WO2019114258A1 - 一种巴瑞替尼的制备方法 - Google Patents

一种巴瑞替尼的制备方法 Download PDF

Info

Publication number
WO2019114258A1
WO2019114258A1 PCT/CN2018/094160 CN2018094160W WO2019114258A1 WO 2019114258 A1 WO2019114258 A1 WO 2019114258A1 CN 2018094160 W CN2018094160 W CN 2018094160W WO 2019114258 A1 WO2019114258 A1 WO 2019114258A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
mol
baritinib
added
Prior art date
Application number
PCT/CN2018/094160
Other languages
English (en)
French (fr)
Inventor
徐强
吴四清
黄双
李维思
唐景玉
杨健
Original Assignee
江苏中邦制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中邦制药有限公司 filed Critical 江苏中邦制药有限公司
Priority to AU2018366342A priority Critical patent/AU2018366342A1/en
Publication of WO2019114258A1 publication Critical patent/WO2019114258A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of pharmaceutical preparation, and in particular relates to a preparation method of selective JAK1 and JAK2 inhibitor barritinib.
  • Baricitinib chemical name 1-(ethylsulfonyl)-3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazole-1 -Alkyl-3-azetidine acetonitrile, a selective oral JAK1/JAK2 inhibitor developed by Eli Lilly and Inc. in collaboration with Incyte Pharmaceuticals, which inhibits various inflammatory cells such as IL-6 and IL-23. Intracellular signaling of the factor, this product can be used for the treatment of moderate to severe rheumatoid arthritis.
  • the method uses 4-pyrazoleboronic acid pinacol ester and 3-(cyanomethylene)azetidin-1-carboxylic acid tert-butyl ester as starting materials to obtain compound 9, compound by Michael addition reaction.
  • the intermediate 11 is obtained by catalytic coupling reaction with the starting material compound 10; the intermediate 11 is obtained by removing two molecules of tert-butyl formate to obtain the intermediate 12; the intermediate 12 and the ethylsulfonyl chloride are sulfonated in an organic solvent.
  • the amidation reaction produces the final product, barritinib (Compound 1).
  • starting compound 7 and compound 8 are difficult to purchase, and the last step in the invention is because of the two amino groups having better activity, and it is highly prone to disubstituted or ethylsulfonyl chloride and pyrrole ring when reacted with ethylsulfonyl chloride.
  • the amino group reacts, so as far as this step is concerned, there are many by-products.
  • precious metal palladium is used in the reaction, and the total cost is relatively high, which is not suitable for industrial production.
  • the route is based on 4-chloropyrrolopyrimidine, first protected with 2-(trimethylsilyl)ethoxymethyl chloride (SEMCl) to give SEM protected 4-chloropyrrolopyrimidine, followed by boronate compound 17
  • SEMCl 2-(trimethylsilyl)ethoxymethyl chloride
  • the compound was prepared by Suzuki coupling reaction, and the compound 18 was prepared by deprotecting 1-ethoxyethyl chloride with aqueous hydrochloric acid to obtain pyrazole compound 19.
  • the obtained compound 6 and compound 19 were prepared by Michael addition reaction under DBU catalysis.
  • Compound 20 Compound 20 was finally deprotected in two steps by LIBF 4 and NH 4 OH to give the final product, Baritinib.
  • the reaction route is too long, the total yield is low, the operation is cumbersome, and palladium is used twice in the reaction, and the finished product is relatively high, which is not suitable for industrial production.
  • the present invention is directed to the above-mentioned deficiencies, and provides a preparation method of baritinib, which is easy to obtain raw materials, easy to handle, and has a lower preparation method.
  • the invention adopts 4-chloropyrrolopyrimidine as a starting material, first carries out amino protection, directly or after distilling off the solvent, and then replaces and closes the ring with hydrazine hydrate and acrolein to obtain the middle 4.
  • the starting material 1,3-dibromoacetone and ethylene glycol are condensed to obtain intermediate 5, intermediate 5 is condensed with ethylsulfonamide to obtain intermediate 6, and intermediate 6 and diethyl cyanomethyl phosphate are eliminated under strong alkali.
  • the intermediate 7 is obtained, and the intermediate 4 and the intermediate 7 are subjected to an addition reaction in the action of the catalyst, and the target product is deprotected much, and the total yield is 40 to 55%.
  • the disadvantages of the current conventional preparation method that the route is too long, the operation is cumbersome, or the raw materials are not easy to obtain, or the precious metal palladium is used for the Michael addition is avoided.
  • the present invention provides a preparation method of baritinib.
  • a preparation method of baritinib comprises the following steps:
  • R is an amino-protecting compound such as an alkoxycarbonyl group, including di-tert-butyl dicarbonate, ((Boc) 2 O), fluorenylmethoxycarbonyl chloride (Fmoc-Cl), benzylcarbonyl (Cbz-Cl); acyl group, Including p-toluenesulfonyl chloride (TS-Cl), trifluoroacetyl chloride (Tfa-Cl); alkyls, including chlorotriphenylmethane (Trt-Cl), p-methoxybenzyl bromide (or chlorine) (PMB- Br, or PMB-Cl)
  • an alkoxycarbonyl group including di-tert-butyl dicarbonate, ((Boc) 2 O), fluorenylmethoxycarbonyl chloride (Fmoc-Cl), benzylcarbonyl (Cbz-Cl); acyl group, Including
  • R' is a protective group corresponding to R, such as tert-butoxycarbonyl (Boc), fluorenylmethoxycarbonyl (Fomc), benzylcarbonyl (Cbz), p-methylsulfonyl (TS), trifluoroacetyl chloride (Tfa), Chlorotriphenylmethane (Trt), p-methoxybenzyl (PMB)
  • the organic solvent described in the step (1) is one of tetrahydrofuran, toluene, xylene, or o-dichlorobenzene;
  • the molar ratio of 4-chloropyrrolopyrimidine, hydrazine hydrate, and acrolein described in the step (1) is 1:1:1 to 1:4:4.
  • the strong acid catalyst described in step (2) is one of p-toluenesulfonic acid, sulfuric acid.
  • the base described in the step (3) is one of potassium carbonate, sodium carbonate, and cesium carbonate, preferably cesium carbonate; the reaction temperature is 50 to 80 ° C.
  • the base described in the step (3) is cesium carbonate, the reaction temperature is 65 ° C;
  • the strong base described in the step (4) is one of sodium hydride, potassium hydride, sodium methoxide, and sodium ethoxide; and the reaction temperature is 10 to 40 ° C.
  • the catalyst described in the step (5) is one of DBU, TBAB, and TEBA; and the reaction temperature is 40 to 70 °C.
  • the present invention avoids the problem of high cost caused by the use of metal palladium in the Suzuki coupling reaction in the conventional synthesis method of baritinib;
  • the invention uses the amino protecting group ingeniously to avoid the participation of the amino group in the pyrrole ring, reduces the possibility of by-product generation, and improves the quality and total yield of the intermediate and the finished product;
  • the invention adopts the starting materials which are cheap and easy to obtain, and the reaction route is much shorter than the conventional route, the reaction conditions are mild, and it is suitable for industrial production.
  • the organic layer was placed in a 2 L clean reaction flask, and 30.4 g of concentrated hydrochloric acid was added dropwise with stirring at room temperature. After the dropwise addition, the mixture was stirred for 1 hour, and the organic layer was washed with 500 g of water, dried, filtered, and the filtrate was concentrated to half, 300 g of n-heptane was added, the system was cooled to 0-10 ° C, and the filter cake was dried for 2 h, and the filter cake was dried to a compound of about 22.6. g, yield: 92.4%, HPLC ⁇ 98.0%.
  • the aqueous layer was extracted with 100 g of ethyl acetate. Concentrated hydrochloric acid, after stirring for 30 min, filtered, adding 300 g of fresh ethyl acetate to the cake, adjusting the pH to neutral with 10% potassium carbonate solution under stirring, layering, drying the organic layer, filtering, and drying the cake to obtain a white solid. 16.6 g, HPLC ⁇ 99.0% (see Figure 2 HPLC: 99.82%), yield: 89.3%.
  • the hydrogen spectrum of the target product 1 is shown in Figure 1.
  • the organic layer was placed in a 2 L clean reaction flask, and 30.4 g of concentrated hydrochloric acid was added dropwise with stirring at room temperature. After completion of the dropwise addition, the mixture was stirred for 1 h, and the organic layer was washed with 500 g of water, dried, filtered, and the filtrate was concentrated to half, 300 g of n-heptane was added, and the system was cooled to 0-10 ° C. After 2 h of thermal padding, the filter cake was filtered and dried to a compound of about 22.8. g, yield: 93.1%, HPLC ⁇ 98.0%.
  • the organic layer was placed in a 2 L clean reaction flask, and 30.4 g of concentrated hydrochloric acid was added dropwise with stirring at room temperature. After the dropwise addition, the mixture was stirred for 1 hour, and the organic layer was washed with 500 g of water, dried, filtered, and the filtrate was concentrated to half, 300 g of n-heptane was added, the system was cooled to 0-10 ° C, and the filter cake was dried for 2 h, and then filtered to dry to 6 to about 23.0. g, yield: 94.1%, HPLC ⁇ 98.0%.
  • the organic layer was placed in a 2 L clean reaction flask, and 30.4 g of concentrated hydrochloric acid was added dropwise with stirring at room temperature. After the dropwise addition, the mixture was stirred for 1 hour, and the organic layer was washed with 500 g of water, dried, filtered, and the filtrate was concentrated to half, 300 g of n-heptane was added, the system was cooled to 0-10 ° C, and the filter cake was dried for 2 h, and the filter cake was dried to the compound 6 about 22.1. g, yield: 90.2%, HPLC ⁇ 98.0%.
  • the organic layer was combined and the organic layer was washed with 500 g of water.
  • the organic layer was placed in a 2 L clean reaction flask, and 30.4 g of concentrated hydrochloric acid was added dropwise with stirring at room temperature. After the dropwise addition, the mixture was stirred for 1 hour, and the organic layer was washed with 500 g of water, dried, filtered, and the filtrate was concentrated to half, 300 g of n-heptane was added, the system was cooled to 0-10 ° C, and the filter cake was dried for 2 hours, and the filter cake was dried to a compound of about 24.5. g, yield: 93.4%, HPLC ⁇ 98.0%.

Abstract

本发明公开了一种巴瑞替尼的制备方法,属于药物制备技术领域,该方法以4-氯吡咯并嘧啶为起始原料,先进行氨基保护,后与水合肼及丙烯醛"一锅法"取代、关环得到中间4。起始原料1,3-二溴丙酮和乙二醇缩合得到中间体5,中间体5与乙基磺酰胺缩合得到中间体6,中间体6与氰甲基磷酸二乙酯在强碱下反应制备得到中间体7,中间体4和中间体7在催化剂作用发生加成反应、脱保护得多目标产物1。该工艺反应条件温和,中间体纯化方法简单易行,总收率高达40~55%,适合工业化生产。

Description

一种巴瑞替尼的制备方法 技术领域
本发明属于药物制备技术领域,具体涉及一种选择性JAK1和JAK2抑制剂巴瑞替尼的制备方法。
技术背景
巴瑞替尼(Baricitinib),化学名为1-(乙基磺酰基)-3-[4-(7H-吡咯并[2,3-D]嘧啶-4-基)-1H-吡唑-1-基]-3-氮杂环丁烷乙腈,是美国礼来制药公司与Incyte制药公司合作开发的选择性口服JAK1/JAK2抑制药,能抑制IL-6和IL-23等多种炎性细胞因子的细胞内信号传导,本品可用于中度至重度类风湿性关节炎的治疗。在一项有1300多名患者参与的研究中,礼来公司和Incyte公司每日服用的巴瑞替尼(Baricitinib)相比安慰剂,12周后使RA症状显著改善,满足主要终点要求。对于RA两种常见的临床指标,该药也被证明优于阿达木单抗(Humira),达到了该研究的次要目标,近期临床研究结果表明疗效显著。目前在包括中国、美国等多个国家进行3期临床研究,使得巴瑞替尼(Baricitinib)成为首个胜过标准的注射疗法(包括Humira和Enbrel)的口服治疗药。结构式如下:
Figure PCTCN2018094160-appb-000001
目前制备巴瑞替尼的技术较少,主要包括专利CN105294699和PCT专利WO2009114512(相应的中国专利CN102026999A或CN102026999B)。
CN105294699中制备巴瑞替尼的方法如下:
Figure PCTCN2018094160-appb-000002
该方法以4-吡唑硼酸频哪醇酯和3-(氰基亚甲基)氮杂环丁烷-1-甲酸叔丁酯为起始原料,经迈克尔加成反应制得化合物9,化合物9再与起始原料化合物10经催化偶联反应制得中间体11;中间体11经脱两分子甲酸叔丁酯制得中间体12;中间体12与乙基磺酰氯在有机溶剂中经磺酰胺化反应制得终产物巴瑞替尼(化合物1)。该路线起始原料化合物7和化合物8难以购买,且该发明中最后一步因为含有两个活性较好的氨基,与乙基磺酰氯反应时极易发生双取代或者乙基磺酰氯易与吡咯环上的氨基反应,因而就该步而言,副产物多。此外,反应中用到贵金属钯,总成本相对较高,不适合工业化生产。
PCT专利WO2009114512(相应的中国专利CN102026999A或CN102026999B)中制备巴瑞替尼的方法如下:
Figure PCTCN2018094160-appb-000003
Figure PCTCN2018094160-appb-000004
该路线以4-氯吡咯并嘧啶为原料,先用2-(三甲基硅烷基)乙氧甲基氯(SEMCl)保护得到SEM保护4-氯吡咯并嘧啶,后与硼酸酯化合物17经Suzuki偶联反应制备得到化合物18,化合物18再经盐酸水溶液脱1-乙氧基乙基保护制备得到吡唑化合物19,制备所得的化合物6与化合物19在DBU催化下经迈克尔加成反应制备得到化合物20,化合物20最后经LIBF 4和NH 4OH两步脱保护得到最终产物巴瑞替尼。该反应路线过长,总收率低,操作繁琐,且反应中两次用到钯,成品相对较高,不适合工业化生产。
发明内容
本发明针对上述不足之处,提供了一种一种巴瑞替尼的制备方法,该方法原材料易得,易于操作,成品较低的制备方法。
本发明以4-氯吡咯并嘧啶为起始原料,先进行氨基保护,直接或蒸除溶剂后与水合肼及丙烯醛“一锅法”取代、关环得到中间4。起始原料1,3-二溴丙酮和乙二醇缩合得到中间体5,中间体5与乙基磺酰胺缩合得到中间体6,中间体6与氰甲基磷酸二乙酯在强碱下消去得到中间体7,中间体4和中间体7在催化剂作用发生加成反应、脱保护得多目标产物,总收率为40~55%。避免了目前常规的制备方法中路线过长,操作繁琐,或原料不易得,或采用贵重金属钯进行迈克尔加成带来成本高的弊端。
基于此,本发明提供一种巴瑞替尼的制备方法。
实现上述目的的技术方案如下:
一种巴瑞替尼的制备方法,包括如下步骤:
(1)以4-氯吡咯并嘧啶为原料,与氨基保护基进行氨基保护后得到中间态化合物3,后在氧气下、有机溶剂中与水合肼及丙烯醛以一定比例经“一锅法”取代、环合、重结晶得到化合物4;所述化合物4的结构式为:
Figure PCTCN2018094160-appb-000005
R为氨基保护化合物,如烷氧羰基类,包括二碳酸二叔丁酯,((Boc)2O),芴甲氧羰酰氯(Fmoc-Cl),苄基羰基(Cbz-Cl);酰基类,包括对甲苯磺酰氯(TS-Cl),三氟乙酰氯(Tfa-Cl);烷基类,包括氯代三苯甲烷(Trt-Cl),对甲氧基苄溴(或氯)(PMB-Br,或PMB-Cl)
R’为R对应的保护基团,如叔丁氧羰基(Boc),笏甲氧羰基(Fomc),苄基羰基(Cbz),对甲磺酰基(TS),三氟乙酰氯(Tfa),氯代三苯甲烷(Trt),对甲氧基苄基(PMB)
(2)以1,3-二溴丙酮和乙二醇为原料,在强酸催化下缩合得到羰基保护物化合物5;所述化合物5的结构式为:
Figure PCTCN2018094160-appb-000006
(3)将步骤(2)所得化合物5与乙基磺酰胺在碱作用下,加热发生环合,得到化合物6;所述化合物6的结构式为:
Figure PCTCN2018094160-appb-000007
(4)原料氰甲基磷酸二乙酯与步骤(3)中化合物6在强碱下消去得到化合物7;所述化合物7的结构式为:
Figure PCTCN2018094160-appb-000008
(5)将步骤(1)所得化合物4与步骤(4)所得化合物7在有机溶剂中于催化剂作用下发生加成、脱氨基保护基得到巴瑞替尼。
在其中一些实施例中,步骤(1)中所述的有机溶剂为四氢呋喃,甲苯,二甲苯,邻二氯苯中的一种;
在其中一些实施例中,步骤(1)中所述的4-氯吡咯并嘧啶,水合肼,丙烯醛的摩尔比为1:1:1-1:4:4。
在其中一些实施例中,步骤(2)中所述的强酸催化剂为对甲苯磺酸,硫酸中的一种。
在其中一些实施例中,步骤(3)中所述的碱为碳酸钾,碳酸钠,碳酸铯中的一种,优选碳酸铯;反应温度为50~80℃
在其中一些实施例中,步骤(3)中所述的碱为碳酸铯,反应温度为65℃;
在其中一些实施例中,步骤(4)中所述的强碱为氢化钠,氢化钾,甲醇钠,乙醇钠中的一种;反应温度为10~40℃。
在其中一些实施例中,步骤(5)中所述的催化剂为DBU,TBAB,TEBA中的一种;反应温度为40~70℃。
有益效果:
(1)本发明避免了巴瑞替尼的传统合成方法中使用Suzuki偶联反应中使用到金属钯而导致成本高的问题;
(2)本发明巧妙运用氨基保护基,避免吡咯环中的氨基参与反应,减少了副产物产生的可能性,提高了中间体和成品的质量及总收率;
(3)本发明化合物2氨基保护后直接蒸除溶剂后与氨水和丙烯醛“一锅法”取代、关环得到中间4,简化了操作步骤;
(4)本发明采用的均是便宜易得的起始原料,且反应路线较传统路线简短得多,反应条件温和,适合工业化生产。
附图说明
图1实施例1巴瑞替尼的氢谱图
图2实施例1巴瑞替尼的液相色谱图
具体实施方式
实施例1
化合物4的合成
1L反应瓶中投入15.4g(0.1mol)化合物2,11.4g(0.05mol)磷酸氢二钾,26.2g(0.12mol)二碳酸二叔丁酯,300g四氢呋喃和70g水,室温搅拌12h后中控,原料反应完全,分液,水层用200g四氢呋喃萃取,合并有机层,有机层直接用于下步。
往上述体系中加入5.1g(0.1mol)水合肼,和5.6g(0.1mol)丙烯醛,氧气氛围下回流反应8h。中控原料反应完全后停止加热,体系降温至室温,搅拌下将体系倒入100g冰水中,搅拌10min后分层,有机层干燥过滤,滤液旋蒸,得到粗品粘状物,粗品用甲基叔丁基醚和正己烷重结晶得到化合物4约24.9g,产率:87.2%,HPLC≥98.0%。
化合物5的合成
2L反应瓶中加入500g甲苯,搅拌下加入43.2g(0.2mol)1,3-二溴丙酮,24.3g(0.4mol)乙二醇和0.3g对甲苯磺酸,体系升温至110℃回流,回流过程中用分水器分出生成的水,保温反应12h后减压蒸出甲苯,待无液体滴出后往体系中加入450g乙酸乙酯,体系用450g水洗两次后有机层干燥。干燥后有机层过纤维活性炭后再过硅藻土,所得滤液蒸出乙酸乙酯层,最终得无色透明液体41.9g,HPLC≥99.0%,产率:80.7%。 1HNMR(400MHz,CDCl 3),δppm3.61(s,4H),4.14(s,4H)。
化合物6的合成
往2L反应瓶中加入500g1,4-二氧六环,39.0g(0.15mol)化合物5,97.7g(0.3mol)碳酸铯和18.0g(0.17mol)乙基磺酰胺,体系升温至80℃,保温反应20h,中控,原料化合物5基本反应完全。停止反应,体系降温至室温,往体系中加入500g水和500g乙酸乙酯,搅拌,分层,水层用300gX2乙酸乙酯萃取,合并有机层,有机层用500g水洗。再将有机层装入2L干净的反应瓶中,室温搅拌下滴加30.4g浓盐酸。滴毕,搅拌1h后分层,有机层用500g水洗后干燥,过滤,滤液浓缩一半加入300g正庚烷,体系降温至0-10℃,保温打浆2h后过滤滤饼烘干到化合6约22.6g,产率:92.4%,HPLC≥98.0%。
m/z=164.1(M+1), 1HNMR(300MHz,CDCl 3):δ4.08(d,J=2.4Hz,2H),3.94(d, J=2.6Hz,2H),3.35-3.10(m,2H),1.40-1.20(m,3H)ppm。
化合物7的合成
2L反应瓶中加入450g四氢呋喃,21.3g(0.12mol)氰甲基磷酸二乙酯,体系降温至-5-5℃,氮气保护下分批加入氢化钠(含量60%)5.3g(0.13mol),30min加毕,体系逐渐升温至20℃。搅拌45min。继续往体系中滴加16.3g(0.1mol)化合物6和80g四氢呋喃配成的溶液。1h内滴毕,室温搅拌反应12h,中控原料反应基本完全。体系降温至0℃后加入500g乙酸乙酯和300g饱和食盐水,搅拌5min后分层。水层用300gX3乙酸乙酯萃取,合并有机层。有机层用500g水洗。有机层干燥,过滤,滤液浓缩,得到化合物7的粗品,粗品用少量正己烷润洗,烘干,得到15.2g化合物7,产率:88.2%,HPLC≥98.0%。
目标产物1的合成
1L反应瓶中加入200g乙腈,14.3g(0.05mol)化合物4,搅拌下加入6.9g(0.05mol)碳酸钾,室温搅拌30min后加入9.3g(0.05mol)化合物7和8.1g(0.025mol)TBAB,体系升温至40℃反应8h后中控,原料反应完全,停止反应。减压蒸除溶剂后往体系中加入100g水淬灭反应后再加入200g乙酸乙酯,搅拌,分层,水层再用100gX3乙酸乙酯萃取,萃取得到的有机层合并后室温下加入10.2g浓盐酸,搅拌30min后,过滤,虑饼中加入300g新鲜的乙酸乙酯,搅拌下用10%碳酸钾溶液调pH至中性,分层,有机层干燥后过滤,虑饼烘干得到白色固体16.6g,HPLC≥99.0%(见图2HPLC:99.82%),产率:89.3%。目标产物1的氢谱图请见图1。
实施例2
化合物4的合成
1L反应瓶中投入15.4g(0.1mol)化合物2,11.4g(0.05mol)磷酸氢二钾,芴甲氧羰酰氯31.0g(0.12mol),二氯甲烷400g,室温搅拌12h后中控,原料反应完全,过滤,滤液中加入300g冰水,搅拌10min后分液,水层用200g萃取,合并有机层,有机层旋干,所得体系直接用于下步反应。
往上述体系中加入10.2g(0.2mol)水合肼,500g甲苯和11.2g(0.2mol)丙烯醛,氧气氛围下回流反应8h。中控原料反应完全后停止加热,体系降温至室温,搅拌下将体系倒入100g冰水中,搅拌10min后分层,有机层干燥后滤过,滤液旋蒸, 得到粗品粘状物,粗品用甲基叔丁基醚和正己烷重结晶得到化合物4约41.7g,产率:80.5%,HPLC≥98.0%。
化合物5的合成
2L反应瓶中加入500g甲苯,搅拌下加入43.2g(0.2mol)1,3-二溴丙酮,24.3g(0.4mol)乙二醇和2.0g浓硫酸,体系升温至110℃回流,回流过程中用分水器分出生成的水,保温反应12h后减压蒸出甲苯,待无液体滴出后往体系中加入450g乙酸乙酯,体系用450g水洗两次后有机层干燥。干燥后有机层过纤维活性炭后再过硅藻土,所得滤液蒸出乙酸乙酯层,最终得无色透明液体42.1g,HPLC≥99.0%,产率:81.1%。
化合物6的合成
往2L反应瓶中加入500g1,4-二氧六环,39.0g(0.15mol)化合物5,41.5g(0.3mol)碳酸钾和18.0g(0.17mol)乙基磺酰胺,体系升温至70℃,保温反应20h,中控,原料化合物5基本反应完全。停止反应,体系降温至室温,往体系中加入500g水和500g乙酸乙酯,搅拌,分层,水层用300gX2乙酸乙酯萃取,合并有机层,有机层用500g水洗。再将有机层装入2L干净的反应瓶中,室温搅拌下滴加30.4g浓盐酸。滴毕,搅拌1h后分层,有机层用500g水洗后干燥,过滤,滤液浓缩一半加入300g正庚烷,体系降温至0-10℃,保温打浆2h后过滤滤饼烘干到化合6约22.8g,产率:93.1%,HPLC≥98.0%。
化合物7的合成
2L反应瓶中加入450g四氢呋喃,21.3g(0.12mol)氰甲基磷酸二乙酯,体系降温至10℃,氮气保护下加入甲醇钠7.0g(0.13mol),加毕,体系逐渐升温至20℃。搅拌45min。继续往体系中滴加16.3g(0.1mol)化合物6和80g四氢呋喃配成的溶液。1h内滴毕,30℃搅拌反应10h,中控原料反应基本完全。体系降温至10℃后加入500g乙酸乙酯和300g饱和食盐水,搅拌5min后分层。水层用300gX3乙酸乙酯萃取,合并有机层。有机层用500g水洗。有机层干燥,过滤,滤液浓缩,得到化合物7的粗品,粗品用少量正己烷润洗,烘干,得到16.6g化合物7,产率:96.4%,HPLC≥98.0%。
目标产物1的合成
1L反应瓶中加入200g乙腈,20.4g(0.05mol)化合物4,搅拌下加入6.9g(0.05mol) 碳酸钾,室温搅拌30min后加入9.3g(0.05mol)化合物7和8g(0.05mol)DBU,体系升温至40℃反应8h后中控,原料反应完全,停止反应。减压蒸除溶剂后往体系中加入100g水淬灭反应后再加入200g乙酸乙酯,搅拌30min,过滤,虑饼用100g新鲜的乙酸乙酯润洗,滤饼烘干得到白色固体17.0g,HPLC≥99.0%,产率:91.2%。
实施例3
化合物4的合成
1L反应瓶中投入15.4g(0.1mol)化合物2,27.6g(0.2mol)碳酸钾,19.1g(0.1mol)对甲苯磺酰氯,500g乙腈,室温搅拌8h后中控,原料反应完全,过滤,滤液减压旋干,直接用于下步。
往上述体系中加入20.4g(0.4mol)水合肼,450g邻二氯苯和22.4g(0.4mol)丙烯醛,氧气氛围下回流反应4h。中控原料反应完全后停止加热,体系降温至室温,搅拌下将体系倒入100g冰水中,搅拌10min后分层,有机层干燥过滤过,滤液旋蒸,得到粗品粘状物,粗品用甲基叔丁基醚和正己烷重结晶得到化合物4约27.7g,产率:81.6%,HPLC≥98.0%。
化合物5的合成
2L反应瓶中加入500g甲苯,搅拌下加入43.2g(0.2mol)1,3-二溴丙酮,24.3g(0.4mol)乙二醇和0.3g对甲苯磺酸,体系升温至110℃回流,回流过程中用分水器分出生成的水,保温反应12h后减压蒸出甲苯,待无液体滴出后往体系中加入450g乙酸乙酯,体系用450g水洗两次后有机层干燥。干燥后有机层过纤维活性炭后再过硅藻土,所得滤液蒸出乙酸乙酯层,最终得无色透明液体42.6g,HPLC≥99.0%,产率:82.0%。 1HNMR(400MHz,CDCl3),δppm3.61(s,4H),4.14(s,4H)。
化合物6的合成
往2L反应瓶中加入500g1,4-二氧六环,39.0g(0.15mol)化合物5,31.8g(0.3mol)碳酸钠和18.0g(0.17mol)乙基磺酰胺,体系升温至65℃,保温反应16h,中控,原料化合物5基本反应完全。停止反应,体系降温至室温,往体系中加入500g水和500g乙酸乙酯,搅拌,分层,水层用300gX2乙酸乙酯萃取,合并有机层,有机层用500g水洗。再将有机层装入2L干净的反应瓶中,室温搅拌下滴加30.4g浓 盐酸。滴毕,搅拌1h后分层,有机层用500g水洗后干燥,过滤,滤液浓缩一半加入300g正庚烷,体系降温至0-10℃,保温打浆2h后过滤滤饼烘干到化合6约23.0g,产率:94.1%,HPLC≥98.0%。
化合物7的合成
2L反应瓶中加入450g四氢呋喃,21.3g(0.12mol)氰甲基磷酸二乙酯,体系降温至10℃,氮气保护下加入乙醇钠10.2g(0.15mol),加毕,体系逐渐升温至20℃。搅拌45min。继续往体系中滴加16.3g(0.1mol)化合物6和80g四氢呋喃配成的溶液。1h内滴毕,40℃搅拌反应10h,中控原料反应基本完全。体系降温至10℃后加入500g乙酸乙酯和300g饱和食盐水,搅拌5min后分层。水层用300gX3乙酸乙酯萃取,合并有机层。有机层用500g水洗。有机层干燥,过滤,滤液浓缩,得到化合物7的粗品,粗品用少量正己烷润洗,烘干,得到16.3g化合物7,产率:94.3%,HPLC≥98.0%。
目标产物1的合成
1L反应瓶中加入200g乙腈,17.0g(0.05mol)化合物4,搅拌下加入6.9g(0.05mol)碳酸钾,室温搅拌30min后加入9.3g(0.05mol)化合物7和5.7g(0.025mol)TEBA,体系升温至70℃反应6h后中控,原料反应完全,停止反应。减压蒸除溶剂后往体系中加入100g水淬灭反应后再加入400g丙酮,室温下滴加9.8g(0.1mol)浓硫酸,40℃搅拌1h,后降温至0℃过滤,滤饼用50g丙酮润洗,滤液减压旋蒸至干后加入300g乙酸乙酯,室温搅拌2h后过滤,滤饼烘干得到白色固体16.0g,HPLC≥99.0%,产率:85.9%。
实施例4
化合物4的合成
1L反应瓶中投入15.4g(0.1mol)化合物2,20.2g(0.2mol)三乙胺,27.9g(0.1mol)三苯基氯甲,600g乙腈,室温搅拌4h后中控,原料反应完全。过滤,滤液减压旋干,直接用于下步。
往上述体系中加入20.4g(0.4mol)水合肼,450g邻二氯苯和22.4g(0.4mol)丙烯醛,氧气氛围下回流反应4h。中控原料反应完全后停止加热,体系降温至室温,搅拌下将体系倒入100g冰水中,搅拌10min后分层,有机层干燥过滤过,滤液旋 蒸,得到粗品粘状物,粗品用乙醚和正己烷重结晶得到化合物4约35.6g,产率:83.2%,HPLC≥98.0%。
化合物5的合成
2L反应瓶中加入500g甲苯,搅拌下加入43.2g(0.2mol)1,3-二溴丙酮,24.3g(0.4mol)乙二醇和0.3g对甲苯磺酸,体系升温至110℃回流,回流过程中用分水器分出生成的水,保温反应12h后减压蒸出甲苯,待无液体滴出后往体系中加入450g乙酸乙酯,体系用450g水洗两次后有机层干燥。干燥后有机层过纤维活性炭后再过硅藻土,所得滤液蒸出乙酸乙酯层,最终得无色透明液体42.6g,HPLC≥99.0%,产率:82.0%。
化合物6的合成
往2L反应瓶中加入500g1,4-二氧六环,39.0g(0.15mol)化合物5,31.8g(0.3mol)碳酸钠和18.0g(0.17mol)乙基磺酰胺,体系升温至50℃,保温反应16h,中控,原料化合物5基本反应完全。停止反应,体系降温至室温,往体系中加入500g水和500g乙酸乙酯,搅拌,分层,水层用300gX2乙酸乙酯萃取,合并有机层,有机层用500g水洗。再将有机层装入2L干净的反应瓶中,室温搅拌下滴加30.4g浓盐酸。滴毕,搅拌1h后分层,有机层用500g水洗后干燥,过滤,滤液浓缩一半加入300g正庚烷,体系降温至0-10℃,保温打浆2h后过滤滤饼烘干到化合6约22.1g,产率:90.2%,HPLC≥98.0%。
化合物7的合成
2L反应瓶中加入450g四氢呋喃,21.3g(0.12mol)氰甲基磷酸二乙酯,体系降温至10℃,氮气保护下加入乙醇钠10.2g(0.15mol),加毕,体系逐渐升温至20℃。搅拌45min。继续往体系中滴加16.3g(0.1mol)化合物6和80g四氢呋喃配成的溶液。1h内滴毕,40℃搅拌反应10h,中控原料反应基本完全。体系降温至10℃后加入500g乙酸乙酯和300g饱和食盐水,搅拌5min后分层。水层用300gX3乙酸乙酯萃取,合并有机层。有机层用500g水洗。有机层干燥,过滤,滤液浓缩,得到化合物7的粗品,粗品用少量正己烷润洗,烘干,得到16.3g化合物7,产率:94.3%,HPLC≥98.0%。
目标产物1的合成
1L反应瓶中加入400g乙腈,21.4g(0.05mol)化合物4,搅拌下加入6.9g(0.05mol) 碳酸钾,室温搅拌30min后加入9.3g(0.05mol)化合物7和5.7g(0.025mol)TEBA,体系升温至70℃反应6h后中控,原料反应完全,停止反应。减压蒸除溶剂后往体系中加入100g水淬灭反应后再加入400g丙酮,室温下滴加19.6g(0.2mol)浓硫酸,40℃搅拌1h,后降温至0℃保温搅拌1-2h后再过滤,滤饼用50g丙酮润洗,滤液减压旋蒸至干后加入300g乙酸乙酯,室温搅拌2h后过滤,滤饼烘干得到白色固体16.7g,HPLC≥99.0%,产率:89.6%。
实施例5
化合物4的合成
1L反应瓶中投入15.4g(0.1mol)化合物2,20.2g(0.2mol)碳酸钾,24.1g(0.12mol)4-甲氧基溴苄,500g乙腈,室温搅拌6h后中控,原料反应完全。过滤,滤液减压旋干,直接用于下步。
往上述体系中加入20.4g(0.4mol)水合肼,450g邻二氯苯和22.4g(0.4mol)丙烯醛,氧气氛围下回流反应4h。中控原料反应完全后停止加热,体系降温至室温,搅拌下将体系倒入100g冰水中,搅拌10min后分层,有机层干燥过滤过,滤液旋蒸,得到粗品粘状物,粗品用甲基叔丁基醚和正己烷重结晶得到化合物4约24.6g,产率:80.5%,HPLC≥98.0%。
化合物5的合成
2L反应瓶中加入500g甲苯,搅拌下加入43.2g(0.2mol)1,3-二溴丙酮,24.3g(0.4mol)乙二醇和0.3g对甲苯磺酸,体系升温至110℃回流,回流过程中用分水器分出生成的水,保温反应12h后减压蒸出甲苯,待无液体滴出后往体系中加入450g乙酸乙酯,体系用450g水洗两次后有机层干燥。干燥后有机层过纤维活性炭后再过硅藻土,所得滤液蒸出乙酸乙酯层,最终得无色透明液体42.6g,HPLC≥99.0%,产率:82.0%。
化合物6的合成
往2L反应瓶中加入500g1,4-二氧六环,39.0g(0.15mol)化合物5,31.8g(0.3mol)碳酸钠和18.0g(0.17mol)乙基磺酰胺,体系升温至60℃,保温反应16h,中控,原料化合物5基本反应完全。停止反应,体系降温至室温,往体系中加入500g水和500g乙酸乙酯,搅拌,分层,水层用300gX2乙酸乙酯萃取,合并有机层,有 机层用500g水洗。再将有机层装入2L干净的反应瓶中,室温搅拌下滴加30.4g浓盐酸。滴毕,搅拌1h后分层,有机层用500g水洗后干燥,过滤,滤液浓缩一半加入300g正庚烷,体系降温至0-10℃,保温打浆2h后过滤滤饼烘干到化合6约24.5g,产率:93.4%,HPLC≥98.0%。
化合物7的合成
2L反应瓶中加入450g四氢呋喃,21.3g(0.12mol)氰甲基磷酸二乙酯,体系降温至10℃,氮气保护下加入乙醇钠10.2g(0.15mol),加毕,体系逐渐升温至20℃。搅拌45min。继续往体系中滴加16.3g(0.1mol)化合物6和80g四氢呋喃配成的溶液。1h内滴毕,40℃搅拌反应10h,中控原料反应基本完全。体系降温至10℃后加入500g乙酸乙酯和300g饱和食盐水,搅拌5min后分层。水层用300gX3乙酸乙酯萃取,合并有机层。有机层用500g水洗。有机层干燥,过滤,滤液浓缩,得到化合物7的粗品,粗品用少量正己烷润洗,烘干,得到16.3g化合物7,产率:94.3%,HPLC≥98.0%。
目标产物1的合成
1L反应瓶中加入400g乙腈,15.3g(0.05mol)化合物4,搅拌下加入6.9g(0.05mol)碳酸钾,室温搅拌30min后加入9.3g(0.05mol)化合物7和5.7g(0.025mol)TEBA,体系升温至70℃反应6h后中控,原料反应完全,停止反应。减压蒸除溶剂后往体系中加入100g水淬灭反应后再加入400g乙醇,体系降温至0~10℃,保温下滴加17.1g(0.15mol)三氟乙酸,室温搅拌1h,后降温至0℃保温搅拌1-2h后再过滤,滤饼用50g乙醇润洗,后往体系中加入400g二氯甲烷,体系降温至0~10℃搅拌2h后过滤,滤饼烘干得到白色固体15.2g,HPLC≥99.0%,产率:81.8%。

Claims (9)

  1. 一种巴瑞替尼的制备方法,其特征在于:
    Figure PCTCN2018094160-appb-100001
    反应步骤为:
    (1)以4-氯吡咯并嘧啶为原料,与氨基保护基R进行氨基保护后得到中间态化合物3,后在氧气下和有机溶剂中与水合肼及丙烯醛经“一锅法”取代、环合、重结晶得到化合物4;
    其中,所述的氨基保护化合物R为二碳酸二叔丁酯((Boc) 2O),芴甲氧羰酰氯(Fmoc-Cl),苄基羰基(Cbz-Cl);对甲苯磺酰氯(TS-Cl),三氟乙酰氯(Tfa-Cl);氯代三苯甲烷(Trt-Cl),对甲氧基苄溴(PMB-Br)或对甲氧基苄溴氯(PMB-Cl);
    R’为R对应的保护基团,为叔丁氧羰基(Boc),笏甲氧羰基(Fomc),苄基羰基(Cbz),对甲磺酰基(TS),三氟乙酰氯(Tfa),氯代三苯甲烷(Trt),对甲氧基苄基(PMB);
    (2)以1,3-二溴丙酮和乙二醇为原料,在强酸催化下缩合得到羰基保护物化合物5;
    (3)将步骤(2)所得化合物5与乙基磺酰胺在碱作用下,加热发生环合,得到化合物6;
    (4)原料氰甲基磷酸二乙酯与步骤(3)中化合物6在强碱下消去得到化合物7;
    (5)将步骤(1)所得化合物4与步骤(4)所得化合物7在有机溶剂中于催化剂作用下发生加成、脱氨基保护基得到巴瑞替尼。
  2. 根据权利要求1所述的巴瑞替尼的制备方法,其特征在于,步骤(1)中所述的有机溶剂为四氢呋喃,甲苯,二甲苯,邻二氯苯中的一种。
  3. 根据权利要求1所述的巴瑞替尼的制备方法,其特征在于,步骤(1)中所述的4-氯吡咯并嘧啶,水合肼,丙烯醛的摩尔比为1∶1∶1-1∶4∶4。
  4. 根据权利要求1所述的巴瑞替尼的制备方法,其特征在于,步骤(1)中所述的重结晶溶剂为甲基叔丁基醚/正己烷、甲基叔丁醚/正庚烷、乙醚/正己烷或乙醚/正庚烷。
  5. 根据权利要求1所述的巴瑞替尼的制备方法,其特征在于,步骤(2)中所述的强酸催化剂为对甲苯磺酸,硫酸中的一种。
  6. 根据权利要求1所述的巴瑞替尼的制备方法,其特征在于,步骤(3)中所述的碱为碳酸钾,碳酸钠,碳酸铯中的一种;反应温度为50~80℃。
  7. 根据权利要求6所述的巴瑞替尼的制备方法,其特征在于,步骤(3)中所述的碱为碳酸铯,反应温度为65℃。
  8. 根据权利要求1所述的巴瑞替尼的制备方法,其特征在于,步骤(4)中所述的强碱为氢化钠,氢化钾,甲醇钠,乙醇钠中的一种;反应温度为10~40℃。
  9. 根据权利要求1所述的巴瑞替尼的制备方法,其特征在于,步骤(5)中所述的催化剂为DBU,TBAB,TEBA中的一种;反应温度为40~70℃。
PCT/CN2018/094160 2017-12-13 2018-07-03 一种巴瑞替尼的制备方法 WO2019114258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018366342A AU2018366342A1 (en) 2017-12-13 2018-07-03 Method for preparing Baricitinib

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711334329.1 2017-12-13
CN201711334329.1A CN108129482A (zh) 2017-12-13 2017-12-13 一种巴瑞替尼的制备方法
CN201810667443.4A CN108586465B (zh) 2017-12-13 2018-06-25 一种巴瑞替尼的制备方法
CN201810667443.4 2018-06-25

Publications (1)

Publication Number Publication Date
WO2019114258A1 true WO2019114258A1 (zh) 2019-06-20

Family

ID=62389618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094160 WO2019114258A1 (zh) 2017-12-13 2018-07-03 一种巴瑞替尼的制备方法

Country Status (3)

Country Link
CN (2) CN108129482A (zh)
AU (2) AU2018102141A4 (zh)
WO (1) WO2019114258A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108129482A (zh) * 2017-12-13 2018-06-08 江苏中邦制药有限公司 一种巴瑞替尼的制备方法
WO2021053690A1 (en) * 2019-09-17 2021-03-25 Natco Pharma Limited An improved process for the preparation of baricitinib
CN111362853A (zh) * 2020-04-27 2020-07-03 安徽大学 一种3-氧杂氮杂环丁烷-1-羧酸叔丁酯的制备方法
CN112898306B (zh) * 2021-02-02 2022-04-08 山东四环药业股份有限公司 一种巴瑞替尼的制备方法
CN115124537A (zh) * 2022-07-13 2022-09-30 山东大学 一种jak抑制剂巴瑞替尼的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434292A (en) * 1980-09-19 1984-02-28 Bayer Aktiengesellschaft Process for the preparation of pyrazole
CN103788098A (zh) * 2008-03-11 2014-05-14 因塞特公司 作为jak抑制剂的氮杂环丁烷和环丁烷衍生物
CN105294699A (zh) * 2015-12-04 2016-02-03 上海勋和医药科技有限公司 巴瑞替尼的制备方法
CN105541891A (zh) * 2016-02-04 2016-05-04 东南大学 巴瑞替尼的中间体及其制备方法及由该中间体制备巴瑞替尼的方法
WO2016125080A2 (en) * 2015-02-02 2016-08-11 Sun Pharmaceutical Industries Limited Process for the preparation of baricitinib and an intermediate thereof
CN106496195A (zh) * 2016-10-18 2017-03-15 杭州科巢生物科技有限公司 巴瑞替尼及其中间体的新合成方法
CN106946917A (zh) * 2017-03-20 2017-07-14 杭州科巢生物科技有限公司 一种jak抑制剂巴瑞替尼及其中间体的新合成方法
CN107176955A (zh) * 2017-03-24 2017-09-19 南京优科制药有限公司 一种巴瑞替尼的制备方法
CN108129482A (zh) * 2017-12-13 2018-06-08 江苏中邦制药有限公司 一种巴瑞替尼的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631792B (zh) * 2007-02-28 2013-05-01 利奥制药有限公司 新的磷酸二酯酶抑制剂
WO2016088094A1 (en) * 2014-12-05 2016-06-09 Sun Pharmaceutical Industries Limited Process for the preparation of baricitinib and an intermediate thereof
AR104918A1 (es) * 2015-06-19 2017-08-23 Lilly Co Eli Procesos e intermediarios para la preparación de {1-(etilsulfonil)-3-[4-(7h-pirrolo[2,3-d]pirimidin-4-il)-1h-pirazol-1-il]azetidin-3-il}acetonitrilo
CN107739328B (zh) * 2017-11-22 2020-03-20 海化生命(厦门)科技有限公司 用于合成巴瑞替尼的关键中间体1的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434292A (en) * 1980-09-19 1984-02-28 Bayer Aktiengesellschaft Process for the preparation of pyrazole
CN103788098A (zh) * 2008-03-11 2014-05-14 因塞特公司 作为jak抑制剂的氮杂环丁烷和环丁烷衍生物
WO2016125080A2 (en) * 2015-02-02 2016-08-11 Sun Pharmaceutical Industries Limited Process for the preparation of baricitinib and an intermediate thereof
CN105294699A (zh) * 2015-12-04 2016-02-03 上海勋和医药科技有限公司 巴瑞替尼的制备方法
CN105541891A (zh) * 2016-02-04 2016-05-04 东南大学 巴瑞替尼的中间体及其制备方法及由该中间体制备巴瑞替尼的方法
CN106496195A (zh) * 2016-10-18 2017-03-15 杭州科巢生物科技有限公司 巴瑞替尼及其中间体的新合成方法
CN106946917A (zh) * 2017-03-20 2017-07-14 杭州科巢生物科技有限公司 一种jak抑制剂巴瑞替尼及其中间体的新合成方法
CN107176955A (zh) * 2017-03-24 2017-09-19 南京优科制药有限公司 一种巴瑞替尼的制备方法
CN108129482A (zh) * 2017-12-13 2018-06-08 江苏中邦制药有限公司 一种巴瑞替尼的制备方法

Also Published As

Publication number Publication date
AU2018366342A1 (en) 2019-07-04
CN108586465A (zh) 2018-09-28
CN108586465B (zh) 2020-06-02
AU2018102141A4 (en) 2019-10-03
CN108129482A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2019114258A1 (zh) 一种巴瑞替尼的制备方法
CZ20032534A3 (cs) N-Fenpropylcyklopentylem substituované glutaramidové deriváty jako NEP inhibitory pro FSAD
CN112321602A (zh) 一种瑞卢戈利药物中间体的制备方法
KR20170131508A (ko) 레디파스비르 및 이의 유도체의 제조방법 및 레디파스비르를 제조하기 위한 중간체 화합물
WO2019019795A1 (zh) 一种沙库必曲中间体的制备方法
KR20050099525A (ko) 피롤로트리아진 키나제 억제제의 제조 방법
JP6454707B2 (ja) trans−8−クロロ−5−メチル−1−[4−(ピリジン−2−イルオキシ)−シクロヘキシル]−5,6−ジヒドロ−4H−2,3,5,10b−テトラアザ−ベンゾ[e]アズレン及びその結晶形態の合成
US20170369437A1 (en) Process for Preparing Alpha-Carboxamide Pyrrolidine Derivatives
WO1997043265A1 (fr) Procedes de preparation d'un compose pyrimidine
JP2921760B2 (ja) フタルイミド誘導体及びそれら誘導体を含んでなる医薬
JPS638368A (ja) 4−ベンジロキシ−3−ピロリン−2−オン−1−イルアセトアミド、その製造方法および使用方法
CN113583003A (zh) 一种伐地那非类似物及其合成方法和应用
CN112679363A (zh) 一种制备喷他佐辛中间体的方法
CN107739328B (zh) 用于合成巴瑞替尼的关键中间体1的制备方法
WO2015188762A1 (zh) 一种抗血管新生化合物及其中间体的制备方法
KR20210092768A (ko) 1-((3s,4r)-4-(2,6-디플루오로-4-메톡시페닐)-2-옥소피롤리딘-3-일)-3-페닐우레아의 제조를 위한 합성 방법
JP4790901B2 (ja) 4−アミノ−5−シアノイミダゾール誘導体及びその中間体の製造方法
CN111560021B (zh) 一种德高替尼中间体及其制备方法
CN112898306B (zh) 一种巴瑞替尼的制备方法
CN117285537B (zh) 一种乌帕替尼的制备方法
JP4699582B2 (ja) 1h−4(5)−アミノイミダゾール−5(4)−カルボキサミドの製造方法
WO2024092892A1 (zh) 依度沙班中间体及其制备方法
CN115124473B (zh) 西咪替丁有关物质b的合成方法
CN111362852B (zh) 一种药物中间体1-叔丁氧羰基-3-氮杂环丁酮的制备方法
JP2000072744A (ja) ピロリジニルヒドロキサム酸化合物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018366342

Country of ref document: AU

Date of ref document: 20180703

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018366342

Country of ref document: AU

Date of ref document: 20180703

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888310

Country of ref document: EP

Kind code of ref document: A1