WO2019131281A1 - ハイドロタルサイト粒子及びその製造方法、並びにそれからなる樹脂安定剤及び樹脂組成物 - Google Patents

ハイドロタルサイト粒子及びその製造方法、並びにそれからなる樹脂安定剤及び樹脂組成物 Download PDF

Info

Publication number
WO2019131281A1
WO2019131281A1 PCT/JP2018/046380 JP2018046380W WO2019131281A1 WO 2019131281 A1 WO2019131281 A1 WO 2019131281A1 JP 2018046380 W JP2018046380 W JP 2018046380W WO 2019131281 A1 WO2019131281 A1 WO 2019131281A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrotalcite particles
hydrotalcite
particles
resin
aluminum compound
Prior art date
Application number
PCT/JP2018/046380
Other languages
English (en)
French (fr)
Inventor
角屋 浩司
温子 安永
庸克 信貴
Original Assignee
戸田工業株式会社
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社, 堺化学工業株式会社 filed Critical 戸田工業株式会社
Priority to US16/957,711 priority Critical patent/US11873230B2/en
Priority to JP2019563013A priority patent/JP7239492B2/ja
Priority to KR1020207017567A priority patent/KR102638167B1/ko
Priority to EP18895161.0A priority patent/EP3733604A4/en
Priority to CN201880083257.4A priority patent/CN111566050B/zh
Publication of WO2019131281A1 publication Critical patent/WO2019131281A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to hydrotalcite particles and a method for producing the same, and a resin stabilizer comprising the hydrotalcite particles and a resin composition comprising the hydrotalcite particles.
  • Hydrotalcite has a general formula: [M 2 + 1 ⁇ x M 3 + x (OH) 2 ] [A n ⁇ x / n ⁇ m H 2 O] (wherein, M 2+ is a divalent metal ion, and M 3+ is A trivalent metal ion, A n- x / n, represents an interlayer anion, and 0 ⁇ x ⁇ 1, n is a valence of A, and 0 ⁇ m ⁇ 1. They are widely used as catalysts, pharmaceuticals, additives for resins, etc.
  • Patent Document 2 uses a magnesium compound and / or a zinc compound and an aluminum compound as raw materials, and contains hydroxide and the like and a carboxylic acid group-containing compound among the raw materials, and has a solid content concentration in a specific range. There is disclosed a method of preparing a slurry, wet-pulverizing it into an average secondary particle diameter in a specific range, adding the remaining raw materials, and subjecting it to hydrothermal treatment.
  • Patent Document 3 discloses a method of reacting a mixed suspension containing a trivalent metal compound not containing an alkali metal salt and being at least wet-ground aluminum hydroxide and a divalent metal compound containing a magnesium compound. It is done.
  • Is tan ⁇ 2 / tan ⁇ 1 ( ⁇ 1 is the angle between the peak perpendicular to the X-ray diffraction peak of the surface spacing in the specific range and the angle tangent peak tangent, ⁇ 2 is the peak normal to the peak and the wide angle peak tangent
  • stacking misalignment index (Is) which is defined by the angle which it makes, or more are specific value or more, and the compounding agent for resin containing this are disclosed.
  • particles of hydrotalcite can not be sufficiently grown because only a carbonic acid compound and a magnesium salt are simultaneously added to and reacted with an aluminum solution.
  • Such hydrotalcites having a relatively small particle size have a large specific surface area, and when added to a resin, the basic effect of the hydrotalcite becomes large and the initial colorability of the resin composition becomes worse.
  • it is unsuitable as a resin additive in that it is easily aggregated when the particle diameter is small and causes dispersion failure in the resin.
  • the hydrotalcites disclosed in Patent Document 4 have a specific X-ray diffraction peak asymmetric and have an X-ray diffractologically characteristic microstructure, and the compounding agent for resin containing the resin is a resin Dry blending with is easy to have good flowability. However, even when the compounding agent for resin is used, the heat resistance of the resin is still insufficient and it is difficult to suppress the coloration, which is unsuitable as an agent for vinyl chloride resin in particular.
  • hydrotalcite capable of simultaneously imparting sufficiently excellent heat resistance, transparency, fluidity, etc. to a resin, and a method capable of efficiently producing such hydrotalcite are still Not found.
  • the method of producing hydrotalcite particles according to the present invention is A first step of dissolving aluminum hydroxide with an alkaline solution to prepare an aluminate solution, A second step of reacting the aluminate solution obtained in the first step with carbon dioxide gas to precipitate a low crystalline aluminum compound; A third step of preparing a reaction product containing hydrotalcite core particles by mixing primary reaction of the low crystalline aluminum compound obtained in the second step and a magnesium compound, and obtained in the third step It is characterized in that it comprises a fourth step of hydrothermally reacting the reactant to synthesize hydrotalcite particles.
  • the method further includes a fifth step of subjecting the hydrotalcite particles obtained in the fourth step to a surface treatment.
  • the low crystalline aluminum compound in the second step is pseudoboehmite.
  • the low crystalline aluminum compound in the second step has a BET specific surface area of 100 m 2 / g to 350 m 2 / g.
  • the hydrotalcite particles according to the present invention are It is characterized in that the ratio (intensity / half width) of the intensity and half width of the diffraction peak of the crystal plane (015) in the X-ray diffraction pattern is 4000 cps / degree or more.
  • the hydrotalcite particles preferably have a BET specific surface area of 8 m 2 / g to 18 m 2 / g.
  • the resin stabilizer according to the present invention comprises the hydrotalcite particles.
  • the resin composition according to the present invention comprises a resin and the hydrotalcite particles.
  • FIG. 1 (a) is an X-ray diffraction pattern of a low crystalline aluminum compound subjected to vacuum freeze-drying in one embodiment of the present invention
  • FIG. 1 (b) is a scan of the low crystalline aluminum compound.
  • Type electron micrograph
  • FIG. 2 is an X-ray diffraction pattern of the low-crystallinity aluminum compound subjected to the ordinary drying treatment in Example 1 of the present invention
  • FIG. 3 (a) is an X-ray diffraction pattern of hydrotalcite particles in Example 1 of the present invention and Comparative Example 1.
  • FIG. 3 (b) is a partially enlarged view of diffraction peaks in the X-ray diffraction pattern. It is.
  • the method of producing hydrotalcite particles includes at least the following four steps.
  • First step a step of dissolving aluminum hydroxide with an alkaline solution to prepare an aluminate solution.
  • Second step a step of reacting the aluminate solution obtained in the first step with carbon dioxide gas to precipitate a low crystalline aluminum compound.
  • Third step a step of mixing the low crystalline aluminum compound obtained in the second step and the magnesium compound and causing a primary reaction to prepare a reaction product containing hydrotalcite core particles.
  • Fourth step a step of hydrothermally reacting the reaction product obtained in the third step to synthesize hydrotalcite particles.
  • the manufacturing method of this invention can include other processes other than these 4 processes as needed. Other steps performed as needed will be described later.
  • Step 1 Preparation of Aluminate Solution
  • an aluminate solution is prepared from aluminum hydroxide and an alkaline solution.
  • the aluminum hydroxide used in the first step includes, for example, gibbsite or Hydragilight of ⁇ -type Al (OH) 3 , Bayerite of ⁇ -type Al (OH) 3 , nor strand of ⁇ -type Al (OH) 3
  • the alkali solution is also not particularly limited as long as it can dissolve aluminum hydroxide. Examples of the alkaline solution include sodium hydroxide solution, potassium hydroxide solution and the like, and these may be used alone or in combination of two or more. Among these, sodium hydroxide solution is preferred in that aluminum hydroxide is easily dissolved and handleability is good.
  • the ratio of aluminum hydroxide to alkali solution is 1.3 to 1.7, and more preferably 1.4 to 1.6 for the alkali solution / aluminum hydroxide (molar ratio). It is preferable to adjust as follows. If the ratio of the two components is less than the lower limit value, it may be difficult to sufficiently dissolve aluminum hydroxide in an alkali solution. If the ratio of both components exceeds the above upper limit value, the amount of the low crystalline aluminum compound precipitated in the next second step may be insufficient.
  • aluminum hydroxide and an alkali solution adjusted to have a molar ratio in the above range are heated to about 100 ° C. to 130 ° C. and stirred for about 0.5 hour to 6 hours, for example, for example, aluminate
  • aluminate solution such as a soda solution or a potassium aluminate solution can be obtained.
  • a general purpose stirrer, a mixer etc. can be used.
  • Step 2 Precipitation of low crystalline aluminum compound
  • the aluminate solution obtained in the first step is reacted with carbon dioxide gas to precipitate a low crystalline aluminum compound.
  • the precipitation of the low crystalline aluminum compound in the second step is one of the major features, and it forms the basis for the generation and optimization of seed crystals in the next third step.
  • the conditions for bringing the carbon dioxide gas into contact with the aluminate solution are suitably adjusted so that the gas-liquid interfacial reaction sufficiently occurs and the desired low crystalline aluminum compound is precipitated.
  • concentration of the aluminate solution is adjusted to about 0.05 mol / L to 3 mol / L, further about 0.2 mol / L to 1.6 mol / L, and about 5 ° C. to 70 ° C., further about 25
  • aeration is further performed for about 50 minutes to 120 minutes, particularly for about 60 minutes to 105 minutes.
  • concentration or temperature of the aluminate solution is out of the above range, or when the aeration amount or aeration time of carbon dioxide gas is out of the above range, coarse particles of dawsonite are formed and the hydrotal
  • the transparency of the resin composition may be reduced, so the concentration and temperature of the aluminate solution, and the aeration amount and aeration time of carbon dioxide gas fall within the above ranges, respectively. It is preferable to adjust as follows.
  • each carbonate groups in the total carbonate in the reaction system (CO 2, HCO 3 -, and CO 3 2-) Ratio of changes by the pH of the reaction system.
  • the pH of the reaction system of the aluminate solution with carbon dioxide gas is preferably 7.0 to 9.0, more preferably 7.5 to 8.5.
  • HCO 3 ⁇ bicarbonate ion
  • CO 3 2- carbonate ion
  • the drying process can be performed at about 50 ° C. to 110 ° C., and further at about 60 ° C. to 105 ° C.
  • the amount of carbonic acid component attached to the precipitated low crystalline aluminum compound is 0.3 wt% to 1.6 wt%, and further 0.4 wt%. % To 1.5% by weight is preferable.
  • the total amount of each carbonated root (CO 2 , HCO 3 ⁇ , and CO 3 2- ) in the reaction system or compound, that is, the “amount of carbonic acid component” is also referred to as “total carbonate concentration”.
  • the low crystalline aluminum compound may become high in crystallinity when taken out from the reaction solution and subjected to a usual drying step, and therefore, in order to evaluate the characteristics of the low crystalline aluminum compound more clearly, as an example, Vacuum lyophilization may be performed on the low crystalline aluminum compound.
  • Vacuum lyophilization may be performed on the low crystalline aluminum compound.
  • the low crystalline aluminum compound is pretreated, it is desirable to carry out the vacuum lyophilization treatment in consideration of volatilization of the carbonic acid component by drying.
  • the conditions of the vacuum lyophilization process there are no particular limitations on the conditions of the vacuum lyophilization process, and for example, after prefreezing at about -45 ° C and primary drying at about 0.01 Torr to 1 Torr pressure for about 12 hours, about 25 Preferably, the temperature is raised to ° C and secondary drying is performed.
  • X-ray diffraction measurement (hereinafter referred to as XRD measurement) of a low crystalline aluminum compound obtained by reacting an aluminate solution with carbon dioxide gas and subjecting the precipitated low crystalline aluminum compound to vacuum freeze-drying treatment To obtain an X-ray diffraction pattern.
  • the scanning electron micrograph of the low crystalline aluminum compound at the time of this vacuum freeze-drying process was image
  • FIG. FIGS. 1 (a) and 1 (b) show the results of a vacuum freeze-drying process by reacting an aluminate solution with carbon dioxide gas for 70 minutes.
  • Fig.1 (a) it turns out that the low crystalline aluminum compound is obtained.
  • FIG. 1 (b) it can be seen that the obtained low crystalline aluminum compound is fine particles.
  • the low crystalline aluminum compound deposited at the cell interface is an aluminum compound which is very low in crystallinity and almost amorphous.
  • Examples of the low crystalline aluminum compound include substantially amorphous pseudoboehmite (boehmite gel) and the like.
  • the XRD measurement is performed on the precipitated low crystalline aluminum compound, and the crystallite size can be determined from the predetermined diffraction peak in the obtained X-ray diffraction pattern.
  • a magnesium compound in the next third step Is preferred in that it proceeds well.
  • the crystallite size of the low crystalline aluminum compound is preferably 3 ⁇ or more.
  • the crystallite size can be further reduced to, for example, 25 ⁇ to 20 ⁇ .
  • the low crystalline aluminum compound preferably has a BET specific surface area of 100 m 2 / g to 350 m 2 / g, and more preferably 120 m 2 / g to 300 m 2 / g. It is considered that the carbon dioxide component derived from the carbon dioxide gas used adheres to the surface of the low crystalline aluminum compound, but when the BET specific surface area is less than the above lower limit, the low crystalline aluminum compound has a certain shape It is difficult to hold the carbon dioxide and there is a risk that the amount of adhering carbonic acid component may be insufficient. When the BET specific surface area exceeds the above upper limit value, there is a possibility that the primary reaction with the magnesium compound in the next third step may not proceed well.
  • the low crystalline aluminum compound for example, in the form of a slurry in consideration of the reactivity with the magnesium compound and the workability in the next third step.
  • the medium at the time of adjusting to a slurry form For example, liquid media other than water which do not have a bad influence on water, a low crystalline aluminum compound, etc. can be used.
  • Step 3 Preparation of Reactant Containing Hydrotalcite Core Particles
  • the low crystalline aluminum compound obtained in the second step and the magnesium compound are mixed and subjected to a primary reaction to prepare a reaction product containing hydrotalcite core particles.
  • seed crystals are generated based on the low crystalline aluminum compound, and the seed crystals are optimized for the synthesis of hydrotalcite particles in the next fourth step.
  • magnesium oxide As a magnesium compound used at a 3rd process, magnesium oxide, magnesium hydroxide, magnesium carbonate etc. are mentioned, for example, These can be used individually or in mixture of 2 or more types simultaneously. Among these, magnesium oxide is preferable in that it easily reacts with the low crystalline aluminum compound and has a good handleability.
  • the magnesium compound may be used in the form of powder or fine particles, but in consideration of the reactivity with the low crystalline aluminum compound and the workability, for example, it is preferable to adjust in a slurry form.
  • the medium at the time of adjusting to a slurry form For example, liquid media other than water which do not have a bad influence on a magnesium compound, etc. can be used.
  • the ratio of the low crystalline aluminum compound to the magnesium compound in the primary reaction system is such that the target hydrotalcite particles have a Mg / Al (molar ratio) of 2.0 to 5.7, and more preferably 2.0 to 3.0. It is preferable to adjust so that By setting the Mg / Al (molar ratio) to be in the above-mentioned range and appropriately adjusting the total carbon concentration of the primary reaction system and the BET specific surface area of the reactant containing the hydrotalcite core particles as described later, Seed optimization is made.
  • a low crystalline aluminum compound and a magnesium compound adjusted so that the molar ratio of Al to Mg is in the above range are heated to about 20 ° C. to 80 ° C. and stirred for about 0.5 hour to 2 hours
  • a reaction product containing hydrotalcite core particles can be obtained by mixing and primary reaction.
  • the ratio of each carbonate root (CO 2 , HCO 3 ⁇ , and CO 3 2 ⁇ ) in total carbonic acid in the reaction system changes depending on the pH of the reaction system.
  • the pH of the primary reaction system is preferably 9.5 to 11.0, and more preferably 9.7 to 10.5.
  • carbonate ion (CO 3 2- ) which is a carbonate root necessary for the synthesis of hydrotalcite particles in the next fourth step.
  • the amount of carbonic acid component attached to the hydrotalcite core particles contained in the reaction product is 2.0% by weight to 4.5% by weight, and further 2.3% by weight to 4.%. It is preferably 2% by weight.
  • the reaction product containing hydrotalcite core particles preferably has a BET specific surface area of 80 m 2 / g to 150 m 2 / g, and more preferably 90 m 2 / g to 130 m 2 / g.
  • the carbonic acid component is considered to be attached to the surface of the hydrotalcite core particle, but when the BET specific surface area is less than the lower limit value, the amount of carbonic acid component necessary for the growth of the hydrotalcite particle should be secured. May be difficult.
  • the BET specific surface area exceeds the above upper limit value, there is a possibility that the synthesis of hydrotalcite particles by the hydrothermal reaction in the next fourth step does not proceed well.
  • Step 4 Synthesis of Hydrotalcite Particles
  • the reaction product obtained in the third step is hydrothermally reacted to synthesize hydrotalcite particles.
  • the hydrothermal reaction promotes the growth of particles to obtain the desired hydrotalcite particles.
  • the hydrothermal reaction of the reactant is not particularly limited, but is preferably performed, for example, in a heat-resistant container such as an autoclave.
  • the reaction temperature in the hydrothermal reaction is not particularly limited, but is preferably adjusted to about 120 ° C. to 250 ° C., and more preferably about 130 ° C. to 240 ° C.
  • the reaction time is also not particularly limited. The time is preferably 10 hours, more preferably about 4 hours to 8 hours.
  • the pressure in the heat-resistant container is not particularly limited, but it is preferably adjusted to about 0.1 MPa to 10 MPa, and more preferably about 0.5 MPa to 8 MPa.
  • the target hydrotalcite particles can be obtained as described later by sequentially performing the first to fourth steps, but in the production method of the present invention, the following steps are further performed: You can also.
  • Step 5 Surface treatment of hydrotalcite particles
  • the hydrotalcite particles obtained in the fourth step are subjected to surface treatment.
  • the surface treatment By performing the surface treatment, the dispersibility of the hydrotalcite particles can be further improved.
  • higher fatty acids such as stearic acid, oleic acid, erucic acid, palmitic acid, lauric acid, lithium salts, sodium salts and potassium salts of these higher fatty acids
  • Higher fatty acids such as higher fatty acid metal salts (metal soaps); sulfuric acid ester salts of higher alcohols such as stearyl alcohol, oleyl alcohol, sulfuric acid ester salts of polyethylene glycol ether, amide bond sulfuric acid ester salts, ether bond sulfonic acid salts, esters
  • Anionic surfactants such as bound sulfonates, amide bound alkyl aryl sulfonates, ether linked alkyl aryl sulfonates; mono- or diesters of orthophosphoric acid and oleyl alcohol, stearyl alcohol, etc., or mixtures thereof, and their acid forms
  • a Phosphoric acid esters such as potassium metal salt
  • the amount of the surface treating agent is about 0.1 to 10 parts by mass, further about 0.5 to 100 parts by mass of the hydrotalcite particles, in order to efficiently obtain the effect by using the surface treating agent. It is preferable that the amount is up to 8 parts by mass.
  • the method of surface treatment is not particularly limited, and conventional treatment methods such as the conventional wet method and dry method can be appropriately adopted.
  • a wet method the surface treatment agent is added in a liquid or emulsion form to a slurry containing hydrotalcite particles and stirred, and if necessary, heated to a temperature of, for example, about 100 ° C. After sufficient mixing, the hydrotalcite particles may be filtered, washed with water and dried.
  • the surface treatment agent is added in the form of liquid, emulsion or solid while the hydrotalcite particles are sufficiently stirred by a mixer such as a Henschel mixer, and the mixture is heated or not heated. It may be mixed sufficiently.
  • the filtration step, the water washing step, the drying step and the pulverizing step be sequentially performed after the fourth step or the fifth step.
  • the hydrotalcite particles obtained by the hydrothermal reaction in the fourth step or the hydrotalcite particles subjected to the surface treatment in the fifth step are filtered to obtain a solid (cake) containing hydrotalcite particles and a filtrate Separate.
  • the collected solid is washed with water one or more times, and then the filtered solid is collected.
  • the collected solid content is dried by a dryer such as an oven, and then the solid content may be dry-ground.
  • Hydrotalcite particles For example, when XRD measurement is performed on the hydrotalcite particles according to an embodiment of the present invention obtained through the above-mentioned respective steps, characteristic diffraction peaks are observed in the obtained X-ray diffraction pattern.
  • the hydrotalcite particles of the present invention are different from those of the conventional ones.
  • This difference is a difference in crystallinity, and the hydrotalcite particles of the present invention have high crystallinity of crystal faces (012), (015) and (018) as compared to conventional hydrotalcite, and The height of crystallinity is considered to be based on the regular arrangement of Mg-Al.
  • crystal planes of conventional hydrotalcites long-range order exists but short-range order is low.
  • the long distance order is of course high, as well as the long distance order exists, from which the hydrotalcite particles of the present invention It is judged that the crystallinity is high.
  • the distance between the crystal planes (003) and (006) depends on the ratio of Mg to Al (Mg / Al), so there is almost no difference. Since hydrotalcite particles are those for which crystal growth has been sufficiently achieved, the number of units of crystal planes (003) and (006) in one particle is large as compared with conventional hydrotalcite, which will be described later. Thus, for example, a resin stabilizer that can impart sufficiently excellent heat resistance and transparency to a vinyl chloride resin can be obtained.
  • the ratio (intensity / half width) of the intensity to the half width of the diffraction peak of the crystal plane (015) is Since the viscosity is 4,000 cps / degree or more, preferably 5,000 cps / degree or more, excellent heat resistance, transparency, fluidity, and the like can be simultaneously imparted to the resin.
  • the crystallinity of the hydrotalcite particles is higher as the ratio between the strength and the half width is larger.
  • the ratio of the strength to the half width is The ratio of the strength to the half width is preferably 15000 cps / degree or less, in that the hydrotalcite particles may grow too much and the reactivity may decrease if the value of is too large.
  • the hydrotalcite particles of the present invention preferably have a BET specific surface area of 8 m 2 / g to 18 m 2 / g, and more preferably 10 m 2 / g to 15 m 2 / g.
  • the BET specific surface area is an indicator of the reactivity of the hydrotalcite particles, and when the BET specific surface area is too small, the reactivity is lowered. On the other hand, if the BET specific surface area is too large, the reactivity (basicity) is too high, which causes deterioration of the resin when added to the resin. Further, a large BET specific surface area means that the particle size is small, and hydrotalcite particles having too small a particle size have high cohesiveness and thus cause poor dispersion in the resin. Therefore, the BET specific surface area of the hydrotalcite particles is preferably in the above range.
  • hydrotalcite particles of the present invention include, for example, the following formula (1): (Mg 2+ ) 1-p (Al 3+ ) p (OH) 2 (CO 3 2- ) p / 2 ⁇ qH 2 O (1) (Wherein, p is preferably 0.15 ⁇ p ⁇ 0.33, more preferably 0.20 ⁇ p ⁇ 0.33, and q is preferably 0 ⁇ q ⁇ 1) Is preferably mentioned.
  • the resin stabilizer of the present invention comprises the hydrotalcite particles. All the components of the resin stabilizer may be the hydrotalcite particles, and the hydrotalcite particles may be compounded with a compound generally used as a heat stabilizer for a resin. .
  • the compound generally used as a heat stabilizer for resin is not particularly limited, and examples thereof include stearic acid metal soap, hydroxystearic acid metal soap, lauric acid metal soap, butylbenzoic acid metal soap, Metal soaps such as phosphate ester type metal soaps; Inorganic lead compounds such as tribasic lead sulfate, dibasic lead sulfite, dibasic lead phosphite, dibasic lead stearate; dimethyltin mercapto compound, dioctyl Organotin compounds such as tin mercapto compounds and dioctyltin laurate compounds are listed, and these can be used alone or in combination of two or more.
  • hydrotalcite particles When a compound that can be generally used as a heat stabilizer for a resin is blended together with the hydrotalcite particles, it is preferable to appropriately adjust the ratio of the hydrotalcite particles to the compound according to the purpose.
  • thermoplastic resins and thermosetting resins there is no particular limitation on the resin to which the resin stabilizer of the present invention is applied, and typical thermoplastic resins and thermosetting resins may be mentioned.
  • thermoplastic resin examples include C2-C8 olefins ( ⁇ -olefins) such as polyethylene, chlorinated polyethylene, polypropylene, chlorinated polypropylene, ethylene-propylene copolymer, polybutene, and poly (4-methylpentene-1). Polymers or copolymers, olefin resins such as copolymers of these C2 to C8 olefins and dienes; polystyrenes, ABS resins, AAS resins, AS resins, MBS resins, etc.
  • C2-C8 olefins such as polyethylene, chlorinated polyethylene, polypropylene, chlorinated polypropylene, ethylene-propylene copolymer, polybutene, and poly (4-methylpentene-1).
  • Polymers or copolymers, olefin resins such as copolymers of these C2 to C8 olefins and dienes; polystyrenes, ABS resins, AAS
  • the resin stabilizer of the present invention is particularly useful as a stabilizer for the vinyl chloride resin, and can impart excellent heat resistance and transparency to the vinyl chloride resin.
  • thermosetting resin an epoxy resin, a phenol resin, a melamine resin, unsaturated polyester resin, an alkyd resin, a urea resin etc. are mentioned, for example.
  • the amount is preferably adjusted according to the type of resin etc. For example, about 0.01 parts by mass to 50 parts by mass with respect to 100 parts by mass of the resin It is preferable that the amount is about 0.1 to 40 parts by mass, more preferably about 0.1 to 40 parts by mass.
  • the resin composition of the present invention contains at least a resin and the hydrotalcite particles.
  • the resin is not particularly limited, and examples thereof include the usual thermoplastic resins and thermosetting resins exemplified as the resin to which the resin stabilizer can be applied.
  • the amount of hydrotalcite particles in the resin composition is not particularly limited as long as the effect of improving heat resistance, transparency, flowability and the like by blending the hydrotalcite particles is sufficiently exhibited, for example, resin 100
  • the amount is preferably about 0.01 to 50 parts by mass, and more preferably about 0.1 to 40 parts by mass with respect to the parts by mass.
  • the hydrotalcite particles and, if necessary, other additives may be uniformly blended in the resin by a conventional method.
  • a method of blending hydrotalcite particles into a resin using a known blending means such as a ribbon blender, a high speed mixer, a kneader, etc. After adding a suspension of hydrotalcite particles to a slurry after polymerization, stirring and mixing And drying methods.
  • Examples of the additive that the resin composition of the present invention may optionally contain include an antioxidant, an ultraviolet light inhibitor, an antistatic agent, a pigment, a foaming agent, a plasticizer, a filler, a reinforcing agent, Examples thereof include flame retardants, crosslinking agents, light stabilizers, ultraviolet light absorbers, lubricants, heat stabilizers other than the hydrotalcite particles, water, and the like.
  • the resin composition of the present invention in which the hydrotalcite particles are blended is particularly excellent in heat resistance, transparency, flowability and the like.
  • hydrotalcite particles and the process for producing the same, and the resin stabilizer and the resin composition comprising the same according to the present invention will be described in more detail with reference to the following Examples and Comparative Examples. It is not limited.
  • Example 1 Synthesis of hydrotalcite particles Aluminum hydroxide powder (Kanto Chemical Co., Ltd.), in 1110 mL of 48% sodium hydroxide solution (Kanto Chemical Co., Ltd., deer special grade), in a 2 L stainless steel container The mixture was charged with 730 g of deer special grade) and stirred at 124 ° C. for 1 hour to obtain a sodium aluminate solution (first step).
  • magnesium oxide powder (special grade, manufactured by Kanto Chemical Co., Ltd.) was added to 327 mL of pure water, and stirred for 1 hour to obtain a magnesium oxide slurry.
  • the above magnesium oxide slurry and adjusted aluminum hydroxide slurry are charged into 257 mL of pure water in a 1.5 L stainless steel container, and primary reaction is performed by stirring at 55 ° C. for 90 minutes, and a reaction including hydrotalcite core particles The thing was obtained (the third step).
  • Example 2 Synthesis of hydrotalcite particles Aluminum hydroxide powder (Kanto Chemical Co., Ltd.), in 1110 mL of 48% sodium hydroxide solution (Kanto Chemical Co., Ltd., deer special grade), in a 2 L stainless steel container The mixture was charged with 730 g of deer special grade) and stirred at 124 ° C. for 1 hour to obtain a sodium aluminate solution (first step).
  • magnesium oxide powder (special grade, manufactured by Kanto Chemical Co., Ltd.) was added to 327 mL of pure water, and stirred for 1 hour to obtain a magnesium oxide slurry.
  • the above magnesium oxide slurry and adjusted aluminum hydroxide slurry are charged into 257 mL of pure water in a 1.5 L stainless steel container, and primary reaction is performed by stirring at 55 ° C. for 90 minutes, and a reaction including hydrotalcite core particles The thing was obtained (the third step).
  • Example 3 Synthesis of hydrotalcite particles Aluminum hydroxide powder (Kanto Chemical Co., Ltd.), in 1110 mL of 48% sodium hydroxide solution (Kanto Chemical Co., Ltd., deer special grade), in a 2 L stainless steel container The mixture was charged with 730 g of deer special grade) and stirred at 124 ° C. for 1 hour to obtain a sodium aluminate solution (first step).
  • magnesium oxide powder (special grade, manufactured by Kanto Chemical Co., Ltd.) was added to 327 mL of pure water, and stirred for 1 hour to obtain a magnesium oxide slurry.
  • the above magnesium oxide slurry and adjusted aluminum hydroxide slurry are charged into 257 mL of pure water in a 1.5 L stainless steel container, and primary reaction is performed by stirring at 55 ° C. for 90 minutes, and a reaction including hydrotalcite core particles The thing was obtained (the third step).
  • Example 4 Synthesis of hydrotalcite particles Aluminum hydroxide powder (Kanto Chemical Co., Ltd.) to 1110 mL of 48% sodium hydroxide solution (Kanto Chemical Co., Ltd., deer special grade) in a 2 L stainless steel container The mixture was charged with 730 g of deer special grade) and stirred at 124 ° C. for 1 hour to obtain a sodium aluminate solution (first step).
  • magnesium oxide powder (special grade, manufactured by Kanto Chemical Co., Ltd.) was added to 327 mL of pure water, and stirred for 1 hour to obtain a magnesium oxide slurry.
  • the above magnesium oxide slurry and adjusted aluminum hydroxide slurry are charged into 257 mL of pure water in a 1.5 L stainless steel container, and primary reaction is performed by stirring at 55 ° C. for 90 minutes, and a reaction including hydrotalcite core particles The thing was obtained (the third step).
  • Example 5 Synthesis of hydrotalcite particles Aluminum hydroxide powder (Kanto Chemical Co., Ltd.), in 1110 mL of 48% sodium hydroxide solution (Kanto Chemical Co., Ltd., deer special grade), in a 2 L stainless steel container The mixture was charged with 730 g of deer special grade) and stirred at 124 ° C. for 1 hour to obtain a sodium aluminate solution (first step).
  • magnesium oxide powder (special grade, manufactured by Kanto Chemical Co., Ltd.) was added to 327 mL of pure water, and stirred for 1 hour to obtain a magnesium oxide slurry.
  • the above magnesium oxide slurry and adjusted aluminum hydroxide slurry are charged into 257 mL of pure water in a 1.5 L stainless steel container, and primary reaction is performed by stirring at 55 ° C. for 90 minutes, and a reaction including hydrotalcite core particles The thing was obtained (the third step).
  • Example 6 Synthesis of hydrotalcite particles Aluminum hydroxide powder (Kanto Chemical Co., Ltd.) to 1110 mL of 48% sodium hydroxide solution (Kanto Chemical Co., Ltd., deer special grade) in a 2 L stainless steel container The mixture was charged with 730 g of deer special grade) and stirred at 124 ° C. for 1 hour to obtain a sodium aluminate solution (first step).
  • magnesium oxide powder (special grade, manufactured by Kanto Chemical Co., Ltd.) was added to 327 mL of pure water, and stirred for 1 hour to obtain a magnesium oxide slurry.
  • the above magnesium oxide slurry and adjusted aluminum hydroxide slurry are charged into 257 mL of pure water in a 1.5 L stainless steel container, and primary reaction is performed by stirring at 55 ° C. for 90 minutes, and a reaction including hydrotalcite core particles The thing was obtained (the third step).
  • Comparative Example 2 Synthesis of Hydrotalcite Particles
  • the reaction conditions at 95 ° C. for 6 hours in obtaining the hydrotalcite particle slurry were changed to hydrothermal reaction conditions at 170 ° C. for 6 hours, Then, in the same manner as in Comparative Example 1, a solid product of hydrotalcite particles was obtained.
  • sodium hydrogencarbonate was added to 2 L of the crushed slurry so as to be 1/2 mol per 1 mol of magnesium hydroxide, and the whole was adjusted to 8 L with water and stirred for 10 minutes.
  • 3 L of this slurry was transferred to an autoclave and subjected to a hydrothermal reaction at 170 ° C. for 2 hours to obtain a hydrotalcite particle slurry.
  • hydrotalcite particle slurry While maintaining the obtained hydrotalcite particle slurry at 95 ° C., 1.4 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) was added to carry out surface treatment of the particles. Then, it was filtered, washed with water, and evaporated to dryness, and ground in a sample mill to obtain a solid product of hydrotalcite particles.
  • hydrotalcite particle slurry To the obtained hydrotalcite particle slurry was added 1.1 g of stearic acid, and the particles were surface-treated while being stirred. The resulting reaction suspension was filtered and washed with water, dried at 70 ° C., and then ground in a small sample mill to obtain a solid product of hydrotalcite particles.
  • Table 1 shows the concentration and temperature of the aluminate solution of the reaction system in the second step, the aeration amount and aeration time of carbon dioxide gas, and the pH, and the pH of the primary reaction system in the third step.
  • Mg / Al (molar ratio) was measured using an ICP emission analyzer (Optima-8300, manufactured by Perkin Elmer, Inc.). As pretreatment, hydrotalcite particles were weighed, mixed with hydrochloric acid, and then heated and dissolved to obtain a sample solution. Thereafter, the obtained sample solution was diluted to a predetermined concentration using ion exchange water, and a measurement value was obtained using a calibration curve method.
  • Total carbonated concentration A carbon / sulfur analyzer (manufactured by HORIBA, EMIA-920V) was used. After hydrotalcite particles are weighed in a crucible and mixed with tungsten powder (manufactured by HORIBA Co., Ltd.) and iron powder (manufactured by Kishida Chemical Co., Ltd.) which are auxiliary agents, they are completely burned in a high frequency induction heating furnace and generated. Water was removed from the resulting gas and introduced into an infrared gas analyzer to obtain a measured value, which was taken as the total carbonic acid concentration.
  • the obtained resin composition was kneaded for 5 minutes with a roll at 160 ° C. and molded to produce a sheet. Oven heat resistance, press heat resistance, and transparency were evaluated by the method shown below using the produced sheet
  • Example 1 after performing a usual drying process at about 105 degreeC with respect to the low crystalline aluminum compound obtained at the said 2nd process, XRD measurement is performed according to the method of said [XRD measurement], and X A line diffraction pattern was obtained. The results are shown in FIG.
  • Example 1 and Comparative Example 1 the hydrotalcite particles finally obtained were subjected to XRD measurement according to the method of [XRD measurement] to obtain an X-ray diffraction pattern.
  • the results are shown in FIG. 3 (a).
  • the enlarged view of the diffraction peak of crystal plane (012), (015), and (018) in this X-ray-diffraction pattern is shown in FIG.3 (b).
  • the hydrotalcite particles obtained in Examples 1 to 6 are all obtained by sequentially performing the first to fourth steps in the production method of the present invention, and FIG.
  • the diffraction peaks of crystal faces (012), (015) and (018) are sharp and the (015) ratio is as large as 4000 cps / degree or more.
  • each of these hydrotalcite particles has a BET specific surface area as small as 8 m 2 / g to 18 m 2 / g.
  • grains is excellent in oven heat resistance, press heat resistance, and transparency in all.
  • the hydrotalcite particles obtained in Comparative Examples 1 to 5 are all obtained by the conventional manufacturing method, and as represented by the results of Comparative Example 1 in FIG. Diffraction peaks of (015) and (018) are broad, and the (015) ratio is as small as less than 4000 cps / degree.
  • the resin composition obtained by blending these hydrotalcite particles is inferior to the resin compositions of Examples 1 to 6 in all of the oven heat resistance, press heat resistance and transparency. is there.
  • the hydrotalcite particles of Comparative Example 3 have a relatively large ratio (015) in Comparative Examples 1 to 5, and the resin composition obtained by blending the hydrotalcite particles has an oven heat resistance and a press heat resistance. Although the nature is good, the transparency is insufficient.
  • the stacking irregularity index (Is) defined by the angle) is determined. As a result, while the stacking misalignment index (Is) of the crystal face (015) of the hydrotalcite particles obtained in Comparative Example 5 exceeded 2, the hydrotalcites obtained in Examples 1 to 6 were obtained.
  • the particles were all less than 1.2. Thereby, the diffraction peak of the hydrotalcite particle obtained in Comparative Example 5 is a very asymmetric peak, but the diffraction peak of the hydrotalcite particle obtained in Examples 1 to 6 is a peak close to symmetry, It is understood that the hydrotalcite particles obtained in Examples 1 to 6 are completely different from the hydrotalcite particles obtained in Comparative Example 5.
  • hydrotalcite particles of the present invention are useful, for example, as additives for resins such as resin stabilizers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

水酸化アルミニウムをアルカリ溶液で溶解し、アルミン酸塩溶液を調製する第1工程、第1工程で得られたアルミン酸塩溶液と炭酸ガスとを反応させ、低結晶性アルミニウム化合物を析出させる第2工程、第2工程で得られた低結晶性アルミニウム化合物とマグネシウム化合物とを混合して一次反応させ、ハイドロタルサイト核粒子を含む反応物を調製する第3工程、及び第3工程で得られた反応物を水熱反応させ、ハイドロタルサイト粒子を合成する第4工程を含む製造方法により、優れた耐熱性、透明性、流動性等を付与することができ、樹脂安定剤等として有用なハイドロタルサイト粒子が得られる。

Description

ハイドロタルサイト粒子及びその製造方法、並びにそれからなる樹脂安定剤及び樹脂組成物
 本発明は、ハイドロタルサイト粒子及びその製造方法、並びに、該ハイドロタルサイト粒子からなる樹脂安定剤及び該ハイドロタルサイト粒子を含有してなる樹脂組成物に関する。
 ハイドロタルサイトは、一般式:[M2+ 1-x3+ (OH)][An- x/n・mHO](式中、M2+は2価の金属イオン、M3+は3価の金属イオン、An- x/nは層間陰イオンを示し、0<x<1であり、nはAの価数、0≦m<1である)で表される化合物の1つであり、触媒、医薬品、樹脂用添加剤等として広く利用されている。
 従来、その使用目的に応じた特性を有するハイドロタルサイトを効率的に得るための方法や、該方法によって得られるハイドロタルサイトが種々提案されている。
 例えば、特許文献1には、特定割合のアルミニウム類とアルカリとからなるアルミニウム溶液に、アルミニウムに対して特定量の炭酸化合物を添加すると共に、アルミニウムに対して特定量のマグネシウム塩を添加して反応させる方法が開示されている。
 特許文献2には、マグネシウム化合物及び/又は亜鉛化合物とアルミニウム化合物とを原料とし、該原料のうち水酸化物等とカルボン酸基含有化合物とを含有しており、特定範囲の固形分濃度を有するスラリーを調製し、これを特定範囲の平均2次粒子径となるように湿式粉砕して残りの原料を添加した後、水熱処理する方法が開示されている。
 特許文献3には、アルカリ金属塩を含有せず、少なくとも湿式粉砕された水酸化アルミニウムである3価金属化合物とマグネシウム化合物を含む2価金属化合物とを含む混合懸濁液を反応させる方法が開示されている。
 特許文献4には、Is=tanθ2/tanθ1(θ1は特定範囲の面間隔のX線回折ピークにおけるピーク垂線と挟角側ピーク接線とがなす角度、θ2は該ピークにおけるピーク垂線と広角側ピーク接線とがなす角度)で定義される積層不整指数(Is)が特定値以上であるハイドロタルサイト類、及びこれを含む樹脂用配合剤が開示されている。
特開2003-048712号公報 特開2013-103854号公報 特開2004-099391号公報 特開平06-136179号公報
 しかしながら、特許文献1に開示の方法では、アルミニウム溶液に炭酸化合物とマグネシウム塩とを同時に添加して反応させただけであるので、ハイドロタルサイトの粒子を充分に成長させることができない。このような粒子径が比較的小さいハイドロタルサイトは、比表面積が大きくなり、樹脂に添加した際にハイドロタルサイトが有する塩基性の影響が大きくなって、樹脂組成物の初期着色性が悪くなるという点や、粒子径が小さいと凝集しやすく、樹脂中で分散不良を起こすという点で、例えば樹脂添加剤としては不適切である。
 特許文献2及び3に開示の方法では、水酸化アルミニウムを含むアルミニウム化合物に炭酸ガスを接触させることなく、マグネシウム化合物と反応させているので、反応系において、ハイドロタルサイトの合成に重要な役割を担うとされる炭酸イオンが不足し、種晶の生成が不充分となる。その結果、粒子径等の物性や特性が統一されたハイドロタルサイトを容易に得ることが困難となる。
 特許文献4に開示のハイドロタルサイト類は、その特定のX線回折ピークが非対称で、X線回折学的に特徴的な微細構造を有するものであり、これを含む樹脂用配合剤は、樹脂との乾式ブレンドが容易な良好な流動性を有する。しかしながら、該樹脂用配合剤を用いても、樹脂の耐熱性は未だ不充分であり、着色が抑制され難いという点で、特に塩化ビニル系樹脂用の配合剤としては不適切である。
 このように、充分に優れた耐熱性、透明性、流動性等を、同時に樹脂に付与することができるハイドロタルサイト、及びこのようなハイドロタルサイトを効率よく製造することができる方法は、未だ見出されていない。
 本発明に係るハイドロタルサイト粒子の製造方法は、
水酸化アルミニウムをアルカリ溶液で溶解し、アルミン酸塩溶液を調製する第1工程、
前記第1工程で得られたアルミン酸塩溶液と炭酸ガスとを反応させ、低結晶性アルミニウム化合物を析出させる第2工程、
前記第2工程で得られた低結晶性アルミニウム化合物とマグネシウム化合物とを混合して一次反応させ、ハイドロタルサイト核粒子を含む反応物を調製する第3工程、及び
前記第3工程で得られた反応物を水熱反応させ、ハイドロタルサイト粒子を合成する第4工程
を含む
ことを特徴とする。
 前記製造方法において、以下の(a)~(d)が好ましい。
(a)さらに、前記第4工程で得られたハイドロタルサイト粒子に対して表面処理を行う第5工程を含むこと。
(b)前記第2工程における低結晶性アルミニウム化合物は、擬ベーマイトであること。
(c)前記第2工程における低結晶性アルミニウム化合物は、X線回折パターンにおける2θ/θ=38°の回折ピークから求めた結晶子サイズが35Å以下であること。
(d)前記第2工程における低結晶性アルミニウム化合物は、BET比表面積が100m/g~350m/gであること。
 本発明に係るハイドロタルサイト粒子は、
X線回折パターンにおける結晶面(015)の回折ピークの強度と半値幅との比(強度/半値幅)が、4000cps/degree以上である
ことを特徴とする。
 前記ハイドロタルサイト粒子において、好ましくは、BET比表面積が8m/g~18m/gである。
 本発明に係る樹脂安定剤は、前記ハイドロタルサイト粒子からなるものである。
 本発明に係る樹脂組成物は、樹脂と、前記ハイドロタルサイト粒子とを含有してなるものである。
 本発明の製造方法により、優れた耐熱性、透明性、流動性等を同時に樹脂に付与することができ、例えば樹脂安定剤として有用なハイドロタルサイト粒子を効率よく製造することができる。
図1(a)は、本発明の一実施態様において、真空凍結乾燥処理を行った低結晶性アルミニウム化合物のX線回折パターンであり、図1(b)は、該低結晶性アルミニウム化合物の走査型電子顕微鏡写真である。 図2は、本発明の実施例1における、通常の乾燥処理を行った低結晶性アルミニウム化合物のX線回折パターンである。 図3(a)は、本発明の実施例1及び比較例1における、ハイドロタルサイト粒子のX線回折パターンであり、図3(b)は、該X線回折パターンにおける回折ピークの部分拡大図である。
<ハイドロタルサイト粒子の製造方法>
 本発明の一実施態様に係るハイドロタルサイト粒子の製造方法について説明する。
 本発明の一実施態様に係るハイドロタルサイト粒子の製造方法には、少なくとも、以下の4つの工程が含まれる。
第1工程:水酸化アルミニウムをアルカリ溶液で溶解し、アルミン酸塩溶液を調製する工程。
第2工程:前記第1工程で得られたアルミン酸塩溶液と炭酸ガスとを反応させ、低結晶性アルミニウム化合物を析出させる工程。
第3工程:前記第2工程で得られた低結晶性アルミニウム化合物とマグネシウム化合物とを混合して一次反応させ、ハイドロタルサイト核粒子を含む反応物を調製する工程。
第4工程:前記第3工程で得られた反応物を水熱反応させ、ハイドロタルサイト粒子を合成する工程。
 なお、本発明の製造方法は、必要に応じてこれら4つの工程以外のその他の工程を含むことができる。必要に応じて行われるその他の工程については、後に説明する。
(第1工程:アルミン酸塩溶液の調製)
 第1工程では、水酸化アルミニウムとアルカリ溶液とから、アルミン酸塩溶液を調製する。
 第1工程で用いられる水酸化アルミニウムには、例えば、γ型Al(OH)のギブサイト又はハイドラーギライト、α型Al(OH)のバイヤライト、β型Al(OH)のノルトストランド石、γ型Al(OOH)のベーマイト、α型Al(OOH)のダイアスポア等があるが、特に限定はない。またアルカリ溶液も、水酸化アルミニウムを溶解させることができる限り、特に限定はない。該アルカリ溶液としては、例えば、水酸化ナトリウム溶液、水酸化カリウム溶液等が挙げられ、これらは単独で、又は2種以上を同時に用いることができる。これらの中では、水酸化アルミニウムが溶解し易く、取扱い性が良好である点で、水酸化ナトリウム溶液が好ましい。
 アルミン酸塩溶液を調製する際の水酸化アルミニウムとアルカリ溶液との割合は、アルカリ溶液/水酸化アルミニウム(モル比)が1.3~1.7、さらには1.4~1.6となるように調整することが好ましい。両成分の割合が前記下限値未満である場合、容易に、水酸化アルミニウムをアルカリ溶液に充分に溶解させることが困難となる恐れがある。両成分の割合が前記上限値を超える場合、次の第2工程で析出させる低結晶性アルミニウム化合物の量が不充分となる恐れがある。
 例えば、モル比が前記範囲内となるように調整した水酸化アルミニウム及びアルカリ溶液を、約100℃~130℃に加温して、約0.5時間~6時間撹拌することにより、例えばアルミン酸ソーダ溶液、アルミン酸カリウム溶液等のアルミン酸塩溶液を得ることができる。該撹拌の手段には特に限定がなく、例えば、汎用のスターラー、ミキサー等を用いることができる。
(第2工程:低結晶性アルミニウム化合物の析出)
 第2工程では、前記第1工程で得られたアルミン酸塩溶液と炭酸ガスとを反応させ、低結晶性アルミニウム化合物を析出させる。本発明の製造方法では、この第2工程における低結晶性アルミニウム化合物の析出が大きな特徴の1つであり、次の第3工程での種晶の生成及び最適化の基盤となる。
 アルミン酸塩溶液に炭酸ガスを接触させると、アルミン酸塩溶液と分散した炭酸ガスの気泡とが反応する気液界面反応が起こり、気泡界面に低結晶性アルミニウム化合物が析出する。
 アルミン酸塩溶液に炭酸ガスを接触させる際の条件は、前記気液界面反応が充分に起こり、所望の低結晶性アルミニウム化合物が析出するように適宜調整することが好ましい。例えば、アルミン酸塩溶液の濃度を、約0.05mol/L~3mol/L、さらには約0.2mol/L~1.6mol/Lに調整し、約5℃~70℃、さらには約25℃~65℃に保ちながら、炭酸ガスを、約0.5L/分~1.0L/分、さらには約0.6L/分~0.9L/分の通気量で、約50分間~150分間、さらには約50分間~120分間、特に約60分間~105分間に亘って通気することが好ましい。特に、アルミン酸塩溶液の濃度や温度が前記範囲を外れる場合や、炭酸ガスの通気量や通気時間が前記範囲を外れる場合には、ドーソナイトの粗大粒子が生成し、最終的に得られるハイドロタルサイト粒子を樹脂に添加した際に、樹脂組成物の透明性が低下する恐れがあるので、これらアルミン酸塩溶液の濃度や温度及び炭酸ガスの通気量や通気時間を、各々前記範囲内となるように調整することが好ましい。
 ここで、反応系における全炭酸中の各炭酸根(CO、HCO 、及びCO 2-)の比率は、反応系のpHによって変化する。アルミン酸塩溶液と炭酸ガスとの反応系のpHは、7.0~9.0、さらには7.5~8.5であることが好ましい。pHがこの範囲である場合、後述するように、次の第3工程において炭酸イオン(CO 2-)へと変換される炭酸根である重炭酸イオン(HCO )を充分に確保することができる。
 このようにアルミン酸塩溶液と炭酸ガスとを反応させることによって気泡界面に析出した低結晶性アルミニウム化合物の特性を評価する際には、水洗、乾燥等の前処理を行うことが好ましい。例えば、乾燥処理は、約50℃~110℃、さらには約60℃~105℃で行うことができる。また、このような前処理を行う場合、析出した低結晶性アルミニウム化合物に付着した炭酸成分の量(全炭酸濃度)は、0.3重量%~1.6重量%、さらには0.4重量%~1.5重量%であることが好ましい。
 なお、本明細書において、反応系や化合物中の各炭酸根(CO、HCO 、及びCO 2-)の総量、すなわち「炭酸成分の量」を、「全炭酸濃度」ともいう。
 低結晶性アルミニウム化合物は、反応溶液から取り出して通常の乾燥工程を行った場合、結晶性が高くなる場合があるため、低結晶性アルミニウム化合物の特性をより明確に評価するために、一例として、低結晶性アルミニウム化合物に対して真空凍結乾燥処理を行ってもよい。低結晶性アルミニウム化合物を前処理する場合は、乾燥により炭酸成分が揮発することを考慮すると、該真空凍結乾燥処理を行うことが望ましい。該真空凍結乾燥処理の条件に特に限定はなく、例えば、約-45℃で予備凍結を行い、約0.01Torr~1Torrの気圧で、約12時間に亘って一次乾燥を行った後、約25℃まで昇温し、二次乾燥を行うことが好ましい。
 一例として、アルミン酸塩溶液と炭酸ガスとを反応させ、析出した低結晶性アルミニウム化合物に真空凍結乾燥処理を行った場合の低結晶性アルミニウム化合物について、X線回折測定(以下、XRD測定という)を行い、X線回折パターンを得た。また該真空凍結乾燥処理を行った場合の低結晶性アルミニウム化合物の走査型電子顕微鏡写真を撮影した。これらの結果を図1に示す。図1(a)(b)は、アルミン酸塩溶液と炭酸ガスとを70分間反応させて真空凍結乾燥処理を行った場合の結果である。図1(a)に示すように、低結晶性アルミニウム化合物が得られていることが分かる。また図1(b)に示すように、得られた低結晶性アルミニウム化合物は微細な粒子であることが分かる。
 前記のとおり、気泡界面に析出した低結晶性アルミニウム化合物は、結晶性が非常に低く、非晶質に近いアルミニウム化合物である。該低結晶性アルミニウム化合物としては、例えば、ほぼ非晶質の擬ベーマイト(ベーマイトゲル)等が挙げられる。
 析出した低結晶性アルミニウム化合物についてXRD測定を行い、得られたX線回折パターンにおける所定の回折ピークから、その結晶子サイズを求めることができる。例えば、X線回折パターンにおける2θ/θ=38°の回折ピークから求めた結晶子サイズが35Å以下、さらには30Å以下の低結晶性アルミニウム化合物は、次の第3工程におけるマグネシウム化合物との一次反応が良好に進行する点で好ましい。なお、該一次反応に使用される炭酸成分を担持させるためには、微粒子かつ一定の形状を保持することが好ましいが、結晶子サイズが小さすぎると形状を保持することが困難であるという点で、該低結晶性アルミニウム化合物の結晶子サイズは3Å以上であることが好ましい。
 なお、前記X線回折パターンにおける2θ/θ=38°の回折ピークから求めた結晶子サイズは、例えば、析出した低結晶性アルミニウム化合物に対して約105℃で乾燥処理を行った場合に得ることができる。また、該乾燥処理の代わりに、低結晶性アルミニウム化合物に対して前記真空凍結乾燥処理を行った場合には、例えば25Åから20Åというように、結晶子サイズをさらに小さくすることができる。
 低結晶性アルミニウム化合物は、BET比表面積が100m/g~350m/g、さらには120m/g~300m/gであることが好ましい。低結晶性アルミニウム化合物の表面には、用いた炭酸ガス由来の炭酸成分が付着していると考えられるが、BET比表面積が前記下限値未満である場合、低結晶性アルミニウム化合物が、一定の形状を保持することが困難となり、付着する炭酸成分の量が不充分となる恐れがある。BET比表面積が前記上限値を超える場合、次の第3工程におけるマグネシウム化合物との一次反応が良好に進行しない恐れがある。
 なお、次の第3工程におけるマグネシウム化合物との反応性及び作業性を考慮して、低結晶性アルミニウム化合物を、例えばスラリー状に調整しておくことが好ましい。スラリー状に調整する際の媒体には特に限定がなく、例えば、水や、低結晶性アルミニウム化合物に悪影響を与えない水以外の液体媒体等を用いることができる。
(第3工程:ハイドロタルサイト核粒子を含む反応物の調製)
 第3工程では、前記第2工程で得られた低結晶性アルミニウム化合物とマグネシウム化合物とを混合して一次反応させ、ハイドロタルサイト核粒子を含む反応物を調製する。この第3工程では、該低結晶性アルミニウム化合物に基づいて種晶が生成され、次の第4工程におけるハイドロタルサイト粒子の合成に向けて、該種晶が最適化される。
 第3工程で用いられるマグネシウム化合物としては、例えば、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム等が挙げられ、これらは単独で、又は2種以上を同時に用いることができる。これらの中では、低結晶性アルミニウム化合物と反応し易く、取扱い性が良好である点で、酸化マグネシウムが好ましい。なお、マグネシウム化合物は粉末状や微粒子状で用いてもよいが、低結晶性アルミニウム化合物との反応性及び作業性を考慮して、例えばスラリー状に調整しておくことが好ましい。スラリー状に調整する際の媒体には特に限定がなく、例えば、水や、マグネシウム化合物に悪影響を与えない水以外の液体媒体等を用いることができる。
 一次反応系における低結晶性アルミニウム化合物とマグネシウム化合物との割合は、目的とするハイドロタルサイト粒子のMg/Al(モル比)が2.0~5.7、さらには2.0~3.0となるように調整することが好ましい。Mg/Al(モル比)が前記範囲内となるようにすると共に、後述するように一次反応系の全炭素濃度やハイドロタルサイト核粒子を含む反応物のBET比表面積を適宜調整することにより、種晶の最適化がなされる。
 例えば、AlとMgとのモル比が前記範囲内となるように調整した低結晶性アルミニウム化合物及びマグネシウム化合物を、約20℃~80℃に加温して、約0.5時間~2時間撹拌混合して一次反応させることにより、ハイドロタルサイト核粒子を含む反応物を得ることができる。
 ここで、前記のとおり、反応系における全炭酸中の各炭酸根(CO、HCO 、及びCO 2-)の比率は、反応系のpHによって変化する。前記一次反応系のpHは、9.5~11.0、さらには9.7~10.5であることが好ましい。pHがこの範囲である場合、次の第4工程におけるハイドロタルサイト粒子の合成に必要な炭酸根である炭酸イオン(CO 2-)を充分に確保することができる。なお、得られる反応物に含まれるハイドロタルサイト核粒子に付着した炭酸成分の量(全炭酸濃度)は、2.0重量%~4.5重量%、さらには2.3重量%~4.2重量%であることが好ましい。
 ハイドロタルサイト核粒子を含む反応物は、BET比表面積が80m/g~150m/g、さらには90m/g~130m/gであることが好ましい。ハイドロタルサイト核粒子の表面には炭酸成分が付着していると考えられるが、BET比表面積が前記下限値未満である場合、ハイドロタルサイト粒子の成長に必要な炭酸成分の量を確保することが困難となる恐れがある。BET比表面積が前記上限値を超える場合、次の第4工程における水熱反応によるハイドロタルサイト粒子の合成が良好に進行しない恐れがある。
(第4工程:ハイドロタルサイト粒子の合成)
 第4工程では、前記第3工程で得られた反応物を水熱反応させ、ハイドロタルサイト粒子を合成する。該水熱反応により粒子の成長が促進され、目的とするハイドロタルサイト粒子が得られる。
 前記反応物の水熱反応は、特に限定はないが、例えばオートクレーブ等の耐熱容器中において行うことが好ましい。水熱反応の際の反応温度には特に限定はないが、約120℃~250℃、さらには約130℃~240℃に調整することが好ましく、反応時間にも特に限定はないが、約2時間~10時間、さらには約4時間~8時間であることが好ましい。また、前記耐熱容器内の圧力にも特に限定はないが、約0.1MPa~10MPa、さらには約0.5MPa~8MPaに調整することが好ましい。
 このように、前記第1工程~第4工程を順に行うことにより、後述するとおり、目的とするハイドロタルサイト粒子を得ることができるが、本発明の製造方法では、さらに以下の工程を行うこともできる。
(第5工程:ハイドロタルサイト粒子の表面処理)
 第5工程では、前記第4工程で得られたハイドロタルサイト粒子に対して表面処理を行う。該表面処理を行うことにより、ハイドロタルサイト粒子の分散性をより向上させることができる。
 前記表面処理に用いる表面処理剤には特に限定がなく、例えば、ステアリン酸、オレイン酸、エルカ酸、パルミチン酸、ラウリン酸等の高級脂肪酸、これら高級脂肪酸のリチウム塩、ナトリウム塩、カリウム塩等の高級脂肪酸金属塩(金属石ケン)等の高級脂肪酸類;ステアリルアルコール、オレイルアルコール等の高級アルコールの硫酸エステル塩、ポリエチレングリコールエーテルの硫酸エステル塩、アミド結合硫酸エステル塩、エーテル結合スルホン酸塩、エステル結合スルホネート、アミド結合アルキルアリールスルホン酸塩、エーテル結合アルキルアリールスルホン酸塩等のアニオン性界面活性剤;オルトリン酸とオレイルアルコール、ステアリルアルコール等とのモノ又はジエステル又はこれらの混合物で、これらの酸型、アルカリ金属塩、アミン塩等のリン酸エステル;ビニルエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、γ-アミノプロピルトリメトキシシラン等のシランカップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリデシルベンゼンスルホニルチタネート等のチタンカップリング剤、アセトアルコキシアルミニウムジイソプロピレート等のアルミニウムカップリング剤等のカップリング剤等が挙げられ、これらは単独で、又は2種以上を同時に用いることができる。これらの中では、ハイドロタルサイト粒子の分散性を向上させる効果が大きく、取扱い性に優れる点で、ステアリン酸が好ましい。
 前記表面処理剤の量は、該表面処理剤を用いることによる効果を効率よく得るには、ハイドロタルサイト粒子100質量部に対して、約0.1~10質量部、さらには約0.5~8質量部であることが好ましい。
 表面処理の方法には特に限定がなく、従来の湿式法、乾式法等の通常の処理方法を適宜採用することができる。例えば湿式法を採用する場合は、ハイドロタルサイト粒子を含有するスラリーに、前記表面処理剤を液状、エマルジョン状で添加して攪拌し、必要に応じて、例えば約100℃までの温度に加熱して充分に混合した後、ハイドロタルサイト粒子を濾過、水洗、及び乾燥すればよい。例えば乾式法を採用する場合は、ハイドロタルサイト粒子をヘンシェルミキサー等の混合機にて充分に攪拌しながら、前記表面処理剤を液状、エマルジョン状、固形状で添加し、加熱又は非加熱下で充分に混合すればよい。
(ろ過工程、水洗工程、乾燥工程及び粉砕工程)
 本発明の製造方法では、前記第4工程又は前記第5工程の後に、ろ過工程、水洗工程、乾燥工程及び粉砕工程を順に行うことが好ましい。
 第4工程での水熱反応によって得られたハイドロタルサイト粒子又は第5工程での表面処理が施されたハイドロタルサイト粒子をろ過し、ハイドロタルサイト粒子を含む固形物(ケーキ)とろ液とを分離する。次いで回収した固形物を1回又は複数回水洗した後、ろ別した固形分を回収する。次いで回収した固形分をオーブン等の乾燥機で乾燥させた後、固形分を乾式粉砕すればよい。
<ハイドロタルサイト粒子>
 例えば前記各工程を経て得られる、本発明の一実施態様に係るハイドロタルサイト粒子についてXRD測定を行うと、得られるX線回折パターンにおいて特徴的な回折ピークが認められる。
 従来の各種ハイドロタルサイトの場合、それらのX線回折パターンはほぼ同等であるが、本発明のハイドロタルサイト粒子のX線回折パターンは、従来のものとは異なる。具体的には、本発明のハイドロタルサイト粒子は、2θ/θ=30°~50°のピーク形状に特徴があり、結晶面(012)、(015)、及び(018)において、各々の回折ピークが従来のハイドロタルサイトの回折ピークと大きく異なる。この差異は結晶性の差異であり、本発明のハイドロタルサイト粒子は、従来のハイドロタルサイトと比較して、結晶面(012)、(015)、及び(018)の結晶性が高く、この結晶性の高さは、Mg-Alの規則的な配列に基づくと考えられる。従来のハイドロタルサイトのこれらの結晶面においては、長距離秩序は存在するものの、短距離秩序は低い。これに対して、本発明のハイドロタルサイト粒子のこれらの結晶面においては、長距離秩序が存在するのは勿論のこと、短距離秩序が高く、このことから、本発明のハイドロタルサイト粒子は結晶性が高いと判断される。
 なお、各種ハイドロタルサイトにおいて、結晶面(003)と(006)との距離は、MgとAlとの比(Mg/Al)に依存していることから、ほとんど差異がないが、本発明のハイドロタルサイト粒子は、結晶成長が充分になされたものであるので、従来のハイドロタルサイトと比較して、1粒子中の結晶面(003)と(006)とのユニット数が多く、後述するように、例えば塩化ビニル系樹脂に充分に優れた耐熱性や透明性を付与し得る樹脂安定剤とすることができる。
 本発明のハイドロタルサイト粒子は、前記結晶面(012)、(015)、及び(018)のうち、結晶面(015)の回折ピークの強度と半値幅との比(強度/半値幅)が、4000cps/degree以上、好ましくは5000cps/degree以上であるので、優れた耐熱性、透明性、流動性等を同時に樹脂に付与することができる。なお、強度と半値幅との比が大きいほど、ハイドロタルサイト粒子の結晶性が高く、例えば樹脂に添加した際に、樹脂組成物の透明性が向上するが、該強度と半値幅との比が大き過ぎると、ハイドロタルサイト粒子が成長し過ぎて反応性が低下する恐れがあるという点から、該強度と半値幅との比は、15000cps/degree以下であることが好ましい。
 本発明のハイドロタルサイト粒子は、BET比表面積が8m/g~18m/g、さらには10m/g~15m/gであることが好ましい。BET比表面積はハイドロタルサイト粒子の反応性の指標となるものであり、該BET比表面積が小さ過ぎると、反応性が低くなってしまう。逆にBET比表面積が大き過ぎると、反応性(塩基性)が高過ぎて、樹脂に添加した際に樹脂の劣化の要因となる。また、BET比表面積が大きいことは、粒子サイズが小さいことを意味しており、粒子サイズが小さ過ぎるハイドロタルサイト粒子は、凝集性が高いため、樹脂中で分散不良を起こす。よって、ハイドロタルサイト粒子のBET比表面積は前記範囲であることが好ましい。
 本発明のハイドロタルサイト粒子の具体例としては、例えば、以下の式(1):
(Mg2+1-p(Al3+(OH)(CO 2-p/2・qHO  (1)
(式中、pは、好ましくは0.15≦p≦0.33、さらに好ましくは0.20≦p≦0.33であり、qは、好ましくは0≦q<1である)で表わされるものが好適に挙げられる。
<樹脂安定剤>
 本発明の樹脂安定剤は、前記ハイドロタルサイト粒子からなるものである。該樹脂安定剤は、その成分全てが該ハイドロタルサイト粒子であってもよく、ハイドロタルサイト粒子と共に、一般に樹脂用の熱安定剤として用いられている化合物が配合されたものであってもよい。
 前記一般に樹脂用の熱安定剤として用いられている化合物には特に限定がないが、例えば、ステアリン酸系金属石鹸、ヒドロキシステアリン酸系金属石鹸、ラウリン酸系金属石鹸、ブチル安息香酸系金属石鹸、リン酸エステル系金属石鹸等の金属石鹸;三塩基性硫酸鉛、二塩基性亜硫酸鉛、二塩基性亜リン酸鉛、二塩基性ステアリン酸鉛等の無機鉛化合物;ジメチルスズメルカプト系化合物、ジオクチルスズメルカプト系化合物、ジオクチルスズラウレート系化合物等の有機スズ化合物等があげられ、これらは単独で、又は2種以上を同時に用いることができる。
 ハイドロタルサイト粒子と共に、一般に樹脂用の熱安定剤として用いることができる化合物を配合する場合は、目的に応じて、ハイドロタルサイト粒子と該化合物との割合を適宜調整することが好ましい。
 本発明の樹脂安定剤を適用する樹脂には特に限定がなく、通常の熱可塑性樹脂及び熱硬化性樹脂が挙げられる。
 前記熱可塑性樹脂としては、例えば、ポリエチレン、塩素化ポリエチレン、ポリプロピレン、塩素化ポリプロピレン、エチレン-プロピレン共重合体、ポリブテン、ポリ(4-メチルペンテン-1)等のC2~C8オレフィン(α-オレフィン)重合体又は共重合体、これらC2~C8オレフィンとジエンとの共重合体等のオレフィン系樹脂;ポリスチレン、ABS樹脂、AAS樹脂、AS樹脂、MBS樹脂等のスチレン系樹脂;エチレン-塩化ビニル共重合体、エチレン-塩化ビニル-酢酸ビニルグラフト共重合体、塩化ビニリデン、ポリ塩化ビニル、塩化ビニル-プロピレン共重合体等の塩化ビニル系樹脂等が挙げられる。本発明の樹脂安定剤は、特に該塩化ビニル系樹脂用の安定剤として有用であり、塩化ビニル系樹脂に優れた耐熱性及び透明性を付与することができる。
 前記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、尿素樹脂等が挙げられる。
 本発明の樹脂安定剤を樹脂に配合する場合、その量は、樹脂の種類等に応じて適宜調整することが好ましいが、例えば、樹脂100質量部に対して約0.01質量部~50質量部、さらには約0.1質量部~40質量部であることが好ましい。
<樹脂組成物>
 本発明の樹脂組成物は、少なくとも、樹脂と、前記ハイドロタルサイト粒子とを含有するものである。
 前記樹脂には特に限定がなく、例えば、前記樹脂安定剤を適用することができる樹脂として例示した、通常の熱可塑性樹脂及び熱硬化性樹脂が挙げられる。
 樹脂組成物中のハイドロタルサイト粒子の量は、該ハイドロタルサイト粒子を配合したことによる耐熱性、透明性、流動性等の向上効果が充分に発揮される限り特に限定はなく、例えば樹脂100質量部に対して約0.01質量部~50質量部、さらには約0.1質量部~40質量部であることが好ましい。
 樹脂組成物の調製方法には特に限定がなく、通常の方法にて、ハイドロタルサイト粒子と、必要に応じて他の添加剤とを、樹脂に均一に配合すればよい。例えば、リボンブレンダー、高速ミキサー、ニーダー等の公知の混合手段を用いてハイドロタルサイト粒子を樹脂に配合する方法、ハイドロタルサイト粒子の懸濁液を重合後のスラリーに添加した後、攪拌及び混合し、乾燥する方法等が挙げられる。
 本発明の樹脂組成物が必要に応じて含有してもよい前記添加剤としては、例えば、酸化防止剤、紫外線防止剤、帯電防止剤、顔料、発泡剤、可塑剤、充填剤、補強剤、難燃剤、架橋剤、光安定剤、紫外線吸収剤、滑剤、前記ハイドロタルサイト粒子以外の熱安定剤、水等が挙げられる。
 前記ハイドロタルサイト粒子が配合された本発明の樹脂組成物は、特に耐熱性、透明性、流動性等に優れる。
 以下に、実施例及び比較例を挙げて、本発明のハイドロタルサイト粒子及びその製造方法、並びにそれからなる樹脂安定剤及び樹脂組成物をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1:ハイドロタルサイト粒子の合成
 2L容のステンレス容器にて、48%水酸化ナトリウム溶液(関東化学(株)製、鹿特級)1110mLに、水酸化アルミニウム粉末(関東化学(株)製、鹿特級)730gを投入し、124℃で1時間撹拌してアルミン酸ソーダ溶液を得た(第1工程)。
 次いで、前記アルミン酸ソーダ溶液を80℃まで冷却した後、全量が1500mLとなるようにイオン交換水を投入した。
 1L容のステンレス容器に、前記アルミン酸ソーダ溶液96mLを分取した後、全量が730mLとなるように純水を投入し(アルミン酸ソーダ溶液の濃度:0.8mol/L)、25℃に保ちながら撹拌して、炭酸ガスを0.7L/分の通気量で60分間に亘って通気し、調整済水酸化アルミニウムスラリー(低結晶性アルミニウム化合物=擬ベーマイト)を得た(第2工程)。
 別途、純水327mLに酸化マグネシウム粉末(関東化学(株)製、特級)49.5gを添加し、1時間撹拌して酸化マグネシウムスラリーを得た。
 1.5L容のステンレス容器にて、純水257mLに、前記酸化マグネシウムスラリー及び調整済水酸化アルミニウムスラリーを投入し、55℃で90分間攪拌して一次反応させ、ハイドロタルサイト核粒子を含む反応物を得た(第3工程)。
 その後、前記反応物に純水を加えて全量を1Lとし、これを2L容のオートクレーブに入れ、160℃で7時間水熱合成を行い、ハイドロタルサイト粒子スラリーを得た(第4工程)。
 得られたハイドロタルサイト粒子スラリーを95℃に保持しながら、ステアリン酸4.3g(ハイドロタルサイト粒子100質量部に対して3質量部)を加えて粒子の表面処理を行った(第5工程)。これをろ過及び洗浄した後、100℃で乾燥してハイドロタルサイト粒子の固形生成物を得た。得られたハイドロタルサイト粒子の元素分析を行った結果、Mg/Al(モル比)=2.1であった。
実施例2:ハイドロタルサイト粒子の合成
 2L容のステンレス容器にて、48%水酸化ナトリウム溶液(関東化学(株)製、鹿特級)1110mLに、水酸化アルミニウム粉末(関東化学(株)製、鹿特級)730gを投入し、124℃で1時間撹拌してアルミン酸ソーダ溶液を得た(第1工程)。
 次いで、前記アルミン酸ソーダ溶液を80℃まで冷却した後、全量が1500mLとなるようにイオン交換水を投入した。
 1L容のステンレス容器に、前記アルミン酸ソーダ溶液96mLを分取した後、全量が730mLになるように純水を投入し(アルミン酸ソーダ溶液の濃度:0.8mol/L)、30℃に保ちながら撹拌して、炭酸ガスを0.7L/分の通気量で90分間に亘って通気し、調整済水酸化アルミニウムスラリー(低結晶性アルミニウム化合物=擬ベーマイト)を得た(第2工程)。
 別途、純水327mLに酸化マグネシウム粉末(関東化学(株)製、特級)49.5gを添加し、1時間撹拌して酸化マグネシウムスラリーを得た。
 1.5L容のステンレス容器にて、純水257mLに、前記酸化マグネシウムスラリー及び調整済水酸化アルミニウムスラリーを投入し、55℃で90分間攪拌して一次反応させ、ハイドロタルサイト核粒子を含む反応物を得た(第3工程)。
 その後、前記反応物に純水を加えて全量を1Lとし、これを2L容のオートクレーブに入れ、160℃で7時間水熱合成を行い、ハイドロタルサイト粒子スラリーを得た(第4工程)。
 得られたハイドロタルサイト粒子スラリーを95℃に保持しながら、ステアリン酸4.3g(ハイドロタルサイト粒子100質量部に対して3質量部)を加えて粒子の表面処理を行った(第5工程)。これをろ過及び洗浄した後、100℃で乾燥してハイドロタルサイト粒子の固形生成物を得た。
実施例3:ハイドロタルサイト粒子の合成
 2L容のステンレス容器にて、48%水酸化ナトリウム溶液(関東化学(株)製、鹿特級)1110mLに、水酸化アルミニウム粉末(関東化学(株)製、鹿特級)730gを投入し、124℃で1時間撹拌してアルミン酸ソーダ溶液を得た(第1工程)。
 次いで、前記アルミン酸ソーダ溶液を80℃まで冷却した後、全量が1500mLとなるようにイオン交換水を投入した。
 1L容のステンレス容器に、前記アルミン酸ソーダ溶液96mLを分取した後、全量が730mLになるように純水を投入し(アルミン酸ソーダ溶液の濃度:0.8mol/L)、60℃に保ちながら撹拌して、炭酸ガスを0.7L/分の通気量で60分間に亘って通気し、調整済水酸化アルミニウムスラリー(低結晶性アルミニウム化合物=擬ベーマイト)を得た(第2工程)。
 別途、純水327mLに酸化マグネシウム粉末(関東化学(株)製、特級)49.5gを添加し、1時間撹拌して酸化マグネシウムスラリーを得た。
 1.5L容のステンレス容器にて、純水257mLに、前記酸化マグネシウムスラリー及び調整済水酸化アルミニウムスラリーを投入し、55℃で90分間攪拌して一次反応させ、ハイドロタルサイト核粒子を含む反応物を得た(第3工程)。
 その後、前記反応物に純水を加えて全量を1Lとし、これを2L容のオートクレーブに入れ、160℃で7時間水熱合成を行い、ハイドロタルサイト粒子スラリーを得た(第4工程)。
 得られたハイドロタルサイト粒子スラリーを95℃に保持しながら、ステアリン酸4.3g(ハイドロタルサイト粒子100質量部に対して3質量部)を加えて粒子の表面処理を行った(第5工程)。これをろ過及び洗浄した後、100℃で乾燥してハイドロタルサイト粒子の固形生成物を得た。
実施例4:ハイドロタルサイト粒子の合成
 2L容のステンレス容器にて、48%水酸化ナトリウム溶液(関東化学(株)製、鹿特級)1110mLに、水酸化アルミニウム粉末(関東化学(株)製、鹿特級)730gを投入し、124℃で1時間撹拌してアルミン酸ソーダ溶液を得た(第1工程)。
 次いで、前記アルミン酸ソーダ溶液を80℃まで冷却した後、全量が1500mLとなるようにイオン交換水を投入した。
 1L容のステンレス容器に、前記アルミン酸ソーダ溶液96mLを分取した後、全量が730mLになるように純水を投入し(アルミン酸ソーダ溶液の濃度:0.8mol/L)、60℃に保ちながら撹拌して、炭酸ガスを0.7L/分の通気量で150分間に亘って通気し、調整済水酸化アルミニウムスラリー(低結晶性アルミニウム化合物=擬ベーマイト)を得た(第2工程)。
 別途、純水327mLに酸化マグネシウム粉末(関東化学(株)製、特級)49.5gを添加し、1時間撹拌して酸化マグネシウムスラリーを得た。
 1.5L容のステンレス容器にて、純水257mLに、前記酸化マグネシウムスラリー及び調整済水酸化アルミニウムスラリーを投入し、55℃で90分間攪拌して一次反応させ、ハイドロタルサイト核粒子を含む反応物を得た(第3工程)。
 その後、前記反応物に純水を加えて全量を1Lとし、これを2L容のオートクレーブに入れ、160℃で7時間水熱合成を行い、ハイドロタルサイト粒子スラリーを得た(第4工程)。
 得られたハイドロタルサイト粒子スラリーを95℃に保持しながら、ステアリン酸4.3g(ハイドロタルサイト粒子100質量部に対して3質量部)を加えて粒子の表面処理を行った(第5工程)。これをろ過及び洗浄した後、100℃で乾燥してハイドロタルサイト粒子の固形生成物を得た。
実施例5:ハイドロタルサイト粒子の合成
 2L容のステンレス容器にて、48%水酸化ナトリウム溶液(関東化学(株)製、鹿特級)1110mLに、水酸化アルミニウム粉末(関東化学(株)製、鹿特級)730gを投入し、124℃で1時間撹拌してアルミン酸ソーダ溶液を得た(第1工程)。
 次いで、前記アルミン酸ソーダ溶液を80℃まで冷却した後、全量が1500mLとなるようにイオン交換水を投入した。
 1L容のステンレス容器に、前記アルミン酸ソーダ溶液192mLを分取した後、全量が730mLになるように純水を投入し(アルミン酸ソーダ溶液の濃度:1.6mol/L)、30℃に保ちながら撹拌して、炭酸ガスを0.7L/分の通気量で90分間に亘って通気し、調整済水酸化アルミニウムスラリー(低結晶性アルミニウム化合物=擬ベーマイト)を得た(第2工程)。
 別途、純水327mLに酸化マグネシウム粉末(関東化学(株)製、特級)49.5gを添加し、1時間撹拌して酸化マグネシウムスラリーを得た。
 1.5L容のステンレス容器にて、純水257mLに、前記酸化マグネシウムスラリー及び調整済水酸化アルミニウムスラリーを投入し、55℃で90分間攪拌して一次反応させ、ハイドロタルサイト核粒子を含む反応物を得た(第3工程)。
 その後、前記反応物に純水を加えて全量を1Lとし、これを2L容のオートクレーブに入れ、160℃で7時間水熱合成を行い、ハイドロタルサイト粒子スラリーを得た(第4工程)。
 得られたハイドロタルサイト粒子スラリーを95℃に保持しながら、ステアリン酸4.3g(ハイドロタルサイト粒子100質量部に対して3質量部)を加えて粒子の表面処理を行った(第5工程)。これをろ過及び洗浄した後、100℃で乾燥してハイドロタルサイト粒子の固形生成物を得た。
実施例6:ハイドロタルサイト粒子の合成
 2L容のステンレス容器にて、48%水酸化ナトリウム溶液(関東化学(株)製、鹿特級)1110mLに、水酸化アルミニウム粉末(関東化学(株)製、鹿特級)730gを投入し、124℃で1時間撹拌してアルミン酸ソーダ溶液を得た(第1工程)。
 次いで、前記アルミン酸ソーダ溶液を80℃まで冷却した後、全量が1500mLとなるようにイオン交換水を投入した。
 1L容のステンレス容器に、前記アルミン酸ソーダ溶液96mLを分取した後、全量が730mLになるように純水を投入し(アルミン酸ソーダ溶液の濃度:0.8mol/L)、30℃に保ちながら撹拌して、炭酸ガスを1.0L/分の通気量で90分間に亘って通気し、調整済水酸化アルミニウムスラリー(低結晶性アルミニウム化合物=擬ベーマイト)を得た(第2工程)。
 別途、純水327mLに酸化マグネシウム粉末(関東化学(株)製、特級)49.5gを添加し、1時間撹拌して酸化マグネシウムスラリーを得た。
 1.5L容のステンレス容器にて、純水257mLに、前記酸化マグネシウムスラリー及び調整済水酸化アルミニウムスラリーを投入し、55℃で90分間攪拌して一次反応させ、ハイドロタルサイト核粒子を含む反応物を得た(第3工程)。
 その後、前記反応物に純水を加えて全量を1Lとし、これを2L容のオートクレーブに入れ、160℃で7時間水熱合成を行い、ハイドロタルサイト粒子スラリーを得た(第4工程)。
 得られたハイドロタルサイト粒子スラリーを95℃に保持しながら、ステアリン酸4.3g(ハイドロタルサイト粒子100質量部に対して3質量部)を加えて粒子の表面処理を行った(第5工程)。これをろ過及び洗浄した後、100℃で乾燥してハイドロタルサイト粒子の固形生成物を得た。
比較例1:ハイドロタルサイト粒子の合成
 特開2003-048712号公報に記載の実施例1の方法に準拠して、ハイドロタルサイト粒子の合成を行った。
 金属アルミニウム90gを150g/LのNaOH溶液3Lに溶解した。この溶液にMgOを399g添加した後、NaCOを174g添加し、95℃で撹拌しながら6時間反応させ、ハイドロタルサイト粒子スラリーを得た。
 得られたハイドロタルサイト粒子スラリーを95℃に保持しながら、ステアリン酸30g(ハイドロタルサイト粒子100質量部に対して3質量部)を加えて粒子の表面処理を行った。次いで、冷却、ろ過、及び洗浄を行って固形物を得た後、この固形物を100℃で乾燥してハイドロタルサイト粒子の固形生成物を得た。
比較例2:ハイドロタルサイト粒子の合成
 前記比較例1において、ハイドロタルサイト粒子スラリーを得る際の95℃、6時間の反応条件を、170℃、6時間の水熱反応条件に変更したほかは、比較例1と同様にしてハイドロタルサイト粒子の固形生成物を得た。
比較例3:ハイドロタルサイト粒子の合成
 特開2013-103854号公報に記載の実施例1の方法に準拠して、ハイドロタルサイト粒子の合成を行った。
 5L容の容器に、水酸化マグネシウム(d50=4.0μm)447.3g及び水酸化アルミニウム(d50=8.0μm)299.2gを入れ、全量が3Lになるように水を添加し、10分間攪拌することによりスラリーを調製した。得られたスラリーは、d50=10μm、d90=75μmであった。次いで、ダイノーミルMULTILAB(湿式粉砕装置)を用い、粉砕中にスラリー温度が40℃を超えないように冷却ユニットにて制御しながら、スラリーを18分間(滞留時間)湿式粉砕処理した。その結果スラリーは、d50=1.0μm、d90=3.5μm、スラリー粘度=5000cPとなった。その後、粉砕処理したスラリー2Lに、水酸化マグネシウムに1モルに対して1/2モルとなるように炭酸水素ナトリウムを添加し、全体が8Lになるように水で調整して10分間攪拌した。このスラリー3Lをオートクレーブに移し、170℃で2時間水熱反応を行ってハイドロタルサイト粒子スラリーを得た。
 得られたハイドロタルサイト粒子スラリーを95℃に保持しながら、ステアリン酸6.8g(ハイドロタルサイト粒子100質量部に対して3質量部)を加えて粒子の表面処理を行った。次いで、固体をろ過によりろ別した後、ろ過ケーキを35℃、9Lのイオン交換水で水洗した。ろ過ケーキをさらに100mLのイオン交換水で水洗し、この水洗水の導電率を測定した。その結果、水洗水の導電率は50μS/sm(25℃)であった。得られた水洗ケーキを100℃で24時間乾燥し、粉砕してハイドロタルサイト粒子の固形生成物を得た。
比較例4:ハイドロタルサイト粒子の合成
 特開2004-099391号公報に記載の実施例4の方法に準拠して、ハイドロタルサイト粒子の合成を行った。
 水酸化マグネシウム(神島化学(株)製、#200)0.425mol、ギブサイト型水酸化アルミニウム(昭和電工(株)製、H-42M)0.2mol、及びイオン交換水400mLを、5mmアルミナボール600mLと共に1.5L容のポットミルにて湿式粉砕し、平均粒径を0.4μmに調整した。次に、得られた混合懸濁液をボール洗浄水と共に2000mL容のステンレススチール製ビーカー(反応容器)に移し替え、全量を約1000mLとした。反応容器上部をラップで覆い、撹拌しながら95℃に昇温後、反応容器上部の空間に、0.01mol/時間の供給量で炭酸ガスを供給した。16時間後に反応系のpHが9.6に低下し、ほぼ安定した時点で反応終了とした。この懸濁液をオートクレーブに移し、170℃で6時間水熱処理を行ってハイドロタルサイト粒子スラリーを得た。
 得られたハイドロタルサイト粒子スラリーを95℃に保持しながら、ステアリン酸1.4g(ハイドロタルサイト粒子100質量部に対して3質量部)を加えて粒子の表面処理を行った。次いで、ろ過、水洗、及び蒸発乾固し、サンプルミルにて粉砕してハイドロタルサイト粒子の固形生成物を得た。
比較例5:ハイドロタルサイト粒子の合成
 特開平06-136179号公報に記載の実施例1の方法に準拠して、ハイドロタルサイト粒子の合成を行った。
 水酸化ナトリウム39.17gと炭酸ナトリウム11.16gとを、攪拌しながら水1Lに加え、これを40℃に加温した。次いで、Mg/Alのモル比が2.0、NH/Alのモル比が0.35となるように、塩化マグネウム(MgOとして19.7%)61.28g及び塩化アルミニウム(Alとして20.5%)37.33gと、塩化アンモニウム(NHとして31.5%)2.84gとを蒸留水500mLに加え、水溶液Aを調製した。この水溶液Aを、先の水酸化ナトリウム及び炭酸ナトリウムの反応系に徐々に注加した。注加終了後の反応系のpHは10.2であった。さらに、攪拌しながら90℃で約20時間反応を行ってハイドロタルサイト粒子スラリーを得た。
 得られたハイドロタルサイト粒子スラリーにステアリン酸1.1g加え、攪拌しながら粒子の表面処理を行った。得られた反応懸濁液をろ過及び水洗後、70℃で乾燥させ、次いで、小型のサンプルミルにて粉砕してハイドロタルサイト粒子の固形生成物を得た。
試験例:ハイドロタルサイト粒子の評価
 実施例1~6及び比較例1~5で得られたハイドロタルサイト粒子について、以下の方法で評価を行った。その結果を後の表1に示す。なお表1には、第2工程における反応系のアルミン酸塩溶液の濃度及び温度、炭酸ガスの通気量及び通気時間、及びpH、並びに第3工程における一次反応系のpHも併せて示す。
(I)物性測定
[XRD測定]
 X線回折装置((株)リガク製、MiniFlex600)を使用し、電圧40KV、電流15mA、測定範囲2θ/θ=3°~90°の条件にて測定を行い、X線回折パターンを得た。
(1)低結晶性アルミニウム化合物の結晶子サイズ
 X線回折パターンにおける2θ/θ=38°の回折ピークを用い、結晶子サイズを求めた。
(2)ハイドロタルサイト粒子の結晶面(015)の回折ピークの強度と半値幅との比
 X線回折パターンにおける結晶面(015)の回折ピークの相対強度D(015)と、該回折ピークの半値全幅(full width at half maximum、FWHM)FWHM(015)との比(015)比率を、以下の計算式に基づいて求めた。
(015)比率=D(015)/FWHM(015)
[BET比表面積]
 JIS Z 8830にて規定の方法に準拠して測定した。
[元素分析]
 Mg/Al(モル比)は、ICP発光分析装置((株)パーキンエルマー製、Optima-8300)を使用して測定した。前処理として、ハイドロタルサイト粒子を計量し、塩酸と混合した後、加熱溶解を行って試料溶液を得た。その後、得られた試料溶液を、イオン交換水を使用して所定の濃度に希釈し、検量線法を用いて測定値を得た。
[全炭酸濃度]
 炭素・硫黄分析装置((株)HORIBA製、EMIA-920V)を使用した。るつぼにハイドロタルサイト粒子を計量し、助燃剤であるタングステン粉((株)HORIBA製)及び鉄粉(キシダ化学(株)製)を混合した後、高周波誘導過熱炉にて完全燃焼させ、発生したガスから水分を除去し、赤外線ガス分析計に導入して測定値を得て、この値を全炭酸濃度とした。
(II)特性評価
 ポリ塩化ビニル(重合度:1000)100質量部に対して、ジオクチルフタレート50質量部、ステアリン酸亜鉛0.5質量部、及びハイドロタルサイト粒子2質量部を添加し、均一に混合して樹脂組成物を調製した。
 得られた樹脂組成物を160℃のロールで5分間混練し、成形してシートを作製した。作製したシートを用い、各々以下に示す方法でオーブン耐熱性、プレス耐熱性、及び透明性を評価した。
[ギアオーブン試験によるオーブン耐熱性]
 前記シートを、ギアオーブン内にて180℃の雰囲気下に60分間曝露した。曝露後のシートの変色を目視にて観察し、以下の評価基準に基づいて評価した。
(評価基準)
◎:変色が見られなかった。
○:ごく僅かに変色が見られた。
△:若干変色が見られた。
×:変色が見られた。
××:著しい変色が見られた。
[プレス耐熱性]
 前記シートを、170℃のプレスにて20分間プレスした。プレス後のシートの変色を目視にて観察し、以下の評価基準に基づいて評価した。
(評価基準)
◎:変色が見られなかった。
○:ごく僅かに変色が見られた。
△:若干変色が見られた。
×:変色が見られた。
××:著しい変色が見られた。
[透明性]
 前記シートを、170℃のプレスにて5分間プレスした。プレス後のシートの透明性(HAZE値)を、JIS K 7136にて規定の方法に準拠して測定した。
 なお実施例1において、前記第2工程で得られた低結晶性アルミニウム化合物に対して、約105℃で通常の乾燥処理を行った後、前記[XRD測定]の方法に従ってXRD測定を行い、X線回折パターンを得た。その結果を図2に示す。
 さらに実施例1及び比較例1において、最終的に得られたハイドロタルサイト粒子について、前記[XRD測定]の方法に従ってXRD測定を行い、X線回折パターンを得た。その結果を図3(a)に示す。また、該X線回折パターンにおける結晶面(012)、(015)、及び(018)の回折ピークの拡大図を図3(b)に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~6で得られたハイドロタルサイト粒子は、いずれも本発明の製造方法における第1工程~第4工程を順に行って得られたものであり、図3の実施例1の結果に代表されるように、結晶面(012)、(015)、及び(018)の回折ピークがシャープで、いずれも(015)比率が4000cps/degree以上と大きい。また、これらのハイドロタルサイト粒子は、いずれもBET比表面積が8m/g~18m/gと小さい。そして、これらのハイドロタルサイト粒子を配合して得られた樹脂組成物は、いずれもオーブン耐熱性、プレス耐熱性、及び透明性に優れている。
 一方、比較例1~5で得られたハイドロタルサイト粒子は、いずれも従来の製造方法によって得られたものであり、図3の比較例1の結果に代表されるように、結晶面(012)、(015)、及び(018)の回折ピークがブロードで、いずれも(015)比率が4000cps/degree未満と小さい。そして、これらのハイドロタルサイト粒子を配合して得られた樹脂組成物は、オーブン耐熱性、プレス耐熱性、及び透明性のいずれも、実施例1~6の樹脂組成物に比べて劣るものである。比較例3のハイドロタルサイト粒子は、(015)比率が比較例1~5の中では比較的大きく、該ハイドロタルサイト粒子を配合して得られた樹脂組成物は、オーブン耐熱性及びプレス耐熱性が良好であるものの、透明性は不充分である。
 なお、実施例1~6及び比較例5で得られたハイドロタルサイト粒子について、特開平06-136179号公報に記載の、以下の式:
Is=tanθ2/tanθ1
(式中、θ1は、面間隔2.49Å~2.05ÅのX線回折ピークにおけるピーク垂線と挟角側ピーク接線とがなす角度、θ2は、該ピークにおけるピーク垂線と広角側ピーク接線とがなす角度である)で定義される積層不整指数(Is)を求めた。その結果、比較例5で得られたハイドロタルサイト粒子の結晶面(015)の積層不整指数(Is)は、2を超えたのに対して、実施例1~6で得られたハイドロタルサイト粒子では、いずれも1.2未満であった。これにより、比較例5で得られたハイドロタルサイト粒子の回折ピークは極めて非対称なピークであるが、実施例1~6で得られたハイドロタルサイト粒子の回折ピークは対称に近いピークであり、実施例1~6で得られたハイドロタルサイト粒子は比較例5で得られたハイドロタルサイト粒子と全く異なるものであることが分かる。
 本発明のハイドロタルサイト粒子は、例えば樹脂安定剤等の樹脂用の添加剤として有用である。

Claims (9)

  1.  水酸化アルミニウムをアルカリ溶液で溶解し、アルミン酸塩溶液を調製する第1工程、
     前記第1工程で得られたアルミン酸塩溶液と炭酸ガスとを反応させ、低結晶性アルミニウム化合物を析出させる第2工程、
     前記第2工程で得られた低結晶性アルミニウム化合物とマグネシウム化合物とを混合して一次反応させ、ハイドロタルサイト核粒子を含む反応物を調製する第3工程、及び
     前記第3工程で得られた反応物を水熱反応させ、ハイドロタルサイト粒子を合成する第4工程
    を含むことを特徴とする、ハイドロタルサイト粒子の製造方法。
  2.  さらに、前記第4工程で得られたハイドロタルサイト粒子に対して表面処理を行う第5工程を含む、請求項1に記載のハイドロタルサイト粒子の製造方法。
  3.  前記第2工程における低結晶性アルミニウム化合物は、擬ベーマイトである、請求項1又は2に記載のハイドロタルサイト粒子の製造方法。
  4.  前記第2工程における低結晶性アルミニウム化合物は、X線回折パターンにおける2θ/θ=38°の回折ピークから求めた結晶子サイズが35Å以下である、請求項1~3のいずれか1つに記載のハイドロタルサイト粒子の製造方法。
  5.  前記第2工程における低結晶性アルミニウム化合物は、BET比表面積が100m/g~350m/gである、請求項1~4のいずれか1つに記載のハイドロタルサイト粒子の製造方法。
  6.  X線回折パターンにおける結晶面(015)の回折ピークの強度と半値幅との比(強度/半値幅)が、4000cps/degree以上であることを特徴とする、ハイドロタルサイト粒子。
  7.  BET比表面積が8m/g~18m/gである、請求項6に記載のハイドロタルサイト粒子。
  8.  請求項6又は7に記載のハイドロタルサイト粒子からなる、樹脂安定剤。
  9.  樹脂と、請求項6又は7に記載のハイドロタルサイト粒子とを含有してなる、樹脂組成物。
PCT/JP2018/046380 2017-12-25 2018-12-17 ハイドロタルサイト粒子及びその製造方法、並びにそれからなる樹脂安定剤及び樹脂組成物 WO2019131281A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/957,711 US11873230B2 (en) 2017-12-25 2018-12-17 Hydrotalcite particles, method for producing hydrotalcite particles, resin stabilizer containing hydrotalcite particles, and resin composition containing hydrotalcite particles
JP2019563013A JP7239492B2 (ja) 2017-12-25 2018-12-17 ハイドロタルサイト粒子及びその製造方法、並びにそれからなる樹脂安定剤及び樹脂組成物
KR1020207017567A KR102638167B1 (ko) 2017-12-25 2018-12-17 하이드로탈사이트 입자와 그 제조방법, 및 그것으로 이루어진 수지안정제 및 수지 조성물
EP18895161.0A EP3733604A4 (en) 2017-12-25 2018-12-17 HYDROTALCIT PARTICLES, METHOD OF MANUFACTURING HYDROTALCITE PARTICLES, RESIN STABILIZER WITH HYDROTALCIT PARTICLE AND RESIN COMPOSITION WITH HYDROTALCIT PARTICLE
CN201880083257.4A CN111566050B (zh) 2017-12-25 2018-12-17 水滑石粒子及其制造方法、以及包含其的树脂稳定剂和树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017247552 2017-12-25
JP2017-247552 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019131281A1 true WO2019131281A1 (ja) 2019-07-04

Family

ID=67063561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046380 WO2019131281A1 (ja) 2017-12-25 2018-12-17 ハイドロタルサイト粒子及びその製造方法、並びにそれからなる樹脂安定剤及び樹脂組成物

Country Status (7)

Country Link
US (1) US11873230B2 (ja)
EP (1) EP3733604A4 (ja)
JP (1) JP7239492B2 (ja)
KR (1) KR102638167B1 (ja)
CN (1) CN111566050B (ja)
TW (1) TWI771545B (ja)
WO (1) WO2019131281A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111498876A (zh) * 2020-05-20 2020-08-07 中铝山东有限公司 导向剂的制备方法和镁铝水滑石的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462280B1 (ja) * 1966-07-25 1971-01-20
JPS5030039B1 (ja) * 1967-07-17 1975-09-27
JPH0347874A (ja) * 1989-04-10 1991-02-28 Fine Kurei:Kk 精製顔料の製造方法
JPH06136179A (ja) 1992-10-13 1994-05-17 Mizusawa Ind Chem Ltd 樹脂用配合剤
JP2003048712A (ja) 2001-05-30 2003-02-21 Yasuya Mikami ハイドロタルサイト類の製造方法
JP2004099391A (ja) 2002-09-11 2004-04-02 Mizusawa Ind Chem Ltd 層状複水酸化物の製造方法
JP2004531448A (ja) * 2001-04-19 2004-10-14 ジュート−ヒェミー アクチェンゲゼルシャフト ヒドロタルサイトの製造方法
JP2005060164A (ja) * 2003-08-12 2005-03-10 Nittetsu Mining Co Ltd ハイドロタルサイト粒子及びその製造方法
JP2013103854A (ja) 2011-11-11 2013-05-30 Sakai Chem Ind Co Ltd ハイドロタルサイトとその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539306A (en) 1966-07-25 1970-11-10 Kyowa Chem Ind Co Ltd Process for the preparation of hydrotalcite
JPS5422766B2 (ja) 1973-06-08 1979-08-09
EP0392778B1 (en) 1989-04-10 1994-07-20 Fine Clay Co., Ltd. Production process of purified pigments, and purified pigments
US5578286A (en) 1994-04-29 1996-11-26 Aluminum Company Of America Two powder synthesis of hydrotalcite-like compounds with divalent or polyvalent organic anions
SK21197A3 (en) * 1994-08-15 1997-12-10 Aluminum Co Of America Manufacturing process of powder hydrotalcite and hydrotalcite-like compounds
CN1168659C (zh) * 2002-12-19 2004-09-29 厦门大学 一种活性氧化铝的制备方法
US7671124B2 (en) * 2004-10-20 2010-03-02 Sakai Chemical Industry Co., Ltd. Hydrotalcite and synthetic resin composition
WO2008129034A1 (en) * 2007-04-20 2008-10-30 Euro Support Catalyst Group Bv Hydrotalcite-like layered double hydroxide (ldh) composition and process of making same
KR101068728B1 (ko) * 2008-11-03 2011-09-28 권오령 하이드로탈사이트의 제조방법
KR101228880B1 (ko) * 2010-06-10 2013-02-19 주식회사 단석산업 나트륨의 함량이 극미량으로 제어된 하이드로탈사이트, 그의 제조방법 및 이를 함유하는 합성수지 조성물
KR101040942B1 (ko) 2010-12-17 2011-06-16 (주)세창 합성수지 안정제용 하이드로탈사이트 및 이를 포함하는 합성수지 조성물
CN103930373B (zh) 2011-11-11 2016-06-01 堺化学工业株式会社 水滑石及其制造方法
CN102583467B (zh) 2012-02-24 2014-01-22 山东大学 一种以锌铝低摩尔比类水滑石为前躯体制备锌铝尖晶石的方法
WO2017026379A1 (ja) * 2015-08-11 2017-02-16 堺化学工業株式会社 板状ハイドロタルサイト型粒子及びその用途
KR102070329B1 (ko) * 2015-09-24 2020-01-28 주식회사 단석산업 하이드로탈사이트 입자 및 그의 제조방법
CN105836769B (zh) * 2016-03-28 2017-06-23 北京化工大学 一种镁铝基层状复合氢氧化物的清洁制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462280B1 (ja) * 1966-07-25 1971-01-20
JPS5030039B1 (ja) * 1967-07-17 1975-09-27
JPH0347874A (ja) * 1989-04-10 1991-02-28 Fine Kurei:Kk 精製顔料の製造方法
JPH06136179A (ja) 1992-10-13 1994-05-17 Mizusawa Ind Chem Ltd 樹脂用配合剤
JP2004531448A (ja) * 2001-04-19 2004-10-14 ジュート−ヒェミー アクチェンゲゼルシャフト ヒドロタルサイトの製造方法
JP2003048712A (ja) 2001-05-30 2003-02-21 Yasuya Mikami ハイドロタルサイト類の製造方法
JP2004099391A (ja) 2002-09-11 2004-04-02 Mizusawa Ind Chem Ltd 層状複水酸化物の製造方法
JP2005060164A (ja) * 2003-08-12 2005-03-10 Nittetsu Mining Co Ltd ハイドロタルサイト粒子及びその製造方法
JP2013103854A (ja) 2011-11-11 2013-05-30 Sakai Chem Ind Co Ltd ハイドロタルサイトとその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733604A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111498876A (zh) * 2020-05-20 2020-08-07 中铝山东有限公司 导向剂的制备方法和镁铝水滑石的制备方法
CN111498876B (zh) * 2020-05-20 2022-08-02 中铝山东有限公司 导向剂的制备方法和镁铝水滑石的制备方法

Also Published As

Publication number Publication date
JP7239492B2 (ja) 2023-03-14
CN111566050A (zh) 2020-08-21
US20200361780A1 (en) 2020-11-19
EP3733604A1 (en) 2020-11-04
US11873230B2 (en) 2024-01-16
EP3733604A4 (en) 2021-09-29
CN111566050B (zh) 2022-10-25
KR102638167B1 (ko) 2024-02-16
TWI771545B (zh) 2022-07-21
KR20200105658A (ko) 2020-09-08
TW201927693A (zh) 2019-07-16
JPWO2019131281A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
KR100439636B1 (ko) 알칼리 알루미늄 복합 수산화물 탄산염, 그 제조방법 및 용도
KR100200082B1 (ko) 합성금속 수산화물 및 이를 함유하는 물
US7405359B2 (en) Mg-Al-based hydrotalcite-type particles, chlorine-containing resin composition and process for producing the particles
EP2099714A1 (de) Kalzium-karbonato-hydroxodialuminate mit hexagonal-plättchenförmigen kristallhabitus
JP4775950B2 (ja) 水酸化カルシウムを含有する樹脂組成物および成形品
KR20140138613A (ko) 하이드로탈사이트 입자의 제조 방법
US7022302B2 (en) Process for preparing hydrotalcite and brucite type posite charged layers
WO2016031803A1 (ja) 新規水酸化マグネシウム系固溶体、およびそれを含む樹脂組成物および高活性酸化マグネシウムの前駆体
WO2019131281A1 (ja) ハイドロタルサイト粒子及びその製造方法、並びにそれからなる樹脂安定剤及び樹脂組成物
KR102070333B1 (ko) 하이드로탈사이트 입자 및 그의 제조방법
JP2826973B2 (ja) 複合金属水酸化物
CA2454790A1 (en) Alkaline earth metal-basic silicate particle
JP3154535B2 (ja) 複合金属水酸化物およびその使用
KR100486669B1 (ko) 층상복합금속수화물의 제조 방법
JP3827773B2 (ja) アルカリ・アルミニウム複合水酸化物炭酸塩、その製法及び用途
JPWO2006118325A1 (ja) 樹脂組成物
IL169375A (en) Process for preparing hydrotalcite and brucite type positive charged layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018895161

Country of ref document: EP

Effective date: 20200727