WO2019107352A1 - 繊維強化積層体及びその製造方法 - Google Patents

繊維強化積層体及びその製造方法 Download PDF

Info

Publication number
WO2019107352A1
WO2019107352A1 PCT/JP2018/043570 JP2018043570W WO2019107352A1 WO 2019107352 A1 WO2019107352 A1 WO 2019107352A1 JP 2018043570 W JP2018043570 W JP 2018043570W WO 2019107352 A1 WO2019107352 A1 WO 2019107352A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
resin composition
short
containing resin
fibers
Prior art date
Application number
PCT/JP2018/043570
Other languages
English (en)
French (fr)
Inventor
幸太 瀬上
渡辺 和伸
俊文 榎戸
小林 祐介
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to CN201880076702.4A priority Critical patent/CN111417512A/zh
Priority to US16/765,320 priority patent/US20200353727A1/en
Priority to EP18884699.2A priority patent/EP3718765A4/en
Priority to BR112020008703-3A priority patent/BR112020008703A2/pt
Publication of WO2019107352A1 publication Critical patent/WO2019107352A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • B29K2079/085Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • B29K2105/0845Woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • B32B2309/125Pressure vs time profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a fiber reinforced laminate and a method of manufacturing the same, and more particularly to a fiber reinforced laminate having both excellent abrasion resistance and both wear resistance and strength and a method of manufacturing the same. .
  • a molded product made of a fiber reinforced resin which is conventionally made by blending functional fiber such as carbon fiber with resin, is excellent in properties such as weather resistance, mechanical strength, durability, etc. It is widely used in applications such as equipment, civil engineering and construction materials, and sports equipment.
  • Patent Document 1 listed below describes a carbon fiber reinforced resin molded product comprising a specific pitch-based carbon short fiber mixture and a matrix resin, and describes that it is suitably used for various electronic components.
  • Patent Document 2 below proposes a friction material comprising a resin composition for a friction material using a specific aromatic polyimide oligomer as a binder such as carbon fiber. In this friction material, a friction material is conventionally used. It is described that the heat resistance and mechanical properties of the binder itself are excellent and the moldability is good as compared with the case where a phenolic resin suitably used as a binder is used.
  • the fiber-reinforced polyimide resin molded body described in Patent Document 3 has no occurrence of warpage and has excellent shape stability, but it is difficult to achieve both wear resistance and strength. was there. That is, when the above-mentioned fiber-reinforced polyimide resin molded body is used as a sliding member, the abrasion powder scraped off by the friction of the sliding surface is transferred to the surface of the opposite material to form a transferred film.
  • the fiber-reinforced polyimide resin molded product capable of forming such a transfer film is improved in strength, since it contains carbon fibers etc. which are relatively short in order to generate wear powder efficiently. It was not satisfactory, and it could not be applied to a sliding member to which an impact or a large load is applied.
  • an object of the present invention is to provide a fiber-reinforced laminate having excellent sliding performance and having both wear resistance and strength, and a method for producing the same.
  • the present invention is a laminate having at least a layer of a woven fiber and a layer comprising a short fiber-containing resin composition, and in the gap formed by intersection of fiber bundles constituting the woven fiber. And a laminate comprising the short fiber-containing resin composition.
  • the length of the short fibers is smaller than the length of one side of the gap, 2.
  • the length of the short fibers is in the range of 1 to 350 ⁇ m; 3.
  • the short fiber-containing resin composition is a resin composition in which short fibers are dispersed in an addition reaction type polyimide resin, 4.
  • the woven fibers and the short fibers consist of carbon fibers, 5.
  • the layer formed of the short fiber-containing resin composition and the layer of the woven fiber are alternately laminated; Is preferred.
  • the short fiber-containing resin composition is a resin composition in which short fibers are dispersed in an addition reaction type polyimide resin, and the thermosetting temperature of the addition reaction type polyimide resin It is preferable to perform compression molding at the above temperatures.
  • a layer comprising a woven fiber excellent in strength and a layer comprising a short fiber-containing resin composition excellent in abrasion resistance are alternately laminated, and the short fiber-containing resin composition is a woven fabric
  • the short fiber-containing resin composition is a woven fabric
  • the presence of the layer comprising the short fiber-containing resin composition on the surface of the laminate makes it possible to efficiently form a transfer film on the other member, resulting in abrasion resistance.
  • the woven fiber is located on the surface of the laminate, or when the layer composed of the short fiber-containing resin composition on the surface is worn after the start of use, the woven fiber is exposed, Since the short fiber resin composition present in the interstices of the woven fibers is exposed to the surface, the transfer film can be formed on the opposite material, and the wear resistance can be improved over a long period of time.
  • the method for producing a fiber-reinforced laminate of the present invention it is possible to efficiently cause the short fiber-containing resin composition to be present in the interstices of woven fibers, and lamination having the above-mentioned excellent abrasion resistance and strength. It is possible to produce the body with high productivity.
  • FIG. 1 It is a perspective view which shows typically an example of the fiber reinforced laminated body of this invention. It is a perspective view which shows the state which remove
  • the laminate of the present invention is, as schematically shown in FIG. 1, a disc-like structure in which layers 1 made of textile fibers and layers 2 made of short fiber-containing resin composition are alternately laminated. It is a laminated body, and the uppermost layer 2a and the lowermost layer 2b both have a layer structure which consists of the layer 2 which consists of a short fiber containing resin composition.
  • FIG. 2 is a perspective view schematically showing a laminate excluding the layer 2a made of the uppermost short fiber-containing resin composition, and shows fiber bundles 3a and 3b of the layer 1 made of woven fibers exposed on the surface.
  • the short fiber-containing resin composition intrudes into gaps 4, 4.
  • the laminate of the present invention even when the fabric-like fibers are present on the outermost surface, the short fiber-containing resin composition present in the gaps 4.
  • the laminate has excellent abrasion resistance because it is transferred to the Further, as shown in FIG. 1, a laminate excellent in strength and abrasion resistance is obtained by alternately laminating a layer 1 made of a textile fiber and a layer 2 made of a short fiber-containing resin composition. Can.
  • FIG. 3 is a view schematically showing a woven fiber used in the laminate shown in FIG. 1, and shows the size of the fiber bundle and the gap in an enlarged manner.
  • the short fiber containing resin composition It is preferable that fiber length L of the short fiber contained in a thing satisfies L ⁇ A and / or L ⁇ B. As a result, the short fibers can be efficiently exposed to the surface of the layer made of woven fibers from the gaps 4, 4... Even when the layer made of the short fiber-containing resin composition on the outermost surface is worn out There is no loss of wear resistance.
  • the woven fibers used in the present invention are those in which fiber bundles cross each other longitudinally and have gaps.
  • the specific size of the gap depends on the length of the short fiber used, it is preferable that the maximum width (A) and the maximum height (B) of the gap shown in FIG. 3 be in the range of 200 to 1000 ⁇ m. And particularly preferably in the range of 250 to 500 ⁇ m. If the gap is smaller than the above range, the short fibers may not be sufficiently exposed to the surface through the gap, and the wear resistance can not be improved over a long period as compared with the above range.
  • the fiber bundle preferably has a width of 800 to 1600 ⁇ m and a thickness of 100 to 200 ⁇ m, and the maximum thickness of the woven fiber is preferably in the range of 200 to 400 ⁇ m.
  • fibers constituting the woven fibers conventionally known functional fibers such as carbon fibers, aramid fibers, glass fibers, metal fibers and the like can be used, but carbon fibers can be particularly preferably used.
  • a carbon fiber bundle can be suitably used which is a continuous fiber having an average fiber diameter in the range of 5 to 18 ⁇ m and bundled so as to have a width of 1000 to 2000 ⁇ m and a thickness of 100 to 200 ⁇ m. If the average fiber diameter is smaller than the above range, the fiber bundle can not be efficiently prepared and the economy is inferior. If the average fiber diameter is larger than the above range, the handleability of the woven fiber may be inferior. There is.
  • the fiber type to be used may be PAN type or pitch type as long as it is used properly depending on the purpose, but PAN type having strength is preferable.
  • the short fiber-containing resin composition used in the present invention is itself capable of forming a sliding member, and the layers are tightly fixed by sandwiching the layer made of the above-mentioned woven fibers, and the gaps between the woven fibers As described above, the short fibers in the outer layer cause the layer composed of the short fiber-containing resin composition to wear, and the short fibers are present in the interstices of the woven fibers even when the woven fibers are exposed. , Excellent wear resistance is maintained.
  • thermoplastic resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, liquid crystal polyester, etc.
  • polyolefins such as polypropylene, syndiotactic polystyrene resin, polyoxymethylene, polyamide , Polycarbonate, polyphenylene ether, polyphenylene sulfide, polyimide, polyamide imide, polyether imide, poly sulfone, polyether sulfone, poly ketone, polyether ketone, polyether ether ketone, polyether ketone ketone, polyarylate, polyether nitrile, poly tetra Fluoroethylene
  • thermosetting resin unsaturated polyester resin, vinyl ester resin, an epoxy resin, a phenol resin, a urea melamine resin, a polyimide resin etc.
  • these copolymers, modified products, and resins in which two or more types are blended, or resins to which an elastomer or a rubber component is added to improve impact resistance may be used.
  • an addition reaction type polyimide resin used in the present invention is composed of an aromatic polyimide oligomer having an addition reaction group at the end, and one prepared by a conventionally known production method can be used.
  • an aromatic tetracarboxylic acid dianhydride, an aromatic diamine, and a compound having an anhydride group or an amino group together with an addition reaction group in the molecule, and a total of equivalents of each acid group and a total of each amino group It can be easily obtained by reacting in equal amounts, preferably in a solvent.
  • the reaction is carried out by polymerization at a temperature of 100 ° C.
  • a method consisting of two steps of heat imidization by heating at a high temperature of about 140 to 270 ° C, or one step of carrying out a polymerization / imidization reaction at a high temperature of 140 to 270 ° C from the beginning for 0.1 to 50 hours can be illustrated.
  • the solvent used in these reactions is not limited to this, but N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, ⁇ -butyl lactone, N- Organic polar solvents such as methylcaprolactam can be suitably used.
  • the terminal addition reaction group of the aromatic imide oligomer is not particularly limited as long as it is a group which performs a curing reaction (addition polymerization reaction) by heating when producing a laminate, but a curing reaction is preferably performed.
  • a curing reaction addition polymerization reaction
  • a curing reaction is preferably performed.
  • any reactive group selected from the group consisting of phenylethynyl group, acetylene group, nadic group, and maleimide group preferably a reactive group selected from the group consisting of phenylethynyl group, acetylene group, nadic group, and maleimide group
  • a phenylethynyl group is preferable because it has no generation of a gas component due to a curing reaction and is excellent in heat resistance of the obtained laminate and also in mechanical strength.
  • the addition reaction group is a reaction in which a compound having an anhydride group or an amino group together with the addition reaction group in the molecule forms an imide ring with a terminal amino group or an acid anhydride group of an aromatic imide oligomer. Is introduced at the end of the aromatic imide oligomer.
  • Compounds having an anhydride group or an amino group together with an addition reaction group in the molecule are, for example, 4- (2-phenylethynyl) phthalic anhydride, 4- (2-phenylethynyl) aniline, 4-ethynyl-phthalic anhydride, 4 -Ethynyl aniline, nadic anhydride, maleic anhydride and the like can be suitably used.
  • tetracarboxylic acid components that form an aromatic imide oligomer having an addition reaction group at the end include 2,3,3 ′, 4′-biphenyltetracarboxylic acid dianhydride, 2,2 ′, 3,3′-biphenyl At least one selected from the group consisting of tetracarboxylic acid dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic acid dianhydride, and 3,3', 4,4'-benzophenonetetracarboxylic acid dianhydride
  • One tetracarboxylic acid dianhydride can be exemplified, and in particular, 2,3,3 ′, 4′-biphenyltetracarboxylic acid dianhydride can be suitably used.
  • the diamine component for forming an aromatic imide oligomer having an addition reaction group at the terminal includes, but is not limited to, 1,4-diaminobenzene, 1,3-diaminobenzene, 1,2-diaminobenzene, 2,6- Diethyl-1,3-diaminobenzene, 4,6-diethyl-2-methyl-1,3-diaminobenzene, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6- Diamine having one benzene ring such as diamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone 4,4'-diaminodiphenylmethane, 3,3'-
  • 1,3-diaminobenzene, 1,3-bis (4-aminophenoxy) benzene, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, and 2,2'-bis (trifluoro) Preference is given to using mixed diamines constituted by at least two aromatic diamines selected from the group consisting of methyl) benzidine, in particular 1,3-diaminobenzene and 1,3-bis (4-aminophenoxy) benzene.
  • the aromatic imide oligomer having an addition reaction group at the end used in the present invention preferably has 0 to 20, particularly 1 to 5 repeating units of the repeating unit of the imide oligomer, and has a number average molecular weight in terms of styrene by GPC. Is preferably 10000 or less, particularly 3000 or less.
  • the repeating number of the repeating unit is in the above range, the melt viscosity is adjusted to an appropriate range, and it becomes possible to mix the short fibers uniformly, and the resin composition containing short fibers in the gaps of the textile fibers. Can be embedded efficiently. Moreover, it is not necessary to form at high temperature, and it is possible to provide a laminate having excellent formability and excellent heat resistance and mechanical strength.
  • Adjustment of the repeating number of the repeating unit can be carried out by changing the proportion of the aromatic tetracarboxylic acid dianhydride, the aromatic diamine, and the compound having an anhydride group or an amino group together with the addition reaction group in the molecule.
  • the molecular weight is reduced to reduce the number of repeating units of the repeating unit, and by decreasing the proportion of this compound, the molecular weight is increased to repeat The number of unit repetitions increases.
  • resin additives such as flame retardants, colorants, lubricants, heat stabilizers, light stabilizers, UV absorbers, fillers and the like are publicly known formulations according to the intended use of the laminate. It can be formulated according to
  • the short fibers used in the present invention preferably have a length (L) of the short fibers smaller than the length (A and / or B) of one side of the interstices of the woven fibers described above, particularly in the range of 1 to 350 ⁇ m Is preferred.
  • conventionally known functional fibers such as carbon fibers, aramid fibers, glass fibers, metal fibers, graphite, PTFE, molybdenum disulfide, carbon nanotubes, carbon black and the like are used in particular, carbon fibers can be suitably used.
  • carbon fibers having an average fiber length of 200 ⁇ m or less and an average fiber diameter in the range of 5 to 18 ⁇ m, particularly, meso-face type pitch-based carbon fibers can be suitably used. If it is longer than the above range, it can not be efficiently present in the interstices of the textile fibers.
  • the average fiber diameter is smaller than the above range, the handling property is poor and expensive, while when the average fiber diameter is larger than the above range, the sedimentation speed of the functional fiber is increased, and the functional fiber is In addition to the possibility of uneven distribution, the strength of the fiber tends to decrease, and the effect as a reinforcing material may not be sufficiently obtained.
  • the content of the short fiber has a significant influence on the sliding performance of the laminate and the occurrence of warping during molding, and in the present invention, the short fiber is 5 to 200 parts by weight with respect to 100 parts by weight of the resin. In particular, the content of 10 to 150 parts by weight is suitable for obtaining a molded product having excellent sliding performance and having no warp and excellent shape stability. If the amount of short fibers is smaller than the above range, the sliding performance may be degraded, and the occurrence of warping of the laminate may be increased. On the other hand, even if the amount of short fibers is larger than the above range, the sliding performance may be reduced as compared with the case of being in the above range, and excessive thickening may occur to make it impossible to shape.
  • inorganic materials such as fine carbon-based materials such as graphite, PTFE, molybdenum disulfide and carbon black, metal powders such as aluminum powder and copper powder, and the above-mentioned short fibers, It can also be further contained in an object.
  • the inorganic material is preferably contained in an amount of 5 to 40 parts by weight, particularly 5 to 30 parts by weight with respect to 100 parts by weight of the resin. If the amount of the inorganic material is smaller than the above range, the effect obtained by blending the inorganic material can not be obtained sufficiently, while if the amount of the inorganic material is larger than the above range, the friction coefficient increases and the wear resistance decreases However, the sliding performance may be impaired.
  • a step of installing a woven fiber on the short fiber-containing resin composition to be the outermost surface layer and the woven fiber is repeated at least once, that is, the desired number of times according to the number of laminations, and then compression molding is performed. That is, in the case of a laminate having a total of seven layers consisting of four layers comprising a short fiber-containing resin composition and three layers comprising fabric-like fibers shown in FIG.
  • the short fiber-containing resin composition is molded After supplying to the mold, setting of the woven fiber and feeding of the short fiber-containing resin composition are repeated three times, and then compression molding is carried out to impregnate the short fiber-containing resin composition into the woven fiber and woven fabric
  • the short fibers in the resin composition can easily enter the interstices.
  • compression molding in such a state in the laminating direction, it is possible to improve the interlayer adhesion between the layer made of the short fiber-containing resin composition and the woven fiber, and further, in the gaps of the woven fiber. It also becomes possible to insert staples, allowing more staples to be present in the interstices.
  • the short fiber-containing resin composition to be the outermost surface is supplied to a mold having a shape corresponding to the shape of a molded body. It uses about about the manufacturing method of the laminated body which has a layer which consists of a short fiber containing resin composition used.
  • the prepolymer and the short fiber are mixed by heating the prepolymer (imide oligomer) of the addition reaction type polyimide resin and the short fiber while heating the prepolymer at a temperature higher than the melting point of the addition reaction type polyimide resin and melting the prepolymer.
  • the short fiber-containing resin composition of At this time it is preferable to use 5 to 200 parts by weight, in particular 10 to 150 parts by weight of short fibers with respect to 100 parts by weight of the addition reaction type polyimide. Further, the above-mentioned inorganic material can be blended in the above-mentioned amount.
  • a conventionally known mixer such as a Henschel mixer, tumbler mixer, ribbon blender
  • it is important to suppress and disperse the short fiber It is particularly preferred to use a batch type pressure kneader (kneader).
  • the melt viscosity of the short fiber-containing resin composition at a temperature of 300 to 320 ° C. is adjusted to a range of 10 to 5000 Pa ⁇ s. If the melt viscosity is less than 10 Pa ⁇ s, the polyimide resin used for the composition is held at a temperature of 310 ⁇ 10 ° C. near the thermosetting temperature for 30 to 60 minutes to adjust the melt viscosity to the above range. That is, by holding the liquid short fiber-containing resin composition at a temperature of 310 ⁇ 10 ° C. for 30 to 60 minutes using an electric furnace or the like, the viscosity gradually increases because the prepolymer gradually starts to be crosslinked.
  • the short fibers incorporated in the prepolymer can maintain the dispersed state without settling in the prepolymer due to the increase in viscosity. Further, by setting the heating temperature and holding time in the above range, it is possible to raise only the viscosity to the above range without completely crosslinking and curing the prepolymer.
  • the reaction initiation temperature depends on the addition reaction group, and in the polyimide resin having a phenylethynyl group suitable as the addition reaction group in the present invention, 310 ⁇ 10 which is near the heat curing initiation temperature. It is desirable to heat for 30 to 60 minutes at a temperature of ° C.
  • the adhesion between layers can be improved, and as described above, it is possible to develop wear resistance over a long period of time.
  • the short fiber-containing resin composition is preferably adjusted to a predetermined melt viscosity and supplied to the mold from the viewpoint of productivity etc., but the short fiber-containing resin composition is cooled and solidified. Even if it is a solid material pulverized and mixed, it can be molded in the same manner as described above by heating and melting it at a temperature above the melting point of the addition reaction type polyimide resin using an electric furnace or the like.
  • the laminate can be formed by supplying a solid as it is in a mold and melting the solid in the mold, and then setting textile fibers and heat curing it.
  • thermoplastic resin such as an engineering plastic
  • the resin is heated to a temperature above the melting point of the thermoplastic resin to make the resin into a molten state, which is supplied to the mold
  • the laminate is formed by compression molding and cooling and solidification.
  • Abrasion resistance A ring-on-disk method as shown in FIG. 4 using a thrust type wear tester (friction and wear tester EFM-III-F manufactured by A & D Co., Ltd.) conforming to JIS K 7218 (sliding wear test method for plastics).
  • Test specimen size is 50 mm in length, 10 mm in width, 3 to 5 mm in thickness using an autograph (AG-I / 50N-10 kN manufactured by Shimadzu Corporation) with reference to JIS K 7171 (plastic-test method for bending characteristics) The bending stress was measured using a bending test under the test conditions of
  • Example 1 To 100 parts by weight of addition polymerization type polyimide (PET I-330 manufactured by Ube Industries, Ltd.), 43 parts by weight of pitch-based carbon fiber with an average fiber length of 200 ⁇ m (K223HM manufactured by Mitsubishi Chemical Co., Ltd.) is blended. Melted at 30 ° C for 30 minutes. Then, it cooled to room temperature and obtained the short fiber containing resin composition. After pulverizing the obtained short fiber-containing resin composition to a size easy to handle, after supplying it to a forming die, installation of a textile fiber (carbon mesh of 200 mesh) and supply of the short fiber-containing resin composition Repeat 3 times, then raise the temperature to 280 ° C. and hold for 10 minutes.
  • PTT I-330 manufactured by Ube Industries, Ltd.
  • pitch-based carbon fiber with an average fiber length of 200 ⁇ m K223HM manufactured by Mitsubishi Chemical Co., Ltd.
  • the viscosity is adjusted by raising the temperature to 320 ° C. at 3 ° C./min and holding for 30 minutes, and then while raising the pressure to 3 MPa, the temperature is raised to 371 ° C. at the heating rate of 4.3 ° C./min. It cooled slowly and obtained the board of (phi) 200 thickness 4 mm. The obtained plate was processed into a desired size to obtain a test piece.
  • Example 2 As a carbon fiber used for a short fiber containing resin composition, the average fiber length used in Example 1 is changed to a pitch based carbon fiber obtained by crushing the pitch based carbon fiber having an average fiber length of 200 ⁇ m to 10 ⁇ m. Same as Example 1.
  • Comparative example 1 43 parts by weight of pitch-based carbon fiber with an average fiber length of 200 ⁇ m (K223HM made by Mitsubishi Chemical Corporation) is blended with 100 parts by weight of addition polymerization type polyimide (PETI-330 made by Ube Industries, Ltd.) Melted at 30 ° C for 30 minutes. Then, it cooled to room temperature and obtained the short fiber containing resin composition. The obtained short fiber-containing resin composition was pulverized to a size easy to handle, supplied to a mold heated to 280 ° C., and held for 10 minutes. Thereafter, the temperature is raised to 320 ° C. and the viscosity is adjusted by holding for 30 minutes, then while raising the pressure to 3 MPa, the temperature is raised to 371 ° C. at the temperature rising rate of 4.3 ° C./min. A 3 mm thick plate was obtained. The obtained plate was processed into a desired size to obtain a test piece.
  • PETI-330 addition polymerization type polyimide
  • Comparative example 2 Comparative Example except that carbon fibers used for the short fiber-containing resin composition are changed to pitch-based carbon fibers having an average fiber length of 10 ⁇ m obtained by crushing pitch-based carbon fibers having an average fiber length of 200 ⁇ m used in Comparative Example 1 Same as 1.
  • the resin molded article of the present invention is excellent in mechanical strength and also in abrasion resistance, and can be used in various applications as a sliding member in the fields of automobiles, electricity and electronics, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本発明は、織物状繊維の層と短繊維含有樹脂組成物から成る層とを少なくとも有する繊維強化積層体及びその製造方法に関するものであり、前記織物状繊維を構成する繊維束が交差することにより形成される間隙内に前記短繊維含有樹脂組成物が存在することにより、優れた摺動性能を有すると共に、耐摩耗性と強度の両方を兼ね備えた繊維強化積層体が提供される。

Description

繊維強化積層体及びその製造方法
 本発明は、繊維強化積層体及びその製造方法に関するものであり、より詳細には、優れた摺動性能を有すると共に、耐摩耗性と強度の両方を兼ね備えた繊維強化積層体及びその製造方法に関する。
 従来より炭素繊維等の機能性繊維を樹脂に配合して成る繊維強化樹脂から成る成形体は、耐候性、機械的強度、耐久性等の特性に優れていることから、自動車、航空機等の輸送機材、土木・建設材料、スポーツ用品等の用途に広く使用されている。
 例えば、下記特許文献1には、特定のピッチ系炭素短繊維混合物及びマトリックス樹脂から成る炭素繊維強化樹脂成形体が記載されており、各種電子部品に好適に使用されることが記載されている。
 また下記特許文献2には、炭素繊維等のバインダーとして特定の芳香族ポリイミドオリゴマーを用いた摩擦材用樹脂組成物から成る摩擦材が提案されており、この摩擦材においては、従来、摩擦材のバインダーとして好適に使用されていたフェノール樹脂を用いた場合に比べて、バインダー自身の耐熱性や機械的特性が優れ、成形性が良好であることが記載されている。
 このような繊維強化樹脂成形体を軸受け等の摺動性部材として用いる場合には、強度、剛性等の機械的強度が高いこと、動摩擦係数が小さく摩耗量が少ないこと、更に限界PV値が高いこと等の特性が要求されており、機械的強度、耐熱性及び耐久性に優れ、また樹脂の含浸性に優れた付加反応型ポリイミド樹脂をマトリックス樹脂として用いることが望まれている。
 また本発明者等により、付加反応型ポリイミド樹脂のプレポリマーと機能性繊維を付加反応型ポリイミド樹脂の融点以上、熱硬化開始温度以下の温度で混練し、この混合物を反応型ポリイミド樹脂の熱硬化開始温度以上の温度条件下で賦形して成る繊維強化ポリイミド樹脂成形体が提案されている(特許文献3)。
特許第4538502号 特開2009-242656号公報 特開2016-60914号公報
 上記特許文献3に記載された繊維強化ポリイミド樹脂成形体は、反りの発生がなく、優れた形状安定性を有するものであるが、耐摩耗性と強度の両立を図ることが困難であるという問題があった。
 すなわち、上記繊維強化ポリイミド樹脂成形体を摺動部材として使用する場合、摺動面の摩擦により削り取られた摩耗粉が相手材の表面に移着して移着膜が形成されることにより耐摩耗性が向上するが、このような移着膜を形成可能な繊維強化ポリイミド樹脂成形体は、効率よく摩耗粉を発生させるために比較的短い炭素繊維等を含有することから、強度の点では充分満足するものではなく、衝撃や大きな負荷がかかる摺動部材には適用することができなかった。
 従って本発明の目的は、優れた摺動性能を有すると共に、耐摩耗性及び強度の両方を兼ね備えた繊維強化積層体及びその製造方法を提供することである。
 本発明によれば、織物状繊維の層と短繊維含有樹脂組成物から成る層とを少なくとも有する積層体であって、前記織物状繊維を構成する繊維束が交差することにより形成される間隙内に前記短繊維含有樹脂組成物が存在することを特徴とする積層体が提供される。
 本発明の積層体においては、
1.前記短繊維の長さが、前記間隙の一辺の長さよりも小さいこと、
2.前記短繊維の長さが1~350μmの範囲であること、
3.前記短繊維含有樹脂組成物が、付加反応型ポリイミド樹脂中に短繊維が分散して成る樹脂組成物であること、
4.前記織物状繊維及び前記短繊維が、炭素繊維から成ること、
5.前記短繊維含有樹脂組成物から成る層と前記織物状繊維の層が交互に積層されて成ること、
が好適である。
 本発明によればまた、上記積層体の製造方法であって、短繊維含有樹脂組成物を成形型に供給する工程の後に、該短繊維含有樹脂組成物上に織物状繊維を設置する工程及び該織物状繊維の上に短繊維含有樹脂組成物を供給する工程とを少なくとも1回繰り返した後、圧縮成形することを特徴とする製造方法が提供される。
 本発明の積層体の製造方法において、前記短繊維含有樹脂組成物が、付加反応型ポリイミド樹脂中に短繊維が分散して成る樹脂組成物であって、前記付加反応型ポリイミド樹脂の熱硬化温度以上の温度で圧縮成形を行うことが好適である。
 本発明の繊維強化積層体においては、強度に優れた織物状繊維の層と耐摩耗性に優れた短繊維含有樹脂組成物から成る層が交互に積層され、しかも短繊維含有樹脂組成物が織物状繊維の繊維束の交差により形成される間隙に存在することにより、優れた耐摩耗性及び強度を長期に亘って持続することが可能になる。
 また短繊維含有樹脂組成物として、付加反応型ポリイミド樹脂をマトリックス樹脂とすることにより、強度が向上されると共に耐熱性も向上する。
 本発明の繊維強化積層体においては、短繊維含有樹脂組成物から成る層が、積層体表面に存在することにより、移着膜を効率よく相手材に形成することが可能になり、耐摩耗性を顕著に向上することができるが、織物状繊維が積層体表面に位置した場合や、使用開始後、表面の短繊維含有樹脂組成物から成る層が摩耗し織物状繊維が露出した場合でも、織物状繊維の間隙に存在する短繊維樹脂組成物が表面に露出するため、移着膜を相手材に形成することができ、長期に亘って耐摩耗性を向上できる。
 更に本発明の繊維強化積層体の製造方法によれば、織物状繊維の間隙に効率よく短繊維含有樹脂組成物を存在させることが可能であり、上述した優れた耐摩耗性及び強度を有する積層体を生産性よく製造することが可能である。
本発明の繊維強化積層体の一例を模式的に示す斜視図である。 図1に示す積層体の最上層を除いた状態を示す斜視図である。 図1に示す積層体に用いた織物状繊維を模式的に示す図であり、(A)は平面図、(B)は(A)の部分拡大図である。 滑り摩耗試験の方法を示す図である。
(積層体)
 本発明の積層体は、図1にその具体例を概略的に示すように、織物状繊維から成る層1と短繊維含有樹脂組成物から成る層2とが交互に積層されて成るディスク状の積層体であり、最上層2a及び最下層2bがいずれも短繊維含有樹脂組成物から成る層2から成る層構成となっている。
 また図2は、最上層の短繊維含有樹脂組成物から成る層2aを除いた積層体を概略的に表す斜視図であり、表面に露出した織物状繊維から成る層1の繊維束3aと3bが交差することにより形成される間隙4,4・・・に、短繊維含有樹脂組成物が入り込んで間隙を埋めている。これにより、本発明の積層体においては、織物状繊維が最表面に存在する場合でも、この間隙4,4・・・に存在する短繊維含有樹脂組成物が摩耗時に一部削り取られ、相手材に移着するため、積層体は優れた耐摩耗性を有している。
 また図1に示すように、織物状繊維から成る層1と短繊維含有樹脂組成物から成る層2とが交互に積層されていることによって、強度及び耐摩耗性に優れた積層体を得ることができる。
 図3は、図1に示した積層体に用いた織物状繊維を模式的に示した図であり、繊維束及び間隙の大きさを拡大して示している。この織物状繊維を構成する繊維束3a,3bが交差することにより形成される間隙4,4・・・の最大幅Aと最大高さBとした場合、本発明においては、短繊維含有樹脂組成物に含有される短繊維の繊維長さLが、L<A及び/又はL<Bを満足することが好ましい。これにより、間隙4,4・・・から織物状繊維から成る層の表面に短繊維を効率よく露出させることができ、最表面の短繊維含有樹脂組成物から成る層が摩耗した場合でも、耐摩耗性を損なうことがない。
 尚、図に示した具体例では、ディスク形状の積層体を示していたが、勿論この形状に限定されるものではなく、矩形等の平板状の他、同心円状に織物状繊維と短繊維含有樹脂組成物から成る層が積層したリング状等従来公知の形状をとることができる。
(織物状繊維)
 本発明に用いる織物状繊維は、繊維束を縦横に交差させて間隙を有するものである。具体的な間隙の大きさは、用いる短繊維の長さにもよるが、図3に示した間隙の最大幅(A)、最大高さ(B)が200~1000μmの範囲にあることが好ましく、特に250~500μmの範囲にあることが好適である。上記範囲よりも間隙が小さいと、間隙を通して短繊維を充分に表面に露出できないおそれがあり、上記範囲にある場合に比して長期に亘って耐摩耗性を向上させることができない。その一方、上記範囲よりもメッシュが粗いと織物状繊維の強度が低くなり、上記範囲にある場合に比して、積層体の強度を充分に向上させることができない。
 また繊維束の幅は800~1600μm、厚みは100~200μmの範囲にあることが好ましく、織物状繊維の最大厚みは200~400μmの範囲にあることが好ましい。
 織物状繊維を構成する繊維としては、炭素繊維、アラミド繊維、ガラス繊維、金属繊維等、従来公知の機能性繊維を使用することができるが、特に炭素繊維を好適に用いることができる。
 炭素繊維は、平均繊維径が5~18μmの範囲にある連続繊維を用い、幅が1000~2000μm、厚みは100~200μmとなるように束ねた炭素繊維束を好適に使用することができる。また上記範囲よりも平均繊維径が細い場合には、繊維束を効率よく作成できないと共に経済性にも劣り、一方上記範囲よりも平均繊維径が太い場合には織物状繊維の取扱い性に劣るおそれがある。用いる繊維種は、目的に応じて使い分ければPAN系、ピッチ系いずれでもよいが、強度を有するPAN系が好ましい。
(短繊維含有樹脂組成物)
 本発明に用いる短繊維含有樹脂組成物は、それ自体が摺動部材を形成可能なものであり、上述した織物状繊維から成る層を挟んで、層間を密着固定すると共に、織物状繊維の間隙に短繊維が入り込むことにより、前述したとおり、最表面の短繊維含有樹脂組成物から成る層が摩耗し、織物状繊維が露出した場合でも、織物状繊維の間隙に短繊維が存在することによって、優れた耐摩耗性が維持される。
[樹脂]
 本発明において、短繊維を含有させるマトリックスとなる樹脂としては、従来摺動部材等に使用されていた、耐熱性や機械的強度を有する熱可塑性樹脂や熱硬化性樹脂を使用することができる。
 例えば、熱可塑性樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステル等のポリエステルや、ポリプロピレン等のポリオレフィンや、シンジオタクティックポリスチレン樹脂の他、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルフォン、ポリエーテルスルフォン、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリアリレート、ポリエーテルニトリル、ポリテトラフルオロエチレン等を挙げることができる。
 また、熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ユリア・メラミン樹脂、ポリイミド樹脂等を挙げることができる。
 更にこれらの共重合体、変性体、および、2種類以上ブレンドした樹脂や、或いは耐衝撃性向上のためにエラストマーもしくはゴム成分を添加した樹脂であってもよい。
 上記樹脂の中でも、本発明においては、付加反応型ポリイミド樹脂を用いることが特に好適である。
 本発明に用いる付加反応型ポリイミド樹脂は、末端に付加反応基を有する芳香族ポリイミドオリゴマーから成り、従来公知の製法により調製したものを使用することができる。例えば、芳香族テトラカルボン酸二無水物、芳香族ジアミン、及び分子内に付加反応基と共に無水物基又はアミノ基を有する化合物を、各酸基の当量の合計と各アミノ基の合計とをほぼ等量となるように使用して、好適には溶媒中で反応させることによって容易に得ることができる。反応の方法としては、100℃以下、好適には80℃以下の温度で、0.1~50時間重合してアミド酸結合を有するオリゴマーを生成し、次いでイミド化剤によって化学イミド化する方法や、140~270℃程度の高温で加熱して熱イミド化する2工程からなる方法、或いは始めから140~270℃の高温で、0.1~50時間重合・イミド化反応を行わせる1工程からなる方法を例示できる。
 これらの反応で用いる溶媒は、これに限定されないが、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、γ-ブチルラクトン、N-メチルカプロラクタム等の有機極性溶媒を好適に使用できる。
 本発明において、芳香族イミドオリゴマーの末端の付加反応基は、積層体を製造する際に、加熱によって硬化反応(付加重合反応)を行う基であれば特に限定されないが、好適に硬化反応を行うことができること、及び得られた硬化物の耐熱性が良好であることを考慮すると、好ましくはフェニルエチニル基、アセチレン基、ナジック酸基、及びマレイミド基からなる群から選ばれるいずれかの反応基であることが好ましく、特にフェニルエチニル基は、硬化反応によるガス成分の発生がなく、しかも得られた積層体の耐熱性に優れていると共に機械的な強度にも優れていることから好適である。
 これらの付加反応基は、分子内に付加反応基と共に無水物基又はアミノ基を有する化合物が、芳香族イミドオリゴマーの末端のアミノ基又は酸無水物基と、好適にはイミド環を形成する反応によって、芳香族イミドオリゴマーの末端に導入される。
 分子内に付加反応基と共に無水物基又はアミノ基を有する化合物は、例えば4-(2-フェニルエチニル)無水フタル酸、4-(2-フェニルエチニル)アニリン、4-エチニル-無水フタル酸、4-エチニルアニリン、ナジック酸無水物、マレイン酸無水物等を好適に使用することができる。
 末端に付加反応基を有する芳香族イミドオリゴマーを形成するテトラカルボン酸成分としては、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、及び3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物からなる群から選ばれる少なくとも一つのテトラカルボン酸二無水物を例示することができ、特に、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を好適に使用することができる。
 末端に付加反応基を有する芳香族イミドオリゴマーを形成するジアミン成分としては、これに限定されないが、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、2,6-ジエチル-1,3-ジアミノベンゼン、4,6-ジエチル-2-メチル-1,3-ジアミノベンゼン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン等のベンゼン環を1個有するジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、ビス(2,6-ジエチル-4-アミノフェノキシ)メタン、ビス(2-エチル-6-メチル-4-アミノフェニル)メタン、4,4’-メチレン-ビス(2,6-ジエチルアニリン)、4,4’-メチレン-ビス(2-エチル,6-メチルアニリン)、2,2―ビス(3-アミノフェニル)プロパン、2,2―ビス(4-アミノフェニル)プロパン、ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ジメチルベンジジン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン等のベンゼン環を2個有するジアミン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン,1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン等のベンゼン環を3個有するジアミン2,2-ビス[4-[4-アミノフェノキシ]フェニル]プロパン、2,2-ビス[4-[4-アミノフェノキシ]フェニル]ヘキサフルオロプロパン等のベンゼン環を4個有するジアミン等を単独、或いは複数種混合して使用することができる。
 これらの中でも、1,3-ジアミノベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、及び2,2’-ビス(トリフルオロメチル)ベンジジンからなる群から選ばれる少なくとも二つの芳香族ジアミンによって構成された混合ジアミンを用いることが好適であり、特に、1,3-ジアミノベンゼンと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、3,4’-ジアミノジフェニルエーテルと4,4’-ジアミノジフェニルエーテルとの組み合せからなる混合ジアミン、3,4’-ジアミノジフェニルエーテルと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、4,4’-ジアミノジフェニルエーテルと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、及び2,2’-ビス(トリフルオロメチル)ベンジジンと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミンを使用することが、耐熱性と成形性の点から好適である。
 本発明で用いる末端に付加反応基を有する芳香族イミドオリゴマーは、イミドオリゴマーの繰返し単位の繰返しが、0~20、特に1~5であることが好適であり、GPCによるスチレン換算の数平均分子量が、10000以下、特に3000以下であることが好適である。繰返し単位の繰返し数が上記範囲にあることにより、溶融粘度が適切な範囲に調整されて、短繊維を均一に混合することが可能になると共に、織物状繊維の間隙に短繊維含有樹脂組成物を効率よく埋め込むことが可能になる。また高温で成形する必要がなく、成形性に優れていると共に、耐熱性、機械的強度に優れた積層体を提供することが可能になる。
 繰返し単位の繰返し数の調整は、芳香族テトラカルボン酸二無水物、芳香族ジアミン、及び分子内に付加反応基と共に無水物基又はアミノ基を有する化合物の割合を変えることにより行うことができ、分子内に付加反応基と共に無水物基又はアミノ基を有する化合物の割合を高くすることにより、低分子量化して繰返し単位の繰返し数は小さくなり、この化合物の割合を小さくすると、高分子量化して繰返し単位の繰返し数は大きくなる。
 付加反応型ポリイミド樹脂には、目的とする積層体の用途に応じて、難燃剤、着色剤、滑剤、熱安定剤、光安定剤、紫外線吸収剤、充填剤等の樹脂添加剤を公知の処方に従って配合することができる。
[短繊維]
 本発明に用いる短繊維は、短繊維の長さ(L)が、前述した織物状繊維の間隙の一辺の長さ(A及び/又はB)よりも小さいことが望ましく、特に1~350μmの範囲にあることが好ましい。
 また短繊維は、前述した織物状繊維と同様に、炭素繊維、アラミド繊維、ガラス繊維、金属繊維、グラファイト、PTFE、二硫化モリブデン、カーボンナノチューブ、カーボンブラック等、従来公知の機能性繊維を使用することができるが、特に炭素繊維を好適に用いることができる。
 中でも、平均繊維長が200μm以下及び平均繊維径が5~18μmの範囲にある炭素繊維、特にメゾフェース型のピッチ系炭素繊維を好適に使用することができる。上記範囲よりも長いと織物状繊維の間隙に効率よく存在させることができない。また上記範囲よりも平均繊維径が細い場合には、取扱い性に劣ると共に高価であり、一方上記範囲よりも平均繊維径が太い場合には機能性繊維の沈降速度が増大して、機能性繊維が偏在しやすくなるおそれがあると共に、繊維の強度が低下する傾向があり、強化材としての効果を充分に得られないおそれがある。
 短繊維の含有量は、積層体の摺動性能及び成形時の反り発生に重大な影響を有しており、本発明においては、短繊維は、樹脂100重量部に対して5~200重量部、特に10~150重量部の量で含有されていることが、優れた摺動性能を有すると共に、反りがなく優れた形状安定性を有する成形体を得る上で好適である。上記範囲よりも短繊維の量が少ないと、摺動性能が低下するおそれがあると共に、積層体の反りの発生が増大するおそれもある。一方上記範囲よりも短繊維の量が多くても、上記範囲にある場合に比して摺動性能が低下するおそれがあると共に、過度の増粘が生じ、賦型できないおそれがある。
 本発明においては、上記短繊維と共に、グラファイト、PTFE、二硫化モリブデン、カーボンブラック等の微細炭素系材料、アルミ粉、銅粉等の金属粉等の無機材料の少なくとも一種を、短繊維含有樹脂組成物に更に含有することもできる。上記無機材料は、樹脂100重量部に対して5~40重量部、特に5~30重量部の量で含有されていることが好適である。上記範囲よりも無機材料の量が少ないと無機材料を配合することにより得られる効果が充分得られず、一方上記範囲よりも無機材料の量が多いと摩擦係数の増大や耐摩耗性の低下等、かえって摺動性能を損なうおそれがある。
(積層体の製造方法)
 本発明の積層体は、短繊維含有樹脂組成物を成形型に供給する工程の後に、この最表面層となる短繊維含有樹脂組成物上に、織物状繊維を設置する工程及びこの織物状繊維の上に短繊維含有樹脂組成物を供給する工程を少なくとも1回、すなわち積層数に合わせて所望回数繰り返した後、圧縮成形することにより製造することができる。すなわち、図1に示した、短繊維含有樹脂組成物から成る層が4層、織物状繊維から成る層が3層の計7層構成の積層体の場合は、短繊維含有樹脂組成物を成形型に供給した後、織物状繊維の設置及び短繊維含有樹脂組成物の供給を3回繰り返し、その後圧縮成形することによって、短繊維含有樹脂組成物が織物状繊維に含浸すると共に、織物状繊維の間隙には樹脂組成物中の短繊維が入り込みやすくなる。またこのような状態で積層方向に圧縮成形することによって、短繊維含有樹脂組成物から成る層と織物状繊維の層間密着性を向上させることが可能になると共に、織物状繊維の間隙中に更に短繊維を挿入することも可能になり、より多くの短繊維を間隙中に存在させることが可能になる。
 本発明の積層体の製造方法においては、まず成形体の形状に対応した形状の成形型に、最表面となる短繊維含有樹脂組成物を供給するが、以下、付加反応型ポリイミド樹脂をマトリックスとして用いた短繊維含有樹脂組成物から成る層を有する積層体の製造方法について使用する。
 本発明において、短繊維含有樹脂組成物のマトリックスとして用いる付加反応型ポリイミド樹脂は、架橋硬化前のプレポリマーの状態では低粘度であることから、短繊維を均一に分散させるために、短繊維含有樹脂組成物を成形型に供給する前に、付加反応型ポリイミド樹脂のプレポリマー(イミドオリゴマー)と短繊維を付加反応型ポリイミド樹脂の融点以上、熱硬化開始温度以下の温度で混練して、プレポリマーの粘度を増大させ、短繊維がプレポリマー内で沈降することなく、均一に分散されるように混合することが好ましい。このように短繊維含有樹脂組成物から成る層に、短繊維が均一に分散されていることにより、反りのない積層体を成形することができる。
 付加反応型ポリイミド樹脂のプレポリマー(イミドオリゴマー)と短繊維を付加反応型ポリイミド樹脂の融点以上の温度で加熱しプレポリマーを溶融しながら混練することにより、プレポリマーと短繊維を混合し、液状の短繊維含有樹脂組成物を調製する。この際、付加反応型ポリイミド100重量部に対して短繊維を5~200重量部、特に10~150重量部の量で用いることが好適である。また上述した無機材料を上述した量配合することもできる。
 プレポリマー及び短繊維の混練は、ヘンシェルミキサー、タンブラーミキサー、リボンブレンダ―等の従来公知の混合機を用いることもできるが、短繊維の破断を抑制すると共に分散させることが重要であることから、バッチ式の加圧ニーダー(混練機)を用いることが特に好適である。
 次いで、上記短繊維含有樹脂組成物の300~320℃の温度条件下における溶融粘度を10~5000Pa・sの範囲に調整する。溶融粘度が10Pa・s未満の場合、その組成物に用いるポリイミド樹脂の熱硬化開始温度近傍310±10℃の温度で30~60分間保持し、溶融粘度を上記範囲に調整する。
 すなわち、液状の短繊維含有樹脂組成物を、電気炉等を用いて310±10℃の温度で30~60分間保持することにより、プレポリマーが徐々に架橋し始めることから粘度は上昇する。更にプレポリマー中に配合された短繊維はこの粘度上昇によりプレポリマー中で沈降することなく分散状態を維持できる。また上記範囲の加熱温度及び保持時間にすることで、プレポリマーを完全に架橋硬化させることなく、粘度のみを上記範囲に上昇させることが可能になる。
 尚、付加反応型ポリイミド樹脂においては、反応開始温度は付加反応基に依存し、本発明において付加反応基として好適なフェニルエチニル基を有するポリイミド樹脂においては、熱硬化開始温度近傍である310±10℃の温度で30~60分間加熱することが望ましい。
 溶融粘度が上記範囲に調整された短繊維含有樹脂組成物を成形型に供給した後、織物状繊維を設置し、更に上記短繊維含有樹脂組成物を織物状繊維の上に供給し、所望の層構成となるようにこれらの工程を繰り返し、最表面となる短繊維含有樹脂組成物の混合物を供給した後、ポリイミド樹脂の熱硬化開始温度以上の温度条件下で圧縮成形することにより所望の積層体として成形される。このように、圧縮成形により短繊維含有樹脂組成物及び織物状繊維を押圧することによって、短繊維含有樹脂組成物は織物状繊維に含浸、特に織物状繊維の間隙に充填されることから、両者の層間接着性を向上できると共に、前述したとおり、長期に亘って耐摩耗性を発現することが可能になる。
 短繊維含有樹脂組成物は、上述したように、所定の溶融粘度に調整して、これを成形型に供給することが生産性等の観点から好ましいが、短繊維含有樹脂組成物を冷却固化し粉砕混合した固形物であっても、電気炉等を用いて付加反応型ポリイミド樹脂の融点以上の温度で加熱して溶融することにより上記と同様に成形できる。また固形物のまま成形型内で供給し、成形型内で固形物を溶融した後、織物状繊維を設置すると共に加熱硬化させることにより積層体を成形することもできる。
 短繊維含有樹脂組成物のマトリックスとしてエンジニアリングプラスチック等の熱可塑性樹脂を使用する場合には、熱可塑性樹脂の融点以上の温度に加熱して樹脂を溶融状態とし、これを成形型に供給して、上述した場合と同様に、織物状繊維を設置すると共に、織物状繊維の上に更に溶融状態の熱可塑性樹脂を供給した後、圧縮成形して、冷却固化することにより、積層体を成形することができる。
[耐摩耗性]
 JIS K 7218(プラスチックの滑り摩耗試験方法)に適合したスラスト型摩耗試験機(エー・アンド・デイ社製 摩擦摩耗試験機 EFM-III-F)を用い、図4に示すようなリングオンディスク方式にて、荷重(W)300N、速度0.5m/s、すべり距離(L)3km(試験時間100分)、相手材S45C(表面粗さRa=0.8μm)の条件で、すべり摩耗試験を行い、3次元輪郭形状測定器(東京精密社製 サーフコム2000SD3)にて試験片の溝の形状から摩耗量(体積V)を測定し、下記式(1)から比摩耗量wを算出した。
  Ws[mm/N・m]=V/WL  ・・・(1)
[曲げ強度]
 JIS K 7171(プラスチックー曲げ特性の試験方法)を参考に、オートグラフ(島津製作所社製 AG-I/50N―10kN)を用い、試験片サイズは長さ50mm、幅10mm、厚さ3~5mmという試験条件で曲げ試験を用い、曲げ応力を測定した。
[シャルピー衝撃強度]
 JIS K 7077(炭素繊維強化プラスチックのシャルピー衝撃試験方法)、JIS K 7111-1(プラスチック‐シャルピー衝撃特性の求め方)を参考にデジタル衝撃試験機((株)東洋精機製作所製DG-UB型)を用い、試験片サイズは、長さ80mm幅10mm厚さ3~6mm、測定条件は、打撃方向;フラットワイズ、公称振り子エネルギー0.5J、4J、15Jでシャルピー衝撃試験を行い、シャルピー衝撃強さを測定した。
(実施例1)
 付加重合型ポリイミド(宇部興産社製PETI-330)100重量部に対して、平均繊維長200μmのピッチ系炭素繊維(三菱ケミカル社製K223HM)43重量部を配合し、電気炉により大気圧下280℃、30分で溶融させた。その後、室温まで冷却して短繊維含有樹脂組成物を得た。得られた短繊維含有樹脂組成物を扱いが容易なサイズに粉砕したのちに、成形型に供給した後、織物状繊維(200メッシュのカーボンクロス)の設置及び短繊維含有樹脂組成物の供給を3回繰り返し、その後、成形型を280℃まで昇温、10分間保持した。その後、3℃/minで320℃まで昇温、30分間保持することで粘度調整した後、3MPaに加圧しながら、昇温速度4.3℃/minで371℃まで昇温、60分保持、除冷してφ200厚さ4mmの板を得た。得られた板材を所望の寸法に加工し試験片を得た。
(実施例2)
 短繊維含有樹脂組成物に使用する炭素繊維として、実施例1で用いた平均繊維長200μmのピッチ系炭素繊維を粉砕して得た平均繊維長が10μmのピッチ系炭素繊維に変更した以外は実施例1と同じとした。
(比較例1)
 付加重合型ポリイミド(宇部興産社製PETI-330)100重量部に対して、平均繊維長200μmのピッチ系炭素繊維(三菱ケミカル社製K223HM)43重量部を配合し、電気炉により大気圧化280℃、30分で溶融させた。その後、室温まで冷却して短繊維含有樹脂組成物を得た。得られた短繊維含有樹脂組成物を扱いが容易なサイズに粉砕したのちに、280℃に加熱した成形型に供給し、10分間保持した。その後、320℃まで昇温、30分間保持することで粘度調整した後、3MPaに加圧しながら、昇温速度4.3℃/minで371℃まで昇温、60分保持、除冷してφ200厚さ3mmの板を得た。得られた板材を所望の寸法に加工し試験片を得た。
(比較例2)
 短繊維含有樹脂組成物に使用する炭素繊維を、比較例1で用いた平均繊維長200μmのピッチ系炭素繊維を粉砕して得た平均繊維長10μmのピッチ系炭素繊維に変更した以外は比較例1と同じとした。
(比較例3)
 280℃に加熱した成形型内に、織物状炭素繊維(200メッシュカーボンクロス)を合計厚さが3mmになるよう、12枚供給した後、織物状炭素繊維100重量部に対して、付加重合型ポリイミド(宇部興産社製PETI-330)100重量部を供給し、10分間保持して溶融させた。その後、3℃/minで320℃まで昇温させ、30分間保持することで粘度調整した後、3MPaに加圧しながら、昇温速度4.3℃/minで371℃まで昇温、60分保持、除冷してφ200厚さ3mmの板を得た。得られた板材を所望の寸法に加工し試験片を得た。
 実施例1~2、比較例1~3にて得られた成形品の比摩耗量、曲げ強度、シャルピー衝撃強度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の樹脂成形体は、機械的強度に優れている共に、耐摩耗性にも優れており、自動車、電気・電子分野等の摺動部材として種々の用途に使用できる。

Claims (8)

  1.  織物状繊維の層と短繊維含有樹脂組成物から成る層とを少なくとも有する積層体であって、前記織物状繊維を構成する繊維束が交差することにより形成される間隙内に前記短繊維含有樹脂組成物が存在することを特徴とする積層体。
  2.  前記短繊維の長さが、前記間隙の一辺の長さよりも小さい請求項1記載の積層体。
  3.  前記短繊維の長さが、1~350μmの範囲にある請求項1又は2記載の積層体。
  4.  前記短繊維含有樹脂組成物が、付加反応型ポリイミド樹脂中に短繊維が分散して成る樹脂組成物である請求項1~3の何れかに記載の積層体。
  5.  前記織物状繊維及び前記短繊維が、炭素繊維から成る請求項1~4の何れかに記載の積層体。
  6.  前記短繊維含有樹脂組成物から成る層と前記織物状繊維の層が交互に積層されて成る請求項1~5の何れかに記載の積層体。
  7.  短繊維含有樹脂組成物を成形型に供給する工程の後に、該短繊維含有樹脂組成物上に織物状繊維を設置する工程及び該織物状繊維の上に短繊維含有樹脂組成物を供給する工程とを少なくとも1回繰り返した後、圧縮成形することを特徴とする請求項1~6の何れかに記載の積層体の製造方法。
  8.  前記短繊維含有樹脂組成物が、付加反応型ポリイミド樹脂中に短繊維が分散して成る樹脂組成物であって、前記付加反応型ポリイミド樹脂の熱硬化温度以上の温度で圧縮成形を行う請求項7記載の製造方法。
PCT/JP2018/043570 2017-11-28 2018-11-27 繊維強化積層体及びその製造方法 WO2019107352A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880076702.4A CN111417512A (zh) 2017-11-28 2018-11-27 纤维增强层压体及其制造方法
US16/765,320 US20200353727A1 (en) 2017-11-28 2018-11-27 Fiber-reinforced laminate and method for producing the same
EP18884699.2A EP3718765A4 (en) 2017-11-28 2018-11-27 FIBER REINFORCED LAMINATE BODY AND METHOD OF MANUFACTURING THEREOF
BR112020008703-3A BR112020008703A2 (pt) 2017-11-28 2018-11-27 laminado, e, método para produzir laminado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-227435 2017-11-28
JP2017227435A JP2019093685A (ja) 2017-11-28 2017-11-28 繊維強化積層体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019107352A1 true WO2019107352A1 (ja) 2019-06-06

Family

ID=66663990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043570 WO2019107352A1 (ja) 2017-11-28 2018-11-27 繊維強化積層体及びその製造方法

Country Status (6)

Country Link
US (1) US20200353727A1 (ja)
EP (1) EP3718765A4 (ja)
JP (1) JP2019093685A (ja)
CN (1) CN111417512A (ja)
BR (1) BR112020008703A2 (ja)
WO (1) WO2019107352A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246532A1 (ja) * 2020-06-05 2021-12-09 東洋製罐グループホールディングス株式会社 ポリイミド樹脂成形体及びその製造方法
US11299654B2 (en) 2019-08-20 2022-04-12 Roller Bearing Company Of America, Inc. Permanent, self-adhering, self-lubricating, anti-wear composite system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3892672A4 (en) * 2018-12-07 2022-08-31 Toyo Seikan Group Holdings, Ltd. FIBER-REINFORCED POLYIMIDE RESIN PRECURSOR AND PROCESS FOR THE PRODUCTION THEREOF

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115216A (en) * 1980-01-24 1981-09-10 Hitachi Chem Co Ltd Prepreg material and manufacture thereof
JPS58117226A (ja) * 1981-12-29 1983-07-12 Matsushita Electric Works Ltd 積層板の製法
JPS6462331A (en) * 1987-09-02 1989-03-08 Kobe Steel Ltd Carbon fiber-reinforced plastic laminate and production thereof
JPH05147146A (ja) * 1991-04-03 1993-06-15 Nitto Boseki Co Ltd 成形用シート材料及び安全靴先芯
JPH0946082A (ja) * 1995-05-19 1997-02-14 Toray Ind Inc 電気・電子機器用筐体およびその製造法
JPH09239847A (ja) * 1996-03-14 1997-09-16 Nissan Motor Co Ltd 低密度frpアブレータ
JP2004315578A (ja) * 2003-04-11 2004-11-11 Nichias Corp 導電性樹脂組成物、並びに燃料電池用セパレータとその製造方法
JP2009242656A (ja) 2008-03-31 2009-10-22 Ube Ind Ltd 摩擦材及び摩擦材用樹脂組成物
JP4538502B2 (ja) 2005-04-18 2010-09-08 帝人株式会社 ピッチ系炭素繊維、マットおよびそれらを含む樹脂成形体
JP2013173334A (ja) * 2012-02-27 2013-09-05 Ibaraki Kogyo Kk 立体添加物付き繊維強化プラスチック成形体の成形方法
JP2015168221A (ja) * 2014-03-10 2015-09-28 三菱電機株式会社 繊維強化プラスチック成形体の製造方法
JP2016060914A (ja) 2014-09-12 2016-04-25 東洋製罐グループホールディングス株式会社 繊維強化ポリイミド樹脂成形体及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209086A (ja) * 1982-05-27 1983-12-05 積水化学工業株式会社 面発熱体の製造方法
JPH0351536A (ja) * 1989-07-18 1991-03-05 Ube Ind Ltd 回転摺動部材
DE69317564T2 (de) * 1993-09-25 1998-11-12 Symalit Ag Faserverstärkte, thermoplastische Platte
JPH09309171A (ja) * 1996-05-22 1997-12-02 Nitto Boseki Co Ltd 繊維強化複合材料及びそれから作製された安全靴先芯
JP3991439B2 (ja) * 1997-08-04 2007-10-17 東レ株式会社 繊維強化プラスチックおよび繊維強化プラスチックの成形方法
KR101189470B1 (ko) * 2010-12-06 2012-10-12 현대자동차주식회사 다중 유리섬유 접합식 고강도 플라스틱 백빔
KR20120066141A (ko) * 2010-12-14 2012-06-22 삼성전기주식회사 인쇄회로기판의 절연층, 이의 제조방법, 및 이를 포함하는 인쇄회로기판

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115216A (en) * 1980-01-24 1981-09-10 Hitachi Chem Co Ltd Prepreg material and manufacture thereof
JPS58117226A (ja) * 1981-12-29 1983-07-12 Matsushita Electric Works Ltd 積層板の製法
JPS6462331A (en) * 1987-09-02 1989-03-08 Kobe Steel Ltd Carbon fiber-reinforced plastic laminate and production thereof
JPH05147146A (ja) * 1991-04-03 1993-06-15 Nitto Boseki Co Ltd 成形用シート材料及び安全靴先芯
JPH0946082A (ja) * 1995-05-19 1997-02-14 Toray Ind Inc 電気・電子機器用筐体およびその製造法
JPH09239847A (ja) * 1996-03-14 1997-09-16 Nissan Motor Co Ltd 低密度frpアブレータ
JP2004315578A (ja) * 2003-04-11 2004-11-11 Nichias Corp 導電性樹脂組成物、並びに燃料電池用セパレータとその製造方法
JP4538502B2 (ja) 2005-04-18 2010-09-08 帝人株式会社 ピッチ系炭素繊維、マットおよびそれらを含む樹脂成形体
JP2009242656A (ja) 2008-03-31 2009-10-22 Ube Ind Ltd 摩擦材及び摩擦材用樹脂組成物
JP2013173334A (ja) * 2012-02-27 2013-09-05 Ibaraki Kogyo Kk 立体添加物付き繊維強化プラスチック成形体の成形方法
JP2015168221A (ja) * 2014-03-10 2015-09-28 三菱電機株式会社 繊維強化プラスチック成形体の製造方法
JP2016060914A (ja) 2014-09-12 2016-04-25 東洋製罐グループホールディングス株式会社 繊維強化ポリイミド樹脂成形体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3718765A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299654B2 (en) 2019-08-20 2022-04-12 Roller Bearing Company Of America, Inc. Permanent, self-adhering, self-lubricating, anti-wear composite system
WO2021246532A1 (ja) * 2020-06-05 2021-12-09 東洋製罐グループホールディングス株式会社 ポリイミド樹脂成形体及びその製造方法
JP6984804B1 (ja) * 2020-06-05 2021-12-22 東洋製罐グループホールディングス株式会社 ポリイミド樹脂成形体及びその製造方法

Also Published As

Publication number Publication date
EP3718765A1 (en) 2020-10-07
EP3718765A4 (en) 2021-08-11
JP2019093685A (ja) 2019-06-20
BR112020008703A2 (pt) 2020-10-27
US20200353727A1 (en) 2020-11-12
CN111417512A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
KR101744009B1 (ko) 폴리이미드 수지
JP6037088B1 (ja) ポリイミド樹脂
WO2019107352A1 (ja) 繊維強化積層体及びその製造方法
CN111788259B (zh) 包含基于含石墨烯的球形pi的填料的石墨片聚酰亚胺膜、其制造方法及使用其制造的石墨片
KR102016474B1 (ko) 기판 절연층 조성물, 이를 이용한 프리프레그 및 기판
CN106536605B (zh) 预浸料和纤维强化复合材料
CN111836850A (zh) 包含基于球形pi的填料的石墨片聚酰亚胺膜、其制造方法及使用其制造的石墨片
CN106715545B (zh) 纤维增强聚酰亚胺树脂成型体及其制造方法
CN110520455B (zh) 具有高填料含量的组合物和成形体的生产方法
JP6118655B2 (ja) プリプレグおよびその製造方法、それを用いる繊維強化複合材料
CN109312780B (zh) 滑动性结构体及其制造方法
JP6794616B2 (ja) 繊維強化ポリイミド樹脂成形体及びその製造方法
JP6679860B2 (ja) 繊維強化ポリイミド樹脂成形体及びその製造方法
JP7405097B2 (ja) 繊維強化ポリイミド樹脂成形前駆体及びその製造方法
WO2021229985A1 (ja) 繊維強化複合材の製造方法
JP6962513B1 (ja) 繊維強化複合材の製造方法
JP6984804B1 (ja) ポリイミド樹脂成形体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018884699

Country of ref document: EP

Effective date: 20200629

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020008703

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020008703

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200430