WO2016031803A1 - 新規水酸化マグネシウム系固溶体、およびそれを含む樹脂組成物および高活性酸化マグネシウムの前駆体 - Google Patents

新規水酸化マグネシウム系固溶体、およびそれを含む樹脂組成物および高活性酸化マグネシウムの前駆体 Download PDF

Info

Publication number
WO2016031803A1
WO2016031803A1 PCT/JP2015/073802 JP2015073802W WO2016031803A1 WO 2016031803 A1 WO2016031803 A1 WO 2016031803A1 JP 2015073802 W JP2015073802 W JP 2015073802W WO 2016031803 A1 WO2016031803 A1 WO 2016031803A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium hydroxide
solid solution
magnesium
acid
synthetic resin
Prior art date
Application number
PCT/JP2015/073802
Other languages
English (en)
French (fr)
Inventor
裕也 濱本
大輔 工藤
茂男 宮田
Original Assignee
協和化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和化学工業株式会社 filed Critical 協和化学工業株式会社
Priority to JP2016545538A priority Critical patent/JPWO2016031803A1/ja
Priority to CN201580045348.5A priority patent/CN106573869A/zh
Priority to KR1020177001176A priority patent/KR20170047212A/ko
Priority to ES15835860T priority patent/ES2751278T3/es
Priority to EP15835860.6A priority patent/EP3187483B1/en
Priority to US15/506,454 priority patent/US10233305B2/en
Publication of WO2016031803A1 publication Critical patent/WO2016031803A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/02Formic acid
    • C07C53/06Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/06Glycolic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/08Lactic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Definitions

  • the present invention relates to a novel magnesium hydroxide solid solution represented by the following formula (1), a reinforcing flame retardant for a synthetic resin containing the magnesium hydroxide solid solution as an active ingredient, a synthetic resin composition, and a highly active magnesium oxide Relating to the precursor.
  • Mg (OH) 2-x R x (Formula 1) (In the formula, R represents a monovalent organic acid, and x represents 0 ⁇ x ⁇ 1.)
  • Magnesium hydroxide is a phytoacid (gastric acid neutralizer), laxative, PVC stabilizer, ceramic raw material, heavy oil additive, flue gas desulfurizer, bitter fertilizer, food additive (magnesium fortifier), etc. It is used in various fields such as resin flame retardants (utilization of endothermic properties during thermal decomposition). For example, magnesium hydroxide particles have attracted attention in order to meet the flame retardant requirements for synthetic resins. Magnesium hydroxide particles have an advantage that they can be applied to almost all resins since the dehydration start temperature is about 340 ° C.
  • Patent Document 1 since a new method for synthesizing magnesium hydroxide particles with good crystal growth has been developed, it has become possible to obtain a good molded product using this method.
  • These magnesium hydroxide particles have good affinity with resins such as polyolefins, no silver streak is generated during molding, and it is possible to obtain a molded product having an excellent appearance, and V-0 in UL standard 94VE. It describes that a flame-retardant polypropylene resin molded product that satisfies the requirements can be obtained.
  • Patent Document 2 a flame retardant comprising magnesium hydroxide particles having an average secondary particle diameter of 0.4 to 1.0 ⁇ m measured by a laser diffraction / scattering method is used for polyolefin or a copolymer thereof.
  • Patent Document 3 a fixed amount of magnesium hydroxide having an average secondary particle diameter of 0.01 to 10 ⁇ m measured by a laser diffraction scattering method is blended with hydrotalcite compound particles having specific properties.
  • technologies for suppressing the foaming caused by carbon dioxide gas have been proposed.
  • JP 52-115799 A Japanese Patent No. 4157560 WO2011 / 111487 JP-A-4-10330
  • an object of the present invention is to provide a magnesium hydroxide-based compound having nano-level fine particles close to monodispersion and capable of making primary particles smaller than conventional magnesium hydroxide. Furthermore, it aims at providing the magnesium hydroxide type compound which can anticipate the improvement of the flame retardance etc. from which the dehydration start temperature fell from Mg (OH) 2 . Another object of the present invention is to produce a highly transparent liquid product capable of producing nano-level highly dispersed fine particles.
  • the present invention newly competes with alkali-derived OH ⁇ in a conventional production method for producing magnesium hydroxide by adding an alkali such as NaOH or Ca (OH) 2 to an aqueous solution of a water-soluble magnesium salt such as MgCl 2.
  • an alkali such as NaOH or Ca (OH) 2
  • a water-soluble magnesium salt such as MgCl 2.
  • R represents a monovalent organic acid
  • x represents 0 ⁇ x ⁇ 1, preferably 0 ⁇ x ⁇ 0.2.
  • x is larger than 1, it exceeds the solid solubility limit of monovalent organic acid in magnesium hydroxide.
  • the gist of the present invention is the magnesium hydroxide solid solution described in the following (1) to (7).
  • Mg (OH) 2-x R x (Formula 1) In the formula, R represents a monovalent organic acid, and x represents 0 ⁇ x ⁇ 1.
  • R represents a monovalent organic acid
  • x 0 ⁇ x ⁇ 1.
  • this invention makes a summary the flame retardant for synthetic resins as described in the following (8), the synthetic resin composition as described in (9) and (10), and its molded article.
  • a flame retardant for a synthetic resin comprising the magnesium hydroxide solid solution according to any one of (1) to (6) as an active ingredient.
  • (9) (a) 0.1 to 50 parts by weight of the magnesium hydroxide solid solution according to any one of (1) to (6) above is blended with 100 parts by weight of the synthetic resin.
  • the magnesium hydroxide-based solid solution of the present invention is represented by the following formula, and primary particles and secondary particles can be made smaller than conventional magnesium hydroxide (Mg (OH) 2 ).
  • Mg (OH) 2 magnesium hydroxide
  • the reactivity with the acid is improved, and the flame retardancy and mechanical strength of the resin are improved.
  • the dehydration start temperature is lower than Mg (OH) 2 and flame retardancy and the like are improved.
  • it is useful as a precursor of nano-level highly dispersed fine particle MgO.
  • Mg (OH) 2-x R x (Formula 1) (Where R is a monovalent organic acid, x is 0 ⁇ x ⁇ 1)
  • the production of the magnesium hydroxide solid solution of the present invention is a new production method in which magnesium hydroxide is produced by adding an alkali such as NaOH or Ca (OH) 2 to an aqueous solution of a water-soluble magnesium salt such as MgCl 2.
  • an alkali such as NaOH or Ca (OH) 2
  • a water-soluble magnesium salt such as MgCl 2.
  • the magnesium hydroxide solid solution of the present invention represented by the following formula can greatly suppress the growth of primary particles by substituting a part of OH of Mg (OH) 2 with monocarboxylic acid or monooxycarboxylic acid. .
  • the reason is a structure close to close packing in the c-axis direction of the OH group by allowing the monocarboxylic acid having an ionic diameter larger than that of the OH group and having a stronger chemical bond strength with Mg than OH to exist during the reaction. This is because it suppresses and inhibits the crystal growth of Mg (OH) 2 .
  • primary particles can be made smaller than conventional magnesium hydroxide, and hydrothermal treatment can be performed to synthesize nano-level fine particles close to monodispersion.
  • Mg (OH) 2-x R x (Formula 1) (In the formula, R represents a monovalent organic acid, and x represents 0 ⁇ x ⁇ 1.)
  • the solid solution of the present invention can be easily produced in which the primary particles are remarkably smaller than the conventional method and the specific surface area by the BET method is 100 m 2 / or more.
  • the solid solution of the present invention can be made into nano-level fine particles having a secondary particle size of 0.3 ⁇ m or less, further 0.1 ⁇ m or less by wet grinding such as bead milling or hydrothermal treatment at about 150 ° C. or less.
  • non-sedimentable and highly transparent slurry (liquid) can be produced.
  • the dehydration start temperature by decomposition can be lowered by 40 to 50 ° C. from Mg (OH) 2 .
  • the magnesium hydroxide solid solution of the present invention has the above characteristics, but other physical properties are similar to those of conventional magnesium hydroxide, and can be used without any problem in the conventional application field.
  • the average secondary particle size of the magnesium hydroxide solid solution of the present invention is 300 nm or less, preferably 200 nm or less, and more preferably 100 nm or less.
  • the magnesium hydroxide solid solution of the present invention has a mean secondary particle size of 300 nm or less, preferably 200 nm or less, and more preferably 100 nm or less. Therefore, it is a precursor of highly active magnesium oxide (MgO), and MgO is used. Can be used in many ways. Examples of the precursor include magnesium alkoxide (Mg (OR) 2 ), magnesium acetylacetone (Mg (acac) 2 ), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 2 ), magnesium chloride (MgCl 2 ).
  • MgO highly active magnesium oxide
  • MgSO 4 Magnesium sulfate
  • Mg (NO 3 ) 2 magnesium nitrate
  • MgC 2 O 4 magnesium oxalate
  • MgO magnesium oxide
  • the magnesium oxide (MgO) precursor is obtained by, for example, forming a porous semiconductor layer and then applying a heat treatment by applying a precursor solution of MgO, which is an insulating oxide, from the surface side of the porous semiconductor layer.
  • the surface of the conductive semiconductor layer on the catalyst layer side can be covered with MgO to produce a photoelectric conversion element.
  • the MgO film forming the protective layer is a printing method (thick film formation method) using an organic material that is a precursor of MgO. Can be done by.
  • a printing method as disclosed in Patent Document 4, for example, a liquid organic material is mixed with a glass material, spin-coated on the surface of the panel glass, and fired at around 600 ° C. to crystallize MgO.
  • the printing method has an advantage that the process is relatively simple and can be performed at a lower cost than the vacuum vapor deposition method, the EB method, and the sputtering method, and it is not necessary to use a vacuum process.
  • the magnesium hydroxide solid solution of the present invention is preferably surface-treated when it is combined with a resin.
  • the surface treatment agent include anionic surfactants such as higher fatty acids, phosphate esters, silane coupling agents, titanate coupling agents, aluminum coupling agents, and silicones.
  • the surface treating agent is preferably used in an amount of 1 to 20% by weight with respect to magnesium hydroxide.
  • the surface treatment is preferably performed by a wet method or a dry method. Wet is a method of dispersing a magnesium hydroxide solid solution in a solvent such as water or alcohol and adding a surface treatment agent with stirring.
  • the dry method is a method of adding a surface treating agent to a powdered magnesium hydroxide solid solution under stirring with a high-speed stirrer such as a Henschel mixer.
  • Examples of those preferably used as the surface treatment agent are as follows.
  • (A) higher fatty acids having 10 or more carbon atoms such as stearic acid, erucic acid, palmitic acid, lauric acid, behenic acid,
  • (b) alkali metal salt of the higher fatty acid (c) sulfate ester salt of polyethylene glycol ether, Amide bond sulfate ester salt, ester bond sulfate ester salt, ester bond sulfonate, amide bond sulfonate, ether bond sulfonate, ether bond alkylaryl sulfonate, ester bond alkylaryl sulfonate, amide bond alkylaryl sulfonate Anionic surfactants such as salts, (d) Mono- or diesters such as orthophosphoric acid and oleyl alcohol, stearyl alcohol, or a mixture thereof, and their acid forms or phosphates such as alkali metal salts or
  • the surface-treated magnesium hydroxide particles can be made into a final product form by appropriately selecting, for example, means such as washing with water, dehydration, granulation, drying, pulverization, and classification as required.
  • Examples of the water-soluble magnesium salt include magnesium chloride, magnesium nitrate, magnesium sulfate, and magnesium acetate.
  • Examples of the alkali include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, and ammonium hydroxide.
  • Examples of the monovalent organic acid include formic acid, glycolic acid, and lactic acid, and examples of the salt include water-soluble salts such as sodium salt and potassium salt.
  • the hydrothermal treatment is performed at 100 ° C. or higher, preferably 105 ° C. to 150 ° C., more preferably 110 ° C. to 130 ° C.
  • the treatment time is preferably 1 to 20 hours.
  • the magnesium hydroxide solid solution of the present invention can be produced by appropriately selecting and performing conventional steps such as filtration, water washing, emulsification, surface treatment, filtration, drying, pulverization, and classification.
  • the resin composition of the present invention is produced by blending magnesium hydroxide solid solution in an amount of 0.1 to 100 parts by weight, preferably 1 to 50 parts by weight with respect to 100 parts by weight of the resin.
  • mixing and kneading method of the resin and the magnesium hydroxide solid solution of the present invention any method can be used as long as they can be mixed uniformly.
  • they are mixed and kneaded by a single or twin screw extruder, roll, Banbury mixer or the like.
  • molding method Per se well-known shaping
  • the synthetic resin in which the magnesium hydroxide-based solid solution of the present invention is blended means a resin and / or rubber, and is usually used as a molded product.
  • examples thereof include polyethylene, polypropylene, and ethylene / propylene copolymer.
  • Polymers copolymers of C 2 to C 8 olefins ( ⁇ -olefins) such as polybutene, poly-4-methylpentene-1, copolymers of these olefins and dienes, ethylene-acrylate copolymers Polymer, polystyrene, ABS resin, AAS resin, AS resin, MBS resin, ethylene / vinyl chloride copolymer resin, ethylene vinyl acetate copolymer resin, ethylene-vinyl chloride-vinyl acetate graft polymer resin, vinylidene chloride, polyvinyl chloride, chlorinated polyethylene, Chlorinated polypropylene, vinyl chloride propylene copolymer, vinyl acetate resin, pheno Shi resin, polyacetal, polyamide, polyimide, polycarbonate, polysulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, thermoplastic resins such as meth
  • thermoplastic resins include polyolefins or copolymers thereof, specifically, polypropylene resins such as polypropylene homopolymer and ethylene propylene copolymer, high density polyethylene, low density polyethylene, Chain low density polyethylene, ultra low density polyethylene, EVA (ethylene vinyl acetate resin), EEA (ethylene ethyl acrylate resin), EMA (ethylene methyl acrylate copolymer resin), EAA (ethylene acrylic acid copolymer resin), ultra high Polyethylene resins such as molecular weight polyethylene, and polymers or copolymers of C 2 to C 6 olefins ( ⁇ -ethylene) such as polybutene and poly (4-methylpentene-1).
  • polypropylene resins such as polypropylene homopolymer and ethylene propylene copolymer
  • high density polyethylene low density polyethylene
  • Chain low density polyethylene ultra low density polyethylene
  • EVA ethylene vinyl acetate resin
  • EEA ethylene ethyl acrylate resin
  • thermosetting resins such as epoxy resins, phenol resins, melamine resins, unsaturated polyester resins, alkyd resins, urea resins, and EPDM, butyl rubber, isoprene rubber, SBR, NBR, chlorosulfonated polyethylene, NIR, urethane rubber, butadiene
  • synthetic rubbers such as rubber, acrylic rubber, silicone rubber, and fluorine rubber.
  • the resin composition of the present invention is substantially formed from the synthetic resin and the magnesium hydroxide-based solid solution, and can further contain a small amount of a flame retardant aid. By blending this flame retardant aid, the blending ratio of the magnesium hydroxide solid solution can be further reduced, and the flame retardant effect can be increased.
  • the flame retardant aid is preferably red phosphorus, carbon powder or a mixture thereof.
  • red phosphorus in addition to normal red phosphorus for flame retardants, for example, red phosphorus whose surface is coated with a thermosetting resin, polyolefin, carboxylic acid polymer, titanium oxide or titanium aluminum condensate can be used.
  • the carbon powder include carbon black, activated carbon, and graphite. This carbon black is prepared by any of the oil furnace method, gas furnace method, channel method, thermal method, or acetylene method. May be.
  • the ratio is suitably 0.5 to 20% by weight, preferably 1 to 15% by weight, based on the total weight of the thermoplastic resin and the magnesium hydroxide solid solution.
  • the synthetic resin, the magnesium hydroxide solid solution, and if necessary, the flame retardant aid may be mixed by a means known per se in the above-described ratio.
  • the resin composition of the present invention may be used in combination with conventionally known reinforcing agents such as talc, mica, glass fiber, basic magnesium sulfate fiber and the like.
  • the compounding amount of these reinforcing agents is 1 to 50 parts by weight with respect to 100 parts by weight of the resin.
  • other conventional additives such as antioxidants, ultraviolet absorbers, lubricants, pigments such as carbon black, brominated or phosphate ester flame retardants, fillers such as calcium carbonate should be appropriately selected and blended. Can do.
  • additives are added in an amount of 0.01 to 5 parts by weight of an antioxidant, 0.01 to 5 parts by weight of an ultraviolet absorber, 0.1 to 5 parts by weight of a lubricant, 0.01 to 5 parts by weight pigment, 0.1 to 100 parts by weight flame retardant, and 1 to 50 parts by weight filler.
  • 700 mg of the sample powder is added to 70 ml of water, and subjected to a dispersion treatment for 3 minutes with ultrasonic waves (manufactured by NISSEI, MODEL US-300, current 300 ⁇ A). Then, 2-4 ml of the dispersion is taken and 250 ml of degassed water.
  • the analyzer is operated and the suspension is circulated for 8 minutes, and then the particle size distribution is measured. The measurement is performed twice in total, and the arithmetic average value of the 50% cumulative secondary particle diameter obtained for each measurement is calculated to obtain the average secondary particle diameter of the sample.
  • the pulverized product obtained in Example 3 was dispersed in water with a homogenizer to obtain a suspension of Sample 4.
  • the coprecipitate suspension was wet pulverized with zirconia beads having a diameter of 0.05 mm to obtain a suspension of Sample 5 having an average secondary particle diameter of 50 nm.
  • the suspension of sample 5 was wet-pulverized with zirconia beads having a diameter of 0.03 mm to obtain a suspension of sample 6 having an average secondary particle diameter of 20 nm.
  • the sedimentation properties of these suspensions were measured and are shown in Table 2.
  • the magnesium hydroxide solid solution of the present invention can make primary particles and secondary particles smaller than conventional magnesium hydroxide [Mg (OH) 2 ].
  • Mg (OH) 2 magnesium hydroxide
  • the reactivity with the acid is improved and the flame retardancy and mechanical strength with the resin are improved.
  • the dehydration start temperature is lower than Mg (OH) 2 , and flame retardancy is improved.
  • it is useful as a precursor of nano-level polymer fine particles MgO.
  • Magnesium hydroxide is a phytoacid (gastric acid neutralizer), laxative, PVC stabilizer, ceramic raw material, heavy oil additive, flue gas desulfurizer, bitter fertilizer, food additive (magnesium fortifier), etc. It is used in various fields such as resin flame retardants (utilization of endothermic properties during thermal decomposition) that take advantage of special characteristics, and because of the relatively large primary particles and secondary particles, The problem of reaching the limit is solved, and further expansion of use is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Fireproofing Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】従来の水酸化マグネシウム(Mg(OH))に比べて、1次粒子及び2次粒子を小さくした、酸との反応性が向上し、樹脂の難燃性、機械的強度を向上させた、また、非沈降性のスラリーとなり、液体と同じ取り扱い性がえられる水酸化マグネシウム系固溶体を提供すること。 【構成】下記式(1)で表される水酸化マグネシウム系固溶体。 Mg(OH)2-x (式1) 但し式中Rは1価の有機酸を、xは0<x<1を表す。 上記水酸化マグネシウム系固溶体は、酸化マグネシウム(MgO)前駆体である。上記水酸化マグネシウム系固溶体を有効成分とする合成樹脂用難燃剤。(a)合成樹脂100重量部に対して、(b)上記水酸化マグネシウム系固溶体を0.1~50重量部配合することを特徴とする合成樹脂組成物及びその成型品。

Description

新規水酸化マグネシウム系固溶体、およびそれを含む樹脂組成物および高活性酸化マグネシウムの前駆体
 本発明は、下記式(1)で表される新規な水酸化マグネシウム系固溶体および該水酸化マグネシウム系固溶体を有効成分とする合成樹脂用補強剤難燃剤、および合成樹脂組成物および高活性酸化マグネシウムの前駆体に関する。
Mg(OH)2-x    (式1)
(但し式中Rは1価の有機酸を、xは0<x<1を表す。)
 水酸化マグネシウムは、制酸剤(胃酸中和剤)、緩下剤、塩ビの安定剤、セラミック原料、重油添加剤、排煙脱硫剤、苦土肥料、食品添加剤(マグネシウム強化剤)等と、物理的特徴を生かした樹脂の難燃剤(熱分解時の吸熱性の利用)等多方面で使用されている。
 例えば、合成樹脂に対する難燃性の要求に応えるべく水酸化マグネシウム粒子等が注目されるようになった。水酸化マグネシウム粒子は、脱水開始温度が約340℃であるため、殆どの樹脂に適用できるという利点を有している。さらに、特許文献1では、良く結晶成長させた新しい水酸化マグネシウム粒子の合成法が開発されたため、これを使用して良好な成形品を得ることができるようになった。そこには、従来の水酸化マグネシウム粒子に比べて、構造上の歪が小さく、粒子の二次凝集が少なく、また水分子および空気の残留が小さい特定性状の水酸化マグネシウム粒子が提案されている。この水酸化マグネシウム粒子は、ポリオレフィン等の樹脂との親和性がよく、成形時にシルバー・ストリークの発生がなく、外観の優れた成形品を得ることができること、およびUL規格94VEにおいて、V-0を満足する難燃性のポリプロピレン樹脂成形品を得ることができること等が記載されている。
 また、特許文献2には、レーザー回析散乱法で測定された平均二次粒子径が0.4~1.0μmである水酸化マグネシウム粒子よりなる難燃剤をポリオレフィンまたはその共重合体に使用する技術が、特許文献3には、特定の性状を有するハイドロタルサイト類化合物粒子に、レーザー回折散乱法により測定した平均二次粒子径が0.01~10μmである水酸化マグネシウムを一定量配合し、炭酸ガスによる発泡に対し抑制効果を持たせる技術が、それぞれ提案されている。
特開昭52-115799号公報 特許第4157560号号公報 WO2011/111487 特開平4-10330号公報
 しかし、従来の水酸化マグネシウムは、1次粒子および2次粒子が比較的大きいために、種々の利用分野で性能の限界に達している。1次粒子はBET比表面積で比較でき従来の水酸化マグネシウムのそれは50m/g以下である。また従来の水酸化マグネシウムは、液体媒体中で沈降し、かつ不透明であるため、粉末に比べ取り扱いが容易で、しかも性能向上が期待できる透明性の高い液状品を製造することができない。
 そこで、本発明は、従来の水酸化マグネシウムと比べ、1次粒子を小さくできるとともに、単分散に近いナノレベルの微粒子の水酸化マグネシウム系化合物を提供することを目的とする。更にMg(OH)より脱水開始温度が下がった難燃性等の向上が期待できる水酸化マグネシウム系化合物を提供することを目的とする。また、更にナノレベルの高分散微粒子を製造でき、透明性の高い液状品を製造することを目的とする。
 本発明は、MgCl等の水溶性マグネシウム塩の水溶液にNaOHとかCa(OH)等のアルカリを加えて水酸化マグネシウムを生成させる従来の製造方法において、新たにアルカリ由来のOHと競合するギ酸、グリコール酸、乳酸の1種以上を添加反応させることで、水酸化マグネシウム(Mg(OH))のOHの一部をギ酸、グリコール酸、乳酸の一種以上と置換した下式で表される本発明の水酸化マグネシウム系固溶体が得られることを見出した。
Mg(OH)2-x    (式1)
但し式中Rは1価の有機酸を、xは0<x<1、好ましくは0<x≦0.2、を表す。xが1より大きい場合は水酸化マグネシウムに対する1価有機酸の固溶限界を超える。
 本発明は、以下の(1)ないし(7)に記載の水酸化マグネシウム系固溶体を要旨とする。
(1)下記式1で表される水酸化マグネシウム系固溶体。
   Mg(OH)2-x    (式1)
   但し式中Rは1価の有機酸を、xは0<x<1を表す。
(2)xが0<x≦0.2である上記(1)記載の水酸化マグネシウム系固溶体。
(3)1価の有機酸がギ酸、グリコール酸、乳酸の1種以上である上記(1)または(2)記載の水酸化マグネシウム系固溶体。
(4)平均2次粒子経が200nm以下である上記(1)ないし(3)のいずれかに記載の水酸化マグネシウム系固溶体。
(5)脱水開始温度が約300℃である上記(1)ないし(4)のいずれかに記載の水酸化マグネシウム系固溶体。
(6)高級脂肪酸類、高級脂肪酸のアルカリ金属塩、アニオン系界面活性剤、リン酸エステル類、シラン系、チタネート系、アルミニウム系のカップリング剤、多価アルコールと脂肪酸のエステル類、高級アルコールの硫酸エステル、珪素化合物、リン系化合物、アルミニウム系化合物、無機酸または有機酸、シリコーンからなる群から選ばれた少なくとも一種の表面処理剤により表面処理されている上記(1)ないし(5)のいずれかに記載の水酸化マグネシウム系固溶体。
(7)酸化マグネシウム(MgO)前駆体である上記(1)ないし(6)のいずれかに記載の水酸化マグネシウム系固溶体。
 また、本発明は、以下の(8)に記載の合成樹脂用難燃剤、(9)および(10)に記載の合成樹脂組成物及びその成型品を要旨とする。
(8)上記(1)ないし(6)のいずれかに記載の水酸化マグネシウム系固溶体を有効成分とする合成樹脂用難燃剤。
(9)(a)合成樹脂 100重量部に対して、(b)上記(1)ないし(6)のいずれかに記載の水酸化マグネシウム系固溶体を0.1~50重量部配合することを特徴とする合成樹脂組成物及びその成型品。
(10)合成樹脂がポリオレフィンまたはその共重合体である上記(9)記載の合成樹脂組成物及びその成型品。
 本発明の水酸化マグネシウム系固溶体は、下記式で表され、従来の水酸化マグネシウム(Mg(OH))に比べて、1次粒子及び2次粒子を小さくできる。その結果、酸との反応性が向上し、樹脂の難燃性、機械的強度を向上させる。また、非沈降性のスラリーとなり、液体と同じ取り扱い性がえられる。さらに、Mg(OH)より脱水開始温度が下がり、難燃性等が向上する。また、ナノレベルの高分散微粒子MgOの前駆体として有用である。
Mg(OH)2-x    (式1)
(但し式中Rは1価の有機酸を、xは0<x<1)
 本発明の水酸化マグネシウム系固溶体の製造は、MgCl等の水溶性マグネシウム塩の水溶液にNaOHとかCa(OH)等のアルカリを加えて水酸化マグネシウムを生成させる従来の製造方法において、新たにアルカリ由来のOHと競合するギ酸、グリコール酸、乳酸の1種以上を添加反応させることで、水酸化マグネシウム(Mg(OH))のOHの一部をギ酸、グリコール酸、乳酸の一種以上と置換した本発明の水酸化マグネシウム系固溶体が得られる。
 下記式で表される本発明の水酸化マグネシウム系固体溶体は、Mg(OH)のOHの一部をモノカルボン酸又はモノオキシカルボン酸で置換することで、一次粒子の成長を大きく抑制できる。その理由は、OH基よりイオン径が大きく、且つMgとの化学結合力がOHよりも強い上記モノカルボン酸を反応時に存在させることによりOH基のc軸方向の最密充填に近い構造であるMg(OH)の結晶成長に対して、抑制さらには阻害的に働くためである。その結果、従来の水酸化マグネシウムと比べ、1次粒子を小さくできるとともに、水熱処理を行い、単分散に近いナノレベルの微粒子の合成が可能となる。更にMg(OH)より脱水開始温度が下がるため難燃性等の向上が期待できる。また、更に水熱処理物をビーズミル等の湿式微粉砕処理を加えることによりナノレベルの高分散微粒子を製造でき、透明性の高い液状品を製造可能である。
Mg(OH)2-x    (式1)
(但し式中Rは1価の有機酸を、xは0<x<1を表す。)
 本発明固溶体は1次粒子が従来法より著しく小さく、BET法による比表面積が100m/以上のものも容易に製造できる。本発明の固溶体は、ビーズミル処理等の湿式粉砕により、あるいは約150度以下の水熱処理により2次粒子経が0.3μm以下、さらには0.1μm以下のナノレベルの微粒子にすることができる。かつ、非沈降性の透明性の高いスラリー(液状)の製造ができる。また、分解による脱水開始温度がMg(OH)より40~50℃低下させることもできる。
 本発明の水酸化マグネシウム系固溶体は上記特徴を有するが、それ以外の物性は従来の水酸化マグネシウムと良く似ており、従来の利用分野に支障なく使用できる。
 本発明の水酸化マグネシウム系固溶体の平均二次粒子経は300nm以下、好ましくは200nm以下、更に、好ましくは100nm以下である。
 本発明の水酸化マグネシウム系固溶体は、平均二次粒子経は300nm以下、好ましくは200nm以下、更に、好ましくは100nm以下であるので、高活性酸化マグネシウム(MgO)の前駆体であり、MgOが使用される多方面で使用され得る。
前駆体としては、例えば、マグネシウムアルコキシド(Mg(OR)2)、マグネシウムアセチルアセトン(Mg(acac)2)、水酸化マグネシウム(Mg(OH)2)、炭酸マグネシウム(MgCO2)、塩化マグネシウム(MgCl2)、硫酸マグネシウム(MgSO4)、硝酸マグネシウム(Mg(NO3)2)、シュウ酸マグネシウム(MgC24)の内のいずれか1種以上の化合物がすでに知られている。それら化合物によっては、通常、水和物の形態をとることもある。前駆体として、水和物を用いることもできる。酸化マグネシウム(MgO)前駆体は、例えば、多孔性半導体層を形成した後、絶縁性酸化物であるMgOの前駆体溶液を多孔性半導体層の表面側から塗布して熱処理を行う方法により、多孔性半導体層の触媒層側の表面(空孔の内表面を含む)をMgOで被覆して光電変換素子を作製するなどの使い方が可能である。また、保護層をなすMgOの成膜は、真空蒸着法やEB法、スパッタ法等の薄膜形成法の他に、MgOの前駆体である有機材料を用いた印刷法(厚膜形成法)等によって行うことができる。このうち印刷法では、例えば特許文献4に開示されているように、液体の有機材料をガラス材料と混合し、これをパネルガラス表面にスピンコートし、600℃付近で焼成することによりMgOを結晶化させて保護層を形成する。印刷法は真空蒸着法やEB法、スパッタ法に比べ、工程が比較的簡単で低コストで行えるメリットがあり、また真空プロセスを用いなくてもよいので、スループットの面からも優れている。
 <表面処理>
 本発明の水酸化マグネシウム系固溶体は、樹脂と複合化する場合は表面処理することが好ましい。表面処理剤として、高級脂肪酸等のアニオン経界面活性剤、リン酸エステル、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、シリコーン等が挙げられる。表面処理剤は、水酸化マグネシウムに対し好ましくは1~20重量%の量用いる。
 表面処理は、湿式または乾式で行うことが好ましい。湿式とは、水とかアルコール等の溶媒に水酸化マグネシウム系固溶体を分散し、撹拌下に表面処理剤を添加する方法である。乾式とは、ヘンシェルミキサー等の高速撹拌機で撹拌下の粉末状の水酸化マグネシウム系固溶体に、表面処理剤を添加する方法である。
 表面処理剤として好ましく用いられるものを例示すれば次のとおりである。(a)ステアリン酸、エルカ酸、パルミチン酸、ラウリン酸、ベヘニン酸等の炭素数10以上の高級脂肪酸類,(b)前記高級脂肪酸のアルカリ金属塩,(c)ポリエチレングリコールエーテルの硫酸エステル塩、アミド結合硫酸エステル塩、エステル結合硫酸エステル塩、エステル結合スルホネート、アミド結合スルホン酸塩、エーテル結合スルホン酸塩、エーテル結合アルキルアリールスルホン酸塩、エステル結合アルキルアリールスルホン酸塩、アミド結合アルキルアリールスルホン酸塩等のアニオン系界面活性剤類,(d)オルトリン酸とオレイルアルコール、ステアリルアルコール等のモノまたはジエステルまたは両者の混合物であって、それらの酸型またはアルカリ金属塩またはアミン塩等のリン酸エステル類,(e)ビニルエトキシシラン、ビニル-トリス(2-メトキシ-エトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、β(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン等のシランカップリング剤類;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロフォスフェート)チタネート、イソプロピルトリス(N-アミノエチル-アミノエチル)チタネート、イソプロピルトリデシルベンゼンスルホニルチタネート等のチタネート系カップリング剤類;アセトアルコキシアルミニウムジイソプロピレート等のアルミニウム系カップリング剤類,(f)グリセリンモノステアレート、グリセリンモノオレエート等の多価アルコールと脂肪酸のエステル類,(g)ステアリルアルコール、オレイルアルコール等の高級アルコールの硫酸エステル塩,(h)SiO(OH) 、Al(OH) 、Cl、NO 、HPO 、C 、SiO(OH) 2―、Si(OH) 2―、HPO 2―、C 2―、PO 3-、C 、SiO 4―、またはSi(OH) 4―等を有する珪素化合物、リン系化合物、アルミニウム系化合物。
 表面処理をした水酸化マグネシウム粒子は、必要により、例えば水洗、脱水、造粒、乾燥、粉砕、分級等の手段を適宜選択して実施し、最終製品形態とすることができる。
 <水酸化マグネシウム系固溶体の製造方法>
 (A)水溶性マグネシウム塩と1価有機酸もしくはその塩との混合水溶液に、ほぼMgと等量のアルカリを加え共沈させる。必要に応じ、この後反応物のスラリーを必要に応じこの後、加熱熟成する。好ましくは100℃以上で水熱処理する。
 (B)水溶性マグネシウム塩の水溶液に、アルカリの水溶液を加え共沈させた水酸化マグネシウムに、1価有機酸もしくはその塩を添加し、100℃以上で水熱処理する。
 (C)(A)及び/または(B)法で得られた固溶体をビーズミル等による湿式粉砕処理を行い、2次粒子を更に小さくする方法により製造することができる。
 水溶性マグネシウム塩として、塩化マグネシウム、硝酸マグネシウム、硫酸マグネシウム、酢酸マグネシウム等が挙げられる。
 アルカリとして、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム等のアルカリ土類金属水酸化物、水酸化アンモニウム等が挙げられる。
 1価有機酸としてギ酸、グリコール酸、乳酸等が挙げられ、その塩としてはナトリウム塩カリウム塩等水溶性の塩が挙げられる。
 水熱処理は、100℃以上、好ましくは105℃~150℃、より好ましくは110℃~130℃で行う。処理時間は、好ましくは、1~20時間である。
 水熱処理後、濾過、水洗、乳化、表面処理、濾過、乾燥、粉砕、分級等の慣用の工程を適宜選択して行うことにより、本発明の水酸化マグネシウム系固溶体を製造できる。
 (樹脂組成物)
 本発明の樹脂組成物は、水酸化マグネシウム系固溶体を、樹脂100重量部に対し、0.1~100重量部、好ましくは1~50重量部配合して製造される。
 樹脂と本発明水酸化マグネシウム系固溶体との混合、混練方法には特別の制約はなく、両者を均一に混合できる方法であればよい。例えば、1軸または2軸押出機、ロール、バンバリーミキサー等により混合、混練される。成型方法にも特別の制約はなく、樹脂およびゴムの種類、所望成型品の種類等に応じて、それ自体公知の成型手段を任意に採用できる。例えば射出成型、押出成型、ブロー成型、プレス成型、回転成型カレンダー成型、シートフォーミング成型、トランスファー成型、積層成型、真空成型等である。
 本発明の水酸化マグネシウム系固溶体が配合される合成樹脂は樹脂および/またはゴムを意味し、通常、成形品として使用されるものであればよく、その例としてはポリエチレン、ポリプロピレン、エチレン/プロピレン共重合体、ポリブデン、ポリ・4-メチルペンテン-1等の如きC~Cオレフィン(α-オレフィン)の重合体もしくは共重合体、これらオレフィンとジエンとの共重合体類、エチレン-アクリレート共重合体、ポリスチレン、ABS樹脂、AAS樹脂、AS樹脂、MBS樹脂、エチレン/塩ビ共重合樹脂、エチレン酢ビコポリマー樹脂、エチレン-塩ビ-酢ビグラフト重合樹脂、塩化ビニリデン、ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、塩ビプロピレン共重合体、酢酸ビニル樹脂、フェノキシ樹脂、ポリアセタール、ポリアミド、ポリイミド、ポリカーボネート、ポリスルホン、ポリフェニレンオキサイド、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、メタクリル樹脂等の熱可塑性樹脂が例示できる。
 これらの熱可塑性樹脂のうち好ましい例としては、ポリオレフィン、またはその共重合体、具体的には、ポリプロピレンホモポリマー、エチレンプロピレン共重合体の様なポリプロピレン系樹脂、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、EVA(エチレンビニルアセテート樹脂)、EEA(エチレンエチルアクリレート樹脂)、EMA(エチレンアクリル酸メチル共重合樹脂)、EAA(エチレンアクリル酸共重合樹脂)、超高分子量ポリエチレンの様なポリエチレン系樹脂、およびポリブテン、ポリ(4-メチルペンテン-1)等のC~Cのオレフィン(α-エチレン)の重合体もしくは共重合体である。
 さらに、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、尿素樹脂等の熱硬化性樹脂およびEPDM、ブチルゴム、イソプレンゴム、SBR,NBR,クロロスルホン化ポリエチレン、NIR、ウレタンゴム、ブタジエンゴム、アクリルゴム、シリコーンゴム、フッ素ゴム等の合成ゴムを例示することができる。
 本発明の樹脂組成物は、前記合成樹脂および水酸化マグネシウム系固溶体より実質的に形成されるが、さらに難燃助剤を少割合配合することができる。この難燃助剤を配合することにより、水酸化マグネシウム系固溶体の配合割合を更に少なくすることができるし、また難燃効果を増大することができる。
 難燃助剤としては、赤リン、炭素粉末あるいはこれらの混合物であることが好ましい。赤リンとしては、難燃剤用の通常赤リンの他に、例えば熱硬化性樹脂、ポリオレフィン、カルボン酸重合体、酸化チタンあるいはチタンアルミ縮合物で表面被覆した赤リンが使用しうる。また、炭素粉末としては、カーボンブラック、活性炭あるいは黒鉛が挙げられ、このカーボンブラックとしては、オイルファーネス法、ガスファーネス法、チャンネル法、サーマル法またはアセチレン法のいずれの方法によって調整されたものであってもよい。
 難燃助剤を配合する場合、その割合は熱可塑性樹脂及び水酸化マグネシウム系固溶体の合計重量に対して0.5~20重量%、好ましくは1~15重量%の範囲が適当である。本発明の樹脂組成物は、前記した割合で前記合成樹脂および水酸化マグネシウム系固溶体、必要により難燃助剤とを、それ自体公知の手段によって混合すればよい。
 本発明の樹脂組成物は、本発明水酸化マグネシウム系固溶体以外に、タルク、マイカ、ガラス繊維、塩基性硫酸マグネシウム繊維、等の従来公知の強化剤を併用してもよい。これら強化剤の配合量は、樹脂100重量部に対し1~50重量部である。
 更に、慣用の他の添加材例えば酸化防止剤、紫外線吸収剤、滑剤、カーボンブラック等の顔料、臭素系とかリン酸エステル系の難燃剤、炭酸カルシウム等の充填剤を適宜選択して配合することができる。
 これら添加材の配合量は、樹脂100重量部に対し、0.01~5重量部の酸化防止剤、0.01~5重量部の紫外線吸収剤、0.1~5重量部の滑剤、0.01~5重量部の顔料、0.1~100重量部の難燃剤、1~50重量部の充填剤である。
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
 実施例中、水酸化マグネシウム系固溶体の(A)平均2次粒子径、(B)分解開始温度、(C)沈降性、(D)全光線透過率(透明性)は以下に記載する測定方法によって測定された。
(A)平均2次粒子径
MICROTRAC粒度分布計SPAタイプ(LEEDS&NORTHRUP INSTRUMENTS社製)を用いて測定決定する。
試料粉末700mgを70mlの水に加えて、超音波(NISSEI 社製、MODEL US-300,電流300μA)で3分間分散処理した後、その分散液の2-4mlを採って、250mlの脱気水を収容した上記粒度分布計の試料室に加え、分析計を作動させて8分間その懸濁液を循環した後、粒度分布を測定する。合計2回の測定を行い、それぞれの測定について得られた50%累積2次粒子径の算術平均値を算出して、試料の平均2次粒子径とする。
(B)分解開始温度
昇温速度5℃/分、大気雰囲気で測定したTG-DTAから決定。
(C)沈降性
固形物濃度25g/Lのサスペンジョンを50mLのメスシリンダーに入れ、上澄み液部の液量の経時変化を測定する。
(D)全光線透過率(透明性)
JIS K-7361に準じて測定。
 1.5mol/Lの塩化マグネシウム溶液320mLを入れた1L容量のステンレス製反応槽に、撹拌下で3mol/Lの水酸化ナトリウム溶液320mL投入し、共沈させた。
 この懸濁液にギ酸ナトリウム65gを投入して混ぜ合わせた。次にこの懸濁液を1L容量のオートクレーブにて140℃で2時間熟成した。熟成後、懸濁液を固液分離、洗浄、脱水、乾燥、粉砕することで試料1を得た。
 3mol/Lの塩化マグネシウム溶液154mLとグリコール酸ナトリウム0.93gを入れた1L容量のステンレス製反応槽に、イオン交換水を加えて321.7mLにメスアップして混合溶液とした。この混合溶液に、撹拌下で3.3mol/Lの水酸化ナトリウム溶液280mLを投入し、共沈させた。次にこの懸濁液を1L容量のオートクレーブにて120℃で2時間熟成した。熟成後、懸濁液を固液分離、洗浄、脱水、乾燥、粉砕することで試料2を得た。
 3mol/Lの塩化マグネシウム溶液180mLと50%乳酸ナトリウム溶液2.40gを入れた1L容量のステンレス製反応槽に、イオン交換水を加えて380.0mLにメスアップして混合溶液とした。この混合溶液に、撹拌下で3mol/Lの水酸化ナトリウム溶液360mLを投入し、共沈させた。共沈物を1L容量のオートクレーブにて120℃で2時間熟成した。熟成後、懸濁液を固液分離、洗浄、脱水、乾燥、粉砕することで試料3の粉体を得た。
 実施例3で得られた粉砕物をホモジナイザーで水に分散させて試料4の懸濁液を得た。共沈物の懸濁液を直径0.05mmのジルコニアビーズにて湿式粉砕することで、平均2次粒子径が50nmの試料5の懸濁液を得た。さらに、試料5の懸濁液を、直径0.03mmのジルコニアビーズで湿式粉砕することで、平均2次粒子径が20nmである試料6の懸濁液を得た。これら懸濁液の沈降性を測定し表2に示した。
(比較例1)
 1.5mol/Lの塩化マグネシウム溶液320mLを入れた1L容量のステンレス製反応槽に、撹拌下で3mol/Lの水酸化ナトリウム溶液320mL投入し、水酸化マグネシウム懸濁液を作製した。
 得られた懸濁液を1L容量のオートクレーブにて150℃で2時間熟成した。熟成後、懸濁液を固液分離、洗浄、脱水、乾燥、粉砕した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の水酸化マグネシウム系固溶体は、従来の水酸化マグネシウム[Mg(OH)]に比べて1次粒子および2次粒子を小さくできる。その結果、酸との反応性が向上し樹脂との難燃性、機械的強度を向上させる。また、非沈殿性のスラリーとなり、液体と同じ取り扱い性が得られる。さらに、Mg(OH)より脱水開始温度が下がり、難燃性が向上する。また、ナノレベルの高分子微粒子MgOの前駆体として有用である。
 水酸化マグネシウムは、制酸剤(胃酸中和剤)、緩下剤、塩ビの安定剤、セラミック原料、重油添加剤、排煙脱硫剤、苦土肥料、食品添加剤(マグネシウム強化剤)等と、物理的特徴を生かした樹脂の難燃剤(熱分解時の吸熱性の利用)等多方面で使用されているところ、1次粒子および2次粒子が比較的大きいために、種々の利用分野で性能の限界に達しているという問題点が解決され、さらなる利用拡大が期待される。

Claims (10)

  1. 下記式(1)で表される水酸化マグネシウム系固溶体。
    Mg(OH)2-x    (式1)
    但し式中Rは1価の有機酸を、xは0<x<1を表す。
  2. xが0<x≦0.2である請求項1記載の水酸化マグネシウム系固溶体。
  3. 1価の有機酸がギ酸、グリコール酸、乳酸の1種以上である請求項1または2記載の水酸化マグネシウム系固溶体。
  4. 平均2次粒子経が200nm以下である請求項1ないし3のいずれかに記載の水酸化マグネシウム系固溶体。
  5. 脱水開始温度が約300℃である請求項1ないし4のいずれかに記載の水酸化マグネシウム系固溶体。
  6. 高級脂肪酸類、高級脂肪酸のアルカリ金属塩、アニオン系界面活性剤、リン酸エステル類、シラン系、チタネート系、アルミニウム系のカップリング剤、多価アルコールと脂肪酸のエステル類、高級アルコールの硫酸エステル、珪素化合物、リン系化合物、アルミニウム系化合物、無機酸または有機酸、シリコーンからなる群から選ばれた少なくとも一種の表面処理剤により表面処理されている請求項1ないし5のいずれかに記載の水酸化マグネシウム系固溶体。
  7. 酸化マグネシウム(MgO)前駆体である請求項1ないし6のいずれかに記載の水酸化マグネシウム系固溶体。
  8. 請求項1ないし6のいずれかに記載の水酸化マグネシウム系固溶体を有効成分とする合成樹脂用難燃剤。
  9. (a)合成樹脂 100重量部に対して、(b)請求項1ないし6のいずれかに記載の水酸化マグネシウム系固溶体を0.1~50重量部配合することを特徴とする合成樹脂組成物及びその成型品。
  10. 合成樹脂がポリオレフィンまたはその共重合体である請求項9記載の合成樹脂組成物及びその成型品。
PCT/JP2015/073802 2014-08-26 2015-08-25 新規水酸化マグネシウム系固溶体、およびそれを含む樹脂組成物および高活性酸化マグネシウムの前駆体 WO2016031803A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016545538A JPWO2016031803A1 (ja) 2014-08-26 2015-08-25 新規水酸化マグネシウム系固溶体、およびそれを含む樹脂組成物および高活性酸化マグネシウムの前駆体
CN201580045348.5A CN106573869A (zh) 2014-08-26 2015-08-25 新型氢氧化镁系固溶体、及含有其的树脂组合物以及高活性氧化镁的前驱物
KR1020177001176A KR20170047212A (ko) 2014-08-26 2015-08-25 신규 수산화마그네슘계 고용체, 및 그것을 포함하는 수지 조성물 및 고활성 산화마그네슘의 전구체
ES15835860T ES2751278T3 (es) 2014-08-26 2015-08-25 Nueva solución sólida a base de hidróxido de magnesio y composición de resina y precursor para óxido de magnesio altamente activo que incluye los mismos
EP15835860.6A EP3187483B1 (en) 2014-08-26 2015-08-25 Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
US15/506,454 US10233305B2 (en) 2014-08-26 2015-08-25 Magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014171103 2014-08-26
JP2014-171103 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016031803A1 true WO2016031803A1 (ja) 2016-03-03

Family

ID=55399690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073802 WO2016031803A1 (ja) 2014-08-26 2015-08-25 新規水酸化マグネシウム系固溶体、およびそれを含む樹脂組成物および高活性酸化マグネシウムの前駆体

Country Status (8)

Country Link
US (1) US10233305B2 (ja)
EP (1) EP3187483B1 (ja)
JP (1) JPWO2016031803A1 (ja)
KR (1) KR20170047212A (ja)
CN (1) CN106573869A (ja)
ES (1) ES2751278T3 (ja)
TW (1) TW201615647A (ja)
WO (1) WO2016031803A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022141558A (ja) * 2021-03-15 2022-09-29 株式会社海水化学研究所 高配向性金属複合塩

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3031847A1 (en) * 2014-12-11 2016-06-15 Solvay Acetow GmbH Polymer composition comprising basic additive, process and articles comprising said polymer composition
CN109052437B (zh) * 2018-09-19 2020-07-07 常州大学 一种由纳米粒子组成的花状形貌的介孔氧化镁的制备方法
KR20200077133A (ko) 2018-12-20 2020-06-30 빈운택 스마트 건조 시스템
CN113086998B (zh) * 2021-04-07 2022-06-24 长治学院 一种Mg6Al2(OH)18·4.5H2O纳米片及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054915A (ja) * 1983-09-01 1985-03-29 Tokuyama Soda Co Ltd 球状塩基性炭酸マグネシウム及びその製造方法
JPS63277511A (ja) * 1987-05-11 1988-11-15 Shin Nippon Kagaku Kogyo Co Ltd 水酸化マグネシウムの製造方法および表面処理水酸化マグネシウムの製造方法
JPH11349592A (ja) * 1998-06-01 1999-12-21 Daicel Amihoshi Sangyo Kk 有機酸マグネシウム水溶液の製造方法
WO2013154200A1 (ja) * 2012-04-10 2013-10-17 協和化学工業株式会社 複合難燃剤、樹脂組成物および成形品
WO2014128993A1 (ja) * 2013-02-19 2014-08-28 神島化学工業株式会社 難燃剤、難燃性組成物及び成形体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115799A (en) 1976-03-25 1977-09-28 Kyowa Kagaku Kougiyou Kk Magnesiumhydroxide having novel structure intermediate thereof and process for preparing same
GB1514081A (en) 1975-05-30 1978-06-14 Kyowa Chem Ind Co Ltd Particulate magnesium hydroxide
JP3007117B2 (ja) 1990-04-27 2000-02-07 沖電気工業株式会社 ガス放電表示装置およびその製造方法
JP3638738B2 (ja) 1995-12-19 2005-04-13 協和化学工業株式会社 ポリオレフィンまたはその共重合体よりなる耐熱劣化性樹脂組成物および成形品
US6025424A (en) 1995-12-19 2000-02-15 Kyowa Chemical Industry Co Ltd Heat deterioration resistant flame retardant, resin composition and molded articles
US7686986B2 (en) * 2006-01-05 2010-03-30 Headwaters Technology Innovation, Llc Magnesium hydroxide nanoparticles, methods of making same and compositions incorporating same
MX2012010321A (es) 2010-03-09 2012-10-05 Kyowa Chem Ind Co Ltd Relleno para resina sintetica, composicion de resina sintetica, metodo de manufactura para la misma y objetos moldeados hechos a partir de la misma.
US20150005429A1 (en) * 2012-02-13 2015-01-01 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide fine particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054915A (ja) * 1983-09-01 1985-03-29 Tokuyama Soda Co Ltd 球状塩基性炭酸マグネシウム及びその製造方法
JPS63277511A (ja) * 1987-05-11 1988-11-15 Shin Nippon Kagaku Kogyo Co Ltd 水酸化マグネシウムの製造方法および表面処理水酸化マグネシウムの製造方法
JPH11349592A (ja) * 1998-06-01 1999-12-21 Daicel Amihoshi Sangyo Kk 有機酸マグネシウム水溶液の製造方法
WO2013154200A1 (ja) * 2012-04-10 2013-10-17 協和化学工業株式会社 複合難燃剤、樹脂組成物および成形品
WO2014128993A1 (ja) * 2013-02-19 2014-08-28 神島化学工業株式会社 難燃剤、難燃性組成物及び成形体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONG YAN ET AL.: "Synthesis and characterization of novel organic magnesium salt flame retardant", MATERIALS LETTERS, vol. 134, 19 July 2014 (2014-07-19), pages 210 - 213, XP055411670 *
See also references of EP3187483A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022141558A (ja) * 2021-03-15 2022-09-29 株式会社海水化学研究所 高配向性金属複合塩
JP7148772B2 (ja) 2021-03-15 2022-10-06 株式会社海水化学研究所 高配向性金属複合塩

Also Published As

Publication number Publication date
EP3187483A4 (en) 2018-04-11
EP3187483A1 (en) 2017-07-05
TW201615647A (zh) 2016-05-01
EP3187483B1 (en) 2019-08-14
US10233305B2 (en) 2019-03-19
US20170260356A1 (en) 2017-09-14
KR20170047212A (ko) 2017-05-04
JPWO2016031803A1 (ja) 2017-06-08
CN106573869A (zh) 2017-04-19
ES2751278T3 (es) 2020-03-31

Similar Documents

Publication Publication Date Title
JP5732040B2 (ja) 合成樹脂用充填剤の発泡障害を抑制する剤および方法
JP4789422B2 (ja) 耐熱劣化剤
WO2016031803A1 (ja) 新規水酸化マグネシウム系固溶体、およびそれを含む樹脂組成物および高活性酸化マグネシウムの前駆体
US20080145296A1 (en) Mg-Al-based hydrotalcite-type particles, chlorine-containing resin composition and process for producing the particles
JP5865998B2 (ja) 複合難燃剤、樹脂組成物および成形品
JP3107926B2 (ja) 難燃剤および難燃性樹脂組成物
JP6598271B2 (ja) 高アスペクト比板状ハイドロタルサイト、その製造方法及びその樹脂組成物
JP6593942B2 (ja) 微粒子複合金属水酸化物、その焼成物、その製造方法及びその樹脂組成物
JP2826973B2 (ja) 複合金属水酸化物
JP4088751B2 (ja) Li−Al系層状複水酸化物複合粒子粉末及びその製造法
JP3154535B2 (ja) 複合金属水酸化物およびその使用
JP7239492B2 (ja) ハイドロタルサイト粒子及びその製造方法、並びにそれからなる樹脂安定剤及び樹脂組成物
KR20010075004A (ko) 아연 변성 복합 다염기성 염, 그 제조 방법 및 용도
JP2001525312A (ja) カチオン性層状化合物およびその製造方法と用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545538

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001176

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15506454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015835860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835860

Country of ref document: EP