WO2019146293A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2019146293A1
WO2019146293A1 PCT/JP2018/045585 JP2018045585W WO2019146293A1 WO 2019146293 A1 WO2019146293 A1 WO 2019146293A1 JP 2018045585 W JP2018045585 W JP 2018045585W WO 2019146293 A1 WO2019146293 A1 WO 2019146293A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
negative electrode
battery
electrolyte layer
sulfide
Prior art date
Application number
PCT/JP2018/045585
Other languages
English (en)
French (fr)
Inventor
裕太 杉本
出 佐々木
龍也 大島
晃暢 宮崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019567903A priority Critical patent/JP7249562B2/ja
Priority to EP18902210.6A priority patent/EP3745519B1/en
Priority to CN201880085630.XA priority patent/CN111566864B/zh
Publication of WO2019146293A1 publication Critical patent/WO2019146293A1/ja
Priority to US16/931,092 priority patent/US11631853B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to batteries.
  • Patent Document 1 discloses an all-solid-state battery using a halide containing indium as a solid electrolyte.
  • the present disclosure Positive electrode, A negative electrode, An electrolyte layer provided between the positive electrode and the negative electrode; Equipped with The electrolyte layer comprises a first solid electrolyte material,
  • the first solid electrolyte material contains Li, M, and X, and does not contain sulfur, M is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X is at least one selected from the group consisting of Cl, Br, and I,
  • the negative electrode includes a negative electrode active material and a sulfide solid electrolyte. Provide a battery.
  • the internal resistance of the battery can be reduced.
  • FIG. 1 shows a cross-sectional view of battery 1000 in the first embodiment.
  • FIG. 2 shows a cross-sectional view of battery 2000 in the second embodiment.
  • FIG. 3 is a graph showing the initial charge / discharge characteristics of the batteries in Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing the initial charge characteristics of the batteries in Example 4 and Comparative Example 2.
  • FIG. 1 shows a cross-sectional view of battery 1000 in the first embodiment.
  • Battery 1000 in the first embodiment includes positive electrode 101, negative electrode 103, and electrolyte layer 111.
  • the electrolyte layer 111 is provided between the positive electrode 101 and the negative electrode 103.
  • the electrolyte layer 111 contains a first solid electrolyte material.
  • the first solid electrolyte material is a material represented by the following composition formula (1).
  • ⁇ , ⁇ and ⁇ are each independently a value larger than 0.
  • M includes at least one selected from the group consisting of metal elements and metalloid elements other than Li.
  • X is at least one selected from the group consisting of Cl, Br, and I.
  • the negative electrode 103 includes a negative electrode active material and a sulfide solid electrolyte.
  • the internal resistance of the battery can be reduced. That is, the interfacial resistance between the negative electrode active material and the solid electrolyte in the negative electrode can be reduced.
  • a battery having high lithium ion conductivity can be realized.
  • the halide solid electrolyte is reduced at a potential of 1.5 V or less with respect to Li.
  • an electrochemically stable sulfide solid electrolyte is used to cover the periphery of the negative electrode active material with the sulfide solid electrolyte.
  • the “metalloid element” is at least one selected from the group consisting of B, Si, Ge, As, Sb, and Te.
  • metal element is (I) All elements contained in Groups 1 to 12 of the periodic table (except for hydrogen), and (Ii) All elements contained in Groups 13 to 16 of the periodic table (except B, Si, Ge, As, Sb, Te, C, N, P, O, S, and Se) including. That is, it is an element group that can be a cation when forming an inorganic compound with a halogen compound.
  • M may contain Y (that is, yttrium).
  • the first solid electrolyte material may contain Y as the metal element M.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • Me Li , at least one metal element and metalloid elements other than Y
  • the compound may be a compound represented by the composition formula (m) (valence number of Me).
  • any of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, Nb, or a mixture thereof may be used.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the first solid electrolyte material may be Li 2.5 Y 0.5 Zr 0.5 Cl 6 , Li 3 YCl 6 , or Li 3 YBr 6 .
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A1). Li 6-3d Y d X 6 Formula (A1) Here, in the composition formula (A1), X is two or more elements selected from the group consisting of Cl, Br, and I.
  • composition formula (A1) 0 ⁇ d ⁇ 2 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A2). Li 3 YX 6 ⁇ Formula (A2)
  • X is two or more elements selected from the group consisting of Cl, Br, I, and the like. That is, in the composition formula (A1), d may be 1.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A3). Li 3-3 ⁇ Y 1 + ⁇ Cl 6 formula (A3) Here, in the composition formula (A3), 0 ⁇ ⁇ 0.15 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A4). Li 3-3 ⁇ Y 1 + ⁇ Br 6 ⁇ Formula (A4) Here, in the composition formula (A4), 0 ⁇ ⁇ 0.25 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A5). Li 3-3 ⁇ + a Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y formula (A5)
  • Me is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
  • composition formula (A5) -1 ⁇ ⁇ 2, 0 ⁇ a ⁇ 3, 0 ⁇ (3 ⁇ 3 ⁇ + a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A6). Li 3 -3 ⁇ Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (A6)
  • Me is at least one selected from the group consisting of Al, Sc, Ga, and Bi.
  • composition formula (A6) -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 2, 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A7). Li 3-3 ⁇ -a Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (A7)
  • Me is at least one selected from the group consisting of Zr, Hf, and Ti.
  • composition formula (A7) -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.5, 0 ⁇ (3-3 ⁇ -a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A8). Li 3-3 ⁇ -2a Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (A8)
  • Me is at least one selected from the group consisting of Ta and Nb.
  • composition formula (A8) -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.2, 0 ⁇ (3-3 ⁇ -2a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material for example, Li 3 YX 6 , Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , etc. , May be used.
  • the sulfide solid electrolyte may contain lithium sulfide and phosphorus sulfide.
  • the charge and discharge characteristics of the battery can be further improved.
  • the sulfide solid electrolyte may be Li 2 S—P 2 S 5 .
  • the charge and discharge characteristics of the battery can be further improved.
  • Li 2 S-P 2 S 5 Li 2 S-SiS 2 , Li 2 S-B 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , etc.
  • LiX (X: F, Cl, Br, I), Li 2 O, MO q , Li p MO q (M: P, Si, Ge, B, Al, Ga, In, Fe, Zn) Any) (p, q: natural number) etc. may be added.
  • the negative electrode active material includes a material having a property of absorbing and releasing metal ions (for example, lithium ions).
  • metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. may be used.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metal materials include lithium metal, lithium alloy, and the like.
  • carbon materials include natural graphite, coke, graphitized carbon, carbon fibers, spherical carbon, artificial graphite, amorphous carbon and the like. From the viewpoint of capacity density, silicon (Si), tin (Sn), a silicon compound, and a tin compound can be suitably used.
  • the negative electrode active material may contain graphite.
  • the charge and discharge characteristics of the battery can be further improved.
  • the negative electrode 103 may include negative electrode active material particles 104 and sulfide solid electrolyte particles 105, as shown in FIG.
  • the shape of the sulfide solid electrolyte particle 105 is not limited, For example, needle shape, spherical shape, elliptical spherical shape, etc. may be sufficient.
  • the shape of the sulfide solid electrolyte particles 105 may be particulate.
  • the median diameter of the negative electrode active material particles 104 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the negative electrode active material particles 104 is smaller than 0.1 ⁇ m, in the negative electrode, the negative electrode active material particles 104 and the sulfide solid electrolyte particles 105 do not disperse well, and the charge and discharge characteristics of the battery may be degraded.
  • the median diameter of the negative electrode active material particles 104 is larger than 100 ⁇ m, lithium diffusion in the negative electrode active material particles 104 becomes slow. For this reason, the operation at high power of the battery may be difficult.
  • the median diameter of the negative electrode active material particles 104 may be larger than the median diameter of the sulfide solid electrolyte particles 105. Thereby, the negative electrode active material particles 104 and the sulfide solid electrolyte particles 105 can be well dispersed.
  • the volume ratio Vn representing the volume of the negative electrode active material particles 104 with respect to the total volume of the negative electrode active material particles 104 and the sulfide solid electrolyte particles 105 may be 0.3 or more and 0.95 or less. If the volume ratio Vn is less than 0.3, it may be difficult to ensure sufficient energy density of the battery. On the other hand, when the volume ratio Vn exceeds 0.95, the operation of the battery at high output may be difficult.
  • the thickness of the negative electrode 103 may be 10 ⁇ m or more and 500 ⁇ m or less. If the thickness of the negative electrode 103 is less than 10 ⁇ m, it may be difficult to secure a sufficient energy density of the battery. When the thickness of the negative electrode 103 exceeds 500 ⁇ m, the operation at high output may be difficult.
  • the positive electrode 101 includes a material having a property of absorbing and releasing metal ions (for example, lithium ions).
  • the positive electrode 101 may include, for example, a positive electrode active material.
  • positive electrode active materials include Lithium-containing transition metal oxides (eg, Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , LiCoO 2 , etc.), Transition metal fluoride, Polyanion material, Fluorinated polyanion material, Transition metal sulfide, Transition metal oxysulfide, Transition metal oxynitrides, etc. Can be used.
  • Lithium-containing transition metal oxides eg, Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , LiCoO 2 , etc.
  • Transition metal fluoride eg, Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , LiCoO 2 , etc.
  • Polyanion material e.g, Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , LiCoO 2 , etc.
  • Transition metal fluoride eg, Li (NiCoA
  • the positive electrode 101 may include a solid electrolyte. According to the above configuration, the lithium ion conductivity in the inside of the positive electrode 101 is enhanced, and an operation at high output becomes possible.
  • the solid electrolyte material may include a halide solid electrolyte or a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, and a complex hydride solid electrolyte.
  • halide solid electrolyte for example, a material exemplified as an example of the first solid electrolyte material contained in the above-mentioned electrolyte layer 111 may be used.
  • sulfide solid electrolyte you may use the material mentioned as an example of the sulfide solid electrolyte contained in the above-mentioned negative electrode 103, for example.
  • an oxide solid electrolyte for example, NASICON-type solid electrolyte represented by LiTi 2 (PO 4 ) 3 and its element substitution product, Perovskite-type solid electrolyte of (LaLi) TiO 3 system, LISICON-type solid electrolyte represented by Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 and their element substitution products, Garnet type solid electrolyte represented by Li 7 La 3 Zr 2 O 12 and its element substitution product, Li 3 N and its H-substituted form, Li 3 PO 4 and its N-substituted form, Glass to which Li 2 SO 4 , Li 2 CO 3 and the like are added based on Li-BO compounds such as LiBO 2 and Li 3 BO 3 , Glass ceramics, etc. Can be used.
  • Li-BO compounds such as LiBO 2 and Li 3 BO 3 , Glass ceramics, etc.
  • the polymer solid electrolyte for example, a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure.
  • the polymer electrolyte having an ethylene oxide structure can contain a large amount of lithium salt, so that the ionic conductivity can be further enhanced.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, etc., may be used.
  • a lithium salt one lithium salt selected therefrom can be used alone. Alternatively, a mixture of two or more lithium salts selected therefrom may be used as the lithium salt.
  • the complex hydride solid electrolyte for example, LiBH 4 -LiI, LiBH 4 -P 2 S 5 or the like can be used.
  • the median diameter of the positive electrode active material particles may be 0.1 ⁇ m or more and 100 ⁇ m or less. If the median diameter of the positive electrode active material particles is smaller than 0.1 ⁇ m, the positive electrode active material particles and the solid electrolyte material are not well dispersed in the positive electrode 101, and the charge and discharge characteristics of the battery may be degraded. In addition, when the median diameter of the positive electrode active material particles is larger than 100 ⁇ m, lithium diffusion in the positive electrode active material particles is delayed. For this reason, the operation at high power of the battery may be difficult.
  • the median diameter of the positive electrode active material particles may be larger than the median diameter of the solid electrolyte material. Thereby, a good dispersed state of the positive electrode active material particles and the solid electrolyte material can be formed.
  • the volume ratio Vp indicating the volume of the positive electrode active material particles to the total volume of the positive electrode active material particles and the solid electrolyte material may be 0.3 or more and 0.95 or less. If the volume ratio Vp is less than 0.3, it may be difficult to ensure sufficient energy density of the battery. On the other hand, when the volume ratio Vp exceeds 0.95, the operation of the battery at high output may be difficult.
  • the thickness of the positive electrode 101 may be 10 ⁇ m or more and 500 ⁇ m or less. If the thickness of the positive electrode 101 is less than 10 ⁇ m, it may be difficult to secure a sufficient energy density of the battery. When the thickness of the positive electrode 101 exceeds 500 ⁇ m, the operation at high output may be difficult.
  • the electrolyte layer 111 may contain a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, and a complex hydride solid electrolyte for the purpose of enhancing the ion conductivity.
  • sulfide solid electrolyte for example, a material exemplified as the electrolyte layer 111 may be used.
  • oxide solid electrolyte you may use the material mentioned as the illustration of the positive electrode 101, for example.
  • the materials listed as an example of the positive electrode 101 may be used.
  • the complex hydride solid electrolyte for example, a material listed as an example of the positive electrode 101 may be used.
  • the positive electrode active material may be coated.
  • a coating material a material having low electron conductivity can be used.
  • an oxide material, an oxide solid electrolyte, etc. may be used.
  • oxide material for example, SiO 2, Al 2 O 3 , TiO 2, B 2 O 3, Nb 2 O 5, WO 3, ZrO 2 and the like may be used.
  • oxide solid electrolyte for example, Li-Nb-O compounds such as LiNbO 3 Li-BO compounds such as LiBO 2 and Li 3 BO 3 , Li-Al-O compounds such as LiAlO 2 Li-Si-O compounds such as Li 4 SiO 4 Li 2 SO 4 , Li-Ti-O compounds, such as Li 4 Ti 5 O 12 Li-Zr-O compounds such as Li 2 ZrO 3 , Li-Mo-O compounds, such as Li 2 MoO 3 Li-V-O compounds, such as LiV 2 O 5 Li—W—O compounds such as Li 2 WO 4 can be used.
  • Oxide solid electrolytes have high ion conductivity and high high potential stability. For this reason, charge / discharge efficiency can be further improved by using an oxide solid electrolyte.
  • the electrolyte layer 111 may contain the first solid electrolyte material as a main component. That is, the electrolyte layer 111 may contain, for example, 50% or more (50% by weight or more) of the first solid electrolyte material in a weight ratio to the whole of the electrolyte layer 111.
  • the charge and discharge characteristics of the battery can be further improved.
  • the electrolyte layer 111 may contain the first solid electrolyte material, for example, 70% or more (70% by weight or more) by weight ratio to the whole of the electrolyte layer 111.
  • the charge and discharge characteristics of the battery can be further improved.
  • the electrolyte layer 111 may further contain unavoidable impurities.
  • the electrolyte layer 111 may include the starting material used for the synthesis of the solid electrolyte material.
  • the electrolyte layer 111 may include by-products or decomposition products generated when synthesizing the solid electrolyte material.
  • the weight ratio of the solid electrolyte material contained in the electrolyte layer 111 to the electrolyte layer 111 may be substantially one. “The weight ratio is substantially 1” means that the weight ratio calculated without considering the unavoidable impurities that may be contained in the electrolyte layer 111 is 1. That is, the electrolyte layer 111 may be made of only a solid electrolyte material.
  • the charge and discharge characteristics of the battery can be further improved.
  • the electrolyte layer 111 may be made of only the first solid electrolyte material.
  • the electrolyte layer 111 may contain two or more of the materials listed as the first solid electrolyte material.
  • the electrolyte layer 111 may include a first solid electrolyte material and a sulfide solid electrolyte material.
  • the thickness of the electrolyte layer 111 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the electrolyte layer 111 is less than 1 ⁇ m, the possibility that the positive electrode 101 and the negative electrode 103 short circuit is increased. When the thickness of the electrolyte layer 111 exceeds 300 ⁇ m, the operation at high output may be difficult.
  • a binder may be contained in at least one of the positive electrode 101, the electrolyte layer 111, and the negative electrode 103 in order to improve the adhesion between the particles.
  • the binder is used to improve the binding properties of the material constituting the electrode.
  • the binder polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinyl pyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene
  • tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadienes can be used. Moreover, 2 or more types selected from these may be mixed and it may be used as a binding agent.
  • At least one of the positive electrode 101 and the negative electrode 103 may contain a conductive aid for the purpose of enhancing the electron conductivity.
  • a conductive support agent for example, Graphites of natural graphite or artificial graphite, Carbon blacks such as acetylene black and ketjen black Conductive fibers such as carbon fiber or metal fiber Carbon fluoride, Metal powders such as aluminum, Conductive whiskers such as zinc oxide or potassium titanate, Conductive metal oxides such as titanium oxide Conductive polymer compounds such as polyaniline, polypyrrole and polythiophene, Etc. may be used.
  • a carbon conductive aid is used, cost reduction can be achieved.
  • the battery in Embodiment 1 can be configured as a battery of various shapes such as coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
  • the first solid electrolyte material in Embodiment 1 can be produced, for example, by the following method.
  • the raw material powder of binary halide is prepared in consideration of the composition ratio of the product. For example, when producing Li 3 YCl 6 , LiCl and YCl 3 are prepared in a molar ratio of 3: 1.
  • the elements of "M”, “Me”, and “X” in the above-mentioned composition formula can be determined by selecting the type of the raw material powder.
  • “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “d”, “ ⁇ ”, “a”, “x”, and “y” can be obtained. The value is determined.
  • the raw material powder is pulverized using a method of mechanochemical milling.
  • the raw material powder reacts to obtain the first solid electrolyte material.
  • they may be sintered in vacuum to obtain the first solid electrolyte material.
  • composition (that is, the crystal structure) of the crystal phase in the solid electrolyte material can be determined by the selection of the reaction method and reaction conditions of the raw material powders.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of battery 2000 in the second embodiment.
  • Battery 2000 in the second embodiment further includes the following configuration in addition to the configuration of battery 1000 in the first embodiment described above.
  • battery 2000 in the second embodiment further includes second electrolyte layer 112.
  • the second electrolyte layer 112 is provided between the negative electrode 103 and the electrolyte layer 111.
  • the second electrolyte layer 112 contains a second sulfide solid electrolyte.
  • the charge and discharge efficiency of the battery can be improved.
  • a resistance layer called a space charge layer is formed at the interface between the positive electrode active material and the sulfide solid electrolyte.
  • the halide solid electrolyte does not form a resistance layer even if it contacts the positive electrode active material. Therefore, by providing the second electrolyte layer 112 between the negative electrode 103 and the electrolyte layer 111, the formation of the resistance layer on the second electrolyte layer 112 can be suppressed. As a result, charge and discharge efficiency can be improved.
  • the material shown as the sulfide solid electrolyte in the above-mentioned Embodiment 1 can be used.
  • the second sulfide solid electrolyte may contain lithium sulfide and phosphorus sulfide.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second sulfide solid electrolyte may be Li 2 S—P 2 S 5 .
  • the charge and discharge characteristics of the battery can be further improved.
  • the sulfide solid electrolyte contained in the negative electrode 103 and the second sulfide solid electrolyte may be materials different from each other.
  • the sulfide solid electrolyte contained in the negative electrode 103 and the second sulfide solid electrolyte may be the same material.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second electrolyte layer 112 may contain the second sulfide solid electrolyte as a main component. That is, the second electrolyte layer 112 may contain, for example, 50% or more (50% by weight or more) of the second sulfide solid electrolyte in a weight ratio to the entire second electrolyte layer 112, for example.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second electrolyte layer 112 may contain, for example, 70% or more (70% by weight or more) of the second sulfide solid electrolyte in a weight ratio to the whole of the second electrolyte layer 112.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second electrolyte layer 112 may further contain unavoidable impurities.
  • the second electrolyte layer 112 may include the starting material used for the synthesis of the second sulfide solid electrolyte.
  • the second electrolyte layer 112 may include by-products or decomposition products generated when synthesizing the second sulfide solid electrolyte.
  • the weight ratio of the second sulfide solid electrolyte contained in the second electrolyte layer 112 to the second electrolyte layer 112 may be substantially one. “The weight ratio is substantially 1” means that the weight ratio calculated without considering the unavoidable impurities that may be contained in the second electrolyte layer 112 is 1. That is, the second electrolyte layer 112 may be composed only of the second sulfide solid electrolyte.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second electrolyte layer 112 may be composed only of the second sulfide solid electrolyte.
  • the second electrolyte layer 112 may further include the electrolyte material shown in the above-mentioned Embodiment 1 together with the second sulfide solid electrolyte.
  • the total thickness of the electrolyte layer 111 and the second electrolyte layer 112 may be 1 ⁇ m or more and 300 ⁇ m or less. In the case where the total thickness of the electrolyte layer 111 and the second electrolyte layer 112 is less than 1 ⁇ m, the possibility that the positive electrode 101 and the negative electrode 103 short circuit is increased. When the total thickness of the electrolyte layer 111 and the second electrolyte layer 112 exceeds 300 ⁇ m, the operation at high output may be difficult.
  • Example 1 Preparation of first solid electrolyte material
  • the first solid electrolyte material Li 3 YCl 6 of Example 1 and Li (NiCoMn) O 2 (hereinafter referred to as NCM) were prepared at a weight ratio of 30:70.
  • the positive electrode material of Example 1 was produced by mixing these with an agate mortar.
  • the sulfide solid electrolyte material Li 2 S—P 2 S 5 of Example 1 and the negative electrode active material graphite were prepared at a weight ratio of 60:40.
  • the negative electrode material of Example 1 was produced by mixing these with an agate mortar.
  • Example 2 Preparation of first solid electrolyte material
  • a secondary battery was produced in the same manner as in Example 1 except that the first solid electrolyte material of Example 2 was used for the first electrolyte layer.
  • Example 3 [Preparation of first solid electrolyte material]
  • Raw material powder LiCl, YCl 3 and ZrCl 4 in a molar ratio of LiCl: YCl 3: ZrCl 4 2.5: 0.5: 0.5 in an argon glove box with a dew point of -60 ° C or less , Prepared. Thereafter, the first solid electrolyte material Li 2.5 Y 0.5 Zr 0.5 of Example 3 is milled at 600 rpm for 25 hours using a planetary ball mill (F-7, P-7 type). A powder of Cl 6 was obtained.
  • a secondary battery was produced in the same manner as in Example 1 except that the first solid electrolyte material of Example 3 was used for the first electrolyte layer.
  • Comparative example 1 [Preparation of negative electrode material]
  • the first solid electrolyte material Li 3 YCl 6 of Example 1 and the negative electrode active material graphite were prepared at a weight ratio of 60:40.
  • the negative electrode material of the comparative example 1 was produced by mixing these with an agate mortar.
  • the negative electrode material (12 mg) of Comparative Example 1 the negative electrode material (12 mg) of Comparative Example 1, the first solid electrolyte material Li 3 YCl 6 (80 mg) of Example 1, and the positive electrode material (10 mg) of Example 1 were laminated in this order.
  • a pressure of 360 MPa a laminate composed of a positive electrode, an electrolyte layer, and a negative electrode was produced.
  • the battery of Comparative Example 1 was manufactured by shielding and sealing the inside of the insulating outer cylinder from the outside air atmosphere using the insulating ferrule.
  • the battery was placed in a 25 ° C. thermostat.
  • Constant current charging was performed at a current value of 70 ⁇ A at which a 0.05 C rate (20-hour rate) was obtained with respect to the theoretical capacity of the battery, and charging was completed at a voltage of 4.2 V.
  • the battery was discharged at a current value of 70 ⁇ A at the same rate of 0.05 C, and the discharge was finished at a voltage of 2.5 V.
  • FIG. 3 is a graph showing the initial charge / discharge characteristics of the batteries in Example 1 and Comparative Example 1.
  • Example 1 and Comparative Example 1 shown in FIG. 3 and Table 1 an electrochemically stable sulfide solid electrolyte is inserted between the first solid electrolyte material and the negative electrode, and the periphery of the negative electrode active material is It has been confirmed that the charge and discharge efficiency is improved by preventing the contact of the first solid electrolyte material, which is a halide solid electrolyte, with the negative electrode active material by covering the solid electrolyte with a sulfide solid electrolyte.
  • the first solid electrolyte material which is a halide solid electrolyte
  • Example 4 [Preparation of first solid electrolyte material]
  • Raw material powder LiCl, YCl 3 and ZrCl 4 in a molar ratio of LiCl: YCl 3: ZrCl 4 2.5: 0.5: 0.5 in an argon glove box with a dew point of -60 ° C or less , Prepared. Thereafter, the first solid electrolyte material Li 2.5 Y 0.5 Zr 0.5 of Example 4 is milled at 600 rpm for 25 hours using a planetary ball mill (manufactured by Fritsch, P-7 type). A powder of Cl 6 was obtained.
  • the first solid electrolyte material Li 2.5 Y 0.5 Zr 0.5 Cl 6 of Example 4 and Li (NiCoMn) O 2 (hereinafter referred to as NCM) were treated at 30:70.
  • NCM Li (NiCoMn) O 2
  • the sulfide solid electrolyte material Li 2 S—P 2 S 5 of Example 4 and the negative electrode active material graphite were prepared at a weight ratio of 60:40.
  • the negative electrode material of Example 4 was produced by mixing these with an agate mortar.
  • the negative electrode material (12 mg) of Example 4 the first solid electrolyte material Li 2.5 Y 0.5 Zr 0.5 Cl 6 (80 mg) of Example 4
  • the positive electrode of Example 4 It laminated
  • Example 5 Preparation of first solid electrolyte material
  • a secondary battery was made in the same manner as in Example 4 except that the first solid electrolyte material of Example 5 was used for the electrolyte layer.
  • Example 6 Preparation of first solid electrolyte material
  • a secondary battery was fabricated in the same manner as in Example 4 except that the first solid electrolyte material of Example 6 was used for the electrolyte layer.
  • Comparative example 2 [Preparation of negative electrode material]
  • the first solid electrolyte material Li 2.5 Y 0.5 Zr 0.5 Cl 6 of Example 4 and the negative electrode active material graphite were prepared at a weight ratio of 60:40.
  • the negative electrode material of the comparative example 2 was produced by mixing these with an agate mortar.
  • the negative electrode material (12 mg) of Example 4 the first solid electrolyte material Li 2.5 Y 0.5 Zr 0.5 Cl 6 (80 mg) of Example 4, and the Example 4 It laminated
  • a pressure of 360 MPa a laminate composed of a positive electrode, an electrolyte layer, and a negative electrode was produced.
  • the battery of Comparative Example 2 was manufactured by shielding and sealing the inside of the insulating outer cylinder from the outside air atmosphere using the insulating ferrule.
  • the battery was placed in a 25 ° C. thermostat.
  • Constant current charging was performed at a current value of 70 ⁇ A at which a 0.05 C rate (20-hour rate) was obtained with respect to the theoretical capacity of the battery, and charging was completed at a voltage of 4.2 V.
  • FIG. 4 is a graph showing the initial charge characteristics of the batteries in Example 4 and Comparative Example 2.
  • Example 4 and Comparative Example 2 shown in FIG. 4 and Table 2 From the results of Example 4 and Comparative Example 2 shown in FIG. 4 and Table 2, by covering the periphery of the negative electrode active material with a sulfide solid electrolyte, the first solid electrolyte material which is a halide solid electrolyte and the negative electrode active material The contact was suppressed, and the reduction of the interfacial resistance between the negative electrode and the solid electrolyte was confirmed.
  • the battery of the present disclosure can be utilized, for example, as an all solid lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

本開示は、内部抵抗をさらに低減した電池を提供する。本開示は、正極と、負極と、前記正極と前記負極との間に設けられる電解質層と、を備え、前記電解質層は、第1固体電解質材料を含み、前記第1固体電解質材料は、Li、M、およびXを含み、かつ、硫黄を含まず、Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つであり、Xは、Cl、Br、およびIからなる群より選ばれる少なくとも1つであり、前記負極は、負極活物質および硫化物固体電解質を含む、電池を提供する。

Description

電池
 本開示は、電池に関する。
 特許文献1には、インジウムを含むハロゲン化物を固体電解質として用いた全固体電池が開示されている。
特開2006-244734号公報
 従来技術においては、電池の内部抵抗のさらなる低減が望まれる。
 本開示は、
 正極と、
 負極と、
 前記正極と前記負極との間に設けられる電解質層と、
 を備え、
 前記電解質層は、第1固体電解質材料を含み、
 前記第1固体電解質材料は、Li、M、およびXを含み、かつ、硫黄を含まず、
 Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つであり、
 Xは、Cl、Br、およびIからなる群より選ばれる少なくとも1つであり、
 前記負極は、負極活物質および硫化物固体電解質を含む、
 電池を提供する。
 本開示によれば、電池の内部抵抗を低減させることができる。
図1は、実施の形態1における電池1000の断面図を示す。 図2は、実施の形態2における電池2000の断面図を示す。 図3は、実施例1および比較例1における電池の初期充放電特性を示すグラフである。 図4は、実施例4および比較例2における電池の初期充電特性を示すグラフである。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 図1は、実施の形態1における電池1000断面図を示す。
 実施の形態1における電池1000は、正極101、負極103、および電解質層111を備える。
 電解質層111は、正極101および負極103の間に設けられる。
 電解質層111は、第1固体電解質材料を含む。
 第1固体電解質材料は、下記の組成式(1)により表される材料である。
 Liαβγ ・・・式(1)
 ここで、α、β、およびγは、それぞれ独立して、0より大きい値である。
 Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つを含む。
 Xは、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。
 負極103は、負極活物質と硫化物固体電解質とを含む。
 以上の構成によれば、電池の内部抵抗を低減することができる。すなわち、負極活物質と負極内固体電解質の界面抵抗を低減することができる。
 ハロゲン化物固体電解質(すなわち、第1固体電解質材料)を用いることで、高いリチウムイオン伝導度を有する電池を実現できる。しかし、ハロゲン化物固体電解質は、対Li電位1.5V以下で還元してしまう。ここで、実施の形態1の電池においては、電気化学的に安定な硫化物固体電解質を用いて、負極活物質の周囲を硫化物固体電解質で覆う。これにより、ハロゲン化物固体電解質と負極活物質の接触を抑制できる。このため、ハロゲン化物固体電解質の還元を低減することができる。この結果、電池の充放電特性を向上させることができる。
 なお、「半金属元素」とは、B、Si、Ge、As、Sb、およびTeからなる群から選択される少なくとも1つである。
 本明細書において用いられる「金属元素」は、 
(i)周期表1族から12族中に含まれるすべての元素(ただし、水素を除く)、および 
(ii)周期表13族から16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く) 
を含む。すなわち、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。
 なお、組成式(1)においては、Mは、Y(すなわち、イットリウム)を含んでもよい。
 すなわち、第1固体電解質材料は、金属元素MとしてYを含んでもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 Yを含む第1固体電解質材料として、例えば、LiMe(a+mb+3c=6、かつ、c>0を満たす)(Me:Li、Y以外の金属元素と半金属元素の少なくとも1つ)(m:Meの価数)の組成式で表される化合物であってもよい。
 Meとして、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、Nbのいずれか、もしくはこれらの混合物を用いてもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率をより向上することができる。
 なお、第1固体電解質材料は、Li2.50.5Zr0.5Cl、または、LiYCl、または、LiYBr、であってもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率をより向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A1)により表される材料であってもよい。
 Li6-3d・・・式(A1)
 ここで、組成式(A1)においては、Xは、Cl、Br、およびIからなる群より選択される2つ以上の元素である。
 また、組成式(A1)においては、0<d<2を満たす。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A2)により表される材料であってもよい。
 LiYX・・・式(A2)
 ここで、組成式(A2)においては、Xは、Cl、Br、Iおよびからなる群より選択される2つ以上の元素である。すなわち、組成式(A1)において、d=1であってもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A3)により表される材料であってもよい。
 Li3-3δ1+δCl・・・式(A3)
 ここで、組成式(A3)においては、0<δ≦0.15が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A4)により表される材料であってもよい。
 Li3-3δ1+δBr・・・式(A4)
 ここで、組成式(A4)においては、0<δ≦0.25が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A5)により表される材料であってもよい。
 Li3-3δ+a1+δ-aMeCl6-x-yBr ・・・式(A5)
 ここで、組成式(A5)においては、Meは、Mg、Ca、Sr、Ba、およびZnからなる群より選択される少なくとも1つである。
 また、組成式(A5)においては、
-1<δ<2、
0<a<3、
0<(3-3δ+a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A6)により表される材料であってもよい。
 Li3-3δ1+δ-aMeCl6-x-yBr ・・・式(A6)
 ここで、組成式(A6)においては、Meは、Al、Sc、Ga、およびBiからなる群より選択される少なくとも1つである。
 また、組成式(A6)においては、
-1<δ<1、
0<a<2、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A7)により表される材料であってもよい。
 Li3-3δ-a1+δ-aMeCl6-x-yBr ・・・式(A7)
 ここで、組成式(A7)においては、Meは、Zr、Hf、およびTiからなる群より選択される少なくとも1つである。
 また、組成式(A7)においては、
-1<δ<1、
0<a<1.5、
0<(3-3δ-a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A8)により表される材料であってもよい。
 Li3-3δ-2a1+δ-aMeCl6-x-yBr ・・・式(A8)
 ここで、組成式(A8)においては、Meは、TaおよびNbからなる群より選択される少なくとも1つである。
 また、組成式(A8)においては、
-1<δ<1、
0<a<1.2、
0<(3-3δ-2a)、
0<(1+δ-a)、
0≦x≦6、
0≦y≦6、および
(x+y)≦6、
が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料として、例えば、LiYX、LiMgX、LiFeX、Li(Al、Ga、In)X、Li(Al、Ga、In)X、など、が用いられうる。
 なお、硫化物固体電解質は、硫化リチウムと硫化リンとを含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、硫化物固体電解質は、LiS-Pであってもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 硫化物固体電解質として、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、Li10GeP12、など、が用いられうる。また、これらに、LiX(X:F、Cl、Br、I)、LiO、MO、LiMO(M:P、Si、Ge、B、Al、Ga、In、Fe、Znのいずれか)(p、q:自然数)などが、添加されてもよい。
 負極活物質は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、など、が使用されうる。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金、など、が挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素、など、が挙げられる。容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物、錫化合物、を好適に使用できる。
 なお、負極活物質は、グラファイトを含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 負極103は、図1に示されるように、負極活物質粒子104および硫化物固体電解質粒子105を含んでもよい。
 なお、硫化物固体電解質粒子105の形状は、限定されるものではなく、例えば、針状、球状、楕円球状、など、であってもよい。例えば、硫化物固体電解質粒子105の形状は、粒子状であってもよい。
 負極活物質粒子104のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質粒子104のメジアン径が0.1μmより小さいと、負極において、負極活物質粒子104および硫化物固体電解質粒子105が、良好に分散しないため、電池の充放電特性が低下し得る。また、負極活物質粒子104のメジアン径が100μmより大きいと、負極活物質粒子104内のリチウム拡散が遅くなる。このため、電池の高出力での動作が困難となる場合がある。
 負極活物質粒子104のメジアン径は、硫化物固体電解質粒子105のメジアン径よりも、大きくてもよい。これにより、負極活物質粒子104および硫化物固体電解質粒子105が良好に分散し得る。
 負極103において、負極活物質粒子104および硫化物固体電解質粒子105の合計体積に対する負極活物質粒子104の体積を表す体積比Vnは、0.3以上0.95以下であってもよい。体積比Vnが0.3未満である場合には、電池のエネルギー密度を十分に確保することが困難となり得る。一方、体積比Vnが0.95を超える場合には、高出力での電池の動作が困難となり得る。
 負極103の厚みは、10μm以上かつ500μm以下であってもよい。負極103の厚みが10μm未満である場合には、十分な電池のエネルギー密度を確保することが困難となる可能性がある。また、負極103の厚みが500μmを超える場合には、高出力での動作が困難となる可能性がある。
 正極101は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。正極101は、例えば、正極活物質を含んでもよい。
 正極活物質には、例えば、
 リチウム含有遷移金属酸化物(例えば、Li(NiCoAl)O、Li(NiCoMn)O、LiCoO、など)、
 遷移金属フッ化物、
 ポリアニオン材料、
 フッ素化ポリアニオン材料、
 遷移金属硫化物、
 遷移金属オキシ硫化物、
 遷移金属オキシ窒化物、など、
が用いられうる。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、製造コストを安くでき、平均放電電圧を高めることができる。
 正極101は、固体電解質を含んでもよい。以上の構成によれば、正極101の内部のリチウムイオン伝導性を高め、高出力での動作が可能となる。
 固体電解質材料としては、ハロゲン化物固体電解質または硫化物固体電解質、酸化物固体電解質、高分子固体電解質、錯体水素化物固体電解質が含まれてもよい。
 ハロゲン化物固体電解質としては、例えば、上述の電解質層111に含まれる第1固体電解質材料の例示としてあげる材料を用いてもよい。
 硫化物固体電解質としては、例えば、上述の負極103に含まれる硫化物固体電解質の例示としてあげる材料を用いてもよい。
 酸化物固体電解質としては、例えば、
 LiTi(POおよびその元素置換体を代表とするNASICON型固体電解質、
 (LaLi)TiO系のペロブスカイト型固体電解質、
 Li14ZnGe16、LiSiO、LiGeOおよびその元素置換体を代表とするLISICON型固体電解質、
 LiLaZr12およびその元素置換体を代表とするガーネット型固体電解質、
 LiNおよびそのH置換体、
 LiPOおよびそのN置換体、
 LiBO、LiBOなどのLi-B-O化合物をベースとして、LiSO、LiCOなどが添加されたガラス、
 ガラスセラミックスなど、
 が用いられうる。
 高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子電解質はリチウム塩を多く含有することができるので、イオン導電率をより高めることができる。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。
 錯体水素化物固体電解質としては、例えば、LiBH-LiI、LiBH-Pなど、が用いられうる。
 正極活物質粒子のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質粒子のメジアン径が0.1μmより小さいと、正極101において、正極活物質粒子および固体電解質材料が、良好に分散しないため、電池の充放電特性が低下し得る。また、正極活物質粒子のメジアン径が100μmより大きいと、正極活物質粒子内のリチウム拡散が遅くなる。このため、電池の高出力での動作が困難となる場合がある。
 正極活物質粒子のメジアン径は、固体電解質材料のメジアン径よりも、大きくてもよい。これにより、正極活物質粒子と固体電解質材料との良好な分散状態を形成できる。
 正極101において、正極活物質粒子および固体電解質材料の合計体積に対する正極活物質粒子の体積を表す体積比Vpは、0.3以上0.95以下であってもよい。体積比Vpが0.3未満である場合には、電池のエネルギー密度を十分に確保することが困難となり得る。一方、体積比Vpが0.95を超える場合には、高出力での電池の動作が困難となり得る。
 正極101の厚みは、10μm以上かつ500μm以下であってもよい。正極101の厚みが10μm未満である場合には、十分な電池のエネルギー密度を確保することが困難となる可能性がある。また、正極101の厚みが500μmを超える場合には、高出力での動作が困難となる可能性がある。
 電解質層111には、イオン伝導性を高める目的で、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、錯体水素化物固体電解質が含まれてもよい。
 硫化物固体電解質としては、例えば、電解質層111の例示としてあげる材料を用いてもよい。
 酸化物固体電解質としては、例えば、正極101の例示として挙げる材料を用いてもよい。
 高分子固体電解質としては、例えば、正極101の例示として挙げる材料を用いてもよい。
 錯体水素化物固体電解質としては、例えば、正極101の例示として挙げる材料を用いてもよい。
 正極活物質は被覆してもよい。被覆材料としては、電子伝導性が低い材料が用いられうる。被覆材料として、酸化物材料、酸化物固体電解質などが用いられうる。
 酸化物材料としては、例えば、SiO、Al、TiO、B、Nb、WO、ZrOなどが用いられうる。
 酸化物固体電解質としては、例えば、
 LiNbOなどのLi-Nb-O化合物、
 LiBO、LiBOなどのLi-B-O化合物、
 LiAlOなどのLi-Al-O化合物、
 LiSiOなどのLi-Si-O化合物、
 LiSO
 LiTi12などのLi-Ti-O化合物、
 LiZrOなどのLi-Zr-O化合物、
 LiMoOなどのLi-Mo-O化合物、
 LiVなどのLi-V-O化合物、
 LiWOなどのLi-W-O化合物
などが用いられうる。
 酸化物固体電解質は、イオン導電率が高く、高電位安定性が高い。このため、酸化物固体電解質を用いることで、充放電効率をより向上することができる。
 なお、電解質層111は、第1固体電解質材料を、主成分として、含んでもよい。すなわち、電解質層111は、第1固体電解質材料を、例えば、電解質層111の全体に対する重量割合で50%以上(50重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 また、電解質層111は、第1固体電解質材料を、例えば、電解質層111の全体に対する重量割合で70%以上(70重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 電解質層111は、さらに、不可避的な不純物を含み得る。電解質層111は、固体電解質材料の合成のために用いられた出発原料を含み得る。電解質層111は、固体電解質材料を合成する際に生成した副生成物または分解生成物を含み得る。
 電解質層111に含まれる固体電解質材料の電解質層111に対する重量比は、実質的に1であり得る。「重量比が実質的に1である」とは、電解質層111に含まれ得る不可避不純物を考慮せずに算出された重量比が1であるという意味である。すなわち、電解質層111は、固体電解質材料のみから構成されていてもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 以上のように、電解質層111は、第1固体電解質材料のみから構成されていてもよい。
 なお、電解質層111は、第1固体電解質材料として挙げられた材料のうちの2種以上を含んでもよい。例えば、電解質層111は、第1固体電解質材料と硫化物固体電解質材料とを含んでもよい。
 電解質層111の厚みは1μm以上かつ300μm以下であってもよい。電解質層111の厚みが1μm未満である場合には、正極101および負極103が短絡する可能性が高まる。また、電解質層111の厚みが300μmを超える場合には、高出力での動作が困難となる可能性がある。
 正極101と、電解質層111と、負極103とのうちの少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために、用いられる。
 結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。
 また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体が用いられうる。
 また、これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 正極101と負極103との少なくとも1つは、電子導電性を高める目的で、導電助剤を含んでもよい。
 導電助剤としては、例えば、
 天然黒鉛または人造黒鉛のグラファイト類、
 アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、
 炭素繊維または金属繊維などの導電性繊維類、
 フッ化カーボン、
 アルミニウムなどの金属粉末類、
 酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、
 酸化チタンなどの導電性金属酸化物、
 ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、
など、が用いられうる。
 炭素導電助剤を用いた場合、低コスト化を図ることができる。
 なお、実施の形態1における電池は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型、など、種々の形状の電池として、構成されうる。
 <第1固体電解質材料の製造方法>
 実施の形態1における第1固体電解質材料は、例えば、下記の方法により、製造されうる。
 生成物の組成比を考慮して二元系ハロゲン化物の原料粉を用意する。例えば、LiYClを作製する場合には、LiClとYClを、3:1のモル比で用意する。
 このとき、原料粉の種類を選択することで、上述の組成式における「M」「Me」、および「X」の元素を決定することができる。また、原料粉、配合比、および合成プロセスを調整することで、「α」、「β」、「γ」、「d」、「δ」、「a」、「x」、および「y」の値が決定される。
 原料粉をよく混合する。次いで、メカノケミカルミリングの方法を用いて原料粉は粉砕される。このようにして、原料粉は反応し、第1固体電解質材料を得る。もしくは、原料粉がよく混合した後、真空中で焼結して、第1固体電解質材料を得てもよい。
 これにより、結晶相を含む前述の固体電解質材料が得られる。
 なお、固体電解質材料における結晶相の構成(すなわち、結晶構造)は、原料粉どうしの反応方法および反応条件の選択により、決定され得る。
 (実施の形態2)
 以下、実施の形態2が説明される。上述の実施の形態1と重複する説明は、適宜、省略される。
 図2は、実施の形態2における電池2000の概略構成を示す断面図である。
 実施の形態2における電池2000は、上述の実施の形態1における電池1000の構成に加えて、下記の構成をさらに備える。
 すなわち、実施の形態2における電池2000は、第2電解質層112をさらに備える。
 第2電解質層112は、負極103および電解質層111の間に設けられる。
 第2電解質層112は、第2硫化物固体電解質を含む。
 以上の構成によれば、電池の充放電効率を向上させることができる。
 硫化物固体電解質と正極活物質とが触れた場合には、正極活物質および硫化物固体電解質の界面に、空間電荷層と呼ばれる抵抗層が形成される。一方で、ハロゲン化物固体電解質は、正極活物質と触れても、抵抗層を形成しない。このため、負極103および電解質層111の間に第2電解質層112を設けることで、第2電解質層112に抵抗層が形成されることを抑制できる。この結果、充放電効率を向上させることができる。
 なお、第2硫化物固体電解質としては、上述の実施の形態1における硫化物固体電解質として示された材料が、用いられうる。
 なお、第2硫化物固体電解質は、硫化リチウムと硫化リンとを含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、第2硫化物固体電解質は、LiS-Pであってもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、負極103に含まれる硫化物固体電解質と、第2硫化物固体電解質とは、互いに異なる材料であってもよい。
 もしくは、負極103に含まれる硫化物固体電解質と、第2硫化物固体電解質とは、互いに同じ材料であってもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、第2電解質層112は、第2硫化物固体電解質を、主成分として、含んでもよい。すなわち、第2電解質層112は、第2硫化物固体電解質を、例えば、第2電解質層112の全体に対する重量割合で50%以上(50重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 また、第2電解質層112は、第2硫化物固体電解質を、例えば、第2電解質層112の全体に対する重量割合で70%以上(70重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 第2電解質層112は、さらに、不可避的な不純物を含み得る。第2電解質層112は、第2硫化物固体電解質の合成のために用いられた出発原料を含み得る。第2電解質層112は、第2硫化物固体電解質を合成する際に生成した副生成物または分解生成物を含み得る。
 第2電解質層112に含まれる第2硫化物固体電解質の第2電解質層112に対する重量比は、実質的に1であり得る。「重量比が実質的に1である」とは、第2電解質層112に含まれ得る不可避不純物を考慮せずに算出された重量比が1であるという意味である。すなわち、第2電解質層112は、第2硫化物固体電解質のみから構成されていてもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 以上のように、第2電解質層112は、第2硫化物固体電解質のみから構成されていてもよい。
 なお、第2電解質層112は、第2硫化物固体電解質とともに、上述の実施の形態1において示された電解質材料を、さらに含んでもよい。
 電解質層111と第2電解質層112の合計厚みは1μm以上かつ300μm以下であってもよい。電解質層111と第2電解質層112の合計厚みが1μm未満である場合には、正極101および負極103が短絡する可能性が高まる。また、電解質層111と第2電解質層112の合計厚みが300μmを超える場合には、高出力での動作が困難となる可能性がある。
 (実施例)
 以下、実施例および比較例を用いて、本開示の詳細が説明される。
 (実施例1)
 [第1固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiClとYClとを、モル比でLiCl:YCl=3:2となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、実施例1による第1固体電解質材料LiYClの粉末を得た。
 [硫化物固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、LiSとPとを、モル比でLiS:P=75:25となるように、用意した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmでミリング処理することで、ガラス状の固体電解質を得た。ガラス状の固体電解質について、不活性雰囲気中で、270度で、2時間熱処理した。これにより、実施例1によるガラスセラミックス状の硫化物固体電解質材料LiS-Pを得た。
 [正極材料の作製]
 アルゴングローブボックス内で、実施例1の第1固体電解質材料LiYClと、Li(NiCoMn)O(以下、NCMと表記する)を、30:70の重量比率で用意した。これらをメノウ乳鉢で混合することで、実施例1の正極材料を作製した。
 [負極材料の作製]
 アルゴングローブボックス内で、実施例1の硫化物固体電解質材料LiS-Pと、負極活物質のグラファイトを、60:40の重量比率で用意した。これらをメノウ乳鉢で混合することで、実施例1の負極材料を作製した。
 [二次電池の作製]
 絶縁性外筒の中で、実施例1の負極材料(12mg)、実施例1の硫化物固体電解質材料LiS-P(40mg)、実施例1の第1固体電解質材料LiYCl(40mg)、および実施例1の正極材料(10mg)の順に積層した。これを360MPaの圧力で加圧成形することで、正極、第1電解質層、第2電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉することで、電池を作製した。
 (実施例2)
 [第1固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiBrとYBrとを、モル比でLiBr:YBr=3:2となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、実施例2の第1固体電解質材料LiYBrの粉末を得た。
 第1電解質層に実施例2の第1固体電解質材料を用いたこと以外は実施例1と同様の方法で二次電池を作製した。
 (実施例3)
 [第1固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiClとYClとZrClとを、モル比でLiCl:YCl3:ZrCl=2.5:0.5:0.5となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、実施例3の第1固体電解質材料Li2.50.5Zr0.5Clの粉末を得た。
 第1電解質層に実施例3の第1固体電解質材料を用いたこと以外は実施例1と同様の方法で二次電池を作製した。
 (比較例1)
 [負極材料の作製]
 アルゴングローブボックス内で、実施例1の第1固体電解質材料LiYClと、負極活物質のグラファイトを、60:40の重量比率で用意した。これらをメノウ乳鉢で混合することで、比較例1の負極材料を作製した。
 [二次電池の作成]
 実施例1の第1固体電解質材料LiYCl、実施例1の正極材料、および比較例1の負極材料を用いて下記のように比較例1による二次電池を作製した。
 絶縁性外筒の中で、比較例1の負極材料(12mg)、実施例1の第1固体電解質材料LiYCl(80mg)、および実施例1の正極材料(10mg)の順に積層した。これを360MPaの圧力で加圧成形することで、正極、電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉することで、比較例1の電池を作製した。
 [充放電試験]
 上述の実施例1~3および比較例1の電池をそれぞれ用いて、以下の条件で、充放電試験が実施された。
 電池を25℃の恒温槽に配置した。
 電池の理論容量に対して0.05Cレート(20時間率)となる電流値70μAで、定電流充電し、電圧4.2Vで充電を終了した。
 次に、同じく0.05Cレートとなる電流値70μAで、放電し、電圧2.5Vで放電を終了した。
 以上により、上述の実施例1~3および比較例1の電池のそれぞれの初回充放電効率(=初回放電容量/初回充電容量)を得た。この結果は、下記の表1に示される。
Figure JPOXMLDOC01-appb-T000001

 
 (考察)
 図3は、実施例1および比較例1における電池の初期充放電特性を示すグラフである。
 図3と表1とに示される実施例1および比較例1の結果から、電気化学的に安定な硫化物固体電解質を第1固体電解質材料と負極との間に挿入し、負極活物質の周囲を硫化物固体電解質で覆うことで、ハロゲン化物固体電解質である第1固体電解質材料と負極活物質の接触を抑制し、充放電効率が向上することが確認された。
 表1に示される実施例1~3および比較例1の結果から、LiYCl以外のハロゲン化物固体電解質においても同様の効果が確認された。
 (実施例4)
 [第1固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiClとYClとZrClとを、モル比でLiCl:YCl3:ZrCl=2.5:0.5:0.5となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、実施例4の第1固体電解質材料Li2.50.5Zr0.5Clの粉末を得た。
 [硫化物固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、LiSとPとを、モル比でLiS:P=75:25となるように、用意した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmでミリング処理することで、ガラス状の固体電解質を得た。ガラス状の固体電解質について、不活性雰囲気中で、摂氏270度で、2時間熱処理した。これにより、実施例4のガラスセラミックス状の硫化物固体電解質材料LiS-Pを得た。
 [正極材料の作製]
 アルゴングローブボックス内で、実施例4の第1固体電解質材料Li2.50.5Zr0.5Clと、Li(NiCoMn)O(以下、NCMと表記する)を、30:70の重量比率で用意した。これらをメノウ乳鉢で混合することで、実施例4の正極材料を作製した。
 [負極材料の作製]
 アルゴングローブボックス内で、実施例4の硫化物固体電解質材料LiS-Pと、負極活物質のグラファイトを、60:40の重量比率で用意した。これらをメノウ乳鉢で混合することで、実施例4の負極材料を作製した。
 [二次電池の作成]
 絶縁性外筒の中で、実施例4の負極材料(12mg)、実施例4の第1固体電解質材料Li2.50.5Zr0.5Cl(80mg)、実施例4の正極材料(10mg)の順に積層した。これを360MPaの圧力で加圧成形することで、正極、電解質層、負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉することで、電池を作製した。
 (実施例5)
 [第1固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiClとYClとを、モル比でLiCl:YCl=3:2となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、第1固体電解質材料LiYClの粉末を得た。
 電解質層に実施例5の第1固体電解質材料を用いたこと以外は実施例4と同様の方法で二次電池の作成をした。
 (実施例6)
 [第1固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiBrとYBrとを、モル比でLiBr:YBr=3:2となるように、用意した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、第1固体電解質材料LiYBrの粉末を得た。
 電解質層に実施例6の第1固体電解質材料を用いたこと以外は実施例4と同様の方法で二次電池の作成をした。
 (比較例2)
 [負極材料の作製]
 アルゴングローブボックス内で、実施例4の第1固体電解質材料Li2.50.5Zr0.5Clと、負極活物質のグラファイトを、60:40の重量比率で用意した。これらをメノウ乳鉢で混合することで、比較例2の負極材料を作製した。
 [二次電池の作成]
 実施例4の第1固体電解質材料Li2.50.5Zr0.5Clと実施例4の正極材料、および、比較例2の負極材料を用いて下記のように比較例2による二次電池を作製した。
 絶縁性外筒の中で、実施例4の負極材料(12mg)、実施例4の第1固体電解質材料Li2.50.5Zr0.5Cl(80mg)、および実施例4の正極材料(10mg)の順に積層した。これを360MPaの圧力で加圧成形することで、正極、電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉することで、比較例2の電池を作製した。
 [充放電試験]
 上述の実施例4~6および比較例2の電池をそれぞれ用いて、以下の条件で、充電試験が実施された。
 電池を25℃の恒温槽に配置した。
 電池の理論容量に対して0.05Cレート(20時間率)となる電流値70μAで、定電流充電し、電圧4.2Vで充電を終了した。
 充電終了後の電池について、以下の条件で、交流インピーダンス試験が実施された。
 基準電圧:開回路電圧
 電圧振幅:10mV
 周波数:100kHz-0.01Hz
 以上により、上述の実施例4~6および比較例2の電池のそれぞれの界面抵抗を得た。この結果は、下記の表2に示される。
Figure JPOXMLDOC01-appb-T000002

 
(考察)
 図4は、実施例4および比較例2における電池の初期充電特性を示すグラフである。
 図4と表2に示される実施例4および比較例2の結果から、負極活物質の周囲を硫化物固体電解質で覆うことで、ハロゲン化物固体電解質である第1固体電解質材料と負極活物質の接触を抑制し、負極と固体電解質間の界面抵抗の低減が確認された。
 表2に示される実施例4~6および比較例2の結果からLi2.50.5Zr0.5Cl以外のハロゲン化物固体電解質においても同様の効果が確認された。
 本開示の電池は、例えば、全固体リチウム二次電池などとして、利用されうる。
1000、2000 電池
101 正極
111 電解質層
112 第2電解質層
103 負極
104 負極活物質粒子
105 硫化物固体電解質粒子

Claims (10)

  1.  正極と、
     負極と、
     前記正極と前記負極との間に設けられる電解質層と、
     を備え、
     前記電解質層は、第1固体電解質材料を含み、
     前記第1固体電解質材料は、Li、M、およびXを含み、かつ、硫黄を含まず、
     Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つであり、
     Xは、Cl、Br、およびIからなる群より選ばれる少なくとも1つであり、
     前記負極は、負極活物質および硫化物固体電解質を含む、
     電池。
  2.  前記第1固体電解質材料は、下記の組成式(1)により表され、
     Liαβγ ・・・式(1)
     ここで、α、β、およびγは、それぞれ独立して、いずれも0より大きい値である、
     請求項1に記載の電池。
  3.  前記Mは、Yを含む、
     請求項1または2に記載の電池。
  4.  前記第1固体電解質材料は、
     Li2.50.5Zr0.5Cl、LiYCl、およびLiYBrからなる群から選択される少なくとも1つである、
     請求項3に記載の電池。
  5.  前記硫化物固体電解質は、硫化リチウムと硫化リンとを含む、
     請求項1から4のいずれかに記載の電池。
  6.  前記硫化物固体電解質は、LiS-Pである、
     請求項5に記載の電池。
  7.  前記負極活物質は、グラファイトを含む、
     請求項1から6のいずれかに記載の電池。
  8.  第2電解質層をさらに備え、
     前記第2電解質層は、前記負極と前記電解質層との間に設けられ、
     前記第2電解質層は、第2硫化物固体電解質を含む、
     請求項1から7のいずれかに記載の電池。
  9.  前記第2硫化物固体電解質は、硫化リチウムと硫化リンとを含む、
     請求項8に記載の電池。
  10.  前記第2硫化物固体電解質は、LiS-Pである、
     請求項9に記載の電池。
PCT/JP2018/045585 2018-01-26 2018-12-12 電池 WO2019146293A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019567903A JP7249562B2 (ja) 2018-01-26 2018-12-12 電池
EP18902210.6A EP3745519B1 (en) 2018-01-26 2018-12-12 Battery
CN201880085630.XA CN111566864B (zh) 2018-01-26 2018-12-12 电池
US16/931,092 US11631853B2 (en) 2018-01-26 2020-07-16 Battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-011527 2018-01-26
JP2018-011526 2018-01-26
JP2018011527 2018-01-26
JP2018011526 2018-01-26
JP2018-173450 2018-09-18
JP2018173450 2018-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/931,092 Continuation US11631853B2 (en) 2018-01-26 2020-07-16 Battery

Publications (1)

Publication Number Publication Date
WO2019146293A1 true WO2019146293A1 (ja) 2019-08-01

Family

ID=67394783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045585 WO2019146293A1 (ja) 2018-01-26 2018-12-12 電池

Country Status (5)

Country Link
US (1) US11631853B2 (ja)
EP (1) EP3745519B1 (ja)
JP (1) JP7249562B2 (ja)
CN (1) CN111566864B (ja)
WO (1) WO2019146293A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490243A (zh) * 2020-05-25 2020-08-04 蜂巢能源科技有限公司 一种锂离子电池用复合正极材料、其制备方法及用途
CN115244626A (zh) * 2020-03-18 2022-10-25 松下知识产权经营株式会社 固体电解质材料及使用了该固体电解质材料的电池
CN115280424A (zh) * 2020-03-18 2022-11-01 松下知识产权经营株式会社 固体电解质材料及使用了该固体电解质材料的电池
EP4047694A4 (en) * 2019-10-17 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. BATTERY
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
JP7448506B2 (ja) 2021-04-20 2024-03-12 トヨタ自動車株式会社 電池
WO2024096113A1 (ja) * 2022-11-04 2024-05-10 住友化学株式会社 電池及び積層体
EP4117054A4 (en) * 2020-03-05 2024-08-07 Panasonic Ip Man Co Ltd POSITIVE ELECTRODE MATERIAL AND BATTERY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052733A (ja) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd 全固体リチウム二次電池
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2014241282A (ja) * 2013-05-16 2014-12-25 トヨタ自動車株式会社 電極体の製造方法
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272995B2 (ja) * 2009-09-29 2013-08-28 トヨタ自動車株式会社 固体電解質層、電極活物質層、全固体リチウム電池、固体電解質層の製造方法、および電極活物質層の製造方法
JP5349427B2 (ja) * 2010-08-26 2013-11-20 トヨタ自動車株式会社 硫化物固体電解質材料、正極体およびリチウム固体電池
JP5521899B2 (ja) * 2010-08-26 2014-06-18 トヨタ自動車株式会社 硫化物固体電解質材料およびリチウム固体電池
ITTV20110104A1 (it) * 2011-07-21 2013-01-22 Breton Spa Elettroliti di stato solido a base di ossidi di metalli drogati con fluoro
US9543622B2 (en) * 2011-07-26 2017-01-10 Toyota Jidosha Kabushiki Kaisha Lithium solid state secondary battery system
WO2014010043A1 (ja) * 2012-07-11 2014-01-16 トヨタ自動車株式会社 全固体電池及びその製造方法
JP2014160629A (ja) * 2013-02-20 2014-09-04 Idemitsu Kosan Co Ltd 負極材料
WO2015030052A1 (ja) * 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 全固体電池
JP6034265B2 (ja) * 2013-09-12 2016-11-30 トヨタ自動車株式会社 活物質複合粉体及びリチウム電池並びにその製造方法
KR20150055890A (ko) * 2013-11-14 2015-05-22 주식회사 엘지화학 표면개질된 음극 활물질 및 이의 제조방법
JP6245519B2 (ja) 2014-03-20 2017-12-13 パナソニックIpマネジメント株式会社 全固体リチウム二次電池用正極及びそれを用いた全固体リチウム二次電池
JP2016143614A (ja) * 2015-02-04 2016-08-08 トヨタ自動車株式会社 全固体電池
US9728808B2 (en) * 2015-02-25 2017-08-08 Toyota Jidosha Kabushiki Kaisha All solid state battery
JP6319261B2 (ja) * 2015-10-08 2018-05-09 トヨタ自動車株式会社 全固体電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052733A (ja) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd 全固体リチウム二次電池
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2014241282A (ja) * 2013-05-16 2014-12-25 トヨタ自動車株式会社 電極体の製造方法
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3745519A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4047694A4 (en) * 2019-10-17 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. BATTERY
EP4117054A4 (en) * 2020-03-05 2024-08-07 Panasonic Ip Man Co Ltd POSITIVE ELECTRODE MATERIAL AND BATTERY
CN115244626A (zh) * 2020-03-18 2022-10-25 松下知识产权经营株式会社 固体电解质材料及使用了该固体电解质材料的电池
CN115280424A (zh) * 2020-03-18 2022-11-01 松下知识产权经营株式会社 固体电解质材料及使用了该固体电解质材料的电池
US11973186B2 (en) 2020-04-14 2024-04-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including halide material, electrolyte including the same, and methods of forming the same
US11978847B2 (en) 2020-04-14 2024-05-07 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material, electrolyte including ion conductive material, and methods of forming
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
US11735732B2 (en) 2020-04-23 2023-08-22 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11984598B2 (en) 2020-04-23 2024-05-14 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US12095089B2 (en) 2020-04-23 2024-09-17 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
CN111490243A (zh) * 2020-05-25 2020-08-04 蜂巢能源科技有限公司 一种锂离子电池用复合正极材料、其制备方法及用途
US11978849B2 (en) 2020-08-07 2024-05-07 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
JP7448506B2 (ja) 2021-04-20 2024-03-12 トヨタ自動車株式会社 電池
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
WO2024096113A1 (ja) * 2022-11-04 2024-05-10 住友化学株式会社 電池及び積層体

Also Published As

Publication number Publication date
JP7249562B2 (ja) 2023-03-31
US11631853B2 (en) 2023-04-18
JPWO2019146293A1 (ja) 2021-01-28
CN111566864B (zh) 2024-03-22
EP3745519B1 (en) 2022-11-02
EP3745519A4 (en) 2021-03-24
EP3745519A1 (en) 2020-12-02
US20200350625A1 (en) 2020-11-05
CN111566864A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
US11631923B2 (en) Battery
US11777092B2 (en) Electrode material and battery
US11670775B2 (en) Positive electrode material and battery
US11777088B2 (en) Anode material and battery using same
JP7316564B2 (ja) 電池
WO2019146293A1 (ja) 電池
WO2019135346A1 (ja) 正極材料、および、電池
WO2019146236A1 (ja) 正極材料、および、電池
WO2019146216A1 (ja) 電池
WO2019146296A1 (ja) 正極材料およびそれを用いた電池
JP7217432B2 (ja) 正極材料およびそれを用いた電池
WO2020174868A1 (ja) 正極材料、および、電池
JP7565494B2 (ja) 正極材料およびこれを用いた電池
CN115088096A (zh) 正极材料及电池
WO2022254796A1 (ja) 電極材料および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567903

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018902210

Country of ref document: EP

Effective date: 20200826