WO2019193757A1 - 熱交換器およびそれを備えた冷凍サイクル装置 - Google Patents

熱交換器およびそれを備えた冷凍サイクル装置 Download PDF

Info

Publication number
WO2019193757A1
WO2019193757A1 PCT/JP2018/014773 JP2018014773W WO2019193757A1 WO 2019193757 A1 WO2019193757 A1 WO 2019193757A1 JP 2018014773 W JP2018014773 W JP 2018014773W WO 2019193757 A1 WO2019193757 A1 WO 2019193757A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
plate
heat transfer
flat heat
heat exchanger
Prior art date
Application number
PCT/JP2018/014773
Other languages
English (en)
French (fr)
Inventor
良太 赤岩
真哉 東井上
前田 剛志
石橋 晃
加藤 康明
洋輔 藤森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/014773 priority Critical patent/WO2019193757A1/ja
Priority to JP2020511579A priority patent/JP6896160B2/ja
Publication of WO2019193757A1 publication Critical patent/WO2019193757A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle apparatus including the heat exchanger, and more particularly to a heat exchanger including a main heat exchange unit and a sub heat exchange unit, and a refrigeration cycle apparatus including such a heat exchanger. Is.
  • a heat exchanger in which a flat heat transfer tube having a flat cross-sectional shape with a flat cross-sectional shape is used as the heat transfer tube.
  • a flat heat transfer tube having a flat cross-sectional shape with a flat cross-sectional shape is used as the heat transfer tube.
  • the end portion in the longitudinal direction of the flat heat transfer tube is directly inserted into the header, and in this state, the flat heat transfer is performed by the brazing material.
  • a heat tube is joined to the header.
  • a header having a laminated structure in which a plurality of members are laminated is applied.
  • the header is composed of four members: a holding member, a gap ensuring member, a spacer member, and a base member as a plurality of members.
  • the holding member is a member that holds the flat heat transfer tube, and is a member that is positioned closest to the front when the flat heat transfer tube is inserted into the header.
  • the gap ensuring member is a member that prevents the brazing material that has entered from the gap between the holding member and the flat heat transfer tube from reaching the flat heat transfer tube.
  • the spacer member has a positioning function for preventing the flat heat transfer tube from being inserted excessively and blocking the flow path of the flat heat transfer tube by another member.
  • the base member is a member that forms a closed space in which the refrigerant flows by covering the spacer member.
  • the header includes a column-crossing header and a distributor header.
  • the row-crossing header is a header that causes a refrigerant to flow between the heat exchanger in the first row and the heat exchanger in the second row in the heat exchangers arranged in two rows.
  • the distributor header is a header that sends refrigerant to the heat exchanger or collects refrigerant that has flowed from the heat exchanger.
  • the distributor header is simply referred to as a distributor.
  • the flat heat transfer tube penetrates the holding member and the gap securing member, and the front end of the flat heat transfer tube contacts the spacer member without being inserted into the spacer member. Thus, it is required to insert the flat heat transfer tube into the header.
  • a plurality of flat heat transfer tubes are inserted into the header.
  • the flat heat transfer tube inserted into the header is joined to the holding member by a brazing material.
  • the present invention has been made to solve the above-described problems, and one object is to provide a heat exchanger that prevents the bonding material from entering the flow path of the flat heat transfer tube.
  • the objective of this is to provide the refrigerating-cycle apparatus provided with such a heat exchanger.
  • the first heat exchanger includes a plate-like laminate, a flat heat transfer tube, and a bonding material.
  • the plate-like laminate is a first plate-like body in which a first through-hole is formed, a second plate-like body in which a second through-hole communicating with the first through-hole is formed and laminated on the first plate-like body, And the 3rd plate-like object by which the 3rd penetration hole connected to the 2nd penetration hole is formed and laminated on the 2nd plate-like object is included.
  • the flat heat transfer tube is inserted into the first through hole, the second through hole, and the third through hole, and connected to the plate-like laminate by a bonding material.
  • the first through hole has a first opening cross-sectional area.
  • the second through hole has a second opening cross-sectional area.
  • the second opening cross-sectional area is larger than the first opening cross-sectional area.
  • the distance from the part where the first plate-like body and the second plate-like body are joined to the tip of the flat heat transfer tube inserted into the third plate-like body is set to at least 4 mm.
  • the second heat exchanger includes a plate-like laminate, a flat heat transfer tube, and a bonding material.
  • the plate-like laminate is a first plate-like body in which a first through-hole is formed, a second plate-like body in which a second through-hole communicating with the first through-hole is formed and laminated on the first plate-like body, And the 3rd plate-like object by which the 3rd penetration hole connected to the 2nd penetration hole is formed and laminated on the 2nd plate-like object is included.
  • the flat heat transfer tube is inserted into the first through hole, the second through hole, and the third through hole, and connected to the plate-like laminate by a bonding material.
  • the first through hole has a first opening cross-sectional area.
  • the second through hole has a second opening cross-sectional area.
  • the second opening cross-sectional area is larger than the first opening cross-sectional area.
  • the flat heat transfer tube has a major axis in the first direction and a minor axis in the second direction intersecting the first direction.
  • the flat heat transfer tubes are arranged in such a manner that the second direction corresponds to the height direction.
  • the portion located at the lower end in the second direction in the first through hole is arranged at a position higher than the portion located at the lower end in the second direction in the second through hole.
  • the third heat exchanger includes a plate-like laminate, a flat heat transfer tube, and a bonding material.
  • the plate-like laminate is a first plate-like body in which a first through-hole is formed, a second plate-like body in which a second through-hole communicating with the first through-hole is formed and laminated on the first plate-like body, And the 3rd plate-like object by which the 3rd penetration hole connected to the 2nd penetration hole is formed and laminated on the 2nd plate-like object is included.
  • the flat heat transfer tube is inserted into the first through hole, the second through hole, and the third through hole, and connected to the plate-like laminate by a bonding material.
  • the flat heat transfer tube has a major axis in the first direction and a minor axis in the second direction intersecting the first direction.
  • the flat heat transfer tubes are arranged in such a manner that the second direction corresponds to the height direction.
  • the plate-like laminate is a header.
  • the first through hole has a first opening cross-sectional area.
  • the second through hole has a second opening cross-sectional area.
  • the second opening cross-sectional area is larger than the first opening cross-sectional area.
  • the first plate-like body is formed with a first through-hole first portion and a first through-hole second portion that are spaced apart from each other in the first direction as the first through-hole.
  • the second plate-like body is formed with a second through-hole first part and a second through-hole second part that are spaced apart from each other in the first direction as the second through-hole.
  • a third through hole first portion is formed as a third through hole in the third plate-like body.
  • the part communicating with the second through-hole first part and the first A stepped portion protruding toward the upper portion in the second direction is formed between the second through hole and the portion communicating with the second portion.
  • the refrigeration cycle apparatus is a refrigeration cycle apparatus to which the heat exchanger described above is applied.
  • the flat heat transfer tube is inserted into the first through hole, the second through hole, and the third through hole, and is connected to the plate-like laminate by the bonding material.
  • the distance from the portion where the first plate-like body and the second plate-like body are joined to the tip of the flat heat transfer tube inserted into the third plate-like body is set to at least 4 mm.
  • the flat heat transfer tube is inserted into the first through hole, the second through hole, and the third through hole, and is connected to the plate-like laminate by the bonding material. .
  • the bonding material penetrate
  • the part located in the lower end of the 2nd direction in a 1st through-hole is arrange
  • the flat heat transfer tube is inserted into the first through hole, the second through hole, and the third through hole, and is connected to the plate-like laminate by the bonding material. .
  • the bonding material can prevent that a joining material penetrate
  • the part connected to the 2nd through-hole 1st part and the part connected to the 2nd through-hole 2nd part Is formed with a stepped portion projecting upward in the second direction. Thereby, it can suppress that a refrigerant
  • the refrigeration cycle apparatus by applying the heat exchanger described above, it is possible to prevent the bonding material from entering the flow path of the flat heat transfer tube, and to provide a highly reliable refrigeration cycle apparatus. Obtainable.
  • FIG. 5 is a partial cross-sectional view of the outdoor heat exchanger according to the first embodiment including a column-crossing header taken along a cross-sectional line VV shown in FIG.
  • FIG. 5 is a fragmentary sectional view which shows an example of an assembly procedure.
  • FIG. 6 is a partial cross-sectional view of the outdoor heat exchanger according to Embodiment 2 taken along a cross-sectional line IX-IX shown in FIG.
  • FIG. 6 is a partial sectional view taken along a sectional line XX shown in FIG. 5 in the embodiment.
  • it is a partial cross-sectional perspective view of a portion where a first flat heat transfer tube is inserted into a third plate-like body.
  • FIG. 6 is a partial cross-sectional view of an outdoor heat exchanger according to Embodiment 3 including a main heat exchange distributor at a cross-sectional line XV-XV shown in FIG.
  • FIG. 5 is a partial cross-sectional view including a main heat exchange distributor on a cross-sectional line corresponding to a cross-sectional line XV-XV shown in FIG. 2 of an outdoor heat exchanger according to a modification in the embodiment.
  • the refrigeration cycle apparatus 1 includes a compressor 3, an indoor heat exchanger 5, an indoor fan 6, an expansion valve 7, an outdoor heat exchanger 9, an outdoor fan 13, and a four-way valve 15.
  • the compressor 3, the indoor heat exchanger 5, the expansion valve 7, the outdoor heat exchanger 9 and the four-way valve 15 are connected by a refrigerant pipe 16.
  • the outdoor heat exchanger 9 will be described as an example of the heat exchanger according to each embodiment.
  • the outdoor heat exchanger 9 includes a main heat exchange unit 11 and a sub heat exchange unit 12.
  • a main heat exchange unit 11 is disposed on the sub heat exchange unit 12.
  • a first flat heat transfer tube 17 is disposed in the main heat exchange unit 11.
  • a second flat heat transfer tube 19 is disposed in the auxiliary heat exchange unit 12.
  • the main heat exchange unit 11 includes a main heat exchange unit 11a and a main heat exchange unit 11b.
  • the sub heat exchange unit 12 includes a sub heat exchange unit 12a and a sub heat exchange unit 12b.
  • the main heat exchange unit 11a and the sub heat exchange unit 12a are arranged on the windward side, and the main heat exchange unit 11b and the sub heat exchange unit 12b are arranged on the leeward side.
  • the 1st flat heat exchanger tube 17a is arrange
  • a first flat heat transfer tube 17b is disposed as the first flat heat transfer tube 17 (flat heat transfer tube second portion).
  • a second flat heat transfer tube 19 a is arranged as the second flat heat transfer tube 19 in the auxiliary heat exchange unit 12 a.
  • a second flat heat transfer tube 19b is disposed as the second flat heat transfer tube 19 in the auxiliary heat exchange unit 12b.
  • the cross-sectional shape is a flat type having a major axis and a minor axis.
  • first flat heat transfer tubes 17a (17b) are arranged spaced apart from each other in the minor axis direction.
  • the 1st flat heat exchanger tube 17a and the 1st flat heat exchanger tube 17b are arrange
  • auxiliary heat exchange part 12a (12b) for example, four second flat heat transfer tubes 19a (19b) are arranged at intervals in the minor axis direction. Moreover, in the sub heat exchange part 12a (12b), the 2nd flat heat exchanger tube 19a and the 2nd flat heat exchanger tube 19b are arrange
  • the major axis direction is the X direction
  • the minor axis direction is the Z direction.
  • a main heat exchanger distributor 23 is connected to one end side in the longitudinal direction of the first flat heat transfer tube 17, and a sub heat exchange end is connected to one end side in the longitudinal direction of the second flat heat transfer tube 19.
  • a distributor 25 is connected.
  • a column straddling header 21 is connected to the other end side in the longitudinal direction of the first flat heat transfer tube 17 and the other end side in the longitudinal direction of the second flat heat transfer tube 19.
  • a main heat exchange distributor 23a is connected as a main heat exchange distributor 23 to one longitudinal end of the eight first flat heat transfer tubes 17a of the main heat exchange section 11a.
  • a main heat exchange distributor 23b is connected as one main heat exchange distributor 23 to one end side in the longitudinal direction of the eight first flat heat transfer tubes 17b of the main heat exchange section 11b.
  • a sub heat exchange distributor 25a is connected as a sub heat exchange distributor 25 to one end in the longitudinal direction of the four second flat heat transfer tubes 19a of the sub heat exchange section 12a.
  • a sub heat exchange distributor 25b is connected as a sub heat exchange distributor 25 to one end side in the longitudinal direction of the four second flat heat transfer tubes 19b of the sub heat exchange section 12b.
  • the outflow / inflow pipe 27a is attached to the main heat exchange distributor 23a.
  • the refrigerant pipe 16 is connected to the inflow / outflow pipe 29a.
  • the refrigerant pipe 16 is connected to the compressor 3 (four-way valve 15).
  • An inflow / outflow pipe 27b is attached to the auxiliary heat exchange distributor 25a.
  • the refrigerant pipe 16 is connected to the inflow / outflow pipe 27b.
  • the refrigerant pipe 16 is connected to the expansion valve 7.
  • the main heat exchange distributor 23 b and the sub heat exchange distributor 25 b are connected by a refrigerant pipe 29.
  • a secondary heat exchange distributor 25a is connected as a secondary heat exchange distributor 25 to one longitudinal end of the four second flat heat transfer tubes 19a of the secondary heat exchange section 12a.
  • a sub heat exchange distributor 25b is connected as a sub heat exchange distributor 25 to one end side in the longitudinal direction of the four second flat heat transfer tubes 19b of the sub heat exchange section 12b.
  • the row-crossing header 21 connects the other end side of the eight first flat heat transfer tubes 17a and the other end side of the eight first flat heat transfer tubes 17b. Further, the row-crossing header 21 connects the other end side of the four second flat heat transfer tubes 19a and the other end side of the four second flat heat transfer tubes 19b.
  • the first flat heat transfer tubes 17 a and the first flat heat transfer tubes 17 b that are located at the same number of stages are connected, and the second flat heat transfer tubes 19 a and the second flat heat transfer tubes 19 b that are located at the same number of stages, respectively. Are connected.
  • the refrigerant in the two-phase state flows into the outdoor heat exchanger 9.
  • the outdoor heat exchanger 9 functions as an evaporator. In the outdoor heat exchanger 9, heat exchange is performed between the refrigerant flowing in the two-phase state and the air supplied by the outdoor fan 13.
  • the liquid refrigerant evaporates and becomes a low-pressure gas refrigerant (single phase).
  • the low-pressure gas refrigerant sent out from the outdoor heat exchanger 9 flows into the compressor 3 through the four-way valve 15.
  • the low-pressure gas refrigerant that has flowed into the compressor 3 is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 3 again. Thereafter, this cycle is repeated.
  • the high-pressure liquid refrigerant sent out from the outdoor heat exchanger 9 becomes a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant by the expansion valve 7.
  • the two-phase refrigerant flows into the indoor heat exchanger 5.
  • heat exchange is performed between the refrigerant flowing in the two-phase state and the air supplied by the indoor fan 6.
  • the liquid refrigerant evaporates to become a low-pressure gas refrigerant (single phase).
  • the low-pressure gas refrigerant sent out from the indoor heat exchanger 5 flows into the compressor 3 through the four-way valve 15.
  • the low-pressure gas refrigerant that has flowed into the compressor 3 is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 3 again. Thereafter, this cycle is repeated.
  • the outdoor heat exchanger 9 functions as an evaporator.
  • Two-phase refrigerant is sent from the expansion valve 7 to the outdoor heat exchanger 9.
  • the two-phase refrigerant first flows into the sub heat exchange distributor 25a.
  • the refrigerant that has flowed in is branched into four and flows through each of the corresponding four second flat heat transfer tubes 19a disposed in the sub heat exchange section 12a.
  • the refrigerant that has flowed through each of the second flat heat transfer tubes 19a flows through the row-crossing header 21 and flows through each of the corresponding four second flat heat transfer tubes 19b disposed in the auxiliary heat exchange unit 12b.
  • the refrigerant that has flowed through each of the four second flat heat transfer tubes 19b flows into and joins the auxiliary heat exchange distributor 25b.
  • the merged refrigerant flows through the refrigerant pipe 29 and flows into the main heat exchange distributor 23b.
  • the refrigerant that has flowed in is branched into eight and flows through the corresponding eight first flat heat transfer tubes 17b arranged in the main heat exchange section 11b.
  • the refrigerant that has flowed through each of the first flat heat transfer tubes 17b flows through the row-crossing header 21 and flows through each of the corresponding eight first flat heat transfer tubes 17a arranged in the main heat exchange section 11a.
  • the refrigerant that has flowed through each of the eight first flat heat transfer tubes 17a flows into and merges with the main heat exchange distributor 23a.
  • the refrigerant flowing into the main heat exchange distributor 23 a is sent to the compressor 3 through the four-way valve 15. In the cooling operation, the refrigerant flow is reversed from that in the heating operation.
  • the refrigeration cycle apparatus 1 can be applied to, for example, a heat pump apparatus, a hot water supply apparatus, a refrigeration apparatus, or the
  • the row header 21 or the main heat exchange distributor 23 and the sub heat exchange distributor 25 are formed by a plate-like laminate 30 in which plate-like bodies are laminated.
  • the outdoor heat exchanger 9 provided with the plate-like laminate 30 will be specifically described.
  • Embodiment 1 FIG.
  • an example of an outdoor heat exchanger in which the row-crossing header 21 is formed from the plate-like laminate 30 will be described.
  • the row-crossing header 21 formed from the plate-like laminate 30 is formed from the first plate-like body 31, the second plate-like body 32, the third plate-like body 33, and the fourth plate-like body 34. Is formed.
  • a through hole 31a is formed as the first part of the first through hole
  • a through hole 31b is formed as the second part of the first through hole.
  • the through hole 31a and the through hole 31b are formed at a distance from each other in the major axis direction of the first flat heat transfer tubes 17a and 17b.
  • the thickness (length LA) of the first plate-like body 31 is, for example, about 3 mm.
  • a through hole 32a is formed as a second through hole first part
  • a through hole 32b is formed as a second through hole second part.
  • the second plate-like body 32 is stacked on the first plate-like body 31.
  • the through hole 32a and the through hole 32b are formed at a distance from each other in the major axis direction of the first flat heat transfer tubes 17a and 17b.
  • the opening cross-sectional areas as the second opening cross-sectional areas of the through-hole 32a and the through-hole 32b are set larger than the opening cross-sectional areas as the first opening cross-sectional areas of the through-hole 31a and the through-hole 31b, respectively.
  • the length (X direction) from the outer wall portion of the first flat heat transfer tubes 17a, 17b to the wall surfaces of the through holes 32a, 32b is, for example, about 2 mm.
  • the thickness (Y direction) of the second plate-like body 32 is, for example, about 2 mm.
  • a cavity 53 is formed between the outer wall portions of the first flat heat transfer tubes 17a and 17b and the wall surfaces of the through holes 32a and 32b.
  • a through hole 33a is formed as the first part of the third through hole.
  • the third plate-like body 33 is stacked on the second plate-like body 32.
  • the thickness (Y direction) of the third plate-like body 33 is, for example, at least about 6 mm.
  • the 4th plate-shaped body 34 is laminated
  • the through hole 33a of the third plate 33 connects the first flat heat transfer tube 17a and the first flat heat transfer tube 17b to the first. It becomes the communicating path 55 as a communicating path.
  • the thickness (Y direction) of the fourth plate-like body 34 is, for example, about 3 mm.
  • the first flat heat transfer tube as the first flat heat transfer tube from the through hole 31 a of the first plate 31 to the through hole 33 a of the third plate 33. 17a is inserted.
  • a first flat heat transfer tube 17b is inserted as a second flat heat transfer tube portion from the through hole 31b of the first plate-like body 31 toward the through hole 33a of the third plate-like body 33.
  • the first flat heat transfer tubes 17a and 17b are connected to the plate-shaped laminate 30 (row straddling header) by a brazing material 50.
  • a brazing material 50 When connecting the first flat heat transfer tubes 17a, 17b and the plate-like laminate 30 by the brazing material 50, from the gaps between the first flat heat transfer tubes 17a, 17b and the through holes 31a, 31b of the first plate-like body 31.
  • the brazing material 50 which has entered is stored in the cavity 53.
  • the first flat heat transfer tubes 17a and 17b inserted into the first plate body 31, the second plate body 32, and the third plate body 33 are in desired positions.
  • the row straddling head 121 formed from the plate-like laminated body 130 in the outdoor heat exchanger according to the comparative example includes a first plate-like body 131, a second plate-like body 132, and a third plate-like body. 133 and the fourth plate-like body 134.
  • the first plate 31 has a through hole 131a and a through hole 131b.
  • the second plate-like body 132 is formed with a through hole 132a and a through hole 132b.
  • a through hole 133 a is formed in the third plate-like body 133.
  • the first flat heat transfer tubes 117 a and 117 b are inserted from the through holes 131 a and 131 b of the first plate body 131. At this time, the first flat heat transfer tubes 117a and 117b are inserted so that the tips of the first flat heat transfer tubes 117a and 117b are in contact with the third plate-like body 133.
  • first flat heat transfer tubes 117a and 117b and the stacked straddle header 121 have dimensional errors due to manufacturing variations and the like. Further, when the first flat heat transfer tubes 117a and 117b are inserted into the row headers 121, the insertion length may vary LT (see FIG. 7).
  • some first flat heat transfer tubes 117 a may be fixed to the row straddling header 121 without being in contact with the third plate-like body 133.
  • the length from the first plate 131 to the tip of the first flat heat transfer tube 117a is longer than the case where the first flat heat transfer tube 117b is in contact with the third plate 133. Shorter.
  • the brazing material 150 that has entered from the gap between the first flat heat transfer tube 117a and the first plate-like body 131 enters the flow path 118 of the first flat heat transfer tube 117a. It is assumed that
  • first, the first plate body 31, the second plate body 32, the third plate body 33, and the first plate body 33 are set to a desired magnitude relationship.
  • first flat heat transfer tubes 17a and 17b (second flat heat transfer tubes 19a and 19b) pass through the through holes 31a and 31b of the first plate 31 and the through holes 32a and 32b of the second plate 32, The third plate 33 is inserted up to the through hole 33a.
  • the length (Y direction) corresponding to the thickness of the first plate-like body 31 is the length LA, and penetrates from the portion where the first plate-like body 31 and the second plate-like body are joined.
  • the length (Y direction) of the first flat heat transfer tubes 17a and 17b inserted in the holes 33a to the longitudinal ends is the length LB, and the fourth plate from the longitudinal tips of the first flat heat transfer tubes 17a and 17b.
  • the length to the shape body 34 (Y direction) is defined as a length LC.
  • the length LA, the length LB, and the length LC have a relationship of length LB ⁇ length LC ⁇ length LA.
  • the first flat heat transfer tubes 17a and 17b are inserted so that the length LB is such that the length LB ⁇ 4 mm.
  • the brazing material 50 is formed between the first flat heat transfer tubes 17a and 17b and the through holes 31a and 31b of the first plate-like body 31. It enters the cavity 53 through the gap.
  • a brazing material (fillet) is formed in the cavity 53 by the brazing material 50 that has entered the cavity 53.
  • the size of the brazing pool can be reduced to a thickness of about 2 mm (Y direction) at most if the amount of brazing material is properly controlled.
  • the length variation LT in which the first flat heat transfer tubes 17a and 17b are inserted into the through holes 33a of the third plate 33 can be managed within ⁇ 1 mm. Therefore, the length LB is set to the length LB ⁇ 4 mm, whereby the brazing material 50 can be prevented from entering the flow path 18 of the first flat heat transfer tubes 17a and 17b.
  • the length LC up to the fourth plate-like body 34 is preferably length LC ⁇ length LA.
  • the length LB is such that length LB ⁇ length. LC is preferred. Therefore, it is preferable that length LB ⁇ length LC ⁇ length LA, and length LB ⁇ 4 mm.
  • each of the 1st plate-shaped body 31, the 2nd plate-shaped body 32, and the 3rd plate-shaped body 33 was formed with one plate-shaped member.
  • the case has been described as an example.
  • the row-crossing header 21 at least one of the first plate-like body 31, the second plate-like body 32, and the third plate-like body 33 may be a row-crossing header formed by a plurality of plate-like bodies.
  • the row-crossing header 21 of the auxiliary heat exchange units 12a, 12b also has the same structure as the row-crossing header of the main heat exchange units 11a, 11b.
  • Embodiment 2 FIG. Here, another example of the outdoor heat exchanger in which the row header 21 is formed from the plate-like laminate 30 will be described.
  • a refrigerant communication path 55 is formed by the through hole 33 a of the third plate-like body 33.
  • the communication path 55 includes a flow path 55a and a flow path 55b.
  • the flow path 55a is located at a portion where the first flat heat transfer tube 17a and the first flat heat transfer tube 17b are inserted through the third plate-like body 33, respectively.
  • the flow path 55b is located between the flow path 55a on the first flat heat transfer tube 17a side and the flow path 55a on the first flat heat transfer pipe 17b side.
  • a step 33b (Z direction) is provided between the flow channel 55a on the first flat heat transfer tube 17a side and the flow channel 55a on the first flat heat transfer tube 17b side.
  • the first flat heat transfer tubes 17a and 17b are disposed at a position lower than the top portion (Z direction) of the step 33b.
  • the position of the bottom (Z direction) of the cavity 53 is set higher than the position of the bottom (Z direction) of the flow path 55a.
  • the height relationship may be height WF ⁇ height WS.
  • height WF ⁇ height WS may be satisfied.
  • symbol is attached
  • the brazing material 50 can be prevented from entering the flow path 18 of the first flat heat transfer tube 17b in the above-described row header 21 of the outdoor heat exchanger, as described in the first embodiment.
  • the step 33b is provided between the flow channel 55a on the first flat heat transfer tube 17a side and the flow channel 55a on the first flat heat transfer tube 17b side. Retention of refrigerant or the like can be suppressed. This will be described in comparison with the row-crossing header of the outdoor heat exchanger according to the comparative example.
  • a refrigerant communication path 155 is formed by the through hole 133 a of the third plate-like body 133.
  • the bottom of the communication path 155 is at the same height (Z direction) from the portion where the first flat heat transfer tube 117a is inserted to the portion where the first flat heat transfer tube 117b is inserted.
  • the refrigerant flows through the first flat heat transfer tube 117b in the main heat exchange unit in which the first flat heat transfer tubes 117a and 117b are arranged. After that, the first flat heat transfer tube 117a flows through the row header 121. At this time, as shown in FIG. 13, the refrigerant sent from the flow path 118 of the first flat heat transfer tube 117b to the column header 121 flows through the communication path 155 and flows into the flow path 118 of the first flat heat transfer tube 117a. .
  • Refrigerator oil used in the compressor is mixed in the refrigerant, so that the refrigerant oil flows into the communication path 155 together with the refrigerant in the row header 121.
  • the refrigerating machine oil stays in the communication path 155 at a position lower than the position of the flow path 118 of the first flat heat transfer tubes 117a and 117b, and does not oppose gravity, and the communication path At 155, a film of refrigeration oil that continues to stay is formed. For this reason, it is assumed that the refrigerating machine oil of the compressor is reduced or depleted, causing a failure of the refrigeration cycle apparatus.
  • an attempt is made to fill the refrigerating machine oil so as to avoid such a decrease in the refrigerating machine oil, it will contribute to an increase in cost.
  • the refrigerant communication path 55 formed by the through-hole 33a of the third plate 33 is:
  • a step 33b (Z direction) is provided between the flow channel 55a on the first flat heat transfer tube 17a side and the flow channel 55a on the first flat heat transfer tube 17b side, including the flow channel 55a and the flow channel 55b.
  • the 1st flat heat exchanger tubes 17a and 17b are arrange
  • the side wall surface of the through-hole 33a and the side wall surface of the step 33b are located at an interval in the X direction. Further, the through hole 33a serving as the communication passage 55 is covered with the fourth plate-like body 34 (see FIG. 10). For this reason, as shown in FIG. 14, the refrigerant sent from the flow path 18 of the first flat heat transfer tube 17b to the one flow path 55a collides with the fourth plate-shaped body 34 and moves upward (Z-axis positive). Direction) and downward (the negative direction of the Z-axis).
  • the refrigerant that flows downward is disturbed by the refrigerant mixed with the refrigerating machine oil and the refrigerating machine oil accumulated near the bottom of the one flow path 55a, while the side wall surface of the through hole 33a and the step 33b side. It rises along the wall surface and flows into the flow path 55b.
  • the refrigerant and the refrigerating machine oil that have flowed into the flow path 55b flow into the other flow path 55a of the portion where the first flat heat transfer tube 17a is inserted, and then flow through the flow path 18 of the first flat heat transfer tube 17a. .
  • the refrigerant and the refrigerating machine oil which are going to stay in one flow path 55a are sent to the flow path 18 of the first flat heat transfer tube 17a through the flow path 55b, and the refrigerant and the refrigerating machine oil stay in the communication path 55. Can be suppressed. As a result, it is possible to suppress a failure due to a decrease in the refrigeration oil, and it is not necessary to fill an extra refrigerant or refrigeration oil, which can contribute to an improvement in reliability and a reduction in cost.
  • the position of the bottom (Z direction) of the cavity 53 is set higher than the position of the bottom (Z direction) of the flow path 55a.
  • Embodiment 3 the main heat exchange distributor will be described as an example of the outdoor heat exchanger in which the distributor is formed from the plate-shaped laminate 30.
  • the main heat exchange distributor 23 (23 b) formed from the plate-like laminate 30 includes a first plate-like body 31, a second plate-like body 32, and a third plate-like body. 33, a fifth plate-like body 35, a sixth plate-like body 36, a seventh plate-like body 37, an eighth plate-like body 38, and a ninth plate-like body 39.
  • the first flat heat transfer tube 17b is inserted into the first plate-like body 31, the second plate-like body 32, and the third plate-like body 33.
  • the structure of the portion where the first flat heat transfer tube 17b is inserted is the same structure as the structure of one row of the row-crossing header 21 (see FIGS. 2 and 5).
  • a through hole 31c is formed as the first through hole third part
  • a through hole 31d is formed as the first through hole fourth part.
  • the through hole 31c and the through hole 31d are formed at a distance from each other in the minor axis direction of the first flat heat transfer tube 17b.
  • a through hole 32c is formed as the second through hole third part, and a through hole 32d is formed as the second through hole fourth part.
  • the second plate-like body 32 is stacked on the first plate-like body 31.
  • the through hole 32c and the through hole 32d are formed at a distance from each other in the minor axis direction of the first flat heat transfer tube 17a.
  • the opening sectional area as the second opening sectional area of the through holes 32c and 32d is set larger than the opening sectional area as the first opening sectional area of the through holes 31c and 31d.
  • a through hole 33c is formed as the third part of the third through hole, and a through hole 33d is formed as the fourth part of the third through hole.
  • the through hole 33c and the through hole 33d are formed at a distance from each other in the minor axis direction of the first flat heat transfer tube 17b.
  • the third plate-like body 33 is stacked on the second plate-like body 32.
  • a through hole 35a is formed as the fourth part of the fourth through hole, and a through hole 35b is formed as the second part of the fourth through hole.
  • the through-hole 35a and the through-hole 35b are formed at intervals from each other in the minor axis direction of the first flat heat transfer tube 17b.
  • the fifth plate-like body 35 is stacked on the third plate-like body 33. By laminating the fifth plate-like body 35 on the third plate-like body 33, the through hole 33c is formed as the flow path 55c, and the through hole 33d is formed as the flow path 55d.
  • the through hole 35a is preferably located below the top of the first flat heat transfer tube 17b and communicates with the lower end portion of the flow path 55c.
  • the through hole 35b preferably communicates with the lower end portion of the flow path 55d.
  • a through hole 36a is formed in the sixth plate-like body 36.
  • the sixth plate-like body 36 is laminated on the fifth plate-like body 35.
  • a through hole 37 a that communicates with the communication path 56 is formed in the seventh plate-like body 37.
  • the seventh plate-like body 37 is laminated on the sixth plate-like body 36.
  • the through hole 36a is formed as the communication path 56 as the second communication path.
  • the communication path 56 communicates with the through hole 35a and the through hole 35b.
  • a through hole 38 a communicating with the through hole 37 a is formed in the eighth plate-like body 38.
  • the eighth plate-like body 38 is laminated on the seventh plate-like body 37.
  • a through hole 39a communicating with the through hole 38a is formed.
  • the ninth plate-like body 39 is laminated on the eighth plate-like body 38.
  • the through hole 38 a is formed as the communication path 57.
  • the communication path 57 communicates with the through hole 37a and the like.
  • FIG. 15 also shows the flow of the refrigerant in the main heat exchange distributor 23b connected to the main heat exchange unit 11b when the outdoor heat exchanger 9 functions as an evaporator.
  • the refrigerant that has flowed through the refrigerant pipe 29 flows into the communication path 57 through the through hole 39a.
  • the refrigerant that has flowed into the communication path 57 flows into the communication path 56 through the through hole 37a.
  • the refrigerant that has flowed into the communication path 56 flows into the flow path 55c through the through hole 35a, and flows into the flow path 55d through the through hole 35b. Thus, the refrigerant is distributed.
  • the refrigerant that has flowed into the flow path 55c flows through the flow path 18 of the first flat heat transfer tube 17b, and the refrigerant that has flowed into the flow path 55d flows through the flow path 18 of the first flat heat transfer tube 17b.
  • the brazing material 50 is prevented from entering the flow path 18 of the first flat heat transfer tube 17b, as described in the first embodiment.
  • the through hole 35a is located below the top of the first flat heat transfer tube 17b and communicates with the lower end portion of the flow path 55c. Thereby, the refrigerant or the refrigerating machine oil that tends to stay in the flow path 55c is diffused by the refrigerant sent from the through hole 35a, and easily flows into the flow path 18 of the first flat heat transfer tube 17b.
  • the refrigerant or the refrigerating machine oil sent out from the first flat heat transfer tube 17b is affected by gravity, and the flow path 55c Even if it stays at the lower end, it easily flows into the communication passage 56 through the through hole 35a communicating at the same height as the lower end of the flow path 55c. Thereby, it is possible to suppress the stagnation of the refrigerant or the refrigerating machine oil, and it is possible to avoid the failure of the compressor.
  • Embodiments 1 to 3 include the following aspects.
  • the first through hole has a first opening cross-sectional area;
  • the second through hole has a second opening cross-sectional area;
  • the second opening cross-sectional area is larger than the first opening cross-sectional area,
  • the length from the portion where the second plate-like body and the third plate-like body are joined to the tip of the flat heat transfer tube inserted into the third plate-like body is the third plate-like body.
  • the first through hole has a first opening cross-sectional area;
  • the second through hole has a second opening cross-sectional area;
  • the second opening cross-sectional area is larger than the first opening cross-sectional area,
  • a length corresponding to the thickness of the first plate-like body is a length LA,
  • the length from the portion where the first plate-like body and the second plate-like body are joined to the tip of the flat heat transfer tube inserted into the third plate-like body is defined
  • the present invention is effectively used in a heat exchanger provided with a main heat exchange section and a sub heat exchange section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

板状積層体(30)から形成された列跨ぎヘッダ(21)では、第1板状体(31)、第2板状体(32)、第3板状体(33)および第4板状体(34)が積層されている。第1扁平伝熱管(17a、17b)が、第1板状体(31)の貫通孔(31a、31b)、第2板状体(32)の貫通孔(32a、32b)および第3板状体(33)の貫通孔(33a)に挿入されて、ロウ材(50)によって板状積層体(30)に接続されている。第1板状体(31)と第2板状体(32)とが接合されている部分から貫通孔(33a)に挿入されている第1扁平伝熱管(17a、17b)の長手方向の先端までの長さは、4mm以上に設定されている。

Description

熱交換器およびそれを備えた冷凍サイクル装置
 本発明は、熱交換器およびそれを備えた冷凍サイクル装置に関し、特に、主熱交換部および副熱交換部を備えた熱交換器と、そのような熱交換器を備えた冷凍サイクル装置とに関するものである。
 伝熱管として、断面形状が扁平状の扁平型断面形状を有する扁平伝熱管が使用されている熱交換器がある。この種の熱交換器として、たとえば、特許文献1に開示されている熱交換器では、扁平伝熱管の長手方向の端部が、ヘッダに直接挿入され、その状態で、ロウ材によって、扁平伝熱管がヘッダに接合されている。この熱交換器では、複数の部材を積層させた積層構造のヘッダが適用されている。ヘッダは、複数の部材として、保持部材、隙間確保部材、スペーサ部材および基礎部材の4つの部材から構成されている。
 保持部材は、扁平伝熱管を保持する部材であり、扁平伝熱管をヘッダに挿入する際に、最も手前側に位置する部材である。隙間確保部材は、保持部材と扁平伝熱管との隙間から浸入したロウ材が、扁平伝熱管に到達するのを防ぐ部材である。スペーサ部材は、扁平伝熱管が過度に挿入されて、扁平伝熱管の流路が他の部材によって塞がれるのを防ぐための位置決めの機能を有する。基礎部材は、スペーサ部材を覆うことで、冷媒が流れる閉じられた空間を形成する部材である。
 なお、ヘッダには、列跨ぎヘッダと分配器ヘッダとがある。列跨ぎヘッダとは、2列に配置された熱交換器において、1列目の熱交換器と2列目の熱交換器との間に冷媒を流すヘッダである。分配器ヘッダとは、熱交換器に冷媒を送り込んだり、熱交換器から流れてきた冷媒を集合させるヘッダである。なお、この明細書では、分配器ヘッダを、単に、分配器と称する。
特開2014-052135号公報(特許第6123193号)
 上述した熱交換器の製造においては、扁平伝熱管が、保持部材と隙間確保部材とを貫通して、スペーサ部材に挿入されることなく、扁平伝熱管の長手方向の先端がスペーサ部材に当接するように、扁平伝熱管をヘッダに挿入することが求められる。
 ヘッダには、複数の扁平伝熱管が挿入される。所望の機能を有する熱交換器を製造するには、ヘッダに挿入されるすべての扁平伝熱管の長さを揃えて、すべての扁平伝熱管を等しくヘッダに挿入する必要がある。ヘッダに挿入された扁平伝熱管は、ロウ材によって保持部材に接合される。
 一方で、熱交換器の製造においては、扁平伝熱管および積層構造のヘッダには、製造上のばらつき等に起因する寸法誤差が存在する。また、扁平伝熱管をヘッダに挿入する際の挿入長さにばらつきが生じることがある。このことで、一部の扁平伝熱管が、スペーサ部材に当接しない状態で保持部材に接合されるような場合には、ロウ材によって扁平伝熱管をヘッダに接続する際に、扁平伝熱管と保持部材との隙間を介して隙間確保部材に侵入したロウ材が、扁平伝熱管の流路に侵入してしまうことが想定される。
 本発明は、上記問題点を解決するためになされたものであり、一つの目的は、接合材が扁平伝熱管の流路に侵入するのを阻止する熱交換器を提供することであり、他の目的は、そのような熱交換器を備えた冷凍サイクル装置を提供することである。
 本発明に係る第1の熱交換器は、板状積層体と扁平伝熱管と接合材とを備えている。板状積層体は、第1貫通孔が形成された第1板状体、第1貫通孔に連通する第2貫通孔が形成されて第1板状体に積層される第2板状体、および、第2貫通孔に連通する第3貫通孔が形成されて第2板状体に積層される第3板状体を含む。扁平伝熱管は、第1貫通孔、第2貫通孔および第3貫通孔に挿入されて、接合材によって板状積層体に接続されている。第1貫通孔は第1開口断面積を有する。第2貫通孔は第2開口断面積を有する。第2開口断面積は、第1開口断面積よりも大きい。第1板状体と第2板状体とが接合している部分から第3板状体に挿入されている扁平伝熱管の先端までの距離は、少なくとも4mmに設定されている。
 本発明に係る第2の熱交換器は、板状積層体と扁平伝熱管と接合材とを備えている。板状積層体は、第1貫通孔が形成された第1板状体、第1貫通孔に連通する第2貫通孔が形成されて第1板状体に積層される第2板状体、および、第2貫通孔に連通する第3貫通孔が形成されて第2板状体に積層される第3板状体を含む。扁平伝熱管は、第1貫通孔、第2貫通孔および第3貫通孔に挿入されて、接合材によって板状積層体に接続されている。第1貫通孔は第1開口断面積を有する。第2貫通孔は第2開口断面積を有する。第2開口断面積は、第1開口断面積よりも大きい。扁平伝熱管は、第1方向に長径を有するとともに、第1方向と交差する第2方向に短径を有する。扁平伝熱管は、第2方向が高さ方向に対応する態様で配置されている。第1貫通孔における第2方向の下端に位置する部分は、第2貫通孔における第2方向の下端に位置する部分よりも高い位置に配置されている。
 本発明に係る第3の熱交換器は、板状積層体と扁平伝熱管と接合材とを備えている。板状積層体は、第1貫通孔が形成された第1板状体、第1貫通孔に連通する第2貫通孔が形成されて第1板状体に積層される第2板状体、および、第2貫通孔に連通する第3貫通孔が形成されて第2板状体に積層される第3板状体を含む。扁平伝熱管は、第1貫通孔、第2貫通孔および第3貫通孔に挿入されて、接合材によって板状積層体に接続されている。扁平伝熱管は、第1方向に長径を有するとともに、第1方向と交差する第2方向に短径を有する。扁平伝熱管は、第2方向が高さ方向に対応する態様で配置されている。板状積層体はヘッダである。第1貫通孔は第1開口断面積を有する。第2貫通孔は第2開口断面積を有する。第2開口断面積は、第1開口断面積よりも大きい。第1板状体には、第1貫通孔として、第1方向に互いに間隔を隔てられた第1貫通孔第1部および第1貫通孔第2部が形成されている。第2板状体には、第2貫通孔として、第1方向に互いに間隔を隔てられた第2貫通孔第1部および第2貫通孔第2部が形成されている。第3板状体には、第3貫通孔として、第3貫通孔第1部が形成されている。第3貫通孔第1部により形成される、第2貫通孔第1部と第2貫通孔第2部とを連通する第1連通路では、第2貫通孔第1部に連通する部分と第2貫通孔第2部に連通する部分との間に、第2方向の上部に向かって突出した段差部が形成されている。
 本発明に係る冷凍サイクル装置は、上述した熱交換器を適用した冷凍サイクル装置である。
 本発明に係る第1の熱交換器によれば、扁平伝熱管は、第1貫通孔、第2貫通孔および第3貫通孔に挿入されて、接合材によって板状積層体に接続されており、第1板状体と第2板状体とが接合している部分から第3板状体に挿入されている扁平伝熱管の先端までの距離は、少なくとも4mmに設定されている。これにより、接合材が扁平伝熱管の流路に侵入するのを阻止することができる。
 本発明に係る第2の熱交換器によれば、扁平伝熱管は、第1貫通孔、第2貫通孔および第3貫通孔に挿入されて、接合材によって板状積層体に接続されている。これにより、接合材が扁平伝熱管の流路に侵入するのを阻止することができる。また、第1貫通孔における第2方向の下端に位置する部分は、第2貫通孔における第2方向の下端に位置する部分よりも高い位置に配置されている。これにより、冷媒等が滞留するのを抑制することができる。
 本発明に係る第3の熱交換器によれば、扁平伝熱管は、第1貫通孔、第2貫通孔および第3貫通孔に挿入されて、接合材によって板状積層体に接続されている。これにより、接合材が扁平伝熱管の流路に侵入するのを阻止することができる。また、第2貫通孔第1部と第2貫通孔第2部とを連通する第1連通路では、第2貫通孔第1部に連通する部分と第2貫通孔第2部に連通する部分との間に、第2方向の上部に向かって突出した段差部が形成されている。これにより、冷媒等が第1連通路に滞留するのを抑制することができる。
 本発明に係る冷凍サイクル装置によれば、上述した熱交換器を適用することで、接合材が扁平伝熱管の流路に侵入するのを阻止することができ、信頼性の高い冷凍サイクル装置を得ることができる。
各実施の形態に係る冷凍サイクル装置の冷媒回路の一例を示す図である。 各実施の形態に係る冷凍サイクル装置に適用されている室外熱交換器の一例を示す斜視図である。 各実施の形態において、図2に示す室外熱交換器の分解斜視図である。 各実施の形態において、図2に示す室外熱交換器における冷媒の流れの一例を示す図である。 実施の形態1に係る室外熱交換器の、図2に示す断面線V-Vにおける列跨ぎヘッダを含む部分断面図である。 同実施の形態において、組立手順の一例を示す部分断面図である。 比較例に係る室外熱交換器の列跨ぎヘッダを含む部分断面図である。 比較例に係る室外熱交換器の組立手順の一例を示す部分断面図である。 実施の形態2に係る室外熱交換器の、図5に示す断面線IX-IXにおける部分断面図である。 同実施の形態において、図5に示す断面線X-Xにおける部分断面図である。 同実施の形態において、第1扁平伝熱管が第3板状体に挿入されている部分の部分断面斜視図である。 比較例に係る室外熱交換器の列跨ぎヘッドを示す部分断面図である。 比較例に係る室外熱交換器の列跨ぎヘッドの問題点を説明するための部分断面図である。 同実施の形態において、室外熱交換器の列跨ぎヘッドの効果を説明するための部分断面図である。 実施の形態3に係る室外熱交換器の、図2に示す断面線XV-XVにおける主熱交換用分配器を含む部分断面図である。 同実施の形態において、第1扁平伝熱管が第3板状体に挿入されている部分の部分断面図である。 同実施の形態において、変形例に係る室外熱交換器の、図2に示す断面線XV-XVに対応する断面線における主熱交換用分配器を含む部分断面図である。
 はじめに、各実施の形態に係る熱交換器が適用される冷凍サイクル装置の全体構成(冷媒回路)の一例について説明する。
 図1に示すように、冷凍サイクル装置1は、圧縮機3、室内熱交換器5、室内ファン6、膨張弁7、室外熱交換器9、室外ファン13および四方弁15を備えている。圧縮機3、室内熱交換器5、膨張弁7、室外熱交換器9および四方弁15は、冷媒配管16によって繋がっている。
 次に、各実施の形態に係る熱交換器の一例として、室外熱交換器9について説明する。図2および図3に示すように、室外熱交換器9は、主熱交換部11と副熱交換部12とを備えている。副熱交換部12の上に主熱交換部11が配置されている。主熱交換部11には、第1扁平伝熱管17が配置されている。副熱交換部12には、第2扁平伝熱管19が配置されている。
 主熱交換部11は、主熱交換部11aと主熱交換部11bとを含む。副熱交換部12は、副熱交換部12aと副熱交換部12bとを含む。主熱交換部11aおよび副熱交換部12aは、風上側に配置され、主熱交換部11bおよび副熱交換部12bは、風下側に配置されることになる。
 主熱交換部11aには、第1扁平伝熱管17(扁平伝熱管第1部)として、第1扁平伝熱管17aが配置されている。主熱交換部11bには、第1扁平伝熱管17(扁平伝熱管第2部)として、第1扁平伝熱管17bが配置されている。副熱交換部12aには、第2扁平伝熱管19として、第2扁平伝熱管19aが配置されている。副熱交換部12bには、第2扁平伝熱管19として、第2扁平伝熱管19bが配置されている。第1扁平伝熱管17(17a、17b)および第2扁平伝熱管19(19a、19b)では、断面形状が、長径と短径とを有する扁平型とされる。
 主熱交換部11a(11b)では、短径方向に互いに間隔を隔てて、たとえば、8本の第1扁平伝熱管17a(17b)が配置されている。また、主熱交換部11a(11b)では、第1扁平伝熱管17aと第1扁平伝熱管17bとは、長径方向に互いに間隔を隔てて配置されている。
 副熱交換部12a(12b)では、短径方向に互いに間隔を隔てて、たとえば、4本の第2扁平伝熱管19a(19b)が配置されている。また、副熱交換部12a(12b)では、第2扁平伝熱管19aと第2扁平伝熱管19bとは、長径方向に互いに間隔を隔てて配置されている。ここでは、長径方向はX方向であり、短径方向はZ方向である。
 室外熱交換器9では、第1扁平伝熱管17の長手方向の一端側には主熱交換用分配器23が接続され、第2扁平伝熱管19の長手方向の一端側には副熱交換用分配器25が接続されている。第1扁平伝熱管17の長手方向の他端側および第2扁平伝熱管19の長手方向の他端側には、列跨ぎヘッダ21が接続されている。
 主熱交換部11aの8本の第1扁平伝熱管17aの長手方向の一端側に、主熱交換用分配器23として主熱交換用分配器23aが接続されている。主熱交換部11bの8本の第1扁平伝熱管17bの長手方向の一端側に、主熱交換用分配器23として主熱交換用分配器23bが接続されている。副熱交換部12aの4本の第2扁平伝熱管19aの長手方向の一端側に、副熱交換用分配器25として副熱交換用分配器25aが接続されている。副熱交換部12bの4本の第2扁平伝熱管19bの長手方向の一端側に、副熱交換用分配器25として副熱交換用分配器25bが接続されている。
 主熱交換用分配器23aに流出入管27aが取り付けられている。流出入管29aには、冷媒配管16が接続されている。この冷媒配管16は、圧縮機3(四方弁15)に繋がっている。副熱交換用分配器25aに流出入管27bが取り付けられている。流出入管27bには、冷媒配管16が接続されている。この冷媒配管16は、膨張弁7に繋がっている。主熱交換用分配器23bと副熱交換用分配器25bとが、冷媒配管29によって繋がっている。
 副熱交換部12aの4本の第2扁平伝熱管19aの長手方向の一端側に、副熱交換用分配器25として副熱交換用分配器25aが接続されている。副熱交換部12bの4本の第2扁平伝熱管19bの長手方向の一端側に、副熱交換用分配器25として副熱交換用分配器25bが接続されている。
 列跨ぎヘッダ21は、8本の第1扁平伝熱管17aの他端側と8本の第1扁平伝熱管17bの他端側とを繋いでいる。また、列跨ぎヘッダ21は、4本の第2扁平伝熱管19aの他端側と4本の第2扁平伝熱管19bの他端側とを繋いでいる。列跨ぎヘッダ21では、それぞれ同じ段数に位置する第1扁平伝熱管17aと第1扁平伝熱管17bとが繋がれるとともに、それぞれ同じ段数に位置する第2扁平伝熱管19aと第2扁平伝熱管19bとが繋がれている。
 次に、上述した冷凍サイクル装置1の動作として、まず、暖房運転の場合について説明する。圧縮機3を駆動させることによって、圧縮機3から高温高圧のガス冷媒が吐出する。吐出した高温高圧のガス冷媒(単相)は、四方弁15を介して室内熱交換器5に流れ込む。室内熱交換器5では、流れ込んだガス冷媒と、室内ファン6によって供給される空気との間で熱交換が行われる。高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。この熱交換によって、室内が暖房されることになる。室内熱交換器5から送り出された高圧の液冷媒は、膨張弁7によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。
 二相状態の冷媒は、室外熱交換器9に流れ込む。室外熱交換器9は、蒸発器として機能する。室外熱交換器9では、流れ込んだ二相状態の冷媒と、室外ファン13によって供給される空気との間で熱交換が行われる。二相状態の冷媒のうち、液冷媒が蒸発して、低圧のガス冷媒(単相)になる。室外熱交換器9から送り出された低圧のガス冷媒は、四方弁15を介して圧縮機3に流れ込む。圧縮機3に流れ込んだ低圧のガス冷媒は、圧縮されて高温高圧のガス冷媒となって、再び圧縮機3から吐出する。以下、このサイクルが繰り返される。
 次に、冷房運転の場合について説明する。圧縮機3を駆動させることによって、圧縮機3から高温高圧のガス冷媒が吐出する。吐出した高温高圧のガス冷媒(単相)は、四方弁15を介して室外熱交換器9へ流れ込む。室外熱交換器9は、凝縮器として機能する。室外熱交換器9では、流れ込んだ冷媒と、室外ファン13によって供給される空気との間で熱交換が行われる。高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。
 室外熱交換器9から送り出された高圧の液冷媒は、膨張弁7によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、室内熱交換器5に流れ込む。室内熱交換器5では、流れ込んだ二相状態の冷媒と、室内ファン6によって供給される空気との間で熱交換が行われる。二相状態の冷媒は、液冷媒が蒸発して低圧のガス冷媒(単相)になる。この熱交換によって、室内が冷却されることになる。室内熱交換器5から送り出された低圧のガス冷媒は、四方弁15を介して圧縮機3に流れ込む。圧縮機3に流れ込んだ低圧のガス冷媒は、圧縮されて高温高圧のガス冷媒となって、再び圧縮機3から吐出する。以下、このサイクルが繰り返される。
 次に、室外熱交換器9における冷媒の流れについて説明する。ここでは、暖房運転の場合を例に挙げて説明する。この場合には、室外熱交換器9は、蒸発器として機能する。膨張弁7から室外熱交換器9へは、二相状態の冷媒が送られる。
 図3および図4に示すように、二相状態の冷媒は、まず、副熱交換用分配器25aに流れ込む。流れ込んだ冷媒は4つに分岐されて、副熱交換部12aに配置された対応する4本の第2扁平伝熱管19aのそれぞれを流れる。第2扁平伝熱管19aのそれぞれを流れた冷媒は、列跨ぎヘッダ21を流れて、副熱交換部12bに配置された対応する4本の第2扁平伝熱管19bのそれぞれを流れる。4本の第2扁平伝熱管19bのそれぞれを流れた冷媒は、副熱交換用分配器25bに流れ込んで合流する。
 合流した冷媒は、冷媒配管29を流れて主熱交換用分配器23bに流れ込む。流れ込んだ冷媒は、8つに分岐されて、主熱交換部11bに配置された対応する8本の第1扁平伝熱管17bのそれぞれを流れる。第1扁平伝熱管17bのそれぞれを流れた冷媒は、列跨ぎヘッダ21を流れて、主熱交換部11aに配置された対応する8本の第1扁平伝熱管17aのそれぞれを流れる。8本の第1扁平伝熱管17aのそれぞれを流れた冷媒は、主熱交換用分配器23aに流れ込んで合流する。主熱交換用分配器23aに流れ込んだ冷媒は、四方弁15を経て圧縮機3へ送られる。なお、冷房運転の場合には、冷媒の流れは、暖房運転の場合と逆になる。この冷凍サイクル装置1は、たとえば、ヒートポンプ装置、給湯装置または冷凍装置等に適用することができる。
 室外熱交換器9では、列跨ぎヘッダ21、または、主熱交換用分配器23および副熱交換用分配器25が、板状体を積層させた板状積層体30によって形成されている。以下、板状積層体30を備えた室外熱交換器9について、具体的に説明する。
 実施の形態1.
 ここでは、列跨ぎヘッダ21が板状積層体30から形成された室外熱交換器の一例について説明する。
 図5に示すように、板状積層体30から形成された列跨ぎヘッダ21は、第1板状体31、第2板状体32、第3板状体33および第4板状体34から形成されている。第1板状体31には、第1貫通孔第1部として貫通孔31aが形成され、第1貫通孔第2部として貫通孔31bが形成されている。貫通孔31aと貫通孔31bとは、第1扁平伝熱管17a、17bの長径方向に互いに間隔を隔てて形成されている。第1板状体31の厚さ(長さLA)は、たとえば、3mm程度である。
 第2板状体32には、第2貫通孔第1部として貫通孔32aが形成され、第2貫通孔第2部として貫通孔32bが形成されている。第2板状体32は、第1板状体31に積層されている。貫通孔32aと貫通孔32bとは、第1扁平伝熱管17a、17bの長径方向に互いに間隔を隔てて形成されている。貫通孔32aおよび貫通孔32bのそれぞれの第2開口断面積としての開口断面積は、貫通孔31aおよび貫通孔31bのそれぞれの第1開口断面積としての開口断面積よりも大きく設定されている。
 第1扁平伝熱管17a、17bの外壁部分から貫通孔32a、32bの壁面までの長さ(X方向)は、たとえば、2mm程度である。第2板状体32の厚さ(Y方向)は、たとえば、2mm程度である。第1扁平伝熱管17a、17bの外壁部分と貫通孔32a、32bの壁面との間に、空洞53が形成されることになる。
 第3板状体33には、第3貫通孔第1部として、貫通孔33aが形成されている。第3板状体33は、第2板状体32に積層されている。第3板状体33の厚さ(Y方向)は、たとえば、少なくとも6mm程度である。第4板状体34は、貫通孔33aを覆うように第3板状体33に積層されている。第4板状体34が第3板状体33に積層されることで、第3板状体33の貫通孔33aが、第1扁平伝熱管17aと第1扁平伝熱管17bとを繋ぐ第1連通路としての連通路55となる。第4板状体34の厚さ(Y方向)は、たとえば、3mm程度である。
 図6に示すように、列跨ぎヘッダ21では、第1板状体31の貫通孔31aから第3板状体33の貫通孔33aに向かって、扁平伝熱管第1部として第1扁平伝熱管17aが挿入されている。第1板状体31の貫通孔31bから第3板状体33の貫通孔33aに向かって、扁平伝熱管第2部として第1扁平伝熱管17bが挿入されている。
 第1扁平伝熱管17a、17bは、ロウ材50によって板状積層体30(列跨ぎヘッダ)に接続されている。第1扁平伝熱管17a、17bと板状積層体30とをロウ材50によって接続する際に、第1扁平伝熱管17a、17bと第1板状体31の貫通孔31a、31bとの隙間から侵入したロウ材50は、空洞53に溜められることになる。
 上述した室外熱交換器9の列跨ぎヘッダ21では、第1板状体31、第2板状体32および第3板状体33に挿入される第1扁平伝熱管17a、17bが所望の位置関係に配置されていることで、第1扁平伝熱管17a、17b等の流路18にロウ材50が侵入するのを防止することができる。これについて、比較例に係る室外熱交換器と比べて説明する。
 図7に示すように、比較例に係る室外熱交換器における板状積層体130から形成された列跨ぎヘッド121は、第1板状体131、第2板状体132、第3板状体133および第4板状体134から形成されている。第1板状体31には、貫通孔131aおよび貫通孔131bが形成されている。第2板状体132には、貫通孔132aおよび貫通孔132bが形成されている。第3板状体133には、貫通孔133aが形成されている。
 図8に示すように、第1扁平伝熱管117a、117bは、第1板状体131の貫通孔131a、131bから挿入されている。このとき、第1扁平伝熱管117a、117bの先端が第3板状体133に当接するように、第1扁平伝熱管117a、117bが挿入される。
 ところが、第1扁平伝熱管117a、117bおよび積層構造の列跨ぎヘッダ121には、製造上のばらつき等に起因する寸法誤差が存在する。また、第1扁平伝熱管117a、117bを列跨ぎヘッダ121に挿入する際に、挿入長さにばらつきLT(図7参照)が生じることがある。
 このため、図7に示すように、一部の第1扁平伝熱管117aが、第3板状体133に当接しない状態で、列跨ぎヘッダ121に固定されることがある。このような場合には、第1扁平伝熱管117bが第3板状体133に当接している場合と比べて、第1板状体131から第1扁平伝熱管117aの先端までの長さがより短くなる。このため、ロウ材で接合する際に、第1扁平伝熱管117aと第1板状体131との隙間から侵入したロウ材150が、第1扁平伝熱管117aの流路118に侵入してしまうことが想定される。
 比較例に係る室外熱交換器に対して、上述した室外熱交換器9の列跨ぎヘッダ21では、まず、第1板状体31、第2板状体32、第3板状体33および第4板状体34のそれぞれの厚さが所望の大小関係に設定されている。また、第1扁平伝熱管17a、17b(第2扁平伝熱管19a、19b)が、第1板状体31の貫通孔31a、31bから第2板状体32の貫通孔32a、32bを経て、第3板状体33の貫通孔33aに至るまで挿入されている。
 図5に示すように、第1板状体31の厚みに相当する長さ(Y方向)を長さLA、第1板状体31と第2板状体とが接合されている部分から貫通孔33aに挿入されている第1扁平伝熱管17a、17bの長手方向の先端までの長さ(Y方向)を長さLB、第1扁平伝熱管17a、17bの長手方向の先端から第4板状体34までの長さ(Y方向)を長さLCとする。長さLA、長さLBおよび長さLCは、長さLB≧長さLC≧長さLAの関係を有する。さらに、長さLBは、長さLB≧4mmとなるように、第1扁平伝熱管17a、17bが挿入されている。
 ロウ材によって第1扁平伝熱管17a、17bを列跨ぎヘッダ21に接続する際に、ロウ材50は、第1扁平伝熱管17a、17bと第1板状体31の貫通孔31a、31bとの隙間から空洞53に侵入する。空洞53に侵入したロウ材50によって、空洞53にはロウ溜まり(フィレット)が形成される。ロウ溜まりの大きさは、ロウ材の量を適正に管理すれば、大きくても2mm程度の厚み(Y方向)に収めることができる。
 一方、第1扁平伝熱管17a、17bを第3板状体33の貫通孔33aに挿入する長さのばらつきLTは、±1mm以内に管理することができる。このことから、長さLBは、長さLB≧4mmとすることで、ロウ材50が、第1扁平伝熱管17a、17bの流路18に侵入するのを防止することができる。
 また、第1扁平伝熱管17aと第1扁平伝熱管17bとの間の連通路55を確保するために、第3板状体33に挿通されている第1扁平伝熱管17a、17bの先端から第4板状体34までの長さLCは、長さLC≧長さLAであることが好ましい。さらに、ロウ溜まりの空洞53を確保して、第1扁平伝熱管17a、17bを第3板状体33の貫通孔33aに確実に挿通させるには、長さLBは、長さLB≧長さLCであることが好ましい。したがって、長さLB≧長さLC≧長さLAの関係を有し、長さLB≧4mmであることが好ましい。
 なお、上述した室外熱交換器9の列跨ぎヘッダ21では、第1板状体31、第2板状体32および第3板状体33のそれぞれを、1枚の板状部材によって形成された場合を例に挙げて説明した。列跨ぎヘッダ21としては、第1板状体31、第2板状体32および第3板状体33の少なくとも一つが、複数の板状体によって形成された列跨ぎヘッダであってもよい。また、副熱交換部12a、12bの列跨ぎヘッダ21についても、主熱交換部11a、11bの列跨ぎヘッダと同様の構造を有する。
 実施の形態2.
 ここでは、列跨ぎヘッダ21が板状積層体30から形成された室外熱交換器の他の例について説明する。
 図9および図10に示すように、列跨ぎヘッダ21では、第3板状体33の貫通孔33aによって冷媒の連通路55が形成される。連通路55は、流路55aと流路55bとを含む。流路55aは、第1扁平伝熱管17aおよび第1扁平伝熱管17bが第3板状体33にそれぞれ挿通されている部分に位置する。流路55bは、第1扁平伝熱管17a側の流路55aと第1扁平伝熱管17b側の流路55aとの間に位置する。第1扁平伝熱管17a側の流路55aと第1扁平伝熱管17b側の流路55aとの間には、段差33b(Z方向)が設けられている。また、図9および図11に示すように、第1扁平伝熱管17a、17bは、段差33bの頂部(Z方向)よりも低い位置に配置されている。
 空洞53の底(Z方向)の位置は、流路55aの底(Z方向)の位置よりも高い位置に設定されている。空洞53の高さ(Z方向)を高さWFとし、流路55aの高さ(Z方向)を高さWSとすると、高さ関係としては、高さWF≧高さWSであってもよいし、高さWF≦高さWSであってもよい。なお、これ以外の構成については、図5等に示す列跨ぎヘッダ21と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 上述した室外熱交換器の列跨ぎヘッダ21では、実施の形態1において説明したように、ロウ材50が第1扁平伝熱管17bの流路18に侵入するのを阻止することができる効果に加えて、以下のような効果が得られる。上述した室外熱交換器の列跨ぎヘッダ21では、第1扁平伝熱管17a側の流路55aと第1扁平伝熱管17b側の流路55aとの間に段差33bが設けられていることで、冷媒等の滞留を抑制することができる。これについて、比較例に係る室外熱交換器の列跨ぎヘッダと比べて説明する。
 図12に示すように、比較例に係る室外熱交換器の列跨ぎヘッダ121では、第3板状体133の貫通孔133aによって冷媒の連通路155が形成されている。連通路155では、第1扁平伝熱管117aが挿入されている部分から第1扁平伝熱管117bが挿入されている部分にわたり、連通路155の底は同じ高さ(Z方向)にある。
 たとえば、室外熱交換器が蒸発器として機能する場合(暖房運転)には、第1扁平伝熱管117a、117bが配置されている主熱交換部では、冷媒は、第1扁平伝熱管117bを流れた後、列跨ぎヘッダ121を経て第1扁平伝熱管117aを流れることになる。このとき、図13に示すように、第1扁平伝熱管117bの流路118から列跨ぎヘッダ121に送り込まれた冷媒は、連通路155を流れ、第1扁平伝熱管117aの流路118に流れ込む。
 冷媒には、圧縮機に使用されている冷凍機油が混じっているため、列跨ぎヘッダ121では、冷媒とともに冷凍機油も連通路155に流れ込む。非相溶性の冷凍機油の場合には、連通路155における、第1扁平伝熱管117a、117bの流路118の位置よりも低い位置では、冷凍機油は、重力に逆らえずに滞留し、連通路155では、滞留し続ける冷凍機油の膜が形成される。このため、圧縮機の冷凍機油が減少、または、枯渇してしまい、冷凍サイクル装置の故障の原因になることが想定される。一方、このような冷凍機油の減少を避けようとして冷凍機油を充填しようとすると、コストの増加の一因になってしまう。
 比較例に係る室外熱交換器に対して、実施の形態2に係る室外熱交換器の列跨ぎヘッダ21では、第3板状体33の貫通孔33aによって形成される冷媒の連通路55は、流路55aと流路55bとを含み、第1扁平伝熱管17a側の流路55aと第1扁平伝熱管17b側の流路55aとの間に、段差33b(Z方向)が設けられている。第1扁平伝熱管17a、17bは、段差33bの頂部(Z方向)よりも低い位置に配置されている。
 第1扁平伝熱管17bが挿入されている部分の流路55aでは、X方向に間隔を隔てて、貫通孔33aの側壁面と段差33bの側壁面とが位置している。また、連通路55となる貫通孔33aは、第4板状体34(図10参照)に覆われている。このため、図14に示すように、第1扁平伝熱管17bの流路18から一方の流路55aへ送り込まれた冷媒は、第4板状体34に衝突して、上方(Z軸の正方向)と下方(Z軸の負方向)とに分かれて流れようとする。
 特に、下方に向かって流れようとする冷媒は、冷凍機油とともに、一方の流路55aの底付近に溜まっている冷凍機油が混じった冷媒をかき乱しながら、貫通孔33aの側壁面と段差33bの側壁面にそれぞれ沿うように上昇して、流路55bに流れ込む。流路55bに流れ込んだ冷媒と冷凍機油は、第1扁平伝熱管17aが挿入されている部分の他方の流路55aに流れ込み、その後、第1扁平伝熱管17aの流路18を流れることになる。
 これにより、一方の流路55aに滞留しようとする冷媒と冷凍機油とが流路55bを経て第1扁平伝熱管17aの流路18へ送り込まれて、連通路55に冷媒と冷凍機油とが滞留するのを抑制することができる。その結果、冷凍機油が減少することに伴う故障を抑制することができ、また、余分な冷媒または冷凍機油を充填する必要がなくなり、信頼性の向上およびコストの削減に寄与することができる。
 また、図10に示すように、上述した列跨ぎヘッダ21では、空洞53の底(Z方向)の位置は、流路55aの底(Z方向)の位置よりも高い位置に設定されている。これにより、空洞53に滞留しようとする冷媒または冷凍機油を、連通路55(流路55a)へ落下させることができ、冷媒または冷凍機油の滞留抑制に寄与することができる。
 実施の形態3.
 ここでは、分配器が板状積層体30から形成された室外熱交換器について、主熱交換用分配器を一例に挙げて説明する。
 図2および図15に示すように、板状積層体30から形成された主熱交換用分配器23(23b)は、第1板状体31、第2板状体32、第3板状体33、第5板状体35、第6板状体36、第7板状体37、第8板状体38および第9板状体39から形成されている。
 第1板状体31、第2板状体32および第3板状体33には、第1扁平伝熱管17bが挿入されている。第1扁平伝熱管17bが挿入されている部分の構造は、列跨ぎヘッダ21(図2および図5参照)の1列分の構造と同様の構造が形成されている。第1板状体31には、第1貫通孔第3部として貫通孔31cが形成され、第1貫通孔第4部として貫通孔31dが形成されている。貫通孔31cと貫通孔31dとは、第1扁平伝熱管17bの短径方向に互いに間隔を隔てて形成されている。
 第2板状体32には、第2貫通孔第3部として貫通孔32cが形成され、第2貫通孔第4部として貫通孔32dとが形成されている。第2板状体32は、第1板状体31に積層されている。貫通孔32cと貫通孔32dとは、第1扁平伝熱管17aの短径方向に互いに間隔を隔てて形成されている。貫通孔32c、32dの第2開口断面積としての開口断面積は、貫通孔31c、31dの第1開口断面積としての開口断面積よりも大きく設定されている。
 第3板状体33には、第3貫通孔第3部として貫通孔33cが形成され、第3貫通孔第4部として貫通孔33dが形成されている。貫通孔33cと貫通孔33dとは、第1扁平伝熱管17bの短径方向に互いに間隔を隔てて形成されている。第3板状体33は、第2板状体32に積層されている。
 第5板状体35には、第4貫通孔第1部として貫通孔35aが形成され、第4貫通孔第2部として貫通孔35bが形成されている。貫通孔35aと貫通孔35bとは、第1扁平伝熱管17bの短径方向に互いに間隔を隔てて形成されている。第5板状体35は、第3板状体33に積層されている。第5板状体35が第3板状体33に積層されることで、貫通孔33cが流路55cとして形成され、貫通孔33dが流路55dとして形成される。
 図15および図16に示すように、貫通孔35aは、第1扁平伝熱管17bの頂部よりも下に位置し、流路55cにおける下端部分に連通することが好ましい。貫通孔35bについても、同様に、流路55dにおける下端部分に連通することが好ましい。
 第6板状体36には、貫通孔36aが形成されている。第6板状体36は、第5板状体35に積層されている。第7板状体37には、連通路56に連通する貫通孔37aが形成されている。第7板状体37は、第6板状体36に積層されている。第7板状体37が第6板状体36に積層されることで、貫通孔36aが、第2連通路としての連通路56として形成される。連通路56は、貫通孔35aと貫通孔35bとに連通する。第8板状体38には、貫通孔37aに連通する貫通孔38aが形成されている。第8板状体38は、第7板状体37に積層されている。
 第9板状体39には、貫通孔38aに連通する貫通孔39aが形成されている。第9板状体39は、第8板状体38に積層されている。第9板状体39が第8板状体に積層されることで、貫通孔38aが連通路57として形成される。連通路57は、貫通孔37a等に連通する。
 次に、上述した室外熱交換器の動作の一例として、室外熱交換器9が蒸発器として機能する場合(暖房運転)である。図15では、室外熱交換器9が蒸発器として機能する場合の、主熱交換部11bに接続されている主熱交換用分配器23bにおける冷媒の流れが併せて示さされている。図2および図15に示すように、冷媒配管29を流れた冷媒は、貫通孔39aを通って連通路57に流れ込む。連通路57に流れ込んだ冷媒は、貫通孔37aを通って連通路56に流れ込む。
 連通路56に流れ込んだ冷媒は、貫通孔35aを通って流路55cに流れ込むとともに、貫通孔35bを通って流路55dに流れ込む。こうして、冷媒が分配される。流路55cに流れ込んだ冷媒は、第1扁平伝熱管17bの流路18を流れ、流路55dに流れ込んだ冷媒は、第1扁平伝熱管17bの流路18を流れることになる。
 上述した室外熱交換器の主熱交換用分配器23bでは、実施の形態1において説明したのと同様に、ロウ材50が第1扁平伝熱管17bの流路18に侵入するのを阻止することができる効果に加えて、以下のような効果が得られる。貫通孔35aは、第1扁平伝熱管17bの頂部よりも下に位置し、流路55cにおける下端部分に連通している。これにより、貫通孔35aから送り込まれる冷媒によって、流路55cに滞留しようとする冷媒または冷凍機油が拡散されて、第1扁平伝熱管17bの流路18に流れ込みやすくなる。
 なお、室外熱交換器9が凝縮器として機能する場合(冷房運転)の場合には、第1扁平伝熱管17bから送り出された冷媒または冷凍機油が、重力の影響を受けて、流路55cの下端部に滞留したとしても、流路55cの下端部と同じ高さで連通する貫通孔35aを通って、連通路56に流れ込みやすくなる。これより、冷媒または冷凍機油が滞留するのを抑制することができ、圧縮機の故障を未然に回避することができる。
 (変形例)
 上述した室外熱交換器の主熱交換用分配器23bでは、貫通孔35a、35bのそれぞれが、流路55c、55dにおける下端部分に連通している場合を例に挙げて説明した。貫通孔35a、35bの位置としては、すべて、流路55c、55dにおける下端部分に連通している必要は必ずしもなく、図17に示すように、たとえば、Z方向の対称性を考慮して、貫通孔35bを流路55dにおける上端部分に連通させるようにしてもよい。このような場合でも、貫通孔35aが流路55cにおける下端部分に連通している箇所があることで、冷媒または冷凍機油が滞留するのを抑制することができる効果が得られる。
 なお、各実施の形態において説明した室外熱交換器については、必要に応じて種々組み合わせることが可能である。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 (付記)
 実施の形態1~3は、以下の態様を含む。
 (付記1)
 第1貫通孔が形成された第1板状体、前記第1貫通孔に連通する第2貫通孔が形成されて前記第1板状体に積層される第2板状体、および、前記第2貫通孔に連通する第3貫通孔が形成されて前記第2板状体に積層される第3板状体を含む板状積層体と、
 前記第1貫通孔、前記第2貫通孔および前記第3貫通孔に挿入されて、接合材によって前記板状積層体に接続された扁平伝熱管と
を備え、
 前記第1貫通孔は第1開口断面積を有し、
 前記第2貫通孔は第2開口断面積を有し、
 前記第2開口断面積は、前記第1開口断面積よりも大きく、
 前記第2板状体と前記第3板状体とが接合している部分から前記第3板状体に挿入されている前記扁平伝熱管の先端までの長さは、前記第3板状体の厚さの少なくとも半分に相当する長さに設定された、熱交換器。
 (付記2)
 第1貫通孔が形成された第1板状体、前記第1貫通孔に連通する第2貫通孔が形成されて前記第1板状体に積層される第2板状体、および、前記第2貫通孔に連通する第3貫通孔が形成されて前記第2板状体に積層される第3板状体を含む板状積層体と、
 前記第1貫通孔、前記第2貫通孔および前記第3貫通孔に挿入されて、接合材によって前記板状積層体に接続された扁平伝熱管と
を備え、
 前記第1貫通孔は第1開口断面積を有し、
 前記第2貫通孔は第2開口断面積を有し、
 前記第2開口断面積は、前記第1開口断面積よりも大きく、
 前記第1板状体の厚さに相当する長さを長さLAとし、
 前記第1板状体と前記第2板状体とが接合している部分から前記第3板状体に挿入されている前記扁平伝熱管の先端までの長さを長さLBとし、
 前記扁平伝熱管から前記第3貫通孔の開口端までの長さを長さLCとすると、
 前記長さLB≧前記長さLC≧前記長さLA、
である、熱交換器。
 本発明は、主熱交換部および副熱交換部を備えた熱交換器に有効に利用される。
 1 冷凍サイクル装置、3 圧縮機、5 室内熱交換器、6 室内ファン、7 膨張弁、9 室外熱交換器、11、11a、11b 主熱交換部、12、12a、12b 副熱交換部、13 室外ファン、15 四方弁、16 冷媒配管、17、17a、17b 第1扁平伝熱管、18 流路、19、19a、19b 第2扁平伝熱管、21 列跨ぎヘッダ、23、23a 主熱交換器用分配器、23b 主熱交換器用分配器、25、25a 副熱交換器用分配器、25b 副熱交換器用分配器、27a 流出入管、27b 流出入管、29 冷媒配管、30 板状積層体、31 第1板状体、31a、31b 貫通孔、31c、31d 貫通孔、32 第2板状体、32a、32b 貫通孔、32c、32d 貫通孔、33 第3板状体、33a 貫通孔、33b 段差、33c、33d 貫通孔、34 第4板状体、34a、34b 貫通孔、35 第5板状体、35a、35b 貫通孔、36 第6板状体、36a、36b 貫通孔、37 第7板状体、37a、37b 貫通孔、38 第8板状体、38a 貫通孔、39 第9板状体、39a 貫通孔、50 ロウ材、53 空洞、55、56、57 連通路、55a、55b、55c、55d 流路。

Claims (11)

  1.  第1貫通孔が形成された第1板状体、前記第1貫通孔に連通する第2貫通孔が形成されて前記第1板状体に積層される第2板状体、および、前記第2貫通孔に連通する第3貫通孔が形成されて前記第2板状体に積層される第3板状体を含む板状積層体と、
     前記第1貫通孔、前記第2貫通孔および前記第3貫通孔に挿入されて、接合材によって前記板状積層体に接続された扁平伝熱管と
    を備え、
     前記第1貫通孔は第1開口断面積を有し、
     前記第2貫通孔は第2開口断面積を有し、
     前記第2開口断面積は、前記第1開口断面積よりも大きく、
     前記第1板状体と前記第2板状体とが接合している部分から前記第3板状体に挿入されている前記扁平伝熱管の先端までの距離は、少なくとも4mmに設定された、熱交換器。
  2.  前記扁平伝熱管は、第1方向に長径を有するとともに、前記第1方向と交差する第2方向に短径を有し、
     前記扁平伝熱管は、前記第2方向が高さ方向に対応する態様で配置され、
     前記第1貫通孔における前記第2方向の下端に位置する部分は、前記第2貫通孔における前記第2方向の下端に位置する部分よりも高い位置に配置されている、請求項1記載の熱交換器。
  3.  前記板状積層体は列跨ぎヘッダであり、
     前記第1板状体には、前記第1貫通孔として、前記第1方向に互いに間隔を隔てられた第1貫通孔第1部および第1貫通孔第2部が形成され、
     前記第2板状体には、前記第2貫通孔として、前記第1方向に互いに間隔を隔てられた第2貫通孔第1部および第2貫通孔第2部が形成され、
     前記第3板状体には、前記第3貫通孔として、前記第2貫通孔第1部および前記第2貫通孔第2部に連通する第3貫通孔第1部が形成され、
     前記板状積層体は、前記第3貫通孔第1部を覆うように、前記第3板状体に積層される第4板状体を含む、請求項2記載の熱交換器。
  4.  前記扁平伝熱管は、
     前記第1貫通孔第1部、前記第2貫通孔第1部および前記第3貫通孔第1部に挿入される扁平伝熱管第1部と、
     前記第1貫通孔第2部、前記第2貫通孔第2部および前記第3貫通孔第1部に挿入される扁平伝熱管第2部と
    を含み、
     前記第3貫通孔第1部により形成される、前記扁平伝熱管第1部と前記扁平伝熱管第2部とを連通する第1連通路では、前記扁平伝熱管第1部が挿入されている部分と前記扁平伝熱管第2部が挿入されている部分との間に、前記第2方向の上部に向かって突出した段差部が形成された、請求項3記載の熱交換器。
  5.  前記板状積層体は分配器であり、
     前記第1板状体には、前記第1貫通孔として、前記第2方向に距離を隔てられた第1貫通孔第3部および第1貫通孔第4部が形成され、
     前記第2板状体には、前記第2貫通孔として、前記第2方向に距離を隔てられた第2貫通孔第3部および第2貫通孔第4部が形成され、
     前記第3板状体には、前記第3貫通孔として、前記第2方向に距離を隔てられた第3貫通孔第3部および第3貫通孔第4部が形成され、
     前記板状積層体は、前記第3貫通孔に連通する第4貫通孔が形成されて前記第3板状体に積層される第5板状体を含み、
     前記第5板状体には、前記第4貫通孔として、
     前記第3貫通孔第3部に連通する第4貫通孔第1部と、
     前記第3貫通孔第4部に連通する第4貫通孔第2部と
    が形成され、
     前記板状積層体は、前記第4貫通孔第1部と前記第4貫通孔第2部とを連通する第2連通路が形成されて前記第5板状体に積層される第6板状体を含む、請求項2記載の熱交換器。
  6.  前記扁平伝熱管の流路は、前記第4貫通孔における前記第2方向の頂部よりも高い位置にある、請求項5記載の熱交換器。
  7.  前記第4貫通孔第1部は、前記第3貫通孔第3部における前記第2方向の下部の部分に連通し、
     前記第4貫通孔第2部は、前記第3貫通孔第4部における前記第2方向の下部の部分に連通する、請求項5記載の熱交換器。
  8.  前記第4貫通孔第1部は、前記第3貫通孔第3部における前記第2方向の下部の部分に連通し、
     前記第4貫通孔第2部は、前記第3貫通孔第4部における前記第2方向の上部の部分に連通する、請求項5記載の熱交換器。
  9.  第1貫通孔が形成された第1板状体、前記第1貫通孔に連通する第2貫通孔が形成されて前記第1板状体に積層される第2板状体、および、前記第2貫通孔に連通する第3貫通孔が形成されて前記第2板状体に積層される第3板状体を含む板状積層体と、
     前記第1貫通孔、前記第2貫通孔および前記第3貫通孔に挿入されて、接合材によって前記板状積層体に接続された扁平伝熱管と
    を備え、
     前記第1貫通孔は第1開口断面積を有し、
     前記第2貫通孔は第2開口断面積を有し、
     前記第2開口断面積は、前記第1開口断面積よりも大きく、
     前記扁平伝熱管は、第1方向に長径を有するとともに、前記第1方向と交差する第2方向に短径を有し、
     前記扁平伝熱管は、前記第2方向が高さ方向に対応する態様で配置され、
     前記第1貫通孔における前記第2方向の下端に位置する部分は、前記第2貫通孔における前記第2方向の下端に位置する部分よりも高い位置に配置されている、熱交換器。
  10.  第1貫通孔が形成された第1板状体、前記第1貫通孔に連通する第2貫通孔が形成されて前記第1板状体に積層される第2板状体、および、前記第2貫通孔に連通する第3貫通孔が形成されて前記第2板状体に積層される第3板状体を含む板状積層体と、
     前記第1貫通孔、前記第2貫通孔および前記第3貫通孔に挿入されて、接合材によって前記板状積層体に接続された扁平伝熱管と
    を備え、
     前記扁平伝熱管は、第1方向に長径を有するとともに、前記第1方向と交差する第2方向に短径を有し、
     前記扁平伝熱管は、前記第2方向が高さ方向に対応する態様で配置され、
     前記板状積層体はヘッダであり、
     前記第1貫通孔は第1開口断面積を有し、
     前記第2貫通孔は第2開口断面積を有し、
     前記第2開口断面積は、前記第1開口断面積よりも大きく、
     前記第1板状体には、前記第1貫通孔として、前記第1方向に互いに間隔を隔てられた第1貫通孔第1部および第1貫通孔第2部が形成され、
     前記第2板状体には、前記第2貫通孔として、前記第1方向に互いに間隔を隔てられた第2貫通孔第1部および第2貫通孔第2部が形成され、
     前記第3板状体には、前記第3貫通孔として、第3貫通孔第1部が形成され、
     前記第3貫通孔第1部により形成される、前記第2貫通孔第1部と前記第2貫通孔第2部とを連通する第1連通路では、前記第2貫通孔第1部に連通する部分と前記第2貫通孔第2部に連通する部分との間に、前記第2方向の上部に向かって突出した段差部が形成された、熱交換器。
  11.  請求項1~10のいずれか1項に記載の熱交換器を備えた、冷凍サイクル装置。
PCT/JP2018/014773 2018-04-06 2018-04-06 熱交換器およびそれを備えた冷凍サイクル装置 WO2019193757A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/014773 WO2019193757A1 (ja) 2018-04-06 2018-04-06 熱交換器およびそれを備えた冷凍サイクル装置
JP2020511579A JP6896160B2 (ja) 2018-04-06 2018-04-06 熱交換器およびそれを備えた冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014773 WO2019193757A1 (ja) 2018-04-06 2018-04-06 熱交換器およびそれを備えた冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019193757A1 true WO2019193757A1 (ja) 2019-10-10

Family

ID=68100668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014773 WO2019193757A1 (ja) 2018-04-06 2018-04-06 熱交換器およびそれを備えた冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP6896160B2 (ja)
WO (1) WO2019193757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166612A1 (ja) * 2022-03-02 2023-09-07 三菱電機株式会社 熱交換器および熱交換器の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162917A1 (en) * 2005-01-27 2006-07-27 Taeyoung Park Heat exchanger
JP2014052135A (ja) * 2012-09-07 2014-03-20 Daikin Ind Ltd 冷媒熱交換器
WO2017175346A1 (ja) * 2016-04-07 2017-10-12 三菱電機株式会社 分配器、熱交換器、空気調和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474632B (zh) * 2015-12-21 2020-01-07 三菱电机株式会社 热交换器及制冷循环装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162917A1 (en) * 2005-01-27 2006-07-27 Taeyoung Park Heat exchanger
JP2014052135A (ja) * 2012-09-07 2014-03-20 Daikin Ind Ltd 冷媒熱交換器
WO2017175346A1 (ja) * 2016-04-07 2017-10-12 三菱電機株式会社 分配器、熱交換器、空気調和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166612A1 (ja) * 2022-03-02 2023-09-07 三菱電機株式会社 熱交換器および熱交換器の製造方法

Also Published As

Publication number Publication date
JP6896160B2 (ja) 2021-06-30
JPWO2019193757A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2015004719A1 (ja) 積層型ヘッダー、熱交換器、空気調和装置、及び、積層型ヘッダーの板状体と管とを接合する方法
US9657996B2 (en) Flat tube heat exchanger and outdoor unit of air-conditioning apparatus including the heat exchanger
JP6116702B2 (ja) 積層型ヘッダー、熱交換器、熱交換器の製造方法、及び、空気調和装置
US9546824B2 (en) Heat exchanger
US20120103581A1 (en) Header unit and heat exchanger having the same
WO2017221401A1 (ja) 冷媒分岐分配器およびそれを備えた熱交換器ならびに冷凍サイクル装置
JPWO2015189990A1 (ja) 熱交換器
JP2014055736A (ja) 熱交換器
WO2019193757A1 (ja) 熱交換器およびそれを備えた冷凍サイクル装置
JP5962033B2 (ja) 熱交換器及びそれを備えた空気調和機
EP3054258B1 (en) Heat exchanger and heat pump device
JPWO2017158795A1 (ja) 熱交換器および空気調和機
JP6198976B2 (ja) 熱交換器、及び冷凍サイクル装置
JP2014066502A (ja) 熱交換器および冷凍装置
JP7086264B2 (ja) 熱交換器、室外機、及び冷凍サイクル装置
JP6716016B2 (ja) 熱交換器およびそれを備えた冷凍サイクル装置
JP7210744B2 (ja) 熱交換器及び冷凍サイクル装置
JP6171765B2 (ja) 熱交換器
JP2022148602A (ja) 熱交換器
JP6816411B2 (ja) 熱交換器
JP6582373B2 (ja) 熱交換器
JP2022044306A (ja) 積層型ヘッダ、熱交換器、及び冷凍装置
JP2022044417A (ja) 積層型ヘッダ、熱交換器、及び冷凍装置
JP7106814B2 (ja) 熱交換器
JP2020165579A (ja) 熱交換器分流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913449

Country of ref document: EP

Kind code of ref document: A1