伝導率の高い高熱伝導性樹脂層が配置されてもよい。この場合には、樹脂層8は、図1に示すような配置ではなく、領域8A,8Bを含む限り、プリント基板2と冷却器6A,6Bとの間の領域の一部のみに配置されてもよい。領域8A,8Bの厚みは、これらに隣接する冷却器6A,6Bの厚みに比べて十分に薄い。領域8A,8Bにはシート状の樹脂部材が配置されてもよい。その場合、未硬化のシート状の樹脂部材が領域8A,8Bに配置され、その後これらが硬化される。このように硬化された樹脂部材の領域8A,8Bにより、冷却器6A,6Bと金属スペーサ5A,5Bとが接着される。
 なお領域8A,8Bに用いられる樹脂部材は、上記のような硬化性のものに限定されない。たとえば領域8A,8Bにはシート状の樹脂部材として被硬化性のゲルシート等が用いられ、樹脂層8のうち領域8A,8B以外の領域にはプリント基板2と冷却器6A,6Bとを絶縁する他の固定部材が別個のものとして設けられてもよい。すなわち上記の領域8A,8B以外の領域には樹脂材料以外の絶縁材料が配置されてもよい。
 次に、金属スペーサ5A,5Bの材質、形状等について詳述する。
 たとえば図1および図2に示すように、金属スペーサ5A,5Bは、外形が直方体状であり、プリント基板2と冷却器6A,6Bとの間に少なくとも1つの中空部分5Cを形成可能な形状を有している。すなわち金属スペーサ5A,5Bは、たとえば図1および図2の奥行き方向を貫通するように、柱状に延びる中空部分5Cを複数有している。中空部分5Cは図1の一方の主表面2Aに沿う方向に関して互いに間隔をあけて複数、形成されることが好ましい。図1および図2においては一例として5つの中空部分5Cが形成されるがこれに限らず、4つ以下または6つ以上の中空部分5Cが形成されてもよい。また中空部分5Cは図1、図2においては四角柱状となっているがこれに限らず、たとえば円柱状であってもよい。中空部分5C内には金属スペーサ5A、5Bを覆う樹脂層8の樹脂材料が進入することなく、空洞の状態が維持されている。
 なおここで非中実とは、金属スペーサ5A,5Bのうち金属材料からなる本体部分が中実ではないことを意味する。すなわち金属材料が存在しない中空部分5Cの内部に、金属スペーサ5A,5Bの本体部分をなす金属材料以外の材料が充填される場合があるものとする。
 金属スペーサ5A,5Bは、熱伝導性の高い金属材料により形成されている。具体的には、銅、アルミニウム、鉄、ニッケル、スズ、マグネシウム、亜鉛などの金属材料、または上記群から選択される2つ以上の金属材料からなる合金により形成されている。あるいは金属スペーサ5A,5Bは、上記1つの金属材料と、上記2つ以上の金属材料を組み合わせたクラッド材により形成されてもよい。このような材料を用いることにより、金属スペーサ5A,5Bはプリント基板2の熱を冷却器6A,6B側に効率良く伝えることができる。金属スペーサ5A,5Bは、その表面にスズ、無電解ニッケル等のめっき層が形成されてもよい。これにより、金属スペーサ5A,5Bに良好なはんだ濡れ性をもたせることができる。
 図1および図2において、金属スペーサ5Aは1つのみ設置されている。しかしこれに限らず金属スペーサ5Bは複数設置されてもよい。金属スペーサ5Bについても同様である。
 図1および図2に示す金属スペーサ5Aは、一例として図3に示すように、扁平管5A1が直方体状である。扁平管5A1は図3の奥行き方向を貫通するように四角柱状に延びる中空部分5Cが図の左右方向に互いに間隔をあけてたとえば5つ形成された構成であってもよい。しかしこれに限らず、金属スペーサ5Aはたとえば図4~図6に示す構成であってもよい。なお金属スペーサ5Bについても同様である。ここでは扁平管5Aとは、図3の金属スペーサ5Aの全体の左右方向の寸法が上下方向(厚み方向)の寸法よりも長いものをいうこととする。
 図4を参照して、金属スペーサ5Aは、図の奥行き方向に延びる細長い直方体状の、たとえば5つの角管5A2,5A3,5A4,5A5,5A6が互いに接着するように並べられ、全体として図3の扁平管5Aとほぼ同様の外観形状を有するものであってもよい。図4の角管5A2~5A6のそれぞれには、図3の扁平管5Aに形成される中空部分5Cと同態様の中空部分5Cが、図4の奥行き方向に貫通するように形成されている。
 図5を参照して、金属スペーサ5Aは、互いに対向する1対の金属平板5A7,5A8と、それらの間に設けられた波状金属板5A9とを有する構成であってもよい。波状金属板5A9は図5においては正面から見たときに曲線の波形状を描く態様となっている。波状金属板5A9が金属平板5A7および金属平板5A8と接触しながらこれらの各平板の間を図の左右方向に関して一定周期で往復する。これにより、金属平板5A7,5A8と波状金属板5A9との間には、図の奥行き方向に関して金属平板5A7,5A8の占める領域の全体を貫通する、複数の中空部分5Cが形成される。
 図6を参照して、図5の金属スペーサ5Aの波状金属板5A9は、正面から見たときに長方形の波形状を描く態様となっていてもよい。この場合においても、方形の波状金属板5A9が金属平板5A7および金属平板5A8と接触しながらこれらの各平板の間を図の左右方向に関して一定周期で往復する。これにより、金属平板5A7,5A8と波状金属板5A9との間には、図5と同様に、複数の中空部分5Cが形成される。
 以上より、本実施の形態の金属スペーサ5Aは、図3~図6のいずれの例においても、中空部分5Cは、その上側(冷却器6A側)および下側(プリント基板2側)の双方側に金属スペーサ5A本体を構成する、一方の主表面2Aに沿うように拡がる金属壁の1対の第1の部分を有するように形成されている。この第1の部分としての金属壁は、図5および図6においては、中空部分5Cを上側および下側から挟むように囲む、1対の金属平板5A7,5A8に相当する。このため1対の第1の部分は互いに縦方向間隔をあけて対向する。また1対の第1の部分のいずれか、すなわちプリント基板2側に配置される第1の部分は、プリント基板2に接合される。
 また本実施の形態の金属スペーサ5Aは、図3~図6のいずれの例においても、中空部分5Cは、その左側および右側の双方側に金属スペーサ5A本体を構成する金属壁の部分を有するように形成されている。この金属壁は、図3および図4においては一方の主表面2Aに交差(ほぼ直交)する方向に延びる複数の第2の部分であり、1対の第1の部分の間の領域を1対の第1の部分のそれぞれから一方の主表面2Aに交差する方向に延びる。この第2の部分は、図5および図6においては、金属平板5A7,5A8とともに中空部分5Cを形成する波状金属板5A9に相当する。波状金属板5A9は一方の主表面2Aに沿う方向に関して互いに幅方向間隔をあけて配置される。すなわち本実施の形態の金属スペーサ5Aは、図3~図6のいずれの例においても、中空部分5Cは、その上下側および左右側から金属スペーサ5A本体を構成する金属壁の部分に囲まれるように形成される。なお以上は金属スペーサ5Bについても同様である。
 すなわち金属スペーサ5Aの中空部分5Cは、その下側(冷却器6B側)および上側(プリント基板2側)の双方側に金属スペーサ5B本体を構成する、一方の主表面2Aに沿う金属壁の部分を有するように形成されている。さらに金属スペーサ5Aの中空部分5Cは、複数の第2の部分のうち互いに隣り合う1対の第2の部分の幅方向間隔により形成される。
 なお金属スペーサ5A,5Bは、金属平板5A7,5A8および波状金属板5A9などを含めその全体が、上記の金属材料により形成されている。金属平板5A7,5A8および波状金属板5A9は低コストなプレス工法により形成することができる。
 図5および図6の金属スペーサ5Aにおいては、1対の金属平板5A7,5A8と波状金属板5A9とは、はんだ層7を構成する低融点金属と同様の金属材料により接続することができる。このため回路装置1A1の製造にあたり、たとえばはんだペーストを金属平板5A7,5A8の互いに対向する表面に塗布し波状金属板5A9をセットした状態で、プリント基板2と同時にリフロー工程がなされることが好ましい。このようにすれば、一度のリフロー工程によりプリント基板2と金属スペーサ5Aとを一体形成することができると同時に、図1などに示すようにプリント基板2と金属スペーサ5A,5Bとをはんだ層7で接続することができる。
 以上の金属スペーサ5Aは、プリント基板2の一方の主表面2Aに交差する図1の上下方向に関して、半導体部品3以上の厚みを有している。すなわち、金属スペーサ5Aと半導体部品3とは、いずれもプリント基板2の一方の主表面2A上に接続されている。このため金属スペーサ5Aの図1の最上面は、半導体部品3の図1の最上面よりも上方に配置されている。また同様に、金属スペーサ5Bは、プリント基板2の他方の主表面2Bに交差する図1の上下方向に関して、電子部品4以上の厚みを有している。すなわち、金属スペーサ5Bと電子部品4とは、いずれもプリント基板2の他方の主表面2B上に接続されている。このため金属スペーサ5Bの図1の最下面は、電子部品4の図1の最下面よりも下方に配置されている。このように金属スペーサ5A,5Bを実装部品より厚く形成することにより、冷却器6A,6Bの金属スペーサ5A,5Bに対向する面をその全体において平面となるように(意図的に凹凸部を設けないように)形成することができる。このため冷却器6A,6Bをより簡便に製造できる。
 金属スペーサ5A,5Bの上記第2の部分としての金属壁の部分は、上記の断面図において直線状に延びる平面形状に限られない。すなわち当該第2の部分は、たとえば格子状であっても、ハニカム状であってもよい。プリント基板2から冷却器6A,6Bに熱を伝える第2の部分を複数(なるべく多く)有することと、金属スペーサ5A,5Bと冷却器6A,6Bとに挟まれた領域がなるべく広い面積で樹脂層8に覆われ、樹脂層8により金属スペーサと冷却器との間が良好に熱伝導される構成であることが好ましい。
 次に、部品実装面側からプリント基板を冷却することを想定した際の、本実施の形態の比較例の課題について説明したうえで、本実施の形態の作用効果について説明する。
 発明が解決しようとする課題の項にて既述のように、大電流を使用するパワー回路としての電力変換装置等においては、小型高効率化に対する要求が年々強まっている。このため電力変換装置に含まれる回路装置の小型化大容量化が非常に重要となっている。
 小型化大容量化の要求に対応するためには、プリント基板と冷却器との間を絶縁性樹脂層で接続する必要がある。しかし絶縁性樹脂層は熱伝導性が良好でない。このため絶縁性樹脂層を用いる場合、プリント基板と冷却器との間の熱抵抗を低減することが重要である。そのためには、プリント基板内で発生する熱を拡散させ、極力広い伝熱断面積を用いて冷却器側へ伝熱する技術が必要となる。しかし伝熱断面積を大きくするためにプリント基板が大型化すれば、それに応じて回路装置全体が大型化する。そのような回路装置の大型化を避け、かつプリント基板から冷却器側への冷却効率を高める必要がある。
 たとえば、その第1の比較例として、実装部品から0.2W/mK以上10W/mK以下程度のエポキシ樹脂等のパッケージを介して外部へ放熱する放熱機構を用いることが考えられる。しかしこの第1の比較例は冷却効率が良好でないという問題がある。たとえば表面実装型のパワー半導体素子で用いられるTO-252パッケージでは、絶縁樹脂層の厚みが約3mm、熱が輸送される領域の断面積が約1cm2である。このため熱伝導率が3.0W/mKの絶縁性の高熱伝導エポキシ系樹脂を用いたとしても、パッケージの表面側の熱抵抗は10K/Wとなる。上記熱抵抗は、TO-252パッケージの一般的な熱抵抗値である1.0K/Wの10倍以上になるため伝熱経路としてはほとんど意味をなさない。
 次に第2の比較例として、プリント基板と冷却器との間に電気絶縁性の熱伝導シートなどを挟んで熱を伝導させることも可能である。しかしこの場合、実装部品の厚み以上の分厚い熱伝導シートなどを用いる必要があり、熱伝導が妨げられるという問題がある。たとえば4mm厚程度のTO-252パッケージで封止された半導体部品を用いる場合、部品実装面側においてプリント基板と冷却器との間の距離は4mm以上になる。しかし上記部品において非部品実装面側のプリント基板と冷却器との間の距離を0.5mmとした場合、部品実装面側の単位面積当たりの熱抵抗が非部品実装面側の単位面積当たりの熱抵抗の8倍以上となる。このため部品実装面側において非部品実装面側と同等の熱抵抗を実現するためには、部品実装面側において非部品実装面側の8倍もの面積を必要とする。このように部品実装面側におけるプリント基板の放熱による冷却効果が弱くなる。
 次に第3の比較例として、プリント基板と冷却器との間に、熱伝導率が高い金属製のスペーサを挟むことでプリント基板を冷却器側へ放熱することも可能である。しかしこの場合、熱容量が大きい厚板の金属製のスペーサが用いられればはんだ付け時に温度が上昇しにくくなる。このため、当該金属製のスペーサの熱容量を小さくする観点からこれを小型の薄板とする必要がある。そのようにしなければリフロー等のはんだ付けによってプリント基板と冷却器とをスペーサを介して接続することが困難となるためである。
 次に第4の比較例として、プリント基板の高温部位が直接冷却器に接触することにより当該高温部位が冷却器で冷却される場合を考える。この場合、プリント基板の高温部位と冷却器との間に絶縁層を設ける必要があり、プリント基板内では薄い導体層により熱拡散される。そのため、プリント基板内での熱拡散が不十分になり、狭い高温部位に熱流束が集中する。その結果、プリント基板の熱抵抗が大きくなる。以上のように、各比較例においては、部品実装面側から効果的に発熱部位を冷却することが困難であるという問題がある。
 そこで本実施の形態においては、プリント基板2の少なくとも一方の主表面2A上に、金属スペーサ5Aを備えている。この金属スペーサ5Aは、プリント基板2の一方の主表面2A上でのヒートスプレッダ、および冷却器6Aとプリント基板2の間のサーマルブリッジとして機能する。すなわち金属スペーサ5Aに伝わった熱は、そこから樹脂層8を介して冷却器6Aに伝わる。このため効率的にプリント基板2を冷却することができる。互いに縦方向間隔をあけて対向する1対の第1の部分を有することにより、金属スペーサ5Aは、確実に中空部分5Cを有する構成となる。
 金属スペーサ5Aの過渡温度上昇の時定数をτとすれば、τは熱容量×熱抵抗で決定される。本実施の形態の金属スペーサ5Aは中空部分5Cを有する。このため、金属スペーサ5Aの、プリント基板2と冷却器6Aとの距離に沿う方向の厚みを増加させた場合においても、金属スペーサ5Aの熱容量の増大を抑制することができる。そのため、金属スペーサ5Aの温度時定数τを、これと同じ体積の中空部分5Cを有さない厚板等と比較して小さくすることができる。また中空部分5Cを形成することにより金属スペーサ5Aの質量が小さくなる。このため金属スペーサ5Aは、リフロー工程などの安価な手段によりプリント基板2に容易にはんだ付けすることができる。
 また、このような中空部分5Cを有する金属スペーサ5Aを用いれば、厚板の金属スペーサを使用する場合に比べてこれが軽量となる。このため金属スペーサ5Aの重量増大が抑制できる。
 また金属スペーサ5Aは、一方の主表面2Aに沿う方向に関する幅方向間隔をあけて配置される複数の第2の部分(外壁部)により、たとえば図3のような四角柱状の中空部分5Cを有する。このため金属スペーサ5Aは、中空部分5Cの外壁部として金属製の壁を有しており、この金属製の壁がプリント基板2と冷却器6Aとを繋ぐように配置される。したがってプリント基板2の熱は、金属製の壁を経由する短い経路により冷却器6A側へ放熱できる。故に金属スペーサ5Aは効率的にプリント基板2を冷却することができる。以上はプリント基板2の他方の主表面2B上の金属スペーサ5Bについても同様である。
 次に第5の比較例として、仮に金属スペーサを接着剤または熱伝導シートなどを用いてプリント基板と冷却器の間に挟み込むように接続することが考えられる。この場合、接着剤および熱伝導シートの層により、プリント基板から冷却器への熱伝導が妨げられるという問題がある。
 そこで本実施の形態においては、図1に示すように、プリント基板2は一方の主表面2Aに沿う導体層21を含み、金属スペーサ5Aは導体層21(図1においては導体層21A)と、はんだ層7により接合されている。これによりプリント基板2から冷却器6Aへの熱伝導の効率を高めることができる。またこの場合、金属スペーサ5Aはプリント基板2の熱を一方の主表面2Aに沿う方向に広げる熱拡散板として機能させることができる。このためプリント基板2の熱を金属スペーサ5Aにより効率的に冷却器6Aに伝えることができる。以上はプリント基板2の他方の主表面2B上の金属スペーサ5Bについても同様である。
 はんだ層7は金属スペーサ5Aを構成する金属材料の融点よりも融点が低い。このためはんだ層7は、金属スペーサ5Aが耐熱可能な温度範囲内でプリント基板2との接合に用いることができる。
 次に、たとえばプリント基板の一方の主表面上のみに冷却器のみを有する場合、一方の主表面上には実装部品を搭載することができない。またこの場合、仮にプリント基板の他方の主表面上に実装部品を実装した場合、他方の主表面上には実装部品により凹凸が生じる。このため他方の主表面上に広い面積で冷却器を接続することは困難である。このため他方の主表面上をプリント基板の冷却部として利用することが困難である。
 また実装部品が搭載された側のプリント基板の主表面上には凹凸形状が生じる。この凹凸形状に追従した複雑な形状の冷却器を用いれば、プリント基板の部品実装面を冷却することができる。しかし当該冷却器は高価な金型が必要なダイキャストを用いるか、複雑な切削加工を行なうことにより製造する必要がある。このため高コストになる可能性がある。
 そこで本実施の形態においては、冷却器6Aは金属スペーサ5Aのプリント基板2と反対側に配置されている。このため冷却器6Aのみがプリント基板2の一方の主表面2A上を占領するように配置されることによるレイアウト効率の低下を抑制することができる。したがって一方の主表面2A上および他方の主表面2B上の双方をプリント基板2の冷却部として利用することができる。またこれにより、回路装置1A1を大型化させることなく、冷却器6Aによる冷却効率を高めることができる。
 また本実施の形態の回路装置1A1においては、一方の主表面2A上に第1の非中実金属スペーサとしての金属スペーサ5Aが、他方の主表面2B上に第2の非中実金属スペーサとしての金属スペーサ5Bが、それぞれ配置されている。このためプリント基板2の一方の主表面側のみならず、一方および他方の双方の主表面側からこれを効率的に冷却することができる。つまり回路装置1A1においては、プリント基板2を大型化することなく放熱性を大きく向上させることができる。このため回路装置1A1は、プリント基板2を大型化させたり、重量を大幅に増大させたりすることなく、一方の主表面側のみから冷却される場合の2倍近い発熱密度に耐えることができる。
 また本実施の形態の金属スペーサ5は、銅またはアルミニウムなどの比較的安価な金属材料により形成される。このため高コストになる可能性を低減することができる。
 その他、図1におけるベースプレート32は、はんだ層7を介して、プリント基板2の導体層21Aと接続されている。プリント基板2においてスルーホール23は導体層21Aと導体層21Dとを電気的に接続している。また金属スペーサ5Bは、はんだ層7を介して導体層21Dと接続されている。このような構成を有するため、金属スペーサ5Bは半導体部品3の熱を他方の主表面2Bに沿う方向に広げる熱拡散板として機能する。したがって金属スペーサ5B内でプリント基板2の他方の主表面2Bに沿う方向に広げられた熱を効率的に冷却器6Bに伝えることができる。
 また金属スペーサ5Aは、はんだ層7を介して導体層21Aと接続されている。このような構成を有するため、金属スペーサ5Aは半導体部品3の熱を一方の主表面2Aに沿う方向に広げる熱拡散板として機能する。したがって金属スペーサ5A内でプリント基板2の一方の主表面2Aに沿う方向に広げられた熱を効率的に冷却器6Aに伝えることができる。
 さらに、図1における金属スペーサ5A,5Bと半導体部品3とは、プリント基板2の導体層21A~21Dとスルーホール23等によって形成される小さな熱抵抗を介して接続されており、半導体部品3の熱容量を擬似的に大きくする効果がある。このため、瞬間的に半導体部品3が大発熱することに起因する半導体部品3の急激な温度上昇を抑制することができる。またそのような熱衝撃の繰り返しによる半導体部品3の信頼性の低下を抑制することもできる。
 その他、上記の本実施の形態の各例においては、半導体部品3と金属スペーサ5Aとは、第1の接合材としてのはんだ層7により接続されている。このため本実施の形態では、半導体部品3の発熱が、上記はんだ層7を介して、金属スペーサ5Aに効率よくすなわち速やかに伝えられる。
 次に、本実施の形態の変形例について説明する。
 図7は実施の形態1の第2例に係る回路装置の構成を示す概略断面図である。図7を参照して、本実施の形態の第2例の回路装置1A2は、基本的に第1例の回路装置1A1(図1参照)と同様の構成を有するため、同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1A2は、金属スペーサ5A,5Bのそれぞれの冷却器6A,6Bと対向する面の一部に、スペーサ貫通孔5Dが形成されている。この点において回路装置1A2は回路装置1A1と異なっている。スペーサ貫通孔5Dは、金属スペーサ5A,5Bのそれぞれの冷却器6A,6Bと対向する最表面から、中空部分5Cに達するように金属スペーサ5A,5Bの一方の主表面2Aに沿う金属壁の部分を貫通している孔部である。スペーサ貫通孔5Dは金属スペーサ5A,5Bのそれぞれに複数形成されている。より具体的には、金属スペーサ5A,5Bのそれぞれに形成された複数の中空部分5Cのそれぞれに対して1つ以上ずつ、形成されていることが好ましい。
 当該回路装置1A2においては以下の作用効果を奏する。すなわち、金属スペーサ5A,5Bを埋設するように配置される樹脂層8が、たとえばポッティングにより、プリント基板2と冷却器6A,6Bとの間の領域に充填される。この際に金属スペーサ5A,5Bに形成された中空部分5C内にも、スペーサ貫通孔5Dから樹脂層8を構成するポッティング材が進入する。つまり中空部分5C内が樹脂層8を構成するポッティング材に充填されやすくなる。このため、プリント基板2と冷却器6A,6Bとの間の領域を金属スペーサ5A,5Bにより良好に熱伝導させることができる。
 図8は実施の形態1の第3例に係る回路装置の構成を示す概略断面図である。図8を参照して、本実施の形態の第3例の回路装置1A3は、基本的に第2例の回路装置1A2(図7参照)と同様の構成を有するため、同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1A3は、上記のスペーサ貫通孔5Dは、金属スペーサ5A,5Bのそれぞれのプリント基板2と対向する面の一部に形成されている。この点において回路装置1A3は、金属スペーサ5A,5Bの冷却器6A,6B側にスペーサ貫通孔5Dが形成される回路装置1A2と異なっている。この場合、スペーサ貫通孔5Dは、金属スペーサ5A,5Bのそれぞれのプリント基板2と対向する最表面から、中空部分5Cに達するように金属スペーサ5A,5Bの一方の主表面2Aに沿う金属壁の部分を貫通している孔部である。この場合も図7と同様に、スペーサ貫通孔5Dは金属スペーサ5A,5Bのそれぞれに複数(金属スペーサ5A,5Bのそれぞれに形成された複数の中空部分5Cのそれぞれに対して1つ以上ずつ)形成されている。
 このようにプリント基板2側にスペーサ貫通孔5Dを有する場合は以下の作用効果を奏する。すなわち、金属スペーサ5A,5Bを埋設するように配置される樹脂層8が、たとえばリフロー工程により、プリント基板2と冷却器6A,6Bとの間の領域に充填される。この際にスペーサ貫通孔5Dをたとえば中空部分5C内の空気抜き用の孔部として用いることができる。
 ここで、上記各例の金属スペーサ5A,5Bのスペーサ貫通孔5Dは、たとえばプレス加工、エッチング加工、レーザ加工からなる群から選択されるいずれかの加工方法により形成することができる。
 図9は実施の形態1の第4例に係る回路装置の構成を示す概略断面図である。図9を参照して、本実施の形態の第4例の回路装置1A4は、基本的に第1例の回路装置1A1(図1参照)と同様の構成を有するため、同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1A4においては、金属スペーサ5Aが、プリント基板2の一方の主表面2Aに交差する図9の上下方向に関して、半導体部品3よりも薄い厚みを有している。すなわち、金属スペーサ5Aと半導体部品3とは、いずれもプリント基板2の一方の主表面2A上に接続されている。このため金属スペーサ5Aの図9の最上面は、半導体部品3の図9の最上面よりも下方に配置されている。また同様に、金属スペーサ5Bは、プリント基板2の他方の主表面2Bに交差する図1の上下方向に関して、電子部品4よりも薄い厚みを有している。すなわち、金属スペーサ5Bと電子部品4とは、いずれもプリント基板2の他方の主表面2B上に接続されている。このため金属スペーサ5Bの図1の最下面は、電子部品4の図1の最下面よりも上方に配置されている。
 このため、図9における冷却器6A,6Bは、金属スペーサ5A,5Bのそれぞれと対向する部分に、金属スペーサ5A,5B側に突起した突起部6Cを有している。このような形状を有する冷却器6A,6Bは、ダイキャスト、押出成形、切削加工などにより形成されることが好ましいがこれらに限られない。以上の点において回路装置1A4は回路装置1A1と異なっている。
 当該回路装置1A4においては以下の作用効果を奏する。すなわち、金属スペーサ5A,5Bの厚みが半導体部品3,電子部品4の厚みよりも薄い場合においても、プリント基板2から冷却器6A,6Bへの十分な冷却効率を確保することができる。このためには、たとえば金属スペーサ5A,5B間の樹脂層8の図9での上下方向の厚みを図1などより厚くすることが好ましい。あるいは図9に示すように、たとえば冷却器6A,6Bのそれぞれが金属スペーサ5A,5Bのそれぞれと対向する部分に、金属スペーサ5A,5B側に突起した突起部6Cを有しこれが金属スペーサ5A,5Bと接触する構成とすることが好ましい。
 図10は、実施の形態1に係る非中実金属スペーサの構成の第5例を示す概略斜視図である。図10を参照して、本実施の形態の第5例に係る金属スペーサ5Aは、金属平板5A8と、櫛形状部分5A10とを有している。櫛形状部分5A10は櫛形状を有する第1領域である。すなわち櫛形状部分5A10は、金属平板5A8との間でそれぞれの主表面がほぼ平行となるように対向する平板部分を含む。また櫛形状部分5A10は、その平板部分から図10の左右方向のある間隔ごとに並ぶように分岐し当該主表面に交差するたとえば図10の下側に向けて延びる部分を含む。櫛形状部分5A10は、上記の平板部分と、そこから分岐された複数の部分とにより、櫛のような側面形状を有するように構成される。一方、金属平板5A8は、櫛形状部分5A10の図10の下側に向けて延びる部分の最下部に接触するように繋がる平板状の第2領域である。櫛形状部分5A10の分岐部分の先端が金属平板5A8の主表面と接合し一体となることにより、両者の間に複数の中空部分5Cが形成される。中空部分5Cは図10の奥行き方向に貫通するように柱状に延びている。
 図10の金属スペーサ5Aにおいて、金属平板5A8は、平面視において、櫛形状部分5A10よりも大きな面積を有している。具体的には、金属平板5A8は、櫛形状部分5A10と平面的に重なりこれと繋がる領域と、その図10の左側に延びる領域とを有している。
 図11は、実施の形態1の第5例に係る回路装置の構成を示す概略断面図である。図12は、実装部品および非中実金属スペーサの部分を中心に実施の形態1の第5例に係る回路装置の構成を示す概略斜視図である。図11および図12を参照して、本実施の形態の第5例の回路装置1A5は、基本的に第1例の回路装置1A1(図1参照)と同様の構成を有するため、同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1A5においては、図10の櫛形状部分5A10および金属平板5A8を有する金属スペーサ5Aが、プリント基板2の一方の主表面2A上に接続されている。より具体的には、金属スペーサ5Aを構成する金属平板5A8の部分が、はんだ層7により、一方の主表面2A上に接続されている。したがって金属スペーサ5Aの金属平板5A8は、はんだ層7を介して、導体層21Aに接合されている。
 回路装置1A5の金属スペーサ5Aの金属平板5A8は、上記のように、櫛形状部分5A8と平面的に重なる領域から、その外側の領域まで延びている。このため金属平板5A8は、櫛形状部分5A10と平面的に重なる領域の外側の領域において、半導体部品3と平面的に重なっている。すなわち金属平板5A8の、櫛形状部分5A10と平面的に重なる領域の外側の領域には、半導体部品3が搭載されている。
 半導体部品3と、金属スペーサ5Aの金属平板5A8とは、第2の接合材としてのはんだ層7により接続されている。より具体的には、櫛形状部分5A10と重ならない金属平板5A8の上側の主表面が、半導体部品3のベースプレート32および樹脂パッケージ33と、第2の接合材としてのはんだ層7により接合されている。このはんだ層7は、金属平板5A8の直下に櫛形状部分5A10と重なる領域からその左側の領域まで延び拡がる第1の接合材としてのはんだ層7と同一材料からなる接合材の層である。すなわち半導体部品3の真下の領域においては、金属平板5A8が、その上側および下側の双方向からはんだ層7に挟まれている。
 以上の構成を有する回路装置1A5は、以下の作用効果を奏する。金属スペーサ5Aの金属平板5A8と半導体部品3の特にベースプレート32および樹脂パッケージ33とが、図11における金属平板5A8の直上に配置されるはんだ層7を介して接続されている。これにより、半導体部品3の発熱が、上記はんだ層7を介して、金属スペーサ5Aに効率よくすなわち速やかに伝えられる。
 その他、本実施の形態はさらに以下の各変形例を採用することができる。以下、当該各変形例について説明する。
 第1に、たとえば金属スペーサ5A,5Bがアルミニウムにより形成される場合を考える。この場合、金属スペーサ5A,5Bをアルミニウムはんだによりプリント基板2に接合するよりも、金属スペーサ5A,5Bの表面にたとえば銅のめっきを施してからこれをはんだ層7でプリント基板2に接合することがより好ましい。
 第2に、上記において、円筒状のスルーホール23の内部は空洞であってもよい。しかし円筒状のスルーホール23の内部は、めっき膜またははんだによって充填されていてもよい。特にスルーホール23の内部をめっき膜により充填した場合には、スルーホール23の内部に空気が入らない。このためプリント基板2の一方の主表面2A上および他方の主表面2B上に金属スペーサ5A,5Bをリフロー工程により接続する場合においても、スルーホール23内にて空気が膨張することによるボイドの発生を抑制することができる。またプリント基板2と冷却器6A,6Bとを接続するはんだ層7が存在する場合において、そのはんだ層7にボイドが入り込むことによる接続不良を抑制することができる。
 第3に、上記において、金属スペーサ5Aとベースプレート32との間の距離を縮め、両者が直接はんだ層7により接続されてもよい。これにより、金属スペーサ5A,5Bと半導体部品3との間の熱抵抗を下げることができる。したがって半導体部品3の発熱を冷却器6A,6Bに効率的に伝えることができる。
 第4に、金属スペーサ5A,5Bは、その表面に熱伝導性樹脂および酸化被膜などを用いて薄い絶縁層が形成されてもよい。その場合、たとえ樹脂層8に空気などによるボイドが入り込んだり、金属スペーサ5A,5Bと冷却器6A,6Bとが接触したりした場合でも、プリント基板2と冷却器6との間の電気絶縁性を保つことができる。
 第5に、図11において、半導体部品3のベースプレート32と金属スペーサ5Aの金属平板5A8とを接続する第2の接合材としてのはんだ層7は、プリント基板2の導体層21Aと金属平板5A8とを接続する第1の接合材としてのはんだ層7と異なる材料であってもよい。たとえばリフロー工程前に、第2の接合材として、リフロー工程時に融解しない高温はんだまたは導電性接着剤などを第2の接合材のはんだ層7として用いることが好ましい。これにより、第1の接合材としてのはんだ層7のリフロー工程による半導体部品3の位置ずれなどを抑制できる。逆に、プリント基板2の導体層21と金属平板5A8とを接続する第1の接合材としてのはんだ層7のみ高温はんだ等が用いられ、第2の接合材にはリフロー工程時に融解し得る、高温はんだでないはんだが用いられてもよい。
 実施の形態2.
 まず本実施の形態の回路装置の構成について、図13~図16を用いて説明する。図13は実施の形態2の第1例に係る回路装置の構成を示す概略断面図である。図14~図16は実装部品および非中実金属スペーサの部分を中心に実施の形態2に係る回路装置の構成を示す概略斜視図である。図14の金属スペーサ5Aの態様は図13の金属スペーサ5Aの態様に対応する。図15および図16の金属スペーサ5Aは図14の金属スペーサ5Aに対する変形例を示し、これらは実施の形態1の図5および図6に概ね対応する。
 図13を参照して、本実施の形態の第1例の回路装置1B1は、基本的に実施の形態1の図1の回路装置1A1と同様の構成を有するため、同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1B1においては、金属スペーサ5Aの中空部分5Cが、その上側(冷却器6A側)のみに、金属スペーサ5A本体を構成する一方の主表面2Aに沿う金属壁の部分を有するように形成されている。この点において回路装置1B1は、金属スペーサ5Aの中空部分5Cが、その上側(冷却器6A側)および下側(プリント基板2側)の双方側に金属スペーサ5A本体を構成する一方の主表面2Aに沿う金属壁の部分を有するように形成される回路装置1A1と構成上異なっている。
 具体的には、図13に示す金属スペーサ5Aは、一例として図14に示すように、金属スペーサ5Aの扁平管5A1が、プリント基板2の一方の主表面2Aに沿う方向に拡がる第1の部分としての金属平板5A7の部分を有する。また図13および図14の金属スペーサ5Aは、金属平板5A7から一方の主表面2Aに交差する方向(金属平板5A7からプリント基板2に向かう方向)に延び、一方の主表面2Aに沿う方向に関して互いに幅方向間隔をあけて配置される複数の第2の部分としての分岐部分5A11を有する。図13の金属平板5A7と分岐部分5A11とにより、先述の図10の櫛形状部分5A10が形成される。そして複数の分岐部分5A11はその最下部すなわち分岐部分5A11の先端部がプリント基板2に直接接合される。分岐部分5A11はプリント基板2の導体層21Aに、たとえばはんだ層7を介して接合されている。
 つまり図13および図14の回路装置1B1における金属スペーサ5Aは、図1および図2(図3および図4)の金属スペーサ5Aの、プリント基板2側に配置されこれに沿うように拡がる部分を有さず櫛形状部分を有する構成である。図13および図14の金属スペーサ5Aは、複数の分岐部分5A11のうち隣り合う1対の分岐部分5A11に挟まれた部分が幅方向間隔を有し、プリント基板2および金属平板5A7に囲まれることにより中空部分5Cが形成されている。
 図15を参照して、この回路装置1B2における金属スペーサ5Aは基本的に図5の金属スペーサ5Aと同様の構成であるが、金属平板5A8を有さない点において異なっている。すなわち図15の波状金属板5A9は、図14の分岐部分5A11と同様に、たとえばはんだ層7を介して、プリント基板2に直接接合されている。そして波状金属板5A9とこれを上下側から挟む金属平板5A7およびプリント基板2により、中空部分5Cが形成されている。すなわちこの例の金属スペーサ5Aは、金属平板5A7が上記第1の部分として、波状金属板5A9が上記第2の部分として、配置されている。
 図16を参照して、この回路装置1B3における金属スペーサ5Aは基本的に図6の金属スペーサ5Aと同様の構成であるが、金属平板5A8を有さない点において異なっている。すなわち図16の長方形状の波状金属板5A9は、図14の分岐部分5A11と同様に、たとえばはんだ層7を介して、プリント基板2に直接接合されている。そして波状金属板5A9とこれを上下側から挟む金属平板5A7およびプリント基板2により、中空部分5Cが形成されている。すなわちこの例の金属スペーサ5Aは、金属平板5A7が上記第1の部分として、波状金属板5A9が上記第2の部分として、配置されている。
 以上は金属スペーサ5Aについて説明したが、金属スペーサ5Bについても同様である。
 次に、本実施の形態の作用効果について説明する。
 本実施の形態の回路装置1B1~1B3によれば、半導体部品3からの発熱が導体層21Aに伝わり、導体層21Aに接続された金属スペーサ5Aの分岐部分5A11の先端部から金属スペーサ5Aの全体に伝わる。当該熱はさらに金属スペーサ5Aから、樹脂層8を介して冷却器6Aに伝わる。このように本実施の形態の金属スペーサ5Aは、実施の形態1と同様に、プリント基板2の一方の主表面2A上でのヒートスプレッダ、および冷却器6Aとプリント基板2の間のサーマルブリッジとして機能する。また金属スペーサ5Aはプリント基板2の熱を一方の主表面2Aに沿う方向に広げる熱拡散板として機能させることができる。このためプリント基板2の熱が金属スペーサ5Aを介して効率的に冷却器6Aに伝わる。以上はプリント基板2の他方の主表面2B上の金属スペーサ5Bについても同様である。
 次に、本実施の形態の回路装置1B1~1B3の金属スペーサ5A,5Bは櫛形状部分を有し、その先端部がプリント基板2に直接接合される。このため本実施の形態では、実施の形態1のように金属スペーサ5A,5Bがプリント基板2側に一方の主表面2Aに沿う部分を金属平板5A8のような部分を有する場合とは異なり、金属スペーサ5はプリント基板2に設けられたスルーホール23を塞がない。このため、スルーホール23の内部の空気がリフロー工程時に膨張しても、金属スペーサ5A側のスルーホール23の延在方向端部から当該空気を排出させることができる。このためプリント基板2と金属スペーサ5A,5Bとの間のはんだ層7にボイドが入り込むことによるプリント基板2と金属スペーサ5A,5Bとの接続不良を抑制することができる。
 なお、本実施の形態における上記第2の部分としての分岐部分5A11または波状金属板5A9を有する金属スペーサ5A,5Bは、プレス成型等の加工方法により製造される。また当該金属スペーサ5A,5Bの材料は実施の形態1と同様に銅またはアルミニウムなどの熱伝導性の高い金属材料により形成されている。このため安価かつ容易に当該金属材料を入手可能である。さらに図16の金属スペーサ5Aは図6の金属スペーサ5Aに含まれる金属平板5A8を含まない。このため図16の金属スペーサ5Aは図6の金属スペーサ5Aよりも安価に製造することができる。
 図17は、実施の形態2の第4例に係る回路装置の、特に非中実金属スペーサおよびプリント基板の一部領域が切り取られた概略断面図である。図17を参照して、本実施の形態の第4例の回路装置1B4は、基本的に第1例の回路装置1B1(図13、図14参照)と同様の構成を有するため、同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1B4においては、プリント基板2の導体層21Aのうち、はんだ層7により分岐部分5A11に接続される領域以外の領域上に、フォトレジスト層20が形成されている。フォトレジスト層20は、金属スペーサ5Aにより形成される中空部分5Cの内部における導体層21A上に形成される。またフォトレジスト層20は、金属スペーサ5Aの外側における導体層21A上に形成される。なお図示されないが、金属スペーサ5B側についても上記と同様の位置に、導体層21D上にフォトレジスト層20が形成されてもよい。
 上記の構成とすることにより、はんだ層7は、導体層21A(21D)上の全面には形成されない。はんだ層7は、導体層21A(21D)上のうち特に金属スペーサ5の最下部が接続される領域のみに配置される。導体層21Aのうち金属スペーサ5との接続に寄与しない領域の表面にはフォトレジスト層20が形成される。これにより、金属スペーサ5の分岐部分5A11の真下のはんだ層7には、導体層21側に向けて漸次幅が広くなるいわゆるはんだフィレットが形成される。はんだ層7にはんだフィレットが形成されれば、はんだフィレットが形成されない場合に比べて、金属スペーサ5と導体層21との間の放熱効率をさらに向上できる。またはんだ層7にはんだフィレットが形成されることにより、金属スペーサ5が本来設置されるべき位置からずれた位置に設置されることを抑制できる。
 以上に述べた以外の各点については、基本的に実施の形態2は実施の形態1と同様であるためここでは説明を繰り返さない。
 実施の形態3.
 まず本実施の形態の回路装置の構成について、図18を用いて説明する。図18は実施の形態3に係る回路装置の構成を示す概略断面図である。図18を参照して、本実施の形態の回路装置1Cは、基本的に実施の形態1の図1の回路装置1A1と同様の構成を有するため、同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1Cにおいては、半導体部品3はたとえばTO220またはTO-3Pなどの汎用の挿入実装型ICパッケージに封止されている。半導体部品3を構成するベースプレート32の下側の表面が、金属スペーサ5Aの金属壁である上記第2の部分(一方の主表面2Aに交差する方向に延びる部分)の表面上にネジ止め等を用いて接続されている。このため回路装置1Cにおいては半導体部品3の全体が、回路装置1A1の半導体部品3に対して約90°回転するような態様となるように接合されている。すなわち回路装置1Cは、半導体部品3のベースプレート32がプリント基板2の厚み方向に沿うように延び拡がっている。この点において回路装置1Cは、ベースプレート32の下側の表面がプリント基板2の一方の主表面2A上に接続されている回路装置1A1と異なっている。
 以上のように回路装置1Cでは、半導体部品3の全体が回路装置1A1の半導体部品3に対して回転する態様となっている。これに伴い、一方の主表面2A上に接合される金属スペーサ5Aの厚み方向の寸法は、ベースプレート32の拡がる方向の寸法に合わせるように厚くなっている。したがって回路装置1Cでは、金属スペーサ5Aの中空部分5Cは、プリント基板2の一方の主表面2Aに沿う左右方向の寸法よりも、一方の主表面2Aに交差する上下方向の寸法の方が長くなっている。
 金属スペーサ5Aの中空部分5Cは上下方向の寸法の方が左右方向の寸法よりも長いため、本実施の形態ではその分だけ他の実施の形態に比べて中空部分5Cの容積が大きくなっている。これによる金属スペーサ5A内部の熱抵抗の上昇を避けるため、本実施の形態においても他の実施の形態と同数(5つ)以上の数の中空部分5Cを有するように、上下方向に延びる側壁が設けられている。
 また回路装置1Cにおいては、半導体部品3に含まれるリードフレーム34が、図9に示すようにベースプレート32に沿う方向(図18の上下方向)に延びた後に湾曲して一方の主表面2Aに沿う図18の左右方向に延び、そこからさらに湾曲してプリント基板2の厚み方向に沿って延びている。このプリント基板2の厚み方向に沿って延びる当該リードフレーム34の一部は、プリント基板2に形成された複数のスルーホール23のうちの1つの内部に挿入されている。スルーホール23内に挿入されたリードフレーム34は、はんだ層7によりプリント基板2の導体層21Eと電気的に接続されている。リードフレーム34は、スルーホール23内をプリント基板2の他方の主表面2Bに達し、さらにその図18の下側の樹脂層8内にまで延びている。このようにリードフレーム34がスルーホール23内に挿入されることにより、半導体部品3はプリント基板2に実装される。すなわち半導体部品3はいわゆる挿入実装型となっている。この点において回路装置1Cは、リードフレーム34がプリント基板2の導体層21Eと電気的に接続されることで半導体部品3がプリント基板2に表面実装型の半導体部品3が実装される回路装置1A1,1B1と異なっている。
 次に、本実施の形態の作用効果について説明する。
 回路装置1Cにおいて、プリント基板2の熱が、半導体部品3のリードフレーム34から、リードフレーム34とプリント基板2とを接合するはんだ層7に伝わるために、はんだ層7の表面温度が上昇する場合がある。この場合においても、金属スペーサ5Aを用いてプリント基板2および半導体部品3を冷却することができる。したがって、プリント基板2のリードフレーム34が挿入された部品実装面側である一方の主表面2A側、およびその反対側の他方の主表面2B側のいずれの面からでも、金属スペーサ5A,5Bを用いてプリント基板2を冷却することができる。
 つまり実施の形態1,2のように表面実装型の回路装置1A1,1B1に限らず、本実施の形態のように挿入実装型の回路装置1Cにおいても、プリント基板2の一方の主表面2A側および他方の主表面2B側の双方の面上を効率的に冷却することができる。このため回路装置1Cは、プリント基板2を大型化させることなく、一方の主表面側のみから冷却される場合の2倍近い発熱密度に耐えることができる。
 以上に述べた以外の各点については、基本的に実施の形態3は実施の形態1と同様であるためここでは説明を繰り返さない。
 実施の形態4.
 まず本実施の形態の回路装置の構成について、図19および図20を用いて説明する。図19は実施の形態4に係る回路装置の構成を示す概略断面図である。図20は、図19の回路装置のうち冷却器以外の部分を中心に実施の形態4に係る回路装置の構成を示す概略斜視図である。図19および図20を参照して、本実施の形態の回路装置1Dは、基本的に実施の形態1の図1の回路装置1A1と同様の構成を有するため、同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1Dにおいては、実装部品として上記各実施の形態における半導体部品3の代わりに、磁性部品9が用いられている。実装部品としての磁性部品9は、プリント基板2の一方の主表面2Aよりも図の上方の領域から、プリント基板2の他方の主表面2Bよりも図の下方の領域まで、図19の上下方向に延びている。ここでプリント基板2の一方の主表面2Aよりも図の上方の領域とは、樹脂層8が供給され一方の主表面2Aに沿って金属スペーサ5Aと並ぶ領域である。またプリント基板2の他方の主表面2Bよりも図の下方の領域とは、樹脂層8が供給され他方の主表面2Bに沿って金属スペーサ5Bと並ぶ領域である。すなわち磁性部品9は、樹脂層8が供給され一方の主表面2Aに沿って金属スペーサ5Aと並ぶ領域から、プリント基板2内を一方の主表面2Aから他方の主表面2Bまで延び、さらに樹脂層8が供給され一方の主表面2Aに沿って金属スペーサ5Aと並ぶ領域まで延びている。したがって磁性部品9は、一方の主表面2Aの上からプリント基板2内を貫通するように延びている。
 磁性部品9は、たとえばプリント基板2の導体層21および絶縁層22により形成されたコイルパターン24の、導体層21および絶縁層22の空洞部分に挿入される磁性体コアである。当該磁性部品9はフェライト等により形成されており、上記のプリント基板2に形成されたコイルパターン24と併せてトランスおよびリアクトルとして機能する。
 なお図19および図20においては、たとえば図18と同様に、金属スペーサ5A,5Bの中空部分5Cは、プリント基板2の一方の主表面2Aに沿う左右方向の寸法よりも、一方の主表面2Aに交差する上下方向の寸法の方が長くなっている。ただしこのような態様に限らず、本実施の形態においても実施の形態1,2と同様に、金属スペーサ5A,5Bの中空部分5Cは、プリント基板2の一方の主表面2Aに沿う左右方向の寸法が、一方の主表面2Aに交差する上下方向の寸法よりも長い態様であってもよい。つまり磁性部品9の最上部よりも金属スペーサ5Aの最上部の方が上方に配置されるように金属スペーサ5Aが厚く形成されてもよい。あるいは磁性部品9の最上部よりも金属スペーサ5Aの最上部の方が下方に配置されるように金属スペーサ5Aが薄く形成されてもよい。同様に、磁性部品9の最下部よりも金属スペーサ5Bの最下部の方が下方に配置されるように金属スペーサ5Bが厚く形成されてもよい。あるいは磁性部品9の最下部よりも金属スペーサ5Bの最下部の方が上方に配置されるように金属スペーサ5Bが薄く形成されてもよい。
 また図19においてはプリント基板2を一方の主表面2Aから他方の主表面2Bまで貫通するように延びるスルーホール23が図示されていない。しかし図19の回路装置1Dにおいても他の実施の形態と同様に、導体層21および絶縁層22からなるプリント基板2の本体に対し、一方の主表面2Aから他方の主表面2Bまでプリント基板2を貫通するように延びるスルーホール23が形成されてもよい。
 次に、本実施の形態の作用効果について説明する。
 本実施の形態の回路装置1Dによれば、プリント基板2に形成されているコイルパターン24等において発生した熱が、磁性部品9を経由して、冷却器6A,6Bに伝えられる。また当該熱は金属スペーサ5A,5Bを経由して、冷却器6A,6Bに伝えられる。このため回路装置1Dは、プリント基板2を大型化させることなく、効率的にプリント基板2を冷却することができる。
 以上に述べた以外の各点については、基本的に実施の形態4は実施の形態1と同様であるためここでは説明を繰り返さない。
 実施の形態5.
 まず本実施の形態の回路装置の構成について、図21および図22を用いて説明する。図21は実施の形態5に係る回路装置の構成を示す概略断面図である。図22は実装部品および非中実金属スペーサの部分を中心に実施の形態5に係る回路装置の構成を示す概略斜視図である。図21および図22を参照して、本実施の形態の回路装置1Eは、基本的に実施の形態2の図13の回路装置1B1と同様の構成を有するため、同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1Eにおいては、実装部品としての半導体部品3が、金属スペーサ5Aの中空部分5C内に配置されている。この点において回路装置1Eは、中空部分5Cの外側において一方の主表面2A上に半導体部品3が配置される実施の形態1~4と構成上異なっている。
 また本実施の形態においては、中空部分5C内において金属スペーサ5Aが一方の主表面2A上に接合されることが好ましい。これを可能にする観点から、本実施の形態の金属スペーサ5Aは、実施の形態2と同様に、中空部分5Cの上側(冷却器6A側)のみに金属壁の部分を有する態様となっていることが好ましい。すなわち分岐部分5A11の先端部がプリント基板2に直接接合されることが好ましい。
 次に、本実施の形態の作用効果について説明する。
 本実施の形態においては半導体部品3が金属スペーサ5Aの中空部分5C内に配置される。このため金属スペーサ5Aの外側には半導体部品3が配置されない。したがって、プリント基板2から冷却器6Aまでの図21の上下方向に関する全体を樹脂層8が埋める領域が、実施の形態1~4に比べて大きくなる。このため本実施の形態においては、実施の形態1~4に比べて広い面積である金属スペーサ8Aのベース部を用いて、プリント基板2の一方の主表面2Aから、樹脂層8を介して冷却器6Aと接続することが可能となる。このように回路装置1Eは、プリント基板2から冷却器6Aに効率的に熱を伝えることが可能となる。このためプリント基板2を大型化させることなく、出力電力の増大に耐えうる回路装置1Eを提供することができる。
 また本実施の形態においては半導体部品3が上方から金属スペーサ5Aに覆われる構成となる。このため半導体部品3などの実装部品から外部への電磁ノイズの放射を、これを囲む金属スペーサ5Aが抑制する効果も得られる。
 なお上記においては金属スペーサ5Aの中空部分5C内に半導体部品3が配置されている。しかしこれに限らず、当該中空部分5C内に他の実装部品、たとえばコンデンサまたは抵抗などが配置されてもよい。またたとえば金属スペーサ5Bの中空部分5C内に電子部品4が配置されてもよい。
 実施の形態6.
 まず本実施の形態の回路装置の構成について、図23および図24を用いて説明する。図23は実装部品および非中実金属スペーサの部分を中心に実施の形態6に係る回路装置の構成を示す概略斜視図である。図24は実施の形態6に係る回路装置の構成を示す概略断面図である。言い換えれば、図24は図23中のXXIV-XXIV線に沿う部分の回路装置の構成を、冷却器6A,6Bを含む全体について示すものである。
 図23を参照して、本実施の形態の回路装置1Fは、基本的に実施の形態2の回路装置1B1および実施の形態5の回路装置1Eと同様の構成を有する。このため上記各実施の形態と同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1Fにおいては、実施の形態2と同様に櫛形状部分を有する態様の金属スペーサ5Aの一部に、それが切り取られた切り起こし部10が形成されている。この点において本実施の形態は、このような金属スペーサ5Aの切り起こし部10を有さない他の実施の形態とは構成上異なっている。
 具体的には、図24を参照して、切り起こし部10はたとえば金属スペーサ5Aの中空部分5Cの上側(冷却器6A側)の、金属スペーサ5A本体を構成する一方の主表面2Aに沿う金属壁の部分を切り取ることにより形成される。図24に示すように、この切り取られた金属スペーサ5Aの最上面の金属壁の部分が、金属スペーサ5Aの側壁およびその下方の一方の主表面2Aに接合される部分を形成するように折り曲げられる。これにより切り起こし部10が形成される。このように切り起こし部10は金属スペーサ5Aの一部が屈曲され金属スペーサ5Aの分岐部分5A11(図14参照)を形成する態様とされ、プリント基板2にはんだ層7などを介して接合されている。これにより、実施の形態2、5と同様に分岐部分5A11を有する金属スペーサ5Aが形成されている。
 切り起こし部10は、図24の断面図に示すように、金属スペーサ5Aの中空部分5Cを形成すべくL字状に屈曲されてもよい。また図24の断面図に示すように切り起こし部10の外側に配置され、切り取られる前において金属スペーサ5Aの中空部分5Cの側壁を形成していた部分が、その最上面、側面および最下面が一体となるように約90°ずつ屈曲された構成を有していてもよい。
 なお図24に示すように、本実施の形態においても実施の形態5と同様に、半導体部品3が金属スペーサ5Aの中空部分5C内に配置されていることが好ましい。このようにすれば実施の形態5と同様に、半導体部品3などの実装部品から外部への電磁ノイズの放射を金属スペーサ5Aが抑制する効果を奏する。
 次に、本実施の形態の作用効果について説明する。
 本実施の形態のように切り起こし部10を有する回路装置1Fにおいては、半導体部品3からプリント基板2に伝えられた熱が、切り起こし部10を介して金属スペーサ5Aに伝えられる。金属スペーサ5A内は中空部分5Cを形成するように閉じられた空間として有する領域と、図24における中空部分5Cの右側の領域のように金属壁に閉じられずに樹脂層8に埋設された領域とを有する。このため中空部分5Cを広がった熱は、金属壁に閉じられずに樹脂層8に埋設された領域の樹脂層8を介して冷却器6Aに伝えられる。このように回路装置1Fは、他の実施の形態に比べて平面視において樹脂層8が占める面積割合が大きい。したがって回路装置1Fは、樹脂層8の高い熱伝導性を利用して、プリント基板2から冷却器6Aに効率的に熱を伝えることが可能となる。このためプリント基板2を大型化させることなく、出力電力の増大に耐えうる回路装置1Fを提供することができる。
 上記の切り起こし部10は、金属スペーサ5Aに限らず金属スペーサ5Bに形成されてもよい。
 実施の形態7.
 図25は、実施の形態7に係る回路装置の構成を示す概略断面図である。図26は、実装部品および非中実金属スペーサの部分を中心に実施の形態7に係る回路装置の構成を示す概略斜視図である。図25および図26を参照して、本実施の形態の回路装置1Gは、基本的に実施の形態1の回路装置1A1と同様の構成を有するため、同一の構成要素には同一の符号を付しその説明を繰り返さない。ただし回路装置1Gにおいては、中空部分5Cが、半導体部品3に隣接する領域35から、プリント基板2の端面2Eに隣接する領域25まで、一方の主表面2Aに沿うように、図25、図26の左右方向に延びている。すなわち金属スペーサ5A,5Bは、図25および図26の左右方向を貫通するように、柱状に延びる中空部分5Cを複数有している。したがって中空部分5Cは図25および図26の奥行き方向に関して互いに間隔をあけて複数、形成される。
 また図25に示すように、回路装置1Gでは冷却器6として、冷却器6Aおよび冷却器6Bに加え、冷却器接続部6Dを有している。冷却器接続部6Dは、冷却器6Aおよび冷却器6Bの端部を繋ぐように、一方の主表面2Aに交差する図25の上下方向(厚み方向)に延びている。なおここで冷却器6Aおよび冷却器6Bの端部とは、図25での最も右側の領域である。すなわち図25では、冷却器6Aの冷却器6Bに対向する最下面のうち最も右側の領域、および冷却器6Bの冷却器6Aに対向する最上面のうち最も左側の領域に、冷却器接続部6Dの最上面および最下面としての端面が繋がっている。
 なお冷却器接続部6Dは冷却器6Aおよび冷却器6Bとは別体であり、冷却器6Aの最下面の端部および冷却器6Bの最上面の端部に冷却器接続部6Dの最上面および最下面としての端面が接続されていてもよい。この場合図25に示すように、冷却器接続部6Dは、図25の上下方向に関して冷却器6Aと冷却器6Bとの間に配置される。あるいは冷却器接続部6Dは冷却器6Aおよび冷却器6Bと一体として、図25に示す形状を有するように形成されていてもよい。さらに変形例として、図示されないが、たとえば冷却器6Aおよび冷却器6Bの最も右側の端面に、図25の上下方向に延びる冷却器接続部6Dの図25の左側を向く側面が接続されていてもよい。この場合冷却器接続部6Dは、その全体において冷却器6Aおよび冷却器6Bよりも図25の右側に配置される。
 以上の構成を有するため、回路装置1Gにおいては、中空部分5Cが、半導体部品3に隣接する領域35から、冷却器接続部6Dに隣接する領域25まで、一方の主表面2Aに沿うように、図25、図26の左右方向に延びている。このように中空部分5Cの延びる方向において本実施の形態は、中空部分5Cが領域35と領域25とを結ぶ方向に交差する方向に延びる実施の形態1~6と構成上異なっている。
 本実施の形態における冷却器6A,6Bは、高熱伝導率の材料である銅またはアルミニウムなどの金属板であってもよい。ただし本実施の形態の冷却器6A,6Bは、窒化アルミニウムなどのセラミック板であってもよい。さらに本実施の形態の冷却器6A,6Bは、ヒートパイプまたはペーパチャンバを備えた熱拡散板であってもよい。あるいは本実施の形態の冷却器6A,6Bは、上記各材質の板材が適宜組み合わせられてもよい。このように本実施の形態の冷却器6A,6Bは様々な種類の補助冷却器である。これに対し、本実施の形態における冷却器接続部6Dは、空冷または水冷等による主冷却器である。冷却器接続部6Dも冷却器6A,6Bと同様の上記材質等により構成されてもよい。なお上記の実施の形態1~6の各回路装置における冷却器6A,6Bも、本実施の形態の冷却器6A,6Bと同様の上記材質等により構成されてもよい。
 冷却器6A,6Bは主冷却器としての冷却器接続部6Dに接続されている。このため、冷却器6A,6Bに伝えられた熱は冷却器6A,6Bの内部を伝導してから冷却器接続部6Dに伝えられる。これにより、金属スペーサ5A,5Bのうち冷却器接続部6Dから遠い側の金属スペーサ5から冷却器6A,6Bのいずれかに伝えられる熱量が少なくなる。その分だけ、金属スペーサ5A,5Bのうち冷却器接続部6Dに近い側の金属スペーサ5から、より多くの熱を冷却器6A,6Bのいずれかに伝えることができる。これにより、効率よく半導体部品3およびプリント基板2を冷却できる。
 なお図25の回路装置1Gでは一例として、回路装置1A1の中空部分5Cの延びる方向を平面視にて約90°回転させた配置とされている。しかしこれに限らず、上記の実施の形態1~6の各回路装置における冷却器6A,6Bの中空部分5Cの延びる方向が、図25と同様の向きとされてもよい。
 また図25、図26の回路装置1Gにおいては、金属スペーサ5Aの中空部分5Cと金属スペーサ5Bの中空部分5Cとが平面視にてほぼ同じ方向に延びている。すなわち回路装置1Gでは、金属スペーサ5Aの中空部分5Cと金属スペーサ5Bの中空部分5Cとはともに各図の左右方向に延びている。しかし金属スペーサ5A,5Bの中空部分5Cの一方のみが図25、図26の左右方向に延び、他方が図25、図26の紙面奥行き方向に延びる構成であってもよい。すなわち金属スペーサ5Aの中空部分5Cと金属スペーサ5Bの中空部分5Cとが平面視にて互いにたとえば直交するように交差する構成とされてもよい。
 次に、本実施の形態の作用効果について説明する。
 本実施の形態においては中空部分5Cが、実装部品に隣接する領域35から、プリント基板2の端面2Eに隣接する(冷却器接続部6Dに隣接する)25まで、一方の主表面2Aに沿うように延びている。ここで一般に、非中実金属スペーサ5A,5Bは、平面視にて中空部分5Cが延びる方向と直交する方向よりも、平面視にて中空部分5Cが延びる方向に高い熱伝導性を備える。すなわち非中実金属スペーサ5A,5Bは熱伝導異方性を有する。そのため本実施の形態のように領域35から領域25まで中空部分5Cが延在する回路装置1Gでは、半導体部品3の発熱を領域35から領域25まで、より高い効率で伝えることができる。このため回路装置1Gでは金属スペーサ5A,5Bから冷却器6A,6Bに効率よく熱を伝えることができる。したがって回路装置1Gでは、金属スペーサ5の温度分布の傾斜が少なくなる。
 実施の形態8.
 本実施の形態は、上述した実施の形態1~7にかかる回路装置を電力変換装置に適用したものである。本発明は特定の電力変換装置に限定されるものではないが、以下、実施の形態8として、三相のインバータに本発明を適用した場合について説明する。
 図27は、本実施の形態にかかる電力変換装置を適用した電力変換システムの構成を示すブロック図である。図27に示す電力変換システムは、電源1000、電力変換装置2000、負荷3000から構成される。電源1000は、直流電源であり、電力変換装置2000に直流電力を供給する。電源1000は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源1000を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。
 電力変換装置2000は、電源1000と負荷3000の間に接続された三相のインバータであり、電源1000から供給された直流電力を交流電力に変換し、負荷3000に交流電力を供給する。電力変換装置2000は、図27に示すように、入力される直流電力を交流電力に変換して出力する主変換回路2010と、主変換回路2010を制御する制御信号を主変換回路2010に出力する制御回路2030とを備えている。
 負荷3000は、電力変換装置2000から供給された交流電力によって駆動される三相の電動機である。なお、負荷3000は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。
 以下、電力変換装置2000の詳細を説明する。主変換回路2010は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源1000から供給される直流電力を交流電力に変換し、負荷3000に供給する。主変換回路2010の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路2010は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路2010の各スイッチング素子および各還流ダイオードの少なくともいずれかを、上述した実施の形態1~7のいずれかのパワーモジュールすなわち半導体部品3などに相当する半導体モジュール2020によって構成する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路2010の3つの出力端子は、負荷3000に接続される。
 また、主変換回路2010は、上記の各スイッチング素子および各還流ダイオードの少なくともいずれか(以下「(各)スイッチング素子」と記載)を駆動する駆動回路(図示なし)を備えている。しかし駆動回路は半導体モジュール2020に内蔵されていてもよいし、半導体モジュール2020とは別に駆動回路を備える構成であってもよい。駆動回路は、主変換回路2010のスイッチング素子を駆動する駆動信号を生成し、主変換回路2010のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路2030からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)となり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。
 制御回路2030は、負荷3000に所望の電力が供給されるよう主変換回路2010のスイッチング素子を制御する。具体的には、負荷3000に供給すべき電力に基づいて主変換回路2010の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路2010を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、主変換回路2010が備える駆動回路に制御指令(制御信号)を出力する。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。
 本実施の形態に係る電力変換装置では、主変換回路2010のスイッチング素子と還流ダイオードとして実施の形態1~7にかかる回路装置のパワーモジュールを適用する。このため上記のように冷却効率を向上させるなどの作用効果を実現することができる。
 本実施の形態では、2レベルの三相インバータに本発明を適用する例を説明したが、本発明は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本発明を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本発明を適用することも可能である。
 また、本発明を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザ加工機、又は誘導加熱調理器や非接触器給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。
 以上に述べた各実施の形態(に含まれる各例)に記載した特徴を、技術的に矛盾のない範囲で適宜組み合わせるように適用してもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1A1,1A2,1A3,1A4,1A5,1B1,1B2,1B3,1B4,1C,1D,1E,1F,1G 回路装置、2 プリント基板、2A 一方の主表面、2B 他方の主表面、2E 端面、3 半導体部品、4 電子部品、5,5A,5B 金属スペーサ、5A1 扁平管、5A2,5A3,5A4,5A5,5A6 角管、5A7,5A8 金属平板、5A9 波状金属板、5A10 櫛形状部分、5A11 分岐部分、5C 中空部分、5D スペーサ貫通孔、6,6A,6B 冷却器、6C 突起部、6D 冷却器接続部、7 はんだ層、8 樹脂層、9 磁性部品、10 切り起こし部、20 フォトレジスト層、21,21A,21B,21C,21D,21E 導体層、22,22A,22B,22C 絶縁層、23 スルーホール、24 コイルパターン、25,35 領域、31 半導体素子、32 ベースプレート、33 樹脂パッケージ、34 リードフレーム、1000 電源、2000 電力変換装置、2010 主変換回路、2020 半導体モジュール、2030 制御回路、3000 負荷。

Claims (15)

  1.  プリント基板と、
     前記プリント基板の少なくとも一方の主表面上に少なくとも一部が配置される実装部品と、
     前記プリント基板の少なくとも一方の主表面上に配置される非中実金属スペーサと、
     前記非中実金属スペーサの前記プリント基板と反対側に配置される冷却器と、
     前記非中実金属スペーサと前記冷却器との間に配置される樹脂層とを備え、
     前記非中実金属スペーサは前記プリント基板と前記冷却器との間に少なくとも1つの中空部分を形成可能な形状を有する、回路装置。
  2.  前記非中実金属スペーサは、前記一方の主表面に交差する方向に関して、前記実装部品以上の厚みを有する、請求項1に記載の回路装置。
  3.  前記プリント基板は前記一方の主表面に沿う導体層を含み、
     前記非中実金属スペーサは、前記導体層と、第1の接合材により接合されており、
     前記第1の接合材の融点は、前記非中実金属スペーサを構成する金属材料の融点未満である、請求項1または2に記載の回路装置。
  4.  前記実装部品と、前記非中実金属スペーサとは、前記第1の接合材により接続される、請求項3に記載の回路装置。
  5.  前記非中実金属スペーサは、櫛形状を有する第1領域と、前記第1領域と平面的に重なる領域から前記実装部品と平面的に重なる領域まで延びる第2領域とを含み、
     前記実装部品と、前記非中実金属スペーサの前記第2領域とは、第2の接合材により接続される、請求項3に記載の回路装置。
  6.  前記第2の接合材は前記第1の接合材とは異なる材料である、請求項5に記載の回路装置。
  7.  前記非中実金属スペーサは、前記一方の主表面に沿う方向に拡がる、互いに縦方向間隔をあけて対向する1対の第1の部分と、前記1対の第1の部分の間の領域を前記1対の第1の部分のそれぞれから前記一方の主表面に交差する方向に延び、前記一方の主表面に沿う方向に関して互いに幅方向間隔をあけて配置される複数の第2の部分とを含み、
     前記非中実金属スペーサは、前記幅方向間隔により前記中空部分を形成し、
     前記1対の第1の部分のいずれかは前記プリント基板に接合される、請求項1~6のいずれか1項に記載の回路装置。
  8.  前記非中実金属スペーサは、前記一方の主表面に沿う方向に拡がる第1の部分と、前記第1の部分から前記一方の主表面に交差する方向に延び、前記一方の主表面に沿う方向に関して互いに幅方向間隔をあけて配置される複数の第2の部分とを含み、
     前記非中実金属スペーサは、前記幅方向間隔により前記中空部分を形成し、
     前記複数の第2の部分は前記プリント基板に接合される、請求項1~6のいずれか1項に記載の回路装置。
  9.  前記中空部分内に前記実装部品が配置された、請求項8に記載の回路装置。
  10.  前記非中実金属スペーサの一部に、前記非中実金属スペーサが切り取られた切り起こし部が形成されており、
     前記切り起こし部は前記非中実金属スペーサの一部が屈曲され前記プリント基板に接合されている、請求項8または9に記載の回路装置。
  11.  前記中空部分は、前記実装部品に隣接する領域から、前記プリント基板の端面に隣接する領域まで、前記一方の主表面に沿うように延びる、請求項1~10のいずれか1項に記載の回路装置。
  12.  前記非中実金属スペーサは前記一方の主表面上の第1の非中実金属スペーサと、前記一方の主表面と反対側の他方の主表面上の第2の非中実金属スペーサとを含み、
     前記冷却器は前記一方の主表面上の第1の冷却器と、前記他方の主表面上の第2の冷却器とを含む、請求項1~11のいずれか1項に記載の回路装置。
  13.  前記冷却器は、前記第1の冷却器の端部と前記第2の冷却器の端部とを繋ぐように前記一方の主表面に交差する方向に延びる冷却器接続部をさらに含み、
     前記中空部分は、前記実装部品に隣接する領域から、前記冷却器接続部に隣接する領域まで、前記一方の主表面に沿うように延びる、請求項12に記載の回路装置。
  14.  前記実装部品は磁性部品であり、
     前記磁性部品は前記一方の主表面の上から前記プリント基板内を貫通するように延びている、請求項1~3のいずれか1項に記載の回路装置。
  15.  請求項1~14のいずれか1項に記載の回路装置を含む電力変換装置であって、
     前記回路装置に含まれる半導体モジュールを有し、入力される電力を変換して出力する主変換回路と、
     前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路と備えた電力変換装置。
PCT/JP2019/001496 2018-01-25 2019-01-18 回路装置および電力変換装置 WO2019146524A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980008400.8A CN111656519A (zh) 2018-01-25 2019-01-18 电路装置以及电力变换装置
JP2019567043A JP7004749B2 (ja) 2018-01-25 2019-01-18 回路装置および電力変換装置
US16/963,294 US11350517B2 (en) 2018-01-25 2019-01-18 Circuit device and power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018010658 2018-01-25
JP2018-010658 2018-01-25

Publications (1)

Publication Number Publication Date
WO2019146524A1 true WO2019146524A1 (ja) 2019-08-01

Family

ID=67395462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001496 WO2019146524A1 (ja) 2018-01-25 2019-01-18 回路装置および電力変換装置

Country Status (4)

Country Link
US (1) US11350517B2 (ja)
JP (1) JP7004749B2 (ja)
CN (1) CN111656519A (ja)
WO (1) WO2019146524A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196333A1 (ja) * 2019-03-22 2020-10-01 日立化成株式会社 冷却構造体
US11602044B2 (en) * 2020-07-30 2023-03-07 Toyota Motor Engineering & Manufacturing North America, Inc. Driver board assemblies and methods of forming the same
KR20220089348A (ko) * 2020-12-21 2022-06-28 현대자동차주식회사 모터 구동 장치
JP7092249B1 (ja) * 2021-10-01 2022-06-28 富士電機株式会社 電力変換装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018864A (ja) * 2013-07-09 2015-01-29 新電元工業株式会社 電子機器の熱管理構造

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8423618D0 (en) * 1984-09-18 1984-10-24 Howood Ind Ltd Heat sink structures
JPH02113362U (ja) 1989-02-23 1990-09-11
JPH1041678A (ja) * 1996-07-25 1998-02-13 Hitachi Ltd 光受信器
JP3881488B2 (ja) 1999-12-13 2007-02-14 株式会社東芝 回路モジュールの冷却装置およびこの冷却装置を有する電子機器
JP3923703B2 (ja) * 2000-03-29 2007-06-06 ローム株式会社 放熱手段を有するプリント配線板
JP2004296720A (ja) 2003-03-26 2004-10-21 Kyocera Corp 電子装置
JP4638258B2 (ja) 2005-03-08 2011-02-23 昭和電工株式会社 Led用基板および光源
US7999369B2 (en) * 2006-08-29 2011-08-16 Denso Corporation Power electronic package having two substrates with multiple semiconductor chips and electronic components
JP4997954B2 (ja) 2006-12-15 2012-08-15 富士通株式会社 回路基板、その製造方法及び半導体装置
JP2008205383A (ja) * 2007-02-22 2008-09-04 Toyota Central R&D Labs Inc 半導体モジュールおよびその製造方法
JP5163199B2 (ja) * 2008-03-17 2013-03-13 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板及びヒートシンク付パワーモジュール
JP5114324B2 (ja) * 2008-07-07 2013-01-09 株式会社豊田自動織機 半導体装置
JP5009956B2 (ja) * 2009-05-29 2012-08-29 三菱電機株式会社 半導体装置
DE102009046172A1 (de) * 2009-10-29 2011-05-05 Robert Bosch Gmbh Kühlkörper mit verbesserter Kühleffizienz, mit Kühlkörper ausgestattete Schaltung und Herstellungsverfahren hierfür
JP5538653B2 (ja) * 2011-01-20 2014-07-02 三菱電機株式会社 ヒートシンクおよび当該ヒートシンクを備えた半導体装置
JP5447433B2 (ja) * 2011-05-13 2014-03-19 株式会社安川電機 電子機器および電子機器が設けられた電力変換装置
WO2014050081A1 (ja) * 2012-09-25 2014-04-03 株式会社デンソー 電子装置
US8998454B2 (en) * 2013-03-15 2015-04-07 Sumitomo Electric Printed Circuits, Inc. Flexible electronic assembly and method of manufacturing the same
US9668352B2 (en) * 2013-03-15 2017-05-30 Sumitomo Electric Printed Circuits, Inc. Method of embedding a pre-assembled unit including a device into a flexible printed circuit and corresponding assembly
US9493339B2 (en) * 2014-09-02 2016-11-15 Kabushiki Kaisha Toshiba Micro electro mechanical system
JP6190851B2 (ja) * 2015-07-30 2017-08-30 三菱電機株式会社 電力変換装置
JP6634778B2 (ja) * 2015-11-06 2020-01-22 富士電機株式会社 半導体装置及びその製造方法
JP6593597B2 (ja) * 2016-03-16 2019-10-23 株式会社オートネットワーク技術研究所 回路構成体
WO2019132965A1 (en) * 2017-12-29 2019-07-04 Intel Corporation Microelectronic assemblies
US10743442B2 (en) * 2018-12-11 2020-08-11 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling devices including jet cooling with an intermediate mesh and methods for using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018864A (ja) * 2013-07-09 2015-01-29 新電元工業株式会社 電子機器の熱管理構造

Also Published As

Publication number Publication date
JP7004749B2 (ja) 2022-01-21
US11350517B2 (en) 2022-05-31
US20200367353A1 (en) 2020-11-19
JPWO2019146524A1 (ja) 2021-01-07
CN111656519A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2019146524A1 (ja) 回路装置および電力変換装置
JP4438489B2 (ja) 半導体装置
JP4640345B2 (ja) 電力用半導体装置
JP4007304B2 (ja) 半導体装置の冷却構造
KR20180002957A (ko) 파워 모듈 및 그 제조 방법
JP6797285B2 (ja) 半導体装置およびその製造方法、ならびに電力変換装置
JP6584652B2 (ja) 電力用回路装置
JP2008042074A (ja) 半導体装置及び電力変換装置
CN108417546B (zh) 电力电子模块
JP2006303290A (ja) 半導体装置
JPWO2018216646A1 (ja) 半導体装置
KR101930391B1 (ko) 전자기기
JPWO2019117107A1 (ja) 半導体装置
US11037844B2 (en) Power semiconductor device and method of manufacturing the same, and power conversion device
JP2005032912A (ja) 電力変換装置
KR20140130862A (ko) 파워모듈 제조방법 및 이를 통해 재조된 고방열 파워모듈
JP7069358B2 (ja) 半導体装置および電力変換装置
JP4968150B2 (ja) 半導体素子冷却装置
JP5275859B2 (ja) 電子基板
JP2002164485A (ja) 半導体モジュール
JP2010003718A (ja) 放熱基板とその製造方法及びこれを用いたモジュール
JP2008041851A (ja) パワー半導体装置
JP2007081155A (ja) 半導体装置
CN114730748A (zh) 用于消耗装置的可控电功率供应的具有被封装的功率半导体的功率模块及用于生产该功率模块的方法
JP2008218616A (ja) 回路モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743834

Country of ref document: EP

Kind code of ref document: A1