WO2019130998A1 - 表面処理剤組成物 - Google Patents

表面処理剤組成物 Download PDF

Info

Publication number
WO2019130998A1
WO2019130998A1 PCT/JP2018/044346 JP2018044346W WO2019130998A1 WO 2019130998 A1 WO2019130998 A1 WO 2019130998A1 JP 2018044346 W JP2018044346 W JP 2018044346W WO 2019130998 A1 WO2019130998 A1 WO 2019130998A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
surface treatment
organosilicon compound
carbon atoms
substrate
Prior art date
Application number
PCT/JP2018/044346
Other languages
English (en)
French (fr)
Inventor
正博 雨宮
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2019130998A1 publication Critical patent/WO2019130998A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present invention relates to a surface treatment agent composition, and more specifically, a surface treatment agent which cures at room temperature without heating and provides a water repellent film excellent in water repellency, water repellency (dropability of water droplets) and durability.
  • the present invention relates to a composition, a substrate with a water repellent film formed by surface treatment with the composition, and a method for producing a substrate with a water repellent film using the composition.
  • Patent Documents 1 to 6 water repellent compositions containing fluoroalkylsilane or amino-modified polysiloxane as a water repellent agent for glass have been proposed (see Patent Documents 1 to 6).
  • the water repellent film produced from the water repellent composition disclosed in each of these patent documents is excellent in water repellency, the water repellency of the water droplet on the film surface is insufficient. Therefore, when the water repellent film is applied to a window glass of a car, further improvement of the water sliding property is required in order to secure a good view at the time of rainfall.
  • Patent Document 7 discloses a composition containing a linear single-end functional polydimethylsiloxane compound and a silane coupling agent. Has been proposed. However, the water repellent film formed from the composition of Patent Document 7 has a problem that the durability is not sufficient, and the water resistance and the abrasion resistance can not be sufficiently exhibited, and the water repellency is maintained for a long time It was difficult to do.
  • Patent Document 8 proposes a coating composition comprising dimethylpolysiloxane having silanol groups at both ends of a molecular chain, a hydrolysis catalyst and a volatile solvent. Since this composition uses a strong acid such as sulfuric acid as a hydrolysis catalyst, it causes many problems such as corrosion of the automobile body (metal and resin material) and lack of operational safety. is there.
  • JP 2012-224668 A JP, 2009-137775, A JP, 2009-173491, A Japanese Patent Application Laid-Open No. 10-102046 Japanese Patent Application Publication No. 2003-160361 Japanese Patent Application Laid-Open No. 09-176622 Japanese Patent Application Laid-Open No. 11-315276 JP, 2016-169307, A
  • the present invention has been made in view of the above circumstances, and can form a film excellent in water repellency, water sliding ability and durability, and can suppress corrosion on an automobile body, and a surface treatment with the composition. It is an object of the present invention to provide a substrate with a water repellent film formed in the above and a method for forming a water repellent film using the composition.
  • the inventors of the present invention have found that a composition containing an organosilicon compound of a specific structure, a predetermined hydrolysis catalyst and an organic solvent cures at room temperature without heating, resulting in water repellency, The present invention has been completed by finding that a film excellent in water sliding property and durability is provided.
  • a surface treatment agent composition comprising the following components (A) to (C), (A) At least one selected from an organosilicon compound represented by the following formula (1), an organosilicon compound represented by the formula (4), and a hydrolysis condensate thereof
  • R 1 independently represents an alkyl group having 1 to 12 carbon atoms, or a group represented by formula (2)
  • R 2 independently has 1 to 12 carbon atoms
  • R 3 independently represent each other an alkyl group having 1 to 4 carbon atoms
  • X independently represents each other a hydroxy group or a hydrolysable group
  • L 1 independently represents each other
  • a represents a number of 1 to 100
  • b represents a number of 0 to 2.
  • R 4 's each independently represent an alkyl group having 1 to 12 carbon atoms, or a group represented by Formula (3).
  • R 5 independently represents an alkyl group having 1 to 12 carbon atoms.
  • B at least one hydrolysis catalyst
  • C organic solvent selected from naphthalene sulfonic acid and alkyl naphthalene sulfonic acid
  • the organosilicon compound represented by said Formula (1) is represented by following formula (11) or (12), and the organosilicon compound represented by said Formula (4) is represented by following formula (13)
  • L 1 is a divalent linking group represented by the following formula (5):
  • Y represents one divalent group selected from the following formulas (6) to (10)
  • R 6 and R 7 are each independently a single bond or a C 1 -C 10 group Represents an alkylene group.
  • c represents a number of 1 to 10 independently of each other
  • R 8 independently of each other has 1 to 12 carbon atoms Represents an alkyl group of 4.
  • an organic silicon compound having a hydrolyzable group (excluding the organic silicon compounds represented by the above formulas (1) and (4)), and at least one selected from the hydrolytic condensates thereof 5 surface treatment composition, 7.
  • a substrate with a water repellent film of 9 or 10 wherein the substrate is glass, metal, ceramic or resin, 12.
  • the surface treatment composition according to any one of 1 to 6 is coated on a substrate to form a coating film, and the surface of the coating film is wiped and treated to form a cured film at 5 to 35 ° C.
  • a method for producing a membrane-coated substrate is provided.
  • the present invention it is possible to provide a surface treatment agent composition capable of being cured at room temperature and capable of forming a film excellent in water repellency, water sliding property and durability.
  • the surface treatment agent composition of the present invention can suppress corrosion on automobile bodies (metals and resin materials), and has high work safety.
  • a substrate with a water repellent film excellent in water repellency, water sliding property and durability can be produced by a simple method.
  • the water repellent film of the present invention to a transparent substrate used as a window glass or mirror for vehicles, ships and aircrafts, it is possible to impart excellent water repellency and water repellency, Good visibility can be secured even when it rains.
  • the surface treatment agent composition according to the present invention comprises at least one selected from an organosilicon compound represented by the formula (1), an organosilicon compound represented by the formula (4), and a hydrolysis condensate thereof. And (B) at least one hydrolysis catalyst selected from naphthalene sulfonic acid and alkyl naphthalene sulfonic acid, and (C) an organic solvent.
  • the organosilicon compound represented by the formula (1) is an end-reactive organopolysiloxane, and on the other hand, the organic compound represented by the formula (4)
  • the silicon compound is a bifunctional terminal organopolysiloxane.
  • R 1 independently represents an alkyl group having 1 to 12 carbon atoms, or a group represented by formula (2), and R 2 independently has 1 to 6 carbon atoms.
  • R 3 independently of one another represents an alkyl group having 1 to 4 carbon atoms
  • X independently of one another represents a hydroxy group or a hydrolysable group
  • L 1 represents one another
  • a represents a number of 1 to 100
  • b represents a number of 0 to 2.
  • R 4 s independently represent an alkyl group having 1 to 12 carbon atoms, or a group represented by Formula (3)).
  • R 5 independently represents an alkyl group having 1 to 12 carbon atoms
  • the alkyl group having 1 to 12 carbon atoms in R 1 , R 2 , R 4 and R 5 may be linear, cyclic or branched, and specific examples thereof include methyl, ethyl, n -Propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl And cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
  • the alkyl group having 1 to 4 carbon atoms in R 3 may be linear, cyclic or branched, and specific examples thereof include methyl, ethyl, n-propyl, i-propyl and n- Examples include butyl, s-butyl, t-butyl, cyclopropyl, cyclobutyl and the like.
  • R 1 , R 2 , R 4 and R 5 an alkyl group having 8 or less carbon atoms is preferable from the viewpoint of water repellency, water sliding property and easiness of obtaining raw materials, and methyl group is particularly preferable. preferable. When the number of carbon atoms exceeds 12, the water repellency and slipperiness may be reduced.
  • R 3 methyl, are preferred ethyl group, more preferably a methyl group.
  • X represents, independently of one another, a hydroxy group or a hydrolysable group, and when X is a hydrolysable group, the organosilicon compound used in the present invention is such that the hydrolyzable group bonded to the Si atom at the molecular terminal is hydrolysed
  • a durable film is formed by silanol groups ( ⁇ Si-OH) formed by decomposition.
  • hydrolyzable groups include alkoxy groups such as methoxy, ethoxy, n-propoxy and n-butoxy groups, halogen atoms such as chlorine atom, and isocyanate groups.
  • a methoxy group and a chlorine atom are preferred.
  • L 1 represents a divalent linking group, and specific examples thereof include an oxygen atom, and an alkylene group having 1 to 10 carbon atoms such as ethylene, trimethylene, propylene and tetramethylene.
  • an oxygen atom such as ethylene, trimethylene, propylene and tetramethylene.
  • interactive functional groups such as ⁇ - ⁇ stack and hydrogen bond, or rigid Divalent linking groups containing atomic groups having a structure can also be suitably used.
  • a divalent linking group containing an alkenylene group, an arylene group or a fluorinated alkylene group can be mentioned.
  • the alkenylene group is preferably one having 2 to 20 carbon atoms, and may be linear, cyclic or branched.
  • Specific examples of the alkenylene group include vinylene, propenylene, 1-butenylene, 2-butenylene, 1-pentenylene, 2-pentenylene, 3-pentenylene and the like.
  • Specific examples of the arylene group include phenylene, biphenylene, and naphthylene groups.
  • the fluorinated alkylene group -(CHF) c -,-(CF 2 ) c- (c represents a number of 1 to 10, preferably 1 to 8, more preferably 1 to 6) Etc.
  • the above L 1 is particularly represented by the formula (5) 2 Valence linking groups are preferred.
  • Y represents any one divalent group selected from the following formulas (6) to (10), and R 6 and R 7 are each independently a single bond or an alkylene having 1 to 10 carbon atoms Represents a group.
  • R 6 and R 7 are preferably, independently of one another, a single bond or an ethylene group, and both a single bond, both an ethylene group, a combination of R 6 being an ethylene group and R 7 a single bond are more preferable.
  • a is a number of 1 to 100, but a number of 5 to 50 is preferable from the viewpoint of improving the water permeability of the cured film.
  • b is a number from 0 to 2, preferably 0 or 1, and more preferably 0.
  • durability of the cured film obtained will become inadequate.
  • organosilicon compound represented by the above formula (1) one represented by the following formula (11) or (12) is preferable.
  • organosilicon compound represented by said Formula (4) what is represented by following formula (13) is preferable.
  • organosilicon compound represented by Formula (1) Although the following compounds are mentioned as a suitable example of the organosilicon compound represented by Formula (1), It is not limited to these.
  • organosilicon compounds used in the present invention can be synthesized by known methods.
  • the organosilicon compound represented by the above formula (1) is a known silylation reaction as shown in the following schemes (1) silylation reaction by dealcoholation and (2) hydrosilylation reaction.
  • silylation reaction by dealcoholation and (2) hydrosilylation reaction can be synthesized by
  • R 9 represents an alkyl group having 1 to 4 carbon atoms.
  • an alkoxysilane which is an alkoxysilylating agent is reacted with a siloxane compound having a silanol group ( ⁇ Si—OH) at its terminal.
  • the alkoxysilane include tetramethoxysilane and tetraethoxysilane.
  • an organopolysiloxane having a silanol group at the end and an alkoxysilane in an amount of more than equimolar to one mole of silanol group are reacted in the presence of an amine catalyst to form a terminal alkoxy modified organopoly.
  • a product containing siloxane is obtained.
  • amine catalyst primary amines are suitably used, and specific examples thereof include propylamine, isopropylamine, butylamine, isobutylamine, sec-butylamine, tert-butylamine, allylamine and the like, but branched alkyl chains are preferable.
  • Preferred is isopropylamine, isobutylamine, sec-butylamine, tert-butylamine, more preferably tert-butylamine.
  • the catalyst may be used alone or in combination of two or more.
  • the amount of the amine catalyst to be used is not particularly limited, but from the viewpoints of reactivity and productivity, further suppression of the coloration of the product and facilitating purification, etc., the terminal silanol group ( ⁇ Si-OH)
  • the amount is preferably about 0.01 to 5% by mass with respect to the siloxane compound having
  • reaction temperature depends on the boiling point of the amine catalyst to be used, but is usually 0 to 100 ° C., preferably 0 to 50 ° C.
  • reaction time is also not particularly limited, and is usually about 1 to 10 hours, preferably 1 to 5 hours.
  • a silane compound having an unsaturated bond at the end is reacted with a siloxane compound having a ⁇ Si—H group at the end.
  • the silane compound having an unsaturated bond at the end include vinyltrimethoxysilane, vinyltriethoxysilane, octenyltrimethoxysilane, octenyltriethoxysilane and styrylsilane.
  • a platinum compound-containing catalyst is suitably used in the above hydrosilylation reaction.
  • the platinum compound-containing catalyst is not particularly limited, and specific examples thereof include chloroplatinic acid, alcohol solutions of chloroplatinic acid, platinum-1,3-divinyl-1,1,3,3-tetramethyl Toluene or xylene solution of disiloxane complex, tetrakistriphenylphosphine platinum, dichlorobistriphenylphosphine platinum, dichlorobisacetonitrile platinum, dichlorobis benzonitrile platinum, dichlorocyclooctadiene platinum, etc., platinum-carbon, platinum-alumina, platinum- Supported catalysts such as silica can be mentioned.
  • a zero-valent platinum complex is preferable, and a toluene or xylene solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex is more preferable.
  • the amount of the platinum compound-containing catalyst to be used is not particularly limited, but from the viewpoint of reactivity, productivity, etc., 1 ⁇ 10 10 platinum atoms are contained per 1 mol of the organosilicon compound having a Si—H group. An amount of -7 to 1 ⁇ 10 -2 mol is preferable, and an amount of 1 ⁇ 10 -7 to 1 ⁇ 10 -3 mol is more preferable.
  • a solvent can also be used.
  • usable solvents include hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene and xylene; ether solvents such as diethyl ether, tetrahydrofuran and dioxane; The solvents may be used alone or in combination of two or more.
  • the reaction temperature in the above hydrosilylation reaction is not particularly limited, and the reaction can be carried out under heating from 0 ° C., preferably 0-200 ° C. In order to obtain an appropriate reaction rate, it is preferable to carry out the reaction under heating, and from such a viewpoint, the reaction temperature is more preferably 40 to 110 ° C., and even more preferably 60 to 100 ° C.
  • the reaction time is also not particularly limited, and is usually about 1 to 10 hours, preferably 1 to 5 hours.
  • (B) Component
  • the reaction of the hydrolysable group of the organosilicon compound with water is promoted, and the generated silanol ( ⁇ Si-OH) group and the substrate
  • hydrolysis catalysts which promote the condensation reaction with the OH groups present on the surface.
  • at least one selected from naphthalene sulfonic acid and alkyl naphthalene sulfonic acid is used as the hydrolysis catalyst from the viewpoint of improving the durability of the coating film and suppressing the corrosion to the automobile body (metal and resin material).
  • alkyl naphthalene sulfonic acid is preferable, at least one selected from dinonyl naphthalene sulfonic acid and di nonyl naphthalene disulfonic acid is more preferable, and dinonyl naphthalene disulfonic acid is still more preferable.
  • the concentration of the hydrolysis catalyst is preferably 0.01 to 5.0% by mass, more preferably 0.05 to 1.0% by mass, with respect to the entire composition.
  • the surface treatment agent composition of the present invention contains an organic solvent.
  • organic solvents include esters such as ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate and isobutyl acetate; hydrocarbons such as hexane, cyclohexane, heptane, octane, decane, dodecane, toluene and xylene Halogenated hydrocarbons such as dichloromethane, 1,1-dichloroethane and 1,2-dichloroethane; ketones such as methyl ethyl ketone, 2-pentanone and methyl isobutyl ketone; ethers such as diethylene glycol monomethyl ether and dipropylene glycol monomethyl ether; Alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl
  • the concentration of the organosilicon compound of the component (A) contained in the surface treatment agent composition is not particularly limited, but is preferably 0.1 to 20% by mass with respect to the entire composition,
  • the content is more preferably 0.5 to 10% by mass, and still more preferably 0.5 to 5.0% by mass. By setting the content in this range, it is possible to impart uniform and excellent water repellency and slipperiness to the coating film itself. .
  • the surface treatment agent composition of the present invention may contain a curing catalyst.
  • the curing catalyst include titanium catalysts such as titanium tetraisopropoxide, titanium tetranormal butoxide, titanium tetra-2-ethylhexoxide and titanium tetraacetylacetonate; dibutyltin dilaurate, dibutyltin diacetate, dioctyltin Tin catalysts such as diacetate; aluminum catalysts such as aluminum secondary butoxide, aluminum trisacetylacetonate, aluminum bisethylacetoacetate, monoacetylacetonate, aluminum trisethylacetoacetate; normal propyl zirconate, normal butyl zirconate, zirconium tetra Acetylacetonate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium tetraacetylacetonate And zircon
  • the surface treatment agent composition of the present invention is any other organosilicon compound having a hydroxy group or a hydrolyzable group bonded to a Si atom other than the organosilicon compound of the component (A) described above, its hydrolytic condensate, or It may further contain a mixture of them.
  • the hydrolyzable group include an alkoxy group, an acetoxy group, a halogen atom, an acyloxy group, an isocyanate group and the like.
  • organosilicon compounds tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, phenyltrimethoxy as a silane compound having an alkoxysilyl group Silane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, diphenyldimethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, hexamethyldisilane Silazane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryl
  • Ethyl trichlorosilane and the like can be mentioned.
  • the addition amount of the other organosilicon compound is not particularly limited as long as it does not affect the water repellency and slipperiness of the resulting cured film, but is 20% by mass or less based on the organosilicon compound of the component (A) Is preferred.
  • the surface treatment agent composition of the present invention may contain various additives.
  • the additive include metal oxides, resins, dyes, pigments, ultraviolet absorbers, antioxidants and the like, and specific examples include silica sol, titania sol, alumina sol and the like.
  • the additive amount of the additive is not particularly limited as long as it does not affect the water repellency and slipperiness of the resulting cured film, but it is preferably 30% by mass or less based on the organosilicon compound of the component (A).
  • a water repellent film By applying the surface treatment agent composition of the present invention described above to a substrate and drying it, a water repellent film can be formed on the substrate.
  • the substrate glass, metal, ceramic, resin or the like can be suitably used.
  • the metal include iron and stainless steel
  • examples of the ceramic include titania, alumina and zirconia.
  • examples of the resin include polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, vinyl chloride, polystyrene, ABS resin, and phenol resin.
  • An epoxy resin, an acrylic resin, etc. are mentioned.
  • drying after application may be either natural drying or heat drying, but is preferably performed in the range of 5 to 150 ° C. If it is less than 5 ° C., the reaction rate of the organosilicon compound of the component (A) to the substrate decreases, the reaction takes time, and sufficient durability may not be obtained. If the temperature is higher than 150 ° C., modification and thermal decomposition of the applied surface treatment agent composition are likely to occur, and sufficient water repellency and water repellency may not be obtained. In particular, it is preferable to wipe the surface of the coated film after applying the surface treatment agent composition on a substrate, and the temperature for forming a cured film is preferably around room temperature (5 to 35 ° C.).
  • the film thickness of the water repellent film is not particularly limited, but in consideration of transparency and mechanical strength of the film, 100 nm or less is preferable.
  • the water repellent film preferably has a water contact angle of 100 ° or more with 2 ⁇ l water droplets and a sliding angle of 30 ° or less with 30 ⁇ l water droplets, and the haze value (cloudiness value) is preferably 5 or less, more preferably 1 In the following, it is more preferable to have transparency of 0.5 or less.
  • the surface treatment agent composition of the present invention can be applied directly to the surface of a substrate to form a water repellent film (cured film), but between the substrate surface and the water repellent film, component (A) is used. It is preferable to interpose an underlayer formed of a hydrolysis product of a silicon compound having a hydrolyzable group other than the organosilicon compound to be used. By providing such a base layer, the bond between the water repellent film and the substrate becomes stronger, and the durability of the water repellent film of the present invention is improved.
  • the organosilicon compound used to form the underlayer is represented by the following formula (14), considering that it is highly hydrolyzable and forms a thin film on a substrate near room temperature (5 to 35 ° C.) Isocyanate silane compounds are preferred.
  • the film made of the surface treatment agent composition of the present invention described above is excellent in water repellency, water sliding property, and transparency, and therefore, can be suitably used for water repelling treatment of glass for transport machines and vehicle bodies.
  • a window glass or a mirror when applied to a window glass or a mirror, it is possible to efficiently prevent the reduction in visibility due to the adhesion of water droplets when it is raining.
  • the amount of hydrogen gas generated by the addition of alkaline water and the IR measurement were performed to confirm that the reaction of the ⁇ Si-H group was completed. Subsequently, the Dimroth cooling pipe is connected to an exhaust gas pipe, and the system pressure is 10 mmHg and heated at 150 ° C. for 3 hours under nitrogen gas bubbling, then cooled to 25 ° C., and the pressure is restored to normal pressure. The liquid obtained was filtered and purified to obtain 62.2 g of organosilicon compound (19).
  • the compound (18) 10.0 g (0.0266 mol) is changed to the compound (20) 6.12 g (0.0266 mol), and the compound (17) 59.1 g (0.0266 mol) is converted to the compound (22) 68.9 g (0.266 mol).
  • the same reaction procedure as in Synthesis Example 2 was performed, except that it was changed to 0.0266 mol). After heating under reduced pressure and filtration for purification, 68.2 g of organosilicon compound (23) was obtained.
  • Example 2 The amount of water added was changed from 0.198 g to 0.208 g (10 times mol based on the methoxy group in the organosilicon compound (19)), and the organosilicon compound (16) was changed to the organosilicon compound (19)
  • a surface treatment agent composition was produced in the same manner as Example 1 except for the above.
  • Example 3 The amount of water added was changed from 0.198 g to 0.220 g (10 times mol based on the methoxy group in the organosilicon compound (21)), and the organosilicon compound (16) was changed to the organosilicon compound (21)
  • a surface treatment agent composition was produced in the same manner as Example 1 except for the above.
  • Example 4 The amount of water added was changed from 0.198 g to 0.192 g (10 times mol based on the methoxy group in the organosilicon compound (23)), and the organosilicon compound (16) was changed to the organosilicon compound (23)
  • a surface treatment agent composition was produced in the same manner as Example 1 except for the above.
  • Example 5 The amount of water added was changed from 0.198 g to 0.394 g (10 times mol based on the methoxy group in the organosilicon compound (25)), and the organosilicon compound (16) was changed to the organosilicon compound (25)
  • a surface treatment agent composition was produced in the same manner as Example 1 except for the above.
  • Comparative Example 1 A surface treatment agent composition was produced in the same manner as in Example 1 except that 0.5 g of a 55 mass% isobutyl alcohol solution of dinonyl naphthalenedisulfonic acid was changed to 0.213 g of 98 mass% sulfuric acid.
  • Comparative Example 2 Surface treatment agent in the same manner as in Example 1 except that 0.230 g of 1N aqueous hydrochloric acid was added instead of 0.5 g of a 50% by mass isobutyl alcohol solution of dinonyl naphthalene disulfonic acid and 0.198 g of water. The composition was made.
  • compositions (unit g) of the above Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1.
  • the surface treatment agent compositions prepared in the above Examples 1 to 5 and Comparative Examples 1 and 2 were impregnated into a tissue paper, and wiped and coated on a glass substrate. After natural drying for 1 minute, the coated surface of the glass substrate was wiped (dried) with a tissue paper. Natural drying was performed at 25 ° C. for 2 hours to obtain a glass substrate with a water repellent film. Next, the following evaluation tests (1) to (5) were performed using the obtained water repellent film-coated glass substrate. The evaluation results are shown in Table 2. The water contact angle and the water drop sliding angle (falling angle) were measured with a contact angle meter (Drop Master DM-701 manufactured by Kyowa Interface Science Co., Ltd.) equipped with a sliding unit.
  • a contact angle meter Drop Master DM-701 manufactured by Kyowa Interface Science Co., Ltd.
  • the water repellent film-coated glass substrates obtained in Examples 1 to 5 and Comparative Example 1 have good water repellency and water repellency after initial water resistance test and after abrasion resistance test. is there.
  • the glass substrate with a water repellent film obtained in Comparative Example 2 the water repellency and the water sliding property are lowered after the water resistance test and the abrasion resistance test.
  • the surface treatment compositions of Examples 1 to 5 and Comparative Example 2 show no corrosion to the automobile body.
  • the surface treatment composition of Comparative Example 1 there is corrosion to the car body.
  • the surface treatment compositions shown in Examples 1 to 5 have high water repellency to glass, high slipperiness imparting effect, and no corrosion to automobile bodies.

Abstract

下記(A)~(C)成分を含有する表面処理剤組成物を用いることで、撥水性、滑水性、耐久性に優れる皮膜を形成でき、かつ自動車ボディーへの腐食を抑制できる。(A)式(1)の有機ケイ素化合物、式(4)の有機ケイ素化合物およびその加水分解縮合物から選ばれる少なくとも1種  式(1)、(4) R1は炭素原子数1~12のアルキル基または式(2)の基を、R2は炭素原子数1~12のアルキル基を、R3は炭素原子数1~4のアルキル基を、Xはヒドロキシ基または加水分解性基を、L1は2価連結基を、aは1~100を、bは0~2の数を表す。式(2) R4は炭素原子数1~12のアルキル基または式(3)の基を表す。式(3) R5は炭素原子数1~12のアルキル基を表す。(B)ナフタレンスルホン酸およびアルキルナフタレンスルホン酸から選ばれる少なくとも1種の加水分解触媒(C)有機溶剤

Description

表面処理剤組成物
 本発明は、表面処理剤組成物に関し、さらに詳述すると、加熱することなく室温で硬化し、撥水性、滑水性(水滴の落下性)および耐久性に優れた撥水膜を与える表面処理剤組成物、並びに当該組成物による表面処理にて形成された撥水膜付き基材、および当該組成物を用いた撥水膜付き基材の製造方法に関する。
 従来、ガラスの撥水処理剤として、フルオロアルキルシランやアミノ変性ポリシロキサンを配合した撥水剤組成物が提案されている(特許文献1~6参照)。
 これら各特許文献に開示された撥水剤組成物から作製された撥水膜は、撥水性には優れるものの、膜表面における水滴の滑水性が不十分である。
 したがって、当該撥水膜を自動車のウィンドウガラスに適用する場合には、降雨時における良好な視界を確保するため、さらなる滑水性の改善が求められる。
 この点、良好な撥水性と滑水性とを兼ね備えた撥水塗膜を与える組成物として、特許文献7には、直鎖片末端官能性ポリジメチルシロキサン化合物とシランカップリング剤とを含む組成物が提案されている。
 しかし、特許文献7の組成物から形成された撥水膜は、耐久性が十分でないという問題があり、耐水性や耐摩耗性を十分に発現させることができず、また長期にわたり撥水性を維持することが困難であった。
 また、特許文献8では、分子鎖の両末端にシラノール基を有するジメチルポリシロキサンと加水分解触媒および揮発性溶媒からなるコーティング組成物が提案されている。
 この組成物は、加水分解触媒として、硫酸のような強酸を使用するため、自動車ボディー(金属および樹脂材料)の腐食が発生したり、作業上の安全性に欠けたりする等、多くの問題がある。
特開2012-224668号公報 特開2009-137775号公報 特開2009-173491号公報 特開平10-102046号公報 特開2003-160361号公報 特開平09-176622号公報 特開平11-315276号公報 特開2016-169307号公報
 本発明は、上記事情に鑑みなされたもので、撥水性、滑水性および耐久性に優れる皮膜を形成でき、かつ自動車ボディーへの腐食を抑制できる表面処理剤組成物、並びに当該組成物による表面処理にて形成された撥水膜付き基材および当該組成物を用いた撥水膜の形成方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、特定構造の有機ケイ素化合物、所定の加水分解触媒および有機溶剤を含む組成物が、加熱することなく室温で硬化して、撥水性、滑水性および耐久性に優れる皮膜を与えることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 下記(A)~(C)成分を含有することを特徴とする表面処理剤組成物、
(A)下記式(1)で表される有機ケイ素化合物、式(4)で表される有機ケイ素化合物、およびその加水分解縮合物から選ばれる少なくとも1種
Figure JPOXMLDOC01-appb-C000007
{式中、R1は、互いに独立して、炭素原子数1~12のアルキル基、または式(2)で表される基を表し、R2は、互いに独立して炭素原子数1~12のアルキル基を表し、R3は、互いに独立して炭素原子数1~4のアルキル基を表し、Xは、互いに独立して、ヒドロキシ基または加水分解性基を表し、L1は、互いに独立して2価連結基を表し、aは、1~100の数を表し、bは、0~2の数を表す。
Figure JPOXMLDOC01-appb-C000008
[式中、R4は、互いに独立して、炭素原子数1~12のアルキル基、または式(3)で表される基を表す。
Figure JPOXMLDOC01-appb-C000009
(式中、R5は、互いに独立して炭素原子数1~12のアルキル基を表す。)]}
(B)ナフタレンスルホン酸およびアルキルナフタレンスルホン酸から選ばれる少なくとも1種の加水分解触媒
(C)有機溶剤
2. 前記式(1)で表される有機ケイ素化合物が、下記式(11)または(12)で表され、前記式(4)で表される有機ケイ素化合物が、下記式(13)で表される請求項1記載の表面処理剤組成物、
Figure JPOXMLDOC01-appb-C000010
(式中、R3、X、L1、a、bは、前記と同じ意味を表す。)
3. 前記L1が、下記式(5)で表される2価連結基である1または2の表面処理剤組成物、
Figure JPOXMLDOC01-appb-C000011
[式中、Yは、下記式(6)~(10)から選ばれる1つの2価の基を表し、R6およびR7は、互いに独立して、単結合または炭素原子数1~10のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000012
(式(7)および(10)中、cは、互いに独立して1~10の数を表し、式(9)および(10)中、R8は、互いに独立して炭素原子数1~12のアルキル基を表す。)]
4. 前記Xが、ヒドロキシ基、アルコキシ基、アセトキシ基、ハロゲン原子またはイソシアネート基である1~3のいずれかの表面処理剤組成物、
5. 前記(B)成分が、ジノニルナフタレンスルホン酸およびジノニルナフタレンジスルホン酸から選ばれる少なくとも1種である1~4のいずれかの表面処理剤組成物、
6. さらに加水分解性基を有する有機ケイ素化合物(ただし、前記式(1)および(4)で表される有機ケイ素化合物を除く)、およびその加水分解縮合物から選ばれる少なくとも1種を含有する1~5のいずれかの表面処理剤組成物、
7. 輸送機用ガラスの撥水処理用である1~6のいずれかの表面処理剤組成物、
8. 輸送機用ボディーの撥水処理用である1~6のいずれかの表面処理剤組成物、
9. 基材と、この基材上に設けられた、1~6のいずれかの表面処理剤組成物を用いてなる撥水膜とを有する撥水膜付き基材、
10. 前記基材と撥水膜との間に介在する下地層を備え、前記下地層が、加水分解性基を有する有機ケイ素化合物(ただし、前記式(1)および(4)で表される有機ケイ素化合物を除く)の加水分解生成物からなる9の撥水膜付き基材、
11. 前記基材が、ガラス、金属、セラミックまたは樹脂である9または10の撥水膜付き基材、
12. 基材上に、1~6のいずれかの表面処理剤組成物を塗布して塗膜を形成し、この塗膜表面を拭き上げ処理した後、5~35℃で硬化皮膜を形成する撥水膜付き基材の製造方法
を提供する。
 本発明によれば、室温硬化が可能で、撥水性、滑水性および耐久性に優れる皮膜を形成し得る表面処理剤組成物を提供することができる。
 また、本発明の表面処理剤組成物は、自動車ボディー(金属および樹脂材料)への腐食を抑制でき、作業上の安全性も高い。
 さらに、本発明の表面処理剤組成物を用いることで、撥水性、滑水性および耐久性に優れる撥水膜付き基材を簡便な方法で作製することができる。
 特に、車両用、船舶用および航空機用のウィンドウガラスやミラー等として用いられる透明基材に本発明の撥水膜を適用することで、優れた撥水性および滑水性を付与することができる結果、降雨時にも良好な視界を確保することができるようになる。
 以下、本発明について具体的に説明する。
 本発明に係る表面処理剤組成物は、(A)式(1)で表される有機ケイ素化合物、式(4)で表される有機ケイ素化合物、およびその加水分解縮合物から選ばれる少なくとも1種、(B)ナフタレンスルホン酸およびアルキルナフタレンスルホン酸から選ばれる少なくとも1種の加水分解触媒、および(C)有機溶剤を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000013
[1](A)成分
 本発明の(A)成分において、式(1)で表される有機ケイ素化合物は、片末端反応性オルガノポリシロキサンであり、一方、式(4)で表される有機ケイ素化合物は、両末端反応性オルガノポリシロキサンである。
 上記各式において、R1は、互いに独立して、炭素原子数1~12のアルキル基、または式(2)で表される基を表し、R2は、互いに独立して炭素原子数1~12のアルキル基を表し、R3は、互いに独立して炭素原子数1~4のアルキル基を表し、Xは、互いに独立して、ヒドロキシ基または加水分解性基を表し、L1は、互いに独立して2価連結基を表し、aは、1~100の数を表し、bは、0~2の数を表す。
Figure JPOXMLDOC01-appb-C000014
(式中、R4は、互いに独立して、炭素原子数1~12のアルキル基、または式(3)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000015
(式中、R5は、互いに独立して炭素原子数1~12のアルキル基を表す。)
 上記R1、R2、R4およびR5における炭素原子数1~12のアルキル基としては、直鎖状、環状、分枝状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等が挙げられる。
 上記R3における炭素原子数1~4のアルキル基としては、直鎖状、環状、分枝状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、シクロプロピル、シクロブチル基等が挙げられる。
 本発明において、上記R1、R2、R4およびR5としては、撥水性、滑水性および原料入手の容易さの観点から、炭素原子数が8以下のアルキル基が好ましく、特にメチル基が好ましい。なお、これらの炭素原子数が12を超えると、撥水性および滑水性が低下することがある。
 また、R3としては、メチル、エチル基が好ましく、メチル基がより好ましい。
 Xは、互いに独立してヒドロキシ基または加水分解性基を表し、Xが、加水分解性基の場合、本発明で用いる有機ケイ素化合物は、分子末端のSi原子に結合した加水分解性基が加水分解することで形成されるシラノール基(≡Si-OH)により、耐久性のある皮膜を形成する。
 このような加水分解性基の具体例としては、メトキシ、エトキシ、n-プロポキシ、n-ブトキシ基等のアルコキシ基、塩素原子等のハロゲン原子、イソシアネート基などが挙げられるが、これらの中でも、特にメトキシ基、塩素原子が好ましい。
 L1は、2価連結基を表し、具体的には、酸素原子や、エチレン、トリメチレン、プロピレン、テトラメチレン基等の炭素原子数1~10のアルキレン基などが挙げられる。
 また、得られる塗膜における分子の配向性を向上させ、硬化皮膜の緻密化、均一化を促進させるための基として、π-πスタックや水素結合等による相互作用性のある官能基や、剛直構造をとる原子団を含有する2価連結基も好適に使用できる。これらの2価連結基を分子内の特定位置に導入することにより、硬化皮膜の撥水性および滑水性を良好に維持しつつ、かつ耐久性を向上させることができる。
 このような2価連結基としては、アルケニレン基、アリーレン基またはフッ化アルキレン基を含有する2価連結基が挙げられる。
 アルケニレン基としては、炭素数2~20のものが好ましく、また直鎖状、環状、分枝状のいずれでもよい。アルケニレン基の具体例としては、ビニレン、プロペニレン、1-ブテニレン、2-ブテニレン、1-ペンテニレン、2-ペンテニレン、3-ペンテニレン等が挙げられる。
 アリーレン基の具体例としては、フェニレン、ビフェニレン、ナフチレン基等が挙げられる。
 フッ化アルキレン基の具体例としては、-(CHF)c-、-(CF2c-(cは、1~10、好ましくは1~8、さらに好ましくは1~6の数を表す。)等が挙げられる。
 本発明において、皮膜中の分子の配向性をより高め、硬化皮膜の緻密化、均一化をより一層促進させることを考慮すると、上記L1としては、特に、式(5)で表される2価連結基が好適である。
Figure JPOXMLDOC01-appb-C000016
 上記Yは、下記式(6)~(10)から選ばれるいずれか1つの2価の基を表し、R6およびR7は、互いに独立して、単結合または炭素原子数1~10のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000017
(式(7)および(10)中、cは互いに独立して上記と同じ意味を表し、式(9)および(10)中、R8は、互いに独立して炭素原子数1~12のアルキル基を表す。)
 R6およびR7における炭素原子数1~10のアルキレン基、R8の炭素原子数1~12のアルキル基の具体例としては、上記と同様のものが挙げられる。
 特に、R6およびR7としては、互いに独立して、単結合、エチレン基が好ましく、共に単結合、共にエチレン基、R6がエチレン基でR7が単結合の組み合わせがより好ましい。
 また、aは、1~100の数であるが、硬化皮膜の滑水性向上の観点から、5~50の数が好ましい。なお、aが100を超えると、得られる硬化皮膜の耐久性が低下する。
 一方、bは、0~2の数であるが、0または1が好ましく、0がより好ましい。なお、bが2を超えると、得られる硬化皮膜の耐久性が不十分となる。
 本発明において、上記式(1)で表される有機ケイ素化合物としては、下記式(11)または(12)で表されるものが好ましい。
 また、上記式(4)で表される有機ケイ素化合物としては、下記式(13)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000018
(式中、R3、X、L1、a、bは、上記と同じ意味を表す。)
 式(1)で表される有機ケイ素化合物の好適な例として、以下のような化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 一方、式(4)で表される有機ケイ素化合物の好適な例として、以下のような化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000024
 本発明で用いる有機ケイ素化合物は、公知の方法で合成することができる。例えば、上記式(1)で表される有機ケイ素化合物は、下記各スキームに示される(1)脱アルコールによるシリル化反応や、(2)ヒドロシリル化反応に示されるような、公知のシリル化反応によって合成することができる。
Figure JPOXMLDOC01-appb-C000025
(式中、R1、R2、aは、上記と同じ意味を表す。R9は、炭素原子数1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000026
(式中、R1、R2、R3、R7、X、Y、a、bは、上記と同じ意味を表す。)
 (1)脱アルコールによるシリル化反応では、末端にシラノール基(≡Si-OH)を有するシロキサン化合物へ、アルコキシシリル化剤であるアルコキシシランを反応させる。
 アルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。
 具体的な手法としては、末端にシラノール基を有するオルガノポリシロキサンと、シラノール基1モルに対して等モルを超える量のアルコキシシランとを、アミン触媒の存在下で反応させ、末端アルコキシ変性オルガノポリシロキサンを含む生成物を得る。
 アミン触媒としては、一級アミンが好適に使用され、その具体例としては、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、アリルアミン等が挙げられるが、分岐型アルキル鎖をもつイソプロピルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミンが好ましく、tert-ブチルアミンがより好ましい。なお、触媒は1種単独で用いても2種以上を併用してもよい。
 アミン触媒の使用量は特に限定されるものではないが、反応性や生産性、さらには生成物の着色の抑制や精製を容易にする等の観点から、末端にシラノール基(≡Si-OH)を有するシロキサン化合物に対して、0.01~5質量%程度が好ましい。
 なお、上記反応は無溶媒でも進行するが、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン等の溶媒を用いることもできる。
 反応温度は、使用するアミン触媒の沸点にもよるが、通常、0~100℃で行われ、0~50℃が好ましい。
 また、反応時間も特に限定されるものではなく、通常、1~10時間程度であるが、1~5時間が好ましい。
 一方、(2)ヒドロシリル化反応では、末端に≡Si-H基を有するシロキサン化合物へ、末端に不飽和結合を有するシラン化合物を反応させる。
 末端に不飽和結合を有するシラン化合物の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、オクテニルトリメトキシシラン、オクテニルトリエトキシシラン、スチリルシラン等が挙げられる。
 上記ヒドロシリル化反応には、白金化合物含有触媒が好適に使用される。
 白金化合物含有触媒としては、特に限定されるものではなく、その具体例としては、塩化白金酸、塩化白金酸のアルコール溶液、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエンまたはキシレン溶液、テトラキストリフェニルホスフィン白金、ジクロロビストリフェニルホスフィン白金、ジクロロビスアセトニトリル白金、ジクロロビスベンゾニトリル白金、ジクロロシクロオクタジエン白金等や、白金-炭素、白金-アルミナ、白金-シリカ等の担持触媒などが挙げられる。
 ヒドロシリル化の際の選択性の面から、0価の白金錯体が好ましく、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエンまたはキシレン溶液がより好ましい。
 白金化合物含有触媒の使用量は特に限定されるものではないが、反応性や生産性等の点から、Si-H基を有する有機ケイ素化合物1モルに対し、含有される白金原子が1×10-7~1×10-2モルとなる量が好ましく、1×10-7~1×10-3モルとなる量がより好ましい。
 なお、上記反応は無溶媒でも進行するが、溶媒を用いることもできる。
 使用可能な溶媒の具体例としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒などが挙げられ、これらの溶媒は、1種単独で用いても、2種以上を混合して用いてもよい。
 上記ヒドロシリル化反応における反応温度は特に限定されるものではなく、0℃から加熱下で行うことができるが、0~200℃が好ましい。
 適度な反応速度を得るためには加熱下で反応させることが好ましく、このような観点から、反応温度は40~110℃がより好ましく、60~100℃がより一層好ましい。
 また、反応時間も特に限定されるものではなく、通常、1~10時間程度であるが、1~5時間が好ましい。
[2](B)成分
 本発明の表面処理剤組成物には、有機ケイ素化合物が有する加水分解性基と水との反応を促進し、また、生成したシラノール(≡Si-OH)基と基板表面に存在するOH基との縮合反応を促進する加水分解触媒が含まれる。
 本発明では、この加水分解触媒として、塗膜の耐久性向上や自動車ボディー(金属および樹脂材料)への腐食抑制の観点から、ナフタレンスルホン酸およびアルキルナフタレンスルホン酸から選ばれる少なくとも1種を用いる。
 特に、上記腐食抑制の観点から、アルキルナフタレンスルホン酸が好ましく、ジノニルナフタレンスルホン酸およびジノニルナフタレンジスルホン酸から選ばれる少なくとも1種がより好ましく、ジノニルナフタレンジスルホン酸がより一層好ましい。
 加水分解触媒の濃度は、組成物全体に対し、0.01~5.0質量%が好ましく、0.05~1.0質量%がより好ましい。
[3](C)成分
 本発明の表面処理剤組成物には、有機溶剤が含まれる。
 使用可能な有機溶剤の具体例としては、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル等のエステル類;ヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン、ドデカン、トルエン、キシレン等の炭化水素類;ジクロロメタン、1,1-ジクロロエタン、1,2-ジクロロエタン等のハロゲン化炭化水素類;メチルエチルケトン、2-ペンタノン、メチルイソブチルケトン等のケトン類;ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル等のエーテル類;エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール等のアルコール類などが挙げられ、これらは、1種単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明において、表面処理剤組成物中に含まれる(A)成分の有機ケイ素化合物の濃度は、特に限定されるものではないが、組成物全体に対し、0.1~20質量%が好ましく、0.5~10質量%がより好ましく、0.5~5.0質量%がより一層好ましく、この範囲とすることで、塗膜自体に均一で優れた撥水性、滑水性を与えることができる。
 さらに、本発明の表面処理剤組成物は、硬化触媒を含んでいてもよい。
 硬化触媒の具体例としては、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトラ-2-エチルヘキソキシド、チタンテトラアセチルアセトネート等のチタン触媒;ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジオクチル錫ジアセテート等の錫触媒;アルミニウムセカンダリーブトキシド、アルミニウムトリスアセチルアセトネート、アルミニウムビスエチルアセトアセテート、モノアセチルアセトネート、アルミニウムトリスエチルアセトアセテート等のアルミニウム触媒;ノルマルプロピルジルコネート、ノルマルブチルジルコネート、ジルコニウムテトラアセチルアセトネート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムテトラアセチルアセトネート等のジルコニウム触媒などが挙げられる。
 硬化触媒の濃度は、(A)成分の有機ケイ素化合物に対し、0.1~15.0質量%が好ましく、1.0~10.0質量%がより好ましい。
 本発明の表面処理剤組成物は、上述した(A)成分の有機ケイ素化合物以外の、Si原子に結合したヒドロキシ基もしくは加水分解性基を有するその他の有機ケイ素化合物、その加水分解縮合物、またはそれらの混合物をさらに含んでいてもよい。
 加水分解性基としては、アルコキシ基、アセトキシ基、ハロゲン原子、アシロキシ基、イソシアネート基等が挙げられる。
 その他の有機ケイ素化合物の具体例としては、アルコキシシリル基を有するシラン化合物として、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ジフェニルジメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が挙げられ、ハロゲン化シリル基を有するシラン化合物として、メチルトリクロロシラン、エチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、トリフルオロエチルトリクロロシラン等が挙げられる。
 その他の有機ケイ素化合物の添加量は、得られる硬化皮膜の撥水性および滑水性に影響を及ぼさない量であれば特に制限はないが、(A)成分の有機ケイ素化合物に対し、20質量%以下が好ましい。
 なお、本発明の表面処理剤組成物は、以上説明した各成分に加え、各種添加剤を含んでいてもよい。
 添加剤としては、金属酸化物、樹脂、染料、顔料、紫外線吸収剤、酸化防止剤等が挙げられ、具体的には、シリカゾル、チタニアゾル、アルミナゾル等が挙げられる。
 添加剤の添加量は、得られる硬化皮膜の撥水性および滑水性に影響を及ぼさない量であれば特に制限はないが、(A)成分の有機ケイ素化合物に対して30質量%以下が好ましい。
 以上説明した本発明の表面処理剤組成物を基材に塗布し、乾燥させることで、基材上に撥水膜を形成することができる。
 基材としては、ガラス、金属、セラミック、樹脂等を好適に用いることができる。金属としては、鉄、ステンレス等が挙げられ、セラミックとしては、チタニア、アルミナ、ジルコニア等が挙げられ、樹脂としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリカーボネート、塩化ビニル、ポリスチレン、ABS樹脂、フェノール樹脂、エポキシ樹脂、アクリル樹脂等が挙げられる。
 塗布方法としては、拭き付け塗布、スピンコート、バーコート、浸漬塗布、スキージ塗布、スプレー塗布等の従来公知の方法を適宜採用することができる。
 塗布後の乾燥は、自然乾燥、加熱乾燥のいずれでもよいが、5~150℃の範囲で行うことが好ましい。5℃未満では基材への(A)成分の有機ケイ素化合物の反応速度が小さくなり、反応に時間を要し、十分な耐久性が得られないことがある。150℃を超えると塗布した表面処理剤組成物の変成や熱分解が起こり易く、十分な撥水性、滑水性が得られないことがある。
 特に、表面処理剤組成物を基材上に塗布した後、塗膜表面を拭き上げ処理することが好ましく、硬化皮膜を形成する温度は、室温近傍(5~35℃)が好ましい。
 撥水膜の膜厚は、特に限定されるものではないが、透明性および膜の機械的強度等を考慮すると、100nm以下が好ましい。
 また、上記撥水膜は、2μl水滴で100°以上の水接触角、30μl水滴で30°以下の転落角を有することが好ましく、ヘイズ値(曇価)が好ましくは5以下、より好ましくは1以下、より一層好ましくは0.5以下の透明性を有することが好ましい。
 本発明の表面処理剤組成物は、基材表面に直接塗布して撥水膜(硬化皮膜)を形成することもできるが、基材表面と撥水膜との間に、(A)成分で用いる有機ケイ素化合物以外の、加水分解性基を有するケイ素化合物の加水分解生成物から形成される下地層を介在させることが好ましい。このような下地層を設けることにより、撥水膜と基材との結合がより強固となり、本発明の撥水膜の耐久性が向上する。
 下地層形成に用いられる有機ケイ素化合物としては、加水分解性が高く、室温近傍(5~35℃)で基材上へ薄膜を形成するという点を考慮すると、下記式(14)で表されるイソシアネートシラン化合物が好適である。
Figure JPOXMLDOC01-appb-C000027
(式中、kは、0または1を表す。)
 以上説明した本発明の表面処理剤組成物からなる膜は、撥水性、滑水性および透明性に優れるため、輸送機用のガラスや車体の撥水処理に好適に用いることができる。特に、窓ガラスやミラーに適用した場合、雨天時における水滴付着による視認性低下を効率的に防止することができる。
 以下、合成例、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[1]有機ケイ素化合物の合成
[合成例1]有機ケイ素化合物(16)の合成
Figure JPOXMLDOC01-appb-C000028
 撹拌機、温度計、エステルアダプターおよびジムロート冷却管を備えた1リットルの3つ口フラスコに、アセトニトリル45.0g、化合物(15)173.4g(0.0665mol)、およびテトラメトキシシラン60.7g(0.399mol)を仕込んだ後、撹拌を加えながら、tert-ブチルアミン2.4gを添加し、50℃で5時間の熟成を行った。
 続いて、ジムロート冷却管を排ガス管につなぎかえ、窒素ガスバブリング下、系内圧力10mmHg、120℃で3時間加熱した後、25℃まで冷却し、圧力を常圧に復圧した後、得られた液体をろ過精製し、有機ケイ素化合物(16)167.0gを得た。
[合成例2]有機ケイ素化合物(19)の合成
Figure JPOXMLDOC01-appb-C000029
 撹拌機、温度計、エステルアダプターおよびジムロート冷却管を備えた1リットルの3つ口フラスコに、トルエン29.6g、化合物(18)10.0g(0.0266mol)、およびビニルシロキサン配位Ptのトルエン溶液(Pt濃度:0.5質量%)0.3gを加え、80℃まで昇温し、80~90℃に維持しながら、化合物(17)59.1g(0.0266mol)を滴下し、さらに90℃で5時間反応を行った。アルカリ水添加による水素ガス発生量測定およびIR測定を行い、≡Si-H基の反応完結を確認した。
 続いて、ジムロート冷却管を排ガス管につなぎかえ、窒素ガスバブリング下、系内圧力10mmHg、150℃で3時間加熱した後、25℃まで冷却し、圧力を常圧に復圧した後、得られた液体をろ過精製し、有機ケイ素化合物(19)62.2gを得た。
[合成例3]有機ケイ素化合物(21)の合成
Figure JPOXMLDOC01-appb-C000030
 化合物(18)10.0g(0.0266mol)を化合物(20)6.12g(0.0266mol)へ変更した以外は、合成例2と同様の反応操作を行った。減圧加熱、ろ過精製後、有機ケイ素化合物(21)59.2gを得た。
[合成例4]有機ケイ素化合物(23)の合成
Figure JPOXMLDOC01-appb-C000031
 化合物(18)10.0g(0.0266mol)を化合物(20)6.12g(0.0266mol)へ変更し、化合物(17)59.1g(0.0266mol)を化合物(22)68.9g(0.0266mol)へ変更した以外は、合成例2と同様の反応操作を行った。減圧加熱、ろ過精製後、有機ケイ素化合物(23)68.2gを得た。
[合成例5]有機ケイ素化合物(25)の合成
Figure JPOXMLDOC01-appb-C000032
 化合物(18)10.0g(0.0266mol)を化合物(20)6.12g(0.0266mol)へ変更し、化合物(17)59.1g(0.0266mol)を化合物(24)30.3g(0.0133mol)へ変更した以外は、合成例2と同様の反応操作を行った。減圧加熱、ろ過精製後、有機ケイ素化合物(25)33.2gを得た。
[2]表面処理剤組成物の調製
[実施例1]
 撹拌機、温度計、エステルアダプターおよびジムロート冷却管を備えた1リットルの3つ口フラスコに、IPA99.0g、水0.198g(有機ケイ素化合物(16)中のメトキシ基に対して10倍mol)、およびジノニルナフタレンジスルホン酸の55質量%イソブチルアルコール溶液0.5gを仕込み、撹拌を加えながら、合成例1で得られた有機ケイ素化合物(16)1.0gを加えて、50℃で3時間の熟成を行った後、室温まで冷却し、表面処理剤組成物を得た。
[実施例2]
 水の添加量を0.198gから0.208g(有機ケイ素化合物(19)中のメトキシ基に対して10倍mol)へ変更し、有機ケイ素化合物(16)を有機ケイ素化合物(19)へ変更した以外は、実施例1と同様にして、表面処理剤組成物を作製した。
[実施例3]
 水の添加量を0.198gから0.220g(有機ケイ素化合物(21)中のメトキシ基に対して10倍mol)へ変更し、有機ケイ素化合物(16)を有機ケイ素化合物(21)に変更した以外は、実施例1と同様にして、表面処理剤組成物を作製した。
[実施例4]
 水の添加量を0.198gから0.192g(有機ケイ素化合物(23)中のメトキシ基に対して10倍mol)へ変更し、有機ケイ素化合物(16)を有機ケイ素化合物(23)に変更した以外は、実施例1と同様にして、表面処理剤組成物を作製した。
[実施例5]
 水の添加量を0.198gから0.394g(有機ケイ素化合物(25)中のメトキシ基に対して10倍mol)へ変更し、有機ケイ素化合物(16)を有機ケイ素化合物(25)に変更した以外は、実施例1と同様にして、表面処理剤組成物を作製した。
[比較例1]
 ジノニルナフタレンジスルホン酸の55質量%イソブチルアルコール溶液0.5gを98質量%硫酸0.213gへ変更した以外は、実施例1と同様にして、表面処理剤組成物を作製した。
[比較例2]
 ジノニルナフタレンジスルホン酸の50質量%イソブチルアルコール溶液0.5gおよび水0.198gを添加するかわりに、1N-塩酸水0.230gを添加した以外は、実施例1と同様にして、表面処理剤組成物を作製した。
 上記実施例1~5および比較例1,2の組成(単位g)を表1に示す。
Figure JPOXMLDOC01-appb-T000033
 上記実施例1~5および比較例1,2で調製した各表面処理剤組成物をティッシュペーパーへ含浸し、ガラス基板へ拭き付け塗工を行った。1分間、自然乾燥した後、ティッシュペーパーでガラス基板の塗工面の拭き上げ(乾拭き)処理を行った。25℃で2時間自然乾燥を行い、撥水膜付きガラス基板を得た。
 次に、得られた撥水膜付きガラス基板を用いて、下記(1)~(5)の評価試験を行った。評価結果を表2に示す。
 なお、水接触角および水滴滑落角度(転落角)は、滑落ユニットを備えた接触角計(協和界面科学(株)製Drop Master DM-701)により測定した。
(1)撥水性
 撥水膜付きガラス基板の被処理面上に2μlの水を滴下し、水接触角を測定した。
(2)滑水性
 撥水膜付きガラス基板の被処理面上に2μlの水を滴下し、転落角を測定した。
(3)耐水性試験
 撥水膜付きガラス基板を1質量%界面活性剤(ライポンF、ライオンハイジーン(株)製)水溶液中に浸漬し、超音波(100W、42kHz)を60分間照射した。試験前後の撥水膜付きガラス基板に関し、撥水性、滑水性を評価した。
(4)耐摩耗性試験
 撥水膜付きガラス基板の被処理面上に対し、2cm×2cmネル布、1.2kg荷重、1,200回往復の条件で摩耗試験を実施した。試験前後の撥水膜付きガラス基板に関し、撥水性、滑水性を評価した。
(5)腐食試験
 自動車フロントガラス周辺のボディー(金属および樹脂材料)への腐食性について、目視による以下の二段階評価を行った。
○:腐食が見られない。×:腐食が見られる。
Figure JPOXMLDOC01-appb-T000034
 表2に示されるように、実施例1~5および比較例1で得られた撥水膜付きガラス基板は、初期、耐水性試験後および耐摩耗性試験後における撥水性、滑水性が良好である。一方、比較例2で得られた撥水膜付きガラス基板は、耐水性試験後や耐摩耗性試験後において、撥水性および滑水性が低下している。
 また、実施例1~5および比較例2の表面処理組成物は、自動車ボディーへの腐食がみられない。一方、比較例1の表面処理組成物では、自動車ボディーへの腐食がある。
 以上のとおり、実施例1~5に示す表面処理組成物は、ガラスへの撥水性、滑水性付与効果が高く、かつ自動車ボディーへの腐食もないことがわかる。

Claims (12)

  1.  下記(A)~(C)成分を含有することを特徴とする表面処理剤組成物。
    (A)下記式(1)で表される有機ケイ素化合物、式(4)で表される有機ケイ素化合物、およびその加水分解縮合物から選ばれる少なくとも1種
    Figure JPOXMLDOC01-appb-C000001
    {式中、Rは、互いに独立して、炭素原子数1~12のアルキル基、または式(2)で表される基を表し、Rは、互いに独立して炭素原子数1~12のアルキル基を表し、Rは、互いに独立して炭素原子数1~4のアルキル基を表し、Xは、互いに独立して、ヒドロキシ基または加水分解性基を表し、Lは、互いに独立して2価連結基を表し、aは、1~100の数を表し、bは、0~2の数を表す。
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは、互いに独立して、炭素原子数1~12のアルキル基、または式(3)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、互いに独立して炭素原子数1~12のアルキル基を表す。)]}
    (B)ナフタレンスルホン酸およびアルキルナフタレンスルホン酸から選ばれる少なくとも1種の加水分解触媒
    (C)有機溶剤
  2.  前記式(1)で表される有機ケイ素化合物が、下記式(11)または(12)で表され、前記式(4)で表される有機ケイ素化合物が、下記式(13)で表される請求項1記載の表面処理剤組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R、X、L、a、bは、前記と同じ意味を表す。)
  3.  前記Lが、下記式(5)で表される2価連結基である請求項1または2記載の表面処理剤組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、Yは、下記式(6)~(10)から選ばれる1つの2価の基を表し、RおよびRは、互いに独立して、単結合または炭素原子数1~10のアルキレン基を表す。
    Figure JPOXMLDOC01-appb-C000006
    (式(7)および(10)中、cは、互いに独立して1~10の数を表し、式(9)および(10)中、Rは、互いに独立して炭素原子数1~12のアルキル基を表す。)]
  4.  前記Xが、ヒドロキシ基、アルコキシ基、アセトキシ基、ハロゲン原子またはイソシアネート基である請求項1~3のいずれか1項記載の表面処理剤組成物。
  5.  前記(B)成分が、ジノニルナフタレンスルホン酸およびジノニルナフタレンジスルホン酸から選ばれる少なくとも1種である請求項1~4のいずれか1項記載の表面処理剤組成物。
  6.  さらに加水分解性基を有する有機ケイ素化合物(但し、前記式(1)および(4)で表される有機ケイ素化合物を除く)、およびその加水分解縮合物から選ばれる少なくとも1種を含有する請求項1~5のいずれか1項記載の表面処理剤組成物。
  7.  輸送機用ガラスの撥水処理用である請求項1~6のいずれか1項記載の表面処理剤組成物。
  8.  輸送機用ボディーの撥水処理用である請求項1~6のいずれか1項記載の表面処理剤組成物。
  9.  基材と、この基材上に設けられた、請求項1~6のいずれか1項記載の表面処理剤組成物を用いてなる撥水膜とを有する撥水膜付き基材。
  10.  前記基材と撥水膜との間に介在する下地層を備え、
     前記下地層が、加水分解性基を有する有機ケイ素化合物(ただし、前記式(1)および(4)で表される有機ケイ素化合物を除く)の加水分解生成物からなる請求項9記載の撥水膜付き基材。
  11.  前記基材が、ガラス、金属、セラミックまたは樹脂である請求項9または10記載の撥水膜付き基材。
  12.  基材上に、請求項1~6のいずれか1項記載の表面処理剤組成物を塗布して塗膜を形成し、この塗膜表面を拭き上げ処理した後、5~35℃で硬化皮膜を形成する撥水膜付き基材の製造方法。
PCT/JP2018/044346 2017-12-25 2018-12-03 表面処理剤組成物 WO2019130998A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017247492A JP2019112539A (ja) 2017-12-25 2017-12-25 表面処理剤組成物
JP2017-247492 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019130998A1 true WO2019130998A1 (ja) 2019-07-04

Family

ID=67067168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044346 WO2019130998A1 (ja) 2017-12-25 2018-12-03 表面処理剤組成物

Country Status (3)

Country Link
JP (1) JP2019112539A (ja)
TW (1) TW201930499A (ja)
WO (1) WO2019130998A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745505A (zh) * 2020-12-28 2021-05-04 广东标美硅氟新材料有限公司 一种烃基改性mdq型硅树脂及其制备方法和应用
CN112761022A (zh) * 2020-12-28 2021-05-07 广东标美硅氟新材料有限公司 一种超轻剥离力有机硅离型剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097192A (ja) * 2000-09-19 2002-04-02 Asahi Glass Co Ltd 表面処理剤用化合物、表面処理剤、機能性ガラス及びその製造方法
JP2014510815A (ja) * 2011-03-31 2014-05-01 ダウ コーニング コーポレーション スルホン酸触媒を含有する組成物、並びに、この組成物の調製及び使用方法
JP2016169307A (ja) * 2015-03-12 2016-09-23 株式会社ソフト99コーポレーション コーティング組成物
WO2018008505A1 (ja) * 2016-07-05 2018-01-11 信越化学工業株式会社 有機ケイ素化合物および表面処理剤組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102441644B1 (ko) * 2014-10-31 2022-09-07 스미또모 가가꾸 가부시키가이샤 투명 피막
WO2017188329A1 (ja) * 2016-04-28 2017-11-02 住友化学株式会社 組成物
WO2017188331A1 (ja) * 2016-04-28 2017-11-02 住友化学株式会社 組成物
CN109072002B (zh) * 2016-04-28 2021-05-25 住友化学株式会社 被膜
CN109071821B (zh) * 2016-04-28 2021-05-04 住友化学株式会社 化合物及含有化合物的组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097192A (ja) * 2000-09-19 2002-04-02 Asahi Glass Co Ltd 表面処理剤用化合物、表面処理剤、機能性ガラス及びその製造方法
JP2014510815A (ja) * 2011-03-31 2014-05-01 ダウ コーニング コーポレーション スルホン酸触媒を含有する組成物、並びに、この組成物の調製及び使用方法
JP2016169307A (ja) * 2015-03-12 2016-09-23 株式会社ソフト99コーポレーション コーティング組成物
WO2018008505A1 (ja) * 2016-07-05 2018-01-11 信越化学工業株式会社 有機ケイ素化合物および表面処理剤組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745505A (zh) * 2020-12-28 2021-05-04 广东标美硅氟新材料有限公司 一种烃基改性mdq型硅树脂及其制备方法和应用
CN112761022A (zh) * 2020-12-28 2021-05-07 广东标美硅氟新材料有限公司 一种超轻剥离力有机硅离型剂及其制备方法和应用
CN112745505B (zh) * 2020-12-28 2022-05-03 广东标美硅氟新材料有限公司 一种烃基改性mdq型硅树脂及其制备方法和应用

Also Published As

Publication number Publication date
JP2019112539A (ja) 2019-07-11
TW201930499A (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
JP6642309B2 (ja) 有機ケイ素化合物および表面処理剤組成物
US10035812B2 (en) Perfluoropolyether-modified polysilazane, making method, surface treating agent, and treated article
JP6004607B2 (ja) ビス(トリアルコキシシリルアルキル)アミンをベースとする水性シラン系
TWI754802B (zh) 聚矽氮烷組成物,以及塗佈其之基材及多層體
EP1392772B1 (en) Silicone composition for water-repellent coating
JP4681094B2 (ja) フルオル有機官能性シラン及び/又はシロキサンを有する組成物、その製法、その使用及び表面変性された支持体
JP3735136B2 (ja) 非湿潤性コーティング用組成物
US8925626B2 (en) Composition for forming film
JP3588364B2 (ja) 表面処理された基材および基材の表面処理方法
KR102259062B1 (ko) 개선된 내구성을 가지는 투명한 소수성 코팅 물질 및 이를 제조하는 방법
WO2005007764A1 (en) Durable hydrophobic surface coatings using silicone resins
KR20140096300A (ko) 피막이 형성된 기판의 제조 방법
JP4217881B2 (ja) 機能性被膜の形成方法及び機能性被膜被覆物品
WO2019130998A1 (ja) 表面処理剤組成物
JP2014234506A (ja) 新規化合物、撥水膜形成用組成物、撥水膜付き基体および輸送機器用物品
JP3987505B2 (ja) 表面処理剤、表面処理方法及び該方法により処理された物品
KR20020029315A (ko) 불소 함유 유기규소 화합물, 이를 함유하는 발수성조성물, 및 표면처리 기재 및 이의 제조방법
TW202104528A (zh) 皮膜、積層體以及積層體的製造方法
JP2019070071A (ja) 硬化性組成物及びその利用
JP6638604B2 (ja) 有機ケイ素化合物変性共重合体およびそれを用いた表面処理剤組成物
JP6060698B2 (ja) 硬化性樹脂組成物及び被覆物品
JP2019112540A (ja) 有機ケイ素化合物および表面処理剤組成物
WO2012137974A1 (ja) 被膜形成用組成物
JP4152769B2 (ja) 高耐久な滑水性被膜の製造方法
JP4093987B2 (ja) 表面処理された基材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895795

Country of ref document: EP

Kind code of ref document: A1