WO2023166612A1 - 熱交換器および熱交換器の製造方法 - Google Patents

熱交換器および熱交換器の製造方法 Download PDF

Info

Publication number
WO2023166612A1
WO2023166612A1 PCT/JP2022/008888 JP2022008888W WO2023166612A1 WO 2023166612 A1 WO2023166612 A1 WO 2023166612A1 JP 2022008888 W JP2022008888 W JP 2022008888W WO 2023166612 A1 WO2023166612 A1 WO 2023166612A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
heat exchanger
heat transfer
transfer tubes
inter
Prior art date
Application number
PCT/JP2022/008888
Other languages
English (en)
French (fr)
Inventor
伸 中村
悟 梁池
剛志 前田
敦 森田
篤史 ▲高▼橋
晃 石橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/008888 priority Critical patent/WO2023166612A1/ja
Publication of WO2023166612A1 publication Critical patent/WO2023166612A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure relates to a heat exchanger having a plurality of heat transfer tubes arranged in a plurality of rows and a method for manufacturing the heat exchanger.
  • Patent Document 1 is an example of this, and the heat exchangers are configured in three rows.
  • refrigerant is supplied to three rows of heat transfer tubes by being divided into a plurality of paths by flow dividers. If the most upwind row is defined as the first row, the multiple passes are the most downstream pass that includes only the third row of heat transfer tubes, and the upstream path that includes at least one of the first and second rows of heat transfer tubes. and a path including the first to third rows of heat transfer tubes.
  • Patent Document 1 the first to third rows of heat transfer tubes are connected by U-shaped inter-row connecting pipes at both ends of the heat exchanger.
  • a combination of two heat transfer tubes connected by an inter-row connecting tube is complicated.
  • the heat exchanger is formed in a cuboid shape (straight line) as a whole, and it is not intended to bend the heat exchanger into, for example, an L shape or a square shape.
  • the heat exchanger is bent into an L shape or square shape.
  • the heat exchanger described in Patent Document 1 is bent into an L shape or a square shape.
  • the first to third rows of heat transfer tubes are connected at both ends of the heat exchanger. That is, in Patent Document 1, inter-row connecting portions for connecting the first to third rows of heat transfer tubes are provided at both ends of the heat exchanger.
  • heat transfer tubes and fins are integrally brazed in a furnace.
  • heat exchangers using flat tubes as heat transfer tubes employ a method of integrally brazing heat transfer tubes and fins in a furnace.
  • brazing of the inter-row joints is also performed in the furnace.
  • the present disclosure has been made to solve such problems, and when connecting heat transfer tubes arranged in a plurality of rows at an inter-row connection part, two adjacent rows of heat transfer tubes are connected to each other in a heat exchanger.
  • By alternately connecting one end side and the other end side it is possible to eliminate the area where the movement is restricted by the inter-row connection part from the entire heat exchanger, and improve the manufacturability of the heat exchanger.
  • the object is to obtain an exchanger and a method for manufacturing a heat exchanger.
  • a heat exchanger includes a plurality of heat transfer tubes that extend in a first direction and are spaced apart from each other in a second direction that intersects with the first direction, , the heat exchanger has a first end and a second end at both ends in the first direction, and the plurality of heat transfer tubes are arranged in a third direction crossing the first direction and the second direction are arranged in m rows (m ⁇ 3), and at each of the first end and the second end of the heat exchanger, one or more inter-row connections connecting two adjacent rows of the heat transfer tubes is provided, and in 1 ⁇ n ⁇ (m ⁇ 2), the n-th heat transfer tube and the (n+1)-th heat transfer tube are separated from the first end and the second end of the heat exchanger.
  • the heat transfer tubes of the (n+1)-th row and the heat transfer tubes of the (n+2)-th row are connected via the inter-row connection portion provided at one of the ends of the heat exchanger. It is connected via the inter-row connecting portion provided at the other of the first end and the second end, and at least one row of the plurality of heat transfer tubes of the heat exchanger is connected to the At least one location in the first direction has a bent portion bent in the third direction.
  • a method for manufacturing a heat exchanger according to the present disclosure is a method for manufacturing a heat exchanger having the above configuration, wherein the row of heat transfer tubes is provided at the first end and the second end of the heat exchanger.
  • heat exchanger and the heat exchanger manufacturing method when heat transfer tubes arranged in a plurality of rows are connected to each other at the inter-row connection part, two adjacent rows of heat transfer tubes are connected to the heat exchanger.
  • two adjacent rows of heat transfer tubes are connected to the heat exchanger.
  • FIG. 1 is a refrigerant circuit diagram showing an example of a refrigerant circuit that constitutes a refrigeration cycle device equipped with a heat exchanger according to Embodiment 1.
  • FIG. 1 is a perspective view showing the appearance of an outdoor unit in which a heat exchanger according to Embodiment 1 is mounted;
  • FIG. 1 is an exploded perspective view showing the configuration of an outdoor unit in which a heat exchanger according to Embodiment 1 is mounted;
  • FIG. 1 is a perspective view showing the configuration of an outdoor heat exchanger according to Embodiment 1.
  • FIG. FIG. 5 is a plan view of the outdoor heat exchanger shown in FIG. 4;
  • FIG. 5 is a plan view showing a state before the outdoor heat exchanger shown in FIG. 4 is bent into an L shape;
  • FIG. 4 is a perspective view showing a configuration of a header-type inter-row connection portion provided in the heat exchanger according to Embodiment 1;
  • FIG. 8 is a front view showing the configuration of the header-type inter-row connection portion shown in FIG. 7;
  • FIG. 9 is a cross-sectional view taken along the line BB of FIG. 8;
  • FIG. 10 is a cross-sectional view showing a state in which a heat transfer tube is inserted into the inter-row connector of the header type shown in FIG. 9;
  • FIG. 7 is a front view showing the configuration of Modification 1 of the header-type inter-row connection portion provided in the heat exchanger according to Embodiment 1;
  • 3A and 3B are a plan view and a front view, respectively, showing a configuration of a U-shaped inter-row connection part provided in the heat exchanger according to Embodiment 1;
  • FIG. 3A and 3B are a plan view and a perspective view, respectively, showing a configuration of a U-shaped inter-row connection portion provided in the heat exchanger according to Embodiment 1.
  • FIG. FIG. 4 is a perspective view showing the configuration of a hollow header type aggregate provided in the heat exchanger according to Embodiment 1;
  • FIG. 15 is a front view showing the configuration of the hollow header type collective portion shown in FIG. 14;
  • FIG. 16 is a cross-sectional view taken along line CC of FIG. 15;
  • FIG. 16 is a cross-sectional view taken along line DD of FIG. 15;
  • FIG. 17 is a cross-sectional view showing a state in which heat transfer tubes are inserted into the hollow header type collective portion shown in FIG. 16;
  • FIG. 7 is a perspective view showing the configuration of Modification I of the collecting portion provided in the heat exchanger according to Embodiment 1;
  • FIG. 7 is a perspective view showing the configuration of Modification II of the collecting portion provided in the heat exchanger according to Embodiment 1;
  • FIG. 11 is a perspective view showing a configuration of Modification III of the collecting portion provided in the heat exchanger according to Embodiment 1; 1 is a plan view showing the configuration of an outdoor heat exchanger according to Embodiment 1.
  • FIG. FIG. 4 is a plan view showing the configuration of an outdoor heat exchanger according to Modification 1 of Embodiment 1;
  • FIG. 24 is a plan view showing a state before the outdoor heat exchanger shown in FIG. 23 is bent into an L shape;
  • FIG. 3 is a plan view showing the configuration of an outdoor heat exchanger according to Modification 2 of Embodiment 1;
  • FIG. 3 is a plan view showing the configuration of an outdoor heat exchanger according to Modification 2 of Embodiment 1;
  • FIG. 3 is a plan view showing the configuration of an outdoor heat exchanger according to Modification 2 of Embodiment 1;
  • FIG. 8 is a plan view showing the configuration of an outdoor heat exchanger according to Modification 3 of Embodiment 1;
  • FIG. 28 is a plan view showing a state before the outdoor heat exchanger shown in FIG. 27 is bent into an L shape;
  • FIG. 10 is a plan view showing the configuration of an outdoor heat exchanger according to Modification 4-1 of Embodiment 1;
  • FIG. 30 is a plan view showing a state before the outdoor heat exchanger shown in FIG. 29 is bent into an L shape;
  • FIG. 3 is a plan view showing the configuration of an outdoor heat exchanger according to a comparative example;
  • FIG. 32 is a plan view showing a state before the outdoor heat exchanger according to the comparative example shown in FIG. 31 is bent into an L shape;
  • FIG. 10 is a plan view showing the configuration of an outdoor heat exchanger according to Modification 5 of Embodiment 1;
  • FIG. 34 is a plan view showing a state before the outdoor heat exchanger shown in FIG. 33 is bent into an L shape;
  • FIG. 12 is a plan view showing another example of the configuration of the outdoor heat exchanger according to Modification 5 of Embodiment 1;
  • FIG. 11 is a plan view showing still another example of the configuration of the outdoor heat exchanger according to Modification 5 of Embodiment 1;
  • FIG. 7 is a perspective view showing the configuration of an outdoor heat exchanger according to Embodiment 2;
  • FIG. 7 is a plan view showing the configuration of an outdoor heat exchanger according to Embodiment 2;
  • FIG. 10 is a diagram schematically showing the configuration of the first row of an outdoor heat exchanger according to Embodiment 2;
  • FIG. 10 is a diagram schematically showing the configuration of the m-th row of the outdoor heat exchanger according to Embodiment 2;
  • FIG. 41 is a diagram showing a modification of FIG. 40;
  • 10 is a flow chart showing the flow of work processes of a method for manufacturing an outdoor heat exchanger according to Embodiment 3.
  • FIG. FIG. 10 is a perspective view showing each process of the method for manufacturing an outdoor heat exchanger according to Embodiment 3;
  • FIG. 10 is a perspective view showing each process of the method for manufacturing an outdoor heat exchanger according to Embodiment 3;
  • FIG. 10 is a perspective view showing each process of the method for manufacturing an outdoor heat exchanger according to Embodiment 3;
  • FIG. 10 is a perspective view showing each process of the method for manufacturing an outdoor heat exchanger according to Embodiment 3;
  • FIG. 10 is a perspective view showing each process of the method for manufacturing an outdoor heat exchanger according to Embodiment 3;
  • FIG. 2 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of circular tubes and fins;
  • FIG. 2 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of circular tubes and fins;
  • FIG. 2 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of flat tubes and fins;
  • FIG. 2 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of flat tubes and fins, and part of the flat tubes protrude from the fins.
  • FIG. 2 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of flat tubes and fins, and the end surfaces of the fins and the flat tubes match.
  • FIG. 4 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of flat tubes and fins, and the end faces of the flat tubes enter into the notches from the end faces of the fins.
  • FIG. 2 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of flat tubes and corrugated fins;
  • the X direction indicates the width direction of the outdoor heat exchanger or the outdoor unit.
  • the X direction indicates a direction that intersects the Z direction and is, for example, the horizontal direction.
  • the Y direction indicates the depth direction of the outdoor heat exchanger or the outdoor unit.
  • the Y direction is a direction that intersects the X direction and the Z direction, and is, for example, the horizontal direction.
  • the X direction is the axial direction of the heat transfer tube before bending.
  • the tube axis direction is the extending direction of the heat transfer tubes regardless of whether the heat transfer tubes are bent.
  • the tube axis direction is sometimes called the first direction.
  • Embodiment 1 The configuration of the heat exchanger according to Embodiment 1 and the refrigeration cycle apparatus using the heat exchanger will be described below.
  • FIG. 1 is a refrigerant circuit diagram showing an example of a refrigerant circuit that constitutes a refrigeration cycle device in which a heat exchanger according to Embodiment 1 is mounted.
  • the refrigeration cycle device 1 includes a compressor 2, an indoor heat exchanger 3, an indoor fan 4, an expansion device 5, an outdoor heat exchanger 10, an outdoor fan 6, a four-way valve 7.
  • the compressor 2, the outdoor heat exchanger 10, the expansion device 5, the outdoor fan 6 and the four-way valve 7 are provided in the outdoor unit 101 (see FIG. 2), and the indoor heat exchanger 3 and the indoor fan 4 are provided in the indoor unit (see FIG. not shown).
  • the compressor 2, the indoor heat exchanger 3, the throttle device 5, the outdoor heat exchanger 10, and the four-way valve 7 are connected by a refrigerant pipe 8 to form a refrigerant circuit in which the refrigerant can circulate.
  • a refrigeration cycle is performed in which the refrigerant circulates in the refrigerant circuit while changing its phase.
  • the compressor 2 compresses the refrigerant.
  • the compressor 2 is, for example, a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor, or the like.
  • the compressor 2 may be composed of, for example, an inverter compressor capable of adjusting the capacity to send out the refrigerant per unit time.
  • the compressor 2 is an inverter compressor, the operating frequency is arbitrarily changed by an inverter circuit or the like to change the refrigerant delivery capacity of the compressor 2 per unit time.
  • the indoor heat exchanger 3 functions as a condenser during heating operation and as an evaporator during cooling operation.
  • the indoor heat exchanger 3 exchanges heat between, for example, a refrigerant flowing inside the heat transfer tubes and a heat exchange fluid (for example, air in a living room) flowing around the heat transfer tubes.
  • the indoor heat exchanger 3 is, for example, a fin-and-tube heat exchanger, a microchannel heat exchanger, a finless heat exchanger, a shell-and-tube heat exchanger, a heat pipe heat exchanger, or a double-tube heat exchanger. or a plate heat exchanger.
  • the expansion device 5 expands and decompresses the refrigerant.
  • the expansion device 5 is composed of, for example, an expansion valve. More specifically, the expansion device 5 may be composed of, for example, an electric expansion valve capable of adjusting the flow rate of the refrigerant.
  • the expansion device 5 may be not only an electric expansion valve, but also a mechanical expansion valve employing a diaphragm as a pressure receiving portion, or each connecting pipe or the like.
  • the outdoor heat exchanger 10 functions as an evaporator during heating operation and as a condenser during cooling operation.
  • the outdoor heat exchanger 10 exchanges heat between, for example, a refrigerant flowing inside the heat transfer tubes and a heat exchange fluid (for example, outdoor air) flowing around the heat transfer tubes.
  • the outdoor heat exchanger 10 is composed of, for example, a fin-and-tube heat exchanger. Details of the outdoor heat exchanger 10 will be described later.
  • the four-way valve 7 is a channel switching device that switches the coolant channel in the refrigeration cycle device 1 .
  • the four-way valve 7 connects the discharge port of the compressor 2 and the indoor heat exchanger 3 and connects the suction port of the compressor 2 and the outdoor heat exchanger 10 during the heating operation of the refrigeration cycle device 1. Switch the coolant flow path. Further, the four-way valve 7 connects the discharge port of the compressor 2 and the outdoor heat exchanger 10 during the cooling operation and the dehumidifying operation of the refrigeration cycle device 1, and connects the suction port of the compressor 2 and the indoor heat exchanger 3. switch the flow path of the refrigerant so as to connect the
  • the indoor fan 4 is attached to the indoor heat exchanger 3, and supplies the room air as a heat exchange fluid to the indoor heat exchanger 3.
  • the outdoor fan 6 is attached to the outdoor heat exchanger 10 and supplies outdoor air to the outdoor heat exchanger 10 .
  • FIG. 1 the dotted arrows indicate the refrigerant flow when the refrigerating cycle device 1 is in cooling or defrosting operation, and the solid arrows indicate the refrigerant flow when the refrigerating cycle device 1 is in heating operation.
  • the high-pressure, high-temperature gaseous refrigerant discharged from the compressor 2 passes through the four-way valve 7 to perform outdoor heat exchange. It flows into the vessel 10.
  • the refrigerant is condensed by exchanging heat with outdoor air supplied by the outdoor fan 6 .
  • the condensed refrigerant becomes a high-pressure liquid state and flows out of the outdoor heat exchanger 10 .
  • the refrigerant is depressurized by the expansion device 5 and becomes a low-pressure gas-liquid two-phase state.
  • the low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 3 .
  • the refrigerant evaporates by exchanging heat with indoor air supplied by the indoor fan 4 .
  • the evaporated refrigerant becomes a low-pressure gas state and is sucked into the compressor 2 .
  • the refrigerant flows in the direction opposite to that in cooling operation. That is, the high-pressure, high-temperature gaseous refrigerant discharged from the compressor 2 flows into the indoor heat exchanger 3 via the four-way valve 7 .
  • the refrigerant is condensed by exchanging heat with indoor air supplied by the indoor fan 4 .
  • the condensed refrigerant becomes a high pressure liquid state and flows out from the indoor heat exchanger 3 .
  • the refrigerant is depressurized by the expansion device 5 and becomes a low-pressure gas-liquid two-phase state.
  • a low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 10 .
  • the refrigerant evaporates by exchanging heat with the outdoor air supplied by the outdoor fan 6 .
  • the evaporated refrigerant becomes a low-pressure gas state and is sucked into the compressor 2 .
  • FIG. 2 is a perspective view showing the appearance of an outdoor unit in which the heat exchanger according to Embodiment 1 is mounted.
  • 3 is an exploded perspective view showing the configuration of an outdoor unit in which the heat exchanger according to Embodiment 1 is mounted.
  • the outdoor unit 101 has a box shape as a whole.
  • the outdoor unit 101 is provided with the compressor 2, the outdoor heat exchanger 10, the expansion device 5, the outdoor fan 6, and the four-way valve 7, as described above.
  • the outdoor unit 101 includes a top panel 111, a side panel 112, a front panel 113, a fan grill 114, a bottom panel 115, and side covers 116, as shown in FIGS.
  • the top panel 111 and the bottom panel 115 are arranged facing each other.
  • the side panel 112 is arranged at the right end of the outdoor unit 101 and forms the right side of the outdoor unit 101 .
  • a side cover 116 is provided on the side panel 112 .
  • the left side surface of the outdoor unit 101 is composed of a part of the front panel 113 formed in an L shape.
  • the rear surface of the outdoor unit 101 is not provided with a rear panel and is exposed from a portion of the outdoor heat exchanger 10 .
  • the front panel 113 is formed with an air outlet 113a, and a fan grill 114 is provided so as to cover the air outlet 113a.
  • the configuration shown in FIGS. 2 and 3 is merely an example of the configuration of the refrigeration cycle apparatus 1, and is not limited to this.
  • the airflow flowing into the outdoor heat exchanger 10 flows from the upper right direction to the lower left direction in the plane of FIG. 2, as indicated by the arrow A in FIG. That is, during operation of the refrigeration cycle apparatus 1, as indicated by arrow A in FIG. Air is blown out from the outlet 113a. Thus, the airflow drawn by the outdoor fan 6 passes through the interior of the outdoor heat exchanger 10 .
  • FIG. 4 is a perspective view showing the configuration of the outdoor heat exchanger according to Embodiment 1.
  • FIG. 5 is a plan view of the outdoor heat exchanger shown in FIG. 4.
  • FIG. 6 is a plan view showing a state before the outdoor heat exchanger shown in FIG. 4 is bent into an L shape.
  • FIG. 5 and 6 show a state in which the outdoor heat exchanger 10 is viewed from an upward direction Z1 in the Z direction toward a downward direction Z2.
  • the outdoor heat exchanger 10 is composed of multiple rows of heat exchangers.
  • the case where the outdoor heat exchanger 10 is composed of a first row heat exchanger 11, a second row heat exchanger 12, and a third row heat exchanger 13 is taken as an example.
  • the number of rows of the outdoor heat exchanger 10 is not limited to three, and the number of rows may be any integer of 2 or more.
  • the first row heat exchanger 11, the second row heat exchanger 12, and the third row heat exchanger 13 each have a plurality of fins 51 and a plurality of heat transfer tubes 52, as shown in FIG. 47, which will be described later. and have.
  • the plurality of fins 51 have a plate-like shape and are stacked with intervals in the X direction. All of the plurality of fins 51 have the same external size for each row. In Embodiment 1, the fins 51 are divided into three pieces in the Y direction in accordance with each row of the heat transfer tubes 52 .
  • the plurality of heat transfer tubes 52 are spaced apart from each other in the Z direction. As shown in FIGS.
  • the plurality of heat transfer tubes 52 has a cylindrical shape extending in the X direction before bending, and penetrates the fins 51 in the stacking direction (that is, the X direction). .
  • Refrigerant flows inside the heat transfer tube 52 .
  • the outdoor heat exchanger 10 is, for example, a fin-and-tube heat exchanger.
  • the heat transfer tubes 52 are made of copper or aluminum.
  • the heat transfer tube 52 is, for example, a circular tube (see FIGS. 47 and 48), a flat tube (see FIGS. 49 to 52), or the like.
  • the fins 51 are not limited to plate-like fins (see FIGS. 47 to 52), and may be corrugated fins (see FIG. 53).
  • the first row heat exchanger 11 is the most in the air flow direction indicated by arrow A in FIG. positioned upwind.
  • the third row heat exchanger 13 is located furthest downwind in the air flow direction indicated by arrow A in FIG.
  • the second row heat exchanger 12 is arranged between the first row heat exchanger 11 and the third row heat exchanger 13 .
  • the heat transfer tubes 52 included in the first row heat exchanger 11 are hereinafter referred to as "first row heat transfer tubes 52". Further, the heat transfer tubes 52 included in the second row heat exchanger 12 are referred to as “second row heat transfer tubes 52”, and the heat transfer tubes 52 included in the third row heat exchanger 13 are referred to as “third row heat transfer tubes 52”. 52”. That is, hereinafter, the heat transfer tubes 52 included in the n-th row heat exchanger are referred to as "n-th row heat transfer tubes 52". Thus, in Embodiment 1, a plurality of heat transfer tubes 52 are arranged in a plurality of rows.
  • the first row heat exchanger 11 is connected to the first collecting portion 20 on one end side (first end portion 10a side) of the outdoor heat exchanger 10 via the heat transfer tube 52. It is connected. In addition, the first row heat exchanger 11 is connected to the first inter-row connection portion 41 via the heat transfer pipe 52 on the other end side (second end portion 10b side) of the outdoor heat exchanger 10. .
  • the second row heat exchanger 12 has a second row-to-row connection at one end side (first end portion 10a side) of the outdoor heat exchanger 10 via a heat transfer tube 52. It is connected with the part 42 . Also, the second row heat exchanger 12 is connected to the first inter-row connection portion 41 via the heat transfer pipe 52 on the other end side (second end portion 10b side) of the outdoor heat exchanger 10 . .
  • the third row heat exchanger 13 has a second row-to-row connection on one end side (first end portion 10a side) of the outdoor heat exchanger 10 via a heat transfer tube 52. It is connected with the part 42 . Also, the third row heat exchanger 13 is connected to the second collective portion 30 via a heat transfer pipe 52 on the other end side (second end portion 10 b side) of the outdoor heat exchanger 10 .
  • the first inter-row connection part 41 connects the first row heat transfer tubes 52 included in the first row heat exchanger 11 and the second row heat transfer tubes 52 included in the second row heat exchanger 12. It is an inter-row connection part.
  • the second inter-row connection part 42 connects the second row heat transfer tube 52 included in the second row heat exchanger 12 and the third row heat transfer tube 52 included in the third row heat exchanger 13. It is an inter-row connection part. In this way, the heat transfer tubes 52 in each row of the first row heat exchanger 11, the second row heat exchanger 12, and the third row heat exchanger 13 are connected to one end side of the outdoor heat exchanger 10 or to the other side, respectively. On the end side, it is connected to the heat transfer tubes 52 of other adjacent rows by inter-row connections.
  • the outdoor heat exchanger 10 has a plurality of heat transfer tubes 52 arranged in three rows and has two inter-row connections.
  • the first row heat exchanger 11 is connected to the first collecting portion 20 on the first end portion 10a side of the outdoor heat exchanger 10 .
  • the first row heat exchanger 11 and the second row heat exchanger 12 are connected via a first inter-row connection portion 41 on the second end portion 10b side of the outdoor heat exchanger 10 .
  • the second row heat exchanger 12 and the third row heat exchanger 13 are connected via a second inter-row connection portion 42 on the first end portion 10a side of the outdoor heat exchanger 10 .
  • the third row heat exchanger 13 is connected to the second collecting portion 30 on the second end portion 10b side of the outdoor heat exchanger 10 .
  • the outdoor heat exchanger 10 has a plurality of heat transfer tubes 52 arranged in m rows (m ⁇ 3), Assume that the heat exchanger 10 has k (k ⁇ 2) inter-row connections. At that time, in 1 ⁇ n ⁇ (m-2) and 1 ⁇ k ⁇ (m-3), the n-th heat transfer tube 52 and the (n+1)-th heat transfer tube 52 are At one end side, they are connected via the k-th column connecting portion. In addition, the (n+1)-th row heat transfer pipe 52 and the (n+2)-th row heat transfer pipe 52 are connected via the (k+1)-th row connecting portion on the other end side of the outdoor heat exchanger 10. .
  • every two adjacent rows of heat transfer tubes 52 are alternately connected to one end side or the other end side of the outdoor heat exchanger 10 via the row-to-row connecting portion.
  • each of the inter-row connection portions is connected only to two adjacent rows of heat exchangers, and is not physically connected to heat exchangers other than the two rows of heat exchangers. The connections are independent of each other.
  • inter-row connection part 41 and the second inter-row connection part 42 are collectively referred to as "inter-row connection part".
  • the "inter-row connection part” is connected across two adjacent rows of heat exchangers, and has a function of connecting heat transfer tubes of two adjacent rows of heat exchangers in series.
  • Each of the "inter-row connectors" is composed of header-type inter-row connectors 400 as shown in FIGS. 7 to 11, for example.
  • FIG. 7 is a perspective view showing the configuration of a header-type inter-row connection portion provided in the heat exchanger according to Embodiment 1.
  • FIG. 8 is a front view showing the configuration of the header-type inter-row connection portion shown in FIG. 9 is a cross-sectional view taken along the line BB of FIG. 8.
  • FIG. 10 is a cross-sectional view showing a state in which heat transfer tubes are inserted into the inter-row connecting portion of the header type shown in FIG. 11 is a front view showing the configuration of Modification 1 of the header-type inter-row connection portion provided in the heat exchanger according to Embodiment 1.
  • FIG. 10 is a front view showing the configuration of Modification 1 of the header-type inter-row connection portion provided in the heat exchanger according to Embodiment 1.
  • the header type inter-row connection part 400 constituting the inter-row connection part includes a header 403 as a main body, an insertion hole 401 into which the heat transfer tube 52 is inserted, and a refrigerant flow between the rows. and an internal channel 402 for flowing.
  • the header 403 has a box shape, as shown in FIG.
  • An insertion hole 401 is formed in the front portion 403 a of the header 403 .
  • the insertion holes 401 include a first row of insertion holes 401a and a second row of insertion holes 401b.
  • the insertion holes 401a are arranged side by side in the Z direction at intervals.
  • the insertion holes 402a are similarly arranged side by side in the Z direction at intervals.
  • the insertion holes 401a in the first row and the insertion holes 401b in the second row are arranged horizontally in each row.
  • the n-th heat transfer tube 52 is inserted into the insertion hole 401a, and the (n+1)th heat transfer tube 52 is inserted into the insertion hole 401b.
  • the (n+2)th heat transfer tube 52 is inserted into the insertion hole 401a, and the (n+1)th heat transfer tube 52 is inserted into the insertion hole 401b.
  • an internal flow path 402 is formed inside the header 403 .
  • the internal flow paths 402 are formed in each stage, as indicated by the dashed lines in FIG. 8, and the internal flow paths 402 in different stages are not in communication with each other.
  • the insertion hole 401a and the insertion hole 401b on the same stage communicate with each other through an internal channel 402 as shown in FIG. That is, when the outdoor heat exchanger 10 has p stages of heat transfer tubes 52, in FIG. 52 communicate with each other via an internal flow path 402 .
  • the configuration of the internal flow path 402 is not limited to the case of FIG. 8, and may be the configuration shown in FIG. In FIG. 8, the internal flow path 402 connects two rows of heat transfer tubes 52 in the horizontal direction.
  • the internal flow path 402 is arranged inclined with respect to the Z direction, as indicated by the dashed line in FIG. Therefore, in FIG. 11, for example, the heat transfer tube 52 of the n-th row q-th stage (1 ⁇ q ⁇ p) and the (n+1)-th row (q-1)-th heat transfer tube 52 are inside They are connected via a channel 402 .
  • a row of heat transfer tubes is connected to another row of heat transfer tubes one step above or one step below via an internal channel 402 .
  • the row-to-row connection portion is not limited to the header-type row-to-row connection portion 400, and may be composed of, for example, U-shaped row-to-row connection portions 410 and 420 as shown in FIG. 12 or 13.
  • . 12 is (a) a plan view and (b) a front view showing the configuration of a U-shaped inter-row connection portion provided in the heat exchanger according to Embodiment 1.
  • FIG. 13 is (a) a plan view and (b) a perspective view showing the configuration of a U-shaped inter-row connection portion provided in the heat exchanger according to Embodiment 1.
  • FIG. 12 shows a U-shaped inter-row connection 410 when the heat transfer tubes 52 are circular tubes
  • FIG. 13 shows a U-shaped inter-row connection 420 when the heat transfer tubes 52 are flat tubes.
  • the U-shaped inter-row connection parts 410 and 420 are formed by bending the heat transfer tubes 52 into a U shape.
  • the heat transfer tubes 52 are circular tubes, as shown in FIG. 12, the heat transfer tubes 52 made of circular tubes are bent in a hairpin curve to form a U-shaped inter-row connection portion 410 .
  • the heat transfer tube 52 is a flat tube, as shown in FIG. A U-shaped inter-row connection 420 for inter-row connection is formed.
  • U-shaped inter-row connection portions 410 and 420 may be integrally molded with the heat transfer tubes 52 of the outdoor heat exchanger 10, but may be formed separately from the heat transfer tubes 52 of the outdoor heat exchanger 10 and brazed. may be attached.
  • the U-shaped inter-row connection part 410 in the case where the U-shaped inter-row connection part 410 is formed separately, the U-shaped inter-row connection part 410, as shown in FIG. has connection ports 411a and 411b to which are connected.
  • the connection port 411 a and the connection port 411 b are communicated with each other via the heat transfer tube 52 that constitutes the main body of the U-shaped inter-row connection portion 410 .
  • the U-shaped inter-row connection part 420 is composed of a flat tube of the outdoor heat exchanger 10 as shown in FIG. It has connection ports 421a and 421b to which the heat transfer tubes 52 are connected.
  • the connection port 421 a and the connection port 421 b are communicated with each other via the heat transfer tube 52 forming the main body of the U-shaped inter-row connection portion 420 .
  • An internal channel 422 is formed inside an outer shell 423 that constitutes the main body of the U-shaped inter-row connection part 420 .
  • the first collecting portion 20 and the second collecting portion 30 are collectively referred to as “collecting portion”.
  • the “collecting part” is sometimes called a “collecting pipe”.
  • the “collecting part” is connected to one row of heat exchangers out of multiple rows of heat exchangers, and connects the heat transfer tubes 52 of each stage of the one row of heat exchangers in parallel. have a function.
  • the “aggregating portion” is connected to the heat exchanger in the first row and the heat exchanger in the m-th row among the m rows of heat exchangers.
  • a "collecting part” is, for example, a hollow header type collecting part made up of hollow headers.
  • the refrigerant merged (branched) at the collecting portion is again connected in parallel with a plurality of refrigerant paths on the side of a heat exchanger at another position, or flows into and out of the refrigerant circuit side.
  • FIG. 14 is a perspective view showing the configuration of a hollow header type collective portion provided in the heat exchanger according to Embodiment 1.
  • FIG. FIG. 15 is a front view showing the configuration of the hollow header type assembly shown in FIG. 14.
  • FIG. 16 is a cross-sectional view taken along line CC of FIG. 15.
  • FIG. 17 is a cross-sectional view taken along line DD of FIG. 15.
  • FIG. 18 is a cross-sectional view showing a state in which the heat transfer tubes are inserted into the hollow header assembly shown in FIG. 16.
  • the hollow header type collecting portion 200 constituting the collecting portion includes a header 203 as a main body, insertion holes 201 into which the heat transfer tubes 52 are inserted, and the direction in which the heat transfer tubes 52 are arranged (Z and an internal channel 202 that allows the coolant to flow in the direction ). Also, as shown in FIGS. 14 and 17, the hollow header assembly 200 may have inlets and outlets 204 to the refrigerant circuit. The inlet/outlet 204 is formed in the rear portion 203b of the header 203. As shown in FIG.
  • the header 203 has a box shape, as shown in FIG.
  • An insertion hole 201 is formed in the front portion 203 a of the header 203 .
  • the insertion holes 201 are arranged in a line in the Z direction with a space therebetween.
  • the heat transfer tubes 52 of the outdoor heat exchanger 10 are inserted into the insertion holes 201 .
  • the header 203 has an internal flow path 202 formed therein, as indicated by the dashed line in FIG. 15 .
  • the internal channel 202 extends in the Z direction of the header 203 and communicates with the insertion holes 201 of all stages. Therefore, each of the insertion holes 201 communicates with each other via the internal flow path 202, as shown in FIG. That is, when the outdoor heat exchanger 10 has p stages of heat transfer tubes 52 , all of the p stages of heat transfer tubes 52 communicate with the internal flow path 202 in FIG. 15 .
  • the configuration of the "collecting part” is not limited to the configurations shown in FIGS. 14 to 18.
  • 19 is a perspective view showing a configuration of Modification I of the collecting portion provided in the heat exchanger according to Embodiment 1.
  • FIG. 20 is a perspective view showing a configuration of Modification II of the collecting portion provided in the heat exchanger according to Embodiment 1.
  • FIG. 21 is a perspective view showing a configuration of Modification III of the collecting portion provided in the heat exchanger according to Embodiment 1.
  • the "collecting part” may be composed of a distributor (distributor) 205 and a plurality of connecting pipes (capillary tubes) 206, as shown in Modified Example I of FIG. 19, for example.
  • the connection pipes 206 include a connection pipe 206a, a connection pipe 206b, a connection pipe 206c, and a connection pipe 206d.
  • the heat transfer pipe 52 of the outdoor heat exchanger 10 is connected to each of the connection pipe 206a, the connection pipe 206b, the connection pipe 206c, and the connection pipe 206d.
  • the refrigerant from each heat transfer pipe 52 flows into the distributor 105 via the connecting pipe 206a, the connecting pipe 206b, the connecting pipe 206c, and the connecting pipe 206d, and joins.
  • the "collecting portion” may be composed of a plurality of flow paths 208 formed by combining a plurality of pipes 207, as shown in Modified Example II of FIG. 20, for example.
  • the channels 208 include channels 208a, 208b, 208c, and 208d.
  • an inlet/outlet 209 is provided at one end of the collecting portion, and channels 208a, 208b, 208c, and 208d are provided at the other end of the collecting portion.
  • the tube 207 starts from an inlet 209 and first branches into two branches 207a and 207b. Further, the branching portion 207a is branched into a channel 208a and a channel 208b, and the branching portion 207b is branched into a channel 208c and a channel 208d.
  • the heat transfer tubes 52 of the outdoor heat exchanger 10 are connected to each of the flow paths 208a, 208b, 208c, and 208d.
  • the refrigerant from each heat transfer tube 52 finally joins at the inlet/outlet 209 via the flow paths 208a, 208b, 208c, and 208d.
  • the "aggregate portion" may be composed of a laminated header in which plate members 210 having a plurality of communication holes 212 are bonded together, as shown in Modified Example III of FIG. 21, for example.
  • the plate members 210 include a plate member 210a, a plate member 210b, a plate member 210c, a plate member 210d, a plate member 210e, and a plate member 210f.
  • an inlet/outlet 213 is provided at one end of the collecting portion, and a plurality of channels 211, that is, channels 211a, 211b, 211c, and 211d, are provided at the other end of the collecting portion. is provided.
  • the communication hole 212 starts from the inlet/outlet 213 and first branches into two branches 212a and 212b. Further, branching portion 212a branches into flow paths 211a and 211b, and branching portion 212b branches into flow paths 211c and 211d.
  • the heat transfer tubes 52 of the outdoor heat exchanger 10 are connected to the flow paths 211a, 211b, 211c, and 211d, respectively.
  • the refrigerant from each heat transfer tube 52 finally joins at the inlet/outlet 213 via the flow paths 211a, 211b, 211c, and 211d.
  • the outdoor heat exchanger 10 has a plurality of heat transfer tubes 52 arranged in three rows in the airflow direction. At this time, the outdoor heat exchanger 10 has one end side (hereinafter referred to as a first end portion 10a) and the other end side (hereinafter referred to as a second end portion 10b) in the axial direction of the heat transfer tube 52, have.
  • the heat transfer tubes 52 arranged in three rows constitute the first row heat exchanger 11, the second row heat exchanger 12, and the third row heat exchanger 13, respectively.
  • the first row heat exchanger 11, the second row heat exchanger 12, and the third row heat exchanger 13 are located downstream of the third row heat exchanger 13 in the air flow direction. is bent into an L-shape starting from point E, which is one point on one side of . That is, portions of the first row heat exchanger 11, the second row heat exchanger 12, and the third row heat exchanger 13 on the side of the second end 10b are Y with respect to the tube axis direction of the heat transfer tubes 52. bent in the direction (toward the leeward side).
  • the fins 51 at one end (first end 10a side) of each of the first row heat exchanger 11, the second row heat exchanger 12, and the third row heat exchanger 13 are finned. 51a (see FIG. 47).
  • the fin 51 on the other end (on the second end 10b side) is called a fin 51b (see FIG. 47).
  • the three rows of fins 51a are aligned in a direction perpendicular to the tube axis direction and aligned in the tube axis direction.
  • the three rows of fins 51b are aligned in a direction perpendicular to the tube axis direction and aligned in the tube axis direction.
  • the two fins 51a connected to the second inter-row connection portion 42 are aligned in a direction perpendicular to the tube axial direction. Aligned in the axial direction.
  • These two fins 51a are the fins 51a of the second row heat exchanger 12 and the third row heat exchanger 13, respectively.
  • the other one fin 51a that is not connected to the second inter-row connection portion 42, that is, only the fin 51a of the first row heat exchanger 11 is arranged in the tube axial direction with respect to the other two fins 51a. is misaligned.
  • the two fins 51b connected to the first inter-row connection portion 41 are aligned in the direction perpendicular to the tube axial direction. , are aligned in the axial direction.
  • These two fins 51b are the fins 51b of the first row heat exchanger 11 and the second row heat exchanger 12, respectively.
  • the other one fin 51b that is not connected to the first inter-row connection portion 41, that is, only the fin 51b of the third row heat exchanger 13 is located in the tube axial direction with respect to the other two fins 51b. is misaligned.
  • the first row heat exchanger 11, the second row heat exchanger 12, and the third row heat exchanger 13 are not collectively connected by one inter-row connection portion. That is, the first row heat exchanger 11 and the second row heat exchanger 12 are connected by the first row-to-row connection portion 41, and the second row heat exchanger 12 and the third row heat exchanger 13 are connected to the second row heat exchanger 13. are connected at the inter-row connection portions 42 of the .
  • the outdoor heat exchanger 10 is bent, there is no region on both end sides of the outdoor heat exchanger 10 where the movement of the heat transfer tubes 52 is restrained by the row-to-row connection portion.
  • the outdoor heat exchanger 10 can be easily and reasonably bent.
  • Embodiment 1 two adjacent rows of heat transfer tubes are connected at one end or the other end using the row-to-row connection portion, thereby facilitating bending of the outdoor heat exchanger 10. ing.
  • an arrow R indicates the flow of refrigerant when the outdoor heat exchanger 10 is used as a condenser and the refrigeration cycle device 1 is operated for cooling.
  • the refrigerant flows in the opposite direction of the arrow R.
  • one end of the outdoor heat exchanger 10 in the axial direction of the heat transfer tubes 52 is called a first end 10a, and the other end is called a second end 10b.
  • the end on the first end 10a side is called the first end.
  • the end on the second end 10b side is called the second end.
  • the operation when using the outdoor heat exchanger 10 as a condenser is as follows. First, the refrigerant discharged from the compressor 2 passes through the four-way valve 7, flows into the first collecting portion 20, is distributed to each heat transfer tube 52, and is discharged from the first end of the first row heat exchanger 11. , into the first row heat exchanger 11 . After that, the refrigerant flows through the heat transfer tubes 52 of the first row heat exchanger 11 . Then, the refrigerant moves from the second end of the first row heat exchanger 11 through the first inter-row connection portion 41 and moves from the second end of the second row heat exchanger 12 to the second row. It flows into the double row heat exchanger 12 .
  • the refrigerant then flows through the heat transfer tubes 52 of the second row heat exchanger 12 . Then, the refrigerant moves from the first end of the second row heat exchanger 12 through the second inter-row connection 42 and moves from the first end of the third row heat exchanger 13 to the second row heat exchanger. It flows into the 3-row heat exchanger 13 . After that, the refrigerant flows through the heat transfer tubes 52 of the third row heat exchanger 13, flows into the second collecting portion 30 from the second end of the third row heat exchanger 13, and joins at the second collecting portion 30. do. The refrigerant merged at the second collecting portion 30 passes through the expansion device 5 while being pressure-dropped by the expansion device 5 and flows into the indoor heat exchanger 3 .
  • the first end of the second row heat exchanger 12 and the first end of the third row heat exchanger 13 connected to the second inter-row connection portion 42 are connected in the tube axial direction. are aligned.
  • the second end of the first row heat exchanger 11 and the second end of the second row heat exchanger 12 connected to the first inter-row connection portion 41 are aligned in the tube axis direction. explained. However, as shown in FIG. 22, these positions may also be slightly misaligned.
  • the distance of the deviation in the tube axis direction is set to a distance L3. At this time, the distance L3 is smaller than the distance L1 and the distance L2.
  • FIG. 22 is a plan view showing the configuration of the outdoor heat exchanger according to Embodiment 1.
  • FIG. 22 the distance in the tube axis direction between the first end of the first row heat exchanger 11 and the first end of the second row heat exchanger 12 is distance L1.
  • a region of the heat transfer tube 52 having a length L1 in the tube axis direction is called a region F1.
  • the distance in the tube axis direction between the second end of the second row heat exchanger 12 and the second end of the third row heat exchanger 13 is distance L2.
  • a region of the heat transfer tube 52 having a length L2 in the tube axis direction is called a region F2.
  • the distance in the tube axial direction between the first end of the second row heat exchanger 12 and the first end of the third row heat exchanger 13 connected to the second inter-row connection 42 is the distance is L3.
  • the distance in the tube axis direction between the second end of the first row heat exchanger 11 and the second end of the second row heat exchanger 12 connected to the first inter-row connection portion 41 is the distance L3 is.
  • the distance L3 satisfies the relationships of L3 ⁇ L1 and L3 ⁇ L2.
  • the magnitude relationship between the distance L1 and the distance L2 is not limited. Also, the distance L1 and the distance L2 may be the same or different.
  • the distance L3 on the first end side and the distance L3 on the second end side are described using the same symbol “L3”.
  • the distance L3 on the part side and the distance L3 on the second end side may be the same or different.
  • the first end portions fixed by the first inter-row connecting portions 41 and the second end portions fixed by the second inter-row connecting portions 42 are inter-row connecting portions. Due to the fixation, the deviation (ie distance L3) is small. On the other hand, the first end portion that is not fixed by the first inter-row connection portion 41 and the second end portion that is not fixed by the second inter-row connection portion 42 are separated from the other end portions. The deviation (ie distance L1 and distance L2) is large. There are two reasons why the deviations of the distances L1 and L2 are large. First, the first end connected to the first group 20 and the second end connected to the second group 30 are connected to the first inter-row connection 41 or the second inter-row connection.
  • the portion 42 Since it is not fixed by the portion 42, it has a high degree of freedom of movement. Secondly, when bending the outdoor heat exchanger 10, the bending process is performed while fixing the point E and either the first inter-row connecting portion 41 or the second inter-row connecting portion 42. be. Therefore, since the first end connected to the first collective portion 20 and the second end connected to the second collective portion 30 are not fixed during bending, the distance L1 and the distance L2 are increased. .
  • the distances L1, L2, and L3 are configured to satisfy the relationships of L3 ⁇ L1 and L3 ⁇ L2.
  • the reason for this is that when the outdoor heat exchanger 10 is manufactured, the point E is fixed to either the first inter-row connection portion 41 or the second inter-row connection portion 42, thereby making it easier to bend. It is for the sake of becoming.
  • the positions of the ends of the heat transfer tubes 52 are displaced.
  • each of the first inter-row connection portion 41 and the second inter-row connection portion 42 connects only two rows of heat transfer tubes 52 .
  • the deviation of the distance L3 is absorbed by, for example, the slight inclination of the first inter-row connecting portion 41 and the second inter-row connecting portion 42 with respect to the pipe axis direction. Therefore, the displacement of the distance L3 does not cause distortion, and a large bending stress is applied to the fixed portions between the first inter-row connecting portion 41 and the second inter-row connecting portion 42 and the heat transfer tubes 52. won't join. As a result, as shown in FIG. 5 or FIG. 22, the outdoor heat exchanger 10 can be easily bent even after connecting the first inter-row connection portion 41 and the second inter-row connection portion 42 to the heat transfer tubes 52. can be done.
  • Embodiment 1 when m ⁇ 3 and 1 ⁇ n ⁇ (m ⁇ 2), the inter-row connection portion between the n-th and (n+1)-th heat exchangers is the outdoor heat exchanger 10. connected at one end.
  • the inter-row connection portions of the (n+1)-th and (n+2)-th heat exchangers are connected at the other end side of the outdoor heat exchanger 10 .
  • the brazing of the heat transfer tubes 52 and the fins 51 and the brazing of the first inter-row connecting portion 41 and the second inter-row connecting portion 42 can be performed simultaneously in the furnace.
  • the worker's work is simplified, and the manufacturability of the outdoor heat exchanger 10 can be improved.
  • the heat transfer tubes 52 in two adjacent rows are connected by the first inter-row connection portion 41 and the second inter-row connection portion 42, respectively. Further, in Embodiment 1, the relationships among the distances L1, L2, and L3 are L3 ⁇ L1 and L3 ⁇ L2. With these configurations, in Embodiment 1, bending of the outdoor heat exchanger 10 is possible even when the heat transfer tubes 52 are arranged in three or more rows.
  • Embodiment 1 A modification of Embodiment 1 will be described below.
  • FIG. 23 is a plan view showing the configuration of an outdoor heat exchanger according to Modification 1 of Embodiment 1.
  • FIG. 24 is a plan view showing a state before the outdoor heat exchanger shown in FIG. 23 is bent into an L shape.
  • FIG. 23 and 24 show a state in which the outdoor heat exchanger 10 is viewed from an upward direction Z1 toward a downward direction Z2 in the Z direction.
  • the outdoor heat exchanger 10 shown in FIGS. 23 and 24 has heat transfer tubes 52 arranged in an even number of rows.
  • the outdoor heat exchanger 10 includes a first row heat exchanger 11, a second row heat exchanger 12, a third row heat exchanger 13, and a fourth row heat exchanger. It consists of four rows of exchangers 14 in total.
  • the number of inter-row connection portions is three. That is, the row-to-row connection portion includes a first row-to-row connection portion 41 , a second row-to-row connection portion 42 , and a third row-to-row connection portion 43 .
  • the third row heat exchanger 13 and the fourth row heat exchanger 14 are connected by the third inter-row connection portion 43 .
  • two adjacent rows are connected via the inter-row connection portion, as in the first embodiment.
  • both the first collecting portion 20 and the second collecting portion 30 are arranged on the first end portion 10a side of the outdoor heat exchanger 10, as shown in FIG.
  • the first collecting portion 20 and the second collecting portion 30 can be arranged on the same end side of the outdoor heat exchanger 10 .
  • the first collecting portion 20 and the second collecting portion 30 are connected to the refrigerant pipes 8 (see FIG. 1) of the refrigerant circuit. Therefore, the configuration of the piping connected to the refrigerant piping 8 can be simplified.
  • FIG. 25 and 26 are plan views showing the configuration of an outdoor heat exchanger according to Modification 2 of Embodiment 1.
  • FIG. 25 and 26 show a state in which the outdoor heat exchanger 10 is viewed from an upward direction Z1 toward a downward direction Z2 in the Z direction.
  • the outdoor heat exchanger 10 shown in FIGS. 25 and 26 is bent two or more times.
  • the outdoor heat exchanger 10 is bent twice to be bent into a U shape (or an angular U shape). Therefore, in FIG. 25, the heat exchanger of each example is bent twice, and the number of bent portions 60 is two.
  • the outdoor heat exchanger 10 is bent three times to form a partially discontinuous square shape (rectangular frame shape). Therefore, in FIG. 26, the number of bends b of the heat exchanger in each example is three, and the number of bent portions 60 is three.
  • FIG. 27 is a plan view showing a configuration of an outdoor heat exchanger according to Modification 3 of Embodiment 1.
  • FIG. 28 is a plan view showing a state before the outdoor heat exchanger shown in FIG. 27 is bent into an L shape.
  • FIG. 27 and 28 show a state in which the outdoor heat exchanger 10 is viewed from an upward direction Z1 in the Z direction toward a downward direction Z2.
  • the total length of the fins 51 stacked in the tube axis direction is referred to as an area width EL.
  • the product width of the first row heat exchanger 11 is defined as product width EL 1
  • the product width of the second row heat exchanger 12 is defined as product width EL 2
  • the product width of the third row heat exchanger 13 is defined as product width EL 3 .
  • the relationship EL 1 ⁇ EL 2 ⁇ EL 3 is established.
  • the fins 51 of the second and third row heat exchangers 12 and 13 on the leeward side are aligned with the fins of the first row heat exchanger on the upwind side. 51, the offset regions F1 and F2 can be reduced.
  • the areas F1 and F2 on the leeward side are areas that cannot be effectively used as heat exchangers. Therefore, by reducing the sizes of the regions F1 and F2 that shift, the size of the outdoor heat exchanger 10 can be reduced while maintaining the heat exchange efficiency of the outdoor heat exchanger 10 .
  • the distance L1 is the distance between the first end of the first row heat exchanger 11 and the second row heat exchanger 12 and the third row heat exchanger connected to the second row-to-row connection 42, as described above. It is the distance in the pipe axial direction between the first end of the exchanger 13 and the first end of the exchanger 13 .
  • the distance L2 is between the second end of the third row heat exchanger 13 and the second end of the first row heat exchanger 11 and the second row heat exchanger 12 connected to the first inter-row connection portion 41 . is the distance in the tube axial direction between the end and
  • the product width EL 1 , the product width EL 2 , and the product width EL 3 need not all have different lengths, and any one of them may have a different length.
  • the product widths of the fins 51 arranged in the X direction are set to product width EL n and product width EL n+1 , respectively. and Also, in each row, at least one location in the X direction is bent in the direction from the n-th row to the (n+1)-th row in the Y direction. At this time, the area width EL n and the area width EL n+1 of the n-th and (n+1)-th heat exchangers are set so as to satisfy the relationship EL n ⁇ EL n+1 .
  • the configuration of the first embodiment is adopted or the modification is made considering which effect is required based on the purpose of use. It may be determined as appropriate whether to adopt the configuration of Example 3.
  • FIG. 29 is a plan view showing the configuration of an outdoor heat exchanger according to Modification 4-1 of Embodiment 1.
  • FIG. 30 is a plan view showing a state before the outdoor heat exchanger shown in FIG. 29 is bent into an L shape.
  • FIG. 29 and 30 show a state in which the outdoor heat exchanger 10 is viewed from an upward direction Z1 in the Z direction toward a downward direction Z2.
  • the fins 51 on one end (first end 10a side) of each of the first row heat exchanger 11, the second row heat exchanger 12, and the third row heat exchanger 13 are finned. 51a, and the fin 51 on the other end (second end 10b side) is called fin 51b.
  • the three fins 51a are aligned in a direction perpendicular to the tube axis direction and aligned in the tube axis direction.
  • the three fins 51b are aligned in a direction perpendicular to the tube axial direction and aligned in the tube axial direction.
  • the product widths EL of the fins 51 stacked in the longitudinal direction of the heat transfer tubes 52 are defined as product widths EL n and EL n+1 .
  • the product widths EL n and EL n+1 are set so as to satisfy the following equation (1). The reason for setting so as to satisfy the expression (1) will be described later.
  • row widths LP n and LP n+1 are row widths LP of arbitrary n-th and (n+1)-th heat exchangers, respectively.
  • FIGS. 47 to 53 are diagrams showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of circular tubes and fins.
  • FIG. 49 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of flat tubes and fins.
  • 50 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of flat tubes and fins, and part of the flat tubes protrude from the fins.
  • FIG. 51 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of flat tubes and fins, and the end surfaces of the fins and the flat tubes are aligned.
  • FIG. 52 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of flat tubes and fins, and the end faces of the flat tubes enter inside the notches from the end faces of the fins.
  • 53 is a diagram showing a case where the outdoor heat exchanger according to Embodiment 1 is composed of flat tubes and corrugated fins.
  • FIG. In the case of FIG. 51, the extending direction of the heat transfer tubes 52 is the Z direction as shown in FIG. 51, but it is not limited to this case and may be horizontal. Also in the case of FIG. 51, when the outdoor heat exchanger 10 is bent, as shown in FIGS. It is supposed to be bent in a square shape or square shape.
  • the heat transfer tubes 52 pass through the fins 51.
  • the row width LP of the heat exchanger is the length of the fins 51 in the Y direction.
  • a portion of the heat transfer tube 52 protrudes from the fin 51 in the Y direction.
  • the fin 51 is provided with a plurality of notches 510 spaced apart from each other in the Z direction.
  • the notch 510 is formed so as to be recessed in the Y direction from one end surface 511 of the fin 51 in the Y direction.
  • the heat transfer tubes 52 are attached by being inserted into notches 510 provided in the fins 51 in the Y direction.
  • a protruding portion 520 of the heat transfer tube 52 protrudes in the Y direction from the end surface 511 of the fin 51 .
  • the projecting portion 520 includes one end portion 521 of the heat transfer tube 52 in the Y direction.
  • the row width LP of the heat exchanger is the sum of the Y-direction length of the fins 51 and the Y-direction length of the protrusions 520 of the heat transfer tubes 52 .
  • the heat transfer tube 52 is inserted into the notch 510 of the fin 51 , and the position of one end surface 521 of the heat transfer tube 52 in the Y direction is aligned with the one end surface 511 of the fin 51 in the Y direction. I am doing it. That is, the end faces 521 of the heat transfer tubes 52 do not protrude from the end faces 511 of the fins 51, and the Y-direction positions of the end faces 521 of the heat transfer tubes 52 and the Y-direction positions of the end faces 511 of the fins 51 are aligned.
  • the row width LP of the heat exchanger is the length of the fins 51 in the Y direction.
  • the heat transfer tube 52 is inserted into the notch 510 of the fin 51 , and the position of one end surface 521 of the heat transfer tube 52 in the Y direction is greater than the one end surface 511 of the fin 51 in the Y direction. It is inside the notch 510 . That is, the end surface 521 of the heat transfer tube 52 does not protrude from the end surface 511 of the fin 51, and the position of the end surface 521 of the heat transfer tube 52 in the Y direction is closer to the fin 51 than the position of the end surface 511 of the fin 51 in the Y direction. is recessed toward the inside of the notch 510 of the .
  • the row width LP of the heat exchanger is the length of the fins 51 in the Y direction.
  • fins 51 made of corrugated fins are provided between two adjacent heat transfer tubes 52 .
  • the row width LP of the heat exchanger is the length of the heat transfer tubes 52 in the Y direction.
  • the row width LP of the heat exchanger is the length of the fins 51 in the Y direction.
  • each row of the outdoor heat exchanger 10 is composed of the heat transfer tubes 52 and the fins 51, and the row width LP of the heat exchanger is the Y direction of each row composed of the heat transfer tubes 52 and the fins 51. is the length of
  • the product width EL of any n-th and (n+1)-th fins 51 is set so as to satisfy the above equation (1). Therefore, as shown in FIG. 29, on both the first end 10a side and the second end 10b side of the outdoor heat exchanger 10, the positions of the three fins 51a and the positions of the three fins 51b are , aligned and not misaligned.
  • FIG. 31 is a plan view showing the configuration of an outdoor heat exchanger according to a comparative example.
  • 32 is a plan view showing a state before the outdoor heat exchanger according to the comparative example shown in FIG. 31 is bent into an L shape.
  • FIG. 31 and 32 show the state of the comparative example viewed from the upward direction Z1 in the Z direction to the downward direction Z2.
  • the n-th row heat exchanger 1011 and the (n+1)-th row heat exchanger 1012 are arranged side by side. They are connected by an inter-connecting portion 1041 . Also, a collecting section 1020 is connected to the other end side of the n-th row heat exchanger 1011 .
  • the product width EL of the fins 51 of the n-th heat exchanger 1011 is defined as product width ELn
  • the product width EL of the fins 51 of the (n+1)-th heat exchanger 1012 is defined as product width EL n+1 .
  • the length LX is obtained as the difference between the lengths of the arcs of the bent portion 60, which is a curved portion formed by bending into an L-shape. That is, the radius of curvature of the bent portion 60 of the nth row heat exchanger 1011 is defined as radius Rn , and the radius of curvature of the bent portion 60 of the (n+1)th row heat exchanger 1011 is defined as radius Rn +1 .
  • the arc length of the bent portion 60 is 1/4 of the circumference
  • the gap between the n-th row heat exchanger 1011 and the (n+1)-th row heat exchanger 1012 is defined as an inter-row gap ⁇ .
  • the inter-row gap ⁇ is the distance between the row width LP n and the row width LP n+1 . Since the inter-row gap ⁇ is very small, it is ignored.
  • the length difference between the radius Rn and the radius Rn+1 (hereinafter referred to as the difference LY ) is the line width LPn of the n-th line heat exchanger 1011 and the (n+1)th ) is 1/2 of the sum of the column width LP n+1 of the column heat exchanger 1012 . Therefore, the difference LY is given by the following equation (3).
  • the product width EL n of the nth row heat exchanger 1011 is made longer than the product width EL n+ 1 of the (n+1)th row heat exchanger 1012 by the length Lx.
  • the ends of the n-th row heat exchanger 1011 and the (n+1)-th row heat exchanger 1012 are aligned on the first end portion 1000 a side of the outdoor heat exchanger 1000 .
  • the area width EL n of the n-th row heat exchanger 1011 and the area width EL n + 1 of the (n+1)-th row heat exchanger 1012 are set so as to satisfy the above equation (1). are doing.
  • the product width EL of the fins 51 arranged in the longitudinal direction of the heat transfer tubes 52 is defined as product width EL n and product width EL n , respectively. Width EL n+1 .
  • the product width EL n and the product width EL n+1 are set so as to satisfy the relationship of the above equation (5).
  • Modification 4-2 of Embodiment 1 The above equation (5) shown in modification 4-1 shows the case where the outdoor heat exchanger 10 is bent only once into an L shape.
  • the length Lx shown in FIG. 31 changes depending on the number of times of bending. That is, the length Lx becomes longer by the bending of the outdoor heat exchanger 10 . Therefore, when the outdoor heat exchanger 10 is bent twice or more, the area width EL n and the area width EL n+1 of the n-th and (n+1)-th heat exchangers are set in consideration of the number of times of bending b. There is a need to.
  • the product width EL of the fins 51 arranged in the longitudinal direction of the heat transfer tubes 52 is Let the product width EL n and the product width EL n+1 be respectively. At this time, the product width EL n and the product width EL n+1 are set so as to satisfy the relationship of the following formula (6).
  • Modification 4-2 considers the number of times of bending b. Therefore, even when the outdoor heat exchanger 10 is bent twice to form a U shape, or when the outdoor heat exchanger 10 is bent twice to form a square shape, the same effects as in the modification 4-1 are obtained. can be obtained.
  • the inter-row gap ⁇ is considered.
  • the product width EL of the fins 51 arranged in the longitudinal direction of the heat transfer tubes 52 for the arbitrary n-th and (n+1)-th heat exchangers is the product width EL n and the product width EL n+1 , respectively, , and the product width EL n and the product width EL n+1 are set so as to satisfy the following equation (7).
  • Modification 4-3 (Effect of modification 4-3) In modification 4-3, the inter-row gap ⁇ is considered. Modification 4-3 can also obtain the same effect as Modification 4-1 and Modification 4-2.
  • FIG. 33 is a plan view showing a configuration of an outdoor heat exchanger according to Modification 5 of Embodiment 1.
  • FIG. 34 is a plan view showing a state before the outdoor heat exchanger shown in FIG. 33 is bent into an L shape.
  • FIG. 33 and 34 show a state in which the outdoor heat exchanger 10 is viewed from an upward direction Z1 in the Z direction toward a downward direction Z2.
  • FIG. 35 is a plan view showing another example of the configuration of the outdoor heat exchanger according to Modification 5 of Embodiment 1.
  • FIG. FIG. 35 shows a state in which the outdoor heat exchanger 10 is viewed from an upward direction Z1 in the Z direction toward a downward direction Z2.
  • FIG. 36 is a plan view showing still another example of the configuration of the outdoor heat exchanger according to Modification 5 of Embodiment 1.
  • FIG. FIG. 36 shows a state in which the outdoor heat exchanger 10 is viewed from an upward direction Z1 in the Z direction toward a downward direction Z2.
  • the number of bends b of at least one row out of the m rows is the number of bends of the other rows. less than b.
  • the second row heat exchanger 12 and the third row heat exchanger 13 are bent 3 times, and the first row heat exchanger 11 is bent 2 times. It's becoming
  • the row in which no bending is performed or the row in which the number of times of bending b is reduced may be any row, but in the air flow direction (Y direction), the row most upwind or the row most leeward. desirable.
  • the number of unbent rows is one, but the number of unbent rows may be two.
  • a plurality of rows of heat exchangers may not be bent at an arbitrary bending point. For example, in the case of four rows, the first and second rows may be bent, but the third and fourth rows may not be bent.
  • each row may have a plurality of unbent portions. That is, in each row, at least one row may not be bent where another row is bent.
  • Embodiment 2. 37 is a perspective view showing the configuration of an outdoor heat exchanger according to Embodiment 2.
  • FIG. 38 is a plan view showing the configuration of an outdoor heat exchanger according to Embodiment 2.
  • FIG. 38 shows a state in which the outdoor heat exchanger 10 is viewed from an upward direction Z1 in the Z direction toward a downward direction Z2. Also, in FIG. 38, for the sake of explanation, the main heat exchanger portion and the sub heat exchanger portion are shown separately.
  • 39 is a diagram schematically showing the configuration of the first row of the outdoor heat exchanger according to Embodiment 2.
  • FIG. 40 is a diagram schematically showing the configuration of the m-th row of the outdoor heat exchanger according to Embodiment 2.
  • the outdoor heat exchanger 10 includes a main heat exchanger 10A and a sub heat exchanger 10B.
  • the sub heat exchanger 10B is arranged downward Z2 in the Z direction with respect to the main heat exchanger 10A.
  • the number of stages p2 of the sub heat exchanger 10B is less than the number of stages p1 of the main heat exchanger 10A.
  • the number of stages in each row of the main heat exchanger 10A is the same, and the number of stages is p1.
  • the number of stages in each row of the sub heat exchanger 10B is the same, and the number of stages is p2.
  • the main heat exchanger 10A has heat transfer tubes 52 arranged in m rows.
  • the sub heat exchanger 10B also has heat transfer tubes 52 arranged in m rows. That is, as shown in FIG. 38, the number of rows of the main heat exchanger 10A and the number of rows of the sub heat exchanger 10B are the same.
  • the main heat exchanger 10A has a first row main heat exchanger 11a, a second row main heat exchanger 12a, and a third row main heat exchanger 13a.
  • the first-row main heat exchanger 11a, the second-row main heat exchanger 12a, and the third-row main heat exchanger 13a are composed of heat transfer tubes 52 and fins 51, respectively, and are the first
  • the configuration is the same as that of the row heat exchanger 11 , the second row heat exchanger 12 , and the third row heat exchanger 13 .
  • the number of stages p1 may be the same as or different from the number of stages p in the first embodiment.
  • the sub heat exchanger 10B has the first row sub heat exchanger 11b, the second row sub heat exchanger 12b, and the third row sub heat exchanger 13b.
  • the first row auxiliary heat exchanger 11 b , the second row auxiliary heat exchanger 12 b , and the third row auxiliary heat exchanger 13 b are composed of heat transfer tubes 52 and fins 51 .
  • These auxiliary heat exchangers are basically the same in configuration as the first row heat exchanger 11, the second row heat exchanger 12, and the third row heat exchanger 13 of Embodiment 1, respectively.
  • the number of stages p2 is smaller than the number of stages p in the first embodiment.
  • the configuration of the main heat exchanger 10A is basically the same as that of the first embodiment shown in FIG. The following four points are different from the first embodiment.
  • a first sub-collecting portion 20A is provided at the lower end of the first collecting portion 20 .
  • the first sub-aggregate portion 20A is arranged downward in the Z-direction Z2 with respect to the first aggregate portion 20.
  • the internal channel 202 of the first collecting portion 20 does not communicate with the internal channel 202A of the first sub-collecting portion 20A, as shown in FIG.
  • the internal channel 202 of the first collecting portion 20 and the internal channel 202A of the first sub-collecting portion 20A are separated by the first partition plate 21 .
  • a second sub-collecting portion 30A is provided at the lower end of the second collecting portion 30 .
  • the second subset portion 30A is arranged downward in the Z direction Z2 with respect to the second aggregate portion 30.
  • the internal channel 302 of the second collecting portion 30 communicates with the internal channel 302A of the second sub-collecting portion 30A, as shown in FIG.
  • the internal channel 302 of the second collecting portion 30 and the internal channel 302A of the second sub-collecting portion 30A are in communication via at least one channel.
  • the first row-to-row connection 41 is connected to both the main heat exchanger 10A and the sub heat exchanger 10B.
  • the second row-to-row connection 42 is connected to both the main heat exchanger 10A and the sub heat exchanger 10B.
  • the main heat exchanger 10A has a plurality of heat transfer tubes 52 arranged in three rows and has two inter-row connections.
  • the first row main heat exchanger 11 a is connected to the first collecting portion 20 on the first end portion 10 a side of the outdoor heat exchanger 10 .
  • the first row main heat exchanger 11a and the second row main heat exchanger 12a are connected via the first inter-row connection portion 41 on the second end portion 10b side of the outdoor heat exchanger 10.
  • the second row main heat exchanger 12a and the third row main heat exchanger 13a are connected via the second inter-row connection portion 42 on the first end portion 10a side of the outdoor heat exchanger 10.
  • the third row main heat exchanger 13a is connected to the second collecting portion 30 on the second end portion 10b side of the outdoor heat exchanger 10 .
  • the sub heat exchanger 10B has a plurality of heat transfer tubes 52 arranged in three rows.
  • the first row sub-heat exchanger 11b is connected to the first sub-collection portion 20A on the first end portion 10a side of the outdoor heat exchanger 10 .
  • the first row auxiliary heat exchanger 11b and the second row auxiliary heat exchanger 12b are connected via the first row-to-row connection portion 41 on the second end portion 10b side of the outdoor heat exchanger 10.
  • the second row auxiliary heat exchanger 12b and the third row auxiliary heat exchanger 13b are connected via the second inter-row connection portion 42 on the first end portion 10a side of the outdoor heat exchanger 10.
  • the third-row auxiliary heat exchanger 13b is connected to the second sub-collection portion 30A on the second end portion 10b side of the outdoor heat exchanger 10 .
  • the main heat exchanger 10A has a plurality of heat transfer tubes 52 arranged in m rows (m ⁇ 3), and has k (k ⁇ 2) row-to-row connections.
  • the n-th heat transfer tube 52 and the (n+1)-th heat transfer tube 52 are At one end side, they are connected via the k-th column connecting portion.
  • the (n+1)-th row heat transfer pipe 52 and the (n+2)-th row heat transfer pipe 52 are connected via the (k+1)-th row connecting portion on the other end side of the outdoor heat exchanger 10. .
  • the sub heat exchanger 10B has a plurality of heat transfer tubes 52 arranged in m rows (m ⁇ 3).
  • the n-th heat transfer tube 52 and the (n + 1)-th heat transfer tube 52 are connected at one end side of the outdoor heat exchanger 10 and at the k-th row connection part connected through
  • the (n+1)-th row heat transfer pipe 52 and the (n+2)-th row heat transfer pipe 52 are connected via the (k+1)-th row connecting portion on the other end side of the outdoor heat exchanger 10. .
  • an arrow R indicates the flow of refrigerant when the outdoor heat exchanger 10 is used as a condenser and the refrigeration cycle device 1 is operated for cooling.
  • the refrigerant flows in the opposite direction of the arrow R.
  • one end of the outdoor heat exchanger 10 is called a first end 10a and the other end is called a second end 10b in the extending direction of the heat transfer tubes 52.
  • the end on the first end 10a side is called the first end.
  • the end on the second end 10b side is called the second end.
  • the operation when using the outdoor heat exchanger 10 as a condenser is as follows. First, the refrigerant discharged from the compressor 2 passes through the four-way valve 7 and flows into the first collecting portion 20 .
  • the refrigerant that has flowed into the first collecting portion 20 flows from the first end of the first row main heat exchanger 11a of the main heat exchanger 10A to the first row main heat exchanger 11a as indicated by the arrow in FIG. is distributed to each of the heat transfer tubes 52 and flows into them. After that, the refrigerant flows through the heat transfer tubes 52 of the first row main heat exchanger 11a.
  • the refrigerant moves from the second end of the first row main heat exchanger 11a to the second row main heat exchanger 12a of the main heat exchanger 10A through the first row connecting portion 41. from the second end of the second row main heat exchanger 12a. After that, the refrigerant flows through the heat transfer tubes 52 of the second row main heat exchanger 12a. Then, the refrigerant moves from the first end of the second row main heat exchanger 12a to the third row main heat exchanger 13a of the main heat exchanger 10A through the second row-to-row connection portion 42. flows into the third row main heat exchanger 13a.
  • the refrigerant flows through the heat transfer tubes 52 of the third row main heat exchanger 13a, flows into the second collecting portion 30 from the second end of the third row main heat exchanger 13a, and flows into the second collecting portion 30. merge at The refrigerant that joins at the second collecting portion 30 flows from the second collecting portion 30 into the second sub-collecting portion 30A as shown in FIG.
  • the refrigerant that has flowed into the second sub-collecting portion 30A flows from the second end of the third-row auxiliary heat exchanger 13b of the auxiliary heat exchanger 10B to the third-row auxiliary heat exchanger 13b. is distributed to each of the heat transfer tubes 52 and flows into them. After that, the refrigerant flows through the heat transfer tubes 52 of the third row auxiliary heat exchanger 13b. Then, the refrigerant moves from the first end of the third row auxiliary heat exchanger 13b to the second row auxiliary heat exchanger 12b of the auxiliary heat exchanger 10B through the second row connecting portion 42. from the first end of the second row auxiliary heat exchanger 12b.
  • the refrigerant flows through the heat transfer tubes 52 of the second row auxiliary heat exchanger 12b. Then, the refrigerant moves from the second end of the second row auxiliary heat exchanger 12b to the first row auxiliary heat exchanger 11b of the auxiliary heat exchanger 10B through the first row connecting portion 41. from the second end of the first row auxiliary heat exchanger 11b. After that, the refrigerant flows through the heat transfer tubes 52 of the first row auxiliary heat exchanger 11b, flows into the first sub-collection portion 20A from the first end of the first row auxiliary heat exchanger 11b, and flows into the first sub-collection. Join at section 20A. The refrigerant merged in the first sub-collecting portion 20 ⁇ /b>A passes through the expansion device 5 while being pressure-dropped by the expansion device 5 and flows into the indoor heat exchanger 3 .
  • the inter-row connection between the n-th and (n+1)-th main heat exchangers is a heat exchanger connected at one end of the The inter-row connecting portions of the (n+1)-th and (n+2)-th main heat exchangers are connected at the other end side of the heat exchangers.
  • the m-th row main heat exchanger 13a and sub-heat exchanger 13b are connected by at least one path via the second collective portion 30 and the second sub-collective portion 30A. ing.
  • the inter-row connection portions of the n-th and (n+1)-th sub heat exchangers are connected at one end side of the heat exchanger, and the (n+1)-th and (n+2)-th ) is connected at the other end side of the heat exchanger.
  • the collecting portion (here, the first collecting portion 20 and the first sub-collecting portion 20A) having an outflow port with the refrigerant pipe 8 of the refrigerant circuit is connected to the internal flow path 202 of the first collecting portion 20 so that the refrigerant does not mix. , and the internal flow path 202A of the first sub-collecting portion 20A.
  • FIG. 41 is a diagram showing a modification of FIG. 40.
  • the m-th row main heat exchanger 13a and sub-heat exchanger 13b are connected by a plurality of paths.
  • the m-th row main heat exchanger 13 a and sub heat exchanger 13 b are connected via a plurality of inter-stage connection pipes 301 .
  • the interstage connection pipe 301 includes an interstage connection pipe 301a, an interstage connection pipe 301b, and an interstage connection pipe 301c.
  • the second gathering section 30 is divided into a plurality of blocks.
  • One or more heat transfer tubes 52 are connected to each block.
  • the number of blocks may be the same as or different from the number of stages p of the heat transfer tubes 52 .
  • the second subset portion 30A is also divided into a plurality of blocks.
  • the number of blocks in the second subset portion 30A is the same as the number of blocks in the second aggregate portion 30A.
  • each block of the second collective portion 30 is connected to each block of the second sub-collective portion 30A through an interstage connection pipe 301a, an interstage connection pipe 301b, and an interstage connection pipe 301c. Connected.
  • the inter-row connection between the n-th and (n+1)-th main heat exchangers is a heat exchanger connected at one end of the The inter-row connecting portions of the (n+1)-th and (n+2)-th main heat exchangers are connected at the other end side of the heat exchangers.
  • the inter-row connection part of the sub heat exchanger of the n-th row and the (n+1)-th row is connected at one end side of the heat exchanger, and the (n+1)-th row and The row-to-row connection portion of the (n+2)th row sub heat exchanger is connected at the other end side of the heat exchanger.
  • the inter-row connections are brazed and integrated. Also in the outdoor heat exchanger 10, bending can be easily and reasonably performed. Therefore, the brazing of the heat transfer tubes 52 and the fins 51 and the brazing of the first inter-row connecting portion 41 and the second inter-row connecting portion 42 can be performed simultaneously in the furnace. As a result, the worker's work is simplified, and the manufacturability of the outdoor heat exchanger 10 can be improved.
  • the outdoor heat exchanger 10 when configured in an odd number of rows (m is an odd number), one end side of the first row main heat exchanger 11a in the first row and An inlet/outlet portion of the outdoor heat exchanger 10 is formed on one end side of the first row auxiliary heat exchanger 11b and on each side thereof. Therefore, it can be connected to the refrigerant pipe 8 of the refrigerant circuit as it is, and there is no need to connect with a pipe or the like from the other end side, so that the structure can be simplified.
  • Embodiment 3 describes a method of manufacturing the outdoor heat exchanger 10 shown in Embodiment 1 with reference to FIGS. 42 to 46.
  • FIG. FIG. 42 is a flow chart showing the flow of work processes of the method for manufacturing an outdoor heat exchanger according to Embodiment 3.
  • FIG. 43 to 46 are perspective views showing states of each process of the method for manufacturing an outdoor heat exchanger according to Embodiment 3.
  • FIG. 42 is a flow chart showing the flow of work processes of the method for manufacturing an outdoor heat exchanger according to Embodiment 3.
  • FIG. 43 to 46 are perspective views showing states of each process of the method for manufacturing an outdoor heat exchanger according to Embodiment 3.
  • Embodiment 1 the manufacturing method for the outdoor heat exchanger 10 shown in Embodiment 1 will be described as an example. It should be noted that the manufacturing methods of each of Modifications 1 to 5 of Embodiment 1 and the outdoor heat exchanger 10 shown in Embodiment 2 are the same as those of the outdoor heat exchanger 10 of Embodiment 1. Since it suffices to do so, the description thereof is omitted here.
  • step S1 shown in FIG. 42 first, as shown in FIG. 43, a plurality of fins 51 are stacked and arranged at intervals in the X direction. Next, as shown in FIG. 43 , a plurality of heat transfer tubes 52 are inserted into the through holes formed in the fins 51 . Thereby, the plurality of heat transfer tubes 52 pass through the plurality of fins 51 and are spaced apart from each other in the Z direction. Thus, in step S1, the heat transfer tubes 52 and the fins 51 are assembled.
  • step S2 shown in FIG. 42 as shown in FIG. Attach the connection 42 .
  • the first collecting portion 20 is connected to the first row heat exchanger 11 on the first end portion 10a side of the outdoor heat exchanger 10 .
  • the first row main heat exchanger 11 a and the second row main heat exchanger 12 a are connected via the first inter-row connection portion 41 on the second end portion 10 b side of the outdoor heat exchanger 10 .
  • the second row main heat exchanger 12 a and the third row main heat exchanger 13 a are connected via the second inter-row connection portion 42 on the first end portion 10 a side of the outdoor heat exchanger 10 .
  • the second collecting portion 30 is connected to the third row main heat exchanger 13a on the second end portion 10b side of the outdoor heat exchanger 10 .
  • the heat transfer tubes 52, the first collective portion 20, the second collective portion 30, the first inter-row connection portion 41, and the second inter-row connection portion 42 are assembled.
  • step S3 shown in FIG. 42 the parts assembled in steps S1 and S2 (hereinafter referred to as assembly parts) are joined by brazing or the like in a furnace.
  • the assembly portion includes an assembly portion of the heat transfer tube 52 and the fins 51, an assembly portion of the heat transfer tube 52 and the first assembly portion 20, an assembly portion of the heat transfer tube 52 and the second assembly portion 30, and an assembly portion of the heat transfer tube 52 and the second assembly portion 30.
  • An assembly portion with one inter-row connection portion 41 and an assembly portion with a heat transfer tube 52 and a second inter-row connection portion 42 are included. In this manner, in step S3, the assembly portions are joined, and the heat transfer tubes 52, the inter-row connection portions, and the collecting portions are integrated.
  • step S4 shown in FIG. 42 the outdoor heat exchanger 10 integrated in step S3 is moved to a predetermined location (for example, point E in FIGS. 4 and 46). to bend.
  • the outdoor heat exchanger 10 shown in Embodiment 1 can be manufactured.
  • the outdoor heat exchanger 10 alternately connects the heat transfer tubes 52 in two rows at one end side or the other end side of the outdoor heat exchanger at an inter-row connection portion. . Therefore, in step S4, when bending the outdoor heat exchanger 10, since there is no area to be restrained on one end side and the other end side of the outdoor heat exchanger, the outdoor heat exchanger 10 can be bent easily and reasonably. .
  • first inter-row connection part 41 and the second inter-row connection part 42 are constituted by header-type inter-row connection parts
  • the joints between the heat transfer tubes 52 and the inter-row connection parts are many.
  • heat transfer tubes 52 are generally manufactured by extruding aluminum.
  • the fins 51 are generally made of aluminum.
  • Embodiment 3 (Effect of Embodiment 3)
  • the heat transfer tubes 52, the inter-row connection portions, and the assembly portions are joined together in a furnace while the heat transfer tubes 52 are integrated. This facilitates the manufacturing process and improves the manufacturability of the outdoor heat exchanger 10 .
  • the heat transfer tubes 52, the fins 51, the first inter-row connection portions 41 and the second inter-row connection portions 42, and the first collective portion 20 and the second collective portion 30 are made of the same material such as aluminum. You may In that case, all members constituting the outdoor heat exchanger 10 are made of the same material, and the same materials are joined together. Therefore, integral brazing using a furnace becomes possible. On the other hand, in the conventional example described in Patent Literature 1, it was necessary to manually perform the brazing work for the inter-row connection portions. In the third embodiment, since integral brazing using a furnace is possible, the number of times of manual brazing can be greatly reduced, and productivity can be improved.
  • the embodiment The manufacturing method of 3 is effective.
  • step S3 after integral brazing is performed in step S3, bending is performed in step S4.
  • the bent heat exchanger is inserted into the furnace.
  • Embodiment 3 a linear heat exchanger as shown in FIG. 45 is inserted into the furnace. Therefore, in the third embodiment, it is possible to manufacture even if the size of the furnace is small compared to the conventional example, and it is possible to reduce the size of the furnace equipment.
  • the outdoor heat exchanger 10 has the fins 51
  • the outdoor heat exchanger 10 does not necessarily have the fins 51, and the fins 51 may be provided as necessary. That is, the configuration of the outdoor heat exchanger 10 according to the present disclosure can also be applied to heat exchangers that do not have the fins 51 . Also in this case, it goes without saying that the same effect can be obtained that the heat exchanger can be bent after the brazing work.
  • 1 refrigeration cycle device 2 compressor, 3 indoor heat exchanger, 4 indoor fan, 5 throttle device, 6 outdoor fan, 7 four-way valve, 8 refrigerant piping, 10 outdoor heat exchanger, 10A main heat exchanger, 10B auxiliary heat Exchanger, 10a first end, 10b second end, 11 first row heat exchanger, 11a first row main heat exchanger, 11b first row auxiliary heat exchanger, 12 second row heat exchanger, 12a 2nd row main heat exchanger, 12b 2nd row auxiliary heat exchanger, 13 3rd row heat exchanger, 13a 3rd row main heat exchanger, 13b 3rd row auxiliary heat exchanger, 14 4th row heat exchanger , 20 First collective portion, 20A First sub-collective portion, 21 First partition plate, 30 Second collective portion, 30A Second sub-collective portion, 41 First row-to-row connection portion, 42 Second row-to-row connection portion , 43 Third row connecting part, 51 fin, 51a fin, 51b fin, 52 heat transfer tube, 60 bending part, 101 outdoor unit, 105 distributor,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

熱交換器は、第1方向に延設され、第1方向と交差する第2方向に互いに間隔を空けて配置された複数の伝熱管を、備えた熱交換器であって、熱交換器は、第1方向の両端に第1端部と第2端部とを有し、複数の伝熱管は、第1方向および第2方向と交差する第3方向にm列(m≧3)に配列され、熱交換器の第1端部および第2端部のそれぞれには、隣り合う2列の伝熱管を接続する1以上の列間接続部が設けられ、1≦n≦(m-2)において、n列目の伝熱管と(n+1)列目の伝熱管とは、熱交換器の第1端部および第2端部のいずれか一方に設けられた列間接続部を介して接続され、(n+1)列目の伝熱管と(n+2)列目の伝熱管とは、熱交換器の第1端部および第2端部のいずれか他方に設けられた列間接続部を介して接続されており、熱交換器の複数の伝熱管のうちの少なくとも1列は、第1方向の少なくとも1箇所で、第3方向に向けて曲げられた曲げ部を有している。

Description

熱交換器および熱交換器の製造方法
 本開示は、複数の列に配列された複数の伝熱管を有する熱交換器および熱交換器の製造方法に関する。
 熱交換器の伝熱性能を上げる方法として、熱交換器の伝熱管の列数を増やす方法がある(例えば、特許文献1参照)。
 特許文献1はその一例であり、熱交換器が3列で構成されている。特許文献1では、3列の伝熱管に対して、分流器によって複数のパスに分流して冷媒が供給される。最も風上の列を1列目と定義した場合、複数のパスは、3列目の伝熱管のみを含む最下流パスと、1~2列目のうち少なくとも1つの列の伝熱管を含む上流パスと、1~3列目の伝熱管を含むパスと、を含む。
 特許文献1では、熱交換器の一端側と他端側の両端において、1列目から3列目までの伝熱管をU字形状の列間接続管で接続している。列間接続管で接続する2つの伝熱管の組み合わせは、複雑に入り組んでいる。
国際公開第2013/146006号
 特許文献1においては、熱交換器は全体として直方体形状(直線状)に形成されており、熱交換器を例えばL字形状またはロの字形状に曲げることは意図されていない。
 しかしながら、実装性を上げるために、L字形状またはロの字形状に熱交換器を曲げる場合が想定される。仮に、特許文献1に記載の熱交換器をL字形状またはロの字形状に曲げる場合を考える。上述したように、特許文献1では、1~3列目の伝熱管を熱交換器の両端で接続している。すなわち、特許文献1では、熱交換器の両端に、1~3列目の伝熱管を接続する列間接続部が設けられている。
 そのため、特許文献1に記載の熱交換器をL字形状またはロの字形状に曲げようとすると、熱交換器の両端の列間接続部によって伝熱管の動きが拘束されて、伝熱管を曲げることができない。そのため、特許文献1に記載の熱交換器を無理にでも曲げようとすると、列間接続部のロウ付け部分が破損してしまう。これを防止するためには、製造工程において、熱交換器を曲げた後に、1箇所ずつ、列間接続部をロウ付けしなければならない。その場合、熱交換器の製造工程が非常に煩雑になってしまう。以下、それについて説明する。
 一般に、熱交換器の製造工程において、伝熱管とフィンとは炉の中で一体ロウ付けされる。特に、伝熱管として扁平管を用いている熱交換器では、炉の中で伝熱管とフィンとを一体ロウ付けする方法が用いられている。その際に、同時に、炉の中で列間接続部のロウ付けも行う。
 しかしながら、特許文献1に記載の熱交換器を曲げる場合には、列間接続部のロウ付けまで炉の中で行ってしまうと、熱交換器を曲げることができなくなる。そのため、まず、伝熱管とフィンとを炉の中で一体ロウ付けし、その後、炉から取り出して、熱交換器の曲げ加工を行う。そして、曲げ加工が施された熱交換器に対して、列間接続部のロウ付けを1箇所ずつ行う必要がある。伝熱管のパス数が多い場合、列間接続部のロウ付けを1箇所ずつ行う作業は、作業員の作業負荷が非常に大きく、熱交換器の製造性を著しく低下させるという課題があった。
 本開示は、かかる課題を解決するためになされたものであり、複数の列に配列された伝熱管同士を列間接続部で接続する際に、隣り合う2列の伝熱管を熱交換器の一端側と他端側で互い違いに接続することで、列間接続部によって動きが拘束される領域を熱交換器全体から無くして、熱交換器の製造性の向上を図ることが可能な、熱交換器および熱交換器の製造方法を得ることを目的としている。
 本開示に係る熱交換器は、第1方向に延設され、前記第1方向と交差する第2方向に互いに間隔を空けて配置された複数の伝熱管を、備えた熱交換器であって、前記熱交換器は、前記第1方向の両端に第1端部と第2端部とを有し、前記複数の伝熱管は、前記第1方向および前記第2方向と交差する第3方向にm列(m≧3)に配列され、前記熱交換器の前記第1端部および前記第2端部のそれぞれには、隣り合う2列の前記伝熱管を接続する1以上の列間接続部が設けられ、1≦n≦(m-2)において、n列目の前記伝熱管と(n+1)列目の前記伝熱管とは、前記熱交換器の前記第1端部および前記第2端部のいずれか一方に設けられた前記列間接続部を介して接続され、前記(n+1)列目の前記伝熱管と(n+2)列目の前記伝熱管とは、前記熱交換器の前記第1端部および前記第2端部のいずれか他方に設けられた前記列間接続部を介して接続されており、前記熱交換器の前記複数の伝熱管のうちの少なくとも1列は、前記第1方向の少なくとも1箇所で、前記第3方向に向けて曲げられた曲げ部を有しているものである。
 本開示に係る熱交換器の製造方法は、上記構成を有する熱交換器の製造方法であって、前記熱交換器の前記第1端部および前記第2端部において、前記伝熱管に前記列間接続部を接続することで、前記伝熱管と前記列間接続部とを組み立てる第1工程と、前記伝熱管と前記列間接続部との接合を行う第2工程と、前記熱交換器の前記複数の伝熱管のうちの少なくとも1列に対して曲げ加工を行う第3工程と、を備えたものである。
 本開示に係る熱交換器および熱交換器の製造方法によれば、複数の列に配列された伝熱管同士を列間接続部で接続する際に、隣り合う2列の伝熱管を熱交換器の一端側と他端側で交互に接続することで、列間接続部によって動きが拘束される領域を熱交換器全体から無くして、熱交換器の製造性の向上を図ることができる。
実施の形態1に係る熱交換器が搭載される冷凍サイクル装置を構成する冷媒回路の一例を示す冷媒回路図である。 実施の形態1に係る熱交換器が搭載される室外ユニットの外観を示す斜視図である。 実施の形態1に係る熱交換器が搭載される室外ユニットの構成を示す分解斜視図である。 実施の形態1に係る室外熱交換器の構成を示す斜視図である。 図4に示す室外熱交換器の平面図である。 図4に示す室外熱交換器のL字形状に曲げる前の状態を示す平面図である。 実施の形態1に係る熱交換器に設けられるヘッダ型列間接続部の構成を示す斜視図である。 図7に示すヘッダ型列間接続部の構成を示す正面図である。 図8のB-B断面図である。 図9に示すヘッダ型列間接続部に伝熱管が挿入された状態を示す断面図である。 実施の形態1に係る熱交換器に設けられるヘッダ型列間接続部の変形例1の構成を示す正面図である。 実施の形態1に係る熱交換器に設けられるU字型列間接続部の構成を示す(a)平面図および(b)正面図である。 実施の形態1に係る熱交換器に設けられるU字型列間接続部の構成を示す(a)平面図および(b)斜視図である。 実施の形態1に係る熱交換器に設けられる中空ヘッダ型集合部の構成を示す斜視図である。 図14に示す中空ヘッダ型集合部の構成を示す正面図である。 図15のC-C断面図である。 図15のD-D断面図である。 図16に示す中空ヘッダ型集合部に伝熱管が挿入された状態を示す断面図である。 実施の形態1に係る熱交換器に設けられる集合部の変形例Iの構成を示す斜視図である。 実施の形態1に係る熱交換器に設けられる集合部の変形例IIの構成を示す斜視図である。 実施の形態1に係る熱交換器に設けられる集合部の変形例IIIの構成を示す斜視図である。 実施の形態1に係る室外熱交換器の構成を示す平面図である。 実施の形態1の変形例1に係る室外熱交換器の構成を示す平面図である。 図23に示す室外熱交換器のL字形状に曲げる前の状態を示す平面図である。 実施の形態1の変形例2に係る室外熱交換器の構成を示す平面図である。 実施の形態1の変形例2に係る室外熱交換器の構成を示す平面図である。 実施の形態1の変形例3に係る室外熱交換器の構成を示す平面図である。 図27に示す室外熱交換器のL字形状に曲げる前の状態を示す平面図である。 実施の形態1の変形例4-1に係る室外熱交換器の構成を示す平面図である。 図29に示す室外熱交換器のL字形状に曲げる前の状態を示す平面図である。 比較例に係る室外熱交換器の構成を示す平面図である。 図31に示す比較例に係る室外熱交換器のL字形状に曲げる前の状態を示す平面図である。 実施の形態1の変形例5に係る室外熱交換器の構成を示す平面図である。 図33に示す室外熱交換器のL字形状に曲げる前の状態を示す平面図である。 実施の形態1の変形例5に係る室外熱交換器の構成の他の例を示す平面図である。 実施の形態1の変形例5に係る室外熱交換器の構成のさらなる他の例を示す平面図である。 実施の形態2に係る室外熱交換器の構成を示す斜視図である。 実施の形態2に係る室外熱交換器の構成を示す平面図である。 実施の形態2に係る室外熱交換器の1列目の構成を模式的に示す図である。 実施の形態2に係る室外熱交換器のm列目の構成を模式的に示す図である。 図40の変形例を示す図である。 実施の形態3に係る室外熱交換器の製造方法の作業工程の流れを示すフローチャートである。 実施の形態3に係る室外熱交換器の製造方法の各処理の様子を示す斜視図である。 実施の形態3に係る室外熱交換器の製造方法の各処理の様子を示す斜視図である。 実施の形態3に係る室外熱交換器の製造方法の各処理の様子を示す斜視図である。 実施の形態3に係る室外熱交換器の製造方法の各処理の様子を示す斜視図である。 実施の形態1に係る室外熱交換器が、円管とフィンとから構成されている場合を示す図である。 実施の形態1に係る室外熱交換器が、円管とフィンとから構成されている場合を示す図である。 実施の形態1に係る室外熱交換器が、扁平管とフィンとから構成されている場合を示す図である。 実施の形態1に係る室外熱交換器が、扁平管とフィンとから構成され、扁平管の一部分がフィンから突出している場合を示す図である。 実施の形態1に係る室外熱交換器が、扁平管とフィンとから構成され、フィンと扁平管の端面が一致している場合を示す図である。 実施の形態1に係る室外熱交換器が、扁平管とフィンとから構成され、扁平管の端面がフィンの端面より切欠き部の内部に入り込んでいる場合を示す図である。 実施の形態1に係る室外熱交換器が、扁平管とコルゲートフィンとから構成されている場合を示す図である。
 以下、本開示に係る熱交換器および熱交換器の製造方法の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。また、各図において、Z方向は、室外熱交換器または室外ユニットの高さ方向を示し、例えば鉛直方向である。X方向は、室外熱交換器または室外ユニットの幅方向を示す。X方向は、Z方向に交差する方向を示し、例えば水平方向である。Y方向は、室外熱交換器または室外ユニットの奥行き方向を示す。Y方向は、X方向およびZ方向に交差する方向であり、例えば水平方向である。なお、X方向は、曲げられる前の伝熱管の管軸方向である。以下の説明において、管軸方向は、伝熱管の曲げの有無にかかわらず、伝熱管の延設方向である。管軸方向は、第1方向と呼ばれることがある。
 実施の形態1.
 以下、実施の形態1に係る熱交換器、および、当該熱交換器が用いられる冷凍サイクル装置の構成について説明する。
 (冷凍サイクル装置の構成および動作)
 図1は、実施の形態1に係る熱交換器が搭載される冷凍サイクル装置を構成する冷媒回路の一例を示す冷媒回路図である。図1を参照して、実施の形態1に係る冷凍サイクル装置1の構成について説明する。図1に示されるように、冷凍サイクル装置1は、圧縮機2と、室内熱交換器3と、室内ファン4と、絞り装置5と、室外熱交換器10と、室外ファン6と、四方弁7とを備えている。例えば、圧縮機2、室外熱交換器10、絞り装置5、室外ファン6および四方弁7が室外ユニット101(図2参照)に設けられ、室内熱交換器3および室内ファン4が室内ユニット(図示せず)に設けられる。
 圧縮機2、室内熱交換器3、絞り装置5、室外熱交換器10および四方弁7は冷媒配管8で接続され、冷媒が循環可能な冷媒回路を構成している。冷凍サイクル装置1では、上記冷媒回路中を冷媒が相変化しながら循環する冷凍サイクルが行われる。
 圧縮機2は、冷媒を圧縮させる。圧縮機2は、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、又は往復圧縮機等である。また、圧縮機2は、例えば単位時間あたりの冷媒を送り出す容量を調整可能なインバータ圧縮機から構成されていてもよい。圧縮機2がインバータ圧縮機の場合、インバータ回路などにより、運転周波数を任意に変化させ、圧縮機2の単位時間あたりの冷媒を送り出す容量を変化させる。
 室内熱交換器3は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。室内熱交換器3は、例えば、伝熱管内を流れる冷媒と、伝熱管の周囲を流れる熱交換流体(例えば、居室内の空気)と、の間で熱交換を行う。室内熱交換器3は、例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、フィンレス型熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、又はプレート熱交換器等である。
 絞り装置5は、冷媒を膨張させて減圧させる。絞り装置5は、例えば膨張弁から構成される。さらに詳細に言えば、絞り装置5は、例えば冷媒の流量を調整可能な電動膨張弁等から構成されていてもよい。なお、絞り装置5としては、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁、または、各接続配管等であってもよい。
 室外熱交換器10は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。室外熱交換器10は、例えば、伝熱管内を流れる冷媒と、伝熱管の周囲を流れる熱交換流体(例えば、室外の空気)と、の間で熱交換を行う。室外熱交換器10は、例えばフィンアンドチューブ型熱交換器から構成される。室外熱交換器10の詳細は、後述する。
 四方弁7は、冷凍サイクル装置1における冷媒の流路を切り替える流路切替装置である。四方弁7は、冷凍サイクル装置1の暖房運転時には、圧縮機2の吐出口と室内熱交換器3とを接続し、圧縮機2の吸入口と室外熱交換器10とを接続するように、冷媒の流路を切り替える。また、四方弁7は、冷凍サイクル装置1の冷房運転時および除湿運転時には、圧縮機2の吐出口と室外熱交換器10とを接続し、圧縮機2の吸入口と室内熱交換器3とを接続するように、冷媒の流路を切り替える。
 室内ファン4は、室内熱交換器3に付設されており、室内熱交換器3に対して熱交換流体としての居室内の空気を供給する。
 室外ファン6は、室外熱交換器10に付設されており、室外熱交換器10に対して室外の空気を供給する。
 次に、図1を用いて、冷凍サイクル装置1の動作について説明する。図1において、点線矢印は冷凍サイクル装置1を冷房運転または除霜運転させる場合の冷媒の流れを示しており、実線矢印は冷凍サイクル装置1を暖房運転させる場合の冷媒の流れを示している。
 図1の点線矢印で示すように、冷凍サイクル装置1が冷房運転または除霜運転の場合、圧縮機2から吐出される高圧高温のガス状態の冷媒は、四方弁7を介して、室外熱交換器10に流入される。室外熱交換器10において、当該冷媒は、室外ファン6によって供給される室外の空気と熱交換を行うことで、凝縮する。凝縮した冷媒は、高圧の液状態となり、室外熱交換器10から流出する。そして、当該冷媒は、絞り装置5によって減圧され、低圧の気液二相状態となる。低圧の気液二相状態の冷媒は、室内熱交換器3に流入される。室内熱交換器3において、当該冷媒は、室内ファン4によって供給される室内の空気と熱交換を行うことで、蒸発する。蒸発した冷媒は、低圧のガス状態となり、圧縮機2に吸入される。
 図1の実線矢印で示すように、冷凍サイクル装置1が暖房運転の場合、冷媒が冷房運転時の逆方向に流れる。すなわち、圧縮機2から吐出される高圧高温のガス状態の冷媒は、四方弁7を介して、室内熱交換器3に流入される。室内熱交換器3において、当該冷媒は、室内ファン4によって供給される室内の空気と熱交換を行うことで、凝縮する。凝縮した冷媒は、高圧の液状態となり、室内熱交換器3から流出する。そして、当該冷媒は、絞り装置5によって減圧され、低圧の気液二相状態となる。低圧の気液二相状態の冷媒は、室外熱交換器10に流入される。室外熱交換器10において、当該冷媒は、室外ファン6によって供給される室外の空気と熱交換を行うことで、蒸発する。蒸発した冷媒は、低圧のガス状態となり、圧縮機2に吸入される。
 (室外ユニットの構成)
 次に、図2および図3を参照して、実施の形態1に係る室外ユニット101について説明する。図2は、実施の形態1に係る熱交換器が搭載される室外ユニットの外観を示す斜視図である。図3は、実施の形態1に係る熱交換器が搭載される室外ユニットの構成を示す分解斜視図である。
 図2に示すように、室外ユニット101は、全体として箱形形状を有している。室外ユニット101には、上述したように、圧縮機2、室外熱交換器10、絞り装置5、室外ファン6および四方弁7が設けられている。室外ユニット101は、図2および図3に示すように、上面パネル111と、側面パネル112と、正面パネル113と、ファングリル114と、底面パネル115と、側面カバー116と、を備えている。
 上面パネル111と底面パネル115とは互いに対向して配置されている。側面パネル112は、室外ユニット101の右側の端部に配置されており、室外ユニット101の右側の側面を形成している。側面パネル112には、側面カバー116が設けられている。室外ユニット101の左側の側面は、L字形状に形成されている正面パネル113の一部分から構成されている。また、室外ユニット101の背面は、背面パネルが設けられておらず、室外熱交換器10の一部分から露出している。また、正面パネル113には、空気を吹出口113aが形成され、吹出口113aを覆うようにファングリル114が設けられている。なお、図2および図3に示す構成は、冷凍サイクル装置1の構成のあくまで一例であって、これに限定されない。
 また、室外熱交換器10に流入する気流は、図2の矢印Aで示すように、図2の紙面において右上方向から左下方向に向かって流動する。すなわち、冷凍サイクル装置1の運転時には、図2の矢印Aで示すように、室外ファン6の駆動に伴って、室外ユニット101の背面から空気が取り込まれ、室外ユニット101の正面パネル113に形成された吹出口113aから空気が吹き出される。こうして、室外ファン6が引き込む気流は、室外熱交換器10の内部を通過する。
 (室外熱交換器の構成)
 次に、図4~図21を参照して、室外熱交換器10の構成について説明する。
 図4は、実施の形態1に係る室外熱交換器の構成を示す斜視図である。図5は、図4に示す室外熱交換器の平面図である。図6は、図4に示す室外熱交換器のL字形状に曲げる前の状態を示す平面図である。図5および図6においては、Z方向の上方向Z1から下方向Z2に向かって室外熱交換器10を見た状態を示している。
 図4~図6に示すように、室外熱交換器10は、複数列の熱交換器から構成されている。実施の形態1においては、室外熱交換器10が、第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13から構成されている場合を例に挙げて説明する。なお、室外熱交換器10の列数は3列に限定されず、列数は2以上の任意の整数でよい。
 第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13は、それぞれ、例えば後述する図47に示すように、複数のフィン51と、複数の伝熱管52と、を備えている。複数のフィン51は、板状形状を有し、X方向に互いに間隔を空けて積層されている。複数のフィン51の外形の大きさは、すべて、列ごとに同じである。実施の形態1では、フィン51は、伝熱管52の各列に合わせて、Y方向に3個に分割されている。複数の伝熱管52は、Z方向に互いに間隔を空けて配置されている。複数の伝熱管52は、図6および図47に示すように、曲げ加工を行う前は、X方向に延びて円筒形状であり、フィン51を積層方向(すなわち、X方向)に貫通している。伝熱管52の内部は、冷媒が流れる。室外熱交換器10は、例えば、フィンアンドチューブ型熱交換器である。伝熱管52は、銅またはアルミニウムから構成されている。伝熱管52は、例えば、円管(図47および図48参照)、扁平管(図49~図52参照)などである。また、フィン51は、板状フィン(図47~図52参照)に限らず、コルゲートフィン(図53参照)でもよい。
 第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13のうち、第1列熱交換器11が、図4の矢印Aで示す空気流方向において、最も風上に配置されている。また、第3列熱交換器13が、図4の矢印Aで示す空気流方向において、最も風下に配置されている。第2列熱交換器12は、第1列熱交換器11と第3列熱交換器13との間に配置されている。
 以下では、第1列熱交換器11に含まれる伝熱管52を、「1列目の伝熱管52」と呼ぶ。また、第2列熱交換器12に含まれる伝熱管52を、「2列目の伝熱管52」と呼び、第3列熱交換器13に含まれる伝熱管52を、「3列目の伝熱管52」と呼ぶ。すなわち、以下では、第n列熱交換器に含まれる伝熱管52を、「n列目の伝熱管52」と呼ぶこととする。このように、実施の形態1では、複数の伝熱管52が、複数の列に配列されている。
 (室外熱交換器の列間接続方法)
 図4~図6に示すように、第1列熱交換器11は、伝熱管52を介して、室外熱交換器10の一端側(第1端部10a側)において、第1集合部20と接続されている。また、第1列熱交換器11は、伝熱管52を介して、室外熱交換器10の他端側(第2端部10b側)において、第1の列間接続部41と接続されている。
 図4~図6に示すように、第2列熱交換器12は、伝熱管52を介して、室外熱交換器10の一端側(第1端部10a側)において、第2の列間接続部42と接続されている。また、第2列熱交換器12は、伝熱管52を介して、室外熱交換器10の他端側(第2端部10b側)において、第1の列間接続部41と接続されている。
 図4~図6に示すように、第3列熱交換器13は、伝熱管52を介して、室外熱交換器10の一端側(第1端部10a側)において、第2の列間接続部42と接続されている。また、第3列熱交換器13は、伝熱管52を介して、室外熱交換器10の他端側(第2端部10b側)において、第2集合部30と接続されている。
 第1の列間接続部41は、第1列熱交換器11に含まれる1列目の伝熱管52と、第2列熱交換器12に含まれる2列目の伝熱管52と、を接続する列間接続部である。第2の列間接続部42は、第2列熱交換器12に含まれる2列目の伝熱管52と、第3列熱交換器13に含まれる3列目の伝熱管52と、を接続する列間接続部である。このように、第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13の各列の伝熱管52は、それぞれ、室外熱交換器10の一端側もしくは他端側で、列間接続部によって、隣り合う他の列の伝熱管52と接続されている。
 実施の形態1では、図4および図5に示すように、室外熱交換器10が、3列に配列された複数の伝熱管52を有し、2個の列間接続を有している。第1列熱交換器11は、室外熱交換器10の第1端部10a側で、第1集合部20と接続されている。また、第1列熱交換器11と第2列熱交換器12とは、室外熱交換器10の第2端部10b側で、第1の列間接続部41を介して接続されている。また、第2列熱交換器12と第3列熱交換器13とは、室外熱交換器10の第1端部10a側で、第2の列間接続部42を介して接続されている。第3列熱交換器13は、室外熱交換器10の第2端部10b側で、第2集合部30と接続されている。
 ここで、実施の形態1においては、伝熱管52の列数は特に限定されないため、室外熱交換器10が、m列(m≧3)に配列された複数の伝熱管52を有し、室外熱交換器10が、k個(k≧2)の列間接続を有しているとする。そのとき、1≦n≦(m-2)および1≦k≦(m-3)において、n列目の伝熱管52と(n+1)列目の伝熱管52とは、室外熱交換器10の一端側で、第k列間接続部を介して接続されている。また、(n+1)列目の伝熱管52と(n+2)列目の伝熱管52とは、室外熱交換器10の他端側で、第(k+1)列間接続部を介して接続されている。
 このように、実施の形態1では、隣り合う2列の伝熱管52ごとに、室外熱交換器10の一端側または他端側において、互い違いに、列間接続部を介して接続されている。また、列間接続部のそれぞれは、隣り合う2列の熱交換器のみと接続されており、当該2列の熱交換器以外の熱交換器とは物理的に接続されておらず、列間接続部同士は互いに独立している。
 (室外熱交換器の列間接続部)
 次に、図7~図13を用いて、第1の列間接続部41および第2の列間接続部42の構成について説明する。以下では、第1の列間接続部41および第2の列間接続部42を、纏めて、「列間接続部」と呼ぶこととする。「列間接続部」は、隣り合う2列の熱交換器を跨いで接続され、隣り合う2列の熱交換器の伝熱管同士を直列に繋ぐ機能を有する。「列間接続部」は、それぞれ、例えば、図7~図11に示すような、ヘッダ型列間接続部400から構成される。
 図7は、実施の形態1に係る熱交換器に設けられるヘッダ型列間接続部の構成を示す斜視図である。図8は、図7に示すヘッダ型列間接続部の構成を示す正面図である。図9は、図8のB-B断面図である。図10は、図9に示すヘッダ型列間接続部に伝熱管が挿入された状態を示す断面図である。図11は、実施の形態1に係る熱交換器に設けられるヘッダ型列間接続部の変形例1の構成を示す正面図である。
 図7~図10に示すように、列間接続部を構成するヘッダ型列間接続部400は、本体であるヘッダ403と、伝熱管52が挿入される挿入穴401と、冷媒が列間を流動するための内部流路402と、により構成されている。
 ヘッダ403は、図7に示すように、箱形形状を有している。ヘッダ403の正面部403aには、挿入穴401が形成されている。挿入穴401は、1列目の挿入穴401aと、2列目の挿入穴401bと、を含んでいる。挿入穴401aは、互いに間隔を空けてZ方向に並んで配置されている。挿入穴402aも、同様に、互いに間隔を空けてZ方向に並んで配置されている。段ごとに、1列目の挿入穴401aと、2列目の挿入穴401bとは、水平方向に並んでいる。
 挿入穴401aは、n列目の伝熱管52が挿入され、挿入穴401bは、(n+1)列目の伝熱管52が挿入される。あるいは、挿入穴401aは、(n+2)列目の伝熱管52が挿入され、挿入穴401bは、(n+1)列目の伝熱管52が挿入される。
 また、ヘッダ403には、内部に、内部流路402が形成されている。内部流路402は、図8の破線で示すように、段ごとに形成され、異なる段の内部流路402同士は連通していない。同じ段の挿入穴401aと挿入穴401bとは、図9に示すように、内部流路402を介して連通している。すなわち、室外熱交換器10が、p段の伝熱管52を有している場合、図8では、水平方向に並んでいる隣り合う2列のq段目(1≦q≦p)の伝熱管52同士が内部流路402を介して連通している。
 しかしながら、内部流路402の構成は、図8の場合に限定されず、図11に示す構成でもよい。図8では、内部流路402が、水平方向に2列の伝熱管52を接続している。一方、図11に示す変形例では、内部流路402が、図11の破線で示すように、Z方向に対して傾斜して配置されている。そのため、図11では、例えば、n列目のq段目(1≦q≦p)の伝熱管52と、(n+1)列目の(q-1)段目の伝熱管52と、が、内部流路402を介して接続されている。このように、図11では、或る列の伝熱管が、別の列の1段上あるいは1段下の伝熱管と、内部流路402を介して接続される。
 列間接続部は、ヘッダ型列間接続部400から構成される場合に限らず、例えば、図12または図13に示すような、U字型列間接続部410および420から構成してもよい。図12は、実施の形態1に係る熱交換器に設けられるU字型列間接続部の構成を示す(a)平面図および(b)正面図である。図13は、実施の形態1に係る熱交換器に設けられるU字型列間接続部の構成を示す(a)平面図および(b)斜視図である。図12は、伝熱管52が円管の場合のU字型列間接続部410であり、図13は、伝熱管52が扁平管の場合のU字型列間接続部420である。
 U字型列間接続部410および420は、図12および図13に示すように、伝熱管52をU字状に曲げて形成されている。伝熱管52が円管の場合、図12に示すように、円管から構成された伝熱管52をヘアピンカーブ状に折り曲げて、U字型列間接続部410を形成する。一方、伝熱管52が扁平管の場合、扁平形状の伝熱管52を、図13に示すように、複数の方向に複数回に亘ってU字形状になるまで折り曲げていくことで、同一断面での列間接続を行うU字型列間接続部420を形成する。
 また、U字型列間接続部410および420は、室外熱交換器10の伝熱管52と一体成型してもよいが、室外熱交換器10の伝熱管52とは別体で形成してロウ付けしてもよい。
 U字型列間接続部410が別体で形成されている場合、U字型列間接続部410は、図12に示すように、室外熱交換器10の円管から構成された伝熱管52が接続される接続口411aおよび411bを有している。接続口411aと接続口411bとは、U字型列間接続部410の本体を構成している伝熱管52を介して連通されている。
 同様に、U字型列間接続部420が別体で形成されている場合、U字型列間接続部420は、図13に示すように、室外熱交換器10の扁平管から構成された伝熱管52が接続される接続口421aおよび421bを有している。接続口421aと接続口421bとは、U字型列間接続部420の本体を構成している伝熱管52を介して連通されている。U字型列間接続部420の本体を構成している外郭423の内部には、内部流路422が形成されている。
 (室外熱交換器の集合部)
 次に、図14~図18を用いて、第1集合部20および第2集合部30の構成について説明する。以下では、第1集合部20および第2集合部30を、纏めて、「集合部」と呼ぶこととする。「集合部」は、「集合管」と呼ばれることもある。「集合部」は、図5に示すように、複数列の熱交換器のうちの1列の熱交換器に接続され、当該1列の熱交換器の各段の伝熱管52を並列に繋ぐ機能を有する。具体的には、「集合部」は、m列の熱交換器のうち、1列目の熱交換器と、m列目の熱交換器と、に接続される。「集合部」は、例えば、中空ヘッダから構成された中空ヘッダ型集合部である。集合部で合流(分岐)した冷媒は、再度、別位置の熱交換器側の複数の冷媒パスと並列に繋がるか、もしくは、冷媒回路側に流出入する。
 図14は、実施の形態1に係る熱交換器に設けられる中空ヘッダ型集合部の構成を示す斜視図である。図15は、図14に示す中空ヘッダ型集合部の構成を示す正面図である。図16は、図15のC-C断面図である。図17は、図15のD-D断面図である。図18は、図16に示す中空ヘッダ型集合部に伝熱管が挿入された状態を示す断面図である。
 図14~図18に示すように、集合部を構成する中空ヘッダ型集合部200は、本体であるヘッダ203と、伝熱管52が挿入される挿入穴201と、伝熱管52の配列方向(Z方向)に冷媒を流動させる内部流路202と、により構成されている。また、図14および図17に示すように、中空ヘッダ型集合部200は、冷媒回路への流出入口204を有していてもよい。流出入口204は、ヘッダ203の背面部203bに形成されている。
 ヘッダ203は、図14に示すように、箱形形状を有している。ヘッダ203の正面部203aには、挿入穴201が形成されている。挿入穴201は、互いに間隔を空けてZ方向に一列に並んで配置されている。挿入穴201には、図18に示すように、室外熱交換器10の伝熱管52が挿入される。
 また、ヘッダ203には、図15の破線で示すように、内部に、内部流路202が形成されている。内部流路202は、図15に示すように、ヘッダ203のZ方向に延設されており、すべての段の挿入穴201に連通している。そのため、挿入穴201のそれぞれは、図15に示すように、内部流路202を介して互いに連通している。すなわち、室外熱交換器10が、p段の伝熱管52を有している場合、図15では、p段すべての伝熱管52が、内部流路202に連通する。
 「集合部」の構成は、図14~図18に示す構成に限定されない。図19は、実施の形態1に係る熱交換器に設けられる集合部の変形例Iの構成を示す斜視図である。図20は、実施の形態1に係る熱交換器に設けられる集合部の変形例IIの構成を示す斜視図である。図21は、実施の形態1に係る熱交換器に設けられる集合部の変形例IIIの構成を示す斜視図である。
 「集合部」は、例えば図19の変形例Iに示すように、分配器(ディストリビュータ)205と、複数の接続配管(キャピラリチューブ)206と、から構成されていてもよい。接続配管206には、接続配管206a、接続配管206b、接続配管206c、接続配管206dが含まれる。この場合、接続配管206a、接続配管206b、接続配管206c、接続配管206dのそれぞれには、室外熱交換器10の伝熱管52が接続される。各伝熱管52からの冷媒は、接続配管206a、接続配管206b、接続配管206c、接続配管206dを介して、分配器105に流入されて合流する。
 また、「集合部」は、例えば図20の変形例IIに示すように、複数の管207を組み合わせて形成された複数の流路208から構成されていてもよい。流路208には、流路208a、流路208b、流路208c、流路208dが含まれる。図20に示すように、集合部の一端には流出入口209が設けられ、集合部の他端に流路208a、流路208b、流路208c、流路208dが設けられている。管207は、流出入口209からスタートし、まず、2つの分岐部207aおよび207bに分岐される。そして、さらに、分岐部207aが、流路208aおよび流路208bに分岐され、分岐部207bが、流路208cおよび流路208dに分岐される。
 図20の場合、流路208a、流路208b、流路208c、流路208dのそれぞれには、室外熱交換器10の伝熱管52が接続される。各伝熱管52からの冷媒は、流路208a、流路208b、流路208c、流路208dを介して、最終的に、流出入口209で合流する。
 また、「集合部」は、例えば図21の変形例IIIに示すように、複数の連通穴212が形成された板材210を貼り合わせた積層型ヘッダから構成されていてもよい。板材210には、板材210a、板材210b、板材210c、板材210d、板材210e、板材210fが含まれる。図21に示すように、集合部の一端には流出入口213が設けられ、集合部の他端に、複数の流路211、すなわち、流路211a、流路211b、流路211c、流路211dが設けられている。連通穴212は、流出入口213からスタートし、まず、2つの分岐部212aおよび212bに分岐される。そして、さらに、分岐部212aが、流路211aおよび流路211bに分岐され、分岐部212bが、流路211cおよび流路211dに分岐される。
 図21の変形例IIIの場合、流路211a、流路211b、流路211c、流路211dのそれぞれには、室外熱交換器10の伝熱管52が接続される。各伝熱管52からの冷媒は、流路211a、流路211b、流路211c、流路211dを介して、最終的に、流出入口213で合流する。
 (室外熱交換器の曲げ加工)
 次に、上述した図4~図6を再び用いて、室外熱交換器10の曲げ加工について説明する。室外熱交換器10は、図4に示すように、空気流方向に、3列に配列された複数の伝熱管52を有している。このとき、室外熱交換器10は、伝熱管52の管軸方向において、一端側(以下、第1端部10aとする)と、他端側(以下、第2端部10bとする)と、を有している。
 3列に配列された伝熱管52は、それぞれ、第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13を構成している。
 図4および図5に示すように、第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13は、第3列熱交換器13の空気流方向下流側の一辺の1箇所であるE点を起点として、L字形状に曲げられている。すなわち、第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13の、第2端部10b側の一部分は、伝熱管52の管軸方向に対してY方向に(風下側に向かう方向に)曲げられている。
 ここで、L字形状に曲げられる前の構成について、図6を用いて説明する。図6において、第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13のそれぞれにおける、一端側端部(第1端部10a側)のフィン51をフィン51a(図47参照)と呼ぶ。また、他端側端部(第2端部10b側)のフィン51をフィン51b(図47参照)と呼ぶ。3列のフィン51aは、管軸方向に垂直な方向に整列されており、管軸方向の位置が揃っている。同様に、3列のフィン51bは、管軸方向に垂直な方向に整列されており、管軸方向の位置が揃っている。
 図6に示す室外熱交換器10を、点Eを起点にしてL字形状に曲げると、図5に示す状態になる。
 図5では、第1端部10a側の3つのフィン51aのうち、第2の列間接続部42に接続された2つのフィン51aは、管軸方向に垂直な方向に整列されており、管軸方向の位置が揃っている。これらの2つのフィン51aは、それぞれ、第2列熱交換器12および第3列熱交換器13のフィン51aである。一方、第2の列間接続部42に接続されていない他の1つのフィン51a、すなわち、第1列熱交換器11のフィン51aだけは、他の2つのフィン51aに対して、管軸方向の位置がずれている。
 また、図5では、第2端部10b側の3つのフィン51bのうち、第1の列間接続部41に接続された2つのフィン51bは、管軸方向に垂直な方向に整列されており、管軸方向の位置が揃っている。これらの2つのフィン51bは、それぞれ、第1列熱交換器11および第2列熱交換器12のフィン51bである。一方、第1の列間接続部41に接続されていない他の1つのフィン51b、すなわち、第3列熱交換器13のフィン51bだけは、他の2つのフィン51bに対して、管軸方向の位置がずれている。
 実施の形態1では、第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13をまとめて1つの列間接続部で接続していない。すなわち、第1列熱交換器11と第2列熱交換器12とを第1の列間接続部41で接続し、第2列熱交換器12と第3列熱交換器13とを第2の列間接続部42で接続している。その結果、室外熱交換器10を曲げる際に、室外熱交換器10の両端側において、列間接続部によって伝熱管52の動きが拘束される領域がない。そして、管軸方向において、列間接続部で接続された2列の位置が揃い、列間接続部に接続されていない他の1列の位置がずれることで、列管接続部に拘束されずに、容易に無理なく室外熱交換器10を曲げることができる。
 このように、実施の形態1では、隣り合う2列の伝熱管を、一端側もしくは他端側で、列間接続部を用いて接続することで、室外熱交換器10を曲げ加工を容易にしている。
 そのため、図4および図5に示すように、室外熱交換器10をL字形状に曲げ加工するときに、列間接続部によって伝熱管52の動きが拘束される領域がない。そのため、列間接続部が伝熱管52にロウ付けされた状態においても、無理なく、図4および図5に示すL字形状に室外熱交換器10を曲げることができる。そのため、実施の形態1では、炉の中で、伝熱管52とフィン51とのロウ付けと、伝熱管52と列間接続部とのロウ付けと、を同時に行う。その後、炉の外で、室外熱交換器10の曲げ加工を行う。こうすることで、ロウ付け作業を炉の中で一度に出来るため、製造工程が容易になり、製造性の向上を図ることができる。
 (冷媒流動方向)
 図4において、矢印Rは、室外熱交換器10を凝縮器とし、冷凍サイクル装置1を冷房運転させる場合の冷媒の流れを示している。一方、室外熱交換器10を蒸発器とし、冷凍サイクル装置1を暖房運転させる場合の冷媒の流れは、矢印Rの逆向きになる。以下では、冷凍サイクル装置1を冷房運転させる場合の冷媒の流れについて説明し、冷凍サイクル装置1を暖房運転させる場合の冷媒の流れについては説明を省略する。
 以下の説明においては、伝熱管52の管軸方向において、室外熱交換器10の一方の端部を第1端部10aと呼び、他方の端部を第2端部10bと呼ぶ。また、室外熱交換器10の各例において、第1端部10a側の端部を、第1端部と呼ぶ。同様に、室外熱交換器10の各例において、第2端部10b側の端部を、第2端部と呼ぶ。
 室外熱交換器10を凝縮器として用いる場合の動作は以下の通りである。まず、圧縮機2から吐出された冷媒は、四方弁7を通過し、第1集合部20に流入し、各伝熱管52に分配されて、第1列熱交換器11の第1端部から、第1列熱交換器11に流入する。その後、冷媒は、第1列熱交換器11の伝熱管52を流動する。そして、冷媒は、第1列熱交換器11の第2端部から、第1の列間接続部41を介して列間移動し、第2列熱交換器12の第2端部から、第2列熱交換器12に流入する。その後、冷媒は、第2列熱交換器12の伝熱管52を流動する。そして、冷媒は、第2列熱交換器12の第1端部から、第2の列間接続部42を介して列間移動し、第3列熱交換器13の第1端部から、第3列熱交換器13に流入する。その後、冷媒は、第3列熱交換器13の伝熱管52を流動し、第3列熱交換器13の第2端部から、第2集合部30に流入され、第2集合部30で合流する。第2集合部30で合流した冷媒は、絞り装置5で圧力降下されながら絞り装置5を通過し、室内熱交換器3に流入される。
 なお、上記の説明においては、第2の列間接続部42に接続された第2列熱交換器12の第1端と第3列熱交換器13の第1端部とは、管軸方向の位置が揃っていると説明した。そして、第1の列間接続部41に接続された第1列熱交換器11の第2端部と第2列熱交換器12の第2端部との管軸方向の位置が揃っていると説明した。しかしながら、これらの位置についても、図22に示すように、若干のずれが生じていてもよい。当該ずれの管軸方向の距離を、距離L3とする。このとき、距離L3は、距離L1および距離L2より小さい。
 図22は、実施の形態1に係る室外熱交換器の構成を示す平面図である。図22に示すように、第1列熱交換器11の第1端と第2列熱交換器12の第1端部との間の管軸方向の距離は、距離L1である。また、管軸方向の長さとして距離L1を有する伝熱管52の領域を、領域F1と呼ぶ。図22に示すように、第2列熱交換器12の第2端と第3列熱交換器13の第2端部との間の管軸方向の距離は、距離L2である。また、管軸方向の長さとして距離L2を有する伝熱管52の領域を、領域F2と呼ぶ。さらに、第2の列間接続部42に接続された第2列熱交換器12の第1端と第3列熱交換器13の第1端部との間の管軸方向の距離は、距離L3である。また、第1の列間接続部41に接続された第1列熱交換器11の第2端部と第2列熱交換器12の第2端部との管軸方向の距離は、距離L3である。距離L3は、L3<L1、および、L3<L2の関係を満たす。このとき、距離L1と距離L2との大小関係は限定されない。また、距離L1と距離L2とは、同じであっても、異なっていてもよい。さらに、ここでは、説明の簡略化のため、第1端部側の距離L3と第2端部側の距離L3とを、同一の符号「L3」を用いて説明しているが、第1端部側の距離L3と第2端部側の距離L3とは、同じであっても、異なっていてもよい。
 このように、第1の列間接続部41で固定されている第1端部同士、および、第2の列間接続部42で固定されている第2端部同士は、列間接続部で固定されているため、ずれ(すなわち、距離L3)は、小さい。これに対して、第1の列間接続部41で固定されていない第1端部、および、第2の列間接続部42で固定されていない第2端部は、他の端部とのずれ(すなわち、距離L1および距離L2)が大きい。距離L1および距離L2のずれが大きくなる理由は2つある。第1に、第1集合部20に接続されている第1端部および第2集合部30に接続されている第2端部は、第1の列間接続部41または第2の列間接続部42で固定されていないため、移動の自由度が大きいことである。第2に、室外熱交換器10を曲げるときには、E点と、第1の列間接続部41または第2の列間接続部42のいずれか一方と、を固定して曲げ加工を行うためである。そのため、第1集合部20に接続されている第1端部および第2集合部30に接続されている第2端部が曲げ加工中に固定されていないので、距離L1および距離L2が大きくなる。
 このように、実施の形態1では、距離L1、L2、L3が、L3<L1、および、L3<L2の関係を満たすように構成されている。その理由は、室外熱交換器10の製造時に、E点と、第1の列間接続部41または第2の列間接続部42のいずれか一方と、を固定することで、折り曲げが容易になるためである。伝熱管52の曲げ加工を行うことで、各伝熱管52の端部の位置がずれることになる。実施の形態1では、第1の列間接続部41および第2の列間接続部42は、それぞれ、2列の伝熱管52のみを接続している。そのため、距離L1および距離L2のずれが発生することで、第1の列間接続部41および第2の列間接続部42と伝熱管52との固定箇所に大きな曲げ応力が加わることはない。このように、距離L1および距離L2が大きくなるように室外熱交換器10を曲げることができるため、室外熱交換器10の第1端部10a側および第2端部10b側で、伝熱管52の動きを拘束する領域がない。また、第1の列間接続部41に接続された伝熱管52同士、および、第2の列間接続部42に接続された伝熱管52同士も、曲げ作業によって、僅かなずれ(距離L3のずれ)が発生する可能性がある。しかしながら、距離L3は、距離L1および距離L2に比べて非常に小さい。従って、距離L3のずれは、例えば第1の列間接続部41および第2の列間接続部42が僅かに管軸方向に対して傾くことなどで吸収される。そのため、距離L3のずれが発生することで、歪みが発生することもなく、第1の列間接続部41および第2の列間接続部42と伝熱管52との固定箇所に大きな曲げ応力が加わることはない。その結果、図5または図22に示すように、第1の列間接続部41および第2の列間接続部42を伝熱管52に接続した後にも、容易に室外熱交換器10を曲げることができる。
 (実施の形態1の効果)
 実施の形態1においては、m≧3、且つ、1≦n≦(m-2)において、n列目と(n+1)列目の熱交換器の列間接続部は、室外熱交換器10の一端側で接続されている。そして、(n+1)列目と(n+2)列目の熱交換器の列間接続部は、室外熱交換器10の他端側で接続されている。これにより、室外熱交換器10を曲げる際に、伝熱管52の動きが拘束される領域が無いため、列間接続部がロウ付けされて一体化された状態の室外熱交換器10においても、容易に無理なく曲げ加工を行うことができる。そのため、伝熱管52とフィン51とのロウ付け、および、第1の列間接続部41および第2の列間接続部42のロウ付けを、同時に炉の中で行うことができる。その結果、作業員の作業が簡素化され、室外熱交換器10の製造性の向上を図ることができる。
 なお、m=2の場合、すなわち、伝熱管52が2列に配列されている場合には、距離L3が小さい。そのため、熱交換器の両端部に列間接続部がロウ付けされて一体化された状態でも、かろうじて、室外熱交換器を曲げ加工することは可能である。しかしながら、m≧3の場合、すなわち、伝熱管52が3列以上に配列されている場合には、熱交換器の両端部に列間接続部がロウ付けされて一体化された状態では、曲げ加工することはできない。その理由は、第1の列間接続部41および第2の列間接続部42で、熱交換器の両端が固定され、拘束されているためである。そこで、実施の形態1では、第1の列間接続部41および第2の列間接続部42で、それぞれ、隣り合う2列の伝熱管52を接続している。また、実施の形態1では、距離L1、距離L2、および、距離L3の関係を、L3<L1、および、L3<L2としている。これらの構成により、実施の形態1では、伝熱管52が3列以上に配列された場合でも、室外熱交換器10の曲げ加工が可能である。
 なお、上記の実施の形態1においては、第1の列間接続部41および第2の列間接続部42の内部流路402が、Z方向に対し、1段ごとに分割されている例について説明した。しかしながら、第1の列間接続部41および第2の列間接続部42の内部流路402は必ずしも分割される必要はない。また、実施の形態1の後述する変形例1で示す第3列間接続部43についても同様に、必ずしも分割される必要はない。
 以下、実施の形態1の変形例について説明する。
 (実施の形態1の変形例1)
 図23は、実施の形態1の変形例1に係る室外熱交換器の構成を示す平面図である。図24は、図23に示す室外熱交換器のL字形状に曲げる前の状態を示す平面図である。図23および図24においては、Z方向の上方向Z1から下方向Z2に向かって室外熱交換器10を見た状態を示している。
 図23および図24に示す室外熱交換器10は、伝熱管52が偶数列に配列されている。具体的には、図23および図24においては、室外熱交換器10が、第1列熱交換器11、第2列熱交換器12、第3列熱交換器13、および、第4列熱交換器14の合計4列から構成されている。
 そのため、変形例1では、列間接続部の個数が、3個になっている。すなわち、列間接続部は、第1の列間接続部41、第2の列間接続部42、および、第3列間接続部43を含んでいる。
 変形例1では、第3列熱交換器13と第4列熱交換器14とが、第3列間接続部43によって接続されている。このように、変形例1においても、実施の形態1と同様に、隣接する2列が列間接続部を介して接続されている。
 また、第2集合部30は、第4列熱交換器14の一端部に接続されている。当該一端部は、第3列間接続部43に対して反対側の端部である。そのため、変形例1では、図23に示すように、第1集合部20および第2集合部30が、共に、室外熱交換器10の第1端部10a側に配置されている。
 他の構成については、実施の形態1と同じであるため、ここでは、その説明を省略する。
 (実施の形態1の変形例1の効果)
 室外熱交換器10が偶数列で構成されている場合、第1集合部20および第2集合部30を、室外熱交換器10の同一の端部側に配置することができる。第1集合部20および第2集合部30は、冷媒回路の冷媒配管8(図1参照)に接続されるものである。そのため、冷媒配管8と接続される配管の構成を単純化することができる。
 (実施の形態1の変形例2)
 図25および図26は、実施の形態1の変形例2に係る室外熱交換器の構成を示す平面図である。図25および図26においては、Z方向の上方向Z1から下方向Z2に向かって室外熱交換器10を見た状態を示している。
 図25および図26に示す室外熱交換器10は、2回以上曲げられている。図25では、室外熱交換器10が2回曲げられて、U字形状(または角張ったU字形状)に曲げ加工されている。従って、図25では、各例の熱交換器の曲げ回数bは2回で、曲げ部60の個数は2個である。図26では、室外熱交換器10が3回曲げられて、一部分が連続していないロの字形状(矩形の枠形状)に曲げ加工されている。従って、図26では、各例の熱交換器の曲げ回数bは3回で、曲げ部60の個数は3個である。
 他の構成については、実施の形態1と同じであるため、ここでは、その説明を省略する。
 (実施の形態1の変形例2の効果)
 変形例2によれば、室外熱交換器10を2回以上曲げる際においても、列間接続部に拘束される領域が無いため、列間接続部がロウ付けされて一体化された状態でも、室外熱交換器10を容易に無理なく曲げることができる。
 (実施の形態1の変形例3)
 図27は、実施の形態1の変形例3に係る室外熱交換器の構成を示す平面図である。図28は、図27に示す室外熱交換器のL字形状に曲げる前の状態を示す平面図である。図27および図28においては、Z方向の上方向Z1から下方向Z2に向かって室外熱交換器10を見た状態を示している。
 図27および図28に示す室外熱交換器10においては、管軸方向に積層されたフィン51の管軸方向の全長を、積幅ELと呼ぶ。そして、第1列熱交換器11の積幅を積幅ELとし、第2列熱交換器12の積幅を積幅ELとし、第3列熱交換器13の積幅を積幅ELとする。このとき、EL≧EL≧ELの関係が成り立つ。
 すなわち、変形例3では、図27に示すように、室外熱交換器10をL字形状に曲げたときに、最も外側になる第1列熱交換器11の積幅ELを最も長くし、最も内側になる第3列熱交換器13の積幅ELを最も短くしている。
 これにより、図27の距離L1および距離L2で示すように、風下側の第2列熱交換器12および第3列熱交換器13のフィン51が、風上側の第1列熱交換器のフィン51から、ずれる領域F1およびF2を減らすことができる。風下側の領域F1および領域F2の部分は、熱交換器として有効に使えない部分である。そのため、ずれる領域F1およびF2の大きさを低減することで、室外熱交換器10の熱交換効率を維持しながら、室外熱交換器10の小型化を図ることができる。
 ここで、距離L1は、上述したように、第1列熱交換器11の第1端部と、第2の列間接続部42に接続された第2列熱交換器12および第3列熱交換器13の第1端部と、の間の管軸方向の距離である。また、距離L2は、第3列熱交換器13の第2端部と、第1の列間接続部41に接続された第1列熱交換器11および第2列熱交換器12の第2端部と、の間の管軸方向の距離である。
 なお、積幅EL、積幅EL、積幅ELを全て異なる長さにする必要はなく、このうちの任意の1つだけを異なる長さにしてもよい。具体的には、EL=EL>EL、または、EL>EL=ELの関係を満たすように、フィン51の積幅を設定してもよい。
 このように、変形例3では、任意のn列目および(n+1)列目の熱交換器について、X方向に配置されるフィン51の積幅を、それぞれ、積幅ELおよび積幅ELn+1とする。また、各列において、X方向の少なくとも1箇所において、Y方向のn列目から(n+1)列目に向かう方向に曲げる。このとき、EL≧ELn+1の関係を満たすように、n列目および(n+1)列目の熱交換器の積幅ELおよび積幅ELn+1を設定している。
 (実施の形態1の変形例3の効果)
 変形例3では、任意のn列目および(n+1)列目の熱交換器について、伝熱管52の長手方向に配置されるフィン51の積幅を、それぞれ、積幅ELおよび積幅ELn+1とする。このときに、EL≧ELn+1の関係を満たすように、フィン51の積幅を設定している。変形例3の場合は、熱交換器として有効に使えない風下側のフィン51のはみ出す領域F1およびF2を減らすことができ、室外熱交換器10の重量およびサイズの削減が可能になると共に、材料コストの削減が可能となる。
 一方、上記の実施の形態1では、任意のn列目および(n+1)列目の熱交換器について、伝熱管52の長手方向に配置されるフィン51の積幅を、それぞれ、積幅ELおよび積幅ELn+1としたときに、EL=ELn+1の関係を満たしている。すなわち、任意のn列目および(n+1)列目の熱交換器において、フィン51の積幅が等しい。実施の形態1の場合、サイズの同じ熱交換器のみを製造すればよいため、製造性が向上する。このように、実施の形態1と変形例3とでは、効果が異なるため、使用目的などに基づいて、いずれの効果が需要かを加味して、実施の形態1の構成を採用するか、変形例3の構成を採用するかを、適宜決定すればよい。
 (実施の形態1の変形例4-1)
 図29は、実施の形態1の変形例4-1に係る室外熱交換器の構成を示す平面図である。図30は、図29に示す室外熱交換器のL字形状に曲げる前の状態を示す平面図である。図29および図30においては、Z方向の上方向Z1から下方向Z2に向かって室外熱交換器10を見た状態を示している。
 変形例4-1では、図29に示すように、熱交換器として有効に使えない風下側のフィン51の領域F1およびF2(図27参照)を無くしている。
 図29において、第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13のそれぞれにおける、一端側端部(第1端部10a側)のフィン51をフィン51aと呼び、他端側端部(第2端部10b側)のフィン51をフィン51bと呼ぶ。このとき、図29に示すように、第1端部10a側において、3つのフィン51aは、管軸方向に垂直な方向に整列されており、管軸方向の位置が揃っている。同様に、第2端部10b側において、3つのフィン51bは、管軸方向に垂直な方向に整列されており、管軸方向の位置が揃っている。
 変形例4-1では、任意のn列目および(n+1)列目の熱交換器について、伝熱管52の長手方向に積層されたフィン51の積幅ELを、それぞれ、積幅ELおよびELn+1とする。このとき、下記の(1)式を満たすように、積幅ELおよびELn+1を設定している。なお、(1)式を満たすように設定する理由については、後述する。
Figure JPOXMLDOC01-appb-M000004
 ここで、列幅LPおよびLPn+1は、それぞれ、任意のn列目および(n+1)列目の熱交換器の列幅LPである。
 ここで、列幅LPの定義について、図47~図53を用いて説明する。室外熱交換器10には、種々の形態の熱交換器を用いることができる。図47および図48は、実施の形態1に係る室外熱交換器が、円管とフィンとから構成されている場合を示す図である。図49は、実施の形態1に係る室外熱交換器が、扁平管とフィンとから構成されている場合を示す図である。図50は、実施の形態1に係る室外熱交換器が、扁平管とフィンとから構成され、扁平管の一部分がフィンから突出している場合を示す図である。図51は、実施の形態1に係る室外熱交換器が、扁平管とフィンとから構成され、フィンと扁平管の端面が一致している場合を示す図である。図52は、実施の形態1に係る室外熱交換器が、扁平管とフィンとから構成され、扁平管の端面がフィンの端面より切欠き部の内部に入り込んでいる場合を示す図である。図53は、実施の形態1に係る室外熱交換器が、扁平管とコルゲートフィンとから構成されている場合を示す図である。なお、図51の場合、伝熱管52の延設方向は、図51に示すようにZ方向であるが、その場合に限定されず、水平方向にしてもよい。また、図51の場合も、室外熱交換器10を曲げる場合、図4、図5、図25、図26等に示すように、伝熱管52の管軸方向に対して、L字形状、U字形状、または、ロの字形状に曲げることとする。
 図47~図49の場合は、伝熱管52がフィン51を貫通している。これらの場合においては、熱交換器の列幅LPは、フィン51のY方向の長さである。
 図50の場合は、伝熱管52の一部分(以下、突出部520と呼ぶ)が、フィン51からY方向に突出している。フィン51には、Z方向に互いに間隔を空けて配置された複数の切欠き部510が設けられている。切欠き部510は、フィン51のY方向の一方の端面511からY方向に凹むように形成されている。伝熱管52は、フィン51に設けられた切欠き部510に対してY方向に挿入されて取り付けられている。また、伝熱管52の突出部520は、フィン51の端面511から、Y方向に突出している。なお、突出部520は、伝熱管52のY方向の一方の端部521を含む。この場合においては、熱交換器の列幅LPは、フィン51のY方向の長さと、伝熱管52の突出部520のY方向の長さと、を加算した長さである。
 図51の場合は、伝熱管52がフィン51の切欠き部510に挿入され、且つ、伝熱管52のY方向の一方の端面521の位置が、フィン51のY方向の一方の端面511に一致している。すなわち、伝熱管52の端面521がフィン51の端面511から突出しておらず、且つ、伝熱管52の端面521のY方向の位置とフィン51の端面511のY方向の位置とが揃っている。この場合においては、熱交換器の列幅LPは、フィン51のY方向の長さである。
 図52の場合は、伝熱管52がフィン51の切欠き部510に挿入され、且つ、伝熱管52のY方向の一方の端面521の位置が、フィン51のY方向の一方の端面511より、切欠き部510の内部に入り込んでいる。すなわち、伝熱管52の端面521がフィン51の端面511から突出しておらず、且つ、伝熱管52の端面521のY方向の位置が、フィン51の端面511のY方向の位置よりも、フィン51の切欠き部510の内側に向かって凹んでいる。この場合においては、熱交換器の列幅LPは、フィン51のY方向の長さである。
 図51の場合は、隣接する2つの伝熱管52の間に、コルゲートフィンから構成されたフィン51が設けられている。この場合、熱交換器の列幅LPは、伝熱管52のY方向の長さである。あるいは、コルゲートフィンから構成されたフィン51のY方向の長さが、伝熱管52のY方向の長さよりも長い場合には、熱交換器の列幅LPは、フィン51のY方向の長さになる。
 このように、室外熱交換器10の各列は、伝熱管52とフィン51とから構成され、熱交換器の列幅LPは、伝熱管52とフィン51とから構成される各列のY方向の長さである。
 変形例4-1では、任意のn列目および(n+1)列目のフィン51の積幅ELを、上記の(1)式を満たすように設定している。そのため、図29に示すように、室外熱交換器10の第1端部10a側および第2端部10b側の両方において、3つのフィン51aの位置、および、3つのフィン51bの位置が、共に、揃っていて、ずれていない。
 (1)式を満たすように設定する理由について、図31~図32に示す比較例を用いて説明する。図31および図32は、比較例を示している。図31は、比較例に係る室外熱交換器の構成を示す平面図である。図32は、図31に示す比較例に係る室外熱交換器のL字形状に曲げる前の状態を示す平面図である。図31および図32においては、Z方向の上方向Z1から下方向Z2に向かって比較例を見た状態を示している。
 比較例に係る室外熱交換器1000においては、図32に示すように、第n列熱交換器1011と、第(n+1)列熱交換器1012と、が、並んで配置され、一端側で列間接続部1041で接続されている。また、第n列熱交換器1011の他端側には、集合部1020が接続されている。第n列熱交換器1011のフィン51の積幅ELを積幅ELnとし、第(n+1)列熱交換器1012のフィン51の積幅ELを積幅ELn+1とする。
 このとき、図31に示すように、室外熱交換器1000をL字形状に曲げたとする。すると、室外熱交換器1000の一端である第2端部1000b側では、第n列熱交換器1011と第(n+1)列熱交換器1012との端部の位置が揃っている。一方、室外熱交換器1000の他端である第1端部1000a側では、第n列熱交換器1011と第(n+1)列熱交換器1012との端部の位置が揃っておらず、ずれている。このずれている長さを長さLとする。
 長さLは、L字形状に曲げたことによって形成される曲線部分からなる曲げ部60の円弧の長さの差として求められる。すなわち、第n列熱交換器1011の曲げ部60の曲率半径を半径Rとし、第(n+1)列熱交換器1011の曲げ部60の曲率半径を半径Rn+1とする。そして、曲げ部60の弧の長さを、円周の1/4として考えると、第n列熱交換器1011の曲げ部60の円弧の長さは、2πR/4=πR/2となる。同様に、第(n+1)列熱交換器1011の曲げ部60の円弧の長さは、2πRn+1/4=πRn+1/2となる。従って、長さLは、下記の(2)式によって与えられる。
Figure JPOXMLDOC01-appb-M000005
 ここで、第n列熱交換器1011と、第(n+1)列熱交換器1012と、の隙間を、列間隙間αとする。言い換えると、列間隙間αは、列幅LPと列幅LPn+1との間の距離である。列間隙間αは微小であるため、無視する。すると、半径Rと半径Rn+1との長さの差(以下、差分Lとする)は、図31に示すように、第n列熱交換器1011の列幅LPと、第(n+1)列熱交換器1012の列幅LPn+1と、を加算した値の1/2となる。従って、差分Lは、下記の(3)式で与えられる。
Figure JPOXMLDOC01-appb-M000006
 上記(3)式を、上記(2)式に代入すると、下記の(4)式が得られる。
Figure JPOXMLDOC01-appb-M000007
 そのため、第n列熱交換器1011の積幅ELを、第(n+1)列熱交換器1012の積幅ELn+1よりも、長さLxだけ長くする。これにより、室外熱交換器1000の第1端部1000a側において、第n列熱交換器1011と第(n+1)列熱交換器1012との端部の位置が揃うようになる。
 そのため、変形例4-1では、上記(1)式を満たすように、第n列熱交換器1011の積幅EL、および、第(n+1)列熱交換器1012の積幅ELn+1を設定している。
 なお、図31に示す長さLxは、値が0の場合が最も望ましいが、完全に0でなくてもよい。そのため、変形例4-1では、上記(1)式ではなく、下記の(5)式を満たしていればよいこととする。
Figure JPOXMLDOC01-appb-M000008
 (変形例4-1の効果)
 変形例4-1では、任意のn列目および(n+1)列目の熱交換器について、伝熱管52の長手方向に配置されるフィン51の積幅ELを、それぞれ、積幅ELおよび積幅ELn+1とする。このとき、上記(5)式の関係を満たすように、積幅ELおよび積幅ELn+1を設定している。変形例4-1の場合は、熱交換器として有効に使えない風下側のフィン51のはみ出す領域を減らすことができ、室外熱交換器10の重量およびサイズの削減が可能になると共に、材料コストの削減が可能となる。
 (実施の形態1の変形例4-2)
 変形例4-1で示した上記(5)式は、室外熱交換器10を、1回だけ曲げて、L字形状にした場合を示している。n列目および(n+1)列目の熱交換器において、図31に示した長さLxは、曲げ回数によって変化する。すなわち、室外熱交換器10を曲げた分だけ、余計に、長さLxが長くなっていく。そのため、2回以上、室外熱交換器10を曲げる場合には、曲げ回数bを考慮して、n列目および(n+1)列目の熱交換器の積幅ELおよび積幅ELn+1を設定する必要がある。
 変形例4-2では、曲げ回数bを考慮して、任意のn列目および(n+1)列目の熱交換器について、伝熱管52の長手方向に配置されるフィン51の積幅ELを、それぞれ、積幅ELおよび積幅ELn+1とする。このとき、下記の(6)式の関係を満たすように、積幅ELおよび積幅ELn+1を設定する。
Figure JPOXMLDOC01-appb-M000009
 (変形例4-2の効果)
 変形例4-2では、曲げ回数bを考慮している。そのため、室外熱交換器10を2回曲げてU字形状にした場合、あるいは、室外熱交換器10を2回曲げてロの字形状にした場合においても、変形例4-1と同様の効果を得ることができる。
 (実施の形態1の変形例4-3)
 変形例4-1で示した上記(5)式は、列間隙間αを無視した場合を示している。
 変形例4-3では、列間隙間αを考慮する。任意のn列目および(n+1)列目の熱交換器について、伝熱管52の長手方向に配置されるフィン51の積幅ELを、それぞれ、積幅ELおよび積幅ELn+1としたときに、下記の(7)式の関係を満たすように、積幅ELおよび積幅ELn+1を設定する。
Figure JPOXMLDOC01-appb-M000010
 さらに、変形例4-3で、曲げ回数bを考慮した場合には、下記の(8)式の関係を満たすように、積幅ELおよび積幅ELn+1を設定する。
Figure JPOXMLDOC01-appb-M000011
 (変形例4-3の効果)
 変形例4-3では、列間隙間αを考慮している。変形例4-3においても、変形例4-1および変形例4-2と同様の効果を得ることができる。
 (実施の形態1の変形例5)
 図33は、実施の形態1の変形例5に係る室外熱交換器の構成を示す平面図である。図34は、図33に示す室外熱交換器のL字形状に曲げる前の状態を示す平面図である。図33および図34においては、Z方向の上方向Z1から下方向Z2に向かって室外熱交換器10を見た状態を示している。
 図33に示すように、変形例5では、伝熱管52がm列に配列された室外熱交換器10において、m列のうち、少なくとも1列が曲げられておらず、残りの他の列が曲げられている。図33の例では、3列のうち、第3列熱交換器13が曲げられておらず、第1列熱交換器11および第2列熱交換器12がL字形状に曲げられている。
 図35は、実施の形態1の変形例5に係る室外熱交換器の構成の他の例を示す平面図である。図35においては、Z方向の上方向Z1から下方向Z2に向かって室外熱交換器10を見た状態を示している。
 図35に示す例では、伝熱管52がm列に配列された室外熱交換器10において、m列のうち、少なくとも1列の曲げ回数bが、他の列の曲げ回数bより少ない。図35の例では、3列のうち、第2列熱交換器12の曲げ回数bが2回で、第1列熱交換器11および第3列熱交換器13の曲げ回数bが1回になっている。
 図36は、実施の形態1の変形例5に係る室外熱交換器の構成のさらなる他の例を示す平面図である。図36においては、Z方向の上方向Z1から下方向Z2に向かって室外熱交換器10を見た状態を示している。
 図36に示す例では、図35と同様に、伝熱管52がm列に配列された室外熱交換器10において、m列のうち、少なくとも1列の曲げ回数bが、他の列の曲げ回数bより少ない。図36の例では、3列のうち、第2列熱交換器12および第3列熱交換器13の曲げ回数bが3回で、第1列熱交換器11の曲げ回数bが2回になっている。
 変形例5では、このように、少なくとも1列の曲げ回数を減らしている。これにより、変形例5では、全ての列を曲げる構成に対して、曲げ応力を減らすことができる。
 なお、曲げない列、あるいは、曲げ回数bを少なくする列は、任意の列でよいが、空気流方向(Y方向)において、最も風上の列か、あるいは、最も風下の列であることが望ましい。
 なお、上記の図33では、曲げない列を1列としているが、曲げない列を2列としてもよい。また、室外熱交換器10のm列が4列以上の場合、任意の曲げ箇所に対し、複数の列の熱交換器を曲げないようにしてもよい。例えば、4列の場合、1列目および2列目は曲げるが、3列目および4列目は曲げない、といった構成としてもよい。
 (変形例5の効果)
 室外熱交換器10全体において、曲げ回数bの最大値が2以上の場合においても、曲げない列、あるいは、曲げ回数bを少なくする列を設けることは、曲げ応力を減らすことに関し、有効である。すなわち、図33に示すような1か所の曲げ(すなわち、L字形状)の場合だけでなく、図35に示すような2か所の曲げ(U字形状)の場合、あるいは、図36に示す3か所(ロの字形状)の場合に対しても、変形例5は有効である。
 また、2か所(U字形状)あるいは3か所(ロの字形状)で室外熱交換器10を曲げる場合、各列において、複数の曲げない部分があっても良い。すなわち、各列において、他の列が曲がっている箇所で、少なくとも1列が曲げられていなくてもよい。
 実施の形態2.
 図37は、実施の形態2に係る室外熱交換器の構成を示す斜視図である。図38は、実施の形態2に係る室外熱交換器の構成を示す平面図である。図38においては、Z方向の上方向Z1から下方向Z2に向かって室外熱交換器10を見た状態を示している。また、図38では、説明のため、主熱交換器部分と副熱交換器部分とを分けて図示している。図39は、実施の形態2に係る室外熱交換器の1列目の構成を模式的に示す図である。図40は、実施の形態2に係る室外熱交換器のm列目の構成を模式的に示す図である。
 図37~図40に示すように、実施の形態2に係る室外熱交換器10は、主熱交換器10Aと、副熱交換器10Bと、を備えている。副熱交換器10Bは、主熱交換器10Aに対して、Z方向の下方向Z2に配置されている。副熱交換器10Bの段数p2は、主熱交換器10Aの段数p1より少ない。但し、主熱交換器10Aの各列の段数は同じで、全て、段数p1である。また、副熱交換器10Bの各列の段数は同じで、全て、段数p2である。
 主熱交換器10Aは、m列に配列された伝熱管52を有している。副熱交換器10Bも、同様に、m列に配列された伝熱管52を有している。すなわち、図38に示すように、主熱交換器10Aの列数と、副熱交換器10Bの列数と、は同数である。
 実施の形態2では、主熱交換器10Aが、第1列主熱交換器11aと、第2列主熱交換器12aと、第3列主熱交換器13aと、を有している。第1列主熱交換器11a、第2列主熱交換器12a、および、第3列主熱交換器13aは、伝熱管52とフィン51とから構成され、それぞれ、実施の形態1の第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13の構成と同じである。段数p1は、実施の形態1の段数pと同じであっても、異なっていてもよい。
 また、実施の形態2では、副熱交換器10Bが、第1列副熱交換器11bと、第2列副熱交換器12bと、第3列副熱交換器13bと、を有している。第1列副熱交換器11b、第2列副熱交換器12b、および、第3列副熱交換器13bは、伝熱管52とフィン51とから構成されている。これらの副熱交換器は、それぞれ、実施の形態1の第1列熱交換器11、第2列熱交換器12、および、第3列熱交換器13の構成と基本的に同じであるが、段数p2は、実施の形態1の段数pより少ない。
 このように、実施の形態2では、mが3の場合を例に挙げているが、mの個数は任意の数でよい。
 主熱交換器10Aの構成は、基本的に、図4に示した実施の形態1と同じである。実施の形態1と異なる点は、下記の4点である。
 (1)図39に示すように、第1集合部20の下端部に、第1副集合部20Aが設けられている。第1副集合部20Aは、第1集合部20に対して、Z方向の下方向Z2に配置されている。第1集合部20の内部流路202は、図39に示すように、第1副集合部20Aの内部流路202Aと連通していない。第1集合部20の内部流路202と、第1副集合部20Aの内部流路202Aと、は、第1仕切板21によって区分されている。
 (2)図40に示すように、第2集合部30の下端部に、第2副集合部30Aが設けられている。第2副集合部30Aは、第2集合部30に対して、Z方向の下方向Z2に配置されている。第2集合部30の内部流路302は、図40に示すように、第2副集合部30Aの内部流路302Aと連通している。第2集合部30の内部流路302と、第2副集合部30Aの内部流路302Aと、は、少なくとも1つの流路を介して連通している。
 (3)図38に示すように、第1の列間接続部41は、主熱交換器10Aおよび副熱交換器10Bの両方に接続されている。
 (4)図38に示すように、第2の列間接続部42は、主熱交換器10Aおよび副熱交換器10Bの両方に接続されている。
 実施の形態2では、図37および図38に示すように、主熱交換器10Aが、3列に配列された複数の伝熱管52を有し、2個の列間接続部を有している。第1列主熱交換器11aは、室外熱交換器10の第1端部10a側で、第1集合部20と接続されている。また、第1列主熱交換器11aと第2列主熱交換器12aとは、室外熱交換器10の第2端部10b側で、第1の列間接続部41を介して接続されている。また、第2列主熱交換器12aと第3列主熱交換器13aとは、室外熱交換器10の第1端部10a側で、第2の列間接続部42を介して接続されている。第3列主熱交換器13aは、室外熱交換器10の第2端部10b側で、第2集合部30と接続されている。
 また、実施の形態2では、図37および図38に示すように、副熱交換器10Bが、3列に配列された複数の伝熱管52を有している。第1列副熱交換器11bは、室外熱交換器10の第1端部10a側で、第1副集合部20Aと接続されている。また、第1列副熱交換器11bと第2列副熱交換器12bとは、室外熱交換器10の第2端部10b側で、第1の列間接続部41を介して接続されている。また、第2列副熱交換器12bと第3列副熱交換器13bとは、室外熱交換器10の第1端部10a側で、第2の列間接続部42を介して接続されている。第3列副熱交換器13bは、室外熱交換器10の第2端部10b側で、第2副集合部30Aと接続されている。
 このように、実施の形態2では、主熱交換器10Aが、m列(m≧3)に配列された複数の伝熱管52を有し、k個(k≧2)の列間接続部を有しているとする。そのとき、1≦n≦(m-2)および1≦k≦(m-3)において、n列目の伝熱管52と(n+1)列目の伝熱管52とは、室外熱交換器10の一端側で、第k列間接続部を介して接続されている。また、(n+1)列目の伝熱管52と(n+2)列目の伝熱管52とは、室外熱交換器10の他端側で、第(k+1)列間接続部を介して接続されている。
 また、実施の形態2では、副熱交換器10Bが、m列(m≧3)に配列された複数の伝熱管52を有しているとする。そのとき、1≦n≦(m-2)において、n列目の伝熱管52と(n+1)列目の伝熱管52とは、室外熱交換器10の一端側で、第k列間接続部を介して接続されている。また、(n+1)列目の伝熱管52と(n+2)列目の伝熱管52とは、室外熱交換器10の他端側で、第(k+1)列間接続部を介して接続されている。
 他の構成は、実施の形態1と同じであるため、ここでは、その説明は省略する。
 (冷媒流動方向)
 図37および図38において、矢印Rは、室外熱交換器10を凝縮器とし、冷凍サイクル装置1を冷房運転させる場合の冷媒の流れを示している。一方、室外熱交換器10を蒸発器とし、冷凍サイクル装置1を暖房運転させる場合の冷媒の流れは、矢印Rの逆向きになる。以下では、冷凍サイクル装置1を冷房運転させる場合の冷媒の流れについて説明し、冷凍サイクル装置1を暖房運転させる場合の冷媒の流れについては説明を省略する。
 以下の説明においては、伝熱管52の延設方向において、室外熱交換器10の一方の端部を第1端部10aと呼び、他方の端部を第2端部10bと呼ぶ。また、室外熱交換器10の各例において、第1端部10a側の端部を、第1端部と呼ぶ。同様に、室外熱交換器10の各例において、第2端部10b側の端部を、第2端部と呼ぶ。
 室外熱交換器10を凝縮器として用いる場合の動作は以下の通りである。まず、圧縮機2から吐出された冷媒は、四方弁7を通過し、第1集合部20に流入する。第1集合部20に流入された冷媒は、図38の矢印で示すように、主熱交換器10Aの第1列主熱交換器11aの第1端部から、第1列主熱交換器11aの各伝熱管52に分配されて流入する。その後、冷媒は、第1列主熱交換器11aの伝熱管52を流動する。そして、冷媒は、第1列主熱交換器11aの第2端部から、第1の列間接続部41を介して列間移動し、主熱交換器10Aの第2列主熱交換器12aの第2端部から、第2列主熱交換器12aに流入する。その後、冷媒は、第2列主熱交換器12aの伝熱管52を流動する。そして、冷媒は、第2列主熱交換器12aの第1端部から、第2の列間接続部42を介して列間移動し、主熱交換器10Aの第3列主熱交換器13aの第1端部から、第3列主熱交換器13aに流入する。その後、冷媒は、第3列主熱交換器13aの伝熱管52を流動し、第3列主熱交換器13aの第2端部から、第2集合部30に流入され、第2集合部30で合流する。第2集合部30で合流した冷媒は、図40に示すように、第2集合部30から第2副集合部30Aに流入する。
 第2副集合部30Aに流入した冷媒は、図38の矢印で示すように、副熱交換器10Bの第3列副熱交換器13bの第2端部から、第3列副熱交換器13bの各伝熱管52に分配されて流入する。その後、冷媒は、第3列副熱交換器13bの伝熱管52を流動する。そして、冷媒は、第3列副熱交換器13bの第1端部から、第2の列間接続部42を介して列間移動し、副熱交換器10Bの第2列副熱交換器12bの第1端部から、第2列副熱交換器12bに流入する。その後、冷媒は、第2列副熱交換器12bの伝熱管52を流動する。そして、冷媒は、第2列副熱交換器12bの第2端部から、第1の列間接続部41を介して列間移動し、副熱交換器10Bの第1列副熱交換器11bの第2端部から、第1列副熱交換器11bに流入する。その後、冷媒は、第1列副熱交換器11bの伝熱管52を流動し、第1列副熱交換器11bの第1端部から、第1副集合部20Aに流入され、第1副集合部20Aで合流する。第1副集合部20Aで合流した冷媒は、絞り装置5で圧力降下されながら絞り装置5を通過し、室内熱交換器3に流入される。
 実施の形態2においても、実施の形態1と同様に、1≦n≦(m-2)において、n列目と(n+1)列目の主熱交換器の列間接続部は、熱交換器の一端側で接続されている。そして、(n+1)列目と(n+2)列目の主熱交換器の列間接続部は、熱交換器の他端側で接続されている。
 また、m列目の主熱交換器13aと副熱交換器13bとは、図40に示すように、第2集合部30および第2副集合部30Aを介して、少なくとも1つのパスにより接続されている。
 1≦n≦(m-2)において、n列目と(n+1)列目の副熱交換器の列間接続部は、熱交換器の一端側で接続され、(n+1)列目と(n+2)列目の副熱交換器の列間接続部は、熱交換器の他端側で接続されている。
 冷媒回路の冷媒配管8との流出口を持つ集合部(ここでは第1集合部20および第1副集合部20A)は、冷媒が混合しないように、第1集合部20の内部流路202と、第1副集合部20Aの内部流路202Aと、の間に、第1仕切板21が設けられている。
 なお、上記の説明においては、m列目の主熱交換器13aと副熱交換器13bとが、図40に示すように、第2集合部30および第2副集合部30Aを介して、少なくとも1つのパスにより接続されている場合について説明した。図41は、図40の変形例を示す図である。
 図41においては、m列目の主熱交換器13aと副熱交換器13bとが、複数のパスにより接続されている。図41では、m列目の主熱交換器13aと副熱交換器13bとが、複数の段間接続配管301を介して接続されている。段間接続配管301には、段間接続配管301a、段間接続配管301b、および、段間接続配管301cが含まれる。
 また、図41においては、第2集合部30が、複数のブロックに分割されている。各ブロックには、1以上の伝熱管52が接続されている。ブロックの個数は、伝熱管52の段数pと同じであっても、異なっていてもよい。また、第2副集合部30Aも、複数のブロックに分割されている。第2副集合部30Aのブロックの個数は、第2集合部30のブロックの個数と同じである。
 図41に示すように、第2集合部30のそれぞれのブロックは、段間接続配管301a、段間接続配管301b、段間接続配管301cを介して、第2副集合部30Aのそれぞれのブロックに接続される。
 (実施の形態2の効果)
 実施の形態2においても、実施の形態1と同様に、1≦n≦(m-2)において、n列目と(n+1)列目の主熱交換器の列間接続部は、熱交換器の一端側で接続されている。そして、(n+1)列目と(n+2)列目の主熱交換器の列間接続部は、熱交換器の他端側で接続されている。
 また、1≦n≦(m-2)において、n列目と(n+1)列目の副熱交換器の列間接続部は、熱交換器の一端側で接続され、(n+1)列目と(n+2)列目の副熱交換器の列間接続部は、熱交換器の他端側で接続されている。
 これにより、実施の形態2においても、実施の形態1と同様に、室外熱交換器10を曲げる際に、拘束される領域が無いため、列間接続がロウ付けされて一体化された状態においても、室外熱交換器10においても、容易に無理なく曲げ加工を行うことができる。そのため、伝熱管52とフィン51とのロウ付け、および、第1の列間接続部41および第2の列間接続部42のロウ付けを、同時に炉の中で行うことができる。その結果、作業員の作業が簡素化され、室外熱交換器10の製造性の向上を図ることができる。
 また、実施の形態2においては、室外熱交換器10が奇数列で構成されている場合(mが奇数)、1列目の第1列主熱交換器11aの一端側と、1列目の第1列副熱交換器11bの一端側と、に、それぞれ、室外熱交換器10の出入口部が構成される。そのため、そのまま冷媒回路の冷媒配管8に接続することができ、他端部側から配管等で接続する必要がなく、構造が簡素化できる。
 実施の形態3.
 実施の形態3では、図42~図46を用いて、実施の形態1で示した室外熱交換器10の製造方法について説明する。図42は、実施の形態3に係る室外熱交換器の製造方法の作業工程の流れを示すフローチャートである。図43~図46は、実施の形態3に係る室外熱交換器の製造方法の各処理の様子を示す斜視図である。
 以下では、実施の形態1で示した室外熱交換器10の場合の製造方法を例に挙げて説明する。なお、実施の形態1の変形例1~5、および、実施の形態2で示した室外熱交換器10のそれぞれの製造方法については、実施の形態1の室外熱交換器10の場合と同様に行えばよいため、ここでは、それらの説明を省略する。
 図42に示すステップS1では、まず、図43に示すように、複数のフィン51をX方向に互いに間隔を空けて積層させて配置する。次に、図43に示すように、複数の伝熱管52を、フィン51に形成された貫通穴に挿入していく。これにより、複数の伝熱管52は、複数のフィン51を貫通し、Z方向に互いに間隔を空けて配置される。このようにして、ステップS1では、伝熱管52とフィン51とが組み立てられる。
 図42に示すステップS2では、図44に示すように、伝熱管52に対して、第1集合部20、第2集合部30、第1の列間接続部41、および、第2の列間接続部42を、取り付ける。具体的には、第1列熱交換器11に対して、室外熱交換器10の第1端部10a側で、第1集合部20を接続する。また、第1列主熱交換器11aと第2列主熱交換器12aとを、室外熱交換器10の第2端部10b側で、第1の列間接続部41を介して接続する。また、第2列主熱交換器12aと第3列主熱交換器13aとを、室外熱交換器10の第1端部10a側で、第2の列間接続部42を介して接続する。第3列主熱交換器13aに対して、室外熱交換器10の第2端部10b側で、第2集合部30を接続する。このようにして、ステップS2では、伝熱管52と、第1集合部20、第2集合部30、第1の列間接続部41および第2の列間接続部42と、が組み立てられる。
 図42に示すステップS3では、図45に示すように、ステップS1およびステップS2で組み立てた箇所(以下、組立部とする)を、炉の中で、ロウ付け等で接合する。組立部には、伝熱管52とフィン51との組立部と、伝熱管52と第1集合部20との組立部、伝熱管52と第2集合部30との組立部、伝熱管52と第1の列間接続部41との組立部、および、伝熱管52と第2の列間接続部42との組立部が、含まれる。このようにして、ステップS3では、各組立部の接合が行われ、伝熱管52と列間接続部と集合部とが一体化された状態となる。
 図42に示すステップS4では、図46に示すように、ステップS3で一体化された状態となった室外熱交換器10を、予め決定された箇所(例えば、図4および図46の点E)で曲げる。これにより、実施の形態1で示した室外熱交換器10を製造することができる。実施の形態1で説明したように、室外熱交換器10は、室外熱交換器の一端側または他端側で、伝熱管52を2列ずつ、互い違いに、列間接続部で接続している。そのため、ステップS4では、室外熱交換器10を曲げる際に、室外熱交換器の一端側および他端側で拘束される領域がないため、容易に無理なく室外熱交換器10を曲げることができる。
 ここで、特に、第1の列間接続部41および第2の列間接続部42を、ヘッダ型列間接続部で構成する場合には、伝熱管52と列間接続部との接合箇所が多い。また、扁平形状の伝熱管52を用いる場合は、伝熱管52はアルミニウムを押出することで製造されることが一般的である。また、フィン51もアルミニウムで成形されることが一般的である。
 (実施の形態3の効果)
 実施の形態3では、伝熱管52と列間接続部と集合部とが一体化した状態で、それらの組立部の接合を、炉の中で、同時に行う。これにより、製造工程が容易になり、室外熱交換器10の製造性を向上させることができる。
 また、伝熱管52、フィン51、第1の列間接続部41および第2の列間接続部42、および、第1集合部20および第2集合部30を、例えばアルミニウムなどの同一素材から構成してもよい。その場合、室外熱交換器10を構成する全ての部材が同一素材となり、同一素材同士の接合となる。そのため、炉を用いた一体ロウ付けが可能となる。一方、上記の特許文献1に記載の従来例においては、列間接続部のロウ付け作業を手作業で行う必要があった。実施の形態3では、炉を用いた一体ロウ付けが可能となることで、手作業でのロウ付け回数を大きく削減することができ、製造性を高めることができる。
 特に、第1の列間接続部41および第2の列間接続部42を、高温の炉の中で一体ロウ付けする、アルミニウム製の扁平管を用いた室外熱交換器10において、実施の形態3の製造方法は有効である。実施の形態3では、ステップS3で一体ロウ付けを行った後に、ステップS4で曲げ加工を行っている。一方、上記の特許文献1に記載の従来例においては、曲げ加工を行った後に、伝熱管とフィンとのロウ付け作業を行う必要があった。従って、従来例においては、曲げた状態の熱交換器を炉の中に挿入する。これに対し、実施の形態3では、図45に示すような直線状の状態の熱交換器を炉の中に挿入する。そのため、実施の形態3では、従来例に比べて、炉のサイズが小型の場合においても製造が可能となり、炉設備の省サイズ化が可能となる。
 なお、上記の実施の形態1~3において、室外熱交換器10が、フィン51を有している場合を例に挙げて説明した。しかしながら、室外熱交換器10は、フィン51を必ずしも有している必要はなく、必要に応じて、フィン51を設けるようにしてもよい。すなわち、本開示に係る室外熱交換器10の構成は、フィン51を有さない熱交換器にも適用可能である。また、その場合においても、ロウ付け作業の後に熱交換器の曲げ加工が可能であるという同様の効果が得られることは言うまでもない。
 1 冷凍サイクル装置、2 圧縮機、3 室内熱交換器、4 室内ファン、5 絞り装置、6 室外ファン、7 四方弁、8 冷媒配管、10 室外熱交換器、10A 主熱交換器、10B 副熱交換器、10a 第1端部、10b 第2端部、11 第1列熱交換器、11a 第1列主熱交換器、11b 第1列副熱交換器、12 第2列熱交換器、12a 第2列主熱交換器、12b 第2列副熱交換器、13 第3列熱交換器、13a 第3列主熱交換器、13b 第3列副熱交換器、14 第4列熱交換器、20 第1集合部、20A 第1副集合部、21 第1仕切板、30 第2集合部、30A 第2副集合部、41 第1の列間接続部、42 第2の列間接続部、43 第3列間接続部、51 フィン、51a フィン、51b フィン、52 伝熱管、60 曲げ部、101 室外ユニット、105 分配器、111 上面パネル、112 側面パネル、113 正面パネル、113a 吹出口、114 ファングリル、115 底面パネル、116 側面カバー、200 中空ヘッダ型集合部、201 挿入穴、202 内部流路、202A 内部流路、203 ヘッダ、203a 正面部、203b 背面部、204 流出入口、205 分配器、206 接続配管、206a 接続配管、206b 接続配管、206c 接続配管、206d 接続配管、207 管、207a 分岐部、207b 分岐部、208 流路、208a 流路、208b 流路、208c 流路、208d 流路、208e 流出入口、209 流出入口、210 板材、210a 板材、210b 板材、210c 板材、210d 板材、210e 板材、210f 板材、211 流路、211a 流路、211b 流路、211c 流路、211d 流路、212 連通穴、212a 分岐部、212b 分岐部、213 流出入口、301 段間接続配管、301a 段間接続配管、301b 段間接続配管、301c 段間接続配管、302 内部流路、302A 内部流路、400 ヘッダ型列間接続部、401 挿入穴、401a 挿入穴、401b 挿入穴、402 内部流路、402a 挿入穴、403 ヘッダ、403a 正面部、410 U字型列間接続部、411a 接続口、411b 接続口、420 U字型列間接続部、421a 接続口、421b 接続口、422 内部流路、423 外郭、510 切欠き部、511 端面、520 突出部、521 端面、1000 室外熱交換器、1000a 第1端部、1000b 第2端部、1011 第n列熱交換器、1012 第(n+1)列熱交換器、1020 集合部、1041 列間接続部。

Claims (10)

  1.  第1方向に延設され、前記第1方向と交差する第2方向に互いに間隔を空けて配置された複数の伝熱管を、
     備えた熱交換器であって、
     前記熱交換器は、前記第1方向の両端に第1端部と第2端部とを有し、
     前記複数の伝熱管は、前記第1方向および前記第2方向と交差する第3方向にm列(m≧3)に配列され、
     前記熱交換器の前記第1端部および前記第2端部のそれぞれには、隣り合う2列の前記伝熱管を接続する1以上の列間接続部が設けられ、
     1≦n≦(m-2)において、
     n列目の前記伝熱管と(n+1)列目の前記伝熱管とは、前記熱交換器の前記第1端部および前記第2端部のいずれか一方に設けられた前記列間接続部を介して接続され、
     前記(n+1)列目の前記伝熱管と(n+2)列目の前記伝熱管とは、前記熱交換器の前記第1端部および前記第2端部のいずれか他方に設けられた前記列間接続部を介して接続されており、
     前記熱交換器の前記複数の伝熱管のうちの少なくとも1列は、前記第1方向の少なくとも1箇所で、前記第3方向に向けて曲げられた曲げ部を有している、
     熱交換器。
  2.  前記第1方向に互いに間隔を空けて配置された複数のフィンを備え、
     前記n列目の前記伝熱管が貫通する前記フィンの前記第1方向に積層された全長を示す積幅ELを積幅ELとし、
     前記(n+1)列目の前記伝熱管が貫通する前記フィンの積幅ELを積幅ELn+1としたとき、
     前記積幅ELおよび前記積幅ELn+1は、EL≧ELn+1の関係を満たす、
     請求項1に記載の熱交換器。
  3.  前記第1方向に互いに間隔を空けて配置された複数のフィンを備え、
     前記n列目の前記伝熱管が貫通する前記フィンの積幅ELを積幅ELとし、
     前記(n+1)列目の前記伝熱管が貫通する前記フィンの積幅ELを積幅ELn+1としたとき、
     前記積幅ELおよび前記積幅ELn+1は、下式の関係を満たし、
    Figure JPOXMLDOC01-appb-M000001
     ここで、列幅LPは、前記n列目の前記伝熱管と前記フィンとを合わせた前記第3方向の長さであり、列幅LPn+1は、前記(n+1)列目の前記伝熱管と前記フィンとを合わせた前記第3方向の長さである、
     請求項1または2に記載の熱交換器。
  4.  前記第1方向に互いに間隔を空けて配置された複数のフィンを備え、
     前記n列目の前記伝熱管が貫通する前記フィンの積幅ELを積幅ELとし、
     前記(n+1)列目の前記伝熱管が貫通する前記フィンの積幅ELを積幅ELn+1としたとき、
     前記積幅ELおよび前記積幅ELn+1は、下式の関係を満たし、
    Figure JPOXMLDOC01-appb-M000002
     ここで、LPは、前記n列目の前記伝熱管と前記フィンとを合わせた前記第3方向の長さを示す列幅であり、LPn+1は、前記(n+1)列目の前記伝熱管と前記フィンとを合わせた前記第3方向の長さを示す列幅であり、bは、前記伝熱管の曲げ回数である、
     請求項1または2に記載の熱交換器。
  5.  前記第1方向に互いに間隔を空けて配置された複数のフィンを備え、
     前記n列目の前記伝熱管が貫通する前記フィンの積幅ELを積幅ELとし、
     前記(n+1)列目の前記伝熱管が貫通する前記フィンの積幅ELを積幅ELn+1としたとき、
     前記積幅ELおよび前記積幅ELn+1は、下式の関係を満たし、
    Figure JPOXMLDOC01-appb-M000003
     ここで、LPは、前記n列目の前記伝熱管と前記フィンとを合わせた前記第3方向の長さを示す列幅であり、LPn+1は、前記(n+1)列目の前記伝熱管と前記フィンとを合わせた前記第3方向の長さを示す列幅であり、αは、列幅LPと列幅LPn+1との間の距離を示す列間隙間である、
     請求項1または2に記載の熱交換器。
  6.  前記熱交換器の前記複数の伝熱管のうちの少なくとも1列は、前記第1方向の少なくともb箇所(b≧1)で、前記第3方向に向けてb回曲げられて、b個の前記曲げ部を有しおり、
     前記熱交換器の前記複数の伝熱管のうちの少なくとも他の1列は、前記曲げ部を有していない直線状か、あるいは、前記b個より少ない個数の前記曲げ部を有している、
     請求項1~5のいずれか1項に記載の熱交換器。
  7.  前記m列に配列された各列の前記伝熱管は、それぞれ、第1列目の第1列熱交換器から第m列目の第m列熱交換器までを形成し、
     前記第1列熱交換器から前記第m列熱交換器までの各列の熱交換器は、それぞれ、主熱交換器と副熱交換器とを有し、
     各列の前記主熱交換器同士は全て同じ段数で構成され、各列の前記副熱交換器同士は全て同じ段数で構成されており、
     1≦n≦(m-2)において、
     第n列熱交換器の前記主熱交換器の前記伝熱管と第(n+1)列熱交換器の前記主熱交換器の前記伝熱管とは、前記第1端部および前記第2端部のいずれか一方に設けられた前記列間接続部を介して接続され、
     前記第(n+1)列熱交換器の前記主熱交換器の前記伝熱管と第(n+2)列熱交換器の前記主熱交換器の前記伝熱管とは、前記第1端部および前記第2端部のいずれか他方に設けられた前記列間接続部を介して接続されており、
     前記m列熱交換器の前記主熱交換器と前記副熱交換器とは少なくとも1つのパスを介して接続され、
     1≦n≦(m-2)において、
     前記第n列熱交換器の前記副熱交換器の前記伝熱管と前記第(n+1)列熱交換器の前記副熱交換器の前記伝熱管とは、前記第1端部および前記第2端部の前記いずれか一方に設けられた前記列間接続部を介して接続され、
     前記第(n+1)列熱交換器の前記副熱交換器の前記伝熱管と前記第(n+2)列熱交換器の前記副熱交換器の前記伝熱管とは、前記第1端部および前記第2端部の前記いずれか他方に設けられた前記列間接続部を介して接続されている、
     請求項1~6のいずれか1項に記載の熱交換器。
  8.  前記m列に配列された各列の前記伝熱管は、それぞれ、第1列目の第1列熱交換器から第m列目の第m列熱交換器までを形成し、
     前記第1列熱交換器から前記第m列熱交換器までの各列の熱交換器は、前記第1方向の両端に第1端部と第2端部とを有し、
     前記第1列熱交換器の第1端部と前記第2列熱交換器の第1端部との間の前記第1方向の距離、または、前記第1列熱交換器の第2端部と前記第2列熱交換器の第2端部との間の前記第1方向の距離を、距離L1とし、
     前記第m列熱交換器の第1端部と前記第(m-1)列熱交換器の第1端部との間の前記第1方向の距離、または、前記第m列熱交換器の第2端部と前記第(m-1)列熱交換器の第2端部との間の前記第1方向の距離を、距離L2とし、
     前記列間接続部に接続された前記第1端部同士の間の前記第1方向の距離、または、前記列間接続部に接続された前記第2端部同士の間の前記第1方向の距離を距離L3としたとき、
     距離L3は、距離L1および距離L2より小さい、
     請求項1~7のいずれか1項に記載の熱交換器。
  9.  請求項1~8のいずれか1項に記載の熱交換器の製造方法であって、
     前記熱交換器の前記第1端部および前記第2端部において、前記伝熱管に前記列間接続部を接続することで、前記伝熱管と前記列間接続部とを組み立てる第1工程と、
     前記伝熱管と前記列間接続部との接合を行う第2工程と、
     前記熱交換器の前記複数の伝熱管のうちの少なくとも1列に対して曲げ加工を行う第3工程と、
     を備えた熱交換器の製造方法。
  10.  前記熱交換器は、前記第1方向に互いに間隔を空けて配置された複数のフィンを備え、
     前記製造方法は、
     前記第1工程の前に、前記複数のフィンに前記複数の伝熱管を貫通させることで、前記伝熱管と前記フィンとを組み立てる工程
     をさらに備え、
     前記第2工程は、前記伝熱管と前記フィンとの接合と、前記伝熱管と前記列間接続部との接合と、を同時に行う工程である、
     請求項9に記載の熱交換器の製造方法。
PCT/JP2022/008888 2022-03-02 2022-03-02 熱交換器および熱交換器の製造方法 WO2023166612A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008888 WO2023166612A1 (ja) 2022-03-02 2022-03-02 熱交換器および熱交換器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008888 WO2023166612A1 (ja) 2022-03-02 2022-03-02 熱交換器および熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2023166612A1 true WO2023166612A1 (ja) 2023-09-07

Family

ID=87883243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008888 WO2023166612A1 (ja) 2022-03-02 2022-03-02 熱交換器および熱交換器の製造方法

Country Status (1)

Country Link
WO (1) WO2023166612A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248386A (ja) * 1997-12-30 1999-09-14 Carrier Corp 複列形熱交換器及びその製造方法
JP2010078287A (ja) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp 空気調和機
JP2012122672A (ja) * 2010-12-08 2012-06-28 Cip Software Co Ltd 熱交換器および水処理装置
WO2015025702A1 (ja) * 2013-08-20 2015-02-26 三菱電機株式会社 熱交換器、空調機、冷凍サイクル装置及び熱交換器の製造方法
WO2015059832A1 (ja) * 2013-10-25 2015-04-30 三菱電機株式会社 熱交換器及びその熱交換器を用いた冷凍サイクル装置
JP2015200497A (ja) * 2012-04-26 2015-11-12 三菱電機株式会社 熱交換器、この熱交換器を備えた冷凍サイクル装置及び空気調和機
JP2019528542A (ja) * 2016-08-26 2019-10-10 イナーテック アイピー エルエルシー 向流巡回を伴う単相流体および扁平チューブ熱交換器を用いる冷却システムおよび方法
WO2019193757A1 (ja) * 2018-04-06 2019-10-10 三菱電機株式会社 熱交換器およびそれを備えた冷凍サイクル装置
US20210131749A1 (en) * 2017-01-25 2021-05-06 Lg Electronics Inc. Heat exchanger of refrigerator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248386A (ja) * 1997-12-30 1999-09-14 Carrier Corp 複列形熱交換器及びその製造方法
JP2010078287A (ja) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp 空気調和機
JP2012122672A (ja) * 2010-12-08 2012-06-28 Cip Software Co Ltd 熱交換器および水処理装置
JP2015200497A (ja) * 2012-04-26 2015-11-12 三菱電機株式会社 熱交換器、この熱交換器を備えた冷凍サイクル装置及び空気調和機
WO2015025702A1 (ja) * 2013-08-20 2015-02-26 三菱電機株式会社 熱交換器、空調機、冷凍サイクル装置及び熱交換器の製造方法
WO2015059832A1 (ja) * 2013-10-25 2015-04-30 三菱電機株式会社 熱交換器及びその熱交換器を用いた冷凍サイクル装置
JP2019528542A (ja) * 2016-08-26 2019-10-10 イナーテック アイピー エルエルシー 向流巡回を伴う単相流体および扁平チューブ熱交換器を用いる冷却システムおよび方法
US20210131749A1 (en) * 2017-01-25 2021-05-06 Lg Electronics Inc. Heat exchanger of refrigerator
WO2019193757A1 (ja) * 2018-04-06 2019-10-10 三菱電機株式会社 熱交換器およびそれを備えた冷凍サイクル装置

Similar Documents

Publication Publication Date Title
US10670344B2 (en) Heat exchanger, air-conditioning apparatus, refrigeration cycle apparatus and method for manufacturing heat exchanger
US9651317B2 (en) Heat exchanger and air conditioner
JP5195733B2 (ja) 熱交換器及びこれを備えた冷凍サイクル装置
US20140102131A1 (en) Outdoor unit of refrigeration system
KR20160131577A (ko) 공기조화기의 열교환기
JP2017155989A (ja) 熱交換器及び空気調和機
US20230106747A1 (en) Heat exchanger or refrigeration apparatus including heat exchanger
US11168928B2 (en) Heat exchanger or refrigeration apparatus
JP2019011923A (ja) 熱交換器
US20180299203A1 (en) Heat exchanger and refrigeration cycle apparatus
WO2016076259A1 (ja) 熱交換器
US11181305B2 (en) Heat exchanger or refrigeration apparatus including heat exchanger
WO2017149950A1 (ja) 熱交換器及び空気調和機
JP6793831B2 (ja) 熱交換器、及び冷凍サイクル装置
WO2023166612A1 (ja) 熱交換器および熱交換器の製造方法
US20230400265A1 (en) Heat exchanger
US20220196345A1 (en) Heat exchanger, method of manufacturing the same, and air-conditioning apparatus
US20220268497A1 (en) Heat exchanger
WO2021234961A1 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
US11181284B2 (en) Heat exchanger or refrigeration apparatus
WO2021019725A1 (ja) 熱交換器及び冷凍サイクル装置
WO2019240055A1 (ja) 熱交換器及び空気調和装置
EP3112791A1 (en) Laminated header, heat exchanger, and air conditioning device
WO2019207802A1 (ja) 熱交換器及び空気調和機
WO2023275936A1 (ja) 冷媒分配器、熱交換器及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE