WO2024096113A1 - 電池及び積層体 - Google Patents

電池及び積層体 Download PDF

Info

Publication number
WO2024096113A1
WO2024096113A1 PCT/JP2023/039687 JP2023039687W WO2024096113A1 WO 2024096113 A1 WO2024096113 A1 WO 2024096113A1 JP 2023039687 W JP2023039687 W JP 2023039687W WO 2024096113 A1 WO2024096113 A1 WO 2024096113A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte layer
solid electrolyte
metal element
alkali metal
positive electrode
Prior art date
Application number
PCT/JP2023/039687
Other languages
English (en)
French (fr)
Inventor
篤典 土居
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024096113A1 publication Critical patent/WO2024096113A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators

Definitions

  • This disclosure relates to batteries and laminates.
  • Known electrolytes for lithium-ion batteries and other batteries include solutions of lithium salts containing organic solvents or ionic liquids, but research into solid electrolytes is being conducted from the standpoint of safety and processability.
  • Various types of compounds are known as solid electrolytes, including oxide-based solid electrolytes and sulfide-based solid electrolytes.
  • batteries with conventional solid electrolytes were unable to sufficiently reduce resistance and were prone to microcracks in the electrolyte layer.
  • the present disclosure has been made in consideration of the above circumstances, and aims to provide a battery and a laminate in which microcracks are less likely to occur in layers, including an electrolyte layer.
  • the battery, wherein the metal element or metalloid element other than the alkali metal element includes at least one of Zr and In.
  • the solid electrolyte material contains a compound represented by A ⁇ M ⁇ Z ⁇ D ⁇ O ⁇ ,
  • A is an alkali metal element
  • M is a metal element or a metalloid element other than an alkali metal element
  • Z is a halogen element
  • D is at least one of P and S, and 1.6 ⁇ 3.5, 0 ⁇ 1.2, 3 ⁇ 6.5, 0 ⁇ 0.5, and 0 ⁇ 2.
  • [6] The battery according to any one of [1] to [5], wherein a Nyquist plot obtained by sandwiching a laminate made of the positive electrode and the first electrolyte layer between two SUS plates and measuring impedance in the range of 0.1 Hz to 891 kHz has a frequency at which the phase angle is smallest of 100 kHz to 891 kHz, and a ratio A/B of a resistance value (A) of a real part of the impedance measurement at the frequency at which the phase angle is smallest to a resistance value (B) of the real part of the impedance at 891 kHz is 1.0 to 3.5.
  • a positive electrode and an electrolyte layer disposed on the positive electrode the electrolyte layer includes a first electrolyte layer and a second electrolyte layer, the first electrolyte layer is disposed between the positive electrode and the second electrolyte layer; the first electrolyte layer comprises a different material than the second electrolyte layer; the first electrolyte layer includes a solid electrolyte material containing an alkali metal element, a metal element or a metalloid element other than an alkali metal element, and a halogen element; The metal element or metalloid element other than the alkali metal element includes at least one of Zr and In.
  • the present disclosure provides a battery and a laminate in which microcracks are unlikely to occur in layers including an electrolyte layer.
  • FIG. 1 is a diagram showing the results of a charge/discharge test of the secondary battery of Example 1.
  • FIG. 2 is a diagram showing the results of a charge/discharge test of the secondary battery of Example 2.
  • FIG. 3 is a scanning electron microscope image of the solid electrolyte material of Example 3.
  • FIG. 4 is an enlarged view of a portion of FIG.
  • FIG. 5 is a scanning electron microscope image of a cross section of the laminate of Example 3.
  • FIG. 6 is a scanning electron microscope image of the solid electrolyte material of Comparative Example 1.
  • FIG. 7 is an enlarged view of a portion of FIG.
  • FIG. 8 is a scanning electron microscope image of a cross section of the laminate of Comparative Example 1.
  • FIG. 9 is a Nyquist plot of the laminates of Example 3 and Comparative Example 1.
  • the battery of this embodiment includes a positive electrode (which may be a positive electrode layer), a negative electrode (which may be a negative electrode layer), and an electrolyte layer disposed between the positive electrode and the negative electrode.
  • the electrolyte layer includes a first electrolyte layer and a second electrolyte layer.
  • the first electrolyte layer is disposed between the positive electrode and the second electrolyte layer.
  • the first electrolyte layer includes a material different from that of the second electrolyte layer.
  • the first electrolyte layer includes a solid electrolyte material containing an alkali metal element, a metal element or a metalloid element other than the alkali metal element, and a halogen element.
  • the metal element or metalloid element other than the alkali metal element may include at least one of Zr and In.
  • the laminate consisting of the positive electrode and the first electrolyte layer is sandwiched between two SUS plates, and impedance measurements are performed in the range of 0.1 Hz to 891 kHz.
  • the frequency at which the phase angle is smallest is 100 kHz to 891 kHz
  • the ratio A/B of the resistance value (A) of the impedance measurement to the resistance value (B) of the real part of the impedance at 891 kHz may be 1.0 to 3.5.
  • the ratio A/B may be between 1.0 and 3.0, or between 1.0 and 2.8.
  • the frequency at which the phase angle is smallest may be 200 kHz or more, or 220 kHz or more.
  • the electrolyte layer includes a solid electrolyte material (halide-based solid electrolyte) containing an alkali metal element, a metal element or metalloid element other than an alkali metal element, and a halogen element.
  • a solid electrolyte material containing an alkali metal element, a metal element or metalloid element other than an alkali metal element, and a halogen element is also referred to as a first solid electrolyte material.
  • the first solid electrolyte material may satisfy at least one of the following (A) to (C).
  • A) The first solid electrolyte material contains In as a metal element other than an alkali metal element.
  • the first solid electrolyte material contains Zr as a metal element other than an alkali metal element, and contains two or more types of halogen elements.
  • the first solid electrolyte material further contains an oxygen element.
  • the alkali metal element contained in the first solid electrolyte material may be any of Li, Na, K, Rb, and Cs, but may contain at least one of Li, Na, and K, may contain at least one of Li and Na, or may contain Li.
  • the proportion of one type of alkali metal element may be 80 mol% or more, 90 mol% or more, or 95 mol% or more.
  • the one type of alkali metal element may be at least one of Li, Na, and K, may be at least one of Li and Na, or may be Li.
  • the content of the alkali metal element in the first solid electrolyte material may be 15 to 30 mol%, 18 to 28 mol%, or 20 to 27 mol%, relative to the total amount of atoms contained in the first solid electrolyte material.
  • the metal elements or metalloid elements other than alkali metal elements are not particularly limited, but include divalent to pentavalent elements, and may include one or more elements selected from the group consisting of trivalent elements and tetravalent elements.
  • the first solid electrolyte material may include one or more metal elements or metalloid elements other than alkali metal elements.
  • Divalent elements include alkaline earth metals, Zn, etc.
  • the alkaline earth metal may be at least one of Mg, Ca, Sr, and Ba, may be at least one of Mg and Ca, or may be Mg.
  • Trivalent metal elements include Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Y, Al, Ga, In, Bi, Sb, etc.
  • Tetravalent elements include Zr, Ti, Hf, Sn, etc., and may be Zr.
  • Pentavalent metal elements include Nb, Ta, etc. An example of a hexavalent or higher element is W.
  • the metal element or metalloid element other than the alkali metal element may include at least one of In and Zr.
  • the content of the metal element or metalloid element other than the alkali metal element in the first solid electrolyte material is preferably 8 to 15 mol %, more preferably 8 to 13 mol %, and even more preferably 9 to 12 mol %, based on all elements contained in the first solid electrolyte material.
  • the total amount of Zr and In may be greater than the total amount of alkali metal elements and metal elements or metalloid elements other than Zr and In. Note that, when the first solid electrolyte material contains only one of Zr and In, this total amount of substance is the content of the contained element.
  • the total amount of Zr and In in the first solid electrolyte material may be 60 mol% or more, 70 mol% or more, 80 mol% or more, or 90 mol% or more of the total amount of metal elements or metalloid elements other than alkali metal elements.
  • the content by mass of Y may be less than the total mass of Zr and In. Note that, when the first solid electrolyte material contains only one of Zr and In, the total mass is the content of the contained element.
  • the content of Y in the first solid electrolyte may be 40 mol % or less, 30 mol % or less, 20 mol % or less, or 10 mol % or less, relative to the total mass of metal elements or metalloid elements other than alkali metal elements.
  • the first solid electrolyte material may be substantially free of Y.
  • the first solid electrolyte material may contain one of the metal elements or metalloid elements other than alkali metal elements in an amount of 70 mol% or more, 75 mol% or more, or 80 mol% or more relative to the total amount of the metal elements or metalloid elements other than alkali metal elements.
  • the one element may be a trivalent or tetravalent element, and may be In or Zr.
  • the first solid electrolyte material contains a metal element or metalloid element other than the one element, other than the alkali metal element (also called a dopant element X1).
  • the dopant element X1 is an element different from the one element.
  • the dopant element X1 may be at least one element selected from the group consisting of Zr, Sn, Ti, Nb, Ta, Bi, and Y, and may be at least one element selected from the group consisting of Zr, Sn, Nb, and Ta.
  • the dopant element X1 may be at least one element selected from the group consisting of Bi, Al, Ga, In, Sc, Sm, Sb, La, Zn, Sn, and alkaline earth metals, or at least one element selected from the group consisting of Bi, La, Zn, and Sn.
  • An example of a hexavalent or higher element is W.
  • the halogen element contained in the first solid electrolyte material of this embodiment may be any one of F, Cl, Br, and I, may contain at least one of Cl, Br, and I, may contain at least one of Cl and Br, or may contain Cl.
  • the ion conductive material may contain only one halogen element, but may also contain two or more halogen elements.
  • the first solid electrolyte material may contain Zr as a metal element other than an alkali metal element
  • the first solid electrolyte material may contain two or more halogen elements, may contain Cl and a halogen element other than Cl, or may contain Cl and Br.
  • the content of the halogen element other than Cl or Br may be 10% or less by mole, may be 0.1 to 10 mol%, or may be 1 to 8 mol% relative to the total amount of halogen elements contained in the first solid electrolyte material.
  • the content of the halogen element in the first solid electrolyte material is preferably 40 to 70 mol %, and more preferably 45 to 68 mol %, based on the total elements contained in the halogen element.
  • the first solid electrolyte material may contain one of the halogen elements in an amount of 80 mol % or more, 85 mol % or more, or 90 mol % or more relative to the total amount of the halogen elements.
  • the one halogen element may be Cl or Br, or may be Cl.
  • the first solid electrolyte material contains a halogen element (also called dopant element X2) other than the one halogen element.
  • the dopant element X2 may be at least one of Br and I, or may be Br.
  • the first solid electrolyte material may contain at least one of P and S (also referred to as dopant element X3).
  • the content of dopant element X3 in the first solid electrolyte material may be 0.05 to 5 mol%, 0.1 to 3 mol%, 0.2 to 2 mol%, or 0.3 to 1 mol%, relative to the total amount of atoms contained in the first solid electrolyte material.
  • the first solid electrolyte material may contain a tetravalent metal element or a semimetal element.
  • the tetravalent metal element or semimetal element include Zr, Ti, Hf, etc., and may be Zr.
  • the dopant element X2 may contain at least one of Hf and Mg.
  • the content of the dopant element X3 in the first solid electrolyte material may be 50 mol% or less, 1 to 30 mol%, 1 to 20 mol%, or 2 to 10 mol% of the content of the tetravalent metal element or metalloid element.
  • the content of the dopant element X in the first solid electrolyte material may be 20 mol% or less, 15 mol% or less, 10 mol% or less, or 8 mol% or less of the content of the tetravalent metal element or metalloid element.
  • the first solid electrolyte material may have a hexagonal crystal structure and may have a crystal structure belonging to the space group P6 3 mc.
  • the solid electrolyte material having a hexagonal crystal structure may contain at least one element selected from the group consisting of Sc, La, Y, Ga, In, Bi, Sb, Ge, Zr, Sn, Nb, and Ta, and may contain Sc.
  • the first solid electrolyte material may include a compound represented by the following formula (A).
  • A is an alkali metal
  • M is a metal element or a metalloid element other than an alkali metal element
  • Z is a halogen element
  • D is at least one of P and S, and 1.6 ⁇ 3.5, 0 ⁇ 1.2, 3 ⁇ 6.5, 0 ⁇ 0.5, and 0 ⁇ 2.
  • Examples of the compound represented by formula (A) include compounds represented by the following formulas (1) to (3).
  • A, M, and Z are an alkali metal element, a trivalent metal element or metalloid element, and a halogen element, respectively, and specific examples thereof include those mentioned above.
  • M preferably contains In.
  • X1 and X2 are a dopant element X1 and a dopant element X2, respectively, and specific examples thereof include those mentioned above. 2 ⁇ 1 ⁇ 3.5, or 2.5 ⁇ 1 ⁇ 3.
  • A, M, and Z are respectively an alkali metal element, a tetravalent metal element or metalloid element, and a halogen element, and specific examples thereof include those mentioned above. It is preferable that M includes Zr.
  • X1 and X2 are respectively a dopant element X1 and a dopant element X2, and specific examples thereof include those mentioned above. 1.6 ⁇ 2 ⁇ 2.5, 1.8 ⁇ 2 ⁇ 2.4, and 2 ⁇ 2 ⁇ 2.3 may be satisfied. 0 ⁇ 2 ⁇ 1.1, 0.5 ⁇ 2 ⁇ 1, and 0.8 ⁇ 2 ⁇ 1 may be satisfied. 0 ⁇ 2 ⁇ 1, 0.01 ⁇ 2 ⁇ 0.8, 0.02 ⁇ 2 ⁇ 0.7, 0.1 ⁇ 2 ⁇ 0.6, and 0.2 ⁇ 2 ⁇ 0.6 may be satisfied.
  • A, M, and Z are an alkali metal element, a tetravalent metal element or metalloid element, and a halogen element, respectively, and specific examples thereof include those mentioned above.
  • M preferably includes Zr.
  • X1 and D are a dopant element X1 and a dopant element X3, respectively, and specific examples thereof include those mentioned above.
  • the first solid electrolyte material may be in a particulate form.
  • the average particle size of the first solid electrolyte material may be 1 to 50 ⁇ m.
  • the particles of the first solid electrolyte material may have an uneven structure with a size of 0.5 to 2 ⁇ m.
  • the particles of the first solid electrolyte material may not have microcracks with a size of 0.5 ⁇ m or more.
  • the method for producing the first solid electrolyte material is not particularly limited, but may include, for example, a method including a step of subjecting the raw material to ball milling. The product after ball milling may be annealed.
  • the method for producing the first solid electrolyte material may include a step of heating the raw material under a pressure of 1 GPa or more.
  • the raw materials are not particularly limited, and may be, for example, an alkali metal halide, a chloride of a metal element or a metalloid element other than an alkali metal, and a compound containing a dopant element X1 or X2.
  • the dopant element is X1
  • the compound containing the dopant element may be a halide of X1.
  • the dopant element is X2
  • the compound containing the dopant element may be an alkali metal bromide or an alkali metal iodide.
  • the raw materials are preferably mixed before ball milling, and more preferably mixed under an inert atmosphere (e.g., an Ar atmosphere).
  • the conditions for the ball mill are not particularly limited, but may be 10 to 100 hours at a rotation speed of 200 to 700 rpm, and the milling time is preferably 24 to 72 hours, more preferably 36 to 60 hours.
  • the balls used in the ball mill are not particularly limited, but zirconia balls can be used.
  • the size of the balls used is not particularly limited, but balls of 2 mm to 10 mm can be used.
  • the ball mill may have multiple steps with different rotation speeds.
  • the ball mill process may have a first step, a second step, and a third step in that order, and the second step may have a higher rotation speed than the first step and the third step.
  • the third step may have a higher rotation speed than the first step.
  • Annealing is preferably carried out in an inert atmosphere or in a vacuum.
  • the annealing temperature is, for example, preferably 150 to 300°C, and more preferably 200 to 250°C.
  • the annealing time may be, for example, 1 to 10 hours, and is preferably 3 to 6 hours.
  • the positive electrode active material is not particularly limited, and may be, for example, an alkali metal composite oxide containing an alkali metal element and at least one metal element selected from the group consisting of a transition metal element and Al.
  • the transition metal element may be at least one selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu, and may contain Ni.
  • examples of the lithium composite oxide include LiCoO2 , LiNiO2 , LiMn2O4, LiNi0.5Mn1.5O4 , Li2MnO3 , LiNixMnyCo1 - x- yO2 [ 0 ⁇ x + y ⁇ 1]), LiNixCoyAl1 -x-yO2 [ 0 ⁇ x+ y ⁇ 1] ) , LiCr0.5Mn0.5O2 , LiFePO4 , Li2FeP2O7 , LiMnPO4 , LiFeBO3, Li3V2 ( PO4 ) 3 , Li2CuO2 , and the like .
  • the positive electrode active material contains an alkali metal element other than Li
  • specific examples thereof include those in which Li in the above specific examples is replaced with another alkali metal.
  • Examples of the alkali metal other than Li include Na and K.
  • the positive electrode (positive electrode material) of this embodiment may further contain a solid electrolyte material, a binding resin (binder), a conductive assistant, and the like.
  • the binding resin is not particularly limited, but may be a fluororesin.
  • the fluororesin is preferably a resin having a carbon chain as a main chain. The carbon chain may be formed by radical polymerization of an ethylenically unsaturated group.
  • the fluororesin may be poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), polyvinylidene fluoride (PVDF), and the like.
  • the content of the binding resin in the positive electrode may be 0.5 to 10% by mass, or 1 to 7% by mass.
  • Examples of the conductive assistant include graphites such as natural graphite (e.g., flake graphite) and artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, and carbon fibers.
  • the content of the conductive assistant in the positive electrode may be 0.5 to 10% by mass, or 1 to 7% by mass.
  • the solid electrolyte material contained in the positive electrode may be one or both of the above-mentioned first solid electrolyte material and second solid electrolyte material.
  • the content of the positive electrode active material in the positive electrode material may be 50% by mass or more, 60% by mass or more, 70% by mass or more, 95% by mass or less, or 90% by mass or less, based on the total amount of the positive electrode material.
  • the negative electrode material may contain a negative electrode active material and, as necessary, a polymer electrolyte, a binder resin, a conductive assistant, an organic solvent, an ionic liquid, etc.
  • Anode active materials include alkali metal elements, simple elements such as Si, P, Sn, Si-Mn, Si-Co, Si-Ni, In, and Au, as well as alloys or composites containing these elements, carbon materials such as graphite, substances in which alkali metal ions are inserted between the layers of the carbon material, and oxides containing titanium.
  • the alkali metal element may be Li, Na, or K, or it may be Li, Na, or it may be Li.
  • the oxide containing titanium may be a compound represented by the composition formula: A s TiO t (A is an alkali metal element, and s ⁇ 0).
  • A is an alkali metal element, and s ⁇ 0.
  • the alkali metal element A may be Li, Na, or K, or may be Li or Na, or may be Li.
  • the first electrolyte layer may be formed from a first electrolyte composition.
  • the first electrolyte composition may contain a solid electrolyte material and, as necessary, a polymer electrolyte, a binding resin, an organic solvent, an ionic liquid, etc.
  • the solid electrolyte material may contain at least one of the above-mentioned first solid electrolyte material and, optionally, a solid electrolyte material (second solid electrolyte material) other than the first solid electrolyte material.
  • the second solid electrolyte material is not particularly limited and may be an oxide (oxide-based solid electrolyte), a sulfide (sulfide-based solid electrolyte), a hydride (hydride-based solid electrolyte), or the like.
  • the second solid electrolyte material may contain an alkali metal element.
  • oxide-based solid electrolytes examples include oxides such as perovskite-type oxides, NASICON-type oxides, LISICON-type oxides, and garnet-type oxides, as well as oxides doped with other cations or anions.
  • perovskite oxides examples include Li-La-Ti oxides such as Li a La 1-a TiO 3 (0 ⁇ a ⁇ 1), Li-La-Ta oxides such as Li b La 1-b TaO 3 (0 ⁇ b ⁇ 1), and Li-La-Nb oxides such as Li c La 1-c NbO 3 (0 ⁇ c ⁇ 1).
  • NASICON type oxides examples include Li1 + dAldTi2 -d ( PO4 ) 3 (0 ⁇ d ⁇ 1).
  • NASICON type oxides are oxides represented by LimM1nM2oPpOq (wherein M1 is one or more elements selected from the group consisting of B, Al, Ga , In, C, Si, Ge, Sn, Sb, and Se.
  • M2 is one or more elements selected from the group consisting of Ti, Zr, Ge, In, Ga , Sn, and Al.
  • m, n, o, p, and q are any positive numbers), and examples thereof include Li1 +x+yAlx ( Ti,Ge) 2- xSiyP3- yO12 ( 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3) (LATP).
  • LISICON type oxides include oxides represented by Li 4 M 3 O 4 --Li 3 M 4 O 4 (M 3 is one or more elements selected from the group consisting of Si, Ge, and Ti; M 4 is one or more elements selected from the group consisting of P, As, and V).
  • garnet-type oxides include Li-La-Zr oxides such as Li 7 La 3 Zr 2 O 12 (LLZ) and Li 7-a2 La 3 Zr 2-a2 Ta a2 O 12 (LLZT, 0 ⁇ a2 ⁇ 1, 0.1 ⁇ a2 ⁇ 0.8, 0.2 ⁇ a2 ⁇ 0.6).
  • LLZ Li 7 La 3 Zr 2 O 12
  • LLZT Li 7-a2 La 3 Zr 2-a2 Ta a2 O 12
  • the oxide-based solid electrolyte may be a crystalline material or an amorphous material.
  • oxide- based solid electrolytes examples include Li6.6La3Zr1.6Ta0.4O12 and Li0.33La0.55TiO3 .
  • sulfide-based solid electrolytes examples include Li 2 S-P 2 S 5 based compounds, Li 2 S-SiS 2 based compounds, Li 2 S-GeS 2 based compounds, Li 2 S-B 2 S 3 based compounds, Li 2 S-P 2 S 3 based compounds, LiI-Si 2 S-P 2 S 5 , LiI-Li 2 S-P 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 10 GeP 2 S 12 , and the like.
  • sulfide-based compound referring to a sulfide-based solid electrolyte is used as a general term for solid electrolytes mainly containing raw materials such as "Li 2 S” and "P 2 S 5 " described before "sulfide-based compound".
  • Li 2 S-P 2 S 5 -based compounds include solid electrolytes that contain Li 2 S and P 2 S 5 and further contain other raw materials.
  • Li 2 S-P 2 S 5 -based compounds also include solid electrolytes with different mixing ratios of Li 2 S and P 2 S 5 .
  • Li 2 S-P 2 S 5 based compounds include Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-P 2 S 5 -Z m S n (m and n are positive numbers; Z is Ge, Zn or Ga), and the like.
  • Li 2 S—SiS 2 based compounds include Li 2 S—SiS 2 , Li 2 S—SiS 2 -LiI, Li 2 S—SiS 2 -LiBr, Li 2 S—SiS 2 -LiCl, Li 2 S—SiS 2 -B 2 S 3 -LiI, Li 2 S—SiS 2 -P 2 S 5 -LiI, Li 2 S—SiS 2 - Li 3 PO 4 , Li 2 S—SiS 2 - Li 2 SO 4 , Li 2 S—SiS 2 - Li x MO y (x and y are positive numbers; M is P, Si, Ge, B, Al, Ga or In), etc.
  • Li 2 S—GeS 2 based compounds examples include Li 2 S—GeS 2 , Li 2 S—GeS 2 —P 2 S 5 and the like.
  • the sulfide-based solid electrolyte may be a crystalline material or an amorphous material.
  • hydride-based solid electrolyte materials include LiBH4 , LiBH4-3KI , LiBH4 - PI2 , LiBH4 - P2S5 , LiBH4 - LiNH2 , 3LiBH4 -LiI, LiNH2 , Li2AlH6, Li( NH2)2I , Li2NH , LiGd ( BH4 ) 3Cl , Li2 ( BH4 ) ( NH2 ), Li3 ( NH2 )I, Li4 ( BH4 )( NH2 ) 3 , etc.
  • the second solid electrolyte material may also be a compound in which part or all of the Li in the compounds given as specific examples of oxide-based solid electrolytes, sulfide-based solid electrolytes, or hydride-based solid electrolytes is replaced with Na, K, Rb, or Cs.
  • the second electrolyte layer is formed from a second electrolyte composition.
  • the second electrolyte layer may contain a material different from the first electrolyte layer.
  • the second electrolyte composition may contain a solid electrolyte material and, as necessary, a polymer electrolyte, a binder resin, an organic solvent, an ionic liquid, etc.
  • the solid electrolyte material may contain at least one of the above-mentioned first solid electrolyte material and second solid electrolyte material, may contain the second solid electrolyte material, and may contain at least one of a sulfide-based solid electrolyte and an oxide-based solid electrolyte.
  • the thickness ratio of the first electrolyte layer to the second electrolyte layer ((thickness of the first electrolyte layer):(thickness of the second electrolyte layer)) may be 1:0.2 to 1:1, may be 1:0.3 to 1:1, or may be 1:0.5 to 1:1.
  • the impedance distortion is small (from a mechanical standpoint, this is due to the feature that the first electrolyte layer is flexible and easy to form a good interface).
  • the first electrolyte layer has the characteristics of being flexible and having little distortion, cracks are less likely to occur inside the battery, which also contributes to obtaining good charge/discharge characteristics in that the ion conduction path is less likely to be broken.
  • the first electrolyte layer may have a region within 20 ⁇ m in the vertical direction (normal direction) from the interface between the positive electrode layer and the first electrolyte layer, in which there are no microcracks exceeding 10 ⁇ m.
  • a void structure may be present in this region.
  • the battery may have a separator.
  • the separator may be a porous material, or may be a porous material made of resin. Specific examples include a porous polyolefin membrane and a porous ceramic membrane.
  • the method for manufacturing the battery of this embodiment is not particularly limited, but may include a step of pressurizing the positive electrode material to manufacture a positive electrode, and a step of pressurizing the first electrolyte composition to manufacture a first electrolyte layer.
  • the step of pressurizing the positive electrode material to manufacture a positive electrode and the step of pressurizing the first electrolyte composition to manufacture a first electrolyte may be performed simultaneously.
  • the first electrolyte composition is disposed on the positive electrode material, and both are pressurized to manufacture a positive electrode and a first electrolyte layer.
  • the second electrolyte layer may be formed by disposing the second electrolyte composition on the first electrolyte layer and applying pressure.
  • the negative electrode may be formed by disposing the negative electrode on the second electrolyte layer, or by disposing the negative electrode material and applying pressure.
  • Example 1 LiCl, ZrCl 4 and LiBr were mixed in a molar ratio of 1.5:1:0.5 in an argon atmosphere having a dew point of ⁇ 70° C. or less (hereinafter referred to as a dry argon atmosphere) to prepare a raw material.
  • the above raw materials were placed in a zirconia pot for a planetary ball mill, and 65 g of zirconia balls with a diameter of 4 mm were added.
  • the solid electrolyte material (Li 2 ZrCl 5.5 Br 0.5 ) was obtained by treating the raw materials so as to cause a mechanochemical reaction at 380 rpm for 48 hours using a planetary ball mill device (PM 400, manufactured by Verder Scientific Co., Ltd.). The ball mill was operated in a mode in which the rotation direction was alternately switched between clockwise and counterclockwise, stopping for 1 minute as an interval every 10 minutes of rotation.
  • the charge/discharge test was carried out using the following product.
  • Charge/discharge tester Toyo Systems Co., Ltd. TOSCAT-3100
  • a charge/discharge test was carried out on the secondary battery at 60° C. at three C rates of 0.1C (0.19 mA/cm 2 ), 1C (1.9 mA/cm 2 ), and 3C (5.8 mA/cm 2 ).
  • the cells were charged to 3.7 V using a constant current constant voltage (CCCV charging) at a current density corresponding to each C rate, and discharged to 1.9 V at a current density corresponding to each C rate.
  • FIG. 1 shows the results of the charge/discharge test of the secondary battery of Example 1.
  • Example 2 A solid electrolyte material ( Li2ZrCl6 ) was obtained in the same manner as in Example 1, except that LiCl and ZrCl4 were mixed in a molar ratio of 3:1 to prepare the raw material, and then a secondary battery was fabricated in the same manner and a charge/discharge test was performed.
  • Figure 2 shows the results of the charge/discharge test of the secondary battery of Example 2.
  • Example 3 In an argon atmosphere having a dew point of ⁇ 70° C. or less (hereinafter referred to as a dry argon atmosphere), LiCl, ZrCl 4 , BiCl 3 , ZnCl 2 and LiBr were mixed to give a feed composition of Li 2.05 Zr 0.96 Bi 0.03 Zn 0.01 Cl 5.7 Br 0.3 to prepare a raw material. 1.2 g of the above raw material was placed in a zirconia pot for a planetary ball mill, and 55 g of zirconia balls with a diameter of 4 mm and 15 g of zirconia balls with a diameter of 8 mm were added.
  • a dry argon atmosphere LiCl, ZrCl 4 , BiCl 3 , ZnCl 2 and LiBr were mixed to give a feed composition of Li 2.05 Zr 0.96 Bi 0.03 Zn 0.01 Cl 5.7 Br 0.3 to prepare a raw material.
  • 1.2 g of the above raw material was placed in a
  • the above planetary ball mill device was used to perform ball milling processes at 300 rpm for 8 hours, 350 rpm for 8 hours, and 320 rpm for 8 hours in this order, and a solid electrolyte material was obtained by treating the material to react mechanochemically.
  • the ball mill was operated in a mode in which the rotation direction was alternately switched between clockwise and counterclockwise, stopping for 1 minute as an interval every 10 minutes of rotation.
  • Example 4 The synthesis was carried out under the same conditions as in Example 3 , except that the raw materials were prepared by mixing Li2O , Li3PO4 , ZrCl4 , and MgCl2 to give a composition of Li2Zr0.95Mg0.05Cl3.9O ( PO4 ) 0.033 in an argon atmosphere having a dew point of -70 ° C or less (hereinafter referred to as a dry argon atmosphere).
  • Example 4 Each was electrically connected to the terminal of an impedance analyzer (S11260, manufactured by Solatron Analytical Co., Ltd.). The resistance value was 274 ⁇ .
  • a laminate was produced in the same manner as in Example 3, except that the solid electrolyte material of Example 4 was used instead of the solid electrolyte material of Example 3, and impedance measurement was performed.
  • a Cole-Cole diagram (Nyquist plot) was created from the impedance measurement results.
  • the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance was the smallest was regarded as the resistance value.
  • Table 1 also shows the frequency at which the phase angle is smallest in the Nyquist plot obtained by measuring impedance in the range of 0.1 Hz to 891 kHz, and the ratio A/B of the resistance value (A) of the impedance measurement to the resistance value (B) of the real part of the impedance at 891 kHz.
  • Example 1 As raw materials, LiCl and YCl 3 were mixed in a molar ratio of 3:1 to prepare a raw material. A solid electrolyte material (Li 3 YCl 6 ) was obtained in the same manner as in Example 1. Using the obtained solid electrolyte material, the cross section of the solid electrolyte material and the laminate were observed by a scanning electron microscope and the impedance of the laminate was measured in the same manner as in Example 3. The resistance value was 2400 ⁇ .
  • Fig. 3 is a scanning electron microscope image of the particles of the solid electrolyte material of Example 3.
  • Fig. 4 is an enlarged view of a part of the particle of Fig. 3.
  • the particles of the solid electrolyte material of Example 1 had an uneven structure with a size of 0.5 to 2 ⁇ m.
  • Fig. 5 is a scanning electron microscope image of the cross section of the laminate of Example 1. As shown in Fig. 5, although voids with a diameter of about 2 to 5 ⁇ m were observed, no large microcracks were observed in either the positive electrode layer or the solid electrolyte layer.
  • Fig. 6 is a scanning electron microscope image of a particle of the solid electrolyte material of Comparative Example 1.
  • Fig. 7 is an enlarged view of a part of the particle in Fig. 6. As can be seen from Figs. 6 and 7, the particle of Comparative Example 1 did not have a clear uneven structure, and microcracks were observed in the area surrounded by a square in Fig. 7.
  • 8 is a scanning electron microscope image of the cross section of the laminate of Comparative Example 1. As shown in FIG.
  • FIG. 9 shows the Nyquist plots of the laminate of Example 3 and the laminate of Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

正極と、負極と、前記正極及び前記負極の間に配置された電解質層とを備え、前記電解質層は、第1電解質層と第2電解質層とを含み、前記第1電解質層は、前記正極と前記第2電解質層との間に配置され、前記第1電解質層は、前記第2電解質層とは異なる材料を含み、前記第1電解質層は、アルカリ金属元素と、アルカリ金属元素以外の金属元素又は半金属元素と、ハロゲン元素とを含有する固体電解質材料を含み、前記アルカリ金属元素以外の金属元素又は半金属元素は、Zr及びInの少なくとも一方を含む、電池。

Description

電池及び積層体
 本開示は電池及び積層体に関する。
 リチウムイオン電池等の正極及び負極間の金属イオンの移動に伴い充放電を行う電池は、高容量であることから盛んに研究が進められている。リチウムイオン電池等の電解質としては、有機溶媒又はイオン液体を含むリチウム塩の溶液などが知られているが、安全性とプロセス性の観点から固体電解質の研究が進められている。固体電解質としては、酸化物系固体電解質、硫化物系固体電解質等、様々な種類の化合物が知られている。
国際公開第2019/135323号 国際公開第2021/002064号
 しかしながら、従来の固体電解質を備える電池は、抵抗を十分に低減できておらず、電解質層内にマイクロクラック等を生じやすかった。
 本開示は上述の事情に鑑みなされたものであり、電解質層を含む層にマイクロクラックを生じにくい電池及び積層体を提供することを目的とする。
 本開示は、以下の実施形態[1]~[8]を含む。
[1]
 正極と、負極と、前記正極及び前記負極の間に配置された電解質層とを備え、
 前記電解質層は、第1電解質層と第2電解質層とを含み、
 前記第1電解質層は、前記正極と前記第2電解質層との間に配置され、
 前記第1電解質層は、前記第2電解質層とは異なる材料を含み、
 前記第1電解質層は、アルカリ金属元素と、アルカリ金属元素以外の金属元素又は半金属元素と、ハロゲン元素とを含有する固体電解質材料を含み、
 前記アルカリ金属元素以外の金属元素又は半金属元素は、Zr及びInの少なくとも一方を含む、電池。
[2]
 前記固体電解質材料は、Aαβγζηで表される化合物を含み、
 式中、Aは、アルカリ金属元素であり、Mはアルカリ金属元素以外の金属元素又は半金属元素であり、Zはハロゲン元素であり、DはP及びSの少なくとも一方であり、1.6≦α≦3.5、0<β≦1.2、3≦γ≦6.5、0≦ζ≦0.5、0≦η≦2である、[1]の電池。
[3]
 前記第2電解質層は、酸化物固体電解質を含む、[1]又は[2]の電池。
[4]
 第1電解質層と第2電解質層との厚み比が、1:0.2~1:1である、[1]~[3]のいずれか一つの電池。
[5]
 第1電解質層は、更にイオン液体を含む、[1]~[4]のいずれか一つの電池。
[6]
 前記正極と前記第1電解質層とから成る積層体を2枚のSUS板で挟んで0.1Hzから891kHzの範囲のインピーダンス測定を行って得られるナイキストプロットにおいて最も位相角が小さくなる周波数が100kHz~891kHzであり、最も位相角が小さくなる周波数におけるインピーダンス測定の実部の抵抗値(A)と、891kHzにおけるインピーダンスの実部の抵抗値(B)の比率A/Bが1.0~3.5である、[1]~[5]のいずれか一つの電池。
[7]
 正極と、前記正極上に配置された電解質層とを備え、
 前記電解質層は、第1電解質層と第2電解質層とを含み、
 前記第1電解質層は、前記正極と前記第2電解質層との間に配置され、
 前記第1電解質層は、前記第2電解質層とは異なる材料を含み、
 前記第1電解質層は、アルカリ金属元素と、アルカリ金属元素以外の金属元素又は半金属元素と、ハロゲン元素とを含有する固体電解質材料を含み、
 前記アルカリ金属元素以外の金属元素又は半金属元素は、Zr及びInの少なくとも一方を含む、積層体。
[8]
 前記正極と前記第1電解質層とから成る積層体を2枚のSUS板で挟んで0.1Hzから891kHzの範囲のインピーダンス測定を行って得られるナイキストプロットにおいて最も位相角が小さくなる周波数が100kHz~891kHzであり、最も位相角が小さくなる周波数におけるインピーダンス測定の実部の抵抗値(A)と、891kHzにおけるインピーダンスの実部の抵抗値(B)の比率A/Bが1.0~3.5である、[7]の積層体。
 本開示によれば、電解質層を含む層にマイクロクラックを生じにくい電電池及び積層体を提供することができる。
図1は、実施例1の二次電池の充放電試験の結果を示す図である。 図2は、実施例2の二次電池の充放電試験の結果を示す図である。 図3は、実施例3の固体電解質材料の走査型電子顕微鏡像である。 図4は、図3の一部を拡大した図である。 図5は、実施例3の積層体の断面の走査型電子顕微鏡像である。 図6は、比較例1の固体電解質材料の走査型電子顕微鏡像である。 図7は、図6の一部を拡大した図である。 図8は、比較例1の積層体の断面の走査型電子顕微鏡像である。 図9は、実施例3及び比較例1の積層体のナイキストプロットである。
 本実施形態の電池は、正極(正極層であってよい)と、負極(負極層であってよい)と、正極及び負極の間に配置された電解質層とを備え、電解質層は、第1電解質層と第2電解質層とを含み、第1電解質層は、正極と第2電解質層との間に配置され、第1電解質層は、第2電解質層とは異なる材料を含み、第1電解質層は、アルカリ金属元素と、アルカリ金属元素以外の金属元素又は半金属元素と、ハロゲン元素とを含有する固体電解質材料を含む。アルカリ金属元素以外の金属元素又は半金属元素は、Zr及びInの少なくとも一方を含んでいてよい。
 正極と第1電解質層とから成る積層体を2枚のSUS板で挟んで0.1Hzから891kHzの範囲のインピーダンス測定を行って得られるナイキストプロットにおいて最も位相角が小さくなる周波数が100kHz~891kHzであり、インピーダンス測定の抵抗値(A)と、891kHzにおけるインピーダンスの実部の抵抗値(B)の比率A/Bが1.0~3.5であってよい。
 比率A/Bは、1.0~3.0であってよく、1.0~2.8であってよい。また、位相角が最も小さくなる周波数は、200kHz以上であってよく、220kHz以上であってよい。
 電解質層は、アルカリ金属元素と、アルカリ金属元素以外の金属元素又は半金属元素と、ハロゲン元素とを含有する固体電解質材料(ハロゲン化物系固体電解質)を含む。以下、アルカリ金属元素と、アルカリ金属元素以外の金属元素又は半金属元素と、ハロゲン元素とを含有する固体電解質材料を第1固体電解質材料とも呼ぶ。第1の固体電解質材料は、次の(A)~(C)の少なくとも一つを満たすものであってよい。(A)第1の固体電解質材料は、アルカリ金属元素以外の金属元素としてInを含む。(B)第1の固体電解質材料は、アルカリ金属元素以外の金属元素としてZrを含み、ハロゲン元素を2種以上含む。(C)第1の固体電解質材料は、更に酸素元素を含む。
 第1固体電解質材料に含まれるアルカリ金属元素は、Li、Na、K、Rb及びCsのいずれであってもよいが、Li、Na及びKの少なくとも一種を含んでいてよく、Li及びNaの少なくとも一方を含んでいてよく、Liを含んでいてよい。
 第1固体電解質材料に含まれるアルカリ金属元素のうち、1種のアルカリ金属元素の割合が80モル%以上であってよく、90モル%以上であってよく、95モル%以上であってよい。当該1種のアルカリ金属元素はLi、Na及びKの少なくとも一種であってよく、Li及びNaの少なくとも一方であってよく、Liであってよい。
 第1固体電解質材料におけるアルカリ金属元素の含有量は、第1固体電解質材料に含まれる原子の総量に対して、15~30モル%であってよく、18~28モル%であってよく、20~27モル%であってよい。
 アルカリ金属元素以外の金属元素又は半金属元素としては、特に制限はないが、2価~5価の元素が挙げられ、3価の元素及び4価の元素からなる群から選択される1種以上を含んでいてよい。第1固体電解質材料は、アルカリ金属元素以外の金属元素又は半金属元素を1種又は2種以上含んでいてよい。
 2価の元素としては、アルカリ土類金属、Zn等が挙げられる。アルカリ土類金属としては、Mg、Ca、Sr及びBaのうち少なくとも1種であってよく、Mg及びCaの少なくとも一方であってよく、Mgであってよい。3価の金属元素としては、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Y、Al、Ga、In、Bi、Sb等が挙げられる。4価の元素としては、Zr、Ti、Hf、Sn等が挙げられ、Zrであってよい。5価の金属元素としては、Nb、Ta等が挙げられる。6価以上の元素としてはWが挙げられる。
 アルカリ金属元素以外の金属元素又は半金属元素は、In及びZrの少なくとも一方を含んでいてよい。第1固体電解質材料におけるアルカリ金属元素以外の金属元素又は半金属元素の含有量は、第1固体電解質材料に含まれる全元素を基準として8~15モル%であると好ましく、8~13モル%であるとより好ましく、9~12モル%であると更に好ましい。
 第1固体電解質材料において、Zr及びInの合計物質量が、アルカリ金属元素、Zr及びIn以外の金属元素又は半金属元素の合計物質量よりも多くてよい。なお、当該合計物質量は、第1固体電解質材料がZr及びInのいずれか一方のみを含む場合、含まれる元素の含有量である。第1固体電解質材料におけるZr及びInの合計物質量は、アルカリ金属元素以外の金属元素又は半金属元素の総物質量の60モル%以上であってよく、70モル%以上であってよく、80モル%以上であってよく、90モル%以上であってよい。
 第1固体電解質材料において、Yの物質量での含有量がZr及びInの合計物質量よりも少なくてもよい。なお、当該合計物質量は、第1固体電解質材料がZr及びInのいずれか一方のみを含む場合、含まれる元素の含有量である。第1固体電解質におけるYの含有量は、アルカリ金属元素以外の金属元素又は半金属元素の総物質量に対して、40モル%以下であってよく、30モル%以下であってよく、20モル%以下であってよく、10モル%以下であってよい。第1固体電解質材料は、実質的にYを含まなくてもよい。
 第1固体電解質材料は、アルカリ金属元素以外の金属元素又は半金属元素のうち1種の元素をアルカリ金属元素以外の金属元素又は半金属元素の総量に対して70モル%以上含んでいてよく、75モル%以上含んでいてよく、80モル%以上含んでいてよい。この場合、当該1種の元素としては、3価又は4価の元素であってよく、In又はZrであってよい。この場合、第1固体電解質材料は、当該1種の元素以外のアルカリ金属元素以外の金属元素又は半金属元素(ドーパント元素X1とも呼ぶ。)を含む。ドーパント元素X1は、上記1種の元素とは異なる元素である。上記1種の元素が3価の元素である場合、ドーパント元素X1は、Zr、Sn、Ti、Nb、Ta、Bi及びYからなる群から選択される少なくとも1種の元素であってよく、Zr、Sn、Nb、及びTaからなる群から選択される少なくとも1種の元素であってよい。上記1種の元素が4価の元素である場合、ドーパント元素X1は、Bi、Al、Ga、In、Sc、Sm、Sb、La、Zn、Sn、及びアルカリ土類金属からなる群から選択される少なくとも1種の元素であってよく、Bi、La、Zn及びSnからなる群から選択される少なくとも1種の元素であってよい。6価以上の元素としてはWが挙げられる。
 本実施形態の第1固体電解質材料に含まれるハロゲン元素は、F、Cl、Br、及びIのうちいずれであってもよいが、Cl、Br、及びIの少なくとも一種を含んでいてよく、Cl及びBrの少なくとも一方を含んでいてよく、Clを含んでいてよい。イオン伝導性物質は、1種のみのハロゲン元素を含んでいてもよいが、2種以上のハロゲン元素を含んでいてもよい。第1の固体電解質材料がアルカリ金属元素以外の金属元素としてZrを含む場合、第1の固体電解質材料は2種以上のハロゲン元素を含んでいてよく、ClとCl以外のハロゲン元素とを含んでいてよく、Cl及びBrを含んでいてよい。Cl以外のハロゲン元素又はBrの含有量は、第1の固体電解質材料に含まれるハロゲン元素の総量に対して10%モル以下であってよく、0.1~10モル%であってよく、1~8モル%であってよい。
 第1固体電解質材料におけるハロゲン元素の含有量は、ハロゲン元素に含まれる全元素を基準として40~70モル%であると好ましく、45~68モル%であるとより好ましい。
 第1固体電解質材料は、ハロゲン元素のうち1種の元素をハロゲン元素の総量に対して80モル%以上含んでいてよく、85モル%以上含んでいてよく、90モル%以上含んでいてよい。当該1種のハロゲン元素はCl又はBrであってよく、Clであってよい。この場合、第1固体電解質材料は、当該1種のハロゲン元素以外のハロゲン元素(ドーパント元素X2とも呼ぶ。)を含む。当該1種のハロゲン元素はClである場合、ドーパント元素X2は、Br及びIの少なくとも一方であってよく、Brであってよい。
 第1固体電解質材料は、P及びSの少なくとも一方を含んでいてよい(ドーパント元素X3とも呼ぶ。)。第1固体電解質材料におけるドーパント元素X3の含有量は、第1固体電解質材料に含まれる原子の総量に対して、0.05~5モル%であってよく、0.1~3モル%であってよく、0.2~2モル%であってよく、0.3~1モル%であってよい。
 第1固体電解質材料がP及びSの少なくとも一方を含む場合、第1固体電解質材料は、4価の金属元素又は半金属元素を含んでいてよい。4価の金属元素又は半金属元素としては、Zr、Ti、Hf等が挙げられ、Zrであってよい。また、ドーパント元素X2として、Hf及びMgの少なくとも一方を含んでいてもよい。
 第1固体電解質材料におけるドーパント元素X3の含有量は、4価の金属元素又は半金属元素の含有量の50モル%以下であってよく、1~30モル%であってよく、1~20モル%であってよく、2~10モル%であってよい。第1固体電解質材料におけるドーパント元素Xの含有量は、4価の金属元素又は半金属元素の含有量の20モル%以下であってよく、15モル%以下であってよく、10モル%以下であってよく、8モル%以下であってよい。
 第1固体電解質材料は、六方晶の結晶構造を有していてよく、空間群P6mcに帰属される結晶構造を有していてよい。六方晶の結晶構造を有する固体電解質材料は、Sc、La、Y、Ga、In、Bi、Sb、Ge、Zr、Sn、Nb、及びTaからなる群から選択される少なくとも一種の元素を含んでいてよく、Scを含んでいてよい。
 第1固体電解質材料は、下記式(A)で表される化合物を含んでいてよい。
αβγζη・・・(A)
 ここで、Aは、アルカリ金属であり、Mは、アルカリ金属元素以外の金属元素又は半金属元素であり、Zはハロゲン元素であり、DはP及びSの少なくとも一方であり、1.6≦α≦3.5、0<β≦1.2、3≦γ<6.5、0≦ζ≦0.5、0≦η≦2である。
 式(A)で表される化合物としては、下記式(1)~(3)で表される化合物が挙げられる。
α1β16-δ1X1ε11X2ε12・・・(1)
α2β2X2ε216-γ2X1ε22・・・(2)
α3β3X1ε31δ3ζη・・・(3)
 式(1)において、A、M及びZは、それぞれアルカリ金属元素、3価の金属元素又は半金属元素、ハロゲン元素であり、具体例としては上述のものが挙げられる。MはInを含むと好ましい。X1及びX2は、それぞれドーパント元素X1及びドーパント元素X2であり、具体例としては上述のものが挙げられる。2≦α1≦3.5であってよく、2.5≦α1≦3であってよい。0.5≦β1≦1.1であってよく、0.5≦β1≦1であってよい。0≦δ1≦1であってよく、0≦δ1≦0.5であってよい。0≦ε11≦0.7であってよく、0<ε11≦0.5であってよく、0.01≦ε11≦0.3であってよい。0≦ε12≦0.7であってよく、0<ε11≦0.5であってよく、0.01≦ε11≦0.3であってよい。
 式(2)において、A、M及びZは、それぞれアルカリ金属元素、4価の金属元素又は半金属元素、ハロゲン元素であり、具体例としては上述のものが挙げられる。Mは、Zrを含むと好ましい。X1及びX2は、それぞれドーパント元素X1及びドーパント元素X2であり、具体例としては上述のものが挙げられる。1.6≦α2≦2.5であってよく、1.8≦α2≦2.4であってよく、2≦α2≦2.3であってよい。0<β2≦1.1であってよく、0.5≦β2≦1であってよく、0.8≦β2≦1であってよい。0≦γ2<1であってよく、0.01≦γ2≦0.8であってよく、0.02≦γ2≦0.7であってよく、0.1≦γ2≦0.6であってよく、0.2≦γ2≦0.6であってよい。0≦ε21≦0.7であってよく、0<ε21≦0.5であってよく、0.01≦ε21≦0.3であってよい。0≦ε22≦0.8であってよく、0<ε21≦0.6であってよい。X2がヨウ素の場合、0.01≦ε21≦0.3であってよく、0.015≦ε21≦0.1であってよい。
 式(3)において、A、M及びZは、それぞれアルカリ金属元素、4価の金属元素又は半金属元素、ハロゲン元素であり、具体例としては上述のものが挙げられる。Mは、Zrを含むと好ましい。X1及びDは、それぞれドーパント元素X1及びドーパント元素X3であり、具体例としては上述のものが挙げられる。1.5≦α≦3であってよく、1.8≦α3≦2.5であってよく、1.9≦α3≦2.3であってよく、1.95≦α3≦2.2であってよい。0.5≦β≦2であってよく、0.7≦β3≦1.4であってよく、0.8≦β3≦1.2であってよく、0.9≦β3≦1.1であってよい。0.005≦ζ≦0.5であってよく、0.01≦ζ≦0.2であってよく、0.02≦ζ≦0.15であってよく、0.025≦ζ≦0.10であってよい。3.5≦δ3≦5であってよく、3.7≦δ3≦4.3であってよく、3.8≦δ3≦4.1であってよい。0.1≦η≦1.5であってよく、0.7≦η≦1.5であってよく、0.8≦η≦1.3であってよく、0.9≦η≦1.1であってよい。
 第1固体電解質材料は、粒子形状であってよい。この場合、第1固体電解質材料の平均粒子径は、1~50μmであってよい。また、第1固体電解質材料の粒子は、0.5~2μmの大きさの凹凸構造を有していてよい。第1固体電解質材料の粒子には、0.5μm以上の大きさのマイクロクラックが存在しなくてよい。
 第1固体電解質材料の製造方法としては、特に限定されないが、例えば、原料に対してボールミルを行う工程を備える方法が挙げられる。ボールミル後の生成物にアニーリングを行ってもよい。また、六方晶の固体電解質材料を得る場合、第1固体電解質材料の製造方法は、原料を1GPa以上の圧力下で加熱する工程を含む方法であってもよい。
 原料としては、特に限定されず、例えば、アルカリ金属ハロゲン化物、アルカリ金属以外の金属元素又は半金属元素の塩化物及びドーパント元素X1又はX2を含む化合物であってよい。ドーパント元素がX1の場合、ドーパント元素を含む化合物は、X1のハロゲン化物であってよい。ドーパント元素がX2の場合、ドーパント元素を含む化合物はアルカリ金属臭化物又はアルカリ金属ヨウ化物であってよい。原料はボールミルを行う前に混合することが好ましく、不活性雰囲気(例えばAr雰囲気)下で混合することがより好ましい。
 ボールミルの条件としては特に限定されないが、回転数200~700rpmで10~100時間とすることができる。粉砕時間は、好ましくは24時間~72時間、より好ましくは、36~60時間である。
 ボールミルに用いるボールとしては、特に限定はされないが、ジルコニアボールを用い得ることができる。用いるボールの大きさとしては特に限定はされないが、2mm~10mmのボールを用いることができる。
 ボールミルを上記の時間で行うことで充分に各原料が混合され、メカノケミカル反応が促進されることによって、得られる化合物のイオン伝導度を向上させることが可能である。
 ボールミルは、回転数の異なる多段階の工程を有していてよい。例えば、ボールミルを行う工程は、第1の工程、第2の工程及び第3の工程をこの順に有していてよく、第2の工程の方が第1の工程及び第3の工程よりも回転数が大きくてよい。また、この場合、第3の工程の方が第1の工程よりも回転数が大きくてよい。
 アニーリングは不活性雰囲気下又は真空で行うことが好ましい。アニーリングの温度としては、例えば、150~300℃であることが好ましく、200~250℃であることがより好ましい。アニーリングの時間としては、例えば、1~10時間であってよく、3~6時間であることが好ましい。
 正極活物質としては、特に限定されず、例えば、アルカリ金属元素と、遷移金属元素及びAlからなる群から選択される少なくとも1種の金属元素とを含むアルカリ金属複合酸化物が挙げられる。遷移金属元素は、V、Cr、Mn、Fe、Co、Ni、及びCuからなる群から選択される少なくとも1種であってよく、Niを含んでいてよい。例えば、アルカリ金属元素がリチウムである場合(つまり、リチウム複合酸化物の場合)、リチウム複合酸化物としては、例えば、LiCoO、LiNiO、LiMn、LiNi0.5Mn1.5、LiMnO、LiNiMnCo1-x-y[0<x+y<1])、LiNiCoAl1-x-y[0<x+y<1])、LiCr0.5Mn0.5、LiFePO、LiFeP、LiMnPO、LiFeBO、Li(PO、LiCuO、LiFeSiO、LiMnSiOなどが挙げられる。正極活物質が、Li以外のアルカリ金属元素を含む場合、その具体例としては、上記具体例のLiを他のアルカリ金属に置き換えたものが挙げられる。Li以外のアルカリ金属としては、Na又はKが挙げられる。
 本実施形態の正極(正極材料)は、更に固体電解質材料、結着性樹脂(バインダー)、導電助剤等を含んでいてもよい。結着性樹脂としては、特に限定されないが、フッ素系樹脂が挙げられる。フッ素系樹脂としては、炭素鎖を主鎖として有する樹脂が好ましい。炭素鎖はエチレン性不飽和基のラジカル重合により形成されたものであってよい。フッ素樹脂としては、ポリ(フッ化ビニリデン-co-ヘキサフルオロプロピレン)(PVDF-HFP)、ポリフッ化ビニリデン(PVDF)等が挙げられる。正極における結着性樹脂の含有量は、0.5~10質量%であってよく、1~7質量%であってよい。
 導電助剤としては、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ-ボンブラック類;炭素繊維;などの炭素材料が挙げられる。正極における導電助剤の含有量は、0.5~10質量%であってよく、1~7質量%であってよい。
 正極に含まれる固体電解質材料は、上述の第1固体電解質材料、及び第2固体電解質材料の1種又は2種であってよい。
 正極材料(又は正極)における正極活物質の含有量は、正極材料の総量に対して50質量%以上であってよく、60質量%以上であってよく、70質量%以上であってよく、95質量%以下であってよく、90質量%以下であってよい。
 負極材料は、負極活物質と、必要に応じ、高分子電解質、結着性樹脂、導電助剤、有機溶媒、イオン液体等を含んでいてよい。
 負極活物質としては、アルカリ金属元素、Si、P、Sn、Si-Mn、Si-Co、Si-Ni、In、Auなどの元素の単体及びこれらの元素を含む合金、又は複合体、グラファイト等の炭素材料、当該炭素材料の層間にアルカリ金属イオンが挿入された物質、チタンを含む酸化物などを挙げることができる。アルカリ金属元素は、Li、Na又はKであってよく、Li又はNaであってよく、Liであってよい。
 チタンを含む酸化物としては、組成式:ATiOで与えられる化合物(Aはアルカリ金属元素であり、s≧0である。)であってよい。ここで、アルカリ金属元素Aは、Li、Na又はKであってよく、Li又はNaであってよく、Liであってよい。
 第1電解質層は、第1電解質組成物から形成されたものであってよい。第1電解質組成物は、固体電解質材料と、必要に応じ、高分子電解質、結着性樹脂、有機溶媒、イオン液体等を含んでいてよい。固体電解質材料は、上述の第1固体電解質材料及び任意に第1固体電解質材料以外の固体電解質材料(第2固体電解質材料)の少なくとも1種を含んでいてよい。
 第2固体電解質材料としては、特に制限されず、酸化物(酸化物系固体電解質)、硫化物(硫化物系固体電解質)、水素化物(水素化物系固体電解質)又は等であってよい。第2固体電解質材料は、アルカリ金属元素を含んでいてよい。
(酸化物系固体電解質)
 酸化物系固体電解質としては、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物、ガーネット型酸化物等の酸化物、及び当該酸化物に他のカチオン又はアニオンをドープしたものなどが挙げられる。
 ペロブスカイト型酸化物としては、LiLa1-aTiO(0<a<1)などのLi-La-Ti系酸化物、LiLa1-bTaO(0<b<1)などのLi-La-Ta系酸化物、LiLa1-cNbO(0<c<1)などのLi-La-Nb系酸化物などが挙げられる。
 NASICON型酸化物としては、Li1+dAlTi2-d(PO(0≦d≦1)などが挙げられる。NASICON型酸化物は、Li (式中、Mは、B、Al、Ga、In、C、Si、Ge、Sn、SbおよびSeからなる群から選ばれる1種以上の元素。Mは、Ti、Zr、Ge、In、Ga、SnおよびAlからなる群から選ばれる1種以上の元素。m、n、o、pおよびqは、任意の正数。)で表される酸化物であり、Li1+x+yAl(Ti,Ge)2-xSi3-y12 (0<x<2、0<y<3)(LATP)などが挙げられる。
 LISICON型酸化物としては、Li-Li(Mは、Si、Ge、およびTiからなる群から選ばれる1種以上の元素。Mは、P、AsおよびVからなる群から選ばれる1種以上の元素。)で表される酸化物などが挙げられる。
 ガーネット型酸化物としては、LiLaZr12(LLZ)、Li7-a2LaZr2-a2Taa212(LLZT、0<a2<1であってよく、0.1<a2<0.8であってよく、0.2<a2<0.6)等のLi-La-Zr系酸化物などが挙げられる。
 酸化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
 酸化物系固体電解質としては、Li6.6LaZr1.6Ta0.412、Li0.33La0.55TiO等が挙げられる。
(硫化物系固体電解質)
 硫化物系固体電解質としては、LiS-P系化合物、LiS-SiS系化合物、LiS-GeS系化合物、LiS-B系化合物、LiS-P系化合物、LiI-SiS-P、LiI-LiS-P、LiI-LiPO-P、Li10GeP12などを挙げることができる。
 なお、本明細書において、硫化物系固体電解質を指す「系化合物」という表現は、「系化合物」の前に記載した「LiS」「P」などの原料を主として含む固体電解質の総称として用いる。例えば、LiS-P系化合物には、LiSとPとを含み、さらに他の原料を含む固体電解質が含まれる。また、LiS-P系化合物には、LiSとPとの混合比を異ならせた固体電解質も含まれる。
 LiS-P系化合物としては、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiO、LiS-P-LiO-LiI、LiS-P-Z(m、nは正の数。Zは、Ge、ZnまたはGa)などを挙げることができる。
 LiS-SiS系化合物としては、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-SiS-LiMO(x、yは正の数。Mは、P、Si、Ge、B、Al、GaまたはIn)などを挙げることができる。
 LiS-GeS系化合物としては、LiS-GeS、LiS-GeS-Pなどを挙げることができる。
 硫化物系固体電解質は、結晶性材料であってもよく、非晶質材料であってもよい。
(水素化物系固体電解質)
 水素化物系固体電解質材料としては、LiBH、LiBH-3KI、LiBH-PI、LiBH-P、LiBH-LiNH、3LiBH-LiI、LiNH、LiAlH、Li(NHI、LiNH、LiGd(BHCl、Li(BH)(NH)、Li(NH)I、Li(BH)(NHなどを挙げることができる。
 第2固体電解質材料としては、酸化物系固体電解質、硫化物系固体電解質、又は水素化物系固体電解質の具体例として挙げた化合物のLiの一部又は全部をNa、K、Rb又はCsで置き換えた化合物も挙げられる。
 第2電解質層は、第2電解質組成物から形成される。第2電解質層は、第1電解質層とは異なる材料を含んでいてよい。第2電解質組成物は、固体電解質材料と、必要に応じ、高分子電解質、結着性樹脂、有機溶媒、イオン液体等を含んでいてよい。固体電解質材料は、上述の第1固体電解質材料及び第2固体電解質材料の少なくとも1種を含んでいてよく、第2固体電解質材料を含んでいてよく、硫化物系固体電解質及び酸化物系固体電解質の少なくとも一方を含んでいてよい。
 第1電解質層と第2電解質層との厚み比((第1電解質層の厚み):(第2電解質層の厚み))は1:0.2~1:1であってよく、1:0.3~1:1であってよく、1:0.5~1:1であってよい。
 第1の電解質層と第2の電解質層とを備えることによって、正極と第1の電解質層の界面、及び負極と第2の電解質層の界面それぞれについて、良好なイオン伝導が可能となる界面が形成される。また、第1の電解質層と第2の電解質層の間のイオン伝導も良好になる。これらによって、良好な充放電が可能な電池が得られる。
 これは、第1の電解質層のインピーダンスの歪が小さいという特徴に由来する(力学的には、柔軟性があり、良好な界面を形成しやすいという特徴に由来する)。
 また、第1の電解質層が、歪が小さく柔軟性を有しているという特徴を有するために、電池内部にクラックが発生しにくく、これはイオン伝導パスが切れにくいという点で良好な充放電特性が得られることにも寄与する。
 第1電解質層は、正極層と第1電解質層との界面から垂直方向(法線方向)に20μm以内範囲に10μmを超えるマイクロクラックが無い領域を有していてよい。また、当該領域には、空隙構造が存在していてよい。
 電池はセパレータを有していてもよい。セパレータとしては、多孔質材料であってよく、樹脂製の多孔質材料であってよい。具体的には多孔質ポリオレフィン膜、多孔セラミック膜などが挙げられる。
 本実施形態の電池の製造方法は特に限定されないが、正極材料を加圧して正極を製造する工程と、第1電解質組成物を加圧して第1電解質層を製造する工程を備えるものであってよい。正極材料を加圧して正極を製造する工程と、第1電解質組成物を加圧して第1電解質を製造する工程とは、同時に行われてもよい。この場合、正極材料上に第1電解質組成物を配置し、共に加圧して正極及び第1電解質層を製造する。第2電解質層は、第1電解質層上に第2電解質組成物を配置して加圧することにより形成してよい。また、負極は、第2電解質層上に負極を配置する、又は負極材料を配置して加圧することにより形成してよい。
<固体電解質材料の作製>
(実施例1)
 -70℃以下の露点を有するアルゴン雰囲気中(以下、乾燥アルゴン雰囲気と記載する)で、LiCl、ZrCl、及びLiBrを1.5:1:0.5のモル比で混合し、原料を用意した。
 遊星ボールミル用のジルコニアポットにの上記原料を入れ、直径4mmのジルコニアボールを65g投入した。遊星ボールミル装置(ヴァーダー・サイエンティフィック株式会社製、PM 400)により、48時間、380rpmの条件でメカノケミカル的に反応するように処理することにより、固体電解質材料(LiZrCl5.5Br0.5)を得た。ボールミルは、10分間回転させる毎に、インターバルとして1分間停止させ、回転方向を時計回りと反時計回り交互に切り替えるモードで実施した。
<二次電池の作製>
 乾燥アルゴン雰囲気中で、実施例1の固体電解質材料、及びLiNi1/3Mn1/3Co1/3、及びアセチレンブラックをそれぞれ29質量部、67質量部、及び4質量部秤量し、乳鉢で混合することで、混合物を得た。
 内径10mmの絶縁性の筒の中で、実施例1の固体電解質材料を100mg、上記の混合物を15mgを順に積層して、積層体を得た。積層体に200MPaの圧力を印加し、第1電極(上記混合物の層)及び第1の固体電解質層(実施例1の固体電解質材料の層、0.5mm)が形成された。
 次に、第1の固体電解質層に、硫化物固体電解質LiPSClを接触させるようにして60mg入れ、積層体を得た。積層体に200MPaの圧力を印加し、第2の固体電解質層(0.3mm)が形成された。第1の固体電解質層は、第1の電極と第2の固体電解質層に挟まれていた。
 次に、In箔60mgを第2の固体電解質層に接触させるようにして入れ、さらにLi箔2mgをIn箔と接触させるように入れ、積層体を得た。積層体に200MPaの圧力を印加し、第2電極が形成された。
 ステンレス鋼で形成された集電体が第1電極及び第2電極に取り付けられ、次いで、当該集電体にリード線が取り付けられた。全ての部材はデシケータ中に配置され、密閉されており、このようにして実施例1の二次電池が得られた。
<充放電試験>
 充放電試験機としては、下記の製品を用いて実施した。
 充放電試験機:東洋システム株式会社 TOSCAT-3100
 60℃において、上記二次電池に対し、0.1C(0.19mA/cm)、1C(1.9mA/cm)及び3C(5.8mA/cm)の3通りのCレートで充放電試験を実施した。
 定電流定電圧(CCCV充電)で、それぞれのCレートに対応した電流密度で3.7Vまで充電を行った。放電は、それぞれのCレートに対応した電流密度で、1.9Vまで放電した。
 図1に実施例1の二次電池の充放電試験の結果を示す。
(実施例2)
 LiCl、及びZrClを3:1のモル比で混合し、原料を用意したこと以外は、実施例1と同様に固体電解質材料(LiZrCl)を得た後、同様に二次電池を作製し、充放電試験を行った。図2に実施例2の二次電池の充放電試験の結果を示す。
(実施例3)
 -70℃以下の露点を有するアルゴン雰囲気中(以下、乾燥アルゴン雰囲気と記載する)で、LiCl、ZrCl、BiCl、ZnCl及びLiBrをLi2.05Zr0.96Bi0.03Zn0.01Cl5.7Br0.3の仕込み組成となるように混合し、原料を用意した。
 遊星ボールミル用のジルコニアポットに1.2gの上記原料を入れ、55gの直径4mmのジルコニアボール及び15gの直径8mmのジルコニアボールを投入した。上記遊星ボールミル装置により、300rpmで8時間、350rpmで8時間及び320rpmで8時間のボールミル工程をこの順に実施し、メカノケミカル的に反応するように処理することにより、固体電解質材料を得た。ボールミルは、10分間回転させる毎に、インターバルとして1分間停止させ、回転方向を時計回りと反時計回り交互に切り替えるモードで実施した。
(実施例4)
 -70℃以下の露点を有するアルゴン雰囲気中(以下、乾燥アルゴン雰囲気と記載する)で、LiО、LiPO,ZrCl、MgCl、をLiZr0.95Mg0.05Cl3.9O(PO0.033の仕込み組成となるように混合し、原料を用意しこと以外は、実施例3と同じ条件で合成した。
<走査型電子顕微鏡(SEM)による粒子の観察>
 走査型電子顕微鏡JCM-7000(日本電子株式会社製)を用いて、観察を行った。加速電圧15kV、高真空モードの条件で作製された固体電解質材料の粒子の観察を行った。
<抵抗の測定>
 乾燥アルゴン雰囲気中で、実施例3の固体電解質材料、及びLiNi1/3Mn1/3Co1/3、及びアセチレンブラックをそれぞれ29質量部、67質量部、及び4質量部秤量し、乳鉢で混合することで、混合物を得た。
 内径10mmの絶縁性の筒の中で、実施例3の固体電解質材料を100mg、上記の混合物を15mgを順に積層して、積層体を得た。積層体に200MPaの圧力を印加し、第1電極(上記混合物の層)及び第1の固体電解質層(実施例3の固体電解質材料の層、0.5mm)が形成された。
 当該積層体を2枚のSUS板で挟んだ。インピーダンスアナライザー(Solatron Analytical社製 Sl1260)の端子にそれぞれ電気的に接続されていた。抵抗値は、274Ωであった。
 同様に実施例3の固体電解質材料に代えて実施例4の固体電解質材料を使用したこと以外は、実施例3と同様に積層体を作製し、インピーダンス測定を行った。
 インピーダンス測定結果から、Cole-Cole線図(ナイキストプロット)のグラフを作成した。Cole-Cole線図において、複素インピーダンスの位相の絶対値が最も小さい測定点でのインピーダンスの実数値を、抵抗値と見なした。
 また、0.1Hzから891kHzの範囲のインピーダンス測定を行って得られるナイキストプロットにおいて最も位相角が小さくなる周波数と、インピーダンス測定の抵抗値(A)と、891kHzにおけるインピーダンスの実部の抵抗値(B)の比率A/Bについて、表1にまとめた。
(比較例1)
 原料としてLiCl、及びYClを用いて3:1のモル比で混合し、原料を用意した。実施例1と同様にして、固体電解質材料(LiYCl)を得た。得られた固体電解質材料を用いて実施例3と同様に固体電解質材料及び積層体断面の走査型電子顕微鏡による観察並びに積層体のインピーダンス測定を行った。抵抗値は、2400Ωであった。
Figure JPOXMLDOC01-appb-T000001
<走査型電子顕微鏡(SEM)による断面観察>
 走査型電子顕微鏡JCM-7000(日本電子株式会社製)を用いて、観察を行った。加速電圧15kV、高真空モードの条件で観察した。
 測定試料は、上記のとおり、加圧成形ダイス内で作製された積層体を取り出し、厚み方向に切断し、その断面を観察した。
 図3は、実施例3の固体電解質材料の粒子の走査型電子顕微鏡像である。図4は図3の粒子の一部を拡大したものである。図3及び図4からわかるように実施例1の固体電解質材料の粒子は、0.5~2μmの大きさの凹凸構造を有していた。
 また、図5は、実施例1の積層体の断面の走査型電子顕微鏡像である。図5に示されるように直径2~5μm程度の空隙が見られたものの、正極層、及び固体電解質層共に大きなマイクロクラックは見られなかった。
 図6は、比較例1の固体電解質材料の粒子の走査型電子顕微鏡像である。図7は図6における粒子の一部を拡大したものである。図6及び図7からわかるように比較例1の粒子には明確な凹凸構造はなく、図7の四角で囲った部分にマイクロクラックが見られた。
 また、図8は、比較例1の積層体の断面の走査型電子顕微鏡像である。図8に示されるように直径2~5μm程度の空隙が見られたものの、正極層、及び固体電解質層共にマイクロクラックが多くみられ、固体電解質層におけるマイクロクラックは長さが10μmを超えていた(図8の四角で囲った部分)。また、図9に実施例3の積層体及び比較例1の積層体のナイキストプロットを示す。

Claims (8)

  1.  正極と、負極と、前記正極及び前記負極の間に配置された電解質層とを備え、
     前記電解質層は、第1電解質層と第2電解質層とを含み、
     前記第1電解質層は、前記正極と前記第2電解質層との間に配置され、
     前記第1電解質層は、前記第2電解質層とは異なる材料を含み、
     前記第1電解質層は、アルカリ金属元素と、アルカリ金属元素以外の金属元素又は半金属元素と、ハロゲン元素とを含有する固体電解質材料を含み、
     前記アルカリ金属元素以外の金属元素又は半金属元素は、Zr及びInの少なくとも一方を含む、電池。
  2.  前記正極と前記第1電解質層とから成る積層体を2枚のSUS板で挟んで0.1Hzから891kHzの範囲のインピーダンス測定を行って得られるナイキストプロットにおいて最も位相角が小さくなる周波数が100kHz~891kHzであり、最も位相角が小さくなる周波数におけるインピーダンス測定の実部の抵抗値(A)と、891kHzにおけるインピーダンスの実部の抵抗値(B)の比率A/Bが1.0~3.5である、請求項1に記載の電池。
  3.  前記固体電解質材料は、Aαβγζηで表される化合物を含み、
     式中、Aは、アルカリ金属元素であり、Mはアルカリ金属元素以外の金属元素又は半金属元素であり、Zはハロゲン元素であり、DはP及びSの少なくとも一方であり、1.6≦α≦3.5、0<β≦1.2、3≦γ≦6.5、0≦ζ≦0.5、0≦η≦2である、請求項1又は2に記載の電池。
  4.  前記第2電解質層は、酸化物系固体電解質及び硫化物系固体電解質の少なくとも一方を含む、請求項1又は2に記載の電池。
  5.  第1電解質層と第2電解質層との厚み比が、1:0.2~1:1である、請求項1又は2に記載の電池。
  6.  第1電解質層は、更にイオン液体を含む、請求項1又は2に記載の電池。
  7.  正極と、前記正極上に配置された電解質層とを備え、
     前記電解質層は、第1電解質層と第2電解質層とを含み、
     前記第1電解質層は、前記正極と前記第2電解質層との間に配置され、
     前記第1電解質層は、前記第2電解質層とは異なる材料を含み、
     前記第1電解質層は、アルカリ金属元素と、アルカリ金属元素以外の金属元素又は半金属元素と、ハロゲン元素とを含有する固体電解質材料を含み、
     前記アルカリ金属元素以外の金属元素又は半金属元素は、Zr及びInの少なくとも一方を含む、積層体。
  8.  前記正極と前記第1電解質層から成る積層体を2枚のSUS板で挟んで0.1Hzから891kHzの範囲のインピーダンス測定を行って得られるナイキストプロットにおいて最も位相角が小さくなる周波数が100kHz~891kHzであり、最も位相角が小さくなる周波数におけるインピーダンス測定の実部の抵抗値(A)と、891kHzにおけるインピーダンスの実部の抵抗値(B)の比率A/Bが1.0~3.5である、請求項7に記載の積層体。
PCT/JP2023/039687 2022-11-04 2023-11-02 電池及び積層体 WO2024096113A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-177561 2022-11-04
JP2022177561 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024096113A1 true WO2024096113A1 (ja) 2024-05-10

Family

ID=90930694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039687 WO2024096113A1 (ja) 2022-11-04 2023-11-02 電池及び積層体

Country Status (1)

Country Link
WO (1) WO2024096113A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2019146293A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 電池
WO2019146294A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2019146293A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 電池
WO2019146294A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 電池

Similar Documents

Publication Publication Date Title
WO2019093403A1 (ja) 全固体電池
US10218032B2 (en) Li-ion conductive oxide ceramic material including garnet-type or similar crystal structure
JP6164812B2 (ja) 全固体リチウムイオン二次電池
CN111033858B (zh) 共烧成型全固体电池
JP5283188B2 (ja) 全固体二次電池およびその製造方法
US11404726B2 (en) All-solid-state sodium ion secondary battery
WO2019044901A1 (ja) 固体電解質及び全固体電池
US20230155181A1 (en) Bipolar all-solid-state sodium ion secondary battery
US11955599B2 (en) Negative electrode material and battery
EP3890073A1 (en) Negative electrode material, battery and method for producing battery
JP2019125547A (ja) 固体電解質粉末、並びにそれを用いてなる電極合材及び全固体ナトリウムイオン二次電池
CN115428186A (zh) 正极材料和电池
EP3671931A1 (en) Solid electrolyte layer and all-solid-state battery
WO2024096113A1 (ja) 電池及び積層体
WO2024096107A1 (ja) 電池
WO2024096110A1 (ja) 負極材料、負極、及び電池
KR20220071683A (ko) 고체이온전도체, 이를 포함하는 고체전해질 및 전기화학소자, 및 상기 고체이온전도체의 제조방법
WO2022191002A1 (ja) イオン伝導体及びその利用
WO2024058052A1 (ja) イオン伝導性物質、電解質、及び電池
WO2024096108A1 (ja) 電池材料、正極、及び電池
WO2022219842A1 (ja) 負極材料およびそれを用いた電池
WO2023095889A1 (ja) 酸化物系正極活物質及びその利用
WO2022254871A1 (ja) 被覆活物質、電極材料および電池
EP4292984A1 (en) Electrode active material for electrochemical elements, electrode material for electrochemical elements, electrode for electrochemical elements, electrochemical element, and mobile object
WO2023037775A1 (ja) 被覆活物質、被覆活物質の製造方法、正極材料、および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885867

Country of ref document: EP

Kind code of ref document: A1