WO2019116622A1 - 重荷重用タイヤ - Google Patents

重荷重用タイヤ Download PDF

Info

Publication number
WO2019116622A1
WO2019116622A1 PCT/JP2018/027135 JP2018027135W WO2019116622A1 WO 2019116622 A1 WO2019116622 A1 WO 2019116622A1 JP 2018027135 W JP2018027135 W JP 2018027135W WO 2019116622 A1 WO2019116622 A1 WO 2019116622A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
air
slope
recess
air inflow
Prior art date
Application number
PCT/JP2018/027135
Other languages
English (en)
French (fr)
Inventor
玲王 中里
大暉 佐藤
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201880079849.9A priority Critical patent/CN111465508B/zh
Priority to EP18888100.7A priority patent/EP3725551B1/en
Priority to US16/770,060 priority patent/US11427031B2/en
Publication of WO2019116622A1 publication Critical patent/WO2019116622A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2016Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 10 to 30 degrees to the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2019Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 30 to 60 degrees to the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • B60C2011/013Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered provided with a recessed portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention relates to a heavy duty tire.
  • the temperature in the vicinity of the buttress portion tends to increase easily from the viewpoint of load capacity and size.
  • the road surface is repeatedly touched to and separated from the road surface, distortion occurs repeatedly in the buttress portion, and the buttress portion generates heat. Therefore, it is conceivable to form a recess in the buttress portion and allow air to flow into the recess to cool the buttress portion.
  • a recess is formed in the buttress portion, for example, there is a tire described in Japanese Patent Application Publication No. 2009-542528.
  • An object of the present invention is to provide a heavy duty tire in which the cooling capacity of the buttress portion is improved in consideration of the above facts.
  • the heavy load tire according to the first aspect is formed in a buttress portion, is open toward the outer side of the tire, is provided with a recess having a bottom, and is disposed on one side of the bottom with respect to the tire rotation direction.
  • a circumferential air inflow promoting portion having a slope gradually decreasing in depth from the tire surface toward the surface, and promoting air inflow to the bottom, and sandwiching the circumferential air inflow promoting portion and the bottom
  • an air receiving wall portion which is disposed on the opposite side and has an angle with the tire surface larger than the slope.
  • the rotation of the heavy load tire causes a speed difference between the tire surface and the surrounding air, and the air flows into the recess formed in the buttress portion.
  • a circumferential air inflow / outflow promotion portion is formed on one side of the bottom of the recess in the tire rotation direction.
  • the circumferential air entry and exit promoting section has a slope which is gradually reduced in depth from the tire surface, and promotes the entry and exit of air to the bottom. Therefore, air can easily move in and out along the slope in the tire rotation direction.
  • an air receiving wall portion is formed on the opposite side to the circumferential air inflow / outflow promoting portion with the bottom portion interposed therebetween. Since the air receiving wall portion has an angle with respect to the tire surface larger than the slope, it is possible to form turbulence in the air flowing in from the circumferential air inflow / outflow promoting portion. Thereby, it is suppressed that the air which flowed in from the circumferential air inflow promotion part passes through only the surface (shallow part) without reaching the bottom of the recess and escapes, and the retention of air at the bottom of the recess is suppressed. it can. As a result, the effect of air cooling the bottom of the recess can be improved. By providing the recess in the buttress portion as described above, the buttress portion can be effectively cooled when the heavy load tire is rotated.
  • the heavy load tire according to a second aspect is the heavy load tire according to the first aspect, wherein the circumferential air inflow / outflow promotion part is disposed on the front side in the tire rotation direction.
  • the inflow of air from the circumferential air inflow / outflow promoting portion to the bottom portion is effectively promoted when the tire is rotating.
  • a heavy load tire according to a third aspect of the present invention is the heavy load tire according to the first aspect or the second aspect, wherein the heavy load tire is disposed at a position different from the circumferential air inflow / outflow promotion part and is directed from the bottom to the tire surface. And a second air entry and exit promoting portion having a slope whose depth from the tire surface is gradually reduced and the angle with the tire surface is smaller than that of the air receiving wall portion.
  • the second air inflow promoting portion is provided separately from the circumferential air inflow promoting portion, for example, the air flowing in from the circumferential air inflow promoting portion passes through the bottom portion After hitting the air receiving wall portion, it is possible to get out of the recess from the second air entry and exit promoting portion and to further promote the inflow of air to the recess.
  • the heavy load tire according to a fourth aspect of the present invention is the heavy load tire according to the third aspect, wherein the second air entry and exit promoting portion is disposed on at least one side in the tire radial direction with respect to the bottom portion. It is a direction air entry promotion part.
  • the direction of the air flowing in from the circumferential air inflow promoting portion disposed on the tire circumferential direction side with respect to the bottom portion It is possible to change the direction of the air that has flowed in from the second air inflow promoting portion and change the direction of the air that has flowed in from the second air inflow promoting portion so as to discharge the air from the circumferential air inflow promoting portion.
  • the heavy load tire according to the fifth aspect is the heavy load tire according to any one of the first aspect through the fourth aspect, wherein an average inclination angle of the slope with respect to the tire surface is in a range of 5 ° to 45 °. It is set to.
  • the average inclination angle of the slope with respect to the tire surface is preferably set in the range of 5 ° to 30 °, and more preferably in the range of 15 ° to 25 °.
  • the tire width direction end portion of the belt ply having the maximum tire width direction width constituting the belt is located inside the tire width direction of the bottom portion.
  • the heavy load tire rotates, distortion caused by repeated contact and separation of the tread with the road surface occurs in the vicinity of the end of the belt ply at the maximum width in the tire width direction, thereby especially the end of the belt ply at the maximum width in the tire width The temperature in the vicinity rises.
  • the tire width direction end of the belt ply having the maximum width in the tire width direction constituting the belt is located inside the tire width direction of the bottom of the recess, the belt The heat generated near the end of the ply can be effectively dissipated to the outside of the tire through the recess, and the temperature rise in the vicinity of the widthwise end of the belt ply having the maximum width in the tire width direction can be suppressed. it can.
  • the heavy load tire according to the present invention has an excellent effect that the cooling capacity of the buttress portion can be improved.
  • FIG. 5 is a cross-sectional view of the air cooling unit shown in FIG. 4 taken along line 5A-5A.
  • FIG. 5 is a cross-sectional view taken along line 5B-5B of the air cooling unit shown in FIG. 4;
  • FIG. 5 is a cross-sectional view of the air cooling unit shown in FIG. 4 taken along line 5C-5C.
  • a heavy load tire 10 according to an embodiment of the present invention will be described using FIGS. 1 to 5.
  • the heavy load tire 10 according to this embodiment has the same structure as that of a general heavy load pneumatic tire except for an air cooling unit 32 described later.
  • the heavy load tire 10 includes a carcass 12 straddling a pair of bead cores (not shown).
  • a belt 14 is disposed on the radially outer side of the carcass 12.
  • the belt 14 comprises a plurality of belt layers.
  • the heavy load tire 10 according to the present embodiment includes a protective belt layer 16 including two protective belts 16A and 16B, a main intersecting belt layer 18 including two main intersecting belts 18A and 18B, and A small crossing belt layer 20 consisting of two small crossing belts 20A and 20B is provided.
  • the protective belts 16A and 16B, the main crossing belts 18A and 18B, and the small crossing belts 20A and 20B each have a general structure in which a plurality of cords arranged parallel to one another are coated with a covering rubber. .
  • the main crossing belt layer 18 is disposed outside the small crossing belt layer 20 in the tire radial direction, and the protective belt layer 16 is disposed outside the main crossing belt layer 18 in the tire radial direction.
  • the angle between the cord forming the small crossing belt layer 20 and the circumferential direction of the tire is 4 to 10 ° as an example, and the cord and the tire circumference forming the main crossing belt layer 18
  • the angle formed by the direction is 18 to 35 °
  • the angle formed by the cords constituting the protective belt layer 16 and the circumferential direction of the tire is 22 to 33 °.
  • the width of each belt layer in the belt 14 of the present embodiment will be described below.
  • the width of the small crossing belt 20A adjacent to the outer side in the tire radial direction of the small crossing belt 20B on the innermost side in the tire radial direction is formed slightly smaller than the width of the small crossing belt 20B.
  • the width of the main crossing belt 18B adjacent to the outer side of the small crossing belt 20A in the tire radial direction is wider than the small crossing belts 20A and 20B.
  • the width of the main crossing belt 18A adjacent to the tire radial direction outer side of the main crossing belt 18B is wider than the small crossing belts 20A and 20B and narrower than the main crossing belt 18B.
  • the width of the protective belt 16B adjacent to the tire radial direction outer side of the main crossing belt 18A is formed wider than the small crossing belts 20A and 20B and the main crossing belts 18A and 18B. Further, the width of the protective belt 16A adjacent to the tire radial direction outer side of the protective belt 16B and positioned on the outermost side in the tire radial direction of the belt 14 is narrower than the protective belt 16B and the main crossing belt 18B and smaller It is wider than the crossing belts 20A, 20B and the main crossing belt 18A.
  • the protective belt 16A is disposed at the outermost side in the tire radial direction among the plurality of belt layers.
  • the fifth protective belt 16B counted from the inner side in the radial direction is formed the widest of the plurality of belt layers, and the belt end is disposed at the outermost side in the tire width direction.
  • the protective belt 16B is an example of a belt ply having a maximum width in the tire width direction.
  • a tread rubber 24 constituting the tread 22 is disposed on the outer side in the tire radial direction of the belt 14.
  • the tread rubber 24 extends along the carcass 12 outward in the tire width direction of the belt 14, and a part of the belt 14 disposed outside in the tire width direction constitutes a part of the buttress portion 26.
  • the buttress portion 26 in the present embodiment is grounded from the position of 1/2 ⁇ H from the tire maximum width portion Wmax, where H is the tire radial dimension of the tire maximum width portion Wmax and the ground contact end 22E of the tread 22. It points to the area outside the tire between the end 22E.
  • the heavy load tire 10 is mounted on a standard rim specified in JATMA YEAR BOOK (2017, Japan Automobile Tire Association Standard), and the application size / ply rating in JATMA YEAR BOOK This is the case when the internal pressure of 100% of the air pressure (maximum air pressure) corresponding to the maximum load capacity (bold load in the internal pressure-load capacity correspondence table) is filled and the maximum load capacity is loaded.
  • JATMA YEAR BOOK 2017, Japan Automobile Tire Association Standard
  • a plurality of lug grooves 28 are formed in the tread 22 of the heavy load tire 10 in the tire circumferential direction.
  • the lug grooves 28 formed in the tread 22 extend outward in the tire width direction more than the ground contact end 22E of the tread 22, and as shown in FIG. 2, the end portion opens in the buttress portion 26 of the heavy load tire 10 ing.
  • the land portion between the lug grooves 28 and the lug grooves 28 adjacent in the tire circumferential direction is referred to as a lug block 30.
  • the buttress portion 26 is formed with a concave air cooling portion 32.
  • the air cooling portion 32 is formed on the side surface (buttress portion 26) of each lug block 30 partitioned by the lug grooves 28.
  • the air cooling unit 32 is configured to include a recess 34, a circumferential air inflow promoting portion 36 disposed adjacent to the recess 34, and a radial air inflow promoting portion 38.
  • the recess 34 will be described. As shown in FIGS. 1 to 3, the recess 34 is formed in the buttress portion 26 and opens toward the tire outer side. Further, as shown in FIG. 4, in the recess 34, the base 40 ⁇ / b> A on the outer side in the tire radial direction (arrow A direction side) is wider than the upper side 40 ⁇ / b> B on the inner side in the tire radial direction.
  • the bottom portion 40 has a trapezoidal shape, but may have another polygonal shape such as a square, a rectangle, or a triangle, or may have a circular shape or an elliptical shape.
  • the bottom portion 40 has a constant depth along the tire rotation direction (arrow B direction) as shown in FIG. 5A, but as shown in FIG. 5B, the tire radial direction outer side (arrow A direction side) ) Is inclined to become shallower in depth. Bottom portion 40 may be inclined in the direction along the tire rotation direction (arrow B direction). Also, the depth may be constant in the tire radial direction (arrow A).
  • the bottom portion 40 is disposed on the tire width direction outer side of the tire width direction end 16Be of the protective belt 16B formed the widest in the belt 14. Further, in the present embodiment, the tire width direction end 16Be of the protective belt 16B is located on the inner side in the tire width direction of the central portion in the tire radial direction of the recess 34. More specifically, the tire width direction end 16Be is disposed between the base 40A of the bottom 40 and the upper side 40B (see FIG. 4) on the side closer to the upper side 40B.
  • a recessed side wall 42 as an air receiving wall portion which constitutes a part of the recessed portion 34 is formed.
  • the recessed side wall 42 is formed on the opposite side of the circumferential air inflow promotion part 36 and the bottom part 40 which will be described later.
  • a recessed side wall 44 which constitutes another part of the recessed portion 34 is formed.
  • the recessed side wall 44 is formed on the opposite side of a radial air inflow / outflow promoting portion 38 described later and the bottom portion 40.
  • the recess 34 rises from the base 40A, and the angle between the recess sidewall 44 and the tire surface is approximately the same angle ⁇ 4.
  • the angle between the recess sidewall 42 and the tire surface is approximately It is divided by the plane 34C which is the same angle ⁇ 3. It is preferable that ⁇ 3 and ⁇ 4 be larger than 40 °. Moreover, it is larger than the inclination angle of the slopes 46 and 52 mentioned later.
  • the cross section of the recess side wall 44 and the recess side wall 42 is rounded at the boundary with the surface of the buttress portion 26. Thereby, distortion of buttress part 26 by load can be controlled.
  • the recess side wall 42 is inclined with respect to a normal line HL erected perpendicular to the surface of the buttress portion 26, and as shown in FIG. 5B, the recess side wall 44 is also the surface of the buttress portion 26.
  • the recess 34 is formed to extend from the bottom 40 toward the tire outer side.
  • the circumferential air inflow / outflow promotion unit 36 Next, the circumferential air inflow / outflow promotion unit 36 will be described. As shown to FIG. 4, and FIG. 5A, the circumferential direction air inflow promotion part 36 is arrange
  • FIG. The circumferential air inflow promotion portion 36 has a trapezoidal shape in a plan view, and has a concave shape having a slope 46 inclined from the surface of the buttress portion 26 on the front side in the tire rotation direction (arrow B direction side) toward the bottom portion 40 of the recess 34 Part of The slope 46 and the bottom 40 are connected smoothly.
  • the slope 46 is an inclined surface whose depth from the tire surface is gradually reduced from the bottom 40 toward the tire surface.
  • the slope 46 has been described as an example of a trapezoidal shape in plan view, but the slope 46 may be planarly viewed depending on the inclination direction of the bottom 40 (extension direction of the side 40C) and the surface shape of the buttress portion 26. It can also be formed into other polygonal shapes.
  • Sidewalls 48 having a steeper slope than the slope 46 are formed on the tire radial direction outer side (arrow A direction side) of the slope 46, and sidewalls 50 having a steeper slope than the slope 46 are formed on the inner side of the slope 46 in the tire radial direction. It is done.
  • the angle that sidewall 48 makes with slope 46 is greater than the angle that sidewall 50 makes with slope 46.
  • the width of the circumferential air inflow promotion portion 36 gradually increases from the front side in the tire rotational direction toward the concave portion 34 side.
  • the width of the end on the front side in the tire rotation direction of the circumferential air inflow promotion portion 36 is W1
  • the width on the concave side 34 side of the circumferential air inflow promotion portion 36 (connected to the concave 34 in the tire surface Assuming that the width of the portion (measured in the tire radial direction) is W3, W3> W1.
  • the width of the slope 46 is constant, and the tire radial direction width of the side walls 48 and 50 gradually increases from the front side in the tire rotational direction toward the recess 34 side.
  • the width of the circumferential air inflow / outflow promoting portion 36 may be constant from the front side in the tire rotational direction toward the recess 34 side.
  • the width W3 of the circumferential air inlet / outlet promoting portion 36 on the tire surface on the side of the recess 34 is set to be the same as the width W2 (tire radial direction) of the recess 34 on the tire surface.
  • the two-dot chain line (virtual line) in FIG. 4 indicates the opening of the recess 34 when the circumferential air inflow / outflow promotion portion 36 and the radial air inflow / outflow promotion portion 38 described later are not formed. .
  • the slope 46 is more gently inclined than the recess side wall 42 and the recess side wall 44 of the recess 34.
  • the average inclination angle ⁇ 1 of the slope 46 with respect to the tire surface of the buttress portion 26 is preferably in the range of 5 ° to 45 °.
  • the average inclination angle ⁇ 1 is larger than 45 °, it becomes difficult to change the direction of the air flowing along the tire surface along the slope 46.
  • the average inclination angle of the slope 46 with respect to the tire surface is smaller than 5 °, the cooling effect is reduced.
  • the inclination angle ⁇ 1 is more preferably set in the range of 5 ° to 30 °, and still more preferably set in the range of 15 ° to 25 °.
  • the cross section of the slope 46 is linear from the side 40C to the surface of the buttress portion 26. By making it linear in this way, the inclination angle of the slope 46 can be made constant, and the direction of the air flow can be made easy to be along the slope 46.
  • a radial air inflow / outflow promoting portion 38 is disposed on the tire radial direction outer side (the direction of arrow A) of the recess 34.
  • the radial air inflow promotion portion 38 is a concave portion having a slope 52 which inclines from the surface of the buttress portion 26 toward the bottom portion 40 of the concave portion 34 when viewed in cross section as shown in FIG. 5B.
  • the slope 52 has a substantially square shape in plan view.
  • the slope 52 and the bottom 40 are connected smoothly.
  • the slope 52 is an inclined surface whose depth from the tire surface is gradually reduced from the bottom 40 toward the tire surface.
  • the slope 52 has a substantially square shape, but may have another polygonal shape such as a rectangle or a trapezoid.
  • a side wall 54 having a steeper slope than the slope 52 is formed on the front side of the slope 52 in the tire rotation direction (arrow B direction side), and on the side opposite to the front side of the tire rotation direction Side walls 56 having a steeper slope than the slope 52 are formed.
  • the angles formed by the side walls 54 and 56 with respect to the slope 52 are substantially the same.
  • the width dimension on the outer side in the tire radial direction is formed relatively smaller than the width dimension on the concave portion 34 side (dimension in the direction intersecting with the inclination direction of the slope 52). ing.
  • the shortest distance from the bottom side 40A of the slope 52 to the surface of the buttress portion 26 is longer than the shortest distance from the upper side 40B of the wall portion 44 to the surface of the buttress portion 26.
  • the width of the slope 52 is constant from the bottom 40 of the recess 34 toward the outer side in the tire radial direction.
  • Ends of the side wall 54 of the radial air inflow promotion portion 38 and the side wall 48 of the circumferential air inflow promotion portion 36 described above are connected to each other. Further, the end portions of the side wall 50 of the circumferential air inflow promotion portion 36 and the recessed side wall 44 of the recessed portion 34 are connected to each other.
  • the slope 52 slopes more gently than the recess side wall 42 and the recess side wall 44 of the recess 34.
  • the average inclination angle ⁇ 2 of the slope 52 with respect to the surface of the buttress portion 26 is within the range of 5 ° to 45 °, similarly to the average inclination angle ⁇ 1 of the slope 46 of the circumferential air entry / exit promoting portion 36. It is more preferable to set in the range of 5 ° to 30 °, and even more preferable to set in the range of 15 ° to 25 °.
  • the cross section of the slope 52 is linear from the base 40A to the surface of the buttress portion 26. By making it linear in this way, the inclination angle of the slope 52 can be made constant, and the direction of air flow can be made easy to follow the slope 52.
  • the average inclination angle ⁇ 1 of the slope 46 and the average inclination angle ⁇ 2 of the slope 52 are determined from the average inclination angle ⁇ 3 of the recess side wall 42 of the recess 34 and the average inclination angle ⁇ 4 of the recess side wall 44. Too small. 5C is a cross-sectional view taken along line 5C-5C of the air-cooling unit shown in FIG. Further, the shortest distance from the side 40C of the slope 46 to the surface of the buttress portion 26 is longer than the shortest distance from the side 40D of the wall portion 42 to the surface of the buttress portion 26.
  • the end on the concave portion 34 side of the slope 46 of the circumferential air entry / exit promoting portion 36 is the entire side 40C on the front side in the tire rotation direction Are linked across the. Further, the end on the concave portion 34 side of the slope 52 of the radial air inflow / outflow promoting portion 38 is connected over the entire side 40A of the bottom portion 40 of the concave portion 34 on the front side in the tire rotation direction.
  • the heavy load tire 10 when the heavy load tire 10 is rotated by traveling, a speed difference is generated between the tire surface and the surrounding air, and the air flows into the concave portion 34 of the air cooling portion 32 formed in the buttress portion 26.
  • the air on the front side in the tire rotation direction of the air-cooling unit 32 flows into the recess 34 as shown by the arrow C in FIG. 3 via the circumferential air in / out promotion part 36 on the front side in the tire rotation direction.
  • the air flowing into the recess 34 flows along the bottom 40 of the recess 34 and cools the bottom 40 of the recess 34.
  • the average inclination angle ⁇ 1 of the slope 46 of the circumferential air entry / exit promoting portion 36 with respect to the tire surface is 45 ° or less, and is connected to the bottom portion 40 of the recess 34 by being more gently inclined than the recess side wall 42 and the recess side wall 44 of the recess 34 doing. For this reason, in particular, the air on the front side in the tire rotational direction of the recess 34 can be smoothly guided along the slope 46 to the inside of the recess 34. And since the air which flowed in into crevice 34 flows along with bottom 40 of crevice 34, bottom 40 can be cooled effectively.
  • the air-cooling unit 32 including the circumferential air entry and exit promoting unit 36 promotes the inflow of air into the recess 34 as compared with the case where the circumferential air entry and exit promoting unit 36 does not exist, and the buttress unit 26 is more effective. It can be cooled.
  • the air flowing along the bottom portion 40 can hit the side wall 42 of the recess to form a turbulent flow.
  • the air flowing in from the circumferential air inflow / outflow promoting portion 36 is suppressed from passing through only the surface of the recess 34 and remaining in the air at the bottom portion 40 can be suppressed.
  • the effect of air cooling the bottom of the recess 34 can be improved.
  • the air that has flowed into the bottom portion 40 is discharged to the outside of the tire along the slope 52 of the radial air inflow promoting portion 38 disposed on the tire radial direction outer side of the recess 34. That is, the air introduced from the front side in the tire rotational direction changes the flow direction at the bottom 40 and is discharged to the outside of the tire.
  • the air-cooling unit 32 the air entering and exiting from the recess 34 is promoted as compared with the case where the radial direction air insertion promoting unit 38 is not provided, and the buttress unit 26 can be cooled more effectively.
  • the radial air inflow / outflow promoting portion 38 on the tire radial direction outer side of the recess 34 is located on the front side in the tire advancing direction of the recess 34, the radial air inflow / outflow promoting portion 38 is directed toward the bottom 40 of the recess 34. It is possible to promote the inflow of air (translational wind) heading backward in the traveling direction.
  • the end on the concave portion 34 side of the slope 46 of the circumferential air entry / exit promoting portion 36 is the entire side 40C on the front side in the tire rotation direction Are linked across the.
  • the end on the concave portion 34 side of the slope 52 of the radial air inflow / outflow promoting portion 38 is connected over the entire side 40A of the bottom portion 40 of the concave portion 34 on the front side in the tire rotation direction.
  • the bottom 40 of the recess 34 of the air-cooling unit 32 is disposed outside the tire width direction end 16Be of the protective belt 16B in the tire width direction, and the tire width direction end 16Be of the protective belt 16B that is most susceptible to temperature rise. It is located in the vicinity. Therefore, the heat generated near the tire width direction end 16Be of the protective belt 16B can be effectively dissipated to the outside of the tire through the bottom 40 of the recess 34, and the tire width direction of the protective belt 16B having the maximum width The temperature rise in the vicinity of the end 16Be can be effectively suppressed.
  • the tire width direction end 16Be of the protective belt 16B is located inside the tire width direction center of the bottom 40 of the recess 34 in the tire width direction.
  • the tire radial direction inner portion of the direction end portion 16Be and the tire radial direction outer portion can be equally cooled.
  • the bottom portion 40 of the recess 34 is not located on the tire width direction outer side of the tire width direction end 16Ae of the protective belt 16A disposed on the outermost side in the tire radial direction in the belt 14
  • the bottom portion 40 may be extended outward in the tire radial direction so that the bottom portion 40 of the recess 34 is positioned on the tire width direction outer side of the tire width direction end 16Ae of the outermost protective belt 16A.
  • the bottom portion 40 of the recess 34 By arranging the bottom portion 40 of the recess 34 on the tire width direction outer side of the tire width direction end 16Ae of the outermost protection belt 16A in the tire radial direction, the bottom portion 40 can be brought close to the tire width direction end 16Ae. Thereby, the temperature rise near the tire width direction end 16Ae can be suppressed, and the durability of the tread rubber 24 near the tire width direction end 16Ae can be maintained, and a crack is formed on the surface of the tread 22 in the tire width direction. It is possible to suppress the progress toward the tread rubber 24 near 16Ae.
  • 6A to 6C and 7A to 7D are plan views schematically showing a modification of the air cooling unit 32, and only the slopes of the bottom of the recess 34, the circumferential air inflow promotion portion, and the radial air inflow promotion portion Is listed.
  • the circumferential air inflow promotion portion 36 is formed on the front side in the tire circumferential direction of the concave portion 34, and the concave side wall 42 as an air receiving wall portion on the tire circumferential direction rear side of the concave portion 34. Is formed.
  • a radial air inflow / outflow promoting portion 39 is further formed inside the recess 34 in the tire radial direction.
  • the recessed side wall 44 is an imaginary wall surface, and the recessed side wall 34A is formed on the outer side of the recessed portion 34 in the tire radial direction in a portion where the imaginary flat surface 34A is disposed.
  • a radial air inflow / outflow promoting portion 38 is formed on the outer side in the tire radial direction of the recess 34.
  • the recessed side wall 34A is a virtual wall surface.
  • the circumferential air inflow promotion portion 36 is formed on the front side in the tire circumferential direction of the concave portion 34, and the concave side wall 42 is formed on the tire circumferential direction rear side of the concave portion 34.
  • the access promotion part is not formed.
  • a circumferential air inflow / outflow promoting portion 37 is formed on the rear side of the recess 34 in the tire circumferential direction, and a recess sidewall 34C as an air receiving wall on the front side of the recess 34 in the tire circumferential direction. Is formed.
  • the air entry and exit promoting portion is not formed.
  • a radial air inflow / outflow promoting portion 39 is further formed inside the recess 34 in the tire radial direction.
  • the recessed side wall 44 is a virtual wall surface.
  • a radial air inflow / outflow promoting portion 38 is further formed on the outer side in the tire radial direction of the recess 34.
  • the recessed side wall 42 is a virtual wall surface.
  • a radial air inflow / outflow promoting portion 39 is further formed inside the recess 34 in the tire radial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

重荷重用タイヤ10は、バットレス部26に形成され、タイヤ外側に向けて開口する凹部34と、底部40に対してタイヤ回転方向の一方側に配置され、底部40からタイヤ表面へ向けてタイヤ表面からの深さが漸減されたスロープ46を有し、底部40への空気の出入を促進する周方向空気出入促進部36と、周方向空気出入促進部36と底部40を挟んで反対側に配置され、スロープ46よりもタイヤ表面に対する角度が大きい空気受壁部42と、を備えている。

Description

重荷重用タイヤ
 本発明は、重荷重用タイヤに関する。
 重荷重用タイヤでは、荷重負荷能力やサイズの観点から、バットレス部付近の温度が上昇し易い傾向にある。走行により路面に対して接地、及び離間が繰り返されるとバットレス部に繰り返し歪みが生じてバットレス部が発熱をする。このため、バットレス部に凹部を形成し、凹部に空気を流入させてバットレス部を冷却することが考えられる。バットレス部に凹部を形成したタイヤとしては、例えば、特表2009-542528号公報に記載のタイヤがある。
 バットレス部に凹部を形成することで、バットレス部をある程度冷却することは可能であるが、負荷荷重が大きくなると歪みが増え、発熱が大きくなるため、冷却能力の向上が求められている。
 本発明は上記事実を考慮し、バットレス部の冷却能力を向上させた重荷重用タイヤの提供を目的とする。
 第1の態様に係る重荷重用タイヤは、バットレス部に形成され、タイヤ外側に向けて開口し、底部を有する凹部と、前記底部に対してタイヤ回転方向の一方側に配置され、前記底部からタイヤ表面へ向けて前記タイヤ表面からの深さが漸減されたスロープを有し、前記底部への空気の出入を促進する周方向空気出入促進部と、前記周方向空気出入促進部と前記底部を挟んで反対側に配置され、前記スロープよりもタイヤ表面に対する角度が大きい空気受壁部と、を備えている。
 重荷重用タイヤが回転することで、タイヤ表面と周囲の空気との間に速度差が生じ、バットレス部に形成された凹部に空気が流れ込む。請求項1に記載の重荷重用タイヤでは、凹部の底部に対してタイヤ回転方向の一方側に周方向空気出入促進部が形成されている。周方向空気出入促進部は、タイヤ表面からの深さが漸減されたスロープを有し、底部への空気の出入を促進する。したがって、空気が、タイヤ回転方向においてスロープに沿って底部へ出入りしやすくなる。
 また、底部を挟んで周方向空気出入促進部と反対側に空気受壁部が形成されている。この空気受壁部は、スロープよりもタイヤ表面に対する角度が大きいので、周方向空気出入促進部から流入した空気に乱流を形成することができる。これにより、周方向空気出入促進部から流入した空気が凹部の底に達することなく表面(浅い部分)のみを通過して抜けることが抑制され、凹部の底部での空気の滞留を抑制することができる。その結果、凹部の底部を空冷する効果を向上することができる。このようにバットレス部に凹部を設けることで、重荷重用タイヤを回転した際にバットレス部を効果的に冷却することができる。
 第2の態様に係る重荷重用タイヤは、第1の態様に係る重荷重用タイヤにおいて、前記周方向空気出入促進部はタイヤ回転方向の前側に配置されている。
 第2の態様に係る重荷重用タイヤによれば、タイヤ回転時において、周方向空気出入促進部から底部への空気の流入が効果的に促進される。
 第3の態様に係る重荷重用タイヤは、第1の態様または第2の態様に係る重荷重用タイヤにおいて、前記周方向空気出入促進部と異なる位置に配置され、前記底部からタイヤ表面へ向けて前記タイヤ表面からの深さが漸減され、前記空気受壁部よりもタイヤ表面に対する角度が小さいスロープを有する第2空気出入促進部と、を備えている。
 第3の態様に係る重荷重用タイヤによれば、周方向空気出入促進部と別に第2空気出入促進部を有しているので、例えば、周方向空気出入促進部から流入した空気が底部を経て空気受壁部に当たった後、第2空気出入促進部から凹部外へ抜けることができたり、凹部への空気の流入をより促進したりすることができる。
 第4の態様に係る重荷重用タイヤは、第3の態様に係る重荷重用タイヤにおいて、前記第2空気出入促進部は、前記底部に対してタイヤ径方向の少なくとも一方側に配置されている、径方向空気出入促進部である。
 このように、第2空気出入促進部を底部に対してタイヤ径方向側に配置することにより、底部に対してタイヤ周方向側に配置された周方向空気流入促進部から流入した空気の方向を変えて第2空気出入促進部から良好に排出したり、第2空気出入促進部から流入した空気の方向を変えて周方向空気流入促進部から良好に排出したりすることができる。
 第5の態様に係る重荷重用タイヤは、第1の態様~第4の態様の何れかに係る重荷重用タイヤにおいて、前記スロープの前記タイヤ表面に対する平均の傾斜角度が5°~45°の範囲内に設定されている。
 スロープのタイヤ表面に対する平均の傾斜角度を45°よりも大きくすると、タイヤ表面に沿って流れる空気の向きスロープに沿うように変えることが困難になる。一方、スロープのタイヤ表面に対する平均の傾斜角度を5°よりも小さくすると、冷却効果が少なくなる。なお、スロープのタイヤ表面に対する平均の傾斜角度は、5°~30°の範囲に設定することが好ましく、15°~25°の範囲に設定することがより一層好ましい。
 第6の態様に係る重荷重用タイヤは、前記底部のタイヤ幅方向内側に、ベルトを構成するタイヤ幅方向最大幅のベルトプライのタイヤ幅方向端部が位置している。
 重荷重用タイヤが回転すると、トレッドが路面と接触、離間を繰り返すことによる歪みがタイヤ幅方向最大幅のベルトプライの端部近傍に生じ、これにより、特にタイヤ幅方向最大幅のベルトプライの端部付近の温度が上昇する。
 第6の態様に係る重荷重用タイヤでは、凹部の底部のタイヤ幅方向内側に、ベルトを構成しているタイヤ幅方向最大幅のベルトプライのタイヤ幅方向端部が位置しているため、当該ベルトプライの端部近傍で発生した熱を、凹部を介してタイヤ外へ効果的に放熱することができ、タイヤ幅方向最大幅のベルトプライのタイヤ幅方向端部近傍の温度上昇を抑制することができる。
 以上説明したように本発明の重荷重用タイヤによれば、バットレス部の冷却能力を向上することができる、という優れた効果を有する。
本発明の一実施形態に係る重荷重用タイヤのバットレス部付近を示す断面図である。 本発明の一実施形態に係る重荷重用タイヤのバットレス部付近を示す側面図である。 本発明の一実施形態に係る重荷重用タイヤのバットレス部付近を示す斜視図である。 バットレス部に設けた空冷部を示す平面図である。 図4に示す空冷部の5A-5A線断面図である。 図4に示す空冷部の5B-5B線断面図である。 図4に示す空冷部の5C-5C線断面図である。 空冷部の変形例を示す平面図である。 空冷部の変形例を示す平面図である。 空冷部の変形例を示す平面図である。 空冷部の他の変形例を示す平面図である。 空冷部の他の変形例を示す平面図である。 空冷部の他の変形例を示す平面図である。 空冷部の他の変形例を示す平面図である。
 図1~図5を用いて、本発明の一実施形態に係る重荷重用タイヤ10について説明する。本実施形態の重荷重用タイヤ10は、後述する空冷部32以外の構造は、一般的な重荷重用の空気入りタイヤと同様の構成である。
 図1に示すように、重荷重用タイヤ10は、図示しない一対のビードコアを跨るカーカス12を備えている。
(ベルトの構成)
 カーカス12のタイヤ径方向外側にはベルト14が配置されている。ベルト14は、複数のベルト層を具備している。具体的には、本実施形態に係る重荷重用タイヤ10は、2枚の保護ベルト16A,16Bからなる保護ベルト層16、2枚の主交錯ベルト18A,18Bからなる主交錯ベルト層18、及び、2枚の小交錯ベルト20A,20Bからなる小交錯ベルト層20を備えている。なお、保護ベルト16A,16B、主交錯ベルト18A,18B、及び小交錯ベルト20A,20Bは、各々、互いに平行に並べられた複数本のコードを被覆ゴムでコーティングした一般的な構造のものである。
 主交錯ベルト層18は、小交錯ベルト層20のタイヤ径方向外側に配置されており、保護ベルト層16は、主交錯ベルト層18のタイヤ径方向外側に配置されている。
 本実施形態の重荷重用タイヤ10では、一例として小交錯ベルト層20を構成するコードとタイヤ周方向とがなす角度は、4~10°であり、主交錯ベルト層18を構成するコードとタイヤ周方向とがなす角度は、18~35°であり、保護ベルト層16を構成するコードとタイヤ周方向とがなす角度は、22~33°である。
 以下に、本実施形態のベルト14における各ベルト層の幅について説明する。
 タイヤ径方向最内側の小交錯ベルト20Bのタイヤ径方向外側に隣接する小交錯ベルト20Aの幅は、小交錯ベルト20Bの幅よりも若干狭く形成されている。
 小交錯ベルト20Aのタイヤ径方向外側に隣接する主交錯ベルト18Bの幅は、小交錯ベルト20A,20Bよりも幅広に形成されている。
 主交錯ベルト18Bのタイヤ径方向外側に隣接する主交錯ベルト18Aの幅は、小交錯ベルト20A,20Bよりも幅広で、かつ主交錯ベルト18Bよりも幅狭に形成されている。
 主交錯ベルト18Aのタイヤ径方向外側に隣接する保護ベルト16Bの幅は、小交錯ベルト20A,20B、及び主交錯ベルト18A、18Bよりも幅広に形成されている。
 また、保護ベルト16Bのタイヤ径方向外側に隣接し、ベルト14のタイヤ径方向最外側に位置する保護ベルト16Aの幅は、保護ベルト16B、及び主交錯ベルト18Bよりも幅狭で、かつ、小交錯ベルト20A,20B、及び主交錯ベルト18Aよりも幅広に形成されている。保護ベルト16Aは、複数のベルト層の内、タイヤ径方向最外側に配置されている。
 また、ベルト14において、径方向内側から数えて5枚目の保護ベルト16Bが、複数のベルト層の内、最も幅広に形成されており、ベルト端部がタイヤ幅方向最外側に配置されている。この保護ベルト16Bは、タイヤ幅方向最大幅のベルトプライの一例である。
 ベルト14のタイヤ径方向外側には、トレッド22を構成するトレッドゴム24が配置されている。トレッドゴム24は、カーカス12に沿ってベルト14のタイヤ幅方向外側へ延び、ベルト14のタイヤ幅方向外側へ配置されている一部が、バットレス部26の一部を構成している。
 本実施形態におけるバットレス部26とは、タイヤ最大幅部Wmaxとトレッド22の接地端22Eとのタイヤ径方向寸法をHとしたときに、タイヤ最大幅部Wmaxから1/2×Hの位置から接地端22Eまでの間のタイヤ外側の領域を指す。
 また、トレッド22の接地端22Eとは、重荷重用タイヤ10をJATMA YEAR BOOK(2017、日本自動車タイヤ協会規格)に規定されている標準リムに装着し、JATMA YEAR BOOKでの適用サイズ・プライレーティングにおける最大負荷能力(内圧-負荷能力対応表の太字荷重)に対応する空気圧(最大空気圧)の100%の内圧を充填し、最大負荷能力を負荷したときのものである。なお、使用地又は製造地において、TRA規格、ETRTO規格が適用される場合は各々の規格に従う。
 重荷重用タイヤ10のトレッド22には、複数のラグ溝28がタイヤ周方向に複数本形成されている。トレッド22に形成されるラグ溝28は、トレッド22の接地端22Eよりもタイヤ幅方向外側へ延びており、図2に示すように、その端部が重荷重用タイヤ10のバットレス部26に開口している。なお、本実施形態において、タイヤ周方向に隣接するラグ溝28とラグ溝28との間の陸部分をラグブロック30と呼ぶ。
 図1~図3に示すように、バットレス部26には、凹状の空冷部32が形成されている。本実施形態では、ラグ溝28で区画される各ラグブロック30の側面(バットレス部26)に空冷部32が形成されている。
(空冷部の詳細)
 図4に示すように、空冷部32は、凹部34と、凹部34に隣接して配置される周方向空気出入促進部36と、径方向空気出入促進部38とを含んで構成されている。
(凹部の詳細)
 先ず、最初に凹部34について説明する。
 図1から図3に示すように、凹部34は、バットレス部26に形成され、タイヤ外側に向けて開口している。また、図4に示すように、凹部34は、タイヤ軸方向から見た平面視で、タイヤ径方向外側(矢印A方向側)の底辺40Aが、タイヤ径方向内側の上辺40Bよりも幅広の台形状を呈した底部40を備えている。なお、底辺40A、及び上辺40Bは、タイヤ周方向(矢印B方向)の接線方向に対して平行であり、底部40のタイヤ回転方向(矢印B方向)前側の辺40C、及び底部40のタイヤ回転方向とは反対方向側の辺40Dは、タイヤ径方向(矢印A方向)に対して傾斜している。
 なお、本実施形態では、底部40は台形状であるが、正方形、長方形、三角形等、その他の多角形状であってもよいし、円形、楕円形状であってもよい。
 底部40は、図5Aに示すようにタイヤ回転方向(矢印B方向)に沿って深さは一定であるが、図5Bに示すように、タイヤ径方向内側からタイヤ径方向外側(矢印A方向側)に向けて深さが徐々に浅くなるように傾斜している。なお、底部40は、タイヤ回転方向(矢印B方向)に沿う方向において傾斜していてもよい。また、タイヤ径方向に沿う(矢印A)方向において、深さが一定でもよい。
 図1に示すように、本実施形態の凹部34では、ベルト14の中で最も幅広に形成された保護ベルト16Bのタイヤ幅方向端部16Beのタイヤ幅方向外側に底部40が配置されている。また、本実施形態では、凹部34のタイヤ径方向中央部のタイヤ幅方向内側に、保護ベルト16Bのタイヤ幅方向端部16Beが位置している。より詳細には、タイヤ幅方向端部16Beは、底部40の底辺40Aと上辺40B(図4参照)の間で、上辺40Bに近い側に配置されている。
 図4に示すように、底部40のタイヤ回転方向(矢印B方向)前側とは反対側には凹部34の一部を構成している空気受壁部としての凹部側壁42が形成されている。凹部側壁42は、後述する周方向空気出入促進部36と底部40を挟んで反対側に形成される。また、底部40のタイヤ径方向内側(矢印A方向とは反対方向)には凹部34の他の一部を構成している凹部側壁44が形成されている。凹部側壁44は、後述する径方向空気出入促進部38と底部40を挟んで反対側に形成される。図5A及び図5Bに示されるように、凹部34は、底辺40Aから立ち上がり、凹部側壁44とタイヤ表面との角度が略同角度θ4である平面34A、凹部側壁42とタイヤ表面との角度が略同角度θ3である平面34Cによって区画されている。θ3、θ4は、40°よりも大きいことが好ましい。また、後述するスロープ46、52の傾斜角度よりも大きい。
 なお、凹部側壁44、凹部側壁42の断面は、バットレス部26の表面との境界部分においてR状とされている。これにより、荷重によるバットレス部26の歪みを抑制することができる。
 図5Aに示すように、凹部側壁42はバットレス部26の表面に垂直に立てた法線HLに対して傾斜しており、また、図5Bに示すように、凹部側壁44もバットレス部26の表面に垂直に立てた法線HLに対して傾斜している。これにより、凹部34は、底部40からタイヤ外側に向けて広がるように形成されている。
(周方向空気出入促進部)
 次に、周方向空気出入促進部36について説明する。
 図4、及び図5Aに示すように、凹部34の底部40に対してタイヤ回転方向(矢印B方向)の前側には周方向空気出入促進部36が配置されている。周方向空気出入促進部36は、平面視で台形状を呈し、タイヤ回転方向前側(矢印B方向側)のバットレス部26の表面から凹部34の底部40に向けて傾斜するスロープ46を有した凹状の部分である。なお、スロープ46と底部40とは滑らかに接続されている。スロープ46は、底部40からタイヤ表面へ向けてタイヤ表面からの深さが漸減された傾斜面である。
 なお、本実施形態では、スロープ46は平面視で台形状の例で説明したが、底部40の傾斜方向(辺40Cの延出方向)、バットレス部26の表面形状によって、スロープ46は、平面視で他の多角形状に形成することもできる。
 スロープ46のタイヤ径方向外側(矢印A方向側)にはスロープ46よりも傾斜が急な側壁48が形成され、スロープ46のタイヤ径方向内側にはスロープ46よりも傾斜が急な側壁50が形成されている。スロープ46に対して側壁48がなす角度は、スロープ46に対して側壁50がなす角度よりも大きくなっている。
 図4に示すように、タイヤ径方向において、周方向空気出入促進部36の幅は、タイヤ回転方向前方側から凹部34側に向けて漸増している。換言すれば、周方向空気出入促進部36のタイヤ回転方向前方側の端部の幅をW1とし、周方向空気出入促進部36の凹部34側の幅(タイヤ表面において凹部34と接続されている部分の幅。タイヤ径方向に測定)をW3とすると、W3>W1である。スロープ46の幅は一定であり、側壁48,50のタイヤ径方向幅が、タイヤ回転方向前方側から凹部34側に向けて漸増している。なお、周方向空気出入促進部36の幅が、タイヤ回転方向前方側から凹部34側に向けて一定であってもよい。
 さらに、本実施形態では、タイヤ表面における周方向空気出入促進部36の凹部34側の幅W3は、タイヤ表面における凹部34の幅W2(タイヤ径方向)と同一に設定されている。なお、図4の2点鎖線(仮想線)は、周方向空気出入促進部36、及び後述する径方向空気出入促進部38が形成されていなかった場合の、凹部34の開口部を示している。
 図5A、図5Bに示すように、スロープ46は、凹部34の凹部側壁42、凹部側壁44よりも緩やかに傾斜している。バットレス部26のタイヤ表面に対するスロープ46の平均傾斜角度θ1は、5°~45°の範囲内であることが好ましい。ここで、この平均傾斜角度θ1が45°より大きいと、タイヤ表面に沿って流れる空気の向きを、スロープ46に沿うように変えることが困難になる。一方、スロープ46のタイヤ表面に対する平均の傾斜角度を5°よりも小さくすると、冷却効果が少なくなる。なお、この傾斜角度θ1は、5°~30°の範囲内に設定することがより好ましく、15°~25°の範囲内に設定することがより一層好ましい。
 なお、スロープ46の断面は、辺40Cからバットレス部26の表面にかけて直線状である。このように直線状とすることにより、スロープ46の傾斜角度を一定にして空気の流れの向きを、スロープ46に沿わせ易くすることができる。
(径方向空気出入促進部)
 次に、径方向空気出入促進部38について説明する。
 図4に示すように、凹部34のタイヤ径方向外側(矢印A方向)には径方向空気出入促進部38が配置されている。径方向空気出入促進部38は、図5Bに示すように断面で見て、バットレス部26の表面から凹部34の底部40に向けて傾斜するスロープ52を有した凹状の部分である。スロープ52は、平面視で略正方形を呈している。なお、スロープ52と底部40とは滑らかに接続されている。スロープ52は、底部40からタイヤ表面へ向けてタイヤ表面からの深さが漸減された傾斜面である。
 なお、本実施形態では、スロープ52は略正方形状であるが、長方形、台形等、その他の多角形状であってもよい。
 図4に示すように、スロープ52のタイヤ回転方向前側(矢印B方向側)にはスロープ52よりも傾斜が急な側壁54が形成され、スロープ52のタイヤ回転方向前側とは反対方向側にはスロープ52よりも傾斜が急な側壁56が形成されている。スロープ52に対して側壁54、56なす角度は、略同じ程度となっている。本実施形態の径方向空気出入促進部38は、凹部34側の幅寸法(スロープ52の傾斜方向とは交差する方向の寸法)よりも、タイヤ径方向外側の幅寸法が相対的に小さく形成されている。また、スロープ52の、底辺40Aからバットレス部26の表面までの最短距離は、壁部44の上辺40Bからバットレス部26の表面までの最短距離よりも長い。
 なお、スロープ52の幅は、凹部34の底部40からタイヤ径方向外側に向けて一定である。
 なお、径方向空気出入促進部38の側壁54と、前述した周方向空気出入促進部36の側壁48とは、互いに端部同士が接続されている。また、周方向空気出入促進部36の側壁50と凹部34の凹部側壁44とは、互いに端部同士が接続されている。
 スロープ52は、凹部34の凹部側壁42、凹部側壁44よりも緩やかに傾斜している。図5Bに示すように、バットレス部26の表面に対するスロープ52の平均傾斜角度θ2は、周方向空気出入促進部36のスロープ46の平均傾斜角度θ1と同様に、5°~45°の範囲内であることが好ましく、5°~30°の範囲内に設定することがより好ましく、15°~25°の範囲内に設定することがより一層好ましい。
 なお、スロープ52の断面は、底辺40Aからバットレス部26の表面にかけて直線状である。このように直線状とすることにより、スロープ52の傾斜角度を一定にして空気の流出入の向きを、スロープ52に沿わせ易くすることができる。
 図5A,図5Bに示すように、スロープ46の平均傾斜角度θ1、及びスロープ52の平均傾斜角度θ2は、凹部34の凹部側壁42の平均傾斜角度θ3、及び凹部側壁44の平均傾斜角度θ4よりも小さい。なお、図5Cは、図4に示す空冷部の5C-5C線断面図である。また、スロープ46の、辺40Cからバットレス部26の表面までの最短距離は、壁部42の辺40Dからバットレス部26の表面までの最短距離よりも長い。
 図4に示すように、本実施形態の空冷部32では、周方向空気出入促進部36のスロープ46の凹部34側の端部が、凹部34の底部40におけるタイヤ回転方向前方側の辺40C全体に渡って連結されている。また、径方向空気出入促進部38のスロープ52の凹部34側の端部が、凹部34の底部40におけるタイヤ回転方向前方側の辺40A全体に渡って連結されている。
(作用、効果) 
 以下に本実施形態の重荷重用タイヤ10の作用、効果を説明する。
 重荷重用タイヤ10が走行により回転すると、トレッド22が路面に対して接地、及び離間が繰り返される。これにより、トレッド22に繰り返し歪みが生じ、特にバットレス部26が多く発熱をする。
 また、重荷重用タイヤ10が走行により回転すると、タイヤ表面と周囲の空気との間に速度差が生じ、バットレス部26に形成された空冷部32の凹部34に空気が流れ込む。具体的には、タイヤ回転方向前方側の周方向空気出入促進部36を介して、空冷部32のタイヤ回転方向前方側の空気が、図3の矢印Cで示すように、凹部34に流れ込む。そして、凹部34に流入した空気は、凹部34の底部40に沿って流れ、凹部34の底部40を冷却する。
 周方向空気出入促進部36のスロープ46のタイヤ表面に対する平均傾斜角度θ1は45°以下であり、凹部34の凹部側壁42、及び凹部側壁44よりも緩やかに傾斜して凹部34の底部40に接続している。このため、特に、凹部34のタイヤ回転方向前方側の空気をスロープ46に沿って凹部34の内部にスムーズに導くことができる。そして、凹部34に流入した空気は、凹部34の底部40に沿って流れるので、底部40を効果的に冷却することができる。即ち、周方向空気出入促進部36を備えた空冷部32は、周方向空気出入促進部36が無い場合に比較して凹部34への空気の流入が促進され、バットレス部26をより効果的に冷却することができる。
 そして底部40に沿って流れた空気は、凹部側壁42に当たって乱流を形成することができる。これにより、周方向空気出入促進部36から流入した空気が凹部34の表面のみを通過して抜けることが抑制され、底部40での空気の滞留を抑制することができる。その結果、凹部34の底部を空冷する効果を向上することができる。
 底部40へ流入した空気は、凹部34のタイヤ径方向外側に配置された径方向空気出入促進部38のスロープ52に沿ってタイヤ外へ排出される。すなわち、タイヤ回転方向前方側から流入させた空気は、底部40で流れの方向を変えてタイヤ外側に排出される。これにより、空冷部32では、径方向空気出入促進部38が無い場合に比較して、凹部34への空気の出入が促進され、バットレス部26をより効果的に冷却することができる。
 なお、凹部34のタイヤ径方向外側の径方向空気出入促進部38が凹部34のタイヤ進行方向前方側に位置したときには、該径方向空気出入促進部38から凹部34の底部40に向けて、タイヤ進行方向の後方に向かう空気(並進風)の流入を促進することができる。
 なお、周方向空気出入促進部36のスロープ46の平均傾斜角度θ1が45°よりも大きくなると、タイヤ表面に沿って流れる空気の向きをスロープ46に沿うように変えることが困難になる。一方、周方向空気出入促進部36のスロープ46の平均傾斜角度θ1が5°よりも小さくなると、凹部34の冷却効果が少なくなってしまう。径方向空気出入促進部38のスロープ52の平均傾斜角度θ2についても同様である。
 図4に示すように、本実施形態の空冷部32では、周方向空気出入促進部36のスロープ46の凹部34側の端部が、凹部34の底部40におけるタイヤ回転方向前方側の辺40C全体に渡って連結されている。また、径方向空気出入促進部38のスロープ52の凹部34側の端部が、凹部34の底部40におけるタイヤ回転方向前方側の辺40A全体に渡って連結されている。これにより、周方向空気出入促進部36から流入させた空気を、凹部34の底部40の幅方向全体に渡って流入させ、径方向空気出入促進部38から流出させることができ、底部40を効果的に冷却することができる。また、径方向空気出入促進部38からも効率的に空気を流入させることができる。
 重荷重用タイヤ10が回転したときにトレッド22は、ベルト14の最大幅付近、即ち、ベルト14を構成している最も幅広に形成された保護ベルト16Bのタイヤ幅方向端部16Be付近が温度上昇しやすい。
 本実施形態では、空冷部32の凹部34の底部40が、保護ベルト16Bのタイヤ幅方向端部16Beのタイヤ幅方向外側に配置され、最も温度上昇し易い保護ベルト16Bのタイヤ幅方向端部16Be近傍に位置している。このため、保護ベルト16Bのタイヤ幅方向端部16Be近傍で発生した熱を、凹部34の底部40を介してタイヤ外へ効果的に放熱することができ、最大幅の保護ベルト16Bのタイヤ幅方向端部16Be近傍の温度上昇を効果的に抑制することができる。
 また、本実施形態の重荷重用タイヤ10では、保護ベルト16Bのタイヤ幅方向端部16Beが、凹部34の底部40のタイヤ径方向中央部のタイヤ幅方向内側に位置しているので、該タイヤ幅方向端部16Beのタイヤ径方向内側部分と、タイヤ径方向外側部分とを均等に冷却することができる。
 また、図1の例では、ベルト14においてタイヤ径方向の最外側に配置されている保護ベルト16Aのタイヤ幅方向端16Aeのタイヤ幅方向外側に、凹部34の底部40が位置していなかったが、底部40をタイヤ径方向外側へ延ばして、最外側の保護ベルト16Aのタイヤ幅方向端16Aeのタイヤ幅方向外側に凹部34の底部40が位置するようにしてもよい。
 重荷重用タイヤ10が悪路等を走行することで、トレッド22の表面に亀裂が生じる場合がある。タイヤ径方向最外側の保護ベルト16Aのタイヤ幅方向端16Ae付近が発熱して温度が上昇すると、タイヤ幅方向端16Ae付近の周囲のトレッドゴム24の耐久性が低下し、トレッド22の表面に生じた亀裂が、耐久性の低下したゴム部分に向けて進展する場合がある。
 タイヤ径方向最外側の保護ベルト16Aのタイヤ幅方向端16Aeのタイヤ幅方向外側に、凹部34の底部40を配置することで、タイヤ幅方向端16Aeに底部40を近づけることができる。これにより、タイヤ幅方向端16Ae近傍の温度上昇を抑制することができ、タイヤ幅方向端16Ae近傍のトレッドゴム24の耐久性を維持することができ、トレッド22の表面に亀裂がタイヤ幅方向端16Ae近傍のトレッドゴム24に向けて進展することを抑制できる。
[その他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
 以下に、周方向空気出入促進部、径方向空気出入り促進部と凹部34の位置関係等を変更した変形例を説明する。図6A~図6C、図7A~図7Dは空冷部32の変形例を模式的に示す平面図であり、凹部34の底部、及び周方向空気出入促進部、径方向空気出入り促進部のスロープのみを記載している。
 図6A~図6Cに示される例では、凹部34のタイヤ周方向前側に周方向空気出入促進部36が形成されると共に、凹部34のタイヤ周方向後側に空気受壁部としての凹部側壁42が形成されている。
 図6Aに示される例では、上記に加えて、さらに凹部34のタイヤ径方向内側に径方向空気出入促進部39が形成されている。凹部側壁44は、仮想の壁面となり、凹部34のタイヤ径方向外側には、仮想の平面34Aが配置されていた部分に凹部側壁34Aが形成される。
 図6Bに示される例では、図6Aの構成に加えて、凹部34のタイヤ径方向外側に、径方向空気出入促進部38が形成されている。凹部側壁34Aは、仮想の壁面となる。
 図6Cに示される例では、凹部34のタイヤ周方向前側に周方向空気出入促進部36が形成されると共に、凹部34のタイヤ周方向後側に凹部側壁42が形成されており、他に空気出入促進部は形成されていない。
 図7A~図7Dに示される例では、凹部34のタイヤ周方向後側に周方向空気出入促進部37が形成されると共に、凹部34のタイヤ周方向前側に空気受壁部としての凹部側壁34Cが形成されている。
 図7Aに示される例では、上記の他に空気出入促進部は形成されていない。
 図7Bに示される例では、図7Aに加えて、さらに凹部34のタイヤ径方向内側に径方向空気出入促進部39が形成されている。凹部側壁44は、仮想の壁面となる。
 図7Cに示される例では、図7Aに加えて、さらに凹部34のタイヤ径方向外側に径方向空気出入促進部38が形成されている。凹部側壁42は、仮想の壁面となる。
 図7Dに示される例では、図7Cに加えて、さらに凹部34のタイヤ径方向内側に径方向空気出入促進部39が形成されている。
 2017年12月12日に出願された日本国特許出願2017-237698号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (6)

  1.  バットレス部に形成され、タイヤ外側に向けて開口し、底部を有する凹部と、
     前記底部に対してタイヤ回転方向の一方側に配置され、前記底部からタイヤ表面へ向けて前記タイヤ表面からの深さが漸減されたスロープを有し、前記底部への空気の出入を促進する周方向空気出入促進部と、
     前記周方向空気出入促進部と前記底部を挟んで反対側に配置され、前記スロープよりもタイヤ表面に対する角度が大きい空気受壁部と、
     を備えた重荷重用タイヤ。
  2.  前記周方向空気出入促進部はタイヤ回転方向の前側に配置されている、請求項1に記載の重荷重用タイヤ。
  3.  前記周方向空気出入促進部と異なる位置に配置され、前記底部からタイヤ表面へ向けて前記タイヤ表面からの深さが漸減され、前記空気受壁部よりもタイヤ表面に対する角度が小さいスロープを有する第2空気出入促進部と、
     を備えた、請求項1または請求項2に記載の重荷重用タイヤ。
  4.  前記第2空気出入促進部は、前記底部に対してタイヤ径方向の少なくとも一方側に配置されている、径方向空気出入促進部である、請求項3に記載の重荷重用タイヤ。
  5.  前記スロープの前記タイヤ表面に対する平均の傾斜角度が5°~45°の範囲内に設定されている、請求項1~請求項4の何れか1項に記載の重荷重用タイヤ。
  6.  前記底部のタイヤ幅方向内側に、ベルトを構成するタイヤ幅方向最大幅のベルトプライのタイヤ幅方向端部が位置している、請求項1~請求項5の何れか1項に記載の重荷重用タイヤ。
PCT/JP2018/027135 2017-12-12 2018-07-19 重荷重用タイヤ WO2019116622A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880079849.9A CN111465508B (zh) 2017-12-12 2018-07-19 重载用轮胎
EP18888100.7A EP3725551B1 (en) 2017-12-12 2018-07-19 Heavy-duty tire
US16/770,060 US11427031B2 (en) 2017-12-12 2018-07-19 Heavy duty tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017237698A JP6890086B2 (ja) 2017-12-12 2017-12-12 重荷重用タイヤ
JP2017-237698 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019116622A1 true WO2019116622A1 (ja) 2019-06-20

Family

ID=66820848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027135 WO2019116622A1 (ja) 2017-12-12 2018-07-19 重荷重用タイヤ

Country Status (5)

Country Link
US (1) US11427031B2 (ja)
EP (1) EP3725551B1 (ja)
JP (1) JP6890086B2 (ja)
CN (1) CN111465508B (ja)
WO (1) WO2019116622A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103206A (ja) * 1998-09-29 2000-04-11 Bridgestone Corp 空気入りタイヤ
JP2004066851A (ja) * 2002-08-01 2004-03-04 Bridgestone Corp 空気入りタイヤ
JP2005081919A (ja) * 2003-09-05 2005-03-31 Yokohama Rubber Co Ltd:The 重荷重用空気入りタイヤ
JP2007203964A (ja) * 2006-02-03 2007-08-16 Bridgestone Corp 空気入りタイヤ
JP2009542528A (ja) 2006-07-13 2009-12-03 ソシエテ ドゥ テクノロジー ミシュラン ショルダの偏摩耗に抵抗するサイド部を有するタイヤ
JP2010132045A (ja) * 2008-12-02 2010-06-17 Bridgestone Corp タイヤ
JP2010280327A (ja) * 2009-06-05 2010-12-16 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2017019483A (ja) * 2015-07-10 2017-01-26 株式会社ブリヂストン タイヤ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL76758C (ja) * 1950-12-07
US2972368A (en) * 1958-05-26 1961-02-21 Dayco Corp Vehicle tire
US4702292A (en) * 1986-03-18 1987-10-27 The Goodyear Tire & Rubber Company High performance all-season tire tread
JPH0299408A (ja) * 1988-10-03 1990-04-11 Sumitomo Rubber Ind Ltd ラジアルタイヤ
DE69108857T2 (de) * 1990-11-16 1995-11-16 Bridgestone Corp Radialer Luftreifen.
JP2000043508A (ja) * 1998-07-27 2000-02-15 Bridgestone Corp 空気入りタイヤ
JP2000108614A (ja) * 1998-10-01 2000-04-18 Bridgestone Corp 空気入りタイヤ
JP2004009886A (ja) 2002-06-06 2004-01-15 Yokohama Rubber Co Ltd:The 空気入りタイヤ
CN2771008Y (zh) * 2004-11-24 2006-04-12 黄立新 一种轮胎
JP2007091155A (ja) 2005-09-30 2007-04-12 Yokohama Rubber Co Ltd:The タイヤおよびタイヤ成形用金型
JP4843661B2 (ja) * 2008-10-28 2011-12-21 住友ゴム工業株式会社 重荷重用タイヤ
EP2431197B1 (en) * 2009-06-01 2015-05-06 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2010280322A (ja) 2009-06-05 2010-12-16 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2012056326A (ja) * 2010-09-03 2012-03-22 Bridgestone Corp 空気入りラジアルタイヤ
JP5129855B2 (ja) 2010-11-08 2013-01-30 住友ゴム工業株式会社 重荷重用タイヤ
JP5913238B2 (ja) * 2013-09-09 2016-04-27 住友ゴム工業株式会社 空気入りタイヤ
JP6578114B2 (ja) * 2015-03-19 2019-09-18 株式会社ブリヂストン タイヤ
WO2016148178A1 (ja) 2015-03-19 2016-09-22 株式会社ブリヂストン タイヤ
CN106585286A (zh) * 2015-10-20 2017-04-26 新东岳集团有限公司 一种微型载重汽车轮胎外胎
JP6699192B2 (ja) * 2016-01-21 2020-05-27 住友ゴム工業株式会社 空気入りタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103206A (ja) * 1998-09-29 2000-04-11 Bridgestone Corp 空気入りタイヤ
JP2004066851A (ja) * 2002-08-01 2004-03-04 Bridgestone Corp 空気入りタイヤ
JP2005081919A (ja) * 2003-09-05 2005-03-31 Yokohama Rubber Co Ltd:The 重荷重用空気入りタイヤ
JP2007203964A (ja) * 2006-02-03 2007-08-16 Bridgestone Corp 空気入りタイヤ
JP2009542528A (ja) 2006-07-13 2009-12-03 ソシエテ ドゥ テクノロジー ミシュラン ショルダの偏摩耗に抵抗するサイド部を有するタイヤ
JP2010132045A (ja) * 2008-12-02 2010-06-17 Bridgestone Corp タイヤ
JP2010280327A (ja) * 2009-06-05 2010-12-16 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2017019483A (ja) * 2015-07-10 2017-01-26 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
JP2019104359A (ja) 2019-06-27
US20210213782A1 (en) 2021-07-15
EP3725551A4 (en) 2021-08-25
CN111465508B (zh) 2022-07-08
US11427031B2 (en) 2022-08-30
EP3725551B1 (en) 2023-09-06
EP3725551A1 (en) 2020-10-21
CN111465508A (zh) 2020-07-28
JP6890086B2 (ja) 2021-06-18

Similar Documents

Publication Publication Date Title
JP6111808B2 (ja) 空気入りタイヤ
JP5977696B2 (ja) 空気入りタイヤ
WO2013172041A1 (ja) 空気入りタイヤ
WO2019116621A1 (ja) 重荷重用タイヤ
JP6611373B2 (ja) タイヤ
JP6724317B2 (ja) 空気入りタイヤ
WO2019116622A1 (ja) 重荷重用タイヤ
JP7116746B2 (ja) 重荷重用タイヤ
WO2019116611A1 (ja) 重荷重用タイヤ
WO2019116610A1 (ja) 重荷重用タイヤ
JP2020066279A (ja) 空気入りタイヤ
WO2019116626A1 (ja) 重荷重用タイヤ
JP7116014B2 (ja) 空気入りタイヤ
JP5845216B2 (ja) 空気入りタイヤ
WO2014141715A1 (ja) 空気入りタイヤ
JP6060138B2 (ja) 空気入りタイヤ
JP6029957B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018888100

Country of ref document: EP

Effective date: 20200713