WO2019119706A1 - 微发光元件 - Google Patents

微发光元件 Download PDF

Info

Publication number
WO2019119706A1
WO2019119706A1 PCT/CN2018/085131 CN2018085131W WO2019119706A1 WO 2019119706 A1 WO2019119706 A1 WO 2019119706A1 CN 2018085131 W CN2018085131 W CN 2018085131W WO 2019119706 A1 WO2019119706 A1 WO 2019119706A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
light
transfer material
emitting diode
material layer
Prior art date
Application number
PCT/CN2018/085131
Other languages
English (en)
French (fr)
Inventor
丁绍滢
范俊峰
李佳恩
徐宸科
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Priority to KR1020207017627A priority Critical patent/KR102397321B1/ko
Priority to JP2020526217A priority patent/JP7106640B2/ja
Priority to KR1020227015516A priority patent/KR20220066417A/ko
Publication of WO2019119706A1 publication Critical patent/WO2019119706A1/zh
Priority to US16/906,701 priority patent/US11616094B2/en
Priority to US18/189,374 priority patent/US20230253376A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/06102Disposition the bonding areas being at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7598Apparatus for connecting with bump connectors or layer connectors specially adapted for batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81805Soldering or alloying involving forming a eutectic alloy at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the present invention relates to the field of micro-lighting devices, and in particular to micro-light emitting elements.
  • Di S play array MLED micro light emitting diode
  • a transfer material to be cured or a viscosity in a semi-cured state for example, van der Waals force, magnetic force.
  • the transfer force is insufficient, and the transfer yield of MLED is low.
  • each MLED has an overlapping portion of the light-emitting region due to the divergence angle, which may result in Optical interference phenomenon, that is, MLEDs of different colors interfere with each other, thus causing color error and color unevenness, for example: 0X13782914 traditional conventional size
  • the sidewall shielding method is not easy to be applied in the MLED process, which is not conducive to mass production. Summary of invention
  • the present invention discloses a micro-light-emitting element, including a transfer material layer and a micro-light-emitting diode.
  • the transfer material layer covers at least a top surface or a side surface of the micro light-emitting diode, and the transfer material layer is at least divided into Transfer state and steady state;
  • the transfer material layer is a flexible material
  • the micro light emitting diode is disposed in the groove of the transfer material layer, and the depth of the groove is 0.1 ⁇
  • the material layer of the transfer material includes Glue, silicone or epoxy.
  • the groove has a smooth inward opening formed by the extrusion of the layer of flexible transfer material
  • the depth of the groove is
  • the micro-light emitting element further includes a side of the transfer material layer away from the micro light emitting diode. ⁇ 0 2019/119706 ⁇ (:17 ⁇ 2018/085131 Sacrifice layer.
  • the sacrificial layer comprises a light-transmissive or opaque support on a side remote from the layer of transfer material.
  • the sacrificial layer material comprises GaN, AlGaN,
  • GaMgN InGaN
  • these sacrificial layer materials are easily removed by laser.
  • the layer of transfer material is an opaque material
  • the opaque material includes at least a reflective material or a light absorbing material
  • the light angle is set by the shape or configuration of the opaque material
  • the transfer material layer corresponding to the top surface of the micro light-emitting diode has a light-emitting hole to create a condition of top surface light output or top surface electrical connection.
  • the micro light emitting diode may be selected as a front mounted micro light emitting diode, a flip chip micro light emitting diode or a vertical micro light emitting diode according to the micro light emitting element configuration and the light emitting requirement.
  • the present invention also provides an array of micro-light-emitting elements, the micro-light-emitting element array comprising a layer of a transfer material and a plurality of micro-light-emitting diodes, the layer of transfer material covering at least the top or side of the micro-light-emitting diode
  • the transfer material layer has at least a transfer state and a stable state
  • the transfer material layer is a flexible material
  • the micro light emitting diode is disposed in the groove of the transfer material layer, and the depth of the groove is 0.1 ⁇
  • the material layer of the transfer material includes Glue, silicone or epoxy.
  • the groove has a smooth inward opening formed by the extrusion of the layer of flexible transfer material
  • the depth of the groove is 0.5 to 1.5.
  • the micro-light emitting element array further includes a sacrificial layer on a side of the transfer material layer away from the micro light emitting diode.
  • the sacrificial layer includes a support on a side remote from the layer of transfer material, and a light transmissive or opaque support is selected by the light exit requirement.
  • the sacrificial layer material comprises GaN, AlGaN,
  • the layer of transfer material corresponding to the top surface of the micro-light emitting diode has a light-emitting aperture.
  • the micro light emitting diode may be selected as a front mounted micro light emitting diode, a flip chip micro light emitting diode or a vertical micro light emitting diode.
  • the layer of transfer material between adjacent micro-light emitting diodes has an opaque material on one side of the micro-emitting diode.
  • the opaque material is embedded within the layer of transfer material.
  • the opaque material is a reflective or light absorbing material.
  • a metal or a non-metal is included.
  • the micro luminescent element array has a bonding substrate bonded to the micro luminescent diode on the side of the micro luminescent diode.
  • the micro light emitting diode comprises a red light emitting diode, a blue light emitting diode, a green light emitting diode or any combination thereof, and a combination of various light elements has been satisfied.
  • the present invention further provides a method for fabricating a micro-light-emitting element array, comprising the steps of:
  • Step (1) providing a bracket
  • Step (2) forming a sacrificial layer on the bracket
  • Step (3) forming a transfer material layer on the surface of the sacrificial layer, the transfer material layer is at least divided into a transfer state and a stable state, and in the transfer state, the transfer material layer is a flexible material;
  • Step (4) transferring the micro light emitting diode array with the transfer material layer, the transfer material layer is pressed by the micro light emitting diode to form a groove, and the micro light emitting diode is clamped in the groove of the transfer material layer, the depth of the groove For 0.1 ⁇ 5 [1111 , an array of micro-light emitting elements is obtained.
  • the manufacturing method comprises the step (5), the step (5) of the micro-light-emitting element array obtained in the step (4) being bonded to the substrate.
  • the depth of the groove is 0.5 to 1.5 ⁇ 111.
  • step (5) the sacrificial layer and the scaffold are removed.
  • a light blocking layer is discretely disposed on a surface of the sacrificial layer away from the support, and the light blocking layer is distributed between adjacent micro light emitting diodes.
  • the sacrificial layer corresponds to the position. ⁇ 0 2019/119706 ⁇ (:17 ⁇ 2018/085131
  • the layer of transfer material of step (3) is made of an opaque material, and the opaque material comprises at least a reflective material or a light absorbing material.
  • the step (4) at least the layer of the transfer material layer is opened, the portion of the transfer material layer adjacent to the micro-light-emitting diode region is removed, and the top surface portion of the micro-light-emitting diode is All exposed.
  • a method of transferring a micro-light-emitting diode array using a layer of transfer material comprising embossing or grasping.
  • FIG. 1 is a schematic view of steps (1) to (3) of the manufacturing method of the present invention.
  • FIG. 2 is a schematic view of the step (4) of the manufacturing method of the present invention.
  • FIG. 3 is a schematic view of the step (4) of the manufacturing method of the present invention.
  • FIG. 5 is a schematic view of the step (5) of the manufacturing method of the present invention.
  • FIG. 6 is a schematic view showing the structure of a micro light-emitting element array using an opaque material in the transfer material layer of the present invention
  • FIG. 7 is a schematic view of a single micro-light emitting device of the present invention.
  • FIG. 8 is a schematic view of a single micro-light-emitting element of the transfer material layer of the present invention using an opaque material
  • FIG. 9 is a schematic view showing an abnormal arrangement of micro-light emitting diodes when the transfer material layer is over-stressed according to the present invention.
  • the existing micro-light-emitting element grabbing method is widely used to adsorb micro-light-emitting diode core particles by vacuum suction or to absorb micro-light-emitting diode core particles by using a viscous force including a van der Waals force on the surface of the material, Because the micro-light-emitting diode core particles are too small, the operation is difficult, and the transfer yield is not good, and the production cost is difficult to reduce.
  • a method for fabricating a micro-light-emitting element array is disclosed below, which includes both the fabrication of an array of micro-light-emitting elements and a technical solution for how to solve the problem of low transfer yield during transfer of a large number of micro-light-emitting elements.
  • step (1) providing a bracket 110
  • the bracket 110 can be transparent or opaque material.
  • Step (2) forming a sacrificial layer 120 on the support 110.
  • a layer of gallium nitride-based organic material is mainly deposited by metal organic vapor deposition.
  • metal organic vapor deposition has good compactness
  • the above gallium nitride based material has good light transmittance, which is convenient for transfer of micro light-emitting elements.
  • Alignment also ⁇ 0 2019/119706 ⁇ (:17 ⁇ 2018/085131 Select a sacrificial layer material with good light transmission characteristics, such as photodecomposition materials, chemical decomposition materials.
  • Step (3) forming a transfer material layer 130 on the surface of the sacrificial layer 120, the transfer material layer 130 is at least divided into a transfer state and a steady state, and the transfer state mainly refers to the moment when the micro-light-emitting diode 200 is grasped, the steady state is mainly Refers to the normal state of the transfer material layer 130.
  • the transfer state that is, the steady state, is not excluded, and it is important that the transfer material layer 130 is a flexible material in the transfer state;
  • transfer material layers 130 are provided, such as: Silicone or epoxy resin, UV curing adhesive.
  • the ultraviolet curable adhesive in the transfer state, is a flexible material, and the ultraviolet curable adhesive is used as the grasping portion of the micro light emitting diode during the transfer process, and the ultraviolet curable adhesive is applied to the micro light emitting diode 200.
  • the ultraviolet curing glue is pressed by the micro light emitting diode 200 to form a groove, and the micro light emitting diode 200 is immersed in the groove and pressed by the ultraviolet curing glue, and the micro light emitting diode 200 is transferred by the clamping force generated by the pressing.
  • Benzocyclobutene as an example, in the transfer state, The glue is heated, the heating temperature is 180°0250° (:, the heating time is 0.511 ⁇ 211, after heating Glue is suitable as a transfer material, The heat-resisting property of the glue is superior to that of the silica gel in the process.
  • the silica micro-light-emitting element array is eutectic with the package substrate 300, it may be deformed due to the high temperature of the eutectic, and the micro-light-emitting diode 200 is pressed to cause the micro-light-emitting diode 200. Not aligned.
  • the heating time is too short or the temperature is too low.
  • the glue does not reach a suitable semi-curing effect. If the time is too long or the temperature is too high, the curing is excessive, and an effective clamping force cannot be formed, which easily causes the micro-light emitting diode to loosen during the transfer process.
  • step (4) providing a neatly arranged micro-light-emitting diode array, transferring a plurality of micro-light-emitting diodes 200 simultaneously with the transfer material layer 130, and the transfer material layer 130 is extruded by the micro-light-emitting diode 200
  • the transfer material layer 130 is taken as an example, and the pressing force is preferably 0.01.
  • the pole tube 200 is sandwiched in the groove 131 of the transfer material layer 130, and the depth of the groove 131 is 0.1 to 5 mm. According to the preferred embodiment of the present invention, the depth of the groove 131 is 0.5 to 1.5 mm, and an array of micro light-emitting elements is obtained.
  • step (5) the micro light-emitting element array is bonded to the package substrate 300. Then pass ⁇ 0 2019/119706 ⁇ (: 17 ⁇ 2018/085131 chemically decomposed or physically separated to remove the sacrificial layer 120 and the support 110. Taking the GaN sacrificial layer 120 of the present embodiment as an example, the sacrificial layer 120 is removed by laser and the stent 110 is peeled off. To reduce the difficulty of peeling, it is also possible in some embodiments to sample the stent 110 with a patterned surface.
  • the micro-light-emitting diode 200 in order to meet some light requirements, such as applied to a display, includes a plurality of wavelengths, and the red, green, and blue pixels commonly used in the display cooperate to select red, green, and
  • the blue wavelength micro-light emitting diode 200, the micro-light emitting diodes 200 of different wavelengths are arranged adjacent to each other, and at the same time, in order to solve the background technology, 01033
  • the light blocking layer 140 is discretely disposed on the surface of the sacrificial layer 120 away from the support 110, and the light blocking layer 140 is distributed in the adjacent micro light emitting diode 200.
  • the transfer material layer 130 is formed on the light blocking layer 140 in the step (3).
  • the light blocking layer 140 the light absorbing material or the reflective material may be selected according to the embodiment. As the light blocking layer 140.
  • the transfer material layer 130 of the step (3) may be an opaque material, and the opaque material includes at least a reflective material or a light absorbing material as a preferred solution.
  • this embodiment is adopted in The glue was incorporated with 110 2 .
  • One of the benefits of such fabrication is that a relatively good light exit channel can be constructed using the recess 131 of the transfer material layer 130.
  • step (4) at least including a process of opening the transfer material layer 130, removing a portion of the transfer material layer 130 near the region of the micro-light-emitting diode 200, the micro-light-emitting diode 200
  • the top surface portion or all of the top surface is exposed to meet the top surface light-emitting requirement or the surface exposed by the micro-light-emitting diode 200, and the transfer material layer is used to reflect the cover-like structure to enhance the light-emitting effect.
  • a method of transferring a plurality of micro-light-emitting diodes 200 with a layer of transfer material 130, which is embossed or grabbed, is foreseen.
  • a portion of the following embodiments discloses a micro-light emitting device including a transfer material layer 130 and a micro light emitting diode 200.
  • the transfer material layer 130 covers at least a top surface or a side surface of the micro light emitting diode 200, and the transfer material layer 130. At least divided into transition state and steady state;
  • the transfer material layer 130 is a flexible material
  • the micro light emitting diode 200 is disposed in the recess 131 of the transfer material layer 130.
  • the micro light emitting diode 200 is located at a central position of the recess 131, representing the recess 131 hair ⁇ 0 2019/119706 ⁇ (: 17 ⁇ 2018/085131 photodiode 200 has a uniform pressing force, the depth of the groove 131 is 0.1 to 5, according to the present invention, preferably, the depth of the groove 131 is 0.5 ⁇ 1.5 ⁇ 1111.
  • the selection of the material of the transfer material layer 130 includes Silicone or epoxy.
  • the groove 131 has a rounded recessed opening, and the indentation opening has a pressing force on the micro-light emitting diode 200.
  • the micro luminescent element may further include a sacrificial layer 120 on the side of the transfer material layer 130 away from the micro luminescent diode 200.
  • the sacrificial layer 120 includes a light-transmitting or opaque support on the side away from the transfer material layer 130, and is sacrificed.
  • the main purpose of the layer 120 and the support 110 is that the transfer material layer 130 is relatively thin and may not provide a sufficiently stable supporting force to be connected to the bracket 110 through the sacrificial layer 120 before being bonded to the package substrate 300, provided by the bracket 110. support.
  • the sacrificial layer 1 the sacrificial layer 1
  • the sacrificial layer 120 is preferably made of a material that is transparent and easily removed or decomposed.
  • the transfer material layer 130 is made of an opaque material, and the opaque material includes at least a reflective material or a light absorbing material.
  • the transfer material layer 13 of the corresponding position on the top surface of the micro-light-emitting diode 200 has a light-emitting or channel hole for circuit connection.
  • the micro light emitting diode 200 is not limited to a configuration in which a micro light emitting diode, a flip chip micro light emitting diode, or a vertical micro light emitting diode is mounted.
  • the embodiment provides a micro light-emitting element array including a transfer material layer 130 and a plurality of micro light-emitting diodes 200, and a transfer material.
  • the layer 130 covers at least the top surface or the side surface of the micro light emitting diode 200, and the transfer material layer 130 has at least a transfer state and a stable state;
  • the transfer material layer 130 is a flexible material
  • the micro light emitting diode 200 is disposed in the recess 131 of the transfer material layer 130, and the depth of the recess 131 is 0.
  • a high transfer yield can be achieved.
  • Transfer material layer 1 Silicone or epoxy resin, groove 131 has flexible transfer material ⁇ 0 2019/119706 ⁇ (:17 ⁇ 2018/085131
  • the smooth layer of the recessed layer is formed by extrusion.
  • the micro-light-emitting element array further includes a sacrificial layer 120 on the side of the transfer material layer 130 away from the micro-light-emitting diode 200.
  • the sacrificial layer 120 includes a bracket 110 on a side away from the layer of the transfer material 130, and the light-transmitting or opaque bracket 110 is selected by the light-emitting requirement.
  • the material of the sacrificial layer 120 includes 0, AlGaN, One or any combination of GaMgN.
  • the transfer material layer 130 corresponding to the top surface of the micro-light-emitting diode 200 has a light-emitting aperture 132.
  • the micro light emitting diode 200 can be selected as a front mounted micro light emitting diode, a flip chip micro light emitting diode or a vertical micro light emitting diode according to different needs.
  • the transfer material layer 130 between adjacent micro-light-emitting diodes 200 has an opaque material away from the micro-light-emitting diode 200.
  • the opaque material is embedded in the transfer material layer 130 or distributed on the surface of the transfer material layer 130.
  • the opaque material is a reflective or light absorbing material.
  • the opaque material is not limited to including metal or non-metal.
  • the micro luminescent element array has a bonding substrate 300 bonded to the micro luminescent diode 200 on the side of the micro luminescent diode 200.
  • the micro light emitting diode comprises a red light emitting diode, a blue light emitting diode, a green light emitting diode or any combination thereof, which has met various combinations of light elements, and the micro light emitting diode as a whole
  • a series of chip structures including a light-emitting epitaxial structure 210 and an electrode 220 thereof are included.

Abstract

微发光元件,包括转移材料层、微发光二极管,转移材料层至少覆盖微发光二极管的顶面或侧面,转移材料层至少分为转移状态和稳定状态;在转移状态下,转移材料层为柔性材料;在稳定状态下,微发光二极管设置在转移材料层的凹槽中,凹槽的深度为0.1~5μm,转移材料层向微发光二极管提供夹持力,解决微发光二极管转移过程中容易松动或脱落的问题,提高微发光二极管转移的良率,特别是大量转移的良率。

Description

\¥0 2019/119706 卩(:17 \2018/085131 说明书
发明名称 :微发光元件
技术领域
[0001] 本发明涉及微发光装置领域, 具体涉及微发光元件。
背景技术
[0002] 在1106 1^) DiSplay阵列MLED (微发光二极管) 结构中, 一方面, 利用转移 材料固化或者半固化状态下的粘性 (例如范德瓦力、 磁性力) 进行转移, 容易 因为转移力不足, 而MLED的转移良率低。
[0003] 另一方面, 由于MLED间距比较接近, 每颗MLED由于发散角度的关系, 彼此 间会发光区有重迭部分, 会产生
Figure imgf000003_0001
光干涉现象, 即不同色之MLED会 互相干扰, 因而造成颜色误差与颜色不均的现象, 而例如: 0X13782914传统的 常规尺寸
Figure imgf000003_0002
侧壁遮挡方法不易在MLED工艺中应用, 不利于大规模量产。 发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 为解决背景技术中的问题, 本发明公开了一种微发光元件, 包括转移材料层、 微发光二极管, 转移材料层至少覆盖微发光二极管的顶面或侧面, 转移材料层 至少分为转移状态和稳定状态;
[0005] 在转移状态下, 转移材料层为柔性材料;
[0006] 在稳定状态下, 微发光二极管设置在转移材料层的凹槽中, 凹槽的深度为 0.1~
5(X111
[0007] 根据本发明, 优选的, 转移材料层材料包括
Figure imgf000003_0003
胶、 硅胶或者环氧树脂。
[0008] 根据本发明, 优选的, 凹槽具有柔性转移材料层受挤压产生的圆滑的内陷开口
[0009] 根据本发明, 优选的, 凹槽的深度为
[0010] 在一些实施例中, 微发光元件还包括位于转移材料层远离微发光二极管一侧的 \¥0 2019/119706 卩(:17 \2018/085131 牺牲层。
[0011] 根据一些实施例, 优选的, 牺牲层在远离转移材料层的一侧包括透光或者不透 光的支架。
[0012] 根据一些实施例, 优选的, 牺牲层材料包括GaN、 AlGaN、
InGaN、
Figure imgf000004_0001
GaMgN中一种或任意种组合, 这些牺牲层材料容易通过激光去 除。
[0013] 在另一些实施例中, 转移材料层采用不透光材料, 不透光材料至少包括反射材 料或者吸光材料, 通过不透光材料的形状或者构造设定出光角度。
[0014] 根据另一些实施例, 优选的, 微发光二极管顶面对应位置的转移材料层具有出 光孔洞, 实创造顶面出光或者顶面电连接的条件。
[0015] 根据本发明, 优选的, 微发光二极管可以依据微发光元件构造和出光需求选择 为正装微发光二极管、 倒装微发光二极管或者垂直微发光二极管。
[0016] 为满足一些光应用需求, 本发明还提供了一种微发光元件阵列, 微发光元件阵 列包括转移材料层和若干个微发光二极管, 转移材料层至少覆盖微发光二极管 的顶面或侧面, 转移材料层至少具有转移状态和稳定状态;
[0017] 在转移状态下, 转移材料层为柔性材料;
[0018] 在稳定状态下, 微发光二极管设置在转移材料层的凹槽中, 凹槽的深度为 0.1~
5(X111
[0019] 根据本发明, 优选的, 转移材料层材料包括
Figure imgf000004_0002
胶、 硅胶或者环氧树脂。
[0020] 根据本发明, 优选的, 凹槽具有柔性转移材料层受挤压产生的圆滑的内陷开口
[0021] 根据本发明, 优选的, 凹槽的深度为 0.5~1.5—。
[0022] 在一些实施例中, 微发光元件阵列还包括位于转移材料层远离微发光二极管一 侧的牺牲层。
[0023] 根据一些实施例, 优选的, 牺牲层在远离转移材料层的一侧包括支架, 通过出 光需求选取透光或者不透光支架。
[0024] 根据一些实施例, 优选的, 牺牲层材料包括GaN、 AlGaN、
Figure imgf000004_0003
GaMgN中一种或任意种组合。 \¥0 2019/119706 卩(:17 \2018/085131
[0025] 在另一些实施例中, 微发光二极管顶面对应位置的转移材料层具有出光孔洞。
[0026] 根据本发明, 优选的, 微发光二极管可以选择为正装微发光二极管、 倒装微发 光二极管或者垂直微发光二极管。
[0027] 在另一些实施例中, 相邻微发光二极管之间的转移材料层远离微发光二极管一 面具有不透光材料。
[0028] 根据另一些实施例, 优选的, 不透光材料镶嵌在转移材料层内。
[0029] 根据另一些实施例, 优选的, 不透光材料为反射或吸光材料。
[0030] 根据另一些实施例, 优选的, 包括金属或者非金属。
[0031] 根据本发明, 优选的, 微发光元件阵列在微发光二极管一侧具有与微发光二极 管键合的键合基板。
[0032] 根据本发明, 优选的, 微发光二极管包括红光发光二极管、 蓝光发光二极管、 绿光发光二极管或其任意组合, 已满足各种光元素的组合。
[0033] 在上述微发光元件和微发光元件阵列的基础上, 本发明还提供了一种微发光元 件阵列的制作方法, 包括步骤:
[0034] 步骤 (1) 、 提供支架;
[0035] 步骤 (2) 、 在支架上制作牺牲层;
[0036] 步骤 (3) 、 在牺牲层表面制作转移材料层, 转移材料层至少分为转移状态和 稳定状态, 在转移状态下, 转移材料层为柔性材料;
[0037] 步骤 (4) 、 用转移材料层转移微发光二极管阵列, 转移材料层受微发光二极 管挤压凹陷形成凹槽, 微发光二极管夹持在转移材料层的凹槽中, 凹槽的深度 为 0.1~5[1111, 得到微发光元件阵列。
[0038] 根据本发明, 优选的, 制作方法包括步骤 (5) , 步骤 (5) 在步骤 (4) 得到 的微发光元件阵列键合到基板上。
[0039] 根据本发明, 优选的, 凹槽的深度为 0.5~ 1.5^111。
[0040] 在一些实施例中, 在步骤 (5) 之后, 去除牺牲层和支架。
[0041] 根据一些实施例, 优选的, 在步骤 (2) 之后、 步骤 (3) 之前, 离散地在牺牲 层远离支架的表面设置光阻挡层, 光阻挡层分布在相邻微发光二极管之间的牺 牲层对应位置上。 \¥0 2019/119706 卩(:17 \2018/085131
[0042] 根据一些实施例, 优选的, 步骤 (3) 的转移材料层采用不透光材料, 不透光 材料至少包括反射材料或者吸光材料。
[0043] 根据一些实施例, 优选的, 在步骤 (4) 之后, 至少包括对转移材料层开孔工 艺, 将靠近微发光二极管区域的部分转移材料层去除, 将微发光二极管的顶面 部分或者全部露出。
[0044] 根据本发明, 优选的, 用转移材料层转移微发光二极管阵列的方法, 转移方式 包括压印或抓取。
发明的有益效果
有益效果
[0045] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0046] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0047] 图 1为本发明制作方法的步骤 (1) ~步骤 (3) 的示意图;
[0048] 图 2为本发明制作方法的步骤 (4) 的示意图;
[0049] 图 3为本发明制作方法的步骤 (4) 的示意图;
[0050] 图 4为本发明制作方法的步骤 (5) 的示意图;
[0051] 图 5为本发明制作方法的步骤 (5) 的示意图;
[0052] 图 6为本发明的转移材料层采用不透光材料的微发光元件阵列结构示意图;
[0053] 图 7为本发明单颗微发光元件示意图;
[0054] 图 8为本发明的转移材料层采用不透光材料的单颗微发光元件示意图;
[0055] 图 9为本发明的转移材料层受压过度时微发光二极管排列异常示意图。
[0056] 图中标示: 110、 支架, 120、 牺牲层, 130、 转移材料层, 131、 凹槽, 132、 孔洞, 200、 微发光二极管, 210、 发光外延结构, 220、 电极, 300、 封装基板 \¥0 2019/119706 卩(:17 \2018/085131
发明实施例
本发明的实施方式
[0057] 下面便结合附图对本发明若干具体实施例作进一步的详细说明。 但以下关于实 施例的描述及说明对本发明保护范围不构成任何限制。
[0058] 应当理解, 本发明所使用的术语仅出于描述具体实施方式的目的, 而不是旨在 限制本发明。 进一步理解, 当在本发明中使用术语“包含”、 ”包括”时, 用于表明 陈述的特征、 整体、 步骤、 元件、 和/或封装件的存在, 而不排除一个或多个其 他特征、 整体、 步骤、 元件、 封装件、 和/或它们的组合的存在或增加。
[0059] 除另有定义之外, 本发明所使用的所有术语 (包括技术术语和科学术语) 具有 与本发明所属领域的普通技术人员通常所理解的含义相同的含义。 应进一步理 解, 本发明所使用的术语应被理解为具有与这些术语在本说明书的上下文和相 关领域中的含义一致的含义, 并且不应以理想化或过于正式的意义来理解, 除 本发明中明确如此定义之外。
[0060] 现有的微发光元件的抓取方式, 广泛采用的是通过真空吸力吸附微发光二极管 芯粒或者利用材料表面包括范德瓦力在内的粘性力吸附微发光二极管芯粒, 两 种方案均因为微发光二极管芯粒过小, 操作难度大, 而转移良率不佳, 生产成 本难以降低。
[0061] 下面公开一种微发光元件阵列的制作方法, 该制作方法既包括了微发光元件阵 列的制作, 也包括了如何解决大量微发光元件转移过程中转移良率低的技术方 案。
[0062] 参看图 1, 步骤 (1) 、 提供支架 110, 支架 110可以透光或者不透光的材料, 根 据本实施例, 出于对位操作性的考虑, 比较推荐透光或透明的材料, 例如选用 蓝宝石。 也有可能出于电路性能考虑, 采用一些不透光的金属材料。
[0063] 步骤 (2) 、 在支架 110上制作牺牲层 120, 本实施例主要采用金属有机气相沉 积一层氮化镓基有机物,
Figure imgf000007_0001
1 &^ 0&3 、 GaMgN中的一种或 者任意种组合, 主要目的在于金属有机气相沉积具有良好的致密性, 并且上述 氮化镓基材料具有良好的透光性, 方便在微发光元件转移时进行对位, 也可以 \¥0 2019/119706 卩(:17 \2018/085131 选择具有良好透光特性、 广泛采用的牺牲层材料, 例如光分解材料、 化学分解 材料。
[0064] 步骤 (3) 、 在牺牲层 120表面制作转移材料层 130, 转移材料层 130至少分为转 移状态和稳定状态, 转移状态主要是指在抓取微发光二极管 200瞬间, 稳定状态 主要是指转移材料层 130的常态, 在选取一些柔性材料时, 不排除转移状态即稳 定状态, 而重要的是在转移状态下, 转移材料层 130为柔性材料;
[0065] 根据本实施例, 提供几种可做选择的转移材料层 130, 例如:
Figure imgf000008_0001
硅胶或 者环氧树脂、 紫外固化胶。
[0066] 以紫外固化胶为例, 在转移状态时, 紫外固化胶为柔性材料, 转移过程中紫外 固化胶作与微发光二极管的抓取部, 在施加紫外固化胶相对微发光二极管 200的 作用力后, 紫外固化胶受微发光二极管 200挤压形成凹槽, 而微发光二极管 200 陷入凹槽中又受到紫外固化胶的挤压, 通过挤压产生的夹紧力转移微发光二极 管 200。
[0067] 而在一些实施例中,
Figure imgf000008_0002
苯并环丁稀) 为例, 在转移 状态,
Figure imgf000008_0003
胶进行加热, 加热温度为 180°0250°(:, 加热时间为 0.511~211, 加热 后
Figure imgf000008_0005
胶适合作为转移材料,
Figure imgf000008_0004
胶的耐热特性, 在工艺中性能优于硅胶, 硅胶微发光元件阵列与封装基板 300共 晶时, 有可能由于共晶高温而变形, 向微发光二极管 200施加挤压, 造成微发光 二极管 200排列不齐。 本实施例加热时间过短或温度过低则
Figure imgf000008_0006
胶未达到合适的 半固化效果, 时间过长或温度过高则固化过度, 无法形成有效的夹紧力, 容易 在转移过程中, 造成微发光二极管松动。
[0068] 参看图 2和图 3、 步骤 (4) 、 提供整齐排列的微发光二极管阵列, 用转移材料 层 130同时转移复数个微发光二极管 200, 转移材料层 130受微发光二极管 200挤 胶作为转移材料层 130为例, 挤压力最佳为 0.01
Figure imgf000008_0007
极管 200夹持在转移材料层 130的凹槽 131中, 凹槽 131的深度为 0.1~5—, 根据本发明优选的, 凹槽 131的深度为 0.5~1.5—, 得到微 发光元件阵列。
[0069] 参看图 4和图 5 , 步骤 (5) 、 微发光元件阵列键合到封装基板 300上。 接着通过 \¥0 2019/119706 卩(:17 \2018/085131 化学分解或者物理分离去除牺牲层 120和支架 110, 以本实施例的 GaN牺牲层 120 为例, 利用激光去除牺牲层 120并剥离支架 110。 为了降低剥离难度, 也可能在 一些实施方式中采样具有图形化表面的支架 110。
[0070] 在本实施例的实施过程中, 为了满足一些光需求, 像应用到显示器中, 微发光 二极管 200包括多种波长, 显示器中惯常采用的红绿蓝像素配合, 分别选取红、 绿、 蓝波长的微发光二极管 200, 不同波长的微发光二极管 200相邻排布, 同时 出于解决背景技术中 01033
Figure imgf000009_0001
光色互相干涉的目的, 在步骤 (2) 之后、 步 骤 (3) 之前, 离散地在牺牲层 120远离支架 110的表面设置光阻挡层 140, 光阻 挡层 140分布在相邻微发光二极管 200之间的牺牲层 120对应位置上, 在步骤 (3 ) 中制作转移材料层 130覆盖到光阻挡层 140之上, 根据本实施例光阻挡层 140可 以选取吸光材料或者反射材料, 本实施例选用铬作为光阻挡层 140。
[0071] 参看图 6 , 作为上述光阻挡层 140的替代方案, 步骤 (3) 的转移材料层 130可以 采用不透光材料, 不透光材料至少包括反射材料或者吸光材料, 作为一种优选 方案, 本实施例采用在
Figure imgf000009_0002
胶中掺入110 2。 如此制作的好处之一, 在于可以利 用转移材料层 130的凹槽 131构建出比较好的出光通道。
[0072] 在一些实施方式中, 需要在步骤 (4) 之后, 至少包括对转移材料层 130开孔工 艺, 将靠近微发光二极管 200区域的部分转移材料层 130去除, 将微发光二极管 2 00的顶面部分或者全部露出, 以满足顶面出光需求或者通过微发光二极管 200露 出的表面, 利用转移材料层反射罩状结构, 增强出光效果也可以选择在构建顶 面电路连接。
[0073] 根据本实施例, 可以预见的, 用转移材料层 130转移复数个微发光二极管 200的 方法, 其转移方式包括压印或抓取。
[0074] 参看图 7, 下面部分实施例公开了一种微发光元件, 包括转移材料层 130、 微发 光二极管 200, 转移材料层 130至少覆盖微发光二极管 200的顶面或侧面, 转移材 料层 130至少分为转移状态和稳定状态;
[0075] 在转移状态下, 转移材料层 130为柔性材料;
[0076] 在稳定状态下, 微发光二极管 200设置在转移材料层 130的凹槽 131中, 一种较 佳实施条件下, 微发光二极管 200位于凹槽 131的中央位置, 代表凹槽 131对微发 \¥0 2019/119706 卩(:17 \2018/085131 光二极管 200具有均匀的挤压力, 凹槽 131的深度为 0.1~5畔, 根据本发明, 优选 的, 凹槽 131的深度为 0.5~1.5^1111。
[0077] 为了实现向微发光二极管 200施加类似夹紧力的挤压功能, 转移材料层 130的材 料的选取范围包括
Figure imgf000010_0001
硅胶或者环氧树脂。 凹槽 131具有圆滑的内陷开口, 内陷开口对微发光二极管 200具有挤压力。
[0078] 微发光元件还可以包括位于转移材料层 130远离微发光二极管 200—侧的牺牲层 120, 牺牲层 120在远离转移材料层 130的一侧包括透光或者不透光的支架, 设置 牺牲层 120和支架 110的主要目的是转移材料层 130相对比较薄, 可能无法提供足 够稳定的支撑力, 在键合到封装基板 300之前, 需要通过牺牲层 120来与支架 110 连接, 由支架 110提供支撑。
[0079] 根据本实施例, 牺牲层 1
Figure imgf000010_0002
一种或任意种组合, 实际应用中, 牺牲层 120最佳选用透明易去除或者分解的材 料。
[0080] 参看图 8, 作为实施例的一种变形, 转移材料层 130采用不透光材料, 不透光材 料至少包括反射材料或者吸光材料。 微发光二极管 200顶面对应位置的转移材料 层 13〇具有出光或者供电路连接的通道孔洞。 微发光二极管 200不限于正装微发 光二极管、 倒装微发光二极管或者垂直微发光二极管等构造。
[0081] 参看图 4~6, 为了解决市场对微发光元件阵列的需求, 本实施例提供一种微发 光元件阵列, 微发光元件阵列包括转移材料层 130和若干个微发光二极管 200, 转移材料层 130至少覆盖微发光二极管 200的顶面或侧面, 转移材料层 130至少具 有转移状态和稳定状态;
[0082] 在转移状态下, 转移材料层 130为柔性材料;
[0083] 参看图 9, 转移材料层 130受压过度、 凹槽 131深度过大则容易出现部分微发光 二极管 200受压旋转的情况, 导致微发光二极管 200排列不齐。 因此, 在稳定状 态下, 微发光二极管 200设置在转移材料层 130的凹槽 131中, 凹槽 131的深度为 0. 可实现较高的转移良率。 根据本发明, 进一步优选的, 凹槽 131的深度为 0
[0084] 转移材料层 1
Figure imgf000010_0003
硅胶或者环氧树脂, 凹槽 131具有柔性转移材 \¥0 2019/119706 卩(:17 \2018/085131 料层受挤压产生的圆滑的内陷开口。 微发光元件阵列还包括位于转移材料层 130 远离微发光二极管 200—侧的牺牲层 120。 牺牲层 120在远离转移材料层 130的一 侧包括支架 110, 通过出光需求选取透光或者不透光支架 110。 牺牲层 120材料包 括0&^ AlGaN、
Figure imgf000011_0001
GaMgN中一种或任意种组合。
[0085] 在另一实施变形中, 微发光二极管 200顶面对应位置的转移材料层 130具有出光 孔洞 132。
[0086] 微发光二极管 200可以根据不同的需要, 选择为正装微发光二极管、 倒装微发 光二极管或者垂直微发光二极管。
[0087] 在另一些实施例中, 相邻微发光二极管 200之间的转移材料层 130远离微发光二 极管 200—面具有不透光材料。 不透光材料镶嵌在转移材料层 130内或者分布在 转移材料层 130表面。 不透光材料为反射或吸光材料。 不透光材料不限于包括金 属或者非金属。
[0088] 作为封装件, 微发光元件阵列在微发光二极管 200—侧具有与微发光二极管 200 键合的键合基板 300。
[0089] 为了满足例如显示器的多种像素需求, 微发光二极管包括红光发光二极管、 蓝 光发光二极管、 绿光发光二极管或其任意组合, 已满足各种光元素的组合, 微 发光二极管整体上看包含发光外延结构 210及其电极 220等一系列芯片构造。
[0090] 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的技术人员 , 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润 饰也应视为本发明的保护范围。

Claims

\¥0 2019/119706 卩(:17 \2018/085131 权利要求书
[权利要求 1] 微发光元件, 包括转移材料层、 微发光二极管, 其特征在于: 转移材 料层至少覆盖微发光二极管的顶面或侧面, 转移材料层至少分为转移 状态和稳定状态;
在转移状态下, 转移材料层为柔性材料;
在稳定状态下, 微发光二极管设置在转移材料层的凹槽中。
[权利要求 2] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光二极管受到 凹槽挤压产生的夹紧力。
[权利要求 3] 根据权利要求 1所述的微发光元件, 其特征在于: 转移材料层的材料
Figure imgf000012_0001
硅胶或者环氧树脂。
[权利要求 4] 根据权利要求 1所述的微发光元件, 其特征在于: 凹槽具有圆滑的内 陷开口。
[权利要求 5] 根据权利要求 1所述的微发光元件, 其特征在于: 凹槽的深度为 0.1~5 畔。
[权利要求 6] 根据权利要求 1所述的微发光元件, 其特征在于: 凹槽的深度为 0.5~1.
5(X111
[权利要求 7] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光元件还包括 位于转移材料层远离微发光二极管一侧的牺牲层。
[权利要求 8] 根据权利要求 7所述的微发光元件, 其特征在于: 牺牲层在远离转移 材料层的一侧包括透光或者不透光的支架。
[权利要求 9] 根据权利要求 7所述的微发光元件, 其特征在于: 牺牲层材料包括0&
Figure imgf000012_0002
GaMgN中一种或任意种组合。
[权利要求 10] 根据权利要求 1~9所述的微发光元件, 其特征在于: 微发光二极管为 正装微发光二极管、 倒装微发光二极管或者垂直微发光二极管。
[权利要求 11] 根据权利要求 1~9所述的微发光元件, 其特征在于: 转移材料层采用 不透光材料, 不透光材料至少包括反射材料或者吸光材料。
[权利要求 12] 根据权利要求 11所述的微发光元件, 其特征在于: 微发光二极管顶面 对应位置的转移材料层具有出光孔洞。 \¥0 2019/119706 卩(:17 \2018/085131
[权利要求 13] 微发光元件阵列, 微发光元件阵列包括转移材料层和若干个微发光二 极管, 其特征在于: 转移材料层至少覆盖微发光二极管的顶面或侧面 , 转移材料层至少具有转移状态和稳定状态;
在转移状态下, 转移材料层为柔性材料;
在稳定状态下, 微发光二极管设置在转移材料层的凹槽中。
[权利要求 14] 根据权利要求 13所述的微发光元件阵列, 其特征在于: 微发光二极管 受到凹槽挤压产生的夹紧力。
[权利要求 15] 根据权利要求 13所述的微发光元件阵列, 其特征在于: 转移材料层的 材料包括
Figure imgf000013_0001
硅胶或者环氧树脂。
[权利要求 16] 根据权利要求 13所述的微发光元件阵列, 其特征在于: 凹槽具有圆滑 的内陷开口。
[权利要求 17] 根据权利要求 13所述的微发光元件阵列, 其特征在于: 凹槽的深度为
0.1 5(X111°
[权利要求 18] 根据权利要求 13所述的微发光元件阵列, 其特征在于: 凹槽的深度为
0.5
Figure imgf000013_0002
[权利要求 19] 根据权利要求 13所述的微发光元件阵列, 其特征在于: 微发光元件阵 列还包括位于转移材料层远离微发光二极管一侧的牺牲层。
[权利要求 20] 根据权利要求 19所述的微发光元件阵列, 其特征在于: 牺牲层为透明 材料。
[权利要求 21] 根据权利要求 19所述的微发光元件阵列, 其特征在于: 牺牲层包括 0
Figure imgf000013_0003
InGaN、 GaSiN、 GaMgN中一种或任意种组合。
[权利要求 22] 根据权利要求 13所述的微发光元件阵列, 其特征在于: 转移材料层采 用不透光材料, 不透光材料至少包括反射材料或者吸光材料。
[权利要求 23] 根据权利要求 22所述的微发光元件阵列, 其特征在于: 微发光二极管 顶面对应位置的转移材料层具有出光孔洞。
[权利要求 24] 根据权利要求 13所述的微发光元件阵列, 其特征在于: 微发光二极管 为正装微发光二极管、 倒装微发光二极管或者垂直微发光二极管。
[权利要求 25] 根据权利要求 13~21中任意一项所述的微发光元件阵列, 其特征在于 \¥0 2019/119706 卩(:17 \2018/085131
: 相邻微发光二极管之间的转移材料层远离微发光二极管一面具有光 阻挡层。
[权利要求 26] 根据权利要求 25所述的微发光元件阵列, 其特征在于: 光阻挡层镶嵌 在转移材料层内。
[权利要求 27] 根据权利要求 25所述的微发光元件阵列, 其特征在于: 光阻挡层具有 反射或吸光特性。
[权利要求 28] 根据权利要求 25所述的微发光元件阵列, 其特征在于: 光阻挡层包括 金属或者非金属。
[权利要求 29] 根据权利要求 13所述的微发光元件阵列, 其特征在于: 微发光元件阵 列在微发光二极管一侧具有与微发光二极管键合的键合基板。
[权利要求 30] 根据权利要求 13所述的微发光元件阵列, 其特征在于: 微发光二极管 包括红光发光二极管、 蓝光发光二极管、 绿光发光二极管或其任意组 合。
[权利要求 31] 微发光元件阵列的制作方法, 包括步骤:
提供支架;
在支架上制作牺牲层;
在牺牲层表面制作转移材料层, 转移材料层至少具有转移状态和稳定 状态; 至少在转移状态下, 转移材料层为柔性材料; 用转移材料层转移微发光二极管阵列, 转移材料层受微发光二极管挤 压凹陷形成凹槽, 微发光二极管夹持在转移材料层的凹槽中, 凹槽的 深度为
Figure imgf000014_0001
得到微发光元件阵列。
[权利要求 32] 根据权利要求 31所述的制作方法, 其特征在于: 凹槽的深度为 0.5~1.5 畔。
[权利要求 33] 根据权利要求 31所述的制作方法, 其特征在于: 制作方法包括步骤 (
5) , 步骤 (5) 在步骤 (4) 得到的微发光元件阵列键合到基板上。
[权利要求 34] 根据权利要求 33所述的制作方法, 其特征在于: 在步骤 (5) 之后, 去除牺牲层和支架。
[权利要求 35] 根据权利要求 31~34中任意一项所述的制作方法, 其特征在于: 在步 \¥0 2019/119706 卩(:17 \2018/085131 骤 (2) 之后、 步骤 (3) 之前, 离散地在牺牲层远离支架的表面设置 光阻挡层, 光阻挡层分布在相邻微发光二极管之间的牺牲层对应位置 上。
[权利要求 36] 根据权利要求 31所述的制作方法, 其特征在于: 步骤 (3) 的转移材 料层采用不透光材料, 不透光材料至少包括反射材料或者吸光材料。
[权利要求 37] 根据权利要求 36所述的制作方法, 其特征在于: 在步骤 (4) 之后, 至少包括对转移材料层开孔工艺, 将靠近微发光二极管区域的部分转 移材料层去除, 将微发光二极管的顶面部分或者全部露出。
[权利要求 38] 根据权利要求 31所述的制作方法, 其特征在于: 用转移材料层转移微 发光二极管阵列的方法, 转移的方式包括压印或抓取。
PCT/CN2018/085131 2017-12-21 2018-04-28 微发光元件 WO2019119706A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207017627A KR102397321B1 (ko) 2017-12-21 2018-04-28 마이크로 발광소자
JP2020526217A JP7106640B2 (ja) 2017-12-21 2018-04-28 マイクロ発光素子
KR1020227015516A KR20220066417A (ko) 2017-12-21 2018-04-28 마이크로 발광소자
US16/906,701 US11616094B2 (en) 2017-12-21 2020-06-19 Micro light-emitting component, micro light-emitting component matrix, and method for manufacturing the micro light-emitting component matrix
US18/189,374 US20230253376A1 (en) 2017-12-21 2023-03-24 Micro light-emitting component, micro light-emitting component matrix, and method for manufacturing the micro light-emitting component matrix

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711393774.5 2017-12-21
CN201711393774.5A CN108258006B (zh) 2017-12-21 2017-12-21 微发光元件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/906,701 Continuation-In-Part US11616094B2 (en) 2017-12-21 2020-06-19 Micro light-emitting component, micro light-emitting component matrix, and method for manufacturing the micro light-emitting component matrix

Publications (1)

Publication Number Publication Date
WO2019119706A1 true WO2019119706A1 (zh) 2019-06-27

Family

ID=62723645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085131 WO2019119706A1 (zh) 2017-12-21 2018-04-28 微发光元件

Country Status (5)

Country Link
US (1) US11616094B2 (zh)
JP (1) JP7106640B2 (zh)
KR (2) KR20220066417A (zh)
CN (2) CN108258006B (zh)
WO (1) WO2019119706A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767104B (zh) * 2018-07-25 2021-09-28 深圳Tcl新技术有限公司 一种led显示屏及其制备方法
TWI662594B (zh) * 2018-08-16 2019-06-11 友達光電股份有限公司 軟性基板及線路結構及其製造方法
CN109192821A (zh) * 2018-08-31 2019-01-11 华灿光电(浙江)有限公司 发光二极管芯片的转移方法、转移基板及发光二极管阵列
TWI688320B (zh) * 2018-10-26 2020-03-11 友達光電股份有限公司 轉置方法及轉置裝置
CN111129057B (zh) * 2018-10-31 2023-06-20 成都辰显光电有限公司 微发光二极管阵列器件、制作方法及转移方法
KR20200053841A (ko) * 2018-11-09 2020-05-19 (주)포인트엔지니어링 마이크로 led 위치 오차 보정 캐리어 및 마이크로 led 전사시스템
WO2020215185A1 (en) * 2019-04-22 2020-10-29 Boe Technology Group Co., Ltd. Method of transferring a plurality of micro light emitting diodes to target substrate, array substrate, display apparatus, and transfer strip for transferring a plurality of micro light emitting diodes to target substrate
CN112018218B (zh) * 2019-05-31 2023-02-28 成都辰显光电有限公司 微发光二极管的转移方法及显示面板的制作方法
CN110311029B (zh) * 2019-07-02 2020-09-04 厦门乾照光电股份有限公司 一种Micro LED阵列基板及其制作方法
CN111048497B (zh) * 2019-11-11 2022-02-22 潘小和 一种有源矩阵彩色显示器件的制造方法
CN113496936B (zh) * 2020-04-08 2023-10-10 台湾爱司帝科技股份有限公司 发光二极管芯片结构以及芯片移转系统与方法
TWI718923B (zh) * 2020-04-08 2021-02-11 台灣愛司帝科技股份有限公司 發光二極體晶片結構以及晶片移轉系統與方法
WO2022032523A1 (zh) * 2020-08-12 2022-02-17 重庆康佳光电技术研究院有限公司 芯片转移方法以及显示装置
CN114765196A (zh) * 2021-01-15 2022-07-19 扬朋科技股份有限公司 显示面板的修补方法
FR3119487B1 (fr) * 2021-01-29 2024-03-08 Aledia Procédé de fabrication d’un dispositif électronique et dispositif de transfert associé
KR20230147708A (ko) * 2021-04-30 2023-10-23 신에츠 엔지니어링 가부시키가이샤 전사 장치 및 전사 방법
CN113450653B (zh) * 2021-06-30 2023-03-24 武汉天马微电子有限公司 可拉伸显示面板及其控制方法、显示装置
CN114388668B (zh) * 2021-12-10 2023-07-14 厦门市三安光电科技有限公司 微发光二极管及其制备方法、微发光元件和显示器
CN114864759B (zh) * 2022-07-06 2022-09-20 罗化芯显示科技开发(江苏)有限公司 一种微发光二极管显示基板及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390613A (zh) * 2013-08-14 2013-11-13 中国科学院长春光学精密机械与物理研究所 高发光均匀性的密排列led面阵器件及制备方法
CN104008991A (zh) * 2013-02-27 2014-08-27 三星电子株式会社 转移半导体元件的方法和制造柔性半导体器件的方法
CN105283122A (zh) * 2012-03-30 2016-01-27 伊利诺伊大学评议会 可共形于表面的可安装于附肢的电子器件

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906653B2 (ja) * 2000-07-18 2007-04-18 ソニー株式会社 画像表示装置及びその製造方法
JP4082242B2 (ja) 2003-03-06 2008-04-30 ソニー株式会社 素子転写方法
JP4100203B2 (ja) 2003-03-14 2008-06-11 ソニー株式会社 素子転写方法
JP4116960B2 (ja) * 2003-09-30 2008-07-09 松下電器産業株式会社 半導体発光装置、発光モジュール、照明装置、および半導体発光装置の製造方法
JP4848638B2 (ja) * 2005-01-13 2011-12-28 ソニー株式会社 半導体素子の形成方法および半導体素子のマウント方法
US8502193B2 (en) 2008-04-16 2013-08-06 Lg Innotek Co., Ltd. Light-emitting device and fabricating method thereof
JP5740981B2 (ja) 2011-01-05 2015-07-01 ソニー株式会社 発光装置、照明装置および表示装置
JP5840377B2 (ja) 2011-04-14 2016-01-06 日東電工株式会社 反射樹脂シートおよび発光ダイオード装置の製造方法
US20140339566A1 (en) 2011-12-14 2014-11-20 Seoul Viosys Co., Ltd. Semiconductor device and method of fabricating the same
CN103208489A (zh) 2012-01-13 2013-07-17 华夏光股份有限公司 发光二极管数组及其制造方法
WO2013112435A1 (en) 2012-01-24 2013-08-01 Cooledge Lighting Inc. Light - emitting devices having discrete phosphor chips and fabrication methods
JP2013232477A (ja) * 2012-04-27 2013-11-14 Toshiba Corp 発光モジュール
US20140001949A1 (en) 2012-06-29 2014-01-02 Nitto Denko Corporation Phosphor layer-covered led, producing method thereof, and led device
US9166114B2 (en) 2012-12-11 2015-10-20 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging cavity
US9450147B2 (en) 2013-12-27 2016-09-20 Apple Inc. LED with internally confined current injection area
CN110010750B (zh) * 2014-06-18 2021-11-09 艾克斯展示公司技术有限公司 微组装led显示器
CN204066643U (zh) * 2014-08-14 2014-12-31 深圳市洲明科技股份有限公司 一种led显示屏面罩及led显示屏
KR102259259B1 (ko) * 2014-10-14 2021-06-02 삼성전자주식회사 가변 저항 메모리 장치의 제조 방법
TWI610459B (zh) * 2015-05-13 2018-01-01 友達光電股份有限公司 微型發光二極體裝置與其製造方法
WO2017028207A1 (en) * 2015-08-18 2017-02-23 Goertek.Inc Pre-screening method, manufacturing method, device and electronic apparatus of micro-led
TWI588985B (zh) * 2016-04-22 2017-06-21 友達光電股份有限公司 微型發光二極體結構及其畫素單元與發光二極體顯示面板
WO2017217703A1 (en) * 2016-06-13 2017-12-21 Seoul Semiconductor Co., Ltd Display apparatus and manufacturing method thereof
CN109786307B (zh) * 2017-11-15 2021-02-05 鸿富锦精密工业(深圳)有限公司 微型led显示面板的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283122A (zh) * 2012-03-30 2016-01-27 伊利诺伊大学评议会 可共形于表面的可安装于附肢的电子器件
CN104008991A (zh) * 2013-02-27 2014-08-27 三星电子株式会社 转移半导体元件的方法和制造柔性半导体器件的方法
CN103390613A (zh) * 2013-08-14 2013-11-13 中国科学院长春光学精密机械与物理研究所 高发光均匀性的密排列led面阵器件及制备方法

Also Published As

Publication number Publication date
KR102397321B1 (ko) 2022-05-12
CN108258006A (zh) 2018-07-06
US11616094B2 (en) 2023-03-28
KR20220066417A (ko) 2022-05-24
CN113066812A (zh) 2021-07-02
KR20200084043A (ko) 2020-07-09
JP2021510233A (ja) 2021-04-15
US20200321392A1 (en) 2020-10-08
CN113066812B (zh) 2023-05-05
JP7106640B2 (ja) 2022-07-26
CN108258006B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2019119706A1 (zh) 微发光元件
US8310023B2 (en) Light emitting diode package and fabrication method thereof
JP6205897B2 (ja) 発光装置及びその製造方法
US20090236619A1 (en) Light Emitting Diodes with Light Filters
KR101383357B1 (ko) 발광 소자 패키지 및 그 제조방법
CN106410062A (zh) 一种封装层及封装器件
TW200924249A (en) Light emitting diode with bonded semiconductor wavelength converter
CN108649046B (zh) 半导体发光微显示器件及其制造方法以及衬底剥离方法
JP2018160678A (ja) ラミネートフィルム、ラミネート構造及びその製造方法
JP6512201B2 (ja) 線状発光装置の製造方法及び線状発光装置
JP2016207924A (ja) 発光装置及びその製造方法
CN214848634U (zh) 发光模块及显示装置
JP6447018B2 (ja) 発光装置及び発光装置の製造方法
US8674594B2 (en) Flip-chip type light-emitting device with curved reflective layer
TW201117432A (en) A conversion medium body, optoelectronic semiconductor chip and method of producing an optoelectronic semiconductor chip
TWI302038B (en) Light emitting diode having an adhesive layer and heat paths
JP2017017159A (ja) 発光装置の製造方法
JP6460189B2 (ja) 発光装置及びその製造方法
CN108417674A (zh) 制造发光二极管器件的方法及制造的发光二极管器件
TW202135030A (zh) 畫素陣列基板及其製造方法
JP2019054277A (ja) 発光装置及び発光装置の製造方法
TWI499094B (zh) Led封裝件及其製法
US20240128414A1 (en) Light-emitting device
CN117894864A (zh) 量子点封装件及其制作方法、芯片及其制作方法及封装器件
KR20140048178A (ko) 반도체 소자 구조물을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526217

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207017627

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892776

Country of ref document: EP

Kind code of ref document: A1