WO2019116413A1 - フィンレス熱交換器および冷凍サイクル装置 - Google Patents

フィンレス熱交換器および冷凍サイクル装置 Download PDF

Info

Publication number
WO2019116413A1
WO2019116413A1 PCT/JP2017/044264 JP2017044264W WO2019116413A1 WO 2019116413 A1 WO2019116413 A1 WO 2019116413A1 JP 2017044264 W JP2017044264 W JP 2017044264W WO 2019116413 A1 WO2019116413 A1 WO 2019116413A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat exchanger
finless
tube
transfer tube
Prior art date
Application number
PCT/JP2017/044264
Other languages
English (en)
French (fr)
Inventor
眞一郎 南
松本 崇
繁佳 松井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780097093.6A priority Critical patent/CN111433548B/zh
Priority to US16/652,510 priority patent/US11384995B2/en
Priority to JP2019559421A priority patent/JP6821057B2/ja
Priority to PCT/JP2017/044264 priority patent/WO2019116413A1/ja
Priority to EP17935032.7A priority patent/EP3726174B1/en
Publication of WO2019116413A1 publication Critical patent/WO2019116413A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0132Auxiliary supports for elements for tubes or tube-assemblies formed by slats, tie-rods, articulated or expandable rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • the present invention relates to a finless heat exchanger and a refrigeration cycle apparatus that do not use fins.
  • the finless heat exchanger of Patent Document 1 includes two headers spaced apart from each other, and arranged in parallel at intervals between the two headers, and both ends thereof are inserted and fixed in the two headers. And a plurality of heat transfer tubes.
  • the heat transfer tube is constituted by a flat tube, and the cross-sectional long axis direction of the flat tube is disposed in parallel along the air flow direction.
  • the same number of insertion holes as the heat transfer tubes are processed in each of the two headers. If the number of heat transfer tubes is increased to improve the heat exchange performance, the number of insertion holes processed in the header also increases.
  • the insertion holes are formed by various processing methods, but when cutting or pressing is used, there is a concern that distortion due to insufficient strength of the crosspieces may remain, and the workability of the header is reduced. Further, in the case of forming the insertion hole by wire cutting or electric discharge machining, there is a concern that the processing cost may become high.
  • Another problem in the case of increasing the number of heat transfer tubes is that it becomes difficult to handle a plurality of heat transfer tubes at the time of assembly and the assemblability is lowered.
  • the present invention has been made to solve the above problems, and while maintaining heat exchange performance, the number of heat transfer tubes can be reduced to reduce the number of insertion holes in the header, resulting in productivity It is an object of the present invention to provide a finless heat exchanger and a refrigeration cycle apparatus capable of improving the
  • the finless heat exchanger according to the present invention comprises two headers and a plurality of heat transfer tubes arranged in parallel at intervals from each other, and a plurality of insertion holes formed in each of the two headers.
  • a finless heat exchanger in which both ends of a heat transfer tube are inserted and connected, and in each of the plurality of heat transfer tubes, straight portions and fold portions extending in a direction orthogonal to the parallel direction are alternately connected It has the following configuration.
  • the heat transfer tube has a configuration in which the straight portions extending in the direction orthogonal to the parallel direction and the turn-back portions are alternately connected, in other words, a plurality of straight portions arranged in parallel
  • the structure is one heat transfer tube. Therefore, the number of heat transfer tubes can be reduced while the heat exchange performance is maintained, and the number of insertion holes of the header can be reduced. As a result, the productivity can be improved.
  • FIG. 1 It is a figure showing roughly the refrigerant circuit composition of the frozen cycle device concerning Embodiment 1 of the present invention. It is a figure which shows typically the structure of the finless heat exchanger which concerns on Embodiment 1 of this invention. It is a figure which shows the finless heat exchanger of a comparative example. It is the figure which described an example of the relationship between the heat exchange performance of a finless heat exchanger, and the short axis dimension of a heat exchanger tube on the conditions that ventilation resistance is constant. It is the figure which described the relationship between the short-axis dimension of a heat exchanger tube, and the range of tube pitch P from which the same ventilation resistance is obtained.
  • FIG. 6 It is a figure which shows typically the structure of the finless heat exchanger which concerns on Embodiment 2 of this invention, (a) is a front view, (b) is a bottom view. It is an enlarged view of the contact part of the return part of the heat exchanger tube of FIG. 6, and a header. It is a figure which shows the modification of the finless heat exchanger which concerns on Embodiment 2 of this invention. It is a figure which shows the heat exchanger tube of the finless heat exchanger which concerns on Embodiment 3 of this invention. It is a figure which expands and shows the folding
  • FIG. 23 is a partial cross-sectional view of the position defining member of FIG. 22.
  • FIG. 1 is a view schematically showing a refrigerant circuit configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes a heat source side unit 1A and a use side unit 1B.
  • the heat source side unit 1A constitutes a refrigeration cycle in which the refrigerant is circulated together with the use side unit 1B, thereby waste heat or supply of heat of air conditioning.
  • the heat source side unit 1A is installed outdoors.
  • the heat source side unit 1 ⁇ / b> A includes a compressor 110, a flow path switching device 160, a heat source side heat exchanger 40, an expansion device 150, and an accumulator 170.
  • a fan 41 for blowing air to the heat source side heat exchanger 4 is disposed to face the heat source side heat exchanger 4.
  • the use side unit 1B is installed in a room to be air conditioned, and includes a use side heat exchanger 180 and a fan (not shown) for blowing air to the use side heat exchanger 180.
  • the air conditioning apparatus 1 has a refrigeration cycle provided with the compressor 110, the flow path switching device 160, the utilization side heat exchanger 180, the heat source side heat exchanger 40, and the expansion device 150.
  • the compressor 110 compresses the drawn refrigerant to a high temperature and high pressure state.
  • the compressor 110 is configured of a scroll compressor or a reciprocating compressor.
  • the flow path switching unit 160 switches between the heating flow path and the cooling flow path according to the switching of the operation mode of the cooling operation or the heating operation.
  • the flow path switching unit 160 is configured by a four-way valve.
  • the flow path switching unit 160 connects the discharge side of the compressor 110 and the use side heat exchanger 180, and also connects the heat source side heat exchanger 40 and the accumulator 170.
  • the flow path switching unit 160 connects the discharge side of the compressor 110 and the heat source side heat exchanger 40 and also connects the use side heat exchanger 180 and the accumulator 170.
  • the flow path switching device 160 may be configured by combining a plurality of two-way valves.
  • the heat source side heat exchanger 40 is a finless heat exchanger, and the structure of the finless heat exchanger will be described below with reference to the drawings.
  • FIG. 2 is a view schematically showing the structure of the finless heat exchanger according to Embodiment 1 of the present invention, wherein (a) is a front view and (b) is a bottom view.
  • the finless heat exchanger according to the first embodiment includes two headers 21 spaced apart from one another, and a plurality of heat transfer tubes 22 connected to two headers 21 at both ends, which are not shown. It has the structure accommodated in the housing
  • the plurality of heat transfer tubes 22 are disposed in parallel with each other at an interval, and the two headers 21 are spaced apart in a direction orthogonal to the parallel direction of the heat transfer tubes 22.
  • the heat transfer tube 22 is formed in a flat shape having a short axis and a long axis in cross section, and is formed of a flat tube having a plurality of refrigerant channels formed by through holes. Further, the heat transfer tube 22 is formed of an aluminum-based material. In addition, the cross-sectional shape of each through-hole which becomes a refrigerant
  • the heat transfer tube 22 has a configuration in which the linear portions 23 and the folding portions 24 are alternately connected, and the linear portions 23 are substantially parallel to each other.
  • the heat transfer tube 22 is an integrally formed article formed by bending a pipe material. Further, the connection points between one heat transfer pipe 22 and the two headers 21 are two places at both ends of the heat transfer pipe 22. Further, in FIG. 2, the air flows in a direction perpendicular to the paper surface, and the heat transfer tube 22 is disposed so that the major axis direction of the heat transfer tube 22 is parallel to the flow of air.
  • the header 21 has, for example, a structure in which one end of a cylindrical tube is completely closed and the other end is closed except for the refrigerant inlet / outlet portion 26. Further, the insertion hole 25 is formed in the header 21, and the end portion of the heat transfer tube 22 is inserted into the header 21 from the insertion hole 25 so that the heat transfer tube 22 and the header 21 are joined. The contact portion between heat transfer tube 22 and insertion hole 25 of header 21 is joined, for example, by brazing or the like.
  • FIG. 3 is a view showing a finless heat exchanger of a comparative example.
  • the finless heat exchanger 400 of the comparative example has the same heat exchanger size and heat exchange performance as the finless heat exchanger of the first embodiment.
  • the heat transfer tube 220 is formed of only the straight portion, and both ends of the straight portion 23 are connected to the header 210.
  • the heat transfer tubes 220 of the comparative example have the same minor axis dimensions and major axis dimensions as the heat transfer tubes 22 of the first embodiment, and the tube pitch P1 is the same as the tube pitch P shown in FIG.
  • the pipe pitch P is an interval between adjacent linear portions 23.
  • the heat transfer tube 22 of the finless heat exchanger of the first embodiment is similar to the heat transfer tube 220 of the comparative example. It is the structure connected by the return part 24. FIG. Therefore, the finless heat exchanger according to the first embodiment can reduce the number of heat transfer tubes 22 while maintaining the heat exchange performance equivalent to that of the comparative example.
  • the number of heat transfer tubes 22 decreases as the number of folded portions 24 increases.
  • the number of heat transfer tubes 22 can be reduced while maintaining the heat exchange performance, so the number of end portions of the heat transfer tubes 22 inserted into the header 21 is The number of insertion holes 25 of the header 21 is also reduced. Therefore, the intervals between the insertion holes 25 in the header 21 can be set sufficiently wide. Therefore, the thickness of the crosspiece can be secured, and processing defects such as deformation during processing are less likely to occur, and the processability of the header is improved. As a result, the header 21 can be manufactured relatively easily and inexpensively.
  • the heat transfer tubes 22 can be easily handled at the time of assembling the heat exchanger, and the assemblability can be greatly improved.
  • the refrigerant distribution performance to each heat transfer tube 22 in the header 21 can be improved, and the heat exchange performance can be enhanced.
  • a high performance finless heat exchanger can be provided relatively easily.
  • the finless heat exchanger having the same heat exchange performance can be made compact.
  • the number of heat transfer tubes 22 is reduced, the number of joints of the header 21 to the heat transfer tubes 22 is also reduced, so that the possibility of poor bonding can be reduced and the reliability of the finless heat exchanger can be improved.
  • the finless heat exchanger can reduce the material cost, the processing cost and the mold cost by not using the fins, and the cost of the heat exchanger can be significantly reduced.
  • the heat transfer tubes 22 are configured such that the linear portions 23 extending in the direction orthogonal to the parallel direction and the turn-back portions 24 are alternately connected, in other words, a plurality of heat transfer tubes 22 arranged in parallel
  • the straight portions 23 of the two are connected by a turn back portion 24 to form one heat transfer tube.
  • the number of heat transfer tubes in the entire finless heat exchanger can be reduced while maintaining the same heat exchange performance as the heat exchanger shown in FIG. 3. Therefore, the number of insertion holes 25 of the header 21 can be reduced, the processability of the header 21 and the overall assembling property can be improved, and the productivity can be improved. And, by improving the productivity, it can be configured inexpensively.
  • a flat tube has been described as an example of the heat transfer tube 22.
  • the heat transfer tube 22 is not limited to the flat tube, and may be a circular tube. The same effect can be obtained when the heat transfer tube 22 is a circular tube.
  • the heat transfer tube 22 is not limited to the flat tube, and the same applies to the later-described embodiment unless otherwise specified.
  • the material of the heat transfer tube 22 has been described taking aluminum as an example, the same effect can be obtained even with a copper or iron material. This point is the same as in the embodiment described later.
  • FIG. 4 is a diagram describing an example of the relationship between the heat exchange performance of the finless heat exchanger and the minor axis dimension of the heat transfer tube under the condition that the draft resistance is constant.
  • FIG. 5 is a diagram describing the relationship between the minor axis dimension of the heat transfer tube and the range of the tube pitch P, at which the same draft resistance can be obtained.
  • the pipe pitch P is the distance between the adjacent linear portions 23 as described above.
  • the shaded portions in FIG. 5 indicate the ranges where the same ventilation resistance can be obtained.
  • the minor axis dimension of the heat transfer tube 22 is 1.5 mm, and the tube pitch is 2.1 mm. It turns out that it is good if it sets in the range of-3.3 mm.
  • the target heat exchange performance X1 refers to the heat exchange performance in a so-called finned tube heat exchanger provided with a plurality of fins.
  • the short axis of the heat transfer tube 22 It can be seen that the dimensions should be set at 1.5 mm and the tube pitch in the range of 2.1 mm to 3.3 mm.
  • the minor axis dimension of heat transfer tube 22 is further reduced to 0.6 mm, and the tube pitch is further narrowed. It may be set in the range of 2 mm to 2.4 mm.
  • the dimension may be 1.5 mm or less, and more than 0.
  • the value obtained by subtracting the short axis dimension from the tube pitch may be 0.6 [mm] to 1.8 [mm].
  • the minor axis dimension of the heat transfer tubes 22 is reduced, it is necessary to reduce the tube pitch, that is, the number of heat transfer tubes 22 can be increased. Therefore, by setting the minor axis dimension of the heat transfer tube 22 small, the processability deterioration of the header 21 can be avoided, and the heat exchange performance of the finless heat exchanger can be improved.
  • the second embodiment relates to a technique for eliminating the problem that the distance between the straight portions 23 of the heat transfer tubes 22 varies during manufacturing.
  • the following description will be made focusing on the configuration different from that of the first embodiment, and the configuration not described in the second embodiment is the same as the first embodiment.
  • FIG. 6 is a view schematically showing a structure of a finless heat exchanger according to Embodiment 2 of the present invention, in which (a) is a front view and (b) is a bottom view.
  • FIG. 7 is an enlarged view of the contact portion between the folded portion of the heat transfer tube of FIG. 6 and the header.
  • the finless heat exchanger of the second embodiment differs from the first embodiment in the configuration of the header 21.
  • the header 21 ⁇ / b> A of the second embodiment has a recess 30 for supporting the folded portion 24 at a position facing the folded portion 24 of the heat transfer tube 22.
  • the concave portion 30 is formed in a shape following the outer shape of the folded portion 24, and is used as a positioning structure for holding the space between the linear portions 23 by supporting the folded portion 24 at the time of manufacture.
  • channel provided in the structural member of the header 21A is shown in FIG. 6, you may curve and comprise the structural member of the header 21A.
  • the structure in which the recessed part 30 was formed in both of two headers is shown in FIG. 6, it is good also as a structure formed only in either one header.
  • the rigidity of the heat transfer tube 22 is reduced. For this reason, when joining the both ends of heat transfer tube 22 and header 21A by brazing, residual thermal stress may occur and heat transfer tube 22 may be bent. When the heat transfer tube 22 is bent, the distance between the adjacent folded portions 24 may vary.
  • both ends of the heat transfer tube 22 are inserted into the insertion holes 25 of the header 21A, and the folded portion 24 of the heat transfer tube 22 is positioned in the recess 30 to determine the position of the folded portion 24.
  • the header 21A are brazed.
  • the header 21A has the concave portion 30 for supporting the folded portion 24 of the heat transfer tube 22, whereby the following effects can be obtained. Is obtained. That is, the pitches of the adjacent linear portions 23 can be kept uniform, and the decrease in heat exchange performance due to the variation in the pitch can be suppressed.
  • the finless heat exchanger according to the second embodiment may be modified as follows. Also in this case, the same effect can be obtained.
  • FIG. 8 is a view showing a modified example of the finless heat exchanger according to Embodiment 2 of the present invention.
  • the folded portion 24 of the heat transfer tube 22 is directly supported by the recess 30 of the header 21A.
  • heat insulation is provided between the folded portion 24 and the recess 30 of the heat transfer tube 22.
  • a structure in which the material 31 is interposed may be used.
  • the folded portion 24 of the heat transfer tube 22 is formed by bending the tube member, it is easier to process when the bending radius is large.
  • the third embodiment relates to the shape of the heat transfer tube in consideration of the processing of the folded portion 24. The following description will be made focusing on a configuration different from that of the first embodiment, and configurations not described in the third embodiment are the same as the first embodiment.
  • FIG. 9 is a view showing a heat transfer tube of a finless heat exchanger according to Embodiment 3 of the present invention.
  • FIG. 10 is an enlarged view of a folded portion of the heat transfer tube of FIG. 9.
  • FIG. 11 is a view showing a heat transfer tube of the finless heat exchanger according to the first embodiment as a comparative example.
  • FIG. 12 is an enlarged view of a folded portion of the heat transfer tube of FIG.
  • the folded portion 24 includes a curved first portion 24a and a pair of second portions 24b extending toward each other from both ends of the first portion 24a. It is configured. And the linear part 23 is extended from the front-end
  • the tube pitch P which is the distance between adjacent linear portions 23, is the same for the heat transfer tube 22A of the third embodiment shown in FIG. 10 and the heat transfer tube 22 of the first embodiment shown in FIG.
  • the bending radii of the folded portion 24 are compared in the configuration described above.
  • the bending radius R of the folded portion 24 of the first embodiment shown in FIG. 12 is a dimension of (pipe pitch P ⁇ short axis dimension L) / 2.
  • the bending radius R of the first portion 24 a of the folded portion 24 of the third embodiment shown in FIG. 10 allows the bending radius to be increased to a size contacting the adjacent folded portion 24 (tube pitch P
  • the dimension can be increased to a dimension close to the minor axis dimension L) / 2 ⁇ 2.
  • the same effects as those of the first embodiment can be obtained, and the first portion 24a of the heat transfer tube 22A having a curved shape, and the first portion Since the shape is provided with a pair of second portions 24b extending toward each other from both ends of 24a, the following effects can be further obtained. That is, the bending radius R of the folded portion 24 can be increased without expanding the pipe pitch P, and the processability of the heat transfer tube 22A can be improved, and the productivity of the finless heat exchanger can be improved. In addition, it is possible to obtain a high-quality heat transfer tube in which the processability of the folded portion 24 is improved.
  • the heat transfer tubes 22A are not in contact with each other in order to suppress the decrease in heat exchange performance, even if the heat transfer tubes 22A are in contact with each other, the contact position is the first portion 24a of the folded portion 24. If they are only one another, the heat exchange performance is not significantly reduced because the contact area is small.
  • the dimension of the bending radius R of the folded portion 24 is increased, the residual strain due to the bending process of the heat transfer tube 22A is reduced, so that the strength reduction of the heat transfer tube 22A can be suppressed. As a result, it is possible to suppress the decrease in the safety factor of the internal pressure and to prevent the decrease in the quality of the heat transfer tube 22A.
  • the distance between the adjacent heat transfer tube 22A and the folded portion 24 becomes close or comes into contact.
  • the heat transfer tubes 22 vibrate or deform, and the heat transfer tubes 22A come in contact with each other, damage or fatigue is accumulated in the heat transfer tubes 22A, and breakage occurs. Therefore, in order to prevent this, it is good to join the part which mutually approaches or contacts in each adjacent heat transfer tube 22A.
  • the position of the heat transfer tube 22A can be stabilized and homogenized, and the heat exchange performance is improved.
  • the heat transfer tube 22A of the finless heat exchanger according to the third embodiment may be modified as follows in addition to the configurations shown in FIGS. 9 and 10. Similar effects can be obtained in this case as well.
  • FIG. 13 is a view showing a modification of the heat transfer tube of the finless heat exchanger according to Embodiment 3 of the present invention.
  • FIG. 14 is an enlarged view of a folded portion of the heat transfer tube of FIG. 13.
  • the adjacent turn-back portions 24 are disposed alternately in the parallel direction of the heat transfer tubes 22A. With this configuration, it is possible to increase the bending radius R of the folded portion 24 to about (pipe pitch P ⁇ short axis dimension L) / 2 ⁇ 3.
  • r ⁇ R ⁇ 3r, r (tube pitch P-short axis size L It becomes a range which satisfies the relationship of) / 2.
  • this range is a range applicable when the heat transfer tube is a flat tube.
  • the present invention includes a configuration in which the bending radius R of at least one of the folded portions 24 of the heat transfer tube satisfies the above-mentioned relationship.
  • the fourth embodiment relates to a mode in which the header 21 is miniaturized.
  • the following description will be made focusing on a configuration different from that of the first embodiment, and the configuration not described in the fourth embodiment is the same as that of the first embodiment.
  • FIG. 15 is a view schematically showing a structure of a finless heat exchanger according to Embodiment 4 of the present invention, in which (a) is a front view and (b) is a bottom view.
  • the fourth embodiment is provided with a header 21 B in place of the header 21 of the first embodiment.
  • the space L1 between the insertion holes 25 of the header 21 is made narrower than the arrangement space P2 between the adjacent heat transfer tubes 22 to such an extent that the processability is not significantly deteriorated, thereby achieving the miniaturization of the header .
  • the length L2 of the header 21B in the parallel direction of the heat transfer tubes 22 is shorter than the length L3 in the same direction of the entire arrangement area of the plurality of heat transfer tubes.
  • the finless heat exchanger according to the fourth embodiment guides the end portion of the heat transfer tube 22 to the header 21 B thus reduced in size via the heat transfer tube 22 appropriately through the bent portion 32, and inserts it into the insertion hole 25. It has a bonded configuration.
  • the same effect as that of the first embodiment can be obtained, and by using the header 21B which is miniaturized, the internal volume of the header 21B can be reduced, and the amount of refrigerant can be reduced. .
  • FIG. 15 shows a configuration in which both of the two headers 21 are miniaturized, at least one of the headers 21 may be miniaturized.
  • Embodiment 5 relates to a configuration for achieving the miniaturization of the entire finless heat exchanger in addition to the miniaturization of the header 21 described in the fourth embodiment.
  • the following description will be made focusing on a configuration different from that of the fourth embodiment, and the configuration not described in the fifth embodiment is the same as that of the fourth embodiment.
  • FIG. 16 is a view schematically showing a structure of a finless heat exchanger according to Embodiment 5 of the present invention, wherein (a) is a front view and (b) is a bottom view.
  • two headers 21B disposed at both ends of the heat transfer tube 22 in the fourth embodiment are disposed at one end of the heat transfer tube 22.
  • the configuration is shown in which the two headers 21B are disposed at the lower end, but may be disposed at the upper end.
  • the same effect as that of the fourth embodiment can be obtained, and by arranging the two downsized headers 21B collectively on one end side of the heat transfer tube 22, the following can be achieved.
  • An effect is obtained. That is, compared with the case where the two headers 21B are separately arranged at both ends of the heat transfer tube 22, the size of the arrangement region in which the plurality of heat transfer tubes 22 are arranged can be enlarged in the housing. , The front area of the finless heat exchanger can be increased. Therefore, the heat transfer area can be increased, and the heat exchange performance can be improved.
  • the two headers 21B of the fifth embodiment are integrated.
  • the following description will be made focusing on a configuration different from that of the fifth embodiment, and configurations not described in the sixth embodiment are the same as the fifth embodiment.
  • FIG. 17 is a view schematically showing a structure of a finless heat exchanger according to Embodiment 6 of the present invention, in which (a) is a front view and (b) is a bottom view.
  • the sixth embodiment is provided with a header 21C having a configuration in which two headers 21B are integrated, instead of the two headers 21B arranged at one end of the heat transfer tube 22 in the fifth embodiment.
  • a space connected to one end of the heat transfer tube 22 and a space connected to the other end of the heat transfer tube 22 are separated by a partition plate 42.
  • the same effect as that of the fifth embodiment can be obtained, and since the header 21C has a structure in which two headers are integrated, the rigidity of the header 21C is increased, and the rigidity of the finless heat exchanger is obtained. Also improve. For this reason, the position of the heat transfer pipe 22 is stabilized, the pipe pitch P between the straight portions 23 is maintained at a predetermined pitch, and the heat exchange performance can be improved.
  • the heat transfer tube 22 is an integrally formed product formed by bending a pipe material.
  • a plurality of pipe materials are joined. The following description will be made focusing on the configuration different from that of the first embodiment, and the configuration not described in the seventh embodiment is the same as that of the first embodiment.
  • FIG. 18 is a front view schematically showing a structure of a finless heat exchanger according to a seventh embodiment of the present invention.
  • FIG. 19 is a perspective view of an essential part of the heat transfer tube of FIG.
  • the heat transfer tube 22B of the seventh embodiment has a configuration in which the straight portion 23 and the folded portion 24 which are separate members are joined by, for example, brazing.
  • the folded back portion 24 is configured of a U-vent.
  • the eighth embodiment is different from the first embodiment in the direction of arrangement of the finless heat exchanger.
  • the following description will be made focusing on the configuration different from that of the first embodiment, and the configuration not described in the eighth embodiment is the same as that of the first embodiment.
  • FIG. 20 is a front view schematically showing a structure of a finless heat exchanger according to Embodiment 8 of the present invention.
  • the direction in which the plurality of heat transfer tubes 22 are juxtaposed is in the left-right direction.
  • the heat pipes 22 are arranged in the vertical direction.
  • Embodiment 9 In the first embodiment, the finless heat exchange portion is generally planar as a whole, but in the ninth embodiment, the finless heat exchange portion is generally L-shaped. The following description will be made focusing on a configuration different from that of the first embodiment, and the configuration not described in the ninth embodiment is the same as that of the first embodiment.
  • FIG. 21 is a schematic view schematically illustrating a finless heat exchanger according to a ninth embodiment of the present invention, in which (a) is a front view, (b) is a plan view, and (c) is a side view.
  • the finless heat exchanger according to the ninth embodiment has a bent portion 60 at the center of the plurality of heat transfer tubes 22 in the longitudinal direction, and is formed in an L shape as a whole. That is, each of the plurality of heat transfer tubes 22 has a shape bent at the same position in the longitudinal direction.
  • the finless heat exchanger according to the ninth embodiment is assumed to be used as a heat exchanger for an indoor unit.
  • the finless heat exchanger as a whole is L-shaped, so that a large front area can be obtained like the heat exchanger of the indoor unit. It is effective to use for indoor units that do not exist.
  • Embodiment 10 The tenth embodiment relates to a configuration in which even if the heat transfer tubes 22 vibrate during operation of the air conditioning apparatus 1, the tube pitch P of the straight portions 23 of the heat transfer tubes 22 is maintained at equal intervals.
  • the following description will be made focusing on a configuration different from that of the first embodiment, and configurations not described in the tenth embodiment are the same as the first embodiment.
  • FIG. 22 is a front view schematically showing a structure of a finless heat exchanger according to Embodiment 10 of the present invention.
  • FIG. 23 is a partial cross-sectional view of the position defining member of FIG.
  • the finless heat exchanger according to the tenth embodiment is provided with a position defining member 70 which is a positioning structure for keeping the tube pitch P of the straight portion 23 of the heat transfer tube 22 at equal intervals.
  • the position defining members 70 are disposed at two places at intervals in the longitudinal direction of the heat transfer tube 22.
  • the position defining member 70 is a rod-like member, and has a configuration in which a plurality of concave insertion portions 71 into which the straight portions 23 of the heat transfer tubes 22 are inserted are formed in the longitudinal direction.
  • the plurality of insertion portions 71 are formed at equal intervals in accordance with the distance between the adjacent linear portions 23. Then, by inserting the straight portions 23 into the insertion portions 71 of the position defining member 70, even if the heat transfer tubes 22 vibrate during operation of the air conditioner 1, the tube pitch P of the straight portions 23 is equally spaced. It is possible to keep.
  • the material of the position defining member 70 is preferably a resin or a heat insulating material having a low thermal conductivity.
  • the same effect as that of the first embodiment can be obtained, and by installing the position defining member 70, the position of the heat transfer tube 22 is defined, and the tube pitch P is uniformly maintained. Therefore, the heat exchange performance is improved.
  • the diameter of the heat transfer tube tends to be reduced and the rigidity of the heat transfer tube tends to be reduced.
  • the straight portion 23 of the heat transfer tube 22 is inserted into and supported by the insertion portion 71 of the position defining member 70, thereby reducing the rigidity of the heat transfer tube 22.
  • the rigidity of the heat exchanger can be improved.
  • the position defining member 70 does not necessarily have to have the shape, the number, and the position shown in FIGS. 22 and 23, and can be appropriately changed without departing from the function of the position defining member 70.
  • the number of position defining members 70 is not limited to two, and may be one or three or more.
  • the present invention is not limited to the above-described first to tenth embodiments, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be appropriately improved, and at least a part may be replaced with another configuration. Furthermore, the configuration requirements without particular limitation on the arrangement are not limited to the arrangements disclosed in the embodiments, and can be arranged at positions where the functions can be achieved.
  • the finless heat exchanger may be configured by appropriately combining the characteristic configurations of the embodiments.
  • the second embodiment may be combined with the fourth embodiment, and the recess 30 of the second embodiment may be provided in the header 21B of FIG.
  • the modification applied to the same component part is similarly applied to the other embodiments other than the embodiment in which the modification is described.
  • the finless heat exchanger of the present invention is applied to the heat source side heat exchanger.
  • the finless heat exchanger of the present invention is applied to the use side heat exchanger It is also good.
  • Reference Signs List 1 air conditioner, 1A heat source side unit, 1B utilization side unit, 4 heat source side heat exchanger, 21 header, 21A header, 21B header, 21C header, 22 heat transfer tube, 22A heat transfer tube, 22B heat transfer tube, 23 straight portion, 24 folded-back portion 24a first portion 24b second portion 25 insertion hole 26 refrigerant inlet / outlet portion 30 recessed portion 31 heat insulating material 32 bent portion 40 heat source side heat exchanger 41 fan 42 partition plate 60 Bending part, 70 position defining member, 71 inserting part, 110 compressor, 150 throttle device, 160 flow path switching device, 170 accumulator, 180 utilization side heat exchanger, 210 header, 220 heat transfer tube, 400 finless heat exchanger.

Abstract

フィンレス熱交換器は、2つのヘッダと、互いに間隔を空けて並列に配置された複数の伝熱管とを備え、2つのヘッダのそれぞれに形成された複数の挿し込み孔に複数の伝熱管のそれぞれの両端部が挿し込まれて接続されている。複数の伝熱管のそれぞれは、並列方向と直交する方向に延びる直線部と折り返し部とが交互に連なった構成を有する。

Description

フィンレス熱交換器および冷凍サイクル装置
 本発明は、フィンを用いないフィンレス熱交換器および冷凍サイクル装置に関する。
 熱交換性能とコンパクト性とを兼ね備える熱交換器として、フィンを用いないフィンレス熱交換器が提案されている(例えば、特許文献1参照)。特許文献1のフィンレス熱交換器は、互いに間隔を空けて配置された2つのヘッダと、2つのヘッダ間に間隔を空けて並列に配置され且つ両端部が2つのヘッダに挿し込まれて固定された複数の伝熱管とを備えている。そして、伝熱管は扁平管で構成され、扁平管の断面長軸方向を、空気流れ方向に沿って並行に配置した構成としている。
 特許文献1に記載のフィンレス熱交換器は、短軸寸法を小さくした扁平管を狭ピッチに配列し、フィンアンドチューブ熱交換器と比較して、コンパクト性を確保しつつ、熱交換性能の向上を図ることを可能としている。
特開2009-145010号公報
 特許文献1に記載のフィンレス熱交換器において、2つのヘッダのそれぞれには、伝熱管と同数の挿し込み孔が加工される。熱交換性能を上げようとして伝熱管の本数を多くすると、ヘッダに加工される挿し込み孔の数も多くなる。挿し込み孔は、各種の加工方法で形成されるが、切削加工またはプレス加工を用いる場合、桟部の強度不足によるひずみが残留する懸念があり、ヘッダの加工性が低下する。また、ワイヤーカットまたは放電加工で挿し込み孔を形成する場合は、加工コストが高くなる懸念がある。
 伝熱管の本数を多くした場合の他の問題点として、組立て時に複数の伝熱管を扱いにくくなり、組立て性が低下する点がある。
 このように、熱交換性能を上げようとして伝熱管の本数を多くすると、ヘッダの加工性および全体の組立て性が低下し、生産性の低下を招くという問題があった。
 本発明は、上記のような課題を解決するためになされたものであり、熱交換性能を維持しながらも伝熱管の本数を減らしてヘッダの挿し込み孔の数を低減でき、結果として生産性を向上させることができるフィンレス熱交換器および冷凍サイクル装置を提供することを目的とする。
 本発明に係るフィンレス熱交換器は、2つのヘッダと、互いに間隔を空けて並列に配置された複数の伝熱管とを備え、2つのヘッダのそれぞれに形成された複数の挿し込み孔に複数の伝熱管のそれぞれの両端部が挿し込まれて接続されているフィンレス熱交換器であって、複数の伝熱管のそれぞれは、並列方向と直交する方向に延びる直線部と折り返し部とが交互に連なった構成を有するものである。
 本発明によれば、伝熱管が、並列方向と直交する方向に延びる直線部と折り返し部とを交互に連なった構成であり、言い換えれば、並列に配置された複数の直線部を折り返し部で繋いで1本の伝熱管とした構成である。このため、熱交換性能を維持しながらも伝熱管の本数を減らしてヘッダの挿し込み孔の数を低減でき、結果として生産性を向上させることができる。
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成を概略的に示す図である。 本発明の実施の形態1に係るフィンレス熱交換器の構造を模式的に示す図である。 比較例のフィンレス熱交換器を示す図である。 通風抵抗が一定であるという条件下における、フィンレス熱交換器の熱交換性能と伝熱管の短軸寸法との関係の一例を記載した図である。 同じ通風抵抗が得られる、伝熱管の短軸寸法と管ピッチPの範囲との関係を記載した図である。 本発明の実施の形態2に係るフィンレス熱交換器の構造を模式的に示す図で、(a)は正面図、(b)は底面図である。 図6の伝熱管の折り返し部とヘッダとの接触部分の拡大図である。 本発明の実施の形態2に係るフィンレス熱交換器の変形例を示す図である。 本発明の実施の形態3に係るフィンレス熱交換器の伝熱管を示す図である。 図9の伝熱管の折り返し部を拡大して示す図である。 比較例として実施の形態1に係るフィンレス熱交換器の伝熱管を示す図である。 図11の伝熱管の折り返し部を拡大して示す図である。 本発明の実施の形態3に係るフィンレス熱交換器の伝熱管の変形例を示す図である。 図13の伝熱管の折り返し部を拡大して示す図である。 本発明の実施の形態4に係るフィンレス熱交換器の構造を模式的に示す図で、(a)は正面図、(b)は底面図である。 本発明の実施の形態5に係るフィンレス熱交換器の構造を模式的に示す図で、(a)は正面図、(b)は底面図である。 本発明の実施の形態6に係るフィンレス熱交換器の構造を模式的に示す図で、(a)は正面図、(b)は底面図である。 本発明の実施の形態7に係るフィンレス熱交換器の構造を模式的に示す正面図である。 図18の伝熱管の要部斜視図である。 本発明の実施の形態8に係るフィンレス熱交換器の構造を模式的に示す正面図である。 本発明の実施の形態9に係るフィンレス熱交換器を概略的に記載した模式図で、(a)は正面図、(b)は平面図、(c)は側面図である。 本発明の実施の形態10に係るフィンレス熱交換器の構造を模式的に示す正面図である。 図22の位置規定部材の一部断面図である。
 以下に、本発明における熱交換器の実施の形態を図面に基づいて詳細に説明する。なお、各図中、同一または相当する部分には、同一符号を付す。また、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさは実際の装置とは異なる場合がある。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成を概略的に示す図である。ここでは、冷凍サイクル装置の一例として、空調対象である室内の空調を行う空気調和装置について説明する。
 空気調和装置1は、熱源側ユニット1Aと利用側ユニット1Bとを備えている。熱源側ユニット1Aは、利用側ユニット1Bと共に冷媒を循環させる冷凍サイクルを構成することで、空調の熱を廃熱または供給するものである。熱源側ユニット1Aは、戸外に設置されるものである。熱源側ユニット1Aは、圧縮機110と、流路切替器160と、熱源側熱交換器40と、絞り装置150と、アキュムレータ170とを有している。また、熱源側ユニット1Aには、熱源側熱交換器4に送風するファン41が熱源側熱交換器4に対向して配置されている。
 利用側ユニット1Bは、空調対象である室内に設置されるものであり、利用側熱交換器180と、利用側熱交換器180に送風する図示省略のファンとを備えている。そして、空気調和装置1は、圧縮機110と、流路切替器160と、利用側熱交換器180と、熱源側熱交換器40と、絞り装置150とを備える冷凍サイクルを有している。
 圧縮機110は、吸引した冷媒を圧縮して高温高圧の状態にするものである。圧縮機110は、スクロール型圧縮機またはレシプロ型圧縮機で構成されている。
 流路切替器160は、冷房運転または暖房運転の運転モードの切替に応じて、暖房流路と冷房流路との切替を行うものである。流路切替器160は、四方弁で構成されている。暖房運転時において、流路切替器160は、圧縮機110の吐出側と利用側熱交換器180とを接続すると共に、熱源側熱交換器40とアキュムレータ170とを接続する。冷房運転時において、流路切替器160は、圧縮機110の吐出側と熱源側熱交換器40とを接続すると共に、利用側熱交換器180とアキュムレータ170とを接続する。なお、図1では流路切替器160として四方弁を用いた場合について例示しているが、これに限らず、複数の二方弁を組み合わせて流路切替器160を構成してもよい。
 熱源側熱交換器40はフィンレス熱交換器で構成され、以下、図を参照してフィンレス熱交換器の構造について説明する。
 図2は、本発明の実施の形態1に係るフィンレス熱交換器の構造を模式的に示す図で、(a)は正面図、(b)は底面図である。
 実施の形態1のフィンレス熱交換器は、互いに間隔を空けて配置された2つのヘッダ21と、両端部が2つのヘッダ21に接続された複数の伝熱管22とを有し、これらが図示しない筐体内に収納された構成を有する。複数の伝熱管22は互いに間隔を空けて並列に配置され、2つのヘッダ21は、伝熱管22の並列方向と直交する方向に離間して配置されている。伝熱管22は、ここでは断面形状が短軸と長軸とを有する扁平形状に形成され、貫通孔で形成された冷媒流路を複数有した扁平管で構成されている。また、伝熱管22は、アルミニウム系の材料で形成されている。なお、伝熱管22において冷媒流路となる各貫通孔の断面形状は、矩形形状、正方形、台形、三角形または円形などとされる。
 伝熱管22は、直線部23と折り返し部24とが交互に連なり、且つ直線部23同士が略平行な構成を有している。伝熱管22は管材を折り曲げ加工することで形成された、一体成形品である。また、1本の伝熱管22と2つのヘッダ21との接続箇所は伝熱管22の両端部の2箇所である。また、図2において、空気は紙面に垂直な方向に流れ、伝熱管22は、空気の流れに対して伝熱管22の長軸方向が平行となるように配置される。
 ヘッダ21は、たとえば、円筒状の管の一方の端部が完全に閉塞され、他方の端部が冷媒出入口部26を除いて閉塞された構造となっている。また、ヘッダ21には、挿し込み孔25が形成され、挿し込み孔25から伝熱管22の端部がヘッダ21内に挿入されて伝熱管22とヘッダ21とが接合される。伝熱管22とヘッダ21の挿し込み孔25との当接部は、たとえばロウ付け等により接合される。
 以上のように構成したフィンレス熱交換器の効果について説明する。本実施の形態1のフィンレス熱交換器の効果をより明確に説明するため、比較例として、次の図3に、伝熱管を直線部のみで構成したフィンレス熱交換器を挙げ、これと比較して説明する。図3は、比較例のフィンレス熱交換器を示す図である。
 比較例のフィンレス熱交換器400は、実施の形態1のフィンレス熱交換器と熱交換器サイズおよび熱交換性能が同じである。また、伝熱管220が直線部のみで形成され、直線部23の両端部がヘッダ210に接続された構成である。また、比較例の伝熱管220は、実施の形態1の伝熱管22と短軸寸法および長軸寸法が同じで、更に管ピッチP1が、図2に示した管ピッチPと同じとする。管ピッチPは、隣り合う直線部23間の間隔である。
 このような比較例のフィンレス熱交換器400と実施の形態1のフィンレス熱交換器とを比較すると、本実施の形態1のフィンレス熱交換器の伝熱管22は、いわば比較例の伝熱管220を折り返し部24で繋げた構成である。このため、本実施の形態1のフィンレス熱交換器は、比較例と同等の熱交換性能を維持しつつ、伝熱管22の本数を減らすことができる。伝熱管22の本数は、折り返し部24の数が多くなるほど、少なくなる。
 このように、本実施の形態1のフィンレス熱交換器は、熱交換性能を維持しつつ伝熱管22の本数を減らすことができるため、ヘッダ21に挿し込まれる伝熱管22の端部の数が減り、ヘッダ21の挿し込み孔25の数も減る。このため、ヘッダ21において各挿し込み孔25の間隔を十分広く設定できる。よって、桟の肉厚を確保でき、加工時の変形などの加工不良が発生しにくく、ヘッダの加工性が向上する。その結果、比較的容易に安価にヘッダ21を製作することができる。
 また、伝熱管22の本数が減ることで、熱交換器の組立時の伝熱管22の取り扱いが容易になり、組立て性を大きく改善することができる。
 また、ヘッダ21に挿し込まれる伝熱管22の端部の数が減ることで、ヘッダ21から各伝熱管22に冷媒を分配する際、伝熱管22の本数が少ない分、理想分配に近い分配状態にすることができる。よって、ヘッダ21における各伝熱管22への冷媒分配性能が向上し、熱交換性能を高めることができる。その結果、高性能なフィンレス熱交換器を比較的容易に提供できる。また、熱交換性能を高めることができることで、同じ熱交換性能を有するフィンレス熱交換器をコンパクトに構成することができる。
 また、伝熱管22の本数が減ることで、ヘッダ21における伝熱管22との接合箇所も少なくなるため、接合不良が生じる可能性を低くでき、フィンレス熱交換器の信頼性を向上することができる。
 また、フィンレス熱交換器は、フィンを使用しないことから材料費、加工費および金型費を削減でき、熱交換器のコストを大幅に低減することができる。
 以上より、本実施の形態1によれば、伝熱管22を、並列方向と直交する方向に延びる直線部23と折り返し部24とが交互に連なった構成とし、言い換えれば、並列に配置された複数の直線部23を折り返し部24で繋いで1本の伝熱管とした。このため、図3に示した熱交換器と同等の熱交換性能を維持しながらも、フィンレス熱交換器全体としての伝熱管の本数を減らすことができる。よって、ヘッダ21の挿し込み孔25の数を低減でき、ヘッダ21の加工性および全体の組立て性を向上でき、生産性を向上できる。そして、生産性が向上することで、安価に構成できる。
 このように、ヘッダ21の挿し込み孔25の数を低減できることで、安価で高性能且つ高品質であり、更にコンパクトなフィンレス熱交換器を提供することができる。
 なお、本実施の形態1では、伝熱管22の一例として扁平管を例にとって説明したが、伝熱管22は扁平管に限られたものではなく、円管であっても良い。伝熱管22を円管とした場合も同様の効果を得ることができる。伝熱管22が扁平管に限られない点は、特に言及がない限り後述の実施の形態でも同様である。また、伝熱管22の材料については、アルミニウム系を例にとって説明したが、銅系または鉄系材料であっても、同様の効果を得ることができる。この点は後述の実施の形態でも同様である。
 ここで、伝熱管22を扁平管とした場合におけるフィンレス熱交換器の具体的な寸法について検討する。
 図4は、通風抵抗が一定であるという条件下における、フィンレス熱交換器の熱交換性能と伝熱管の短軸寸法との関係の一例を記載した図である。図5は、同じ通風抵抗が得られる、伝熱管の短軸寸法と管ピッチPの範囲との関係を記載した図である。管ピッチPは上述したように隣り合う直線部23間の間隔である。また、図5おいて網がけした部分は、同じ通風抵抗が得られる範囲を示している。
 図4より、通風抵抗が一定であるという条件下において、より大きな熱交換性能を得るには、伝熱管22の短軸寸法を小さくすればよいことがわかる。そして、図5より、異なる短軸寸法で同じ通風抵抗を得るには、伝熱管22の短軸寸法が小さい程、管ピッチを狭くする必要があることがわかる。つまり、通風抵抗が一定であるという条件下で熱交換性能を上げるには、伝熱管22の短軸寸法を小さく且つ管ピッチを狭くする必要があることが分かる。
 図4および図5より、たとえば、目標の熱交換性能X1と同等の熱交換性能をフィンレス熱交換器で得るには、伝熱管22の短軸寸法を1.5mm、且つ管ピッチを2.1mm~3.3mmの範囲で設定すれば良いことがわかる。なお、目標の熱交換性能X1とは、複数のフィンを備えたいわゆるフィンチューブ熱交換器における熱交換性能を指している。よって、フィンチューブ熱交換器とフィンレス熱交換器とで通風抵抗を同一とする条件で、フィンチューブ熱交換器と同等の熱交換性能をフィンレス熱交換器で得るには、伝熱管22の短軸寸法を1.5mm、且つ管ピッチを2.1mm~3.3mmの範囲で設定すれば良いことがわかる。
 また、熱交換性能X1よりも高い熱交換性能X2をフィンレス熱交換器で得るには、伝熱管22の短軸寸法を更に小さくして0.6mmとし、且つ管ピッチも更に狭くして1.2mm~2.4mmの範囲に設定すれば良い。
 図5の網がけ部分の範囲に基づき、通風抵抗が一定であるという条件下で、目標の熱交換性能X1と同等の熱交換性能をフィンレス熱交換器で得るには、伝熱管22の短軸寸法を1.5mm以下、0超とすればよい。また、管ピッチから短軸寸法を減算した値が0.6[mm]~1.8[mm]とすればよい。なお、この範囲の下限の「0.6」は、1.8から0.6を減算して得られた値であり、上限の「1.8」は、3.3から1.5を減算して得られた値である。空気調和装置の性能を考えると、必ずしも通風抵抗をフィンチューブ熱交換器と同等にする必要はなく、圧縮機仕事と、室内機ファンまたは室外機ファンの仕事との総和が小さくなるような設計をすればよい。
 このように、通風抵抗を同一とする条件では、伝熱管22の短軸寸法を小さくすると、管ピッチを小さくする必要があり、つまり伝熱管22の本数を多くすることができる。そのため、伝熱管22の短軸寸法を小さく設定することで、ヘッダ21の加工性悪化を回避して、フィンレス熱交換器の熱交換性能を向上することができる。
実施の形態2.
 実施の形態2は、製造時に伝熱管22の直線部23同士の間隔がばらつく不都合を解消する技術に関する。以下、実施の形態1と異なる構成を中心に説明するものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
 図6は、本発明の実施の形態2に係るフィンレス熱交換器の構造を模式的に示す図で、(a)は正面図、(b)は底面図である。図7は、図6の伝熱管の折り返し部とヘッダとの接触部分の拡大図である。
 実施の形態2のフィンレス熱交換器は、ヘッダ21の構成が実施の形態1と異なる。実施の形態2のヘッダ21Aは、伝熱管22の折り返し部24と対向する位置に、折り返し部24を支持する凹部30を有する。凹部30は、折り返し部24の外形形状に沿う形状に形成されており、製造時に折り返し部24を支持することで直線部23間の間隔を保持する位置決め構造として用いられるものである。なお、図6では、凹部30が、ヘッダ21Aの構成部材に設けた溝で構成した例を示しているが、ヘッダ21Aの構成部材を湾曲させて構成してもよい。また、図6では、2つのヘッダの両方に凹部30が形成された構成を示しているが、どちらか一方のヘッダのみに形成した構成としてもよい。
 熱交換性能を上げるために伝熱管22を密に配置すべく、伝熱管22の短軸寸法を小さくした場合、伝熱管22の剛性が低下する。このため、伝熱管22の両端部とヘッダ21Aとをロウ付けで接合する際に、残留熱応力が発生して伝熱管22がたわむ可能性がある。伝熱管22がたわむと、隣り合う折り返し部24間の間隔にばらつきが生じる可能性がある。
 このため、伝熱管22の両端部をヘッダ21Aの挿し込み孔25に挿入すると共に、凹部30に伝熱管22の折り返し部24を位置させて折り返し部24の位置を定め、その状態で伝熱管22の両端部とヘッダ21Aとをロウ付けする。これにより、製造時に隣り合う折り返し部24間の間隔にばらつきが生じることを防止できる。よって、折り返し部24の位置が安定し、隣り合う直線部23間のピッチを均等に保つことができる。その結果、各直線部23のピッチがばらつくことによる熱交換性能の低下を抑制できる。
 以上説明したように、本実施の形態2によれば、実施の形態1と同様の効果が得られると共にヘッダ21Aが伝熱管22の折り返し部24を支持する凹部30を有することで、以下の効果が得られる。すなわち、隣り合う直線部23同士のピッチを均等に保つことができ、ピッチがばらつくことによる熱交換性能の低下を抑制できる。
 なお、実施の形態2のフィンレス熱交換器は、以下のような変形を加えても良い。この場合も同様の作用効果を得ることができる。
 図8は、本発明の実施の形態2に係るフィンレス熱交換器の変形例を示す図である。
 上記図7では、伝熱管22の折り返し部24を直接、ヘッダ21Aの凹部30で支持する構造としたが、図8に示すように、伝熱管22の折り返し部24と凹部30との間に断熱材31を介在させて支持する構造としてもよい。このように断熱材31を設けることで、伝熱管22の折り返し部24の熱がヘッダ21Aに伝達することを抑制できる。したがって、熱交換のロスを防ぐことができ、断熱材31を設けない場合に比べて熱交換性能を向上できる。
実施の形態3.
 伝熱管22の折り返し部24は、管部材の折り曲げ加工で形成されるため、曲げ半径が大きい方が加工しやすい。実施の形態3は、折り返し部24の加工を考慮した伝熱管の形状に関する。以下、実施の形態1と異なる構成を中心に説明するものとし、本実施の形態3で説明されていない構成は実施の形態1と同様である。
 以下、実施の形態3の伝熱管22Aについて、実施の形態1の伝熱管22と比較して説明する。図9は、本発明の実施の形態3に係るフィンレス熱交換器の伝熱管を示す図である。図10は、図9の伝熱管の折り返し部を拡大して示す図である。図11は、比較例として実施の形態1に係るフィンレス熱交換器の伝熱管を示す図である。図12は、図11の伝熱管の折り返し部を拡大して示す図である。
 実施の形態3の伝熱管22Aは、図10に示すように、折り返し部24が、湾曲した第1部24aと、第1部24aの両端から互いに近づく方に延びる一対の第2部24bとで構成されている。そして、第2部24bの先端から直線部23が延びている。
 ここで、隣り合う直線部23間の間隔である管ピッチPを、図10に示した実施の形態3の伝熱管22Aと、図12に示した実施の形態1の伝熱管22とで同じとした構成で、折り返し部24の曲げ半径を比較する。図12に示した実施の形態1の折り返し部24の曲げ半径Rは、(管ピッチP-短軸寸法L)/2の寸法になる。一方、図10に示した実施の形態3の折り返し部24の第1部24aの曲げ半径Rは、隣り合う折り返し部24に接触する大きさまで曲げ半径を大きくすることを許容すると、(管ピッチP-短軸寸法L)/2×2に近い寸法まで大きくすることができる。
 以上説明したように、本実施の形態3によれば、実施の形態1と同様の効果が得られると共に、伝熱管22Aの折り返し部24の形状を、湾曲した第1部24aと、第1部24aの両端から互いに近づく方に延びる一対の第2部24bとを備えた形状としたので、更に以下の効果が得られる。すなわち、管ピッチPを広げることなく、折り返し部24の曲げ半径Rを大きくでき、伝熱管22Aの加工性の向上、引いてはフィンレス熱交換器の生産性の向上を図ることができる。また、折り返し部24の加工性を改善した、高品質の伝熱管を得ることができる。
 なお、熱交換性能の低下を抑制するためには、伝熱管22A同士は接しない方が好ましいが、仮に、伝熱管22A同士が接触しても、その接触位置が折り返し部24の第1部24a同士のみであれば、接触面積が小さいため、大幅に熱交換性能が低下することはない。
 また、折り返し部24の曲げ半径Rの寸法を大きくすると、伝熱管22Aの折り曲げ加工による残留ひずみが小さくなるため、伝熱管22Aの強度低下を抑制することができる。その結果、内圧の安全率の低下を抑制し、伝熱管22Aの品質の低下を防ぐことができる。
 また、折り返し部24の曲げ半径Rの寸法を大きくすると、隣り合う伝熱管22Aの折り返し部24との距離が近くなるまたは接触することになる。空気調和装置1の運転条件によっては、伝熱管22が振動または変形することが考えられ、伝熱管22A同士が接触して伝熱管22Aに損傷または疲労が蓄積され、破断することが考えられる。よって、これを防ぐために、隣り合う各伝熱管22Aにおいて、互いに近接または接触する部分を接合しておくと良い。これにより、伝熱管22Aの品質を高めるだけでなく、伝熱管22Aの位置が安定し、均質化することができ、熱交換性能が向上する。
 なお、実施の形態3のフィンレス熱交換器の伝熱管22Aは、図9および図10に示した構成に更に、以下のような変形を加えても良い。この場合も同様の効果を得ることができる。
 図13は、本発明の実施の形態3に係るフィンレス熱交換器の伝熱管の変形例を示す図である。図14は、図13の伝熱管の折り返し部を拡大して示す図である。
 この変形例では、隣り合う折り返し部24が、伝熱管22Aの並列方向に交互に段違いとなる配置としている。この構成とすると、折り返し部24の曲げ半径Rを、(管ピッチP-短軸寸法L)/2×3程度まで大きくすることが可能である。
 以上の図9~図14に示した伝熱管22および伝熱管22Aのそれぞれの折り返し部24の曲げ半径Rの範囲について整理すると、r<R≦3r、r=(管ピッチP-短軸寸法L)/2、の関係を満たす範囲となる。なお、この範囲は、伝熱管が扁平管である場合に該当する範囲である。本発明は、伝熱管の少なくとも1箇所の折り返し部24の曲げ半径Rが上記の関係を満たしている構成を含むものとする。
実施の形態4.
 実施の形態4は、ヘッダ21を小型化した形態に関する。以下、実施の形態1と異なる構成を中心に説明するものとし、本実施の形態4で説明されていない構成は実施の形態1と同様である。
 図15は、本発明の実施の形態4に係るフィンレス熱交換器の構造を模式的に示す図で、(a)は正面図、(b)は底面図である。
 実施の形態4は、実施の形態1のヘッダ21に代えて、ヘッダ21Bを備えたものである。ヘッダ21Bは、ヘッダ21の挿し込み孔25の間隔L1を、加工性が大きく悪化しない程度に、隣り合う伝熱管22間の配置間隔P2よりも狭くし、ヘッダの小型化を図ったものである。具体的には、ヘッダ21Bの、伝熱管22の並列方向の長さL2が、複数の伝熱管の配置領域全体の同方向の長さL3よりも短い構成となっている。そして、実施の形態4のフィンレス熱交換器は、このように小型化されたヘッダ21Bに、伝熱管22の端部を、伝熱管22を適宜折り曲げ部32を介して導き、挿し込み孔25に接合した構成を有している。
 本実施の形態4によれば、実施の形態1と同様の効果が得られると共に、小型化されたヘッダ21Bを用いることで、ヘッダ21Bの内容積を小さくすることができ、冷媒量を削減できる。
 なお、図15では、2つのヘッダ21の両方を小型化した構成を示したが少なくとも一方のヘッダ21が小型化されていればよい。
実施の形態5.
 実施の形態5は、実施の形態4で説明したヘッダ21の小型化に加えて更に、フィンレス熱交換器全体の小型化を図る構成に関する。以下、実施の形態4と異なる構成を中心に説明するものとし、本実施の形態5で説明されていない構成は実施の形態4と同様である。
 図16は、本発明の実施の形態5に係るフィンレス熱交換器の構造を模式的に示す図で、(a)は正面図、(b)は底面図である。
 実施の形態5は、実施の形態4において伝熱管22の両方の端部に配置していた2つのヘッダ21Bを、伝熱管22の片方の端部に配置した構成としたものである。ここでは、2つのヘッダ21Bを下側の端部に配置した構成を示したが、上側の端部に配置した構成してもよい。
 本実施の形態5によれば、実施の形態4と同様の効果が得られると共に、小型化された2つのヘッダ21Bを伝熱管22の一方の端部側にまとめて配置することで、以下の効果が得られる。すなわち、2つのヘッダ21Bを伝熱管22の両方の端部のそれぞれに分けて配置する場合に比べて、筐体内において複数の伝熱管22が配置される配置領域の大きさを拡大することができ、フィンレス熱交換器の前面面積を増やすことができる。よって、伝熱面積が増加し、熱交換性能を向上できる。
実施の形態6.
 実施の形態6は、実施の形態5の2つのヘッダ21Bを一体構造としたものである。以下、実施の形態5と異なる構成を中心に説明するものとし、本実施の形態6で説明されていない構成は実施の形態5と同様である。
 図17は、本発明の実施の形態6に係るフィンレス熱交換器の構造を模式的に示す図で、(a)は正面図、(b)は底面図である。
 実施の形態6は、実施の形態5において伝熱管22の片方の端部に配置した2つのヘッダ21Bに代えて、2つのヘッダ21Bを一体化した構成のヘッダ21Cを備えたものである。なお、ヘッダ21C内は、伝熱管22の一端部側に接続される空間と、伝熱管22の他端部側に接続される空間とが、仕切り板42によって仕切られている。
 本実施の形態6によれば、実施の形態5と同様の効果が得られると共に、ヘッダ21Cを2つのヘッダを一体化した構成としたので、ヘッダ21Cの剛性が上がり、フィンレス熱交換器の剛性も向上する。このため、伝熱管22の位置が安定し、直線部23間の管ピッチPが所定のピッチに保たれ、熱交換性能を向上できる。
実施の形態7.
 上記実施の形態1では、伝熱管22が、管材を折り曲げ加工することで形成された一体成形品であったが、実施の形態7では、複数の管材を接合した構成としたものである。以下、実施の形態1と異なる構成を中心に説明するものとし、本実施の形態7で説明されていない構成は実施の形態1と同様である。
 図18は、本発明の実施の形態7に係るフィンレス熱交換器の構造を模式的に示す正面図である。図19は、図18の伝熱管の要部斜視図である。
 実施の形態7の伝熱管22Bは、別体の部材で構成された、直線部23と折り返し部24とを、たとえばロウ付けにより接合された構成を有する。折り返し部24は、具体的にはUベントで構成されている。
 本実施の形態7によれば、実施の形態1と同様の効果を得ることができる。
実施の形態8.
 実施の形態8は、フィンレス熱交換器の配置の向きを実施の形態1と変えたものである。以下、実施の形態1と異なる構成を中心に説明するものとし、本実施の形態8で説明されていない構成は実施の形態1と同様である。
 図20は、本発明の実施の形態8に係るフィンレス熱交換器の構造を模式的に示す正面図である。
 上記実施の形態1のフィンレス熱交換器は、複数の伝熱管22の並設方向が左右方向であったが、実施の形態8のフィンレス熱交換器は、図20に示すように、複数の伝熱管22の並設方向が上下方向となっている。
 本実施の形態8によれば、実施の形態1と同様の効果を得ることができる。
実施の形態9.
 上記実施の形態1では、フィンレス熱交換部が全体として平面状であったが、実施の形態9では、全体としてL字形状としたものである。以下、実施の形態1と異なる構成を中心に説明するものとし、本実施の形態9で説明されていない構成は実施の形態1と同様である。
 図21は、本発明の実施の形態9に係るフィンレス熱交換器を概略的に記載した模式図で、(a)は正面図、(b)は平面図、(c)は側面図である。
 図21に示すように、実施の形態9のフィンレス熱交換器は、複数の伝熱管22の長手方向の中心部に折り曲げ部60を有し、全体としてL字形状に形成されている。つまり、複数の伝熱管22のそれぞれが長手方向の同じ位置で折り曲げられた形状を有する。実施の形態9のフィンレス熱交換器は、室内機の熱交換器として利用することを想定している。
 本実施の形態9は、実施の形態1と同様の効果が得られると共に、フィンレス熱交換器を全体としてL字形状としたことで、室内機の熱交換器のように、前面面積を大きく取れない室内ユニットに用いて有効である。
実施の形態10.
 実施の形態10は、空気調和装置1の運転時に伝熱管22が振動しても、伝熱管22の直線部23の管ピッチPを等間隔に保つ構成に関するものである。以下、実施の形態1と異なる構成を中心に説明するものとし、本実施の形態10で説明されていない構成は実施の形態1と同様である。
 図22は、本発明の実施の形態10に係るフィンレス熱交換器の構造を模式的に示す正面図である。図23は、図22の位置規定部材の一部断面図である。
 実施の形態10のフィンレス熱交換器は、伝熱管22の直線部23の管ピッチPを等間隔に保つ位置決め構造である位置規定部材70を備えている。位置規定部材70は、ここでは伝熱管22の長手方向に間隔を空けて2箇所に配置されている。位置規定部材70は、棒状部材で構成され、その長手方向に、伝熱管22の直線部23が挿入される凹状の挿入部71が複数形成された構成を有する。複数の挿入部71は、隣り合う直線部23間の間隔に合わせて等間隔に形成されている。そして、位置規定部材70の各挿入部71に各直線部23が挿入されることで、空気調和装置1の運転時に伝熱管22が振動しても、直線部23の管ピッチPを等間隔に保つことを可能としている。なお、位置規定部材70の材料は、熱伝導率が低い樹脂または断熱材などが望ましい。
 本実施の形態10によれば、実施の形態1と同様の効果が得られると共に、位置規定部材70を設置することで、伝熱管22の位置が規定されて管ピッチPが均等に維持されるため、熱交換性能が向上する。
 なお、フィンレス熱交換器は、フィンチューブ熱交換器と同等の熱交換性能を得るために伝熱管が細径化されて伝熱管の剛性が低下する傾向がある。しかし、位置規定部材70を設置することで、伝熱管22の直線部23が位置規定部材70の挿入部71内に挿入されて支持されることで、伝熱管22の剛性が低下する点をカバーでき、熱交換器の剛性を向上できる。
 位置規定部材70は、必ずしも図22および図23に示す形状、個数および位置である必要はなく、位置規定部材70の作用を逸脱しない範囲で適宜変更できる。例えば、位置規定部材70の数は2つに限られず、1つでも良いし、3つ以上としてもよい。
 なお、本発明は、上記の実施の形態1~10に限定されるものではなく、本発明の範囲内で種々に改変することができる。すなわち、上記の実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。更に、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。
 また、上記各実施の形態1~10においてそれぞれ別の実施の形態として説明したが、各実施の形態の特徴的な構成を適宜組み合わせてフィンレス熱交換器を構成してもよい。たとえば、実施の形態2と実施の形態4とを組み合わせ、図15のヘッダ21Bに実施の形態2の凹部30を設けた構成としてもよい。また、各実施の形態1~10のそれぞれにおいて、同様の構成部分について適用される変形例はその変形例を説明した実施の形態以外の他の実施の形態においても同様に適用される。
 また、上記では、熱源側熱交換器に本発明のフィンレス熱交換器を適用した例についての説明を行ったが、利用側熱交換器に本発明のフィンレス熱交換器を適用した構成であってもよい。
 1 空気調和装置、1A 熱源側ユニット、1B 利用側ユニット、4 熱源側熱交換器、21 ヘッダ、21A ヘッダ、21B ヘッダ、21C ヘッダ、22 伝熱管、22A 伝熱管、22B 伝熱管、23 直線部、24 折り返し部、24a 第1部、24b 第2部、25 挿し込み孔、26 冷媒出入口部、30 凹部、31 断熱材、32 折り曲げ部、40 熱源側熱交換器、41 ファン、42 仕切り板、60 折り曲げ部、70 位置規定部材、71 挿入部、110 圧縮機、150 絞り装置、160 流路切替器、170 アキュムレータ、180 利用側熱交換器、210 ヘッダ、220 伝熱管、400 フィンレス熱交換器。

Claims (17)

  1.  2つのヘッダと、互いに間隔を空けて並列に配置された複数の伝熱管とを備え、前記2つのヘッダのそれぞれに形成された複数の挿し込み孔に前記複数の伝熱管のそれぞれの両端部が挿し込まれて接続されているフィンレス熱交換器であって、
     前記複数の伝熱管のそれぞれは、並列方向と直交する方向に延びる直線部と折り返し部とが交互に連なった構成を有するフィンレス熱交換器。
  2.  前記直線部間の間隔を保持する位置決め構造を有する請求項1記載のフィンレス熱交換器。
  3.  前記位置決め構造は、前記2つのヘッダの一方または両方に設けられた、前記折り返し部を支持する凹部である請求項2記載のフィンレス熱交換器。
  4.  前記位置決め構造は、前記直線部が挿入される凹状の挿入部が、隣り合う前記直線部間の間隔に合わせて複数形成された位置規定部材である請求項2記載のフィンレス熱交換器。
  5.  前記伝熱管の前記折り返し部は、湾曲した第1部と、前記第1部の両端から互いに近づく方に延びる一対の第2部とで構成されている請求項1~請求項4のいずれか一項に記載のフィンレス熱交換器。
  6.  前記伝熱管の前記折り返し部は、隣り合う前記伝熱管と接合されている請求項5記載のフィンレス熱交換器。
  7.  前記2つのヘッダの少なくとも一方は、前記挿し込み孔を、隣り合う前記伝熱管の配置間隔よりも狭い間隔で有し、前記複数の伝熱管の並列方向に沿った前記ヘッダの長さが、前記複数の伝熱管の配置領域の全体の同方向の長さよりも短く形成されている請求項1~請求項6のいずれか一項に記載のフィンレス熱交換器。
  8.  前記2つのヘッダの両方が、前記複数の伝熱管の一方の端部側に沿って配置されている請求項7記載のフィンレス熱交換器。
  9.  前記2つのヘッダが一体構造となっている請求項8記載のフィンレス熱交換器。
  10.  前記複数の伝熱管のそれぞれは、前記直線部と前記折り返し部とが別体で構成されて接合されたものである請求項1~請求項9のいずれか一項に記載のフィンレス熱交換器。
  11.  前記複数の伝熱管が左右方向に並列に配置されている請求項1~請求項10のいずれか一項に記載のフィンレス熱交換器。
  12.  前記複数の伝熱管が上下方向に並列に配置されている請求項1~請求項10のいずれか一項に記載のフィンレス熱交換器。
  13.  前記複数の伝熱管のそれぞれは、長手方向の同じ位置で折り曲げられた形状を有する請求項1~請求項12のいずれか一項に記載のフィンレス熱交換器。
  14.  前記伝熱管は、断面形状が短軸と長軸とを有する扁平形状に形成され、貫通孔で形成された流路を複数有する扁平管である請求項1~請求項13記載のフィンレス熱交換器。
  15.  前記伝熱管の前記短軸の長さである短軸寸法が1.5[mm]以下、0超であり、隣り合う前記直線部間の間隔である管ピッチから前記短軸寸法を減算した値が0.6[mm]~1.8[mm]である請求項14記載のフィンレス熱交換器。
  16.  前記伝熱管の前記短軸の長さである短軸寸法と、隣り合う前記直線部の間隔である管ピッチとを用いて、r=(前記管ピッチ-前記短軸寸法)/2であるとき、前記伝熱管において少なくとも1箇所の前記折り返し部の曲げ半径R[mm]が、r[mm]<R≦3r[mm]の関係を有する請求項14または請求項15記載のフィンレス熱交換器。
  17.  請求項1~請求項16のいずれか一項に記載のフィンレス熱交換器と、前記フィンレス熱交換器に空気を供給するファンとを有する冷凍サイクル装置。
PCT/JP2017/044264 2017-12-11 2017-12-11 フィンレス熱交換器および冷凍サイクル装置 WO2019116413A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780097093.6A CN111433548B (zh) 2017-12-11 2017-12-11 无翅片热交换器及制冷循环装置
US16/652,510 US11384995B2 (en) 2017-12-11 2017-12-11 Finless heat exchanger and refrigeration cycle apparatus
JP2019559421A JP6821057B2 (ja) 2017-12-11 2017-12-11 フィンレス熱交換器および冷凍サイクル装置
PCT/JP2017/044264 WO2019116413A1 (ja) 2017-12-11 2017-12-11 フィンレス熱交換器および冷凍サイクル装置
EP17935032.7A EP3726174B1 (en) 2017-12-11 2017-12-11 Finless heat exchanger and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044264 WO2019116413A1 (ja) 2017-12-11 2017-12-11 フィンレス熱交換器および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019116413A1 true WO2019116413A1 (ja) 2019-06-20

Family

ID=66819099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044264 WO2019116413A1 (ja) 2017-12-11 2017-12-11 フィンレス熱交換器および冷凍サイクル装置

Country Status (5)

Country Link
US (1) US11384995B2 (ja)
EP (1) EP3726174B1 (ja)
JP (1) JP6821057B2 (ja)
CN (1) CN111433548B (ja)
WO (1) WO2019116413A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7150215B1 (ja) * 2021-06-29 2022-10-07 三菱電機株式会社 冷凍サイクル装置
WO2024053317A1 (ja) * 2022-09-06 2024-03-14 株式会社Afrex フィンレス熱交換器およびそれを用いた冷却システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147987A (ja) * 2000-11-08 2002-05-22 Ebara Shinwa Ltd 冷却塔用熱交換体の組立方法
JP2002206888A (ja) * 2001-01-05 2002-07-26 Ebara Shinwa Ltd 冷却塔用などの熱交換体及びこの熱交換体を有する冷却塔
WO2004025207A1 (ja) * 2002-09-10 2004-03-25 Gac Corporation 熱交換器およびその製造方法
JP2005127596A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 熱交換器
JP2005249314A (ja) * 2004-03-04 2005-09-15 Denso Corp 熱交換器
JP2006317080A (ja) * 2005-05-12 2006-11-24 Denso Corp 熱交換器および熱交換器の製造方法
JP2009145010A (ja) 2007-12-17 2009-07-02 Hitachi Appliances Inc 空気調和機用フィンレス熱交換器
JP2010203726A (ja) * 2009-03-05 2010-09-16 Toshiba Carrier Corp 熱交換器、空気調和機
JP2010276298A (ja) * 2009-05-29 2010-12-09 Sharp Corp 熱交換器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292196A (ja) 1996-03-01 1997-11-11 Denso Corp 蓄冷式冷房装置
KR100363969B1 (ko) * 2000-02-11 2002-12-11 엘지전자 주식회사 냉장고용 증발기 및 헤더 제작 방법
DE10049256A1 (de) * 2000-10-05 2002-04-11 Behr Gmbh & Co Serpentinen-Wärmeübertrager
US20070114005A1 (en) * 2005-11-18 2007-05-24 Matthias Bronold Heat exchanger assembly for fuel cell and method of cooling outlet stream of fuel cell using the same
CN201251380Y (zh) * 2008-08-07 2009-06-03 北京市京海换热设备制造有限责任公司 一种空气冷却器
CA2826861C (en) * 2009-11-04 2014-05-20 Evapco, Inc. Hybrid heat exchange apparatus
US20140027101A1 (en) 2011-04-12 2014-01-30 Carrier Corporation Heat exchanger
WO2013160954A1 (ja) * 2012-04-26 2013-10-31 三菱電機株式会社 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
WO2013160956A1 (ja) * 2012-04-26 2013-10-31 三菱電機株式会社 熱交換器用ヘッダ及びこの熱交換器用ヘッダを備えた熱交換器
JP2015090237A (ja) 2013-11-06 2015-05-11 パナソニックIpマネジメント株式会社 熱交換器
JP6502904B2 (ja) 2015-09-04 2019-04-17 ダイキン工業株式会社 熱交換器
CN105744805A (zh) * 2016-04-15 2016-07-06 周哲明 一种多通道组合水冷板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147987A (ja) * 2000-11-08 2002-05-22 Ebara Shinwa Ltd 冷却塔用熱交換体の組立方法
JP2002206888A (ja) * 2001-01-05 2002-07-26 Ebara Shinwa Ltd 冷却塔用などの熱交換体及びこの熱交換体を有する冷却塔
WO2004025207A1 (ja) * 2002-09-10 2004-03-25 Gac Corporation 熱交換器およびその製造方法
JP2005127596A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 熱交換器
JP2005249314A (ja) * 2004-03-04 2005-09-15 Denso Corp 熱交換器
JP2006317080A (ja) * 2005-05-12 2006-11-24 Denso Corp 熱交換器および熱交換器の製造方法
JP2009145010A (ja) 2007-12-17 2009-07-02 Hitachi Appliances Inc 空気調和機用フィンレス熱交換器
JP2010203726A (ja) * 2009-03-05 2010-09-16 Toshiba Carrier Corp 熱交換器、空気調和機
JP2010276298A (ja) * 2009-05-29 2010-12-09 Sharp Corp 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3726174A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7150215B1 (ja) * 2021-06-29 2022-10-07 三菱電機株式会社 冷凍サイクル装置
WO2024053317A1 (ja) * 2022-09-06 2024-03-14 株式会社Afrex フィンレス熱交換器およびそれを用いた冷却システム

Also Published As

Publication number Publication date
EP3726174A1 (en) 2020-10-21
US20200256625A1 (en) 2020-08-13
EP3726174B1 (en) 2022-03-09
US11384995B2 (en) 2022-07-12
JPWO2019116413A1 (ja) 2020-08-06
JP6821057B2 (ja) 2021-01-27
CN111433548B (zh) 2022-04-26
CN111433548A (zh) 2020-07-17
EP3726174A4 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6278904B2 (ja) 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置
KR20170042733A (ko) 열교환기 및 공기 조화 장치
JP2007298260A (ja) 熱交換器
WO2019116413A1 (ja) フィンレス熱交換器および冷凍サイクル装置
JPH09126685A (ja) 熱交換器
JP2005049026A (ja) 内部熱交換器
WO2019111849A1 (ja) 熱交換器
JP6413760B2 (ja) 熱交換器及びそれを用いた熱交換器ユニット
JP2006317080A (ja) 熱交換器および熱交換器の製造方法
WO2017130975A1 (ja) 熱交換器
JP2007278557A (ja) 熱交換器
JP2017198385A (ja) 熱交換器
US20080066487A1 (en) Condenser and radiator of air conditioning refrigeration system
JP5947158B2 (ja) ヒートポンプ用室外熱交換器
JP2002228290A (ja) 空気調和機
JP6593299B2 (ja) 熱交換器
JP7330294B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
WO2023166612A1 (ja) 熱交換器および熱交換器の製造方法
JP7118279B2 (ja) 熱交換器、その製造方法および空気調和装置
WO2022259288A1 (ja) 熱交換器及び室外機
WO2019021461A1 (ja) 熱交換器、空気調和機及び熱交換器の製造方法
CN113785168B (zh) 热交换器及制冷循环装置
JPWO2006073135A1 (ja) 熱交換チューブ、熱交換器、及び冷凍サイクル
JP4334311B2 (ja) 熱交換器
JP2023182618A (ja) 熱交換器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017935032

Country of ref document: EP

Effective date: 20200713