WO2019119428A1 - 一种用于3d打印的柔性光敏树脂及其制备方法 - Google Patents

一种用于3d打印的柔性光敏树脂及其制备方法 Download PDF

Info

Publication number
WO2019119428A1
WO2019119428A1 PCT/CN2017/118038 CN2017118038W WO2019119428A1 WO 2019119428 A1 WO2019119428 A1 WO 2019119428A1 CN 2017118038 W CN2017118038 W CN 2017118038W WO 2019119428 A1 WO2019119428 A1 WO 2019119428A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
parts
acrylate
flexible photosensitive
flexible
Prior art date
Application number
PCT/CN2017/118038
Other languages
English (en)
French (fr)
Inventor
黄立
Original Assignee
深圳摩方新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳摩方新材科技有限公司 filed Critical 深圳摩方新材科技有限公司
Priority to PCT/CN2017/118038 priority Critical patent/WO2019119428A1/zh
Publication of WO2019119428A1 publication Critical patent/WO2019119428A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule

Definitions

  • the invention belongs to the field of new materials for 3D printing, and in particular relates to a flexible photosensitive resin and a preparation method thereof.
  • an object of the present invention is to provide a flexible photosensitive resin for 3D printing which has high elongation at break and tear strength, and has excellent anti-aging and mechanical stability, and improves user's Use experience.
  • a flexible photosensitive resin for 3D printing comprising, by weight percentage, 20-50% of acrylate oligomer, 30-70% of diluent, 0.1-2% of dyeing agent, 1-5% of free radical initiator, Leveling agent 0.1-5%, UV absorber 0.1-5%.
  • the acrylic oligomer is at least one of an aliphatic urethane acrylate oligomer, a polyester acrylate oligomer, an epoxy acrylate oligomer, and a silicone acrylate oligomer.
  • the diluent is tetrahydrofuran acrylate, dodecyl methacrylate, isooctyl acrylate, hydroxypropyl acrylate, trimethylolpropane formal acrylate, acryloyl morpholine, 1 ⁇ 6-hexane
  • the staining agent adopts the black F2090, yellow F5066, red F3095, and blue F4049 of the FOEBE series.
  • the free radical initiator employs at least one of TPO, 819, and TPO-L.
  • the leveling agent adopts at least one of BYK501, BYK333, and BYK307.
  • the ultraviolet absorber adopts UV-9, TINUVIN 400, TINUVIN 292, TINUVIN 571, at least one of TINUVIN B97.
  • the present invention provides a method for preparing a flexible photosensitive resin for 3D printing, comprising the following steps:
  • Step A sequentially adding a formula amount of an acrylate oligomer, a diluent, and an ultraviolet absorber to the reaction flask to obtain a primary mixture;
  • Step B sequentially adding a radical initiator, a dyeing agent, and a leveling agent to the primary mixture, followed by raising the temperature and stirring to obtain a uniformly mixed liquid, which is a flexible photosensitive resin.
  • the temperature is raised to 40 ° C to 50 ° C, the mechanical stirring is turned on to 500 to 800 rpm, and the stirring is carried out at a constant speed for 0.5-2 hours.
  • the viscosity of the flexible photosensitive resin of the present invention (250CPs-400CPs, 25°C) is lower than that of most flexible resins of the same type on the market, and the molding speed is fast, which ensures the rapid formability of 3D printing products.
  • the flexible photosensitive resin of the present invention has a tear strength (30 KN/m - 40 KN/m) and an elongation at break (300% - 400%) which are superior to most flexible resins on the market.
  • the flexible photosensitive resin of the invention has stable mechanical properties and excellent anti-aging properties, and has a simple preparation process and is convenient for popularization and application.
  • Step A In a three-neck glass bottle equipped with a mechanical stirrer, 30 parts of aliphatic urethane acrylate, 15 parts of polyester acrylate, 28 parts of hydroxypropyl acrylate, 7 parts of acryloyl morpholine, and trimethylol group were sequentially added. 17 parts of propane formal acrylate and 0.2 parts of TINUVIN 400 gave a primary mixture.
  • Step B sequentially adding the TPO 3 parts, BYK333, to the primary mixture obtained in the step A 0.5 parts, F2090 black 0.3 parts, the temperature was raised to 40 ° C, the stirrer rotation speed was adjusted to 600 rpm, and the mixture was continuously stirred for 1 hour to obtain a light yellow uniform liquid, which was sealed and stored as a flexible photosensitive resin.
  • Step A 24 parts of aliphatic urethane acrylate, 13 parts of polyester acrylate, 30 parts of dodecyl methacrylate, and 10 parts of acryloyl morpholine were sequentially added to a three-necked glass bottle equipped with a mechanical stirrer. 30 parts of dodecyl methacrylate, 20 parts of polyethylene glycol (400) diacrylate, and 0.2 part of TINUVIN 400 gave a primary mixture.
  • Step B The first mixture obtained in the step A was sequentially added with 2 parts of TPO, 0.5 parts of BYK333, 0.3 parts of F2090 black, and then heated to 50 ° C, and the stirring speed was adjusted to 500 rpm, and the mixture was uniformly stirred for 1.5 hours to obtain a pale yellow color. Uniform liquid, sealed and stored as a flexible photosensitive resin.
  • Step A 40 parts of aliphatic urethane acrylate, 29 parts of dodecyl methacrylate, 8 parts of trimethylolpropane formal acrylate, and polyethylene B were sequentially added to a three-necked glass bottle equipped with a mechanical stirrer. 20 parts of diol (400) diacrylate and 0.2 part of TINUVIN 400 gave a primary mixture.
  • Step B sequentially adding the TPO 3 parts, BYK333, to the primary mixture obtained in the step A 0.5 parts, F2090 black 0.3 parts, and then heated to 45 ° C, adjust the stirrer rotation speed of 700 rev / min, and continue to stir evenly for 0.5 hours, to obtain a light yellow uniform liquid, sealed and stored as a flexible photosensitive resin.
  • Step A In a three-neck glass bottle equipped with a mechanical stirrer, 25 parts of aliphatic urethane acrylate, 10 parts of epoxy acrylate, 28 parts of tetrahydrofuran acrylate, and 15 parts of 1 ⁇ 6-hexanediol dimethacrylate were sequentially added. 20 parts of polyethylene glycol (400) diacrylate and 0.2 parts of TINUVIN 400 were obtained to obtain a primary mixture.
  • Step B sequentially adding TPO 2 parts, BYK333 to the primary mixture obtained in the step A 0.45 parts, F2090 black 0.25 parts, the temperature was raised to 50 ° C, the stirrer rotation speed was 800 rpm, and the mixture was continuously stirred for 1 hour to obtain a light yellow uniform liquid, which was sealed and stored as a flexible photosensitive resin.
  • Step A In a three-necked glass bottle equipped with a mechanical stirrer, 34.5 parts of urethane acrylate, 32 parts of isooctyl acrylate, 12 parts of trimethylolpropane formal acrylate, and (10) ethoxylated bisphenol A were sequentially added. 18 parts of diacrylate and 0.25 parts of TINUVIN 400 gave a primary mixture.
  • Step B Adding 1.5 parts of TPO in sequence to the primary mixture obtained in Step A, 819 1 part, BYK501 0.5 parts, F3095 red 0.25 parts, the temperature is raised to 45 ° C, the stirrer rotation speed is 750 rpm, and the mixture is continuously stirred for 1 hour to obtain a light yellow uniform liquid, which is sealed and stored as a flexible photosensitive resin.
  • Step A 30 parts of urethane acrylate oligomer, 25 parts of isooctyl acrylate, 15 parts of 1 ⁇ 6-hexanediol dimethacrylate, and tetrahydrofuran acrylate 26.5 were sequentially added to a three-necked glass bottle equipped with a mechanical stirrer. Quantitative, TINUVIN 400 0.25 parts, to obtain a primary mixture.
  • Step B sequentially adding the TPO to the first mixture obtained in the step A, 1.5 parts, 819 1 part, BYK501 0.5 parts, F3095 red 0.25 parts, the temperature is raised to 45 ° C, the stirrer rotation speed is 600 rpm, and the mixture is continuously stirred for 1 hour to obtain a light yellow uniform liquid, which is sealed and stored as a flexible photosensitive resin.
  • Step A 30 parts of epoxy acrylate, 15 parts of polyester acrylate, 24 parts of isooctyl acrylate, and 13 parts of trimethylolpropane formal acrylate were sequentially added to a three-necked glass bottle equipped with a mechanical stirrer. (10) 15 parts of ethoxylated bisphenol A diacrylate and 0.105 parts of TINUVIN 292. A primary mixture is obtained.
  • Step B sequentially adding TPO 2 parts to the primary mixture obtained in the step A, BYK307 0.4 parts, F4049 blue 0.2 parts, TINUVIN 400 0.25 parts, the temperature was raised to 45 ° C, the stirrer rotation speed was adjusted to 650 rpm, and the mixture was continuously stirred for 1 hour to obtain a light yellow uniform liquid, which was sealed and stored as a flexible photosensitive resin.
  • Step A 25 parts of silicone acrylate, 15 parts of polyester acrylate, 30 parts of isooctyl acrylate, and 10 parts of trimethylolpropane formal acrylate were sequentially added to a three-necked glass bottle equipped with a mechanical stirrer. 17 parts of polyethylene glycol (400) diacrylate and 0.15 parts of TINUVIN 292 gave a primary mixture.
  • Step B sequentially adding TPO 3 parts, BYK501 to the primary mixture obtained in the step A 0.35 parts, F5066 yellow 0.15 parts, TINUVIN 400 0.25 parts, the temperature was raised to 50 ° C, the stirrer rotation speed was 600 rpm, and the mixture was continuously stirred for 1 hour to obtain a light yellow uniform liquid, which was sealed and stored as a flexible photosensitive resin.
  • Step A 20 parts of silicone acrylate, 20 parts of aliphatic urethane acrylate, 20 parts of isooctyl acrylate, and 15 parts of trimethylolpropane formal acrylate were sequentially added to a three-necked glass bottle equipped with a mechanical stirrer. 22 parts of acryloylmorpholine and 0.15 parts of TINUVIN 292 gave a primary mixture.
  • Step B 3 parts of TPO, 2 parts of TPO, 0.35 parts of BYK501, F5066 are sequentially added to the primary mixture obtained in the step A. Yellow 0.15 parts, TINUVIN 400 0.25 parts, the temperature was raised to 40 ° C, the stirrer rotation speed was adjusted to 600 rpm, and the mixture was continuously stirred for 1 hour to obtain a light yellow uniform liquid, which was sealed and stored as a flexible photosensitive resin.
  • the light source for curing the photosensitive resin is ultraviolet light having a wavelength of 405 nm.
  • the photosensitive resin samples obtained in Examples 1 to 9 were measured at 25 ⁇ 3 ° C using a Shore A hardness tester.
  • the photosensitive resin samples obtained in Examples 1 to 9 were measured at 25 ° C using a Bookfield DV- II + Pro type viscometer.
  • the photosensitivity of the photosensitive resin is an important indicator for characterizing the photocuring characteristics, including the critical curing energy E c and the projection depth D p .
  • E c refers to the minimum curing energy required for the photosensitive resin per unit area to reach the gel state at the transmission depth;
  • D p characterizes the relationship between the curing thickness and light.
  • the photosensitive resin samples prepared in Examples 1-9 were subjected to different energy irradiation conditions, and each of the examples was subjected to different samples, and then the thicknesses of the samples were separately tested.
  • Each embodiment is made with different thicknesses and energies, the slope of the curve is D p , and the intersection of the curve and the X axis is E c
  • the photosensitive resin samples obtained in Examples 1 to 9 were tested at 25 ° C using a MTS electronic universal testing machine in accordance with the ASTM D638 test standard.
  • the photosensitive resin Ec obtained in Examples 1-9 was low and easily cured, and the tear strength was greater than or equal to 30 KN/m.
  • the elongation at break is more than 250%, and the hardness of the photosensitive resin is above Shao A 60, which is favorable for molding.
  • the printed samples have strong toughness and tear resistance while maintaining flexibility, and are suitable for use in the footwear industry, flexible molds, medical device flexible parts and other industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

一种用于3D打印的柔性光敏树脂及其制备方法,按重量百分比,柔性光敏树脂包括:丙烯酸酯低聚物20-50%、稀释剂30-70%、染色剂0.1-2%、自由基引发剂1-5%、流平剂0.1-5%、紫外吸收剂0.1-5%。柔性光敏树脂的力学性能稳定,抗老化性能优异,制备工艺简单。

Description

一种用于3D打印的柔性光敏树脂及其制备方法 技术领域
本发明属于3D打印新材料领域,尤其涉及一种柔性光敏树脂及其制备方法。
背景技术
随着3D打印技术的迅猛发展,单一的通用型3D打印光敏树脂已经无法满足各类客户日益增长的个性化、多元化的需求。耐温型、坚韧型、类PP型、珠宝铸造型以及柔性3D打印光敏树脂均受到了各行业客户的重点关注及迫切需求。其中,柔性3D打印光敏树脂打印出来的制品已经在可穿戴设备,汽车零部件(管、带、垫、板等)、医疗器械部件、制鞋业、柔性模具、模具制作等领域显示出了巨大的市场需求。因此研发一款高性能的柔性树脂对于顺应未来市场发展需求具有重要意义。
光固化3D打印技术已成为世界上研究最深入、技术最成熟、应用最广泛的一种3D打印技术,而DLP打印工艺因其具有高精度和高效率的优势,已成为3D打印主流工艺,取得了越来越广泛的应用,这也意味着需要越来越多的与之搭配的高性能、低成本的DLP光敏树脂来满足市场的巨大需求。目前,国内大部分光敏树脂还严重依赖进口产品,尤其是具有优异力学性能的柔性DLP光敏树脂的研发生产还处于起步阶段,而国外商业化的柔性DLP光敏树脂也不多,性能参差不齐,而且价格昂贵。
目前国内外商业化的柔性DLP光敏树脂种类不多,且产品普遍存在撕裂强度与断裂伸长率不平衡的问题(断裂伸长率大则撕裂强度小;断裂伸长率小则撕裂强度大;或者断裂伸长率与撕裂强度均小),这严重限制了柔性树脂的应用领域并影响了用户的体验。
技术问题
在此处键入技术问题描述段落。
技术解决方案
为了解决以上技术问题,本发明的目的在于提供一种用于3D打印的柔性光敏树脂,具有较高的断裂伸长率及撕裂强度,且具有优异的抗老化及力学稳定性,提高用户的使用体验度。
具体方案为:
一种用于3D打印的柔性光敏树脂,按重量百分比,包括:丙烯酸酯低聚物20-50%、稀释剂30-70%、染色剂0.1-2%、自由基引发剂1-5%、流平剂0.1-5%、紫外吸收剂0.1-5%。
优选的,所述丙烯酸低聚物采用脂肪族聚氨酯丙烯酸酯低聚物、聚酯丙烯酸酯低聚物、环氧丙烯酸酯低聚物、有机硅丙烯酸酯低聚物中的至少一种。
优选的,所述稀释剂采用四氢呋喃丙烯酸酯、十二烷基甲基丙烯酸酯、丙烯酸异辛酯、丙烯酸羟丙酯、三羟甲基丙烷缩甲醛丙烯酸酯、丙烯酰吗啉、1̗6-己二醇二甲基丙烯酸酯、聚乙二醇(400)二丙烯酸酯、(10)乙氧化双酚A二丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯中的至少一种。
优选的,所述染色剂采用FOEBE系列的黑F2090、黄F5066、红F3095、蓝F4049。
优选的,所述自由基引发剂采用TPO、819、TPO-L中的至少一种。
优选的,所述流平剂采用BYK501、BYK333、BYK307中的至少一种。
优选的,所述紫外吸收剂采用UV-9、TINUVIN 400、TINUVIN 292、TINUVIN 571、TINUVIN B97中的至少一种。
相应的,本发明提供一种制备用于3D打印的柔性光敏树脂制备方法,包括以下几个步骤:
步骤A:在反应瓶中,依次加入配方量的丙烯酸酯低聚物、稀释剂、紫外吸收剂,得到初级混合物;
步骤B:在初级混合物中依次加入自由基引发剂、染色剂、流平剂,随后升温,搅拌,得到均匀混合液体,避光保存,即为柔性光敏树脂。
优选的,所述步骤B中,升温至40℃-50℃,开启机械搅拌至500至800转/分钟,匀速搅拌0.5-2小时。
有益效果
本发明带来了如下有益效果:
(1)本发明的柔性光敏树脂黏度(250CPs-400CPs,25℃)低于市场上同类型大部分柔性树脂黏度,成型速度快,保障了3D打印产品的快速成型性。
(2)本发明的柔性光敏树脂的撕裂强度(30KN/m-40KN/m)及断裂伸长率(300%-400%)均优于市场上大部分柔性树脂。
(3)本发明的柔性光敏树脂的力学性能稳定,抗老化性能优异,此外制备工艺简单,便于推广应用。
附图说明
在此处键入附图说明描述段落。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
下面对本发明的较优的实施例作进一步的详细说明:
实施例1
1.按表1配比配置光敏树脂原料
表1
Figure 548826dest_path_image001
2.制备方法
步骤A:在装有机械搅拌器的三口玻璃瓶中,依次加入脂肪族聚氨酯丙烯酸酯30份、聚酯丙烯酸酯15份、丙烯酸羟丙酯28份、丙烯酰吗啉7份、三羟甲基丙烷缩甲醛丙烯酸酯17份、、TINUVIN 400 0.2份,得到初级混合物。
步骤B:将步骤A得到的初级混合物中依次加入TPO 3份、BYK333 0.5份、F2090 黑0.3份,升温至40℃,调节搅拌器转速为600转/分钟,持续均匀搅拌1小时,得到淡黄色均匀液体,密封保存,为柔性光敏树脂。
实施例2
1.按表2配比配置光敏树脂原料
表2
Figure 773134dest_path_image002
2.制备方法
步骤A:在装有机械搅拌器的三口玻璃瓶中,依次加入脂肪族聚氨酯丙烯酸酯24份、聚酯丙烯酸酯13份、十二烷基甲基丙烯酸酯30份、丙烯酰吗啉10份、十二烷基甲基丙烯酸酯30份、聚乙二醇(400)二丙烯酸酯20份、TINUVIN 400 0.2份,得到初级混合物。
步骤B:将步骤A得到的初级混合物中依次加入TPO2份、BYK333 0.5份、F2090 黑0.3份,再升温至50℃,调节搅拌器转速为500转/分钟,持续均匀搅拌1.5小时,得到淡黄色均匀液体,密封保存,为柔性光敏树脂。
实施例3
1.按表2配比配置光敏树脂原料
表3
Figure 772314dest_path_image003
2.制备方法
步骤A:在装有机械搅拌器的三口玻璃瓶中,依次加入脂肪族聚氨酯丙烯酸酯40份、十二烷基甲基丙烯酸酯 29份、三羟甲基丙烷缩甲醛丙烯酸酯8份、聚乙二醇(400)二丙烯酸酯 20份、、TINUVIN 400  0.2份,得到初级混合物。
步骤B:将步骤A得到的初级混合物中依次加入TPO 3份、BYK333 0.5份、F2090 黑 0.3份,再升温至45℃,调节搅拌器转速为700转/分钟,持续均匀搅拌0.5小时,得到淡黄色均匀液体,密封保存,为柔性光敏树脂。
实施例4
1.按表4配比配置光敏树脂原料
表4
Figure 246545dest_path_image004
2.制备方法
步骤A:在装有机械搅拌器的三口玻璃瓶中,依次加入脂肪族聚氨酯丙烯酸酯25份、环氧丙烯酸酯10份、四氢呋喃丙烯酸酯 28份、1̗6-己二醇二甲基丙烯酸酯 15份、聚乙二醇(400)二丙烯酸酯 20份、TINUVIN 400  0.2份,,得到初级混合物。
步骤B:将步骤A得到的初级混合物中依次加入TPO 2份、BYK333 0.45份、F2090 黑 0.25份,升温至50℃,调节搅拌器转速为800转/分钟,持续均匀搅拌1小时,得到淡黄色均匀液体,密封保存,为柔性光敏树脂。
实施例5
1.按表5配比配置光敏树脂原料
表5
Figure 783706dest_path_image005
2.制备方法
步骤A:在装有机械搅拌器的三口玻璃瓶中,依次加入聚氨酯丙烯酸酯34.5份、丙烯酸异辛酯 32份、三羟甲基丙烷缩甲醛丙烯酸酯12份、(10)乙氧化双酚A二丙烯酸酯 18份、TINUVIN 400 0.25份,得到初级混合物。
步骤B:将步骤A得到的初级混合物中依次加入TPO 1.5份,819  1份,BYK501  0.5份、F3095 红 0.25份,升温至45℃,调节搅拌器转速为750转/分钟,持续均匀搅拌1小时,得到淡黄色均匀液体,密封保存,为柔性光敏树脂。
实施例6
1.按表6配比配置光敏树脂原料
表6
Figure 749388dest_path_image006
2.制备方法
步骤A:在装有机械搅拌器的三口玻璃瓶中,依次加入聚氨酯丙烯酸酯低聚物30份、丙烯酸异辛酯 25份、1̗6-己二醇二甲基丙烯酸酯 15份、四氢呋喃丙烯酸酯 26.5份、TINUVIN 400 0.25份,得到初级混合物。
步骤B:将步骤A得到的初级混合物中依次加入TPO 1.5份、819  1份,BYK501  0.5份、F3095 红 0.25份,升温至45℃,调节搅拌器转速为600转/分钟,持续均匀搅拌1小时,得到淡黄色均匀液体,密封保存,为柔性光敏树脂。
实施例7
1.按表7配比配置光敏树脂原料
表7
Figure 117921dest_path_image007
2.制备方法
步骤A:在装有机械搅拌器的三口玻璃瓶中,依次加入环氧丙烯酸酯30份、聚酯丙烯酸酯15份、丙烯酸异辛酯 24份、三羟甲基丙烷缩甲醛丙烯酸酯13份、(10)乙氧化双酚A二丙烯酸酯 15份、TINUVIN 292  0.15份。得到初级混合物。
步骤B:将步骤A得到的初级混合物中依次加入TPO 2份,BYK307  0.4份,F4049 蓝0.2份、TINUVIN 400 0.25份,升温至45℃,调节搅拌器转速为650转/分钟,持续均匀搅拌1小时,得到淡黄色均匀液体,密封保存,为柔性光敏树脂。
实施例8
1.按表8配比配置光敏树脂原料
表8
Figure 307594dest_path_image008
2.制备方法
步骤A:在装有机械搅拌器的三口玻璃瓶中,依次加入有机硅丙烯酸酯 25份、聚酯丙烯酸酯15份、丙烯酸异辛酯 30份、三羟甲基丙烷缩甲醛丙烯酸酯10份、聚乙二醇(400)二丙烯酸酯17份、、TINUVIN 292 0.15份,得到初级混合物。
步骤B:将步骤A得到的初级混合物中依次加入TPO 3份、BYK501 0.35份、F5066黄 0.15份、TINUVIN 400 0.25份,升温至50℃,调节搅拌器转速为600转/分钟,持续均匀搅拌1小时,得到淡黄色均匀液体,密封保存,为柔性光敏树脂。
实施例9
1.按表9配比配置光敏树脂原料
表9
Figure 145100dest_path_image009
2.制备方法
步骤A:在装有机械搅拌器的三口玻璃瓶中,依次加入有机硅丙烯酸酯20份、脂肪族聚氨酯丙烯酸酯 20份、丙烯酸异辛酯 20份、三羟甲基丙烷缩甲醛丙烯酸酯15份、丙烯酰吗啉 22份、TINUVIN 292 0.15份,得到初级混合物。
步骤B:将步骤A得到的初级混合物中依次加入TPO 3份、TPO 2份、BYK501 0.35份、F5066 黄 0.15份、TINUVIN 400 0.25份,升温至40℃,调节搅拌器转速为600转/分钟,持续均匀搅拌1小时,得到淡黄色均匀液体,密封保存,为柔性光敏树脂。
性能测试:
用于固化所述光敏树脂的光源为波长405nm的紫外光。
(1)邵氏硬度
将实施例1-9所得的光敏树脂样品在25±3℃条件下,用邵氏A型硬度计测得。
(2)黏度测试
将实施例1-9所得的光敏树脂样品在25℃条件下,用Bookfield DV- + Pro型粘度计测得。
(3)光敏性能测试
光敏树脂的光敏性能是表征光固化特性的重要指标,包括临界固化能量E c和投射深度D p。E c是指在透射深度下单位面积的光敏树脂达到凝胶态所需的最小固化能量;D p则表征了固化厚度与光的关系。
将实施例1-9制得的光敏树脂样品在不同能量照射条件下,每个实施例分别做出不同的样品,然后分别测试这些样品的厚度。每个实施例用不同厚度和能量做成工作曲线,曲线斜率为D p,曲线和X轴交点为E c
(4)撕裂强度与断裂伸长率测试
将实施例1-9所得的光敏树脂样品在25℃条件下,用美特斯电子万能实验机根据ASTM D638 测试标准进行测试。
实施例1-9制得的样品测得的实验结果,如表10所示。
表10
Figure 711211dest_path_image010
从表10可看出,实施例1-9所制得的光敏树脂Ec较低,容易固化,撕裂强度均大于或等于 30 KN/m ,断裂伸长率均大于 250%,且该光敏树脂硬度均在邵A 60以上,利于成型。打印出来的样品在保持柔性的同时还具备了较强的韧性,耐撕裂,适合用于制鞋业、柔性模具、医疗器械柔性部件等行业。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (9)

  1. 一种用于3D打印的柔性光敏树脂,其特征在于,按重量百分比,包括:丙烯酸酯低聚物20-50%、稀释剂30-70%、染色剂0.1-2%、自由基引发剂1-5%、流平剂0.1-5%、紫外吸收剂0.1-5%。
  2. 如权利要求1所述的用于3D打印的柔性光敏树脂,其特征在于,所述丙烯酸低聚物采用脂肪族聚氨酯丙烯酸酯低聚物、聚酯丙烯酸酯低聚物、环氧丙烯酸酯低聚物、有机硅丙烯酸酯低聚物中的至少一种。
  3. 如权利要求1所述的用于3D打印的柔性光敏树脂,其特征在于,所述稀释剂采用四氢呋喃丙烯酸酯、十二烷基甲基丙烯酸酯、丙烯酸异辛酯、丙烯酸羟丙酯、三羟甲基丙烷缩甲醛丙烯酸酯、丙烯酰吗啉、1̗6-己二醇二甲基丙烯酸酯、聚乙二醇(400)二丙烯酸酯、(10)乙氧化双酚A二丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯中的至少一种。
  4. 如权利要求1所述的一种用于3D打印的柔性光敏树脂,其特征在于,所述染色剂采用FOEBE系列的黑F2090、黄F5066、红F3095、蓝F4049。
  5. 如权利要求1所述的一种用于3D打印的柔性光敏树脂,其特征在于,所述自由基引发剂采用TPO、819、TPO-L中的至少一种。
  6. 如权利要求1所述的一种用于3D打印的柔性光敏树脂,其特征在于,所述流平剂采用BYK501、BYK333、BYK307中的至少一种。
  7. 如权利要求1所述的一种用于3D打印的柔性光敏树脂,其特征在于,所述紫外吸收剂采用UV-9、TINUVIN 400、TINUVIN 292、TINUVIN 571、TINUVIN B97中的至少一种。
  8. 一种制备如权利要求1所述的用于3D打印的柔性光敏树脂制备方法,其特征在于,包括以下几个步骤:
    步骤A:在反应瓶中,依次加入配方量的丙烯酸酯低聚物、稀释剂、紫外吸收剂,得到初级混合物;
    步骤B:在初级混合物中依次加入自由基引发剂、染色剂、流平剂,随后升温,搅拌,得到均匀混合液体,避光保存,即为柔性光敏树脂。
  9. 如权利要求8所述的方法,其特征在于,所述步骤B中,升温至40℃-50℃,开启机械搅拌至500至800转/分钟,匀速搅拌0.5-2小时。
     
PCT/CN2017/118038 2017-12-22 2017-12-22 一种用于3d打印的柔性光敏树脂及其制备方法 WO2019119428A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118038 WO2019119428A1 (zh) 2017-12-22 2017-12-22 一种用于3d打印的柔性光敏树脂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118038 WO2019119428A1 (zh) 2017-12-22 2017-12-22 一种用于3d打印的柔性光敏树脂及其制备方法

Publications (1)

Publication Number Publication Date
WO2019119428A1 true WO2019119428A1 (zh) 2019-06-27

Family

ID=66994345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118038 WO2019119428A1 (zh) 2017-12-22 2017-12-22 一种用于3d打印的柔性光敏树脂及其制备方法

Country Status (1)

Country Link
WO (1) WO2019119428A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651925A (zh) * 2021-09-24 2021-11-16 深圳市创想三帝科技有限公司 凉感树脂、光敏树脂组合物及其制备方法与应用
CN113717324A (zh) * 2021-09-14 2021-11-30 中国科学院化学研究所 一种可光固化3d打印导电离子凝胶及其专用光敏树脂以及制备方法
CN113801272A (zh) * 2021-09-14 2021-12-17 中国科学院化学研究所 一种可自愈合并可3d打印的离子凝胶及其制备和应用
CN114478947A (zh) * 2021-12-23 2022-05-13 山东华夏神舟新材料有限公司 新型光固化3d打印树脂材料及其制备方法
CN114763400A (zh) * 2021-01-13 2022-07-19 中国石油化工股份有限公司 柔性光敏树脂及其制备方法、3d打印制品及其制备方法
CN114763400B (zh) * 2021-01-13 2024-07-26 中国石油化工股份有限公司 柔性光敏树脂及其制备方法、3d打印制品及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2030762A1 (de) * 2007-08-31 2009-03-04 Deltamed Gmbh Flexibler medizintechnischer Formkörper sowie Verfahren zu dessen Herstellung
CN106977658A (zh) * 2017-03-30 2017-07-25 大族激光科技产业集团股份有限公司 一种3d打印光固化树脂及其制备方法
CN107056989A (zh) * 2017-03-30 2017-08-18 大族激光科技产业集团股份有限公司 一种光固化树脂及其制备方法
CN108047386A (zh) * 2017-12-22 2018-05-18 深圳摩方新材科技有限公司 一种用于3d打印的柔性光敏树脂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2030762A1 (de) * 2007-08-31 2009-03-04 Deltamed Gmbh Flexibler medizintechnischer Formkörper sowie Verfahren zu dessen Herstellung
CN106977658A (zh) * 2017-03-30 2017-07-25 大族激光科技产业集团股份有限公司 一种3d打印光固化树脂及其制备方法
CN107056989A (zh) * 2017-03-30 2017-08-18 大族激光科技产业集团股份有限公司 一种光固化树脂及其制备方法
CN108047386A (zh) * 2017-12-22 2018-05-18 深圳摩方新材科技有限公司 一种用于3d打印的柔性光敏树脂及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114763400A (zh) * 2021-01-13 2022-07-19 中国石油化工股份有限公司 柔性光敏树脂及其制备方法、3d打印制品及其制备方法
CN114763400B (zh) * 2021-01-13 2024-07-26 中国石油化工股份有限公司 柔性光敏树脂及其制备方法、3d打印制品及其制备方法
CN113717324A (zh) * 2021-09-14 2021-11-30 中国科学院化学研究所 一种可光固化3d打印导电离子凝胶及其专用光敏树脂以及制备方法
CN113801272A (zh) * 2021-09-14 2021-12-17 中国科学院化学研究所 一种可自愈合并可3d打印的离子凝胶及其制备和应用
CN113801272B (zh) * 2021-09-14 2024-03-15 中国科学院化学研究所 一种可自愈合并可3d打印的离子凝胶及其制备和应用
CN113717324B (zh) * 2021-09-14 2024-03-19 中国科学院化学研究所 一种可光固化3d打印导电离子凝胶及其专用光敏树脂以及制备方法
CN113651925A (zh) * 2021-09-24 2021-11-16 深圳市创想三帝科技有限公司 凉感树脂、光敏树脂组合物及其制备方法与应用
CN114478947A (zh) * 2021-12-23 2022-05-13 山东华夏神舟新材料有限公司 新型光固化3d打印树脂材料及其制备方法
CN114478947B (zh) * 2021-12-23 2023-12-08 山东华夏神舟新材料有限公司 新型光固化3d打印树脂材料及其制备方法

Similar Documents

Publication Publication Date Title
WO2019119428A1 (zh) 一种用于3d打印的柔性光敏树脂及其制备方法
CN108047386A (zh) 一种用于3d打印的柔性光敏树脂及其制备方法
CN104231157B (zh) 一种具有自修复功能的环氧树脂及其制备方法
CN103031105A (zh) 一种紫外光固化液态光学胶及其制备方法
CN107001490B (zh) 改性液体二烯系橡胶和包含该改性液体二烯系橡胶的树脂组合物
CN105408362B (zh) 改性液态二烯系橡胶及其制造方法
CN106977670B (zh) 一种光交联丝素蛋白的改性及其原位药物负载水凝胶的制备方法
CN107828050B (zh) 改性环氧丙烯酸树脂及其制备方法
CN105542703B (zh) 一种触摸屏loca胶及其制备方法
WO2020140856A1 (zh) 一种液晶显示屏全贴合用高折光率硅胶
CN109134745A (zh) 一种制备(甲基)丙烯酸酯-聚酯嵌段共聚物的新型无溶剂聚合产生技术
CN105829372A (zh) 树脂组合物、将该树脂组合物固化而成的固化物和含有该树脂组合物的光学用粘合剂
CN102604368A (zh) 一种取代nco交联固化的水泥路面用填缝材料
CN109868084A (zh) 一种uv聚合型poss改性丙烯酸酯压敏胶及制备方法
Zhang et al. UV-curable self-healing, high hardness and transparent polyurethane acrylate coating based on dynamic bonds and modified nano-silica
CN104910340B (zh) 嵌段共聚物增韧剂及制备方法与应用
CN111732694A (zh) 一种功能性3d打印光敏树脂及其制备方法
Shen et al. Cross‐linking induced thermoresponsive hydrogel with light emitting and self‐healing property
CN107250903A (zh) 液晶显示元件用密封剂、上下导通材料及液晶显示元件
Wei et al. Preparation of thermosensitive hydrogels by means of tandem physical and chemical crosslinking
CN109608586A (zh) 一种改性聚丙烯酸酯乳液及其制备方法
CN109134825A (zh) 改性环氧树脂及其制备和应用
JP2017104028A (ja) 細胞培養用部材
CN107840966B (zh) 季戊四醇三丙烯酸酯-多巴胺-吡咯聚合物及其应用
CN114854312A (zh) 一种具有耐高温性能的紫外光固化胶黏剂其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935793

Country of ref document: EP

Kind code of ref document: A1