WO2019130581A1 - 表示装置及びその製造方法 - Google Patents

表示装置及びその製造方法 Download PDF

Info

Publication number
WO2019130581A1
WO2019130581A1 PCT/JP2017/047369 JP2017047369W WO2019130581A1 WO 2019130581 A1 WO2019130581 A1 WO 2019130581A1 JP 2017047369 W JP2017047369 W JP 2017047369W WO 2019130581 A1 WO2019130581 A1 WO 2019130581A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
display device
opening
display area
organic
Prior art date
Application number
PCT/JP2017/047369
Other languages
English (en)
French (fr)
Inventor
越智 貴志
松井 章宏
亨 妹尾
純平 高橋
通 園田
剛 平瀬
恵信 宮本
剛史 千崎
家根田 剛士
克彦 岸本
徹 増野
拓司 加藤
Original Assignee
シャープ株式会社
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 堺ディスプレイプロダクト株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2017/047369 priority Critical patent/WO2019130581A1/ja
Publication of WO2019130581A1 publication Critical patent/WO2019130581A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to a display device and a method of manufacturing the same.
  • Patent Document 1 has a laminated structure in which an inorganic film layer formed by a CVD (Chemical Vapor Deposition) method or the like and an organic film layer formed by an inkjet method or the like are alternately arranged, Disclosed is a display device provided with a thin film sealing layer covering an element.
  • CVD Chemical Vapor Deposition
  • the organic EL display device it is demanded to provide an island-shaped non-display area in order to arrange, for example, a camera, a fingerprint sensor or the like inside a display area for displaying an image.
  • the display device disclosed in Patent Document 1 when forming the organic film forming the sealing film by the inkjet method, when the island-shaped non-display area is provided in the display area, the non-display area is formed. Since it is necessary to arrange a wall for blocking the ink ejected by the inkjet method at the peripheral end of the display area, the non-display area becomes large and the display area becomes narrow.
  • the present invention has been made in view of such a point, and the object of the present invention is to suppress the narrowing of the display area even if an island-shaped non-display area is provided in the display area, and the sealing film is provided. To ensure the sealing performance of the
  • a display device is provided so as to cover a base substrate, a light emitting element constituting a display region provided on the base substrate via a TFT layer, and the light emitting element.
  • a display device comprising a sealing film in which a first inorganic film, an organic film, a second inorganic film, and a third inorganic film are sequentially stacked, and a non-display area provided in an island shape in the display area.
  • the second inorganic film is provided, in the non-display area, with a first opening which is disposed along the boundary with the display area and which penetrates in the thickness direction of the base substrate.
  • the organic film is provided with a second opening which is arranged along the boundary with the display area and which penetrates in the thickness direction of the base substrate, and the peripheral wall of the second opening Are aligned with the peripheral wall of the first opening, and the third
  • the film is provided to cover the peripheral wall of the second opening and the second inorganic film in the non-display area, and the first inorganic material on the opposite side of the display area to the peripheral wall of the second opening. It is characterized in that it is in contact with the membrane.
  • the sealing film in the sealing film, the first inorganic film, the organic film, the second inorganic film, and the third inorganic film are sequentially stacked, and the second inorganic film has the thickness of the base substrate in the non-display area.
  • the first opening penetrating in the direction is provided
  • the second opening penetrating in the thickness direction of the base substrate is provided in the non-display area in the organic film
  • the peripheral wall of the second opening is the first opening
  • the third inorganic film is provided to cover the peripheral wall of the second opening and the second inorganic film in the non-display area, so an island-shaped non-display area is provided in the display area.
  • the sealing performance of the sealing film can be secured by suppressing the narrowing of the display region.
  • FIG. 1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing the detailed configuration of the display area of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 3 is an equivalent circuit diagram of a TFT layer constituting the organic EL display device according to the first embodiment of the present invention.
  • FIG. 4 is a plan view showing the detailed configuration of the non-display area of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the detailed configuration of the display area of the organic EL display device along the line VV in FIG. FIG.
  • FIG. 6 is a cross-sectional view of an organic EL layer constituting the organic EL display device according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing the detailed configuration of the non-display area of the organic EL display taken along the line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view showing the detailed configuration of the frame area of the organic EL display taken along line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view showing a first inorganic film forming step in a sealing film forming step in manufacturing the organic EL display device according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing the detailed configuration of the non-display area of the organic EL display taken along the line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view showing the detailed configuration of the frame area of the organic EL display taken along line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view
  • FIG. 10 is sectional drawing which shows the organic vapor deposition film formation process in the sealing film formation process at the time of manufacturing the organic electroluminescence display which concerns on the 1st Embodiment of this invention.
  • FIG. 11 is a cross-sectional view showing a step of forming a second inorganic film in the step of forming a sealing film when manufacturing the organic EL display device according to the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing an organic film forming step in a sealing film forming step in manufacturing the organic EL display device according to the first embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a step of forming a second inorganic film in the step of forming a sealing film when manufacturing the organic EL display device according to the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing an organic film forming step in a sealing film forming step in manufacturing the organic EL display device according to the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing a third inorganic film forming step in the sealing film forming step in manufacturing the organic EL display device according to the first embodiment of the present invention.
  • FIG. 14 is sectional drawing which shows the support base-material sticking process at the time of manufacturing the organic electroluminescence display which concerns on the 1st Embodiment of this invention.
  • FIG. 15 is a plan view showing an organic vapor deposition film formation step to a second inorganic film formation step in the sealing film formation step in manufacturing the organic EL display device according to the first embodiment of the present invention.
  • FIG. 16 is a plan view of a mask used in the second inorganic film forming step in the sealing film forming step in manufacturing the organic EL display device according to the first embodiment of the present invention.
  • FIG. 17 is another cross-sectional view showing the detailed configuration of the non-display area of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 18 is a plan view showing the detailed configuration of the non-display area of the organic EL display device according to the second embodiment of the present invention.
  • FIG. 19 is a cross-sectional view showing a detailed configuration of the non-display area of the organic EL display taken along line XIX-XIX in FIG.
  • FIG. 20 is a plan view showing the detailed configuration of the non-display area of the organic EL display device according to the third embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing the detailed configuration of the non-display area of the organic EL display taken along the line XXI-XXI in FIG.
  • FIG. 22 is a cross-sectional view showing the detailed configuration of the frame area of the organic EL display device according to the third embodiment of the present invention.
  • FIGS. 1 to 17 show a first embodiment of a display device and a method of manufacturing the same according to the present invention.
  • an organic EL display device provided with an organic EL element is illustrated as a display device provided with a light emitting element.
  • FIG. 1 is a plan view showing a schematic configuration of the organic EL display device 50a of the present embodiment.
  • FIG. 2 is a plan view showing the detailed configuration of the display area D of the organic EL display device 50a.
  • FIG. 3 is an equivalent circuit diagram of the TFT layer 20 constituting the organic EL display device 50a.
  • FIG. 4 is a plan view showing the detailed configuration of the non-display area N of the organic EL display device 50a.
  • FIG. 1 is a plan view showing a schematic configuration of the organic EL display device 50a of the present embodiment.
  • FIG. 2 is a plan view showing the detailed configuration of the display area D of the organic EL display device 50a.
  • FIG. 3 is an equivalent circuit diagram of the TFT layer 20 constituting
  • FIG. 5 is a cross-sectional view showing the detailed configuration of the display area D of the organic EL display device 50a, taken along the line VV in FIG.
  • FIG. 6 is a cross-sectional view of the organic EL layer 23 constituting the organic EL display device 50a.
  • 7 is a cross-sectional view showing a detailed configuration of the non-display area N of the organic EL display device 50a, taken along the line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view showing a detailed configuration of the frame region F of the organic EL display device 50a, taken along line VIII-VIII in FIG.
  • the organic EL display device 50 a includes a display area D for displaying an image defined in a rectangular shape, and a frame area F defined in a frame shape around the display area D.
  • an organic EL element 25 described later is provided as a light emitting element, and as shown in FIG. 2, a plurality of sub-pixels P are arranged in a matrix.
  • a sub-pixel P having a red light emission area Lr for performing red gradation display and a sub pixel having a green light emission area Lg for performing green gradation display A pixel P and sub-pixels P having a blue light-emitting area Lb for performing blue gradation display are provided adjacent to each other.
  • one pixel is formed by three adjacent sub-pixels P having a red light emitting area Lr, a green light emitting area Lg, and a blue light emitting area Lb. Further, as shown in FIG. 1, a non-display area N is provided in an island shape inside the display area D.
  • a through hole H penetrating in the thickness direction of the resin substrate layer 10 described later It is provided.
  • a terminal area T is provided along the upper side of the display area D in the figure.
  • the organic EL display device 50a is provided so as to cover the resin substrate layer 10, the organic EL element 25 provided on the resin substrate layer 10 via the TFT layer 20, and the organic EL element 25 as shown in FIG.
  • the resin substrate layer 10 is provided as a base substrate, and is made of, for example, a polyimide resin or the like.
  • the TFT layer 20 includes a base coat film 11 provided on the resin substrate layer 10, a plurality of first thin film transistors (TFTs) 9a provided on the base coat film 11, and a plurality of second TFTs 9b and A plurality of capacitors 9c and planarizing films 19 provided on the respective first TFTs 9a, the respective second TFTs 9b and the respective capacitors 9c are provided.
  • TFTs first thin film transistors
  • second TFTs 9b and A plurality of capacitors 9c and planarizing films 19 provided on the respective first TFTs 9a, the respective second TFTs 9b and the respective capacitors 9c are provided.
  • a plurality of gate lines 14 are provided so as to extend parallel to each other in the lateral direction in the drawing.
  • a plurality of source lines 18f are provided so as to extend in parallel with each other in the vertical direction in the drawing.
  • a plurality of power supply lines 18g are provided adjacent to the respective source lines 18f so as to extend in parallel to each other in the vertical direction in the figure.
  • a first TFT 9a, a second TFT 9b, and a capacitor 9c are provided in each sub-pixel P.
  • the base coat film 11 is formed of, for example, a single layer film or a laminated film of an inorganic insulating film such as silicon nitride, silicon oxide, or silicon oxynitride.
  • the first TFT 9a is connected to the corresponding gate line 14 and source line 18f in each sub pixel P, as shown in FIG.
  • the first TFT 9 a includes a semiconductor layer 12 a provided in an island shape on the base coat film 11, a gate insulating film 13 provided so as to cover the semiconductor layer 12 a, and a gate insulating film 13.
  • a gate electrode 14a provided thereon so as to overlap with a part of the semiconductor layer 12a, a first interlayer insulating film 15 and a second interlayer insulating film 17 sequentially provided so as to cover the gate electrode 14a, and a second interlayer insulating film
  • a source electrode 18a and a drain electrode 18b provided on the film 17 and arranged to be separated from each other are provided.
  • the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17 are formed of, for example, a single layer film or a laminated film of an inorganic insulating film such as silicon nitride, silicon oxide, or silicon oxynitride. .
  • the second TFT 9 b is connected to the corresponding first TFT 9 a and the corresponding power supply line 18 g in each sub-pixel P.
  • the second TFT 9 b includes a semiconductor layer 12 b provided in an island shape on the base coat film 11, a gate insulating film 13 provided so as to cover the semiconductor layer 12 b, and a gate insulating film 13.
  • a source electrode 18c and a drain electrode 18d provided on the film 17 and arranged to be separated from each other are provided.
  • first TFT 9 a and the second TFT 9 b may be bottom gate type TFTs.
  • capacitor 9c is connected to the corresponding first TFT 9a and the corresponding power supply line 18g in each sub-pixel P, as shown in FIG.
  • capacitor 9c includes lower conductive layer 14c formed of the same material as the gate electrode and in the same layer, and first interlayer insulating film 15 provided to cover lower conductive layer 14c.
  • An upper conductive layer 16 is provided on the first interlayer insulating film 15 so as to overlap with the lower conductive layer 14c.
  • the upper conductive layer 16 is connected to the power supply line 18g through a contact hole formed in the second interlayer insulating film 17 as shown in FIG.
  • the planarization film 19 is made of, for example, a colorless and transparent organic resin material such as a polyimide resin.
  • the organic EL element 25 includes a plurality of first electrodes 21, an edge cover 22, a plurality of organic EL layers 23, and a second electrode 24 provided in order on the planarization film 19.
  • the plurality of first electrodes 21 are provided as a reflective electrode (anode) in a matrix on the planarization film 19 so as to correspond to the plurality of sub-pixels P, as shown in FIG.
  • the first electrode 21 is connected to the drain electrode 18 d of each second TFT 9 b via a contact hole formed in the planarization film 19.
  • the first electrode 21 has a function of injecting holes into the organic EL layer 23.
  • the first electrode 21 is more preferably formed of a material having a large work function in order to improve the hole injection efficiency into the organic EL layer 23.
  • the first electrode 21 for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au) , Titanium (Ti), ruthenium (Ru), manganese (Mn), indium (In), ytterbium (Yb), lithium fluoride (LiF), platinum (Pt), palladium (Pd), molybdenum (Mo), iridium ( Examples include metallic materials such as Ir) and tin (Sn). Also, the material constituting the first electrode 21 may be, for example, an alloy such as astatine (At) / oxidized astatine (AtO 2 ).
  • the material constituting the first electrode 21 is, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO) or the like. It may be. Further, the first electrode 21 may be formed by laminating a plurality of layers made of the above materials. In addition, as a compound material with a large work function, an indium tin oxide (ITO), an indium zinc oxide (IZO), etc. are mentioned, for example.
  • the edge cover 22 is provided in a grid shape so as to cover the peripheral portion of each first electrode 21 as shown in FIG.
  • organic films such as polyimide resin, acrylic resin, polysiloxane resin, novolac resin, are mentioned, for example.
  • each organic EL layer 23 is disposed on the respective first electrodes 21 and provided in a matrix so as to correspond to the plurality of sub-pixels.
  • each organic EL layer 23 is provided with a hole injection layer 1, a hole transport layer 2, a light emitting layer 3, an electron transport layer 4 and an electron injection sequentially provided on the first electrode 21.
  • the layer 5 is provided.
  • the hole injection layer 1 is also called an anode buffer layer, and has the function of improving the hole injection efficiency from the first electrode 21 to the organic EL layer 23 by bringing the energy levels of the first electrode 21 and the organic EL layer 23 closer to each other.
  • the material constituting the hole injection layer for example, triazole derivative, oxadiazole derivative, imidazole derivative, polyarylalkane derivative, pyrazoline derivative, phenylenediamine derivative, oxazole derivative, styrylanthracene derivative, fluorenone derivative, Hydrazone derivatives, stilbene derivatives and the like can be mentioned.
  • the hole transport layer 2 has a function of improving the transport efficiency of holes from the first electrode 21 to the organic EL layer 23.
  • a material constituting the hole transport layer 2 for example, porphyrin derivative, aromatic tertiary amine compound, styrylamine derivative, polyvinylcarbazole, poly-p-phenylenevinylene, polysilane, triazole derivative, oxadiazole Derivative, imidazole derivative, polyarylalkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative, amine-substituted chalcone derivative, oxazole derivative, styrylanthracene derivative, fluorenone derivative, hydrazone derivative, stilbene derivative, hydrogenated amorphous silicon, Hydrogenated amorphous silicon carbide, zinc sulfide, zinc selenide and the like can be mentioned.
  • the light emitting layer 3 holes and electrons are injected from the first electrode 21 and the second electrode 24, respectively, and holes and electrons are recombined when a voltage is applied by the first electrode 21 and the second electrode 24. It is an area.
  • the light emitting layer 3 is formed of a material having high light emission efficiency.
  • a metal oxinoid compound [8-hydroxy quinoline metal complex], a naphthalene derivative, an anthracene derivative, a diphenyl ethylene derivative, a vinylacetone derivative, a triphenylamine derivative, a butadiene derivative, a coumarin derivative, for example , Benzoxazole derivative, oxadiazole derivative, oxazole derivative, benzimidazole derivative, thiadiazole derivative, benzthiazole derivative, styryl derivative, styrylamine derivative, bisstyrylbenzene derivative, trisstyrylbenzene derivative, perylene derivative, perinone derivative, aminopyrene derivative, Pyridine derivatives, rhodamine derivatives, aquidin derivatives, phenoxazone, quinacridone derivatives, rubrene, poly-p-phenylene vinylet , Polysilane, and the like.
  • the electron transport layer 4 has a function of efficiently moving electrons to the light emitting layer 3.
  • a material constituting the electron transport layer 4 for example, as an organic compound, oxadiazole derivative, triazole derivative, benzoquinone derivative, naphthoquinone derivative, anthraquinone derivative, tetracyanoanthraquinodimethane derivative, diphenoquinone derivative, fluorenone derivative And silole derivatives, metal oxinoid compounds and the like.
  • the electron injection layer 5 has a function of bringing the energy levels of the second electrode 24 and the organic EL layer 23 closer to each other and improving the efficiency of electron injection from the second electrode 24 to the organic EL layer 23.
  • the drive voltage of the organic EL element 25 can be reduced.
  • the electron injection layer 5 is also called a cathode buffer layer.
  • a material constituting the electron injection layer 5 for example, lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), barium fluoride Inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO) and the like can be mentioned.
  • the second electrode 24 is provided as a common electrode (cathode) so as to cover the organic EL layers 23 and the edge cover 22 as shown in FIG.
  • the second electrode 24 has a function of injecting electrons into the organic EL layer 23. Further, in order to improve the electron injection efficiency to the organic EL layer 23, the second electrode 24 is more preferably made of a material having a small work function.
  • the second electrode 24 is, for example, a deposited film formed by a vacuum deposition method.
  • the second electrode 24 for example, silver (Ag), aluminum (Al), vanadium (V), calcium (Ca), titanium (Ti), yttrium (Y), sodium (Na) And manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb), lithium fluoride (LiF) and the like.
  • the second electrode 24 may be, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxide astatine (AtO 2) And lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al), etc. May be Also, the second electrode 24 may be made of, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), etc. .
  • a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), etc.
  • the second electrode 24 may be formed by stacking a plurality of layers made of the above materials.
  • a material having a small work function for example, magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al) Etc.
  • the sealing film 30 a is provided so as to cover the organic EL element 25 as shown in FIGS. 5, 7 and 8, and the first inorganic film 26 a and the organic film 27 a provided in order on the organic EL element 25.
  • the second inorganic film 28 a and the third inorganic film 29 a are provided, and have a function of protecting the organic EL layer 23 from moisture and oxygen.
  • the first inorganic film 26a, the second inorganic film 28a, and the third inorganic film 29a are made of, for example, an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film.
  • the first inorganic film 26 a is provided so as to cover the organic EL element 25 as shown in FIGS. 5, 7 and 8. Here, as shown in FIG. 7, the first inorganic film 26 a is in contact with the surface of the resin substrate layer 10 in the non-display area N.
  • the organic film 27a is made of, for example, an organic vapor deposition film of acrylate, epoxy, polyurea, parylene, polyimide, polyamide or the like.
  • a second opening is provided in the non-display area N along the boundary with the display area D and the peripheral wall is penetrated in the thickness direction of the resin substrate layer 10.
  • a section Ab is provided.
  • the peripheral wall Eb of the second opening portion Ab stands upright at about 90 ° with respect to the surface of the resin substrate layer 10, as shown in FIG.
  • the second inorganic film 28a is provided so as to overlap the organic film 27a as shown in FIG. 5, FIG. 7 and FIG.
  • the peripheral wall Ea is disposed along the boundary with the display area D and penetrates in the thickness direction of the resin substrate layer 10 in the second inorganic film 28 a.
  • a first opening Aa is provided.
  • the peripheral wall Eb of the second opening Ab formed in the organic film 27a is aligned with the peripheral wall Ea of the first opening Aa formed in the second inorganic film 28a, as shown in FIGS. 4 and 7. .
  • the third inorganic film 29a is provided in the display region D so as to cover the second inorganic film 28a, as shown in FIG. Further, as shown in FIG. 7, the third inorganic film 29a is provided in the non-display area N so as to cover the peripheral wall Eb of the second opening Ab formed in the organic film 27a and the second inorganic film 28a.
  • the first inorganic film 26a is in contact with the first inorganic film 26a inside the peripheral wall Eb of the second opening Ab (the opposite side to the display region D, the through hole H side).
  • the third inorganic film 29a is provided in the frame region F so as to cover the peripheral wall of the organic film 27a and the second inorganic film 28a.
  • a display region D is shown in the non-display area N, in the laminated film of the base coat film 11, the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17 constituting the TFT layer 20, a display region D is shown.
  • a peripheral wall Ec is disposed along the boundary of the third opening Ac, and a third opening Ac penetrating in the thickness direction of the resin substrate layer 10 is provided.
  • the fourth opening Ad is disposed along the peripheral wall Ed and penetrates in the thickness direction of the resin substrate layer 10.
  • the peripheral wall Ed of the fourth opening Ad is provided outside the peripheral wall Ec of the third opening Ac (on the side of the display area D). Further, as shown in FIGS. 4 and 7, the peripheral wall Ec of the third opening Ac is provided outside the peripheral wall Ea of the first opening Aa (on the side of the display area D).
  • the peripheral wall of the through hole H as shown in FIG. 7, the circumferential end faces of the resin substrate layer 10, the first inorganic film 26a, and the third inorganic film 29a are flush and exposed.
  • the peripheral wall Ed of the fourth opening Ad formed in the planarization film 19 and the peripheral wall Ed of the fourth opening Ad formed in the edge cover 22 are illustrated as an example. The peripheral wall Ed of the fourth opening Ad formed in the planarizing film 19 and the peripheral wall Ed of the fourth opening Ad formed in the edge cover 22 may not be aligned.
  • the thickness of the resin substrate layer 10 A slit S penetrating in the direction is provided in a substantially U shape along the boundary with the display area D.
  • the second electrode 24 is connected through a slit S to a source conductive layer 18 h formed of the same material and in the same layer as the source electrodes 18 a and 18 c.
  • the organic film 27 a is provided to the outer side (the opposite side to the display area D) of the second electrode 24.
  • the organic film 27a is provided up to the outer side (the opposite side to the display area D) of the second electrode 24 in the frame area F. However, in the frame area F, the organic film 27a is provided. It may be provided inside the peripheral end of the second electrode 24 (display area D side).
  • the first inorganic film 26 a is in contact with the surface of the second interlayer insulating film 17 outside the slit S (opposite to the display area D).
  • a mask contact portion C is provided outside the slit S to contact the end of the film formation mask when forming a film by the CVD method, vacuum evaporation method or the like. It is done.
  • the adhesive layers 41 and 46 are made of, for example, a photo-curable adhesive sheet, a UV-curable adhesive, a thermosetting adhesive, an epoxy-based adhesive, a cyanoacrylate-based instant adhesive, or the like.
  • the supporting substrates 42 and 47 are made of, for example, plastic films of polyethylene terephthalate, polyethylene naphthalate, aramid, (meth) acrylate, triacetyl cellulose and the like.
  • the organic EL display device 50a inputs a gate signal to the first TFT 9a via the gate line 14 to turn on the first TFT 9a, and the gate electrode 14b of the second TFT 9b via the source line 18f.
  • the voltage corresponding to the source signal is written to the capacitor 9c, and the current from the power supply line 18g defined by the gate voltage of the second TFT 9b is supplied to the organic EL layer 23.
  • the light emitting layer 3 of the organic EL layer 23 emits light in a predetermined sub-pixel P to display an image.
  • the gate voltage of the second TFT 9b is held by the capacitor 9c, so light emission by the light emitting layer 3 is continued until the gate signal of the next frame is input. Maintained.
  • FIG. 9, FIG. 10, FIG. 11, FIG. 12 and FIG. 13 show the first inorganic film forming process, the organic vapor deposition film forming process, the second one in the sealing film forming process at the time of manufacturing the organic EL display device 50a.
  • It is sectional drawing which shows an inorganic film formation process, an organic film formation process, and a 3rd inorganic film formation process, respectively.
  • FIG. 14 is sectional drawing which shows the support base-material sticking process at the time of manufacturing the organic electroluminescence display 50a.
  • FIG. 15 is a plan view showing an organic vapor deposition film formation process to a second inorganic film formation process in the sealing film formation process when manufacturing the organic EL display device 50a, wherein (a) is an organic vapor deposition film formation process. A process is shown, (b) shows the 1st step of a 2nd inorganic membrane formation process, (c) is a top view showing the 2nd step of a 2nd inorganic membrane formation process.
  • FIG. 16 is a plan view of a mask used in the second inorganic film forming step in the sealing film forming step when manufacturing the organic EL display device 50a, wherein (a) is a first step of the inorganic film forming step FIG.
  • FIG. 16B is a plan view of a mask Mb used for the second step of the inorganic film formation step.
  • FIG. 17 is another cross-sectional view showing the detailed configuration of the non-display area N of the organic EL display device 50a.
  • a TFT layer forming step In the method of manufacturing the organic EL display device 50a of this embodiment, a TFT layer forming step, an organic EL element forming step, a first inorganic film forming step, an organic vapor deposition film forming step, a second inorganic film forming step, an organic A sealing film forming process including a film forming process and a third inorganic film forming process, a support base bonding process, and a through hole forming process.
  • the base coat film 11, the first TFT 9a, the second TFT 9b, the capacitor 9c, and the planarizing film 19 are formed on the surface of the resin substrate layer 10m formed on the glass substrate G using a known method.
  • ⁇ Sealing film formation process> First, as shown in FIG. 9, on the substrate surface on which the organic EL element 25 is formed in the light emitting element forming step, an inorganic insulating film such as a silicon nitride film is formed 500 nm thick by plasma CVD using a mask. A film is formed to a certain extent to form the first inorganic film 26 (first inorganic film forming step).
  • an inorganic insulating film such as a silicon nitride film is formed 500 nm thick by plasma CVD using a mask.
  • a film is formed to a certain extent to form the first inorganic film 26 (first inorganic film forming step).
  • an organic deposition film 27 made of an organic material such as acrylate is deposited on the entire surface of the substrate on which the first inorganic layer 26 is formed, for example, by vacuum deposition. A thickness of about 200 nm is formed (organic vapor deposition film formation step).
  • the mask Ma see FIG. 16 (a) and Mb (FIG. b) See, for example, an inorganic insulating film such as a silicon nitride film is formed to a thickness of about 200 nm by plasma CVD to form a second inorganic film 28a having a lower film 28aa and an upper film 28ab. (2nd inorganic film formation process).
  • the second inorganic film 28a as shown in FIG. 15C and FIG. 17, the first film thickness portion Ta (where the overlapping portions of the lower layer film 28aa and the upper layer film 28ab are relatively thick) is formed.
  • the second film thickness portion Tba (for example, about 200 nm thick) in which the thickness of the lower film 28aa is relatively thin and the thickness of the upper film 28ab is relatively large.
  • the second film thickness portion Tbb (for example, a thickness of about 200 nm) is formed thin.
  • the first film thickness portion Ta (refer to the hatched portion in the drawing) is provided so as to extend from the inner peripheral end to the outer peripheral end of the display area D, as shown in FIG.
  • the organic deposition film 27 exposed from the second inorganic film 28a is removed by, for example, ashing using plasma, using the second inorganic film 28a as a mask, to form the organic film 27a.
  • Organic film formation process since the organic deposition film 27 is ashed using the second inorganic film 28a as a mask in the organic film formation step, the positions of the peripheral wall of the outer periphery of the organic film 27a and the peripheral wall Eb of the second opening Ab are the second inorganic film The positions of the peripheral wall of the outer periphery 28a and the peripheral wall Ea of the first opening Aa coincide with each other.
  • an inorganic insulating film such as a silicon nitride film is formed to a thickness of about 450 nm by plasma CVD using a mask.
  • the third inorganic film 29 is formed to cover the peripheral wall of the outer periphery of the organic layer 20a and the peripheral wall Eb of the second opening Ab and the second inorganic layer 28a (third inorganic film forming step).
  • the non-display area N on the surface of the substrate to which the supporting substrates 42m and 47m are attached in the supporting substrate attaching step is irradiated with, for example, a laser beam while being scanned cyclically to form the through holes H.
  • a substrate layer 10, a first inorganic film 26a, a third inorganic film 29a, adhesive layers 41 and 46, and support substrates 42 and 47 are formed.
  • the organic EL display device 50a of the present embodiment can be manufactured.
  • the organic deposition film 27 exposed from the second inorganic film 28a is removed by ashing in the sealing film forming step. Since the film 27a is formed, the peripheral wall Eb of the second opening Ab of the organic film 27a is aligned with the peripheral wall Ea of the first opening Aa of the second inorganic film 28a. Thus, in the non-display area N, the peripheral wall Eb of the second opening Ab of the organic film 27a is formed with high accuracy. Therefore, even if the island-shaped non-display area N is provided in the display area D, Narrowing can be suppressed.
  • the third inorganic film 29a is provided to cover the peripheral wall Eb of the second opening Ab of the organic film 27a and the second inorganic film 28a. Therefore, the first inorganic film 26a, the organic film The sealing performance of the sealing film 30a in which the second inorganic film 28a and the third inorganic film 29a are sequentially stacked can be secured. Therefore, even if the island-shaped non-display area N is provided in the display area D, it is possible to suppress the narrowing of the display area D and secure the sealing performance of the sealing film 30a.
  • the organic deposition film 27 exposed from the second inorganic film 28a is removed by ashing to form the organic film 27a.
  • the peripheral wall of the outer periphery of the organic film 27a is aligned with the peripheral wall of the outer periphery of the second inorganic film 28a.
  • the peripheral wall of the outer periphery of the organic film 27a is formed with high accuracy, so the frame area F can be narrowed.
  • the third inorganic film 29a is provided so as to cover the peripheral wall of the organic film 27a and the second inorganic film 28a.
  • the first inorganic film 26a, the organic film 27a, and the second inorganic film The sealing performance of the sealing film 30a in which the 28a and the third inorganic film 29a are sequentially stacked can be secured. Therefore, the sealing performance of the sealing film 30a can be secured, and the frame narrowing of the organic EL display device 50a can be achieved.
  • the third film formed on the laminated film of the base coat film 11, the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17 is used.
  • the peripheral wall Ec of the opening Ac is provided closer to the display region D than the peripheral wall Ea of the first opening Aa formed in the second inorganic film 28a.
  • FIG. 18 is a plan view showing a detailed configuration of the non-display area N of the organic EL display device 50b of the present embodiment.
  • FIG. 19 is a cross-sectional view showing a detailed configuration of the non-display area N of the organic EL display device 50b, taken along line XIX-XIX in FIG.
  • the same parts as those in FIGS. 1 to 17 are denoted by the same reference numerals, and detailed descriptions thereof will be omitted.
  • the organic EL display device 50a in which the peripheral wall Ec of the third opening Ac is provided outside (the display area D side) the peripheral wall Ea of the first opening Aa has been exemplified.
  • the organic EL display device 50b in which the peripheral wall Ec of the third opening Ac is provided inside the peripheral wall Ea of the first opening Aa (the opposite side to the display region D, the through hole H side) is illustrated.
  • the organic EL display device 50b has a display region D for displaying an image defined in a rectangular shape, and a frame region F defined in a frame shape around the display region D. And have.
  • the organic EL display device 50b includes a resin substrate layer 10, an organic EL device 25 provided on the resin substrate layer 10 with the TFT layer 20 interposed therebetween, and an organic EL device 25.
  • the sealing film 30b is provided so as to cover the organic EL element 25 as shown in FIG. 19, and the first inorganic film 26b, the organic film 27b, the second inorganic film 28b and the second inorganic film 28b sequentially provided on the organic EL element 25.
  • the third inorganic film 29 b is provided and has a function of protecting the organic EL layer 23 from moisture and oxygen.
  • the first inorganic film 26b, the second inorganic film 28b, and the third inorganic film 29b are made of, for example, an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film.
  • the first inorganic film 26 b is provided to cover the organic EL element 25 as shown in FIG.
  • the first inorganic film 26 b is in contact with the surface of the resin substrate layer 10 in the non-display area N.
  • the organic film 27 b is made of, for example, an organic vapor deposition film of acrylate, epoxy, polyurea, parylene, polyimide, polyamide or the like.
  • the organic film 27 b is provided with a peripheral wall along the boundary with the display area D, and the second opening penetrates in the thickness direction of the resin substrate layer 10.
  • a section Ab is provided.
  • the second inorganic film 28 b is provided so as to overlap with the organic film 27 b as shown in FIG.
  • the peripheral wall Ea is disposed along the boundary with the display area D and penetrates in the thickness direction of the resin substrate layer 10 in the second inorganic film 28 b.
  • a first opening Aa is provided.
  • the peripheral wall Eb of the second opening Ab formed in the organic film 27b is aligned with the peripheral wall Ea of the first opening Aa formed in the second inorganic film 28a, as shown in FIGS. 18 and 19. .
  • the third inorganic film 29 b is provided to cover the second inorganic film 28 b in the display region D. Further, as shown in FIG. 19, the third inorganic film 29b is provided in the non-display area N so as to cover the peripheral wall Eb of the second opening Ab formed in the organic film 27b and the second inorganic film 28b.
  • the first inorganic film 26 b is in contact with the first inorganic film 26 b inside the peripheral wall Eb of the second opening Ab (the opposite side to the display region D, the through hole H side).
  • the third inorganic film 29 b is provided in the frame area F so as to cover the peripheral wall of the outer periphery of the organic film 27 b and the second inorganic film 28 b.
  • the display film D is formed on the laminated film of the base coat film 11, the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17 which constitute the TFT layer 20 as shown in FIG.
  • a peripheral wall Ec is disposed along the boundary of the third opening Ac, and a third opening Ac penetrating in the thickness direction of the resin substrate layer 10 is provided.
  • the laminated film of the planarizing film 19 constituting the TFT layer 20 and the edge cover 22 constituting the organic EL element 25 has a boundary with the display area D as shown in FIG.
  • the fourth opening Ad is disposed along the peripheral wall Ed and penetrates in the thickness direction of the resin substrate layer 10.
  • the peripheral wall Ed of the fourth opening Ad is provided outside the peripheral wall Ec of the third opening Ac (on the side of the display area D). Further, as shown in FIGS. 18 and 19, the peripheral wall Ea of the first opening Aa is outside the peripheral wall Ec of the third opening Ac (on the side of the display area D) than the peripheral wall Ed of the fourth opening Ad. It is provided inside (the opposite side to the display area D, the through hole H side). In the peripheral wall of the through hole H, as shown in FIG. 19, the circumferential end faces of the resin substrate layer 10, the first inorganic film 26b, and the third inorganic film 29b are flush and exposed.
  • the laminated film of the planarizing film 19 constituting the TFT layer 20 and the edge cover 22 constituting the organic EL element 25 is formed of the resin substrate layer 10 in the same manner as the first organic EL display device 50a.
  • the slits S penetrating in the thickness direction of the are provided in a substantially U shape along the boundary with the display area D.
  • the organic EL display device 50b described above has flexibility, and in each sub-pixel P, the organic EL layer 23 through the first TFT 9a and the second TFT 9b. By appropriately emitting light from the light emitting layer 3, an image is displayed.
  • the organic EL display device 50b according to the present embodiment has a pattern on the inner peripheral side (non-display area N side) of the base coat film 11 to the third inorganic film 29a. It can be manufactured by changing the shape.
  • the organic deposition film 27 exposed from the second inorganic film 28b is removed by ashing in the sealing film forming step. Since the film 27b is formed, the peripheral wall Eb of the second opening Ab of the organic film 27b is aligned with the peripheral wall Ea of the first opening Aa of the second inorganic film 28b. Thereby, in the non-display area N, the peripheral wall Eb of the second opening Ab of the organic film 27b is formed with high accuracy. Therefore, even if the island-shaped non-display area N is provided in the display area D, Narrowing can be suppressed.
  • the third inorganic film 29b is provided to cover the peripheral wall Eb of the second opening Ab of the organic film 27b and the second inorganic film 28b, so the first inorganic film 26b, the organic film
  • the sealing performance of the sealing film 30b in which the second inorganic film 28b and the third inorganic film 29b are sequentially stacked can be secured. Therefore, even if the island-shaped non-display area N is provided in the display area D, the narrowing of the display area D can be suppressed, and the sealing performance of the sealing film 30b can be secured.
  • the organic deposition film 27 exposed from the second inorganic film 28b is removed by ashing to form the organic film 27b.
  • the peripheral wall of the outer periphery of the organic film 27b is aligned with the peripheral wall of the outer periphery of the second inorganic film 28b.
  • the peripheral wall of the outer periphery of the organic film 27b is formed with high accuracy, so the frame area F can be narrowed.
  • the third inorganic film 29b is provided to cover the peripheral wall of the organic film 27b and the second inorganic film 28b.
  • the first inorganic film 26b, the organic film 27b, and the second inorganic film The sealing performance of the sealing film 30b in which the 28b and the third inorganic film 29b are sequentially stacked can be ensured. Therefore, the sealing performance of the sealing film 30b can be secured, and the frame narrowing of the organic EL display device 50b can be achieved.
  • the fourth opening in the peripheral wall Ea of the first opening Aa outside the peripheral wall Ec of the third opening Ac (display area D side) Since it is provided inside the peripheral wall Ed of Ad (on the opposite side to the display area D, the through hole H side), the peripheral end of the organic film 27 b and the peripheral end of the resin substrate layer 10 in the non-display area N
  • the peripheral end portion of the laminated film of the base coat film 11, the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17 is disposed.
  • the moisture permeating from the end face of the resin substrate layer 10 in the non-display area N hardly reaches the organic film 27 b of the sealing film 30 b, so the sealing performance of the sealing film 30 b can be improved.
  • FIGS. 20 to 22 show a third embodiment of the organic EL display device and the method of manufacturing the same according to the present invention.
  • FIG. 20 is a plan view showing a detailed configuration of the non-display area N of the organic EL display device 50c of the present embodiment.
  • FIG. 21 is a cross-sectional view showing the detailed configuration of the non-display area N of the organic EL display device 50c along the line XXI-XXI in FIG.
  • FIG. 22 is a cross-sectional view showing the detailed configuration of the frame area F of the organic EL display device 50c.
  • the organic EL display devices 50a and 50b in which the peripheral wall Eb of the second opening Ab is provided on the outer side (display area D side) than the peripheral wall Ed of the fourth opening Ad are illustrated.
  • the organic EL display device is provided with the peripheral wall Eb of the second opening Ab inside the peripheral wall Ed of the fourth opening Ad (the opposite side to the display area D, the through hole H side) 50c is illustrated.
  • the organic EL display device 50c includes a resin substrate layer 10, an organic EL device 25 provided on the resin substrate layer 10 with the TFT layer 20 interposed therebetween, and an organic EL device 25 on the sealing film 30c (see FIGS. 21 and 22), the supporting base 42 provided on the sealing film 30c via the adhesive layer 41, and the lower surface of the resin substrate layer 10. And a support base 47 provided via an adhesive layer 46.
  • the sealing film 30c is provided so as to cover the organic EL element 25 as shown in FIGS. 21 and 22, and a first inorganic film 26c, an organic film 27c, and a second inorganic film sequentially provided on the organic EL element 25.
  • the film 28c and the third inorganic film 29c are provided, and have a function of protecting the organic EL layer 23 from moisture and oxygen.
  • the first inorganic film 26c, the second inorganic film 28c, and the third inorganic film 29c are made of, for example, an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film.
  • the first inorganic film 26c is provided so as to cover the organic EL element 25 as shown in FIG. 21 and FIG. Here, as shown in FIG. 21, the first inorganic film 26 c is in contact with the surface of the resin substrate layer 10 in the non-display area N.
  • the organic film 27c is made of, for example, an organic vapor deposition film of acrylate, epoxy, polyurea, parylene, polyimide, polyamide or the like.
  • the peripheral wall Eb is disposed along the boundary with the display area D, and the organic film 27 c is penetrated in the thickness direction of the resin substrate layer 10.
  • An opening Ab is provided.
  • the second inorganic film 28c is provided so as to overlap the organic film 27c.
  • the peripheral wall Ea is disposed along the boundary with the display area D and penetrates in the thickness direction of the resin substrate layer 10 in the second inorganic film 28 c.
  • a first opening Aa is provided.
  • the peripheral wall Eb of the second opening Ab formed in the organic film 27c is aligned with the peripheral wall Ea of the first opening Aa formed in the second inorganic film 28c, as shown in FIGS. 20 and 21. .
  • the third inorganic film 29 c is provided to cover the second inorganic film 28 c in the display region D. Further, as shown in FIG. 21, the third inorganic film 29c is provided in the non-display area N so as to cover the peripheral wall Eb of the second opening Ab formed in the organic film 27c and the second inorganic film 28c. The first inorganic film 26c is in contact with the first inorganic film 26c inside the peripheral wall Eb of the second opening Ab (the opposite side to the display region D, the through hole H side). Further, as shown in FIG. 22, the third inorganic film 29c is provided in the frame region F so as to cover the peripheral wall of the organic film 27c and the second inorganic film 28c.
  • a display region D is shown in the non-display area N.
  • a peripheral wall Ec is disposed along the boundary of the third opening Ac, and a third opening Ac penetrating in the thickness direction of the resin substrate layer 10 is provided.
  • the laminated film of the planarizing film 19 constituting the TFT layer 20 and the edge cover 22 constituting the organic EL element 25 has a boundary with the display area D as shown in FIG.
  • the fourth opening Ad is disposed along the peripheral wall Ed and penetrates in the thickness direction of the resin substrate layer 10.
  • the peripheral wall Ed of the fourth opening Ad is provided outside the peripheral wall Ec of the third opening Ac (on the side of the display area D), as shown in FIGS. Further, as shown in FIGS. 20 and 21, the peripheral wall Ea of the first opening Aa is provided outside the peripheral wall Ed of the fourth opening Ad (on the side of the display area D).
  • the circumferential end faces of the resin substrate layer 10, the first inorganic film 26c, and the third inorganic film 29c are flush and exposed.
  • the laminated film of the planarizing film 19 constituting the TFT layer 20 and the edge cover 22 constituting the organic EL element 25 includes the first organic EL display device 50a and the first organic EL display device 50a as shown in FIG.
  • a slit S penetrating in the thickness direction of the resin substrate layer 10 is provided in a substantially U shape along the boundary with the display region D.
  • the second electrode 24 is connected via a slit S to a source conductive layer 18 h formed of the same material and in the same layer as the source electrodes 18 a and 18 c.
  • the organic film 27 c is provided to the outside of the second electrode 24 as shown in FIG.
  • the first inorganic film 26c is in contact with the surface of the second interlayer insulating film 17 outside the slit S as shown in FIG.
  • the layer between the second interlayer insulating film 17 and the first inorganic film 26c is formed in the same layer as the source electrodes 18a and 18c outside the mask contact portion C.
  • a plurality of lead wires 18i formed of the same material are provided.
  • the organic EL display device 50c described above has flexibility, and in each sub-pixel P, the organic EL layer 23 through the first TFT 9a and the second TFT 9b. By appropriately emitting light from the light emitting layer 3, an image is displayed.
  • the pattern of the inner peripheral side (non-display area N side) of the base coat film 11 to the third inorganic film 29a is the organic EL display device 50c of the present embodiment. It can be manufactured by changing the shape.
  • the organic deposition film 27 exposed from the second inorganic film 28c is removed by ashing. Since the film 27c is formed, the peripheral wall Eb of the second opening Ab of the organic film 27c is aligned with the peripheral wall Ea of the first opening Aa of the second inorganic film 28c. Thereby, in the non-display area N, the peripheral wall Eb of the second opening Ab of the organic film 27c is formed with high accuracy. Therefore, even if the island-shaped non-display area N is provided in the display area D, Narrowing can be suppressed.
  • the third inorganic film 29c is provided to cover the peripheral wall Eb of the second opening Ab of the organic film 27c and the second inorganic film 28c, so the first inorganic film 26c, the organic film
  • the sealing performance of the sealing film 30c in which the second inorganic film 28c and the third inorganic film 29c are sequentially stacked can be secured. Therefore, even if the island-shaped non-display area N is provided in the display area D, the narrowing of the display area D can be suppressed, and the sealing performance of the sealing film 30c can be secured.
  • the organic deposition film 27 exposed from the second inorganic film 28c is removed by ashing to form the organic film 27c.
  • the peripheral wall of the outer periphery of the organic film 27c is aligned with the peripheral wall of the outer periphery of the second inorganic film 28b.
  • the peripheral wall of the outer periphery of the organic film 27c is formed with high accuracy, so the frame area F can be narrowed.
  • the third inorganic film 29c is provided so as to cover the peripheral wall of the organic film 27c and the second inorganic film 28c.
  • the first inorganic film 26c, the organic film 27c, and the second inorganic film The sealing performance of the sealing film 30c in which the 28c and the third inorganic film 29c are sequentially stacked can be ensured. Therefore, the sealing performance of the sealing film 30c can be secured, and the frame narrowing of the organic EL display device 50c can be achieved.
  • the peripheral wall Ea of the first opening Aa is provided outside the peripheral wall Ed of the fourth opening Ad (display area D side) Therefore, the film thickness at the peripheral end of the organic film 27c is reduced.
  • the coverage of the peripheral end of the organic film 27c by the third inorganic film 29c is improved, so that the sealing performance of the sealing film 30c can be improved.
  • the organic EL displays 50a to 50c in which the through holes H are provided in the non-display area N are illustrated, but in the present invention, the non-display area N is transparent, for example, without recesses and recesses not penetrating.
  • the present invention can also be applied to an organic EL display device in which a layer or the like is provided and the through hole H is not provided.
  • ashing is exemplified as etching for removing a part of the organic deposition film, but etching may be anisotropic etching such as reactive ion etching. According to such anisotropic etching, the organic vapor deposition film is not etched to the display area side of the peripheral wall of the second inorganic film, and the vertical direction at the end of the organic vapor deposition film is set using the second inorganic film as a mask. Etching is possible, and the coverage (coverage) of the subsequent third inorganic film can also be improved.
  • etching includes ashing.
  • the organic EL layer having a five-layer laminated structure of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer is exemplified. It may be a three-layer laminated structure of a hole injection layer and hole transport layer, a light emitting layer, and an electron transport layer and electron injection layer.
  • the organic EL display device is exemplified in which the first electrode is an anode and the second electrode is a cathode.
  • the laminated structure of the organic EL layer is reversed and the first electrode is a cathode.
  • the present invention can also be applied to an organic EL display device in which the second electrode is an anode.
  • the organic EL display device including the element substrate in which the electrode of the TFT connected to the first electrode is a drain electrode is exemplified.
  • the TFT connected to the first electrode The present invention can also be applied to an organic EL display device provided with an element substrate whose electrode is called a source electrode.
  • the organic EL display device has been described as an example of the display device.
  • the present invention can be applied to a display device provided with a plurality of light emitting elements driven by current.
  • the present invention can be applied to a display device provided with a QLED (Quantum-dot light emitting diode) which is a light emitting element using a quantum dot-containing layer.
  • QLED Quantum-dot light emitting diode
  • the present invention is useful for flexible display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

第1無機膜(26a)、有機膜(27a)、第2無機膜(28a)及び第3無機膜(29a)が順に積層された封止膜(30)を備え、表示領域内に非表示領域(N)が島状に設けられ、第2無機膜(28a)には、非表示領域(N)において、第1開口部(Aa)が設けられ、有機膜(27a)には、非表示領域(N)において、第2開口部(Ab)が設けられ、第2開口部(Ab)の周壁(Eb)は、第1開口部(Aa)の周壁(Ea)に揃っており、第3無機膜(29a)は、非表示領域(N)において、第2開口部(Ab)の周壁(Eb)及び第2無機膜(28a)を覆うように設けられている。

Description

表示装置及びその製造方法
 本発明は、表示装置及びその製造方法に関するものである。
 近年、液晶表示装置に代わる表示装置として、有機EL(Electro Luminescence)素子を用いた自発光型の有機EL表示装置が注目されている。ここで、有機EL表示装置では、水分や酸素等の混入による有機EL素子の劣化を抑制するために、有機EL素子を覆う封止膜を無機膜及び有機膜の積層膜で構成する封止構造が提案されている。
 例えば、特許文献1には、CVD(Chemical Vapor Deposition)法等により形成された無機膜層と、インクジェット法等により形成された有機膜層とが交互に配置された積層構造を有し、有機発光素子を覆う薄膜封止層を備えた表示装置が開示されている。
特開2014-86415号公報
 ところで、有機EL表示装置では、画像表示を行う表示領域の内部に、例えば、カメラや指紋センサー等を配置させるために、島状の非表示領域を設けることが要望されている。ここで、上記特許文献1に開示された表示装置のように、封止膜を構成する有機膜をインクジェット法で形成する場合には、表示領域内に島状の非表示領域を設けると、非表示領域の周端部にインクジェット法により吐出されるインクを堰き止める壁を配置する必要があるので、非表示領域が大きくなって、表示領域が狭くなってしまう。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、表示領域内に島状の非表示領域を設けても、表示領域の狭小化を抑制して、封止膜の封止性能の確保することにある。
 上記目的を達成するために、本発明に係る表示装置は、ベース基板と、上記ベース基板上にTFT層を介して設けられた表示領域を構成する発光素子と、上記発光素子を覆うように設けられ、第1無機膜、有機膜、第2無機膜及び第3無機膜が順に積層された封止膜と、上記表示領域内に島状に設けられた非表示領域とを備えた表示装置であって、上記第2無機膜には、上記非表示領域において、上記表示領域との境界に沿って周壁が配置されて上記ベース基板の厚さ方向に貫通する第1開口部が設けられ、上記有機膜には、上記非表示領域において、上記表示領域との境界に沿って周壁が配置されて上記ベース基板の厚さ方向に貫通する第2開口部が設けられ、上記第2開口部の周壁は、上記第1開口部の周壁に揃っており、上記第3無機膜は、上記非表示領域において、上記第2開口部の周壁及び上記第2無機膜を覆うように設けられ、上記第2開口部の周壁よりも上記表示領域とは反対側で上記第1無機膜に接触していることを特徴とする。
 本発明によれば、封止膜では、第1無機膜、有機膜、第2無機膜及び第3無機膜が順に積層され、第2無機膜には、非表示領域において、ベース基板の厚さ方向に貫通する第1開口部が設けられ、有機膜には、非表示領域において、ベース基板の厚さ方向に貫通する第2開口部が設けられ、第2開口部の周壁が第1開口部の周壁に揃っており、非表示領域において、第2開口部の周壁及び第2無機膜を覆うように第3無機膜が設けられているので、表示領域内に島状の非表示領域を設けても、表示領域の狭小化を抑制して、封止膜の封止性能の確保することができる。
図1は、本発明の第1の実施形態に係る有機EL表示装置の概略構成を示す平面図である。 図2は、本発明の第1の実施形態に係る有機EL表示装置の表示領域の詳細構成を示す平面図である。 図3は、本発明の第1の実施形態に係る有機EL表示装置を構成するTFT層の等価回路図である。 図4は、本発明の第1の実施形態に係る有機EL表示装置の非表示領域の詳細構成を示す平面図である。 図5は、図1中のV-V線に沿った有機EL表示装置の表示領域の詳細構成を示す断面図である。 図6は、本発明の第1の実施形態に係る有機EL表示装置を構成する有機EL層の断面図である。 図7は、図4中のVII-VII線に沿った有機EL表示装置の非表示領域の詳細構成を示す断面図である。 図8は、図1中のVIII-VIII線に沿った有機EL表示装置の額縁領域の詳細構成を示す断面図である。 図9は、本発明の第1の実施形態に係る有機EL表示装置を製造する際の封止膜形成工程における第1無機膜形成工程を示す断面図である。 図10は、本発明の第1の実施形態に係る有機EL表示装置を製造する際の封止膜形成工程における有機蒸着膜形成工程を示す断面図である。 図11は、本発明の第1の実施形態に係る有機EL表示装置を製造する際の封止膜形成工程における第2無機膜形成工程を示す断面図である。 図12は、本発明の第1の実施形態に係る有機EL表示装置を製造する際の封止膜形成工程における有機膜形成工程を示す断面図である。 図13は、本発明の第1の実施形態に係る有機EL表示装置を製造する際の封止膜形成工程における第3無機膜形成工程を示す断面図である。 図14は、本発明の第1の実施形態に係る有機EL表示装置を製造する際の支持基材貼付工程を示す断面図である。 図15は、本発明の第1の実施形態に係る有機EL表示装置を製造する際の封止膜形成工程における有機蒸着膜形成工程~第2無機膜形成工程を示す平面図である。 図16は、本発明の第1の実施形態に係る有機EL表示装置を製造する際の封止膜形成工程における第2無機膜形成工程に用いるマスクの平面図である。 図17は、本発明の第1の実施形態に係る有機EL表示装置の非表示領域の詳細構成を示す他の断面図である。 図18は、本発明の第2の実施形態に係る有機EL表示装置の非表示領域の詳細構成を示す平面図である。 図19は、図18中のXIX-XIX線に沿った有機EL表示装置の非表示領域の詳細構成を示す断面図である。 図20は、本発明の第3の実施形態に係る有機EL表示装置の非表示領域の詳細構成を示す平面図である。 図21は、図20中のXXI-XXI線に沿った有機EL表示装置の非表示領域の詳細構成を示す断面図である。 図22は、本発明の第3の実施形態に係る有機EL表示装置の額縁領域の詳細構成を示す断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
 《第1の実施形態》
 図1~図17は、本発明に係る表示装置及びその製造方法の第1の実施形態を示している。なお、以下の各実施形態では、発光素子を備えた表示装置として、有機EL素子を備えた有機EL表示装置を例示する。ここで、図1は、本実施形態の有機EL表示装置50aの概略構成を示す平面図である。また、図2は、有機EL表示装置50aの表示領域Dの詳細構成を示す平面図である。また、図3は、有機EL表示装置50aを構成するTFT層20の等価回路図である。また、図4は、有機EL表示装置50aの非表示領域Nの詳細構成を示す平面図である。また、図5は、図1中のV-V線に沿った有機EL表示装置50aの表示領域Dの詳細構成を示す断面図である。また、図6は、有機EL表示装置50aを構成する有機EL層23の断面図である。また、図7は、図4中のVII-VII線に沿った有機EL表示装置50aの非表示領域Nの詳細構成を示す断面図である。また、図8は、図1中のVIII-VIII線に沿った有機EL表示装置50aの額縁領域Fの詳細構成を示す断面図である。
 有機EL表示装置50aは、図1に示すように、矩形状に規定された画像表示を行う表示領域Dと、表示領域Dの周囲に枠状に規定された額縁領域Fとを備えている。
 表示領域Dには、後述する有機EL素子25が発光素子として設けられ、図2に示すように、複数のサブ画素Pがマトリクス状に配置されている。ここで、表示領域Dでは、図2に示すように、赤色の階調表示を行うための赤色発光領域Lrを有するサブ画素P、緑色の階調表示を行うための緑色発光領域Lgを有するサブ画素P、及び青色の階調表示を行うための青色発光領域Lbを有するサブ画素Pが互いに隣り合うように設けられている。なお、表示領域Dでは、赤色発光領域Lr、緑色発光領域Lg及び青色発光領域Lbを有する隣り合う3つのサブ画素Pにより、1つの画素が構成されている。また、表示領域Dの内部には、図1に示すように、非表示領域Nが島状に設けられている。
 非表示領域Nには、図1、図4及び図7に示すように、例えば、カメラや指紋センサー等を配置させるために、後述する樹脂基板層10の厚さ方向に貫通する貫通孔Hが設けられている。
 額縁領域Fには、図1に示すように、表示領域Dの図中上辺に沿って端子領域Tが設けられている。
 有機EL表示装置50aは、図5に示すように、樹脂基板層10と、樹脂基板層10上にTFT層20を介して設けられた有機EL素子25と、有機EL素子25を覆うように設けられた封止膜30aと、封止膜30a上に接着層41を介して設けられた支持基材42と、樹脂基板層10の下面に接着層46を介して設けられた支持基材47とを備えている。
 樹脂基板層10は、ベース基板として設けられ、例えば、ポリイミド樹脂等により構成されている。
 TFT層20は、図5に示すように、樹脂基板層10上に設けられたベースコート膜11と、ベースコート膜11上に設けられた複数の第1TFT(thin film transistor)9a、複数の第2TFT9b及び複数のキャパシタ9cと、各第1TFT9a、各第2TFT9b及び各キャパシタ9c上に設けられた平坦化膜19とを備えている。ここで、TFT層20では、図2及び図3に示すように、図中横方向に互いに平行に延びるように複数のゲート線14が設けられている。また、TFT層20では、図2及び図3に示すように、図中縦方向に互いに平行に延びるように複数のソース線18fが設けられている。また、TFT層20では、図2及び図3に示すように、各ソース線18fと隣り合って、図中縦方向に互いに平行に延びるように複数の電源線18gが設けられている。また、TFT層20では、図3に示すように、各サブ画素Pにおいて、第1TFT9a、第2TFT9b及びキャパシタ9cがそれぞれ設けられている。
 ベースコート膜11は、例えば、窒化シリコン、酸化シリコン、酸窒化シリコン等の無機絶縁膜の単層膜又は積層膜により構成されている。
 第1TFT9aは、図3に示すように、各サブ画素Pにおいて、対応するゲート線14及びソース線18fに接続されている。ここで、第1TFT9aは、図5に示すように、ベースコート膜11上に島状に設けられた半導体層12aと、半導体層12aを覆うように設けられたゲート絶縁膜13と、ゲート絶縁膜13上に半導体層12aの一部と重なるように設けられたゲート電極14aと、ゲート電極14aを覆うように順に設けられた第1層間絶縁膜15及び第2層間絶縁膜17と、第2層間絶縁膜17上に設けられ、互いに離間するように配置されたソース電極18a及びドレイン電極18bとを備えている。なお、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17は、例えば、窒化シリコン、酸化シリコン、酸窒化シリコン等の無機絶縁膜の単層膜又は積層膜により構成されている。
 第2TFT9bは、図3に示すように、各サブ画素Pにおいて、対応する第1TFT9a及び電源線18gに接続されている。ここで、第2TFT9bは、図5に示すように、ベースコート膜11上に島状に設けられた半導体層12bと、半導体層12bを覆うように設けられたゲート絶縁膜13と、ゲート絶縁膜13上に半導体層12bの一部と重なるように設けられたゲート電極14bと、ゲート電極14bを覆うように順に設けられた第1層間絶縁膜15及び第2層間絶縁膜17と、第2層間絶縁膜17上に設けられ、互いに離間するように配置されたソース電極18c及びドレイン電極18dとを備えている。
 なお、本実施形態では、トップゲート型の第1TFT9a及び第2TFT9bを例示したが、第1TFT9a及び第2TFT9bは、ボトムゲート型のTFTであってもよい。
 キャパシタ9cは、図3に示すように、各サブ画素Pにおいて、対応する第1TFT9a及び電源線18gに接続されている。ここで、キャパシタ9cは、図5に示すように、ゲート電極と同一材料により同一層に形成された下部導電層14cと、下部導電層14cを覆うように設けられた第1層間絶縁膜15と、第1層間絶縁膜15上に下部導電層14cと重なるように設けられた上部導電層16とを備えている。なお、上部導電層16は、図5に示すように、第2層間絶縁膜17に形成されたコンタクトホールを介して、電源線18gに接続されている。
 平坦化膜19は、例えば、ポリイミド樹脂等の無色透明な有機樹脂材料により構成されている。
 有機EL素子25は、図5に示すように、平坦化膜19上に順に設けられた複数の第1電極21、エッジカバー22、複数の有機EL層23及び第2電極24を備えている。
 複数の第1電極21は、図5に示すように、複数のサブ画素Pに対応するように、平坦化膜19上にマトリクス状に反射電極(陽極)として設けられている。ここで、第1電極21は、図5に示すように、平坦化膜19に形成されたコンタクトホールを介して、各第2TFT9bのドレイン電極18dに接続されている。また、第1電極21は、有機EL層23にホール(正孔)を注入する機能を有している。また、第1電極21は、有機EL層23への正孔注入効率を向上させるために、仕事関数の大きな材料で形成するのがより好ましい。ここで、第1電極21を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、チタン(Ti)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、イッテルビウム(Yb)、フッ化リチウム(LiF)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、イリジウム(Ir)、スズ(Sn)等の金属材料が挙げられる。また、第1電極21を構成する材料は、例えば、アスタチン(At)/酸化アスタチン(AtO)等の合金であっても構わない。さらに、第1電極21を構成する材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような導電性酸化物等であってもよい。また、第1電極21は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数の大きな化合物材料としては、例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が挙げられる。
 エッジカバー22は、図5に示すように、各第1電極21の周縁部を覆うように格子状に設けられている。ここで、エッジカバー22を構成する材料としては、例えば、ポリイミド樹脂、アクリル樹脂、ポリシロキサン樹脂、ノボラック樹脂等の有機膜が挙げられる。
 複数の有機EL層23は、図5に示すように、各第1電極21上に配置され、複数のサブ画素に対応するように、マトリクス状に設けられている。ここで、各有機EL層23は、図6に示すように、第1電極21上に順に設けられた正孔注入層1、正孔輸送層2、発光層3、電子輸送層4及び電子注入層5を備えている。
 正孔注入層1は、陽極バッファ層とも呼ばれ、第1電極21と有機EL層23とのエネルギーレベルを近づけ、第1電極21から有機EL層23への正孔注入効率を改善する機能を有している。ここで、正孔注入層1を構成する材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、フェニレンジアミン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体等が挙げられる。
 正孔輸送層2は、第1電極21から有機EL層23への正孔の輸送効率を向上させる機能を有している。ここで、正孔輸送層2を構成する材料としては、例えば、ポルフィリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水素化アモルファスシリコン、水素化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛等が挙げられる。
 発光層3は、第1電極21及び第2電極24による電圧印加の際に、第1電極21及び第2電極24から正孔及び電子がそれぞれ注入されると共に、正孔及び電子が再結合する領域である。ここで、発光層3は、発光効率が高い材料により形成されている。そして、発光層3を構成する材料としては、例えば、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ナフタレン誘導体、アントラセン誘導体、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、ベンズチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレン、ポリ-p-フェニレンビニレン、ポリシラン等が挙げられる。
 電子輸送層4は、電子を発光層3まで効率良く移動させる機能を有している。ここで、電子輸送層4を構成する材料としては、例えば、有機化合物として、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物等が挙げられる。
 電子注入層5は、第2電極24と有機EL層23とのエネルギーレベルを近づけ、第2電極24から有機EL層23へ電子が注入される効率を向上させる機能を有し、この機能により、有機EL素子25の駆動電圧を下げることができる。なお、電子注入層5は、陰極バッファ層とも呼ばれる。ここで、電子注入層5を構成する材料としては、例えば、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)のような無機アルカリ化合物、酸化アルミニウム(Al)、酸化ストロンチウム(SrO)等が挙げられる。
 第2電極24は、図5に示すように、各有機EL層23及びエッジカバー22を覆うように共通電極(陰極)として設けられている。また、第2電極24は、有機EL層23に電子を注入する機能を有している。また、第2電極24は、有機EL層23への電子注入効率を向上させるために、仕事関数の小さな材料で構成するのがより好ましい。また、第2電極24は、例えば、真空蒸着法により形成される蒸着膜である。ここで、第2電極24を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等が挙げられる。また、第2電極24は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金により形成されていてもよい。また、第2電極24は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の導電性酸化物により形成されていてもよい。また、第2電極24は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数が小さい材料としては、例えば、マグネシウム(Mg)、リチウム(Li)、フッ化リチウム(LiF)、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等が挙げられる。
 封止膜30aは、図5、図7及び図8に示すように、有機EL素子25を覆うように設けられ、有機EL素子25上に順に設けられた第1無機膜26a、有機膜27a、第2無機膜28a及び第3無機膜29aを備え、有機EL層23を水分や酸素から保護する機能を有している。
 第1無機膜26a、第2無機膜28a及び第3無機膜29aは、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜により構成されている。
 第1無機膜26aは、図5、図7及び図8に示すように、有機EL素子25を覆うように設けられている。ここで、第1無機膜26aは、図7に示すように、非表示領域Nにおいて、樹脂基板層10の表面に接触している。
 有機膜27aは、例えば、アクリレート、エポキシ、ポリ尿素、パリレン、ポリイミド、ポリアミド等の有機蒸着膜により構成されている。ここで、有機膜27aには、図7に示すように、非表示領域Nにおいて、表示領域Dとの境界に沿って周壁が配置されて樹脂基板層10の厚さ方向に貫通する第2開口部Abが設けられている。なお、第2開口部Abの周壁Ebは、図7に示すように、樹脂基板層10の表面に対して90°程度に直立している。
 第2無機膜28aは、図5、図7及び図8に示すように、有機膜27aと重なり合うように設けられている。ここで、第2無機膜28aには、図7に示すように、非表示領域Nにおいて、表示領域Dとの境界に沿って周壁Eaが配置されて樹脂基板層10の厚さ方向に貫通する第1開口部Aaが設けられている。なお、有機膜27aに形成された第2開口部Abの周壁Ebは、図4及び図7に示すように、第2無機膜28aに形成された第1開口部Aaの周壁Eaに揃っている。
 第3無機膜29aは、図5に示すように、表示領域Dにおいて、第2無機膜28aを覆うように設けられている。また、第3無機膜29aは、図7に示すように、非表示領域Nにおいて、有機膜27aに形成された第2開口部Abの周壁Eb、及び第2無機膜28aを覆うように設けられ、第2開口部Abの周壁Ebよりも内側(表示領域Dとは反対側、貫通孔H側)で第1無機膜26aに接触している。また、第3無機膜29aは、図8に示すように、額縁領域Fにおいて、有機膜27aの外周の周壁、及び第2無機膜28aを覆うように設けられている。
 非表示領域Nにおいて、TFT層20を構成するベースコート膜11、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17の積層膜には、図7に示すように、表示領域Dとの境界に沿って周壁Ecが配置されて樹脂基板層10の厚さ方向に貫通する第3開口部Acが設けられている。また、非表示領域Nにおいて、TFT層20を構成する平坦化膜19、及び有機EL素子25を構成するエッジカバー22の積層膜には、図7に示すように、表示領域Dとの境界に沿って周壁Edが配置されて樹脂基板層10の厚さ方向に貫通する第4開口部Adが設けられている。ここで、第4開口部Adの周壁Edは、図4及び図7に示すように、第3開口部Acの周壁Ecよりも外側(表示領域D側)に設けられている。また、第3開口部Acの周壁Ecは、図4及び図7に示すように、第1開口部Aaの周壁Eaよりも外側(表示領域D側)に設けられている。また、貫通孔Hの周壁では、図7に示すように、樹脂基板層10、第1無機膜26a及び第3無機膜29aの各周端面が面一で露出している。なお、本実施形態では、平坦化膜19に形成された第4開口部Adの周壁Edと、エッジカバー22に形成された第4開口部Adの周壁Edとが揃った構成を例示したが、平坦化膜19に形成された第4開口部Adの周壁Edと、エッジカバー22に形成された第4開口部Adの周壁Edとは揃っていなくてもよい。
 額縁領域Fにおいて、TFT層20を構成する平坦化膜19、及び有機EL素子25を構成するエッジカバー22の積層膜には、図1及び図8に示すように、樹脂基板層10の厚さ方向に貫通するスリットSが表示領域Dとの境界に沿って略U字状に設けられている。ここで、第2電極24は、図8に示すように、ソース電極18a及び18cと同一層に同一材料により形成されたソース導電層18hにスリットSを介して接続されている。また、額縁領域Fにおいて、有機膜27aは、図8に示すように、第2電極24の外側(表示領域Dとは反対側)まで設けられている。なお、本実施形態では、有機膜27aが額縁領域Fにおいて第2電極24の外側(表示領域Dとは反対側)まで設けられた構成を例示したが、有機膜27aは、額縁領域Fにおいて、第2電極24の周端部の内側(表示領域D側)に設けられていてもよい。また、額縁領域Fにおいて、第1無機膜26aは、図8に示すように、スリットSの外側(表示領域Dとは反対側)で第2層間絶縁膜17の表面に接触している。なお、額縁領域Fにおいて、スリットSの外側には、図8に示すように、CVD法や真空蒸着法等により成膜する際の成膜マスクの端部を接触させるマスク当接部Cが設けられている。また、額縁領域Fにおいて、マスク当接部Cの外側には、図8に示すように、第2層間絶縁膜17と第1無機膜26aとの層間に、ソース電極18a及び18cと同一層に同一材料により形成された複数の引き回し配線18iが設けられている。
 接着層41及び46は、例えば、光硬化型接着シート、UV硬化型接着剤、熱硬化型接着剤、エポキシ系接着剤、シアノアクリレート系の瞬間接着剤等により構成されている。
 支持基材42及び47は、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、(メタ)アクリレート、トリアセチルセルロース等のプラスチックフィルムにより構成されている。
 上述した有機EL表示装置50aは、各サブ画素Pにおいて、ゲート線14を介して第1TFT9aにゲート信号を入力して、第1TFT9aをオン状態にし、ソース線18fを介して第2TFT9bのゲート電極14b及びキャパシタ9cにソース信号に対応する電圧を書き込んで、第2TFT9bのゲート電圧により規定された電源線18gからの電流が有機EL層23に供給される。これにより、有機EL表示装置50aでは、所定のサブ画素Pにおいて、有機EL層23の発光層3が発光して、画像表示を行うように構成されている。なお、有機EL表示装置50aでは、第1TFT9aがオフ状態になっても、第2TFT9bのゲート電圧がキャパシタ9cによって保持されるので、次のフレームのゲート信号が入力されるまで発光層3による発光が維持される。
 次に、本実施形態の有機EL表示装置50aの製造方法について、図9~図17を用いて説明する。ここで、図9、図10、図11、図12及び図13は、有機EL表示装置50aを製造する際の封止膜形成工程における第1無機膜形成工程、有機蒸着膜形成工程、第2無機膜形成工程、有機膜形成工程及び第3無機膜形成工程をそれぞれ示す断面図である。また、図14は、有機EL表示装置50aを製造する際の支持基材貼付工程を示す断面図である。また、図15は、有機EL表示装置50aを製造する際の封止膜形成工程における有機蒸着膜形成工程~第2無機膜形成工程を示す平面図であり、(a)は、有機蒸着膜形成工程を示し、(b)は、第2無機膜形成工程の第1ステップを示し、(c)は、第2無機膜形成工程の第2ステップを示す平面図である。また、図16は、有機EL表示装置50aを製造する際の封止膜形成工程における第2無機膜形成工程に用いるマスクの平面図であり、(a)は、無機膜形成工程の第1ステップに用いるマスクMaの平面図であり、(b)は、無機膜形成工程の第2ステップに用いるマスクMbの平面図である。また、図17は、有機EL表示装置50aの非表示領域Nの詳細構成を示す他の断面図である。なお、本実施形態の有機EL表示装置50aの製造方法は、TFT層形成工程と、有機EL素子形成工程と、第1無機膜形成工程、有機蒸着膜形成工程、第2無機膜形成工程、有機膜形成工程及び第3無機膜形成工程を含む封止膜形成工程と、支持基材貼付工程と、貫通孔形成工程とを備える。
 <TFT層形成工程>
 例えば、ガラス基板G上に形成した樹脂基板層10mの表面に、周知の方法を用いて、ベースコート膜11、第1TFT9a、第2TFT9b、キャパシタ9c及び平坦化膜19を形成することにより、TFT層20を形成する。
 <有機EL素子形成工程>
 上記TFT層形成工程で形成されたTFT層20上に、周知の方法を用いて、第1電極21、エッジカバー22、有機EL層23(正孔注入層1、正孔輸送層2、発光層3、電子輸送層4、電子注入層5)、第2電極24を形成することにより、有機EL素子25を形成する。
 <封止膜形成工程>
 まず、図9に示すように、上記発光素子形成工程で有機EL素子25が形成された基板表面に、マスクを用いて、例えば、窒化シリコン膜等の無機絶縁膜をプラズマCVD法により厚さ500nm程度に成膜して、第1無機膜26を形成する(第1無機膜形成工程)。
 続いて、図10及び図15(a)に示すように、第1無機層26が形成された基板の表面全体に、例えば、真空蒸着法により、アクリレート等の有機材料からなる有機蒸着膜27を厚さ200nm程度に形成する(有機蒸着膜形成工程)。
 その後、図11、図15(b)及び図15(c)に示すように、有機蒸着膜27が形成された基板に対して、マスクMa(図16(a)参照)及びMb(図16(b)参照)用いて、例えば、窒化シリコン膜等の無機絶縁膜をプラズマCVD法により厚さ200nm程度にそれぞれ成膜して、下層膜28aa及び上層膜28abを備えた第2無機膜28aを形成する(第2無機膜形成工程)。ここで、第2無機膜28aでは、図15(c)及び図17に示すように、下層膜28aa及び上層膜28abが互いに重なった部分が相対的に厚く形成された第1膜厚部Ta(例えば、厚さ400nm程度)になり、下層膜28aaだけの部分が相対的に薄く形成された第2膜厚部Tba(例えば、厚さ200nm程度)、及び上層膜28abだけの部分が相対的に薄く形成された第2膜厚部Tbb(例えば、厚さ200nm程度)になっている。なお、第1膜厚部Ta(図中ハッチング部参照)は、図15(c)に示すように、表示領域Dの内周端から外周端に向けて延びるように設けられている。
 さらに、図12に示すように、第2無機膜28aをマスクとして、第2無機膜28aから露出する有機蒸着膜27を、例えば、プラズマを利用するアッシングにより除去して、有機膜27aを形成する(有機膜形成工程)。ここで、有機膜形成工程では、第2無機膜28aをマスクとして有機蒸着膜27をアッシングするので、有機膜27aの外周の周壁及び第2開口部Abの周壁Ebの位置は、第2無機膜28aの外周の周壁及び第1開口部Aaの周壁Eaの位置と一致する(揃う)ことになる。なお、本明細書において、周端面の(位置の)一致とは、第2無機膜28aをマスクとして有機蒸着膜27をアッシングするという意味でのおおよその一致を含み、互いの周端面のずれが1μm~2μm以内であることを言う。
 最後に、図13に示すように、有機膜27aが形成された基板に対して、マスクを用いて、例えば、窒化シリコン膜等の無機絶縁膜をプラズマCVD法により厚さ450nm程度に成膜して、有機層20aの外周の周壁及び第2開口部Abの周壁Eb、並びに第2無機層28aを覆うように第3無機膜29を形成する(第3無機膜形成工程)。
 <支持基材貼付工程>
 上記封止膜形成工程で第3無機膜29が形成された基板表面に接着層41mを介して支持基材42mを貼り付けた後に、レーザー光の照射により、樹脂基板層10mの下面からガラス基板Gを剥離させ、樹脂基板層10の下面に接着層46mを介して支持基材47mを貼り付ける。
 <貫通孔形成工程>
 上記支持基材貼付工程で支持基材42m及び47mが貼付された基板表面における非表示領域Nに、例えば、レーザー光を環状に走査しながら照射して、貫通孔Hを形成することにより、樹脂基板層10、第1無機膜26a、第3無機膜29a、接着層41及び46、並びに支持基材42及び47を形成する。
 以上のようにして、本実施形態の有機EL表示装置50aを製造することができる。
 以上説明したように、本実施形態の有機EL表示装置50a及びその製造方法によれば、封止膜形成工程において、第2無機膜28aから露出する有機蒸着膜27をアッシングにより除去して、有機膜27aを形成するので、有機膜27aの第2開口部Abの周壁Ebが第2無機膜28aの第1開口部Aaの周壁Eaに揃うことになる。これにより、非表示領域Nにおいて、有機膜27aの第2開口部Abの周壁Ebが精度よく形成されるので、表示領域D内に島状の非表示領域Nを設けても、表示領域Dの狭小化を抑制することができる。また、非表示領域Nにおいて、有機膜27aの第2開口部Abの周壁Eb及び第2無機膜28aを覆うように第3無機膜29aが設けられているので、第1無機膜26a、有機膜27a、第2無機膜28a及び第3無機膜29aが順に積層された封止膜30aの封止性能の確保することができる。したがって、表示領域D内に島状の非表示領域Nを設けても、表示領域Dの狭小化を抑制して、封止膜30aの封止性能の確保することができる。
 また、本実施形態の有機EL表示装置50a及びその製造方法によれば、封止膜形成工程において、第2無機膜28aから露出する有機蒸着膜27をアッシングにより除去して、有機膜27aを形成するので、有機膜27aの外周の周壁が第2無機膜28aの外周の周壁に揃うことになる。これにより、額縁領域Fにおいて、有機膜27aの外周の周壁が精度よく形成されるので、額縁領域Fを狭くすることができる。また、額縁領域Fにおいて、有機膜27aの外周の周壁及び第2無機膜28aを覆うように第3無機膜29aが設けられているので、第1無機膜26a、有機膜27a、第2無機膜28a及び第3無機膜29aが順に積層された封止膜30aの封止性能の確保することができる。したがって、封止膜30aの封止性能を確保して、有機EL表示装置50aの狭額縁化を図ることができる。
 また、本実施形態の有機EL表示装置50a及びその製造方法によれば、ベースコート膜11、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17の積層膜に形成された第3開口部Acの周壁Ecが第2無機膜28aに形成された第1開口部Aaの周壁Eaよりも表示領域D側に設けられている。これにより、剛性の比較的高いベースコート膜11、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17が貫通孔Hの周壁から離れるので、非表示領域Nでの貫通孔Hの形成に起因するベースコート膜11、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17におけるクラックの発生を抑制することができる。
 《第2の実施形態》
 図18及び図19は、本発明に係る表示装置及びその製造方法の第2の実施形態を示している。ここで、図18は、本実施形態の有機EL表示装置50bの非表示領域Nの詳細構成を示す平面図である。また、図19は、図18中のXIX-XIX線に沿った有機EL表示装置50bの非表示領域Nの詳細構成を示す断面図である。なお、以下の各実施形態において、図1~図17と同じ部分については同じ符号を付して、その詳細な説明を省略する。
 上記第1の実施形態では、第3開口部Acの周壁Ecが第1開口部Aaの周壁Eaよりも外側(表示領域D側)に設けられた有機EL表示装置50aを例示したが、本実施形態では、第3開口部Acの周壁Ecが第1開口部Aaの周壁Eaよりも内側(表示領域Dとは反対側、貫通孔H側)に設けられた有機EL表示装置50bを例示する。
 有機EL表示装置50bは、上記第1の有機EL表示装置50aと同様に、矩形状に規定された画像表示を行う表示領域Dと、表示領域Dの周囲に枠状に規定された額縁領域Fとを備えている。
 有機EL表示装置50bは、上記第1の有機EL表示装置50aと同様に、樹脂基板層10と、樹脂基板層10上にTFT層20を介して設けられた有機EL素子25と、有機EL素子25を覆うように設けられた封止膜30b(図19参照)と、封止膜30b上に接着層41を介して設けられた支持基材42と、樹脂基板層10の下面に接着層46を介して設けられた支持基材47とを備えている。
 封止膜30bは、図19に示すように、有機EL素子25を覆うように設けられ、有機EL素子25上に順に設けられた第1無機膜26b、有機膜27b、第2無機膜28b及び第3無機膜29bを備え、有機EL層23を水分や酸素から保護する機能を有している。
 第1無機膜26b、第2無機膜28b及び第3無機膜29bは、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜により構成されている。
 第1無機膜26bは、図19に示すように、有機EL素子25を覆うように設けられている。ここで、第1無機膜26bは、図19に示すように、非表示領域Nにおいて、樹脂基板層10の表面に接触している。
 有機膜27bは、例えば、アクリレート、エポキシ、ポリ尿素、パリレン、ポリイミド、ポリアミド等の有機蒸着膜により構成されている。ここで、有機膜27bには、図19に示すように、非表示領域Nにおいて、表示領域Dとの境界に沿って周壁が配置されて樹脂基板層10の厚さ方向に貫通する第2開口部Abが設けられている。
 第2無機膜28bは、図19に示すように、有機膜27bと重なり合うように設けられている。ここで、第2無機膜28bには、図19に示すように、非表示領域Nにおいて、表示領域Dとの境界に沿って周壁Eaが配置されて樹脂基板層10の厚さ方向に貫通する第1開口部Aaが設けられている。なお、有機膜27bに形成された第2開口部Abの周壁Ebは、図18及び図19に示すように、第2無機膜28aに形成された第1開口部Aaの周壁Eaに揃っている。
 第3無機膜29bは、表示領域Dにおいて、第2無機膜28bを覆うように設けられている。また、第3無機膜29bは、図19に示すように、非表示領域Nにおいて、有機膜27bに形成された第2開口部Abの周壁Eb、及び第2無機膜28bを覆うように設けられ、第2開口部Abの周壁Ebよりも内側(表示領域Dとは反対側、貫通孔H側)で第1無機膜26bに接触している。また、第3無機膜29bは、額縁領域Fにおいて、有機膜27bの外周の周壁、及び第2無機膜28bを覆うように設けられている。
 非表示領域Nにおいて、TFT層20を構成するベースコート膜11、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17の積層膜には、図19に示すように、表示領域Dとの境界に沿って周壁Ecが配置されて樹脂基板層10の厚さ方向に貫通する第3開口部Acが設けられている。また、非表示領域Nにおいて、TFT層20を構成する平坦化膜19、及び有機EL素子25を構成するエッジカバー22の積層膜には、図19に示すように、表示領域Dとの境界に沿って周壁Edが配置されて樹脂基板層10の厚さ方向に貫通する第4開口部Adが設けられている。ここで、第4開口部Adの周壁Edは、図18及び図19に示すように、第3開口部Acの周壁Ecよりも外側(表示領域D側)に設けられている。また、第1開口部Aaの周壁Eaは、図18及び図19に示すように、第3開口部Acの周壁Ecよりも外側(表示領域D側)で第4開口部Adの周壁Edよりも内側(表示領域Dとは反対側、貫通孔H側)に設けられている。また、貫通孔Hの周壁では、図19に示すように、樹脂基板層10、第1無機膜26b及び第3無機膜29bの各周端面が面一で露出している。
 額縁領域Fにおいて、TFT層20を構成する平坦化膜19、及び有機EL素子25を構成するエッジカバー22の積層膜には、上記第1の有機EL表示装置50aと同様に、樹脂基板層10の厚さ方向に貫通するスリットSが表示領域Dとの境界に沿って略U字状に設けられている。
 上述した有機EL表示装置50bは、上記第1の実施形態の有機EL表示装置50aと同様に、可撓性を有し、各サブ画素Pにおいて、第1TFT9a及び第2TFT9bを介して有機EL層23の発光層3を適宜発光させることにより、画像表示を行うように構成されている。
 本実施形態の有機EL表示装置50bは、上記第1の実施形態の有機EL表示装置50aの製造方法において、ベースコート膜11~第3無機膜29aの内周側(非表示領域N側)のパターン形状を変更することにより、製造することができる。
 以上説明したように、本実施形態の有機EL表示装置50b及びその製造方法によれば、封止膜形成工程において、第2無機膜28bから露出する有機蒸着膜27をアッシングにより除去して、有機膜27bを形成するので、有機膜27bの第2開口部Abの周壁Ebが第2無機膜28bの第1開口部Aaの周壁Eaに揃うことになる。これにより、非表示領域Nにおいて、有機膜27bの第2開口部Abの周壁Ebが精度よく形成されるので、表示領域D内に島状の非表示領域Nを設けても、表示領域Dの狭小化を抑制することができる。また、非表示領域Nにおいて、有機膜27bの第2開口部Abの周壁Eb及び第2無機膜28bを覆うように第3無機膜29bが設けられているので、第1無機膜26b、有機膜27b、第2無機膜28b及び第3無機膜29bが順に積層された封止膜30bの封止性能の確保することができる。したがって、表示領域D内に島状の非表示領域Nを設けても、表示領域Dの狭小化を抑制して、封止膜30bの封止性能の確保することができる。
 また、本実施形態の有機EL表示装置50b及びその製造方法によれば、封止膜形成工程において、第2無機膜28bから露出する有機蒸着膜27をアッシングにより除去して、有機膜27bを形成するので、有機膜27bの外周の周壁が第2無機膜28bの外周の周壁に揃うことになる。これにより、額縁領域Fにおいて、有機膜27bの外周の周壁が精度よく形成されるので、額縁領域Fを狭くすることができる。また、額縁領域Fにおいて、有機膜27bの外周の周壁及び第2無機膜28bを覆うように第3無機膜29bが設けられているので、第1無機膜26b、有機膜27b、第2無機膜28b及び第3無機膜29bが順に積層された封止膜30bの封止性能の確保することができる。したがって、封止膜30bの封止性能を確保して、有機EL表示装置50bの狭額縁化を図ることができる。
 また、本実施形態の有機EL表示装置50b及びその製造方法によれば、第1開口部Aaの周壁Eaが第3開口部Acの周壁Ecよりも外側(表示領域D側)で第4開口部Adの周壁Edよりも内側(表示領域Dとは反対側、貫通孔H側)に設けられているので、非表示領域Nにおいて、有機膜27bの周端部と樹脂基板層10の周端部との間に、ベースコート膜11、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17の積層膜の周端部が配置する。これにより、非表示領域Nにおける樹脂基板層10の端面から浸透する水分が封止膜30bの有機膜27bに到達し難くなるので、封止膜30bの封止性能を向上させることができる。
 《第3の実施形態》
 図20~図22は、本発明に係る有機EL表示装置及びその製造方法の第3の実施形態を示している。ここで、図20は、本実施形態の有機EL表示装置50cの非表示領域Nの詳細構成を示す平面図である。また、図21は、図20中のXXI-XXI線に沿った有機EL表示装置50cの非表示領域Nの詳細構成を示す断面図である。また、図22は、有機EL表示装置50cの額縁領域Fの詳細構成を示す断面図である。
 上記第1及び第2の実施形態では、第2開口部Abの周壁Ebが第4開口部Adの周壁Edよりも外側(表示領域D側)に設けられた有機EL表示装置50a及び50bを例示したが、本実施形態では、第2開口部Abの周壁Ebが第4開口部Adの周壁Edよりも内側(表示領域Dとは反対側、貫通孔H側)に設けられた有機EL表示装置50cを例示する。
 有機EL表示装置50cは、上記第1の有機EL表示装置50aと同様に、樹脂基板層10と、樹脂基板層10上にTFT層20を介して設けられた有機EL素子25と、有機EL素子25を覆うように設けられた封止膜30c(図21及び図22参照)と、封止膜30c上に接着層41を介して設けられた支持基材42と、樹脂基板層10の下面に接着層46を介して設けられた支持基材47とを備えている。
 封止膜30cは、図21及び図22に示すように、有機EL素子25を覆うように設けられ、有機EL素子25上に順に設けられた第1無機膜26c、有機膜27c、第2無機膜28c及び第3無機膜29cを備え、有機EL層23を水分や酸素から保護する機能を有している。
 第1無機膜26c、第2無機膜28c及び第3無機膜29cは、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜により構成されている。
 第1無機膜26cは、図21及び図22に示すように、有機EL素子25を覆うように設けられている。ここで、第1無機膜26cは、図21に示すように、非表示領域Nにおいて、樹脂基板層10の表面に接触している。
 有機膜27cは、例えば、アクリレート、エポキシ、ポリ尿素、パリレン、ポリイミド、ポリアミド等の有機蒸着膜により構成されている。ここで、有機膜27cには、図21に示すように、非表示領域Nにおいて、表示領域Dとの境界に沿って周壁Ebが配置されて樹脂基板層10の厚さ方向に貫通する第2開口部Abが設けられている。
 第2無機膜28cは、図21に示すように、有機膜27cと重なり合うように設けられている。ここで、第2無機膜28cには、図21に示すように、非表示領域Nにおいて、表示領域Dとの境界に沿って周壁Eaが配置されて樹脂基板層10の厚さ方向に貫通する第1開口部Aaが設けられている。なお、有機膜27cに形成された第2開口部Abの周壁Ebは、図20及び図21に示すように、第2無機膜28cに形成された第1開口部Aaの周壁Eaに揃っている。
 第3無機膜29cは、表示領域Dにおいて、第2無機膜28cを覆うように設けられている。また、第3無機膜29cは、図21に示すように、非表示領域Nにおいて、有機膜27cに形成された第2開口部Abの周壁Eb、及び第2無機膜28cを覆うように設けられ、第2開口部Abの周壁Ebよりも内側(表示領域Dとは反対側、貫通孔H側)で第1無機膜26cに接触している。また、第3無機膜29cは、図22に示すように、額縁領域Fにおいて、有機膜27cの外周の周壁、及び第2無機膜28cを覆うように設けられている。
 非表示領域Nにおいて、TFT層20を構成するベースコート膜11、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17の積層膜には、図21に示すように、表示領域Dとの境界に沿って周壁Ecが配置されて樹脂基板層10の厚さ方向に貫通する第3開口部Acが設けられている。また、非表示領域Nにおいて、TFT層20を構成する平坦化膜19、及び有機EL素子25を構成するエッジカバー22の積層膜には、図21に示すように、表示領域Dとの境界に沿って周壁Edが配置されて樹脂基板層10の厚さ方向に貫通する第4開口部Adが設けられている。ここで、第4開口部Adの周壁Edは、図20及び図21に示すように、第3開口部Acの周壁Ecよりも外側(表示領域D側)に設けられている。また、第1開口部Aaの周壁Eaは、図20及び図21に示すように、第4開口部Adの周壁Edよりも外側(表示領域D側)に設けられている。また、貫通孔Hの周壁では、図21に示すように、樹脂基板層10、第1無機膜26c及び第3無機膜29cの各周端面が面一で露出している。
 額縁領域Fにおいて、TFT層20を構成する平坦化膜19、及び有機EL素子25を構成するエッジカバー22の積層膜には、図22に示すように、上記第1の有機EL表示装置50aと同様に、樹脂基板層10の厚さ方向に貫通するスリットSが表示領域Dとの境界に沿って略U字状に設けられている。ここで、第2電極24は、図22に示すように、ソース電極18a及び18cと同一層に同一材料により形成されたソース導電層18hにスリットSを介して接続されている。また、額縁領域Fにおいて、有機膜27cは、図22に示すように、第2電極24の外側まで設けられている。また、額縁領域Fにおいて、第1無機膜26cは、図22に示すように、スリットSの外側で第2層間絶縁膜17の表面に接触している。なお、額縁領域Fにおいて、マスク当接部Cの外側には、図22に示すように、第2層間絶縁膜17と第1無機膜26cとの層間に、ソース電極18a及び18cと同一層に同一材料により形成された複数の引き回し配線18iが設けられている。
 上述した有機EL表示装置50cは、上記第1の実施形態の有機EL表示装置50aと同様に、可撓性を有し、各サブ画素Pにおいて、第1TFT9a及び第2TFT9bを介して有機EL層23の発光層3を適宜発光させることにより、画像表示を行うように構成されている。
 本実施形態の有機EL表示装置50cは、上記第1の実施形態の有機EL表示装置50aの製造方法において、ベースコート膜11~第3無機膜29aの内周側(非表示領域N側)のパターン形状を変更することにより、製造することができる。
 以上説明したように、本実施形態の有機EL表示装置50c及びその製造方法によれば、封止膜形成工程において、第2無機膜28cから露出する有機蒸着膜27をアッシングにより除去して、有機膜27cを形成するので、有機膜27cの第2開口部Abの周壁Ebが第2無機膜28cの第1開口部Aaの周壁Eaに揃うことになる。これにより、非表示領域Nにおいて、有機膜27cの第2開口部Abの周壁Ebが精度よく形成されるので、表示領域D内に島状の非表示領域Nを設けても、表示領域Dの狭小化を抑制することができる。また、非表示領域Nにおいて、有機膜27cの第2開口部Abの周壁Eb及び第2無機膜28cを覆うように第3無機膜29cが設けられているので、第1無機膜26c、有機膜27c、第2無機膜28c及び第3無機膜29cが順に積層された封止膜30cの封止性能の確保することができる。したがって、表示領域D内に島状の非表示領域Nを設けても、表示領域Dの狭小化を抑制して、封止膜30cの封止性能の確保することができる。
 また、本実施形態の有機EL表示装置50c及びその製造方法によれば、封止膜形成工程において、第2無機膜28cから露出する有機蒸着膜27をアッシングにより除去して、有機膜27cを形成するので、有機膜27cの外周の周壁が第2無機膜28bの外周の周壁に揃うことになる。これにより、額縁領域Fにおいて、有機膜27cの外周の周壁が精度よく形成されるので、額縁領域Fを狭くすることができる。また、額縁領域Fにおいて、有機膜27cの外周の周壁及び第2無機膜28cを覆うように第3無機膜29cが設けられているので、第1無機膜26c、有機膜27c、第2無機膜28c及び第3無機膜29cが順に積層された封止膜30cの封止性能の確保することができる。したがって、封止膜30cの封止性能を確保して、有機EL表示装置50cの狭額縁化を図ることができる。
 また、本実施形態の有機EL表示装置50c及びその製造方法によれば、第1開口部Aaの周壁Eaが第4開口部Adの周壁Edよりも外側(表示領域D側)に設けられているので、有機膜27cの周端部での膜厚が小さくなる。これにより、非表示領域Nにおいて、第3無機膜29cによる有機膜27cの周端部の被覆性が向上するので、封止膜30cの封止性能を向上させることができる。
 《その他の実施形態》
 上記各実施形態では、非表示領域Nに貫通孔Hが設けられた有機EL表示装置50a~50cを例示したが、本発明は、非表示領域Nに、例えば、貫通しない凹部や凹みのない透明層等が設けられて貫通孔Hが設けられていない有機EL表示装置にも適用することができる。
 上記各実施形態では、有機蒸着膜の一部を除去するエッチングとして、アッシングを例示したが、エッチングは、反応性イオンエッチング(Reactive Ion Etching)のような異方性エッチングでもよい。このような異方性エッチングによれば、有機蒸着膜が第2無機膜の周壁の表示領域側までエッチングされることなく、第2無機膜をマスクとして、有機蒸着膜の端部での垂直なエッチングが可能となり、その後の第3無機膜の被覆性(カバレージ)も向上させることができる。なお、本明細書において、エッチングは、アッシングを含むものである。
 また、上記各実施形態では、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の5層積層構造の有機EL層を例示したが、有機EL層は、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層積層構造であってもよい。
 また、上記各実施形態では、第1電極を陽極とし、第2電極を陰極とした有機EL表示装置を例示したが、本発明は、有機EL層の積層構造を反転させ、第1電極を陰極とし、第2電極を陽極とした有機EL表示装置にも適用することができる。
 また、上記各実施形態では、第1電極に接続されたTFTの電極をドレイン電極とした素子基板を備えた有機EL表示装置を例示したが、本発明は、第1電極に接続されたTFTの電極をソース電極と呼ぶ素子基板を備えた有機EL表示装置にも適用することができる。
 また、上記各実施形態では、表示装置として有機EL表示装置を例に挙げて説明したが、本発明は、電流によって駆動される複数の発光素子を備えた表示装置に適用することができる。例えば、量子ドット含有層を用いた発光素子であるQLED(Quantum-dot light emitting diode)を備えた表示装置に適用することができる。
 以上説明したように、本発明は、フレキシブルな表示装置について有用である。
Aa   第1開口部
Ab   第2開口部
Ac   第3開口部
Ad   第4開口部
D    表示領域
Ea   (第1開口部の)周壁
Eb   (第2開口部の)周壁
Ec   (第3開口部の)周壁
Ed   (第4開口部の)周壁
F    額縁領域
H    貫通孔
N    非表示領域
S    スリット
Ta   第1膜厚部
Tba,Tbb  第2膜厚部
9a,9b    TFT
10   ベース基板
13   ゲート絶縁膜(無機絶縁膜)
15   第1層間絶縁膜(無機絶縁膜)
17   第2層間絶縁膜(無機絶縁膜)
18a,18c  ソース電極
18h  ソース導電層
19   平坦化膜
20   TFT層
22   エッジカバー
24   第2電極(共通電極)
25   有機EL素子(発光素子)
26a~26c  第1無機膜
27   有機蒸着膜
27a~27c  有機膜
28a~28c  第2無機膜
29a~29c  第3無機膜
30a~30c  封止膜
50a~50c  有機EL表示装置

Claims (20)

  1.  ベース基板と、
     上記ベース基板上にTFT層を介して設けられた表示領域を構成する発光素子と、
     上記発光素子を覆うように設けられ、第1無機膜、有機膜、第2無機膜及び第3無機膜が順に積層された封止膜と、
     上記表示領域内に島状に設けられた非表示領域とを備えた表示装置であって、
     上記第2無機膜には、上記非表示領域において、上記表示領域との境界に沿って周壁が配置されて上記ベース基板の厚さ方向に貫通する第1開口部が設けられ、
     上記有機膜には、上記非表示領域において、上記表示領域との境界に沿って周壁が配置されて上記ベース基板の厚さ方向に貫通する第2開口部が設けられ、
     上記第2開口部の周壁は、上記第1開口部の周壁に揃っており、
     上記第3無機膜は、上記非表示領域において、上記第2開口部の周壁及び上記第2無機膜を覆うように設けられ、上記第2開口部の周壁よりも上記表示領域とは反対側で上記第1無機膜に接触していることを特徴とする表示装置。
  2.  請求項1に記載された表示装置において、
     上記非表示領域には、上記ベース基板の厚さ方向に貫通する貫通孔が設けられていることを特徴とする表示装置。
  3.  請求項1又は2に記載された表示装置において、
     上記TFT層は、上記ベース基板側から順に設けられた無機絶縁膜及び平坦化膜を有し、
     上記発光素子は、エッジカバーを有し、
     上記無機絶縁膜には、上記非表示領域において、上記表示領域との境界に沿って周壁が配置されて上記ベース基板の厚さ方向に貫通する第3開口部が設けられ、
     上記平坦化膜及びエッジカバーの積層膜には、上記非表示領域において、上記表示領域との境界に沿って周壁が配置されて上記ベース基板の厚さ方向に貫通する第4開口部が設けられ、
     上記第4開口部の周壁は、上記第3開口部の周壁よりも上記表示領域側に設けられていることを特徴とする表示装置。
  4.  請求項3に記載された表示装置において、
     上記第3開口部及び第4開口部の各周壁は、上記第1開口部及び第2開口部の各周壁よりも上記表示領域側に設けられていることを特徴とする表示装置。
  5.  請求項3に記載された表示装置において、
     上記第3開口部の周壁は、上記第1開口部の周壁よりも上記表示領域側に設けられていることを特徴とする表示装置。
  6.  請求項3に記載された表示装置において、
     上記第1開口部の周壁は、上記第3開口部の周壁よりも上記表示領域側で上記第4開口部の周壁よりも上記表示領域とは反対側に設けられていることを特徴とする表示装置。
  7.  請求項3に記載された表示装置において、
     上記第1開口部の周壁は、上記第4開口部の周壁よりも上記表示領域側に設けられていることを特徴とする表示装置。
  8.  請求項1~7の何れか1つに記載された表示装置において、
     上記第2無機膜は、上記表示領域において、第1膜厚部と、該第1膜厚部よりも薄く形成された第2膜厚部とを有し、
     上記第1膜厚部は、上記第1開口部の周端から上記表示領域の外周端に向けて延びるように設けられていることを特徴とする表示装置。
  9.  請求項1~8の何れか1つに記載された表示装置において、
     上記第2開口部の周壁は、上記ベース基板の表面に対して直立していることを特徴とする表示装置。
  10.  請求項1~9の何れか1つに記載された表示装置において、
     上記第1無機膜は、上記非表示領域において、上記ベース基板の表面に接触していることを特徴とする表示装置。
  11.  請求項3~7の何れか1つに記載された表示装置において、
     上記第1無機膜は、上記第3開口部の周壁と上記第4開口部の周壁との間で上記無機絶縁膜に接触していることを特徴とする表示装置。
  12.  請求項2に記載された表示装置において、
     上記貫通孔の周壁では、上記ベース基板、第1無機膜及び第3無機膜の各周端面が面一で露出していることを特徴とする表示装置。
  13.  請求項3~7の何れか1つに記載された表示装置において、
     上記表示領域の周囲に設けられた額縁領域を備え、
     上記発光素子は、共通電極を有し、
     上記TFT層は、TFTを構成するソース電極を有し、
     上記積層膜には、上記額縁領域において、上記ベース基板の厚さ方向に貫通するスリットが上記表示領域との境界に沿って形成され、
     上記共通電極は、上記ソース電極と同一層に同一材料により形成された導電層に上記スリットを介して接続され、
     上記第1無機膜は、上記スリットの上記表示領域とは反対側において、上記無機絶縁膜の表面に接触していることを特徴とする表示装置。
  14.  請求項1~13の何れか1つに記載された表示装置において、
     上記発光素子は、有機EL素子であることを特徴とする表示装置。
  15.  ベース基板上にTFT層を形成するTFT層形成工程と、
     上記TFT層上に表示領域を構成する発光素子を形成する発光素子形成工程と、
     上記発光素子を覆うように封止膜を形成する封止膜形成工程とを備え、
     上記表示領域内に非表示領域が島状に設けられた表示装置の製造方法であって、
     上記封止膜形成工程は、
     上記発光素子を覆うように第1無機膜を形成する第1無機膜形成工程と、
     上記第1無機膜を覆うように有機蒸着膜を形成する有機蒸着膜形成工程と、
     上記有機蒸着膜上に第2無機膜を形成する第2無機膜形成工程と、
     上記第2無機膜から露出する上記有機蒸着膜をエッチングにより除去することにより、有機膜を形成する有機膜形成工程と、
     上記有機膜の外周壁及び上記第2無機膜を覆うように第3無機膜を形成する第3無機膜形成工程とを備え、
     上記第2無機膜形成工程では、上記非表示領域において、上記表示領域との境界に沿って周壁が配置されて上記ベース基板の厚さ方向に貫通する第1開口部が設けられた上記第2無機膜を形成し、
     上記有機膜形成工程では、上記非表示領域において、上記第1開口部の周壁と重なり合うように上記表示領域との境界に沿って周壁が配置されて上記ベース基板の厚さ方向に貫通する第2開口部が設けられた上記有機膜の形成し、
     上記第3無機膜形成工程では、上記非表示領域において、上記第2開口部の周壁及び上記第2無機膜を覆い、上記第2開口部の周壁よりも上記表示領域とは反対側で上記第1無機膜に接触するように、上記第3無機膜を形成することを特徴とする表示装置の製造方法。
  16.  請求項15に記載された表示装置の製造方法において、
     上記封止膜形成工程の後に、上記非表示領域に上記ベース基板の厚さ方向に貫通する貫通孔を形成する貫通孔形成工程を備えることを特徴とする表示装置の製造方法。
  17.  請求項15又は16に記載された表示装置の製造方法において、
     上記第2無機膜形成工程では、少なくとも2回に分けて成膜を行うことにより、上記第2無機膜を形成することを特徴とする表示装置の製造方法。
  18.  請求項15~17の何れか1つに記載された表示装置の製造方法において、
     上記エッチングは、アッシングであることを特徴とする表示装置の製造方法。
  19.  請求項15~17の何れか1つに記載された表示装置の製造方法において、
     上記エッチングは、反応性イオンエッチングであることを特徴とする表示装置の製造方法。
  20.  請求項15~19の何れか1つに記載された表示装置の製造方法において、
     上記発光素子は、有機EL素子であることを特徴とする表示装置の製造方法。
PCT/JP2017/047369 2017-12-28 2017-12-28 表示装置及びその製造方法 WO2019130581A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/047369 WO2019130581A1 (ja) 2017-12-28 2017-12-28 表示装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/047369 WO2019130581A1 (ja) 2017-12-28 2017-12-28 表示装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019130581A1 true WO2019130581A1 (ja) 2019-07-04

Family

ID=67063032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047369 WO2019130581A1 (ja) 2017-12-28 2017-12-28 表示装置及びその製造方法

Country Status (1)

Country Link
WO (1) WO2019130581A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064562A1 (ja) * 2020-09-23 2022-03-31 シャープ株式会社 表示装置
CN114930435A (zh) * 2020-01-20 2022-08-19 夏普株式会社 显示装置
CN115210793A (zh) * 2020-03-02 2022-10-18 夏普株式会社 显示装置及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317476A (ja) * 2004-04-30 2005-11-10 Toshiba Matsushita Display Technology Co Ltd 表示装置
JP2009540557A (ja) * 2006-06-07 2009-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光デバイス及び光デバイスを製造する方法
JP2014067045A (ja) * 2008-05-11 2014-04-17 Nlt Technologies Ltd 非矩形状の画素アレイ及び該アレイを備える表示装置
JP2014103111A (ja) * 2012-11-19 2014-06-05 Samsung Display Co Ltd 有機発光表示装置、及び有機発光表示装置の製造方法
US20140175397A1 (en) * 2012-12-20 2014-06-26 Samsung Display Co., Ltd. Organic light emitting display apparatus and the manufacturing method thereof
WO2015029608A1 (ja) * 2013-08-28 2015-03-05 シャープ株式会社 エレクトロルミネッセンス装置、及びその製造方法
JP2018006254A (ja) * 2016-07-07 2018-01-11 株式会社ジャパンディスプレイ 表示装置、表示装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317476A (ja) * 2004-04-30 2005-11-10 Toshiba Matsushita Display Technology Co Ltd 表示装置
JP2009540557A (ja) * 2006-06-07 2009-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光デバイス及び光デバイスを製造する方法
JP2014067045A (ja) * 2008-05-11 2014-04-17 Nlt Technologies Ltd 非矩形状の画素アレイ及び該アレイを備える表示装置
JP2014103111A (ja) * 2012-11-19 2014-06-05 Samsung Display Co Ltd 有機発光表示装置、及び有機発光表示装置の製造方法
US20140175397A1 (en) * 2012-12-20 2014-06-26 Samsung Display Co., Ltd. Organic light emitting display apparatus and the manufacturing method thereof
WO2015029608A1 (ja) * 2013-08-28 2015-03-05 シャープ株式会社 エレクトロルミネッセンス装置、及びその製造方法
JP2018006254A (ja) * 2016-07-07 2018-01-11 株式会社ジャパンディスプレイ 表示装置、表示装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114930435A (zh) * 2020-01-20 2022-08-19 夏普株式会社 显示装置
CN114930435B (zh) * 2020-01-20 2023-08-22 夏普株式会社 显示装置
CN115210793A (zh) * 2020-03-02 2022-10-18 夏普株式会社 显示装置及其制造方法
CN115210793B (zh) * 2020-03-02 2023-08-18 夏普株式会社 显示装置及其制造方法
WO2022064562A1 (ja) * 2020-09-23 2022-03-31 シャープ株式会社 表示装置

Similar Documents

Publication Publication Date Title
CN111567142B (zh) 显示装置及其制造方法
WO2020174612A1 (ja) 表示装置
US11957015B2 (en) Display device
CN109644531B (zh) 有机el显示装置及其制造方法
US11508797B2 (en) Display device including island-shaped inorganic films
WO2020044439A1 (ja) 表示装置
WO2019171581A1 (ja) 表示装置
WO2019130581A1 (ja) 表示装置及びその製造方法
WO2019163030A1 (ja) 表示装置及びその製造方法
WO2020039555A1 (ja) 表示装置
WO2019187121A1 (ja) 表示装置
WO2019163134A1 (ja) 表示装置及びその製造方法
CN113615318B (zh) 显示装置
US11417862B2 (en) Display device including lead wiring lines covered by first and second organic films, and production method therefor
WO2019186812A1 (ja) 表示装置及びその製造方法
WO2020017014A1 (ja) 表示装置
WO2019186819A1 (ja) 表示装置及びその製造方法
WO2019186702A1 (ja) 表示装置
WO2019138579A1 (ja) 表示装置及びその製造方法
WO2019142261A1 (ja) 表示装置及びその製造方法
WO2019142262A1 (ja) 表示装置及びその製造方法
WO2020053923A1 (ja) 表示装置
WO2020008588A1 (ja) 表示装置及びその製造方法
WO2019142360A1 (ja) 表示装置及びその製造方法
CN112753279B (zh) 显示装置及显示装置的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP