WO2019114499A1 - 玻璃组合物 - Google Patents

玻璃组合物 Download PDF

Info

Publication number
WO2019114499A1
WO2019114499A1 PCT/CN2018/116148 CN2018116148W WO2019114499A1 WO 2019114499 A1 WO2019114499 A1 WO 2019114499A1 CN 2018116148 W CN2018116148 W CN 2018116148W WO 2019114499 A1 WO2019114499 A1 WO 2019114499A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
cao
mgo
modulus
sio
Prior art date
Application number
PCT/CN2018/116148
Other languages
English (en)
French (fr)
Inventor
毛露路
匡波
李小春
孙伟
刘振禹
郝良振
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to US16/759,766 priority Critical patent/US11440835B2/en
Priority to JP2020524065A priority patent/JP7019040B2/ja
Publication of WO2019114499A1 publication Critical patent/WO2019114499A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass

Definitions

  • the present invention relates to a glass composition, and more particularly to a glass composition which is suitable for the production of a hard disk substrate and a semiconductor package in the field of a Young's modulus and a specific modulus.
  • the reading speed of the hard disk is related to the speed of the hard disk.
  • the common speed of commercial hard disks is between 5200RPM and 10000RPM.
  • the specific modulus of the material used for the hard disk with a rotational speed of 5200RPM-10000RPM is basically between 28-32. If the rotational speed of the hard disk needs to exceed 12000RPM or even 15000RPM, the specific elastic modulus of the glass material used must be over è34.
  • the increase in the speed of the hard disk also causes a problem of a sharp increase in the wear of the motor spindle, which requires that the substrate of the high-speed hard disk needs to be made thinner to reduce the weight, thereby reducing the wear of the motor spindle to improve the life of the hard disk.
  • the mainstream hard disk substrate has a Young's modulus of about 80 GPa and a design thickness of about 0.65 mm. To reduce the thickness of the hard disk substrate to 0.4 mm or even thinner, it is necessary to have a substrate material having a Young's modulus of 100 GPa or more.
  • the storage density of the hard disk is getting higher and higher, which requires sputtering of the magnetic material onto the substrate material at a higher temperature, and thus the hard disk substrate material is required to have higher heat resistance.
  • the transition temperature (Tg temperature) of the glass material needs to be higher than 750 ° C to meet the requirements of the next generation of hard disk technology.
  • the glass material contains alkali metal ions such as Na + , K + , Li + , etc., these alkali metal ions are easily processed at high temperature. Contaminated magnetic materials are precipitated during the process.
  • the prior art generally employs an SiO 2 -Al 2 O 3 -RO (RO means an alkaline earth metal oxide) alkali-free glass system.
  • the glass system disclosed in CN1207086A can achieve a density of 3.00 or less and a specific elastic modulus of about 36, but the high temperature viscosity of the glass of the system is very large, and the viscosity at a temperature of 1400 ° C is generally 400 poise to 600 poise, which is required to be as high as in the production process.
  • the process temperature of 1550 ° C - 1600 ° C and the longer clarification process eliminate bubbles, which means lower yield, shorter furnace life and higher electrical energy consumption.
  • the use of As 2 O 3 as a clarifying agent for such a glass to obtain good air bubbles is not allowed by current environmental requirements.
  • the presence of air bubbles in the hard disk substrate may cause a center of gravity deviation during the reading process of the rotational speed of up to 5200 RPM-15000 RPM, resulting in a fatal problem. Therefore, the hard disk substrate glass has a high bubble requirement, and generally requires a bubble degree in the glass blank to reach A0 level. And above can meet the requirements. It is very difficult for the glass described in the above documents to reach the A0 level in actual production.
  • the technical problem to be solved by the present invention is to provide a glass composition having a Young's modulus and a high specific modulus.
  • the technical solution adopted by the present invention to solve the technical problem is: a glass composition whose composition is expressed by weight percentage, and contains: SiO 2 : 30-46%, B 2 O 3 : 0-6%, Al 2 O 3 : 10- 30%, CaO: 4-20%, MgO: 2-15%, and Y 2 O 3 : 13-32%.
  • composition thereof is expressed by weight percentage, and further contains: TiO 2 : 0-7%, ZrO 2 : 0-5%, SrO: 0-5%, BaO: 0-5%, ZnO: 0-5%, La 2 O 3 : 0-15%, Sb 2 O 3 : 0-2%, CeO 2 : 0-2%, SnO 2 : 0-2%.
  • a glass composition whose composition is expressed by weight percentage: SiO 2 : 30-46%, B 2 O 3 : 0-6%, Al 2 O 3 : 10-30%, CaO: 4-20%, MgO: 2 -15%, Y 2 O 3 : 13-32%, TiO 2 : 0-7%, ZrO 2 : 0-5%, SrO: 0-5%, BaO: 0-5%, ZnO: 0-5% La 2 O 3 : 0-15%, Sb 2 O 3 : 0-2%, CeO 2 : 0-2%, and SnO 2 : 0-2%.
  • composition content satisfies one or more of the following eight conditions:
  • La 2 O 3 /Y 2 O 3 is not more than 0.8.
  • composition content satisfies one or more of the following eight conditions:
  • Al 2 O 3 /TiO 2 is 6-30;
  • La 2 O 3 /Y 2 O 3 is not more than 0.4.
  • composition content satisfies one or more of the following eight conditions:
  • Al 2 O 3 /TiO 2 is 8-20;
  • La 2 O 3 /Y 2 O 3 is not more than 0.15.
  • the glass has a specific modulus of 34 or more, preferably 35 or more, more preferably 36 or more, and a Young's modulus of 100 to 130 GPa, preferably 105 to 125 GPa, and more preferably 110 to 120 GPa.
  • the Tg temperature of the glass is 740 ° C or higher, preferably 750 ° C or higher, more preferably 760 ° C or higher; and the anti-crystallization property is B or more, preferably A or more.
  • the viscosity of the glass at 1400 ° C is not more than 150 poise, preferably not more than 130 poise, further preferably not more than 110 poise; the degree of glass bubble is at the A0 level and above, preferably at the A00 level and above.
  • the hard disk substrate is composed of the above glass composition.
  • the above glass compositions are useful in semiconductor sealing applications.
  • the beneficial effects of the invention are: using a common chemical raw material, by reasonably arranging the content of each component, the specific elastic modulus of the glass of the invention is higher than 34, the Young's modulus is above 100 GPa, the heat resistance is good, and the chemical stability is achieved. Good properties, good anti-crystallization properties, low viscosity at high temperature, easy to eliminate bubbles, especially suitable for the production of hard disk substrates and semiconductor packaging.
  • SiO 2 is a main network forming body of glass and is a skeleton constituting glass.
  • the content of SiO 2 in the present invention is limited to 30 to 46%, preferably 32 to 42%, and more preferably 34 to 40%.
  • the glass of the system of the invention belongs to alkali-free glass, and the raw material has a high dissolution temperature.
  • the glass raw material tends to generate a large amount of bubble accumulation in the chemical pool.
  • the bubble accumulation is serious, the glass liquid overflows the feeding pool, causing the feeding process and the subsequent homogenization, clarification, and molding process to stop in the continuous smelting process.
  • adding a certain amount of B 2 O 3 will reduce the bubble accumulation of the raw material in the initial melting stage, which is beneficial to the smooth progress of the feeding process, especially when the content is above 0.5%, especially when the content is 0.5% or more.
  • the content of B 2 O 3 is from 0 to 6%, preferably from 0.5 to 6%, more preferably from 1 to 5%.
  • the addition of Al 2 O 3 to the glass of the system of the invention can increase the Young's modulus of the glass, and at the same time reduce the density of the glass and increase the specific modulus of the glass. If the content is less than 10%, the specific modulus and Young's modulus of the glass will be lower than the design expectation, and the density of the glass will increase; if the content is higher than 30%, since Al 2 O 3 is very insoluble, The melting property of the glass raw material is rapidly lowered, and the high temperature viscosity of the glass is sharply increased. Therefore, the amount of Al 2 O 3 added is limited to 10-30%, preferably 15-28%, and further preferably 19-25%.
  • SiO 2 and Al 2 O 3 are insoluble oxides, and are also a key factor causing bubble accumulation in the chemical pool.
  • the inventors found through experiments that when the ratio of the total amount of SiO 2 and Al 2 O 3 to the ratio of B 2 O 3 (SiO 2 +Al 2 O 3 )/B 2 O 3 is between 10 and 80, the glass is in progress.
  • the bubble accumulation phenomenon substantially disappears while the glass maintains high heat resistance, and (SiO 2 +Al 2 O 3 )/B 2 O 3 is preferably 15-70, and more preferably 20-60.
  • Al 2 O 3 /B 2 O 3 is preferably 4-36, more preferably 6-30, still more preferably 8-20.
  • the content of TiO 2 to the glass can lower the high temperature viscosity of the glass and increase the specific modulus and Young's modulus of the glass. If the content exceeds 7%, the anti-crystallization ability of the glass will rapidly decrease, so the TiO 2 in the present invention The content is limited to 7% or less. Further research found that if the TiO 2 content is less than 0.5%, the effect of increasing the Young's modulus, the specific modulus, and lowering the high temperature viscosity is not significant. Therefore, the content thereof is preferably from 0.5 to 7%, more preferably from 1 to 6%.
  • the content of Al 2 O 3 since the content of Al 2 O 3 is large, the content of TiO 2 can promote the change of the structure of Al 2 O 3 , thereby causing a change in the specific modulus and the anti-crystallization property of the glass. If the ratio of Al and Al 2 O 3 TiO 2 in 2 O 3 / TiO 2 greater than 41, decrease the devitrification properties of the glass, the glass high temperature viscosity increased; when the Al 2 O 3 / TiO 2 is less than 3, the ratio of the glass The coefficient of elasticity will drop sharply, and the anti-crystallization property of the glass will also drop sharply. Therefore, Al 2 O 3 /TiO 2 is limited to 3 to 41, preferably 6 to 30, further preferably 8 to 20.
  • CaO, MgO, SrO and BaO belong to alkaline earth metal oxides.
  • the addition of an appropriate amount of alkaline earth metal oxides to the glass can increase the Young's modulus of the glass, lower the high temperature viscosity of the glass, balance the glass components, and improve the melting properties of the glass.
  • too much alkaline earth metal oxide will reduce the anti-crystallization property of the glass.
  • the anti-crystallization property of the glass is very important for the hard disk substrate glass because the softening of the glass is required in the process of making the blank of the hard disk substrate. The glass block is softened and pressed into a thin blank near the point. If the anti-crystallization property of the glass is not good, crystallized particles are generated in the glass. The physical properties of the crystallization particles are very different from those of the surrounding glass, which causes defects in the process and the surface roughness of the substrate is not required.
  • the above four alkaline earth metal oxides have in common that they can lower the viscosity at high temperature and improve the melting property of the glass, their ability to lower the viscosity at high temperature affects the degree of crystallization resistance of the glass, the degree of influence on the density of the glass, and the influence on the density of the glass.
  • the degree of improvement of the modulus and its heat resistance is inconsistent and has a large difference.
  • the addition of MgO to glass can increase the Young's modulus and specific modulus of the glass, and lower the high temperature viscosity of the glass.
  • the content is less than 2%, the density is lowered and the Young's modulus is increased.
  • the effect of the specific modulus is not obvious; if the amount exceeds 15%, the anti-crystallization property of the glass is significantly reduced. Therefore, the content thereof is limited to 2-15%, preferably 3-10%, and further preferably 4-8%.
  • the effect of CaO in reducing the high temperature viscosity of these four alkaline earth metal oxides is most pronounced, and at the same time it has the effect of increasing the Young's modulus of the glass.
  • the addition amount is less than 4%, the specific modulus and Young's modulus of the glass fail to meet the design requirements, and the effect of lowering the high temperature viscosity of the glass is not obvious; if the content is higher than 20%, the glass is The anti-crystallization property is drastically reduced, and the chemical stability of the glass, especially the water resistance, is rapidly lowered. Therefore, the content thereof is limited to 4 to 20%, preferably 5 to 15%, and more preferably 6 to 10%.
  • the total content of MgO and CaO in the glass composition of the present invention exceeds 21%, the heat resistance and the anti-crystallization ability of the glass are rapidly lowered, preferably not more than 19%, further preferably not more than 18%. %.
  • the ratio CaO/MgO of CaO to MgO is more than 8.0, the specific modulus of glass will decrease rapidly; if CaO/MgO is less than 0.8, the anti-crystallization property of glass will decrease rapidly and affect the stability of glass formation. Therefore, CaO/MgO is limited to 0.8 to 8.0, preferably 0.9 to 5.0, and further preferably 1.0 to 2.5.
  • the ability of SrO to increase the Young's modulus of glass and reduce the density of glass is lower than that of CaO and MgO.
  • a small amount of addition can improve the anti-crystallization property of glass. If the content is higher than 5%, the anti-crystallization ability of glass decreases, and it is chemically stable. The decline in sex and the cost of glass have increased significantly. Therefore, the content thereof is limited to 0 to 5%, preferably 0 to 3%, and further preferably is not added.
  • BaO significantly increases the density of the glass relative to the other three alkaline earth metal oxides, and at the same time causes a significant decrease in the chemical stability of the glass.
  • a small amount of addition will increase the Young's modulus and anti-crystallization property of the glass, its content exceeds 5%, which will significantly increase the density of the glass, and the chemical stability, especially the water resistance, will also decrease significantly. Therefore, the content thereof is limited to 0 to 5%, preferably 0 to 3%, and further preferably is not added.
  • the addition of Y 2 O 3 to the glass can significantly increase the specific modulus, Young's modulus and heat resistance of the glass while reducing the high temperature viscosity of the glass.
  • the content exceeds 32%, the anti-crystallization property of the glass is significantly decreased, and the density is also significantly increased; if the content is less than 13%, the high-temperature viscosity of the glass is not significantly decreased, and the specific modulus and Young's modulus of the glass are Heat resistance does not meet design requirements. Therefore, the content thereof is limited to 13 to 32%, preferably 15 to 30%, further preferably 18 to 26%.
  • the inventors have found that the total content of CaO and MgO and the relative content of Y 2 O 3 promote the change of the structure of B 2 O 3 , Al 2 O 3 and TiO 2 in the glass, and thus the specific modulus and heat resistance of the glass. Sexual and anti-crystallization properties have a great impact.
  • the ratio of the total content of CaO and MgO to the ratio of Y 2 O 3 (CaO+MgO)/Y 2 O 3 is more than 1.0, the glass specific modulus and heat resistance rapidly decrease; when (CaO+MgO)/Y 2 O 3 When it is less than 0.2, the anti-crystallization ability of the glass rapidly decreases. Therefore, (CaO+MgO)/Y 2 O 3 is limited to 0.2 to 1.0, preferably 0.3 to 0.9, and more preferably 0.4 to 0.8.
  • the three oxides of CaO, MgO and Y 2 O 3 have the ability to increase the specific modulus and Young's modulus and reduce the high temperature viscosity of the glass.
  • the inventors have found that the total of the above three oxides and the relative content of SiO 2 . There is a strong correlation between the high temperature viscosity of glass and the heat resistance of glass.
  • (CaO+MgO+Y 2 O 3 )/SiO 2 is greater than 1.5, the heat resistance of the glass will decrease rapidly; if (CaO+MgO+Y 2 O 3 ) / SiO 2 is less than 0.5, and the high temperature viscosity of the glass does not meet the design requirements. Therefore, (CaO+MgO+Y 2 O 3 )/SiO 2 is limited to 0.5 to 1.5, preferably 0.7 to 1.4, and further preferably 0.8 to 1.3.
  • a small amount of ZrO 2 added to the glass improves the anti-crystallization ability of the glass while enhancing the chemical stability of the glass.
  • the content thereof is limited to 0 to 5%, preferably 0 to 3%, further preferably 0 to 2%, and still more preferably not added.
  • the ZnO content is limited to 0 to 5%, preferably 0 to 3%, more preferably 0 to 2%, and further preferably no addition.
  • the addition of a suitable amount of La 2 O 3 to the glass can increase the Young's modulus of the glass, while increasing the Tg temperature of the glass, improving the heat resistance of the glass, and lowering the high temperature viscosity of the glass.
  • the content exceeds 15%, the density of the glass will rise significantly, so that the specific modulus of the glass will not meet the design requirements, and the anti-crystallization property of the glass will be significantly reduced. Therefore, the content thereof is limited to 0-15%, preferably 0-9%, more preferably 0-5%, and further preferably no addition.
  • La 2 O 3 and Y 2 O 3 although the Young's modulus can enhance the glass, but when the ratio of La 2 O 3 Y 2 O 3 is La 2 O 3 / Y 2 O 3 is greater than 0.8, the density of the glass Will rise rapidly, resulting in a rapid decrease in the specific modulus of the glass, while the anti-crystallization properties of the glass will also drop rapidly. Therefore, La 2 O 3 /Y 2 O 3 is not more than 0.8, preferably not more than 0.4, further preferably not more than 0.15.
  • a clarifying agent having a total amount of 0 to 2% may be introduced into the glass of the present invention, preferably 0-1%, further preferably 0-0.5, and the clarifying agent may be one of Sb 2 O 3 , CeO 2 , SnO 2 Kind or more.
  • optical glass of the present invention The performance of the optical glass of the present invention will be described below:
  • the Young's modulus E of the glass is ultrasonically tested for the longitudinal wave velocity and the transverse wave velocity, and then calculated according to the following formula.
  • E is the Young's modulus, Pa
  • G is the shear modulus, Pa
  • V T is the shear wave velocity, m/s
  • V S is the shear wave velocity, m/s
  • is the glass density, g/cm 3 ;
  • the density of the glass is tested according to the method specified in GB/T7962.20-2010.
  • the specific modulus of the glass Young's modulus / density.
  • the Tg temperature of the glass is tested according to the method specified in GB/T7962.16-2010.
  • the high temperature viscosity of the glass was tested by the rotation method using a THETA Rheotronic II high temperature viscometer, and the numerical unit is dPaS (poise). The smaller the value, the smaller the viscosity.
  • the anti-crystallization properties of the glass were tested by the following methods:
  • the experimental sample is processed into 20*20*10mm size, polished on both sides, and the sample is placed in a crystallizing furnace with a temperature of Tg+200°C for 30 minutes. After being taken out and cooled, the two large faces are polished and judged according to the following table. The crystallization properties of the glass are best in class A and the worst in class E.
  • the bubble degree of the glass is measured and classified according to the method specified in GB/T7962.8-2010.
  • the glass of the present invention has been tested to have a specific modulus of 34 or more, preferably 35 or more, more preferably 36 or more; a Young's modulus of 100 to 130 GPa, preferably 105 to 125 GPa, further preferably 110 to 120 GPa; and a Tg temperature of 740 ° C or higher, preferably 750 ° C or higher, more preferably 760 ° C or higher; 1400 ° C viscosity not more than 150 poise, preferably not more than 130 poise, further preferably not more than 110 poise; pressure type anti-crystallization property is B And above, it is preferably A or more; the degree of bubble is at the A0 level and above, and is preferably A00 or higher.
  • the glass of the present invention is particularly suitable for use in constituting a hard disk substrate and for semiconductor sealing applications because of the above properties.
  • Examples 1-50 were weighed and mixed with common raw materials (such as oxides, hydroxides, carbonates, etc.) for the glass according to the ratios of the various examples shown in the table. Nitrate, etc., the mixed raw materials are placed in a platinum crucible, melted at 1400-1450 ° C for 6-8 hours, and after clarification, stirring and homogenization, a homogeneous molten glass free from bubbles and containing no undissolved matter is obtained. The molten glass is cast in a mold and annealed.
  • common raw materials such as oxides, hydroxides, carbonates, etc.
  • Table 1-5 shows the composition (% by weight), Young's modulus (E), specific modulus (E/ ⁇ ), Tg temperature (Tg), and high temperature at 1400 ° C of Examples 1 to 50 of the present invention.
  • the viscosity (K), the anti-crystallization property grade (N), the bubble degree (Q), and the value of (SiO 2 +Al 2 O 3 )/B 2 O 3 are represented by A, and Al 2 O 3 /B 2 O 3
  • the value is represented by B, the value of Al 2 O 3 /TiO 2 is represented by C, the value of CaO+MgO is represented by D, the value of CaO/MgO is represented by F, and the value of (CaO+MgO)/Y 2 O 3 is represented by G.
  • the value of (CaO+MgO+Y 2 O 3 )/SiO 2 is represented by M, and the value of La 2 O 3 /Y 2 O 3 is represented by H.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种杨氏模量和比弹系数高的玻璃组合物。其组成按重量百分比表示含有:SiO 2:30-46%、B 2O 3:0-6%、Al 2O 3:10-30%、CaO:4-20%、MgO:2-15%、Y 2O 3:13-32%。该玻璃的比弹系数高于34,杨氏模量在100GPa以上,耐热性好,化学稳定性好,压型抗析晶性能好,高温粘度小,容易排除气泡,特别适用于制作硬盘基板以及半导体封装。

Description

玻璃组合物 技术领域
本发明涉及一种玻璃组合物,尤其是涉及一种杨氏模量和比弹系数高,适用于制作硬盘基板以及半导体封装领域的玻璃组合物。
背景技术
硬盘的读取速度是和硬盘的转速相关的,硬盘的转速越快,读取速度越高。目前商用的硬盘普遍转速在5200RPM-10000RPM之间,若要继续提升转速,必须提升硬盘基板材料的比弹系数,原因在于用作制作基片的材料的比弹系数越大,硬盘基片在高速旋转中产生的变形就越小,因此硬盘就能达到更高的转速。由于比弹系数是材料杨氏模量和密度之比(比弹系数=杨氏模量/密度),因此,想要提升比弹系数,材料就需要更大的杨氏模量和更小的密度。目前转速为5200RPM-10000RPM的硬盘所用的材料的比弹系数基本在28-32之间,若硬盘转速需要超过12000RPM甚至是15000RPM以上,所用玻璃材料的比弹系数需要超过34才能满足。
硬盘转速的提升也带来电机主轴磨损急剧加大的问题,这就要求高转速硬盘的基片需要做得更薄以降低重量,从而降低电机主轴的磨损来提升硬盘的寿命。目前主流的硬盘基片的杨氏模量为80GPa左右,设计厚度为0.65mm左右。若要将硬盘基片厚度减薄到0.4mm甚至更薄,那就需要基片材料具备100GPa以上的杨氏模量。
目前硬盘的存储密度越来越高,这就需要在更高的温度下将磁性材料溅镀到基板材料上,因此要求硬盘基板材料具备更高的耐热性。通常认为玻璃材料的转变温度(Tg温度)需要高于750℃才能满足未来新一代硬盘技术的要求。另外,在硬盘的制作高温流程中,尤其是在未来温度更高的工艺条件下,若玻璃材料中含有碱金属离子,如Na +、K +、Li +等,这些碱金属离子容易在高温加工过程中析出污染磁性材料。
目前现有技术通常采用SiO 2-Al 2O 3-RO(RO是指碱土金属氧化物)无碱玻璃系统。CN1207086A公开的玻璃系统虽然能实现3.00以下的密度以及36左右的比弹系数,但是此体系玻璃的高温粘度非常大,在1400℃温度的粘 度一般在400泊-600泊,在生产过程中需要高达1550℃-1600℃的工艺温度和较长时间的澄清过程排除气泡,这就意味着更低的良品率,更短的炉体寿命及其更高的电能消耗。更为重要的是,此类玻璃要得到良好的气泡度需要采用As 2O 3作为澄清剂,这是目前环保要求所不允许的。硬盘基板中存在气泡对于转速高达5200RPM-15000RPM的读取过程中会产生重心偏离,导致致命的问题,所以硬盘基板玻璃对气泡度要求很高,一般来说需要玻璃毛坯中的气泡度达到A0级及其以上才能满足要求。上述文献中描述的玻璃在实际生产中气泡度达到A0级别是非常困难的。
发明内容
本发明所要解决的技术问题是提供一种杨氏模量和比弹系数高的玻璃组合物。
本发明解决技术问题所采用的技术方案是:玻璃组合物,其组成按重量百分比表示,含有:SiO 2:30-46%、B 2O 3:0-6%、Al 2O 3:10-30%、CaO:4-20%、MgO:2-15%、Y 2O 3:13-32%。
进一步的,其组成按重量百分比表示,还含有:TiO 2:0-7%、ZrO 2:0-5%、SrO:0-5%、BaO:0-5%、ZnO:0-5%、La 2O 3:0-15%、Sb 2O 3:0-2%、CeO 2:0-2%、SnO 2:0-2%。
玻璃组合物,其组成按重量百分比表示为:SiO 2:30-46%、B 2O 3:0-6%、Al 2O 3:10-30%、CaO:4-20%、MgO:2-15%、Y 2O 3:13-32%、TiO 2:0-7%、ZrO 2:0-5%、SrO:0-5%、BaO:0-5%、ZnO:0-5%、La 2O 3:0-15%、Sb 2O 3:0-2%、CeO 2:0-2%、SnO 2:0-2%。
进一步的,按重量百分比表示,其组成含量满足以下8种条件中的一种或一种以上:
(1)(SiO 2+Al 2O 3)/B 2O 3为10-80;
(2)Al 2O 3/B 2O 3为4-36;
(3)Al 2O 3/TiO 2为3-41;
(4)CaO+MgO不超过21%;
(5)CaO/MgO为0.8-8.0;
(6)(CaO+MgO)/Y 2O 3为0.2-1.0;
(7)(CaO+MgO+Y 2O 3)/SiO 2为0.5-1.5;
(8)La 2O 3/Y 2O 3不大于0.8。
进一步的,其中:SiO 2:32-42%、和/或B 2O 3:0.5-6%、和/或Al 2O 3:15-28%、和/或CaO:5-15%、和/或MgO:3-10%、和/或Y 2O 3:15-30%、和/或TiO 2:0.5-7%、和/或ZrO 2:0-3%、和/或SrO:0-3%、和/或BaO:0-3%、和/或ZnO:0-3%、和/或La 2O 3:0-9%、和/或Sb 2O 3:0-1%、和/或CeO 2:0-1%、和/或SnO 2:0-1%。
进一步的,按重量百分比表示,其组成含量满足以下8种条件中的一种或一种以上:
(1)(SiO 2+Al 2O 3)/B 2O 3为15-70;
(2)Al 2O 3/B 2O 3为6-30;
(3)Al 2O 3/TiO 2为6-30;
(4)CaO+MgO不超过19%;
(5)CaO/MgO为0.9-5.0;
(6)(CaO+MgO)/Y 2O 3为0.3-0.9;
(7)(CaO+MgO+Y 2O 3)/SiO 2为0.7-1.4;
(8)La 2O 3/Y 2O 3不大于0.4。
进一步的,其中:SiO 2:34-40%、和/或B 2O 3:1-5%、和/或Al 2O 3:19-25%、和/或CaO:6-10%、和/或MgO:4-8%、和/或Y 2O 3:18-26%、和/或TiO 2:1-6%、和/或ZrO 2:0-2%、和/或ZnO:0-2%、和/或La 2O 3:0-5%、和/或Sb 2O 3:0-0.5%、和/或CeO 2:0-0.5%、和/或SnO 2:0-0.5%。
进一步的,按重量百分比表示,其组成含量满足以下8种条件中的一种或一种以上:
(1)(SiO 2+Al 2O 3)/B 2O 3为20-60;
(2)Al 2O 3/B 2O 3为8-20;
(3)Al 2O 3/TiO 2为8-20;
(4)CaO+MgO不超过18%;
(5)CaO/MgO为1-2.5;
(6)(CaO+MgO)/Y 2O 3为0.4-0.8;
(7)(CaO+MgO+Y 2O 3)/SiO 2为0.8-1.3;
(8)La 2O 3/Y 2O 3不大于0.15。
进一步的,玻璃的比弹系数为34以上,优选为35以上,进一步优选为36以上;杨氏模量为100-130Gpa,优选为105-125GPa,进一步优选为110-120GPa。
进一步的,玻璃的Tg温度为740℃以上,优选为750℃以上,更优选为760℃以上;抗析晶性能为B类及其以上,优选为A类及其以上。
进一步的,玻璃1400℃时粘度不超过150泊,优选为不超过130泊,进一步优选为不超过110泊;玻璃气泡度在A0级及其以上,优选在A00级及其以上。
硬盘基板,由上述的玻璃组合物构成。
上述的玻璃组合物用于半导体封接的应用。
本发明的有益效果是:使用常用的化工原料,通过合理安排各组分的含量,使本发明的玻璃的比弹系数高于34,杨氏模量在100GPa以上,耐热性好,化学稳定性好,压型抗析晶性能好,高温粘度小,容易排除气泡,特别适用于制作硬盘基板以及半导体封装领域。
具体实施方式
下面将描述本发明玻璃的各个组分,除非另有说明,各个组分的含量是用重量%表示。
SiO 2是玻璃主要的网络形成体,是构成玻璃的骨架,在本发明体系玻璃中,其含量高于46%时,玻璃的融化性能和杨氏模量会下降,高温粘度急剧上升;当其含量低于30%时,玻璃的化学稳定性会降低,玻璃的抗析晶性能会快速下降,同时玻璃的密度会快速上升,导致玻璃的比弹系数下降。因此,本发明中SiO 2的含量限定在30-46%,优选为32-42%,进一步优选为34-40%。
本发明体系玻璃属于无碱玻璃,原料溶解温度高。玻璃原料在融化初期容易在化料池产生大量气泡堆积,当气泡堆积严重时,玻璃液会溢出加料池,在连续熔炼过程中造成加料工序以及后面的均化、澄清、成型工序停止。发明人通过锐意研究,发现加入一定量的B 2O 3会降低原料在初始融 化阶段的气泡堆积,有利于加料工序的顺利进行,尤其是当其含量为0.5%以上时效果尤其明显,但当B 2O 3的添加量超过6%,会导致玻璃的比弹系数和杨氏模量的下降,同时玻璃的化学稳定性会下降。因此,B 2O 3的含量为0-6%,优选为0.5-6%,更优选为1-5%。
Al 2O 3加入本发明体系玻璃中可以提升玻璃的杨氏模量,同时可以降低玻璃的密度,提升玻璃的比弹系数。若其含量低于10%,玻璃的比弹系数与杨氏模量会低于设计预期,玻璃的密度也会增大;若其含量高于30%,由于Al 2O 3非常难溶,会导致玻璃原料的融化性能快速下降,玻璃的高温粘度急剧上升。因此,Al 2O 3的加入量限定在10-30%,优选为15-28%,进一步优选为19-25%。
本发明中SiO 2和Al 2O 3属于难溶氧化物,也是引起化料池气泡堆积的关键因素。发明人通过试验发现,当SiO 2、Al 2O 3的合计量与B 2O 3的比值(SiO 2+Al 2O 3)/B 2O 3处在10-80之间时,玻璃在化料时气泡堆积现象基本消失,同时玻璃能维持较高的耐热性,(SiO 2+Al 2O 3)/B 2O 3优选为15-70,进一步优选为20-60。
B 2O 3的加入会促使Al 2O 3的结构产生变化,因此Al 2O 3与B 2O 3的相对含量的选择对于玻璃的高温粘度和比弹系数有较大的关联。当Al 2O 3与B 2O 3的比值Al 2O 3/B 2O 3大于36时,玻璃的高温粘度急剧上升;当Al 2O 3/B 2O 3小于4时,玻璃的比弹系数急剧下降。因此,优选Al 2O 3/B 2O 3为4-36,更优选为6-30,进一步优选为8-20。
少量的TiO 2加入玻璃中能够降低玻璃的高温粘度,提升玻璃的比弹系数和杨氏模量,若其含量超过7%,玻璃的抗析晶能力会快速下降,因此本发明中TiO 2的含量限定为7%以下。通过进一步研究发现,若TiO 2含量低于0.5%,提升杨氏模量、比弹系数以及降低高温粘度的效果不明显。因此,其含量优选为0.5-7%,更优选为1-6%。
在本发明体系玻璃中,由于Al 2O 3的含量较大,TiO 2的含量能够促进Al 2O 3的结构产生变化,从而引起玻璃比弹系数和抗析晶性能的变化。若Al 2O 3与TiO 2的比值Al 2O 3/TiO 2高于41,玻璃的抗析晶性能下降,玻璃的高温粘度增高;若Al 2O 3/TiO 2低于3,玻璃的比弹系数会急剧下降,玻璃的抗析晶性 能也会急剧下降。因此,Al 2O 3/TiO 2限定为3-41,优选为6-30,进一步优选为8-20。
CaO、MgO、SrO和BaO属于碱土金属氧化物,合适量的碱土金属氧化物加入玻璃中可以提升玻璃的杨氏模量,降低玻璃的高温粘度,同时平衡玻璃组分,改善玻璃的融化性能。但是过多的碱土金属氧化物会降低玻璃的抗析晶性能,玻璃的抗析晶性能对于硬盘基板玻璃来说是非常重要的,原因在于在制作硬盘基板的毛坯过程中,需要在玻璃的软化点附近将玻璃块料软化后压制成薄毛坯,若玻璃的抗析晶性能不佳,就会在玻璃中产生析晶颗粒。析晶颗粒硬度的物理性能和周围玻璃有非常大的不同,这样就会在加工过程中产生缺陷,使基板的表面粗糙度达不到要求。
虽然以上四种碱土金属氧化物的共同点在于可以降低高温粘度,改善玻璃的融化性能,但是其对降低高温粘度的能力,影响玻璃抗析晶性能的程度,对玻璃密度的影响程度以及对杨氏模量及其耐热性的提升程度是不一致的,有着较大的区别。
根据发明人大量试验研究发现,MgO添加到玻璃中可以提升玻璃的杨氏模量和比弹系数,降低玻璃的高温粘度,但若其含量低于2%,降低密度和提升杨氏模量及其比弹系数的效果不明显;若其含量超过15%,玻璃的抗析晶性能明显下降。因此,其含量限定为2-15%,优选为3-10%,进一步优选为4-8%。
CaO在这四种碱土金属氧化物中降低高温粘度的作用是最明显的,同时其又有提升玻璃杨氏模量的作用。在本发明中,其添加量若低于4%,玻璃的比弹系数及杨氏模量达不到设计要求,同时降低玻璃高温粘度的效果不明显;若其含量高于20%,玻璃的抗析晶性能急剧下降,同时玻璃的化学稳定性,尤其是耐水性会快速下降。因此,其含量限定为4-20%,优选为5-15%,进一步优选为6-10%。
通过大量研究发现,本发明玻璃组合物中MgO与CaO的合计含量MgO+CaO若超过21%,玻璃的耐热性和抗析晶能力会快速降低,优选不超过19%,进一步优选不超过18%。另外,若CaO与MgO的比值CaO/MgO大于8.0,玻璃的比弹系数会快速降低;若CaO/MgO小于0.8,玻璃的抗析晶性能会快 速下降,并影响形成玻璃的稳定性。因此,CaO/MgO限定为0.8-8.0,优选为0.9-5.0,进一步优选为1.0-2.5。
SrO提升玻璃杨氏模量,降低玻璃的密度的能力低于CaO和MgO,少量的加入可以提升玻璃的抗析晶性能,若其含量高于5%,玻璃的抗析晶能力下降,化学稳定性下降,玻璃的成本显著升高。因此其含量限定为0-5%,优选为0-3%,进一步优选为不添加。
BaO相对于其他三种碱土金属氧化物,会显著的增加玻璃的密度,同时会导致玻璃的化学稳定性显著下降。虽然少量的加入会提升玻璃的杨氏模量以及抗析晶性能,但是其含量超过5%,会显著提升玻璃的密度,化学稳定性尤其是耐水性也会显著下降。因此其含量限定为0-5%,优选为0-3%,进一步优选为不添加。
Y 2O 3添加到玻璃中可以显著提升玻璃的比弹系数、杨氏模量和耐热性,同时可以降低玻璃的高温粘度。但若其含量超过32%,玻璃的抗析晶性能显著下降,密度也会显著上升;若其含量低于13%,玻璃的高温粘度下降不明显,玻璃的比弹系数、杨氏模量和耐热性达不到设计要求。因此,其含量限定为13-32%,优选为15-30%,进一步优选为18-26%。
发明人研究发现,CaO与MgO的合计含量与Y 2O 3的相对含量会促进玻璃中B 2O 3、Al 2O 3、TiO 2的结构产生变化,从而对玻璃的比弹系数、耐热性和抗析晶性能产生极大的影响。当CaO、MgO的合计含量与Y 2O 3的比值(CaO+MgO)/Y 2O 3大于1.0时,玻璃比弹系数和耐热性快速下降;当(CaO+MgO)/Y 2O 3小于0.2时,玻璃的抗析晶能力快速下降。因此,(CaO+MgO)/Y 2O 3限定为0.2-1.0,优选为0.3-0.9,进一步优选为0.4-0.8。
CaO、MgO、Y 2O 3这三种氧化物都有提升比弹系数、杨氏模量,降低玻璃高温粘度的能力,发明人研究发现以上三种氧化物的合计值和SiO 2的相对含量对玻璃高温粘度以及玻璃的耐热性有较强的关联。若CaO、MgO、Y 2O 3的合计量与SiO 2的比值(CaO+MgO+Y 2O 3)/SiO 2大于1.5,玻璃的耐热性会快速下降;若(CaO+MgO+Y 2O 3)/SiO 2小于0.5,玻璃的高温粘度达不到设计要求。因此,(CaO+MgO+Y 2O 3)/SiO 2限定为0.5-1.5,优选为0.7-1.4,进一步优选为0.8-1.3。
ZrO 2少量添加到玻璃中可以改善玻璃的抗析晶能力,同时增强玻璃的化学稳定性。但若其含量超过5%,玻璃的溶解性能会显著下降,同时玻璃高温粘度会显著上升,玻璃中易出现不融物。因此,其含量限定为0-5%,优选为0-3%,进一步优选为0-2%,更进一步优选为不添加。
少量的ZnO加入到玻璃中能降低玻璃的高温粘度,同时可以增强玻璃的化学稳定性,但ZnO的添加量若超过5%,玻璃的杨氏模量会下降,同时玻璃的密度会上升,导致玻璃的比弹系数快速下降,,玻璃的耐热性会下降。因此,ZnO含量限定为0-5%,优选为0-3%,更优选为0-2%,进一步优选为不添加。
合适量的La 2O 3添加到玻璃中可以提升玻璃的杨氏模量,同时可以提升玻璃的Tg温度,改善玻璃的耐热性,降低玻璃的高温粘度。但若其含量超过15%,玻璃的密度会显著上升从而使玻璃的比弹系数达不到设计要求,同时玻璃的抗析晶性能会显著下降。因此其含量限定为0-15%,优选为0-9%,更有选为0-5%,进一步优选为不添加。
La 2O 3和Y 2O 3虽然都可以提升玻璃的杨氏模量,但是,当La 2O 3与Y 2O 3的比值La 2O 3/Y 2O 3大于0.8时,玻璃的密度会快速上升,从而导致玻璃的比弹系数快速下降,同时玻璃的抗析晶性能也会快速下降。因此,La 2O 3/Y 2O 3不大于0.8,优选不大于0.4,进一步优选不大于0.15。
另外,本发明玻璃中可以引入合计量为0-2%的澄清剂,优选为0-1%,进一步优选为0-0.5,澄清剂可以采用Sb 2O 3、CeO 2、SnO 2中的一种或一种以上。
下面将描述本发明的光学玻璃的性能:
玻璃的杨氏模量E采用超声波测试其纵波速度和横波速度,再按以下公式计算得出。
Figure PCTCN2018116148-appb-000001
其中,G=V S 2ρ
式中:
E为杨氏模量,Pa;
G为剪切模量,Pa;
V T为横波速度,m/s;
V S为横波速度,m/s;
ρ为玻璃密度,g/cm 3
玻璃的密度按GB/T7962.20-2010规定方法测试。
玻璃的比弹系数=杨氏模量/密度。
玻璃的Tg温度按GB/T7962.16-2010规定方法测试。
玻璃的高温粘度使用THETA Rheotronic II高温粘度计采用旋转法测试,数值单位为dPaS(泊),其数值越小,表示粘度越小。
玻璃的抗析晶性能采用以下方法测试:
将实验样品加工为20*20*10mm规格,两面抛光,将样品放入温度为Tg+200℃的析晶炉内保温30分钟,取出冷却后,再对两个大面抛光,根据下表判断玻璃的析晶性能,A级为最好,E级为最差。
析晶的分级和判断标准
编号 级别 标准
1 A 无肉眼可见的析晶颗粒
2 B 肉眼可见析晶颗粒,数量少而分散
3 C 肉眼可见较大分散或者较密集而小的析晶颗粒
4 D 析晶颗粒较大而密集
5 E 玻璃完全析晶失透
玻璃的气泡度按GB/T7962.8-2010规定方法测量与分级。
经过测试,本发明玻璃的比弹系数为34以上,优选为35以上,进一步优选为36以上;杨氏模量为100-130GPa,优选为105-125GPa,进一步优选为110-120GPa;Tg温度为740℃以上,优选为750℃以上,更优选为760℃以上;1400℃时粘度不超过150泊,优选为不超过130泊,进一步优选为不超过110泊;压型抗析晶性能为B类及其以上,优选为A类及其以上;气泡度在A0级及其以上,优选为A00级及其以上。
本发明的玻璃由于具有以上性能,因此特别适用于构成硬盘基板以及 用于半导体封接的应用。
实施例
为了进一步了解本发明的技术方案,下面将描述本发明玻璃组合物的实施例。应该注意到,这些实施例没有限制本发明的范围。
表1-5中显示的玻璃组合物(实施例1-50)是通过按照表中所示各个实施例的比值称重并混合玻璃用普通原料(如氧化物、氢氧化物、碳酸盐、硝酸盐等),将混合原料放置在铂金坩埚中,在1400-1450℃中融化6-8小时,并且经澄清、搅拌和均化后,得到没有气泡及不含未溶解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。
表1-5中显示了本发明实施例1-50的组成(重量%)、杨氏模量(E)、比弹系数(E/ρ)、Tg温度(Tg)、1400℃温度时的高温粘度(K)、抗析晶性能等级(N)、气泡度(Q)、(SiO 2+Al 2O 3)/B 2O 3的值用A表示、Al 2O 3/B 2O 3的值以B表示、Al 2O 3/TiO 2的值以C表示、CaO+MgO的值以D表示、CaO/MgO的值以F表示、(CaO+MgO)/Y 2O 3的值以G表示、(CaO+MgO+Y 2O 3)/SiO 2的值以M表示、La 2O 3/Y 2O 3的值以H表示。
表1
组分 1 2 3 4 5 6 7 8 9 10
SiO 2 35.00 39.00 37.00 37.00 40.00 45.00 38.00 33.00 31.00 37.00
B 2O 3 5.00 2.00 2.00 2.00 2.00 1.50 1.00 2.00 2.00 0.80
ZnO 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TiO 2 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 4.00
Al 2O 3 22.00 20.00 17.00 24.00 24.00 23.00 23.00 28.00 24.00 24.00
ZrO 2 0.50 0.50 0.70 1.00 0.70 2.00 1.00 1.00 1.00 1.00
Y 2O 3 25.00 24.00 30.00 20.00 20.00 20.00 21.00 20.00 26.00 20.00
La 2O 3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CaO 5.00 7.00 7.00 7.00 7.00 4.00 7.00 7.00 7.00 7.00
MgO 4.00 5.00 4.00 6.70 4.00 2.00 6.70 6.70 6.70 5.90
BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CeO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SnO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sb 2O 3 0.50 0.50 0.30 0.30 0.30 0.50 0.30 0.30 0.30 0.30
合计(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
A 11.40 29.50 27.00 30.50 32.00 45.33 61.00 30.50 27.50 76.25
B 4.40 10.00 8.50 12.00 12.00 15.33 23.00 14.00 12.00 30.00
C 22.00 10.00 8.50 12.00 12.00 11.50 11.50 14.00 12.00 6.00
D 9.00 12.00 11.00 13.70 11.00 6.00 13.70 13.70 13.70 12.90
F 1.25 1.40 1.75 1.04 1.75 2.00 1.04 1.04 1.04 1.19
G 0.41 0.60 0.65 0.57 0.46 0.26 0.60 0.49 0.57 0.54
M 0.97 0.92 1.11 0.91 0.78 0.58 0.91 1.02 1.28 0.89
H 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E(GPa) 105.57 108.38 112.55 110.66 108.11 105.25 112.42 118.20 120.40 111.20
ρ(g/cm 3) 3.10 3.05 3.20 3.02 2.95 2.85 3.01 2.99 3.10 3.02
E/ρ 34.05 35.53 35.17 36.64 36.65 36.93 37.35 39.53 38.84 36.82
Tg(℃) 762 780 800 781 805 820 785 798 805 781
K 78.1 75.6 73.1 80.1 110.8 140.2 78.5 101.4 50.6 70.3
N A A A A A A A A A A
Q A00 A00 A00 A00 A00 A0 A00 A00 A00 A00
表2
组分 11 12 13 14 15 16 17 18 19 20
SiO 2 39.00 38.00 36.00 38.00 37.00 35.00 36.00 35.00 37.00 37.00
B 2O 3 0.80 1.20 2.00 2.00 2.00 1.00 1.00 2.00 4.00 2.00
ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00
TiO 2 6.50 3.00 0.70 2.00 2.00 5.00 2.50 2.00 2.00 3.00
Al 2O 3 20.00 21.00 23.00 16.00 17.00 17.00 24.50 28.00 24.00 23.00
ZrO 2 0.50 0.00 1.00 0.70 0.70 0.70 0.50 1.00 1.00 1.50
Y 2O 3 20.00 22.00 15.00 30.00 29.00 29.00 22.00 22.00 20.00 22.00
La 2O 3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00
CaO 7.00 10.00 13.00 7.00 7.00 7.00 8.00 5.00 7.00 5.00
MgO 5.00 3.50 8.00 4.00 4.00 4.00 5.00 4.70 4.50 4.00
BaO 0.70 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.30
SrO 0.00 0.80 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
CeO 2 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SnO 2 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sb 2O 3 0.50 0.30 0.30 0.30 0.30 0.30 0.00 0.30 0.50 0.20
合计(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
A 73.75 49.17 29.50 27.00 27.00 52.00 60.50 31.50 15.25 30.00
B 25.00 17.50 11.50 8.00 8.50 17.00 24.50 14.00 6.00 11.50
C 3.08 7.00 32.86 8.00 8.50 3.40 9.80 14.00 12.00 7.67
D 12.00 13.50 21.00 11.00 11.00 11.00 13.00 9.70 11.50 9.00
F 1.40 2.86 1.63 1.75 1.75 1.75 1.60 1.06 1.56 1.25
G 0.60 0.64 0.91 0.69 0.65 0.65 0.53 0.35 0.48 0.39
M 0.82 0.93 1.00 1.08 1.08 1.14 0.97 0.91 0.85 0.84
H 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.09
E(GPa) 110.10 112.30 108.70 112.10 111.25 115.10 115.23 120.40 109.65 115.21
ρ(g/cm 3) 3.02 3.08 3.12 3.11 3.21 3.17 3.07 3.05 3.00 3.08
E/ρ 36.46 36.46 34.84 36.05 34.66 36.31 37.53 39.48 36.55 37.41
Tg(℃) 780 790 775 801 803 785 795 802 772 785
K 85.2 84.2 67.8 77.1 79.2 82.6 70.3 68.3 80.5 70.7
N A A A A A A A A A A
Q A00 A00 A00 A00 A00 A00 A00 A00 A00 A00
表3
组分 21 22 23 24 25 26 27 28 29 30
SiO 2 30.20 37.20 42.20 34.20 40.20 38.70 35.70 43.70 32.20 40.70
B 2O 3 1.20 2.00 2.60 2.20 3.40 3.50 2.80 2.00 1.10 3.20
ZnO 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.60 0.00 0.00
TiO 2 2.00 1.90 2.00 5.70 1.10 1.60 5.40 1.40 1.60 0.60
Al 2O 3 29.90 21.50 15.50 25.10 17.90 19.70 23.30 13.70 27.50 17.30
ZrO 2 0.20 1.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y 2O 3 13.10 22.00 28.00 18.40 25.60 23.80 20.20 29.80 16.00 26.20
La 2O 3 3.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 3.00 0.00
CaO 17.20 10.00 4.20 7.00 8.50 9.70 8.50 4.20 9.20 8.10
MgO 2.90 3.80 4.50 4.00 3.00 2.50 3.80 4.30 8.00 3.60
BaO 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SrO 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00
CeO 2 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00
SnO 2 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00
Sb 2O 3 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.40 0.30
合计(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
A 50.08 29.35 22.19 26.95 17.09 16.69 21.07 28.70 54.27 18.13
B 24.92 10.75 5.96 11.41 5.26 5.63 8.32 6.85 25.00 5.41
C 14.95 11.32 7.75 4.40 16.27 12.31 4.31 9.79 17.19 28.83
D 20.10 13.80 8.70 11.00 11.50 12.20 12.30 8.50 17.20 11.70
F 5.93 2.63 0.93 1.75 2.83 3.88 2.24 0.98 1.15 2.25
G 0.67 0.64 0.56 0.44 0.64 0.62 0.53 0.62 0.63 0.68
M 1.10 0.96 0.87 0.86 0.92 0.93 0.91 0.88 1.03 0.93
H 0.23 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.19 0.00
E(GPa) 112.10 111.20 121.10 110.50 119.00 114.50 110.80 121.70 110.90 120.50
ρ(g/cm 3) 3.11 3.03 3.03 3.09 3.00 3.00 3.06 3.07 3.15 2.99
E/ρ 36.05 36.70 39.98 35.76 39.67 38.17 36.21 39.67 35.21 40.30
Tg(℃) 782 781 807 771 797 789 776 815 776 799
K 30.9 88.1 101.5 70.7 95.9 92.0 79.4 106.6 47.7 97.2
N A A A A A A A A A A
Q A00 A00 A00 A00 A00 A00 A00 A00 A00 A00
表4
组分 31 32 33 34 35 36 37 38 39 40
SiO 2 33.20 38.20 36.70 41.70 31.20 44.20 35.20 39.70 33.70 42.70
B 2O 3 1.70 3.00 3.20 2.80 1.00 2.50 2.60 3.60 2.00 2.40
ZnO 0.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00
TiO 2 5.90 0.50 2.00 3.00 1.80 1.20 5.50 1.00 5.80 1.80
Al 2O 3 26.30 20.30 22.10 16.10 28.70 13.10 23.90 18.50 25.70 14.90
ZrO 2 4.00 0.00 1.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00
Y 2O 3 17.20 23.20 21.40 27.40 14.30 30.40 19.60 25.00 17.80 28.60
La 2O 3 0.00 0.00 0.00 0.00 7.00 0.00 1.00 0.00 5.00 0.00
CaO 5.20 10.10 9.50 4.20 13.20 4.20 8.00 8.90 4.00 4.80
MgO 5.00 2.60 3.80 4.00 2.50 4.20 3.80 3.00 4.00 4.50
BaO 0.20 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
SrO 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
CeO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00
SnO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00
Sb 2O 3 0.30 0.10 0.30 0.30 0.30 0.20 0.30 0.30 0.30 0.30
合计(%) 100.00 100.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
A 35.00 19.50 18.38 20.64 59.90 22.92 22.73 16.17 29.70 24.00
B 15.47 6.77 6.91 5.75 28.70 5.24 9.19 5.14 12.85 6.21
C 4.46 40.60 11.05 5.37 15.94 10.92 4.35 18.50 4.43 8.28
D 10.20 12.70 13.30 8.20 15.70 8.40 11.80 11.90 8.00 9.30
F 1.04 3.88 2.50 1.05 5.28 1.00 2.11 2.97 1.00 1.07
G 0.39 0.63 0.60 0.51 0.55 0.64 0.49 0.64 0.31 0.62
M 0.83 0.94 0.95 0.85 0.96 0.88 0.89 0.93 0.77 0.89
H 0.00 0.00 0.00 0.00 0.49 0.00 0.05 0.00 0.28 0.00
E(GPa) 110.30 113.00 111.10 120.90 111.50 121.90 110.70 117.50 110.40 121.30
ρ(g/cm 3) 3.11 3.01 3.04 3.02 3.15 3.08 3.07 3.02 3.10 3.04
E/ρ 35.47 37.54 36.55 40.09 35.40 39.57 36.06 38.91 35.61 39.88
Tg(℃) 774 786 779 804 779 817 774 794 772 810
K 56.1 90.7 85.2 99.8 39.3 108.3 76.5 94.6 60.3 103.2
N A A A A A A A A A A
Q A00 A00 A00 A00 A00 A00 A00 A00 A00 A00
表5
组分 41 42 43 44 45 46 47 48 49 50
SiO 2 34.70 31.70 41.20 37.70 43.20 32.70 44.70 36.20 39.20 30.70
B 2O 3 2.40 0.80 3.00 2.50 2.20 1.40 2.50 3.00 4.00 0.90
ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30
TiO 2 5.60 1.70 0.60 1.80 1.60 6.00 0.90 5.30 1.00 1.90
Al 2O 3 24.50 28.10 16.70 20.90 14.30 26.90 12.50 22.70 19.10 29.30
ZrO 2 2.00 0.00 0.00 0.00 0.60 0.50 0.00 0.00 0.00 0.00
Y 2O 3 19.00 15.40 26.80 22.60 29.20 16.60 31.00 20.80 24.40 13.70
La 2O 3 0.00 7.00 0.00 0.00 0.00 1.10 0.00 0.00 0.00 5.00
CaO 7.50 11.20 7.70 10.50 4.20 7.20 4.20 9.00 9.30 15.20
MgO 3.80 3.80 4.60 3.70 4.40 7.30 4.10 2.70 2.60 2.30
BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40
SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CeO 2 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00
SnO 2 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00
Sb 2O 3 0.30 0.30 0.30 0.30 0.30 0.30 0.10 0.30 0.20 0.30
合计(%) 100.00 100.00 100.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00
A 24.67 74.75 19.30 23.44 26.14 42.57 22.88 19.63 14.58 66.67
B 10.21 35.13 5.57 8.36 6.50 19.21 5.00 7.57 4.77 32.56
C 4.38 16.53 27.83 11.61 8.94 4.48 13.89 4.28 19.10 15.42
D 11.30 15.00 12.30 14.20 8.60 14.50 8.30 11.70 11.90 17.50
F 1.97 2.95 1.67 2.84 0.95 0.99 1.02 3.33 3.58 6.61
G 0.46 0.53 0.74 0.68 0.60 0.54 0.66 0.52 0.62 0.60
M 0.87 0.96 0.95 0.98 0.88 0.95 0.88 0.90 0.93 1.02
H 0.00 0.45 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.36
E(GPa) 110.60 111.20 120.70 111.50 121.50 110.60 122.10 110.90 116.00 111.80
ρ(g/cm 3) 3.08 3.17 3.00 3.02 3.06 3.14 3.09 3.05 3.01 3.13
E/ρ 35.91 35.08 40.19 36.92 39.77 35.22 39.46 36.36 38.54 35.72
Tg(℃) 773 778 802 784 812 775 820 778 791 781
K 73.6 43.5 98.5 89.4 104.9 51.9 110.0 82.3 93.3 35.1
N A A A A A A A A A A
Q A00 A00 A00 A00 A00 A00 A00 A00 A00 A00

Claims (13)

  1. 玻璃组合物,其特征在于,其组成按重量百分比表示,含有:SiO 2:30-46%、B 2O 3:0-6%、Al 2O 3:10-30%、CaO:4-20%、MgO:2-15%、Y 2O 3:13-32%。
  2. 如权利要求1所述的玻璃组合物,其特征在于,其组成按重量百分比表示,还含有:TiO 2:0-7%、ZrO 2:0-5%、SrO:0-5%、BaO:0-5%、ZnO:0-5%、La 2O 3:0-15%、Sb 2O 3:0-2%、CeO 2:0-2%、SnO 2:0-2%。
  3. 玻璃组合物,其特征在于,其组成按重量百分比表示为:SiO 2:30-46%、B 2O 3:0-6%、Al 2O 3:10-30%、CaO:4-20%、MgO:2-15%、Y 2O 3:13-32%、TiO 2:0-7%、ZrO 2:0-5%、SrO:0-5%、BaO:0-5%、ZnO:0-5%、La 2O 3:0-15%、Sb 2O 3:0-2%、CeO 2:0-2%、SnO 2:0-2%。
  4. 如权利要求1-3任一权利要求所述的玻璃组合物,其特征在于,按重量百分比表示,其组成含量满足以下8种条件中的一种或一种以上:
    (1)(SiO 2+Al 2O 3)/B 2O 3为10-80;
    (2)Al 2O 3/B 2O 3为4-36;
    (3)Al 2O 3/TiO 2为3-41;
    (4)CaO+MgO不超过21%;
    (5)CaO/MgO为0.8-8.0;
    (6)(CaO+MgO)/Y 2O 3为0.2-1.0;
    (7)(CaO+MgO+Y 2O 3)/SiO 2为0.5-1.5;
    (8)La 2O 3/Y 2O 3不大于0.8。
  5. 如权利要求1-3任一权利要求所述的玻璃组合物,其特征在于,其中:SiO 2:32-42%、和/或B 2O 3:0.5-6%、和/或Al 2O 3:15-28%、和/或CaO:5-15%、和/或MgO:3-10%、和/或Y 2O 3:15-30%、和/或TiO 2:0.5-7%、和/或ZrO 2:0-3%、和/或SrO:0-3%、和/或BaO:0-3%、和/或ZnO:0-3%、和/或La 2O 3:0-9%、和/或Sb 2O 3:0-1%、和/或CeO 2:0-1%、和/或SnO 2:0-1%。
  6. 如权利要求1-3任一权利要求所述的玻璃组合物,其特征在于,按重量百分比表示,其组成含量满足以下8种条件中的一种或一种以上:
    (1)(SiO 2+Al 2O 3)/B 2O 3为15-70;
    (2)Al 2O 3/B 2O 3为6-30;
    (3)Al 2O 3/TiO 2为6-30;
    (4)CaO+MgO不超过19%;
    (5)CaO/MgO为0.9-5.0;
    (6)(CaO+MgO)/Y 2O 3为0.3-0.9;
    (7)(CaO+MgO+Y 2O 3)/SiO 2为0.7-1.4;
    (8)La 2O 3/Y 2O 3不大于0.4。
  7. 如权利要求1-3任一权利要求所述的玻璃组合物,其特征在于,其中:SiO 2:34-40%、和/或B 2O 3:1-5%、和/或Al 2O 3:19-25%、和/或CaO:6-10%、和/或MgO:4-8%、和/或Y 2O 3:18-26%、和/或TiO 2:1-6%、和/或ZrO 2:0-2%、和/或ZnO:0-2%、和/或La 2O 3:0-5%、和/或Sb 2O 3:0-0.5%、和/或CeO 2:0-0.5%、和/或SnO 2:0-0.5%。
  8. 如权利要求1-3任一权利要求所述的玻璃组合物,其特征在于,按重量百分比表示,其组成含量满足以下8种条件中的一种或一种以上:
    (1)(SiO 2+Al 2O 3)/B 2O 3为20-60;
    (2)Al 2O 3/B 2O 3为8-20;
    (3)Al 2O 3/TiO 2为8-20;
    (4)CaO+MgO不超过18%;
    (5)CaO/MgO为1-2.5;
    (6)(CaO+MgO)/Y 2O 3为0.4-0.8;
    (7)(CaO+MgO+Y 2O 3)/SiO 2为0.8-1.3;
    (8)La 2O 3/Y 2O 3不大于0.15。
  9. 如权利要求1-3任一权利要求所述的玻璃组合物,其特征在于,玻璃的比弹系数为34以上,优选为35以上,进一步优选为36以上;杨氏模量为100-130Gpa,优选为105-125GPa,进一步优选为110-120GPa。
  10. 如权利要求1-3任一权利要求所述的玻璃组合物,其特征在于,玻璃的Tg温度为740℃以上,优选为750℃以上,更优选为760℃以上;抗析晶性能为B类及其以上,优选为A类及其以上。
  11. 如权利要求1-3任一权利要求所述的玻璃组合物,其特征在于, 玻璃1400℃时粘度不超过150泊,优选为不超过130泊,进一步优选为不超过110泊;玻璃气泡度在A0级及其以上,优选在A00级及其以上。
  12. 硬盘基板,由权利要求1-11任一权利要求所述的玻璃组合物构成。
  13. 权利要求1-11任一权利要求所述的玻璃组合物用于半导体封接的应用。
PCT/CN2018/116148 2017-12-15 2018-11-19 玻璃组合物 WO2019114499A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/759,766 US11440835B2 (en) 2017-12-15 2018-11-19 Glass composition
JP2020524065A JP7019040B2 (ja) 2017-12-15 2018-11-19 ガラス組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711350694.1 2017-12-15
CN201711350694.1A CN109928616A (zh) 2017-12-15 2017-12-15 玻璃组合物

Publications (1)

Publication Number Publication Date
WO2019114499A1 true WO2019114499A1 (zh) 2019-06-20

Family

ID=66818899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116148 WO2019114499A1 (zh) 2017-12-15 2018-11-19 玻璃组合物

Country Status (4)

Country Link
US (1) US11440835B2 (zh)
JP (1) JP7019040B2 (zh)
CN (2) CN114920453A (zh)
WO (1) WO2019114499A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018342A (zh) * 2019-12-24 2020-04-17 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498609B (zh) * 2019-09-09 2022-06-14 Oppo广东移动通信有限公司 壳体及其制备方法和电子设备、焊接组合物及其应用
CN116177871A (zh) * 2019-11-27 2023-05-30 成都光明光电股份有限公司 无碱玻璃
CN112851113B (zh) * 2019-11-27 2022-04-15 成都光明光电股份有限公司 玻璃组合物
KR102256945B1 (ko) * 2020-05-14 2021-05-27 코닝 인코포레이티드 신규한 유리 및 유리-세라믹 조성물
KR102308652B1 (ko) * 2020-05-27 2021-10-05 코닝 인코포레이티드 높은 탄성 계수 및 경도를 가지는 유리-세라믹

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207086A (zh) * 1996-09-04 1999-02-03 保谷株式会社 信息记录介质基片用玻璃及玻璃基片
CN1237546A (zh) * 1998-03-03 1999-12-08 株式会社小原 磁信息记录介质的玻璃—陶瓷基底
JP2000159540A (ja) * 1998-11-19 2000-06-13 Asahi Glass Co Ltd 情報記録媒体基板用ガラス
CN1290665A (zh) * 1999-09-08 2001-04-11 保谷株式会社 用于信息记录介质的玻璃基质和应用该玻璃基质的信息记录介质
CN1294093A (zh) * 1999-11-02 2001-05-09 彭波 信息记录装置基板用新型玻璃

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804646A (en) * 1969-06-11 1974-04-16 Corning Glass Works Very high elastic moduli glasses
US4501819A (en) * 1982-12-23 1985-02-26 Kabushiki Kaisha Ohara Kogaku Garasu Seizosho Glass for a photomask
US5532194A (en) * 1994-11-18 1996-07-02 Kabushiki Kaisya Ohara Cordierite glass-ceramic and method for manufacturing the same
US6508083B1 (en) * 1996-08-21 2003-01-21 Nippon Electric Glass Co., Ltd. Alkali-free glass and method for producing the same
JP3950203B2 (ja) * 1996-09-04 2007-07-25 Hoya株式会社 高い比弾性率を有するガラス
MY118912A (en) * 1996-09-04 2005-02-28 Hoya Corp Glass for information recording medium substrate and glass substrate
JP3379621B2 (ja) * 1996-09-04 2003-02-24 Hoya株式会社 情報記録媒体用基板に用いる材料、これを用いる基板及びこの基板を用いる磁気ディスク
JP3989988B2 (ja) * 1996-09-04 2007-10-10 Hoya株式会社 情報記録媒体用基板及び磁気ディスク、並びにその製造方法
JPH1079122A (ja) * 1996-09-04 1998-03-24 Hoya Corp 情報記録媒体用基板に適した材料の選定方法、この方法を用いて選定した材料、この材料を用いた基板及び磁気ディスク
US6060168A (en) * 1996-12-17 2000-05-09 Corning Incorporated Glasses for display panels and photovoltaic devices
CN1256720C (zh) * 1997-06-05 2006-05-17 Hoya株式会社 用于信息存储媒体的基片
US6124224A (en) * 1998-09-02 2000-09-26 Ferro Corporation High temperature sealing glass
JP3377454B2 (ja) * 1998-10-12 2003-02-17 株式会社オハラ モールドプレス用光学ガラス
EP0997445B1 (en) * 1998-10-27 2004-03-10 Corning Incorporated Low expansion glass-ceramics
JP2001026451A (ja) * 1999-07-14 2001-01-30 Minolta Co Ltd ガラス組成
JP2001134925A (ja) * 1999-08-25 2001-05-18 Asahi Glass Co Ltd 情報記録媒体基板用ガラスおよび情報記録媒体用ガラス基板
WO2001044143A1 (fr) * 1999-12-16 2001-06-21 Tokuyama Corporation Corps compose en vitroceramique et comprime fritte en nitrure d'aluminium et leur procede de production
US6949485B2 (en) * 2000-06-01 2005-09-27 Asabi Glass Company, Limited Glass for substrate and glass substrate
JP4151440B2 (ja) * 2003-03-17 2008-09-17 コニカミノルタオプト株式会社 ガラス基板
CN1233579C (zh) * 2003-11-04 2005-12-28 上海大学 磁记录存储器介质用玻璃基片材料及其制备方法
JP5109225B2 (ja) * 2003-12-26 2012-12-26 旭硝子株式会社 無アルカリガラスおよび液晶ディスプレイパネル
JP2011040145A (ja) * 2009-07-17 2011-02-24 Ohara Inc 情報記録媒体用基板の製造方法
CN104891811A (zh) * 2015-05-29 2015-09-09 成都光明光电股份有限公司 晶质玻璃
CN106746597A (zh) * 2016-12-15 2017-05-31 成都光明光电股份有限公司 光学玻璃
CN107399906A (zh) * 2017-08-21 2017-11-28 成都光明光电股份有限公司 光学玻璃

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207086A (zh) * 1996-09-04 1999-02-03 保谷株式会社 信息记录介质基片用玻璃及玻璃基片
CN1237546A (zh) * 1998-03-03 1999-12-08 株式会社小原 磁信息记录介质的玻璃—陶瓷基底
JP2000159540A (ja) * 1998-11-19 2000-06-13 Asahi Glass Co Ltd 情報記録媒体基板用ガラス
CN1290665A (zh) * 1999-09-08 2001-04-11 保谷株式会社 用于信息记录介质的玻璃基质和应用该玻璃基质的信息记录介质
CN1294093A (zh) * 1999-11-02 2001-05-09 彭波 信息记录装置基板用新型玻璃

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018342A (zh) * 2019-12-24 2020-04-17 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器

Also Published As

Publication number Publication date
JP2021501110A (ja) 2021-01-14
JP7019040B2 (ja) 2022-02-14
CN109928616A (zh) 2019-06-25
US11440835B2 (en) 2022-09-13
US20210179480A1 (en) 2021-06-17
CN114920453A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2019114499A1 (zh) 玻璃组合物
JP6784592B2 (ja) 無アルカリホスホホウケイ酸ガラス
JP5083717B2 (ja) 強化ガラス及びその製造方法
JP6256744B2 (ja) 無アルカリガラス板
CN108298811B (zh) 玻璃组合物
JP7421171B2 (ja) ガラス
JP7486446B2 (ja) ガラス
JP2010168252A (ja) 強化ガラスの製造方法
JP7307407B2 (ja) 無アルカリガラス
JPWO2009028512A1 (ja) 無アルカリガラスの製造方法
CN108101358B (zh) 玻璃组合物
CN110395904B (zh) 玻璃组合物
CN116177871A (zh) 无碱玻璃
CN108083631B (zh) 玻璃组合物
TWI722419B (zh) 玻璃組合物
CN108423985B (zh) 玻璃组合物
JP2013173668A (ja) 強化ガラスの製造方法
WO2022239741A1 (ja) 無アルカリガラス板
JP6787872B2 (ja) 無アルカリガラス板
TW202204278A (zh) 玻璃及化學強化玻璃
JP2018058764A (ja) 無アルカリガラス板
TW201434780A (zh) Tft-lcd用環保玻璃之組成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889748

Country of ref document: EP

Kind code of ref document: A1