WO2021246532A1 - ポリイミド樹脂成形体及びその製造方法 - Google Patents

ポリイミド樹脂成形体及びその製造方法 Download PDF

Info

Publication number
WO2021246532A1
WO2021246532A1 PCT/JP2021/021473 JP2021021473W WO2021246532A1 WO 2021246532 A1 WO2021246532 A1 WO 2021246532A1 JP 2021021473 W JP2021021473 W JP 2021021473W WO 2021246532 A1 WO2021246532 A1 WO 2021246532A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide resin
addition reaction
type polyimide
reaction type
temperature
Prior art date
Application number
PCT/JP2021/021473
Other languages
English (en)
French (fr)
Inventor
幸太 瀬上
和伸 渡辺
祐介 小林
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to CN202180039667.0A priority Critical patent/CN115698144B/zh
Priority to EP21816837.5A priority patent/EP4163097A1/en
Priority to JP2021552665A priority patent/JP6984804B1/ja
Priority to US18/008,080 priority patent/US20230235123A1/en
Publication of WO2021246532A1 publication Critical patent/WO2021246532A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/30Chemical modification by after-treatment
    • C08G2/34Chemical modification by after-treatment by etherification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5816Measuring, controlling or regulating temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5875Measuring, controlling or regulating the material feed to the moulds or mould parts, e.g. controlling feed flow, velocity, weight, doses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a polyimide resin molded product and a method for producing the same, and more particularly to a thick polyimide resin molded product having no surface defects or internal voids and a method for producing the same.
  • the addition reaction type polyimide resin composed of an aromatic polyimide oligomer having an addition reaction group at the terminal has a low melt viscosity and excellent impregnation property into fibers, and is well formed by transfer molding (RTM) or resin press-fitting (RI). Since it is possible, it is widely used as a matrix for carbon fiber reinforced composites. Since the composite constituent materials obtained by these methods have excellent properties such as heat resistance, weather resistance, mechanical strength, and durability, they are used for transportation equipment such as automobiles and aircraft, civil engineering / construction materials, sports equipment, etc. Widely used in applications. It is used in the aerospace field, etc. (Patent Document 1 etc.).
  • the above-mentioned addition reaction type polyimide resin is generally used as a matrix of carbon fiber reinforced composite by blending functional fibers such as carbon fibers, but is a neat resin molded product containing no carbon fibers or the like.
  • the demand for thick neat resin molded products having a thickness of 5 mm or more is particularly high.
  • Patent Document 1 relating to an addition reaction type polyimide resin
  • a neat resin molded product having a diameter of 1.5 inches and a thickness of 25 mm can be molded by using an addition reaction type polyimide resin and heating it at 350 to 371 ° C. for 1 hour.
  • the neat resin molded product described in Patent Document 1 is an extremely thin molded product having a thickness of about 0.6 mm.
  • the viscosity in the mold is not uniform and the viscosity in the mold is not uniform, and the prepolymer is not uniform at all positions in the mold. Since the viscosity cannot be adjusted to be suitable for molding, resin leakage, air bubbles, expansion, etc. occur, and it is not possible to mold a thick molded product without defects.
  • an object of the present invention is to provide a molded product made of a thick addition-reaction polyimide resin having a thickness of 5 mm or more, in which surface defects such as voids and cracks are significantly reduced, and a method for producing the same.
  • Another object of the present invention is a molded product made of an addition reaction type polyimide resin having excellent mechanical strength in which the generation of internal voids is effectively prevented even in a thick molded product having a thickness of 15 mm or more, and a molded product thereof. It is to provide a manufacturing method.
  • Still another object of the present invention is to provide a molding precursor capable of molding an addition reaction type polyimide resin molded product having a thickness of 5 mm or more.
  • the present invention is an addition reaction type polyimide resin molded body having a thickness of 5 mm or more, and the number of defects of 0.5 mm or more existing on the surface of the molded body is 1 piece / 100 cm 2 or less.
  • the first addition reaction type polyimide resin molded article is provided.
  • a second addition reaction type polyimide resin molded body having a thickness of 15 mm or more and having a bending strength of 60 MPa or more. ..
  • the defect in the first addition reaction type polyimide resin molded product is a recess or a bubble having a maximum diameter of 0.5 mm or more, or a crack having a length of 0.5 mm or more.
  • the first addition reaction type polyimide resin molded product also has a thickness of 15 mm or more and a bending strength of 60 MPa or more.
  • the addition reaction type polyimide resin is a polyimide resin having a phenylethynyl group as an addition reaction group.
  • the shape of the molded body is a disk-shaped or rectangular flat plate with a thickness of 5 to 30 mm. 5. When heated at a temperature of 357 ° C. for 6 hours, no deformation occurs, or convex deformation with a height of less than 1 mm occurs. Is preferable.
  • the prepolymer of the addition reaction type polyimide resin is held at a temperature equal to or higher than the thickening start temperature of the addition reaction type polyimide resin, and the melt viscosity under a temperature condition 10 ° C. lower than the thickening start temperature is 70.
  • a method for producing an addition reaction type polyimide resin molded body which comprises a shaping step of shaping at a temperature equal to or higher than the thermosetting temperature.
  • the molding is further made of an addition reaction type polyimide resin, and has a melt viscosity of 70 to 900 kPa ⁇ s under a temperature condition 10 ° C. lower than the thickening start temperature of the addition reaction type polyimide resin.
  • a precursor is provided.
  • the bending strength and the thickening start temperature are defined as follows.
  • the thickness direction of the molded body is the thickness of the test piece (length 50 mm x width 10 mm x thickness 3 mm). 3 mm downward from the upper surface of the molded body in the thickness direction, 3 mm with the thickness (t) center (position of t / 2) of the molded body as the center of thickness (neutral surface), and 3 mm upward in the thickness direction from the lower surface of the molded body.
  • a test piece having a thickness of 50 mm in length and 10 mm in width at each position is cut out.
  • a bending test is performed using this test piece, and the smallest value of the bending stress of each obtained test piece is taken as the bending strength of the molded product. The measurement conditions will be described later.
  • the resin molded product of the present invention is a resin molded product having a thickness of 5 mm or more and made of an addition reaction type polyimide resin having excellent heat resistance, durability and mechanical strength, and has a surface defect having a size of 0.5 mm or more. Can be provided as a thick molded product in which the amount of heat is significantly reduced.
  • the surface defects are not limited to these, but bubbles formed on the surface due to air contained in the resin, gas generated from the resin, and the like, and these bubbles are included. It means concave defects (also called voids or depressions) or cracks that occur on the surface due to crushing or deformation during compression.
  • the resin molded product of the present invention has a bending strength of 60 MPa or more and has excellent mechanical strength because no void is formed inside the molded product even when the resin molded product has a thickness of 15 mm or more. ing. Further, according to the method for producing a resin molded product of the present invention, the viscosity is adjusted in advance under a temperature condition 15 to 45 ° C. higher than the thickening start temperature of the addition reaction type polyimide resin, and this is pulverized and mixed to form a shape.
  • the molding precursor of the present invention is uniformly adjusted to a suitable melt viscosity at the molding temperature to the resin molded body, it is not necessary to adjust the viscosity immediately before shaping, and the molding precursor is heated immediately before shaping. Unlike the case where the viscosity is adjusted, there is no risk of bubble generation and crushing, and a thick resin molded body without surface defects and internal voids can be efficiently molded.
  • the resin molded product has a thickness of 5 mm or more, and surface defects of 0.5 mm or more are reduced to 1 piece / 100 cm 2 or less.
  • the shape of the resin molded product in the present invention does not matter as long as it has a thickness of 5 mm or more, particularly a thickness of 5 to 30 mm. Specifically, as is clear from the molding method of the resin molded body of the present invention described later, the shape is not particularly limited as long as it can be molded by compression molding or transfer molding.
  • the thickness means the maximum thickness in the obtained molded body, but in the case of compression molding or transfer molding, the moving direction of the molding die is the thickness direction of the resin molded body.
  • Suitable shapes for the resin molded body of the present invention include flat plates such as discs and squares, cylinders, prisms, etc., as well as shapes having curved surfaces and moldings of the above-mentioned shapes such as discs as shown in FIG.
  • An example may be a resin molded body in which a plurality of bodies are formed.
  • the resin molded product of the present invention has no defects of 0.5 mm or more, particularly defects in the range of 0.5 to 50 mm, that is, zero as much as possible, even if there are defects.
  • the defects are reduced to 1 piece / 100 cm 2 or less on the entire surface of the molded body.
  • the above-mentioned defects are not limited to this, but are concave defects and bubbles having a maximum diameter of 0.5 mm or more, cracks having a maximum length of 0.5 mm or more, and the like, for example, defects as shown in FIG. Can be particularly exemplified.
  • the addition reaction type polyimide resin molded product of the present invention does not undergo deformation even when heated at a temperature of 357 ° C. for 6 hours, or even if deformation occurs, convex deformation having a height of less than 1 mm occurs. Yes, it has excellent thermal stability. That is, the resin molded product of the present invention has a uniform melt viscosity of the molding precursor in the molding mold, and is sufficiently and uniformly thermoset in the shaping step as described later, so that an unreacted addition reaction is performed. The prepolymer content of the molded polyimide resin is reduced as much as possible.
  • the convex deformation is defined as the difference in the maximum thickness of the addition reaction type polyimide resin molded body before and after heating at a temperature of 357 ° C. for 6 hours.
  • a molded product made of an addition reaction type polyimide resin generally tends to have a decrease in mechanical strength because voids are likely to be formed inside the molded product having a thickness of 15 mm or more.
  • the resin of the present invention has a tendency to decrease.
  • the generation and expansion of bubbles are reduced, so that the formation of voids inside the molded body is suppressed even in a thick molded body having a thickness of 15 mm or more.
  • the bending strength is as large as 60 MPa or more, and it has excellent mechanical strength.
  • the second addition reaction type polyimide resin molded product of the present invention is a thick molded product having a thickness of 15 mm or more, it is possible to remove surface defects by a treatment such as polishing the surface, and it is not always the first. As specified for one addition reaction type polyimide resin molded product, surface defects may not be significantly reduced.
  • the addition reaction type polyimide resin constituting the resin molded product of the present invention is made of an aromatic polyimide oligomer having an addition reaction group at the terminal, and one prepared by a conventionally known production method can be used.
  • aromatic tetracarboxylic acid dianhydride, aromatic diamine, and a compound having an anhydride group or an amino group together with an addition reaction group in the molecule, the total of the equivalents of each acid group and the total of each amino group are approximately the same. It can be easily obtained by using it in equal amounts and preferably reacting in a solvent.
  • a reaction method a method of polymerizing at a temperature of 100 ° C. or lower, preferably 80 ° C.
  • a method consisting of two steps of heating at a high temperature of about 140 to 270 ° C. for thermal imidization, or from one step of carrying out a polymerization / imidization reaction at a high temperature of 140 to 270 ° C. for 0.1 to 50 hours from the beginning.
  • the solvent used in these reactions is not limited to this, but is limited to N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, ⁇ -butyllactone, N-.
  • An organic polar solvent such as methylcaprolactum can be preferably used.
  • the addition-reactive group at the terminal of the aromaticimide oligomer is not particularly limited as long as it is a group that undergoes a curing reaction (additional polymerization reaction) by heating when producing a resin molded body, but the curing reaction is preferably performed.
  • any reaction group preferably selected from the group consisting of a phenylethynyl group, an acetylene group, a nadic acid group, and a maleimide group.
  • the phenylethynyl group is particularly preferable because it does not generate a gas component due to the curing reaction, and the obtained resin molded product has excellent heat resistance and mechanical strength. be.
  • a compound having an anhydride group or an amino group together with the addition reaction group in the molecule preferably forms an imide ring with the amino group or the acid anhydride group at the terminal of the aromatic imide oligomer. Is introduced at the end of the aromatic imide oligomer.
  • Compounds having an anhydride group or an amino group together with an addition reaction group in the molecule include, for example, 4- (2-phenylethynyl) phthalic anhydride, 4- (2-phenylethynyl) aniline, 4-ethynyl-phthalic anhydride, 4 -Ethynylaniline, nadic acid anhydride, maleic acid anhydride and the like can be preferably used.
  • Examples of the tetracarboxylic acid component forming the aromatic imide oligomer having an addition reactive group at the terminal include 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride, 2,2', 3,3'-biphenyl. At least selected from the group consisting of tetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, and 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride.
  • One tetracarboxylic acid dianhydride can be exemplified, and in particular, 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride can be preferably used.
  • the diamine component forming an aromatic imide oligomer having an addition reactive group at the terminal is not limited to this, but is limited to 1,4-diaminobenzene, 1,3-diaminobenzene, 1,2-diaminobenzene, and 2,6-.
  • a mixed diamine composed of at least two aromatic diamines selected from the group consisting of methyl) benzidine, in particular 1,3-diaminobenzene and 1,3-bis (4-aminophenoxy) benzene.
  • Mixed diamine consisting of a combination of 3,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether, mixed diamine consisting of a combination of 3,4'-diaminodiphenyl ether and 1,3-bis (4-aminophenoxy).
  • a mixed diamine consisting of a combination with benzene a mixed diamine consisting of a combination of 4,4'-diaminodiphenyl ether and 1,3-bis (4-aminophenoxy) benzene, and a 2,2'-bis (trifluoromethyl) benzidine. It is preferable to use a mixed diamine composed of a combination of 1,3-bis (4-aminophenoxy) benzene from the viewpoint of heat resistance and moldability.
  • the aromatic imide oligomer having an addition reaction group at the terminal used in the present invention preferably has a repeating unit of the imide oligomer of 0 to 20, particularly 1 to 5, and has a number average molecular weight in terms of styrene by GPC. However, it is preferably 10,000 or less, particularly 3000 or less. When the number of repetitions of the repetition unit is in the above range, the melt viscosity is adjusted to an appropriate range, and it becomes possible to mix the functional fibers. Further, it is not necessary to mold at a high temperature, and it is possible to provide a resin molded product having excellent moldability, heat resistance, and mechanical strength.
  • the number of repetitions of the repetition unit can be adjusted by changing the proportion of the aromatic tetracarboxylic acid dianhydride, the aromatic diamine, and the compound having an anhydride group or an amino group together with the addition reaction group in the molecule.
  • the proportion of the compound having an anhydride group or an amino group together with the addition reaction group in the molecule By increasing the proportion of the compound having an anhydride group or an amino group together with the addition reaction group in the molecule, the molecular weight is reduced and the number of repetitions of the repeating unit is reduced, and when the proportion of this compound is decreased, the molecular weight is increased and the repetition is repeated.
  • the number of repetitions of the unit increases.
  • resin additives such as flame retardants, colorants, lubricants, heat stabilizers, light stabilizers, ultraviolet absorbers, fillers, etc. are known depending on the intended use of the resin molded body. It may be formulated according to the formulation.
  • the prepolymer of the addition reaction type polyimide resin is held at a temperature equal to or higher than the thickening start temperature of the addition reaction type polyimide resin, and under a temperature condition 10 ° C. lower than the thickening start temperature.
  • the addition reaction type polyimide resin used for producing the resin molded body of the present invention has a low viscosity in the state of the prepolymer before cross-linking and curing, the prepolymer supplied to the molding die in the shaping step of the resin molded body.
  • the polymer is thickened, there is a problem that the viscosity increase is small near the center of the molding die, the viscosity increase is large near the molding die, and the viscosity of the prepolymer is not uniform.
  • the viscosity When the viscosity is adjusted based on the central part of the molding mold, the prepolymer near the vessel wall of the molding mold is thermally decomposed to foam and expand, and the subsequent pressurization by compression molding causes the bubbles to collapse and voids to be generated. Occurs. On the other hand, if the viscosity of the prepolymer near the wall of the mold is used as a reference, the viscosity is too low to be molded, and there arises a problem that the molten resin leaks from the mold.
  • the melt viscosity of the prepolymer is increased to 70 to 900 kPa ⁇ s under the temperature condition 10 ° C. lower than the thickening start temperature by the thickening step, and then the melt viscosity is performed.
  • the addition reaction type polyimide resin whose melt viscosity is adjusted to the above range is powdered and mixed to prepare a powdery molding precursor having a uniform melt viscosity. This eliminates the need for thickening in the shaping process, and as a result, as described above, there are no defects of 0.5 mm or more, or even if there are, surface defects of 1 piece / 100 cm 2 or less are significantly reduced. It becomes possible to mold a resin molded body having a thickness of 5 mm or more.
  • the prepolymer (imide oligomer) of the addition reaction type polyimide resin is first melted by holding it at a temperature equal to or higher than the thickening start temperature of the addition reaction type polyimide resin for a certain period of time using an electric furnace or the like.
  • the viscosity is increased to 70 to 900 kPa ⁇ s, preferably 10 ° C. lower than the thickening start temperature by holding for 50 to 200 minutes, particularly 65 to 110 minutes in a temperature range 15 to 45 ° C. higher than the thickening start temperature.
  • the melt viscosity of the prepolymer is increased to 70-900 kPa ⁇ s.
  • the thickening step is performed at a temperature equal to or higher than the thickening start temperature of the prepolymer and lower than a temperature at which the prepolymer is completely crosslinked and cured.
  • the reaction start temperature depends on the addition reaction group, and in the polyimide resin having a phenylethynyl group suitable as an addition reaction group in the present invention, it is 320 ⁇ 15 near the thickening start temperature. It is desirable to increase the melt viscosity to 70 to 900 kPa ⁇ s by holding at a temperature of ° C. for a certain period of time.
  • the lump of the addition reaction type polyimide resin obtained by cooling (including allowing to cool) and solidifying after passing through the thickening step can be stored over time and is excellent in handleability, but the position of the lump, for example, the lump There is a difference in viscosity between the surface and the central part of the mass. Therefore, it is preferable that the molding precursor of the present invention is powdered and mixed by a pulverizing and mixing step described later.
  • the mass of the addition reaction type polyimide resin whose melt viscosity is adjusted to 70 to 900 kPa ⁇ s under the temperature condition 10 ° C. lower than the thickening start temperature obtained through the thickening step has a viscosity depending on the position of the mass.
  • this is pulverized and mixed to obtain a powdery molding precursor.
  • a conventionally known pulverizing mixer such as a Henschel mixer, a tumbler mixer, a ribbon blender, a jet mill, a roller mill, a ball mill, a spike mill, or a vibration mill can be used, but pulverizing and mixing are efficiently performed at the same time. It is particularly preferable to use a Henschel mixer because it can be used.
  • the particle size of the powdery molding precursor is preferably in the range of 1 to 1000 ⁇ m in the average particle size (D50) measured by the laser scattering diffraction method.
  • the molding precursor of the present invention has a melt viscosity of 70 to 900 kPa ⁇ s under a temperature condition 10 ° C. lower than the thickening start temperature of the addition reaction type polyimide resin.
  • a predetermined temperature is set in the molding mold at a temperature equal to or higher than the melting temperature and lower than the thickening start temperature. It is also possible to provide a preheating step of holding for 10 to 30 minutes at a temperature 5 to 20 ° C. lower than the thickening start temperature, preferably 5 to 20 ° C.
  • the powdery molding precursor introduced into the molding die or the molding precursor in a state of being slightly melted through the preheating step in the molding die is under a temperature condition equal to or higher than the thermosetting temperature of the addition reaction type polyimide resin to be used.
  • a polyimide resin having a phenylethynyl group as an addition reaction group it is molded as a desired resin molded product by shaping at a temperature of 360 to 390 ° C.
  • the powdery molded precursor of the present invention has a uniform melt viscosity as a molded precursor because it is pulverized and mixed.
  • the resin has a thickness of 5 mm or more, particularly 5 to 30 mm. , 0.5 mm or more defects are not generated, or even if they are generated, a resin molded body without defects of 1 piece / 100 cm 2 or less can be molded.
  • the shaping is preferably by compression molding or transfer molding in which the mixture introduced into the molding die is pressure-compressed and molded. It may be molded by molding or extrusion molding.
  • the thickening start temperature of the addition reaction type polyimide resin used was measured with a rheometer.
  • the melting viscosity was measured with a parallel plate at an angular frequency of 100 rad / s and a strain of 10% under temperature conditions where the reaching speed to the target temperature was 4 ° C./min and held for 120 minutes after reaching the target reaching temperature, and the minimum melting was performed.
  • the time showing the viscosity is set to 0 minutes, the horizontal axis is the time (min), and the vertical axis is the melt viscosity (Pa ⁇ s).
  • the B value is 0.0092 when the target temperature is 285 ° C, and the B value is 0.0141 when the target temperature is 290 ° C.
  • the starting temperature was 290 ° C.
  • melt viscosity of the addition reaction type polyimide resin used at a temperature 10 ° C. lower than the thickening start temperature was measured by a rheometer (ARES-G2 manufactured by TA instrument). Using a parallel plate, the strain was 1% (measurement gap was 1 mm), the angular frequency range was 0.1 to 100 rad / s, and the melt viscosity at 0.1 rad / s when the melt viscosity was measured was used as the measured value. ..
  • the powdery molding precursor was heated and pressed at a temperature 10 ° C. to 40 ° C. lower than the thickening start temperature by a hot press to form a smooth plate.
  • test piece (length 50 mm x width 10 mm x thickness) cut out from a resin molded product using an autograph (AG-1 / 50N-10 kN manufactured by Shimadzu Corporation) in accordance with JIS K 7171 (plastic-test method for bending characteristics). A bending test was performed at a test speed of 1 mm / min for 3 mm), and the bending strength was measured. The test piece was cut out at a position of 3 mm from the upper surface of the resin molded body in the thickness direction, ⁇ 1.5 mm from the neutral surface, and 3 mm from the lower surface of the molded body.
  • the maximum thickness of the addition reaction type polyimide resin molded body before and after heating at a temperature of 357 ° C. for 6 hours was measured with a measuring instrument such as a caliper or a height gauge. If the thickness difference is less than 1 mm, it is evaluated as good ( ⁇ ), and if it is 1 mm or more, it is evaluated as (x).
  • Example 1 The addition reaction type polyimide (PETI-330 manufactured by Ube Industries, Ltd.) is held at a resin temperature of 330 ° C. for 65 minutes in an electric furnace, and the melt viscosity is 280 ° C. lower than the thickening start temperature of the addition reaction type polyimide. The melt viscosity at ° C was adjusted to 126.6 kPa ⁇ s. Then, it was rapidly cooled to obtain a mass of an addition reaction type polyimide resin cooled to room temperature. The obtained resin mass is crushed and mixed with a pulverizing mixer, supplied to a compression molding mold, preheated at 280 ° C.
  • PETI-330 manufactured by Ube Industries, Ltd.
  • Example 2 The resin temperature in the electric furnace was changed to 330 ° C. and the holding time was changed to 95 minutes, and the melt viscosity was adjusted to 642.9 kPa ⁇ s at 280 ° C, which is 10 ° C lower than the thickening start temperature of the addition reaction type polyimide. It was the same as in Example 1 except that.
  • Example 1 (Examples 3, 5, 7, 9, 11) The same was applied to Example 1 except that the thickness of the molded product was the thickness shown in Table 1.
  • Example 4 It was the same as in Example 2 except that the thickness of the molded product was the thickness shown in Table 1.
  • Example 13 The same as in Example 11 except that the resin temperature in the electric furnace was changed to 330 ° C. and the holding time was changed to 110 minutes to adjust the viscosity. Since the melt viscosity of the addition reaction type polyimide resin whose viscosity was adjusted at 280 ° C., which is 10 ° C. lower than the thickening start temperature, could not be measured, the thickening step was reproduced in the rheometer. The temperature was raised from 280 ° C. to 3.1 ° C./min in a rheometer, and the time when the temperature reached 330 ° C.
  • Example 14 The resin temperature in the electric furnace was changed to 330 ° C., the holding time was changed to 120 minutes, and the viscosity was adjusted in the same manner as in Example 11. Since the melt viscosity of the addition reaction type polyimide resin whose viscosity was adjusted at 280 ° C., which is 10 ° C. lower than the thickening start temperature, could not be measured, the thickening step was reproduced in the rheometer. The temperature was raised from 280 ° C. to 3.1 ° C./min in a rheometer, and the time when the temperature reached 330 ° C.
  • Comparative Example 2 It was the same as in Comparative Example 1 except that the thickness of the molded product was 5 mm.
  • Comparative Examples 3 to 7 The same as in Comparative Example 1 except that the mold temperature was changed to 320 ° C. and the holding time was changed to 40 minutes, and the thickness of the molded product was set to the thickness shown in Table 2.
  • FIG. 2A shows a compressed surface
  • FIG. 2B shows a side surface
  • FIG. 3 (A) An enlarged photograph of the side surface of the molded product obtained in Comparative Example 7 is shown in FIG.
  • FIG. 5A shows a compressed surface
  • FIG. 5B shows a side surface.
  • FIG. 5 there was a portion that was deformed in a convex shape.
  • FIGS. 6 and 7 show cross sections in the thickness direction of the molded products obtained in Comparative Examples 5 and 7, respectively.
  • Comparative Example 5 which is a molded product of 15 mm
  • a plurality of internal voids were partially formed.
  • FIG. 7 in Comparative Example 7, which is a molded product having a thickness of 30 mm, a large number of internal voids were present as a whole.
  • the resin molded product of the present invention is a thick molded product having a thickness of 5 mm or more, surface defects are remarkably reduced, and the generation of voids inside the resin molded product is suppressed, resulting in heat resistance. It has excellent durability and mechanical strength, and can be used for various purposes as a member in the fields of automobiles, electric and electronic fields, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本発明は、ボイドや亀裂等の表面欠陥や内部ボイドのない、5mm以上の厚みを有する厚物の付加反応型ポリイミド樹脂から成る成形体及びその製造方法に関するものであり、付加反応型ポリイミド樹脂のプレポリマーを該付加反応型ポリイミド樹脂の増粘開始温度以上の温度で保持し、増粘開始温度より10℃低い温度条件下における溶融粘度を70~900kPa・sに上昇させた後、これを粉砕混合することにより得られた成形前駆体を、付加反応型ポリイミド樹脂の熱硬化温度以上の温度で賦形することにより成形される付加反応型ポリイミド樹脂から成る樹脂成形体であって、5mm以上の厚みを有し、成形体の全表面に存在する0.5mm以上の欠陥の数が1個/100cm以下であることを特徴とする。

Description

ポリイミド樹脂成形体及びその製造方法
 本発明は、ポリイミド樹脂成形体及びその製造方法に関するものであり、より詳細には、表面欠陥や内部ボイドのない厚物のポリイミド樹脂成形体及びその製造方法に関する。
 末端に付加反応基を有する芳香族ポリイミドオリゴマーから成る付加反応型ポリイミド樹脂は、溶融粘度が低く、繊維への含浸性に優れており、トランスファー成形(RTM)や樹脂圧入(RI)によって良好に成形可能であることから、炭素繊維強化コンポジットのマトリックスとして広く使用されている。これらの方法により得られるコンポジット構成材は、耐熱性や耐候性、機械的強度、耐久性等の特性に優れていることから、自動車、航空機等の輸送機材、土木・建設材料、スポーツ用品等の用途に広く使用されている。航空宇宙分野等で利用されている(特許文献1等)。
 上記のような付加反応型ポリイミド樹脂は、炭素繊維等の機能性繊維を配合して炭素繊維強化コンポジットのマトリックスとして使用されることが一般的であるが、炭素繊維等を含有しないニート樹脂成形品としての需要も高まっており、特に5mm以上の厚みを有する厚物のニート樹脂成形品の需要が大きい。
特表2003-526704号公報
 付加反応型ポリイミド樹脂に関する特許文献1にも、付加反応型ポリイミド樹脂を用い、350~371℃で1時間加熱することにより、直径1.5インチ、厚さ25ミリインチのニート樹脂成形品が成形できることが記載されているが、上記特許文献1に記載されたニート樹脂成形品は、厚さが約0.6mmの極めて薄い成形体である。また上記特許文献1のように、付加反応型ポリイミド樹脂のプレポリマーを成形型内で直接加熱して賦形すると、成形型内での粘度が均一にならず、成形型内のすべての位置で成形に適した粘度に調整できないことから、樹脂の漏洩や、気泡や膨張等が生じてしまい、欠陥のない厚物の成形品を成形することができない。
 従って本発明の目的は、ボイドや亀裂等の表面欠陥が著しく低減された、5mm以上の厚みを有する厚物の付加反応型ポリイミド樹脂から成る成形体及びその製造方法を提供することである。
 本発明の他の目的は、15mm以上の厚みを有する厚物の成形体であっても内部ボイドの発生が有効に防止された機械的強度に優れた付加反応型ポリイミド樹脂から成る成形体及びその製造方法を提供することである。
 本発明の更に他の目的は、5mm以上の厚みを有する付加反応型ポリイミド樹脂成形体を成形可能な成形前駆体を提供することである。
 本発明によれば、5mm以上の厚みを有する付加反応型ポリイミド樹脂成形体であって、成形体表面に存在する0.5mm以上の欠陥の数が1個/100cm以下であることを特徴とする第一の付加反応型ポリイミド樹脂成形体が提供される。
 本発明によればまた、15mm以上の厚みを有する付加反応型ポリイミド樹脂成形体であって、曲げ強度が60MPa以上であることを特徴とする第二の付加反応型ポリイミド樹脂成形体が提供される。
本発明の付加反応型ポリイミド樹脂成形体においては、
 1.第一の付加反応型ポリイミド樹脂成形体における前記欠陥が、最大直径が0.5mm以上の凹部又は気泡、或いは長さ0.5mm以上の亀裂であること、
 2.第一の付加反応型ポリイミド樹脂成形体においても、厚みが15mm以上であり、曲げ強度が60MPa以上であること、
 3.前記付加反応型ポリイミド樹脂が、付加反応基としてフェニルエチニル基を有するポリイミド樹脂であること、
 4.成形体の形状が、厚みが5~30mmのディスク状又は矩形状の平板状であること、
 5.温度357℃で6時間加熱した場合に、変形を生じないか、或いは高さが1mm未満の凸状変形を生じること、
が好適である。
 本発明によればまた、付加反応型ポリイミド樹脂のプレポリマーを該付加反応型ポリイミド樹脂の増粘開始温度以上の温度で保持し、増粘開始温度より10℃低い温度条件下における溶融粘度を70~900kPa・sに上昇させる増粘工程、該増粘工程を経た付加反応型ポリイミド樹脂を粉体化し混合する粉砕混合工程、該粉体化された付加反応型ポリイミド樹脂を付加反応型ポリイミド樹脂の熱硬化温度以上の温度で賦形する賦形工程、とから成ることを特徴とする付加反応型ポリイミド樹脂成形体の製造方法が提供される。
本発明の付加反応型ポリイミド樹脂成形体の製造方法においては、
 1.前記増粘工程において、前記付加反応型ポリイミド樹脂を増粘開始温度より15~45℃高い温度範囲で50~200分間保持すること、
 2.前記賦形工程が、圧縮成形により行われること、
が好適である。
 本発明によればさらに、付加反応型ポリイミド樹脂から成り、該付加反応型ポリイミド樹脂の増粘開始温度から10℃低い温度条件下における溶融粘度が70~900kPa・sであることを特徴とする成形前駆体が提供される。
 尚、本明細書において、曲げ強度及び増粘開始温度とは以下のとおり定義される。
(1)曲げ強度
 JIS K 7171(プラスチック-曲げ特性の試験方法)に準拠し、成形体の厚み方向(成形型の移動方向)を試験片(長さ50mm×幅10mm×厚み3mm)の厚さとし、成形体の上面から厚み方向下方に3mm、成形体の厚み(t)中心(t/2の位置)を厚み中心(中立面)として3mm、成形体の下面から厚み方向上方に3mm、の各位置における厚みを有する長さ50mm×幅10mmの試験片を切り出す。この試験片を用いて曲げ試験を行い、得られた各試験片の曲げ応力の最も小さい値を、成形体の曲げ強度とする。測定条件は後述する。
(2)増粘開始温度
 レオメータでパラレルプレートを用い、角周波数100rad/sにおいて、4℃/minで昇温し、所定の目標温度に到達後、その目標温度で一定時間保持する条件下で、未反応状態の付加反応型ポリイミド樹脂の粘度を測定する。昇温することによって溶融し、粘度が低下する。測定中に最も低い粘度を最低溶融粘度とし、目標温度到達後120分経過するまでの溶融粘度を求める。目標温度を5の倍数の温度で低い温度から高い温度に向かって設定してそれぞれ溶融粘度の計測を行う。最低溶融粘度を示す時間を0分とし、横軸を時間(min)、縦軸を溶融粘度(Pa・s)とした片対数グラフにプロットし、表計算ソフトにより指数近似式を求める。下記式(1)に示される近似式のBの値がはじめて0.014を超える温度を増粘開始温度とする。
   Y=Aexp(Bx)  ・・・(1)
   式中、Y:溶融粘度(Pa・s)、x:時間(min)、A及びB:定数
 本発明の樹脂成形体は、耐熱性、耐久性及び機械的強度に優れた付加反応型ポリイミド樹脂から成る、5mm以上の厚みを有する樹脂成形体であり、0.5mm以上の大きさの表面欠陥が著しく低減された厚物成形体として提供できる。尚、本明細書において、表面欠陥は、これらに限定されるものではないが、樹脂中に内包された空気や樹脂由来の発生ガス等に起因して表面に形成される気泡や、この気泡が潰れることや圧縮時の変形により表面に生じる凹状欠陥(ボイドや陥没ともいう)、或いは亀裂等を意味する。
 また本発明の樹脂成形体は、15mm以上の厚みを有する場合でも、成形体内部にボイドが形成されていないことから、60MPa以上の曲げ強度を有しており、優れた機械的強度を有している。
 更に本発明の樹脂成形体の製造方法によれば、付加反応型ポリイミド樹脂の増粘開始温度から15~45℃高い温度条件で予め粘度調整し、これを粉砕混合しておくことにより、賦形に際して成形型内での場所による粘度の差が生じることを有効に防止でき、5mm以上、特に5~30mmの厚みを有する成形体を、ボイドや亀裂等の欠陥を生じることなく、成形することができる。
 更にまた本発明の成形前駆体は、樹脂成形体への成形温度における好適な溶融粘度に均一に調整されていることから、賦形直前の粘度調整が不要であり、賦形直前に加熱して粘度調整した場合のように気泡の発生及び圧潰のおそれがなく、表面欠陥及び内部ボイドのない厚物の樹脂成形体を効率よく成形することができる。
本発明の樹脂成形体の一例を示す図である。 実施例11で得られた成形品の表面を示す写真であり、(A)は圧縮面、(B)は側面をそれぞれ示す。 (A)は実施例11、(B)は実施例12で得られた成形品の後加熱後の表面を示す写真である。 比較例7で得られた成形品の表面(側面)を表す拡大写真である。 比較例7で得られた成形品の後加熱後の表面を示す写真であり、(A)は圧縮面、(B)は側面をそれぞれ示す。 比較例5で得られた成形品の厚み方向断面を示す写真である。 比較例7で得られた成形品の厚み方向断面を示す写真である。
(樹脂成形体)
 前述した通り、付加反応型ポリイミド樹脂から成るニート樹脂成形体においては、成形体表面に欠陥を生じることなく5mm以上の厚みを有する樹脂成形体を成形することが困難であったが、本発明の樹脂成形体は、5mm以上の厚みを有すると共に、0.5mm以上の表面欠陥が1個/100cm以下と低減されている。
 本発明における樹脂成形体は、5mm以上の厚み、特に5~30mmの厚みを有する限りその形状は問わない。具体的には、後述する本発明の樹脂成形体の成形方法から明らかなように、圧縮成形、トランスファー成形により成形できる形状であれば特に限定されない。また厚みは、得られる成形体における最大厚みを意味するが、圧縮成形やトランスファー成形による場合には、成形型の移動方向が樹脂成形体の厚み方向となる。
 本発明の樹脂成形体として好適な形状は、ディスク状や角形等の平板状、円柱状、角柱状等の他、曲面を有する形状や、図1に示すようなディスク状等の前記形状の成形体が複数形成された樹脂成形体等を例示することができる。
 本発明の樹脂成形体は、その表面に0.5mm以上の欠陥、特に0.5~50mmの範囲の欠陥がないこと、すなわち可及的にゼロであることが望ましく、欠陥があったとしても、その欠陥が成形体の全表面において、1個/100cm以下に低減されている。
 上記欠陥は、これに限定されるものではないが、最大直径が0.5mm以上の凹状欠陥や気泡、或いは最大長さが0.5mm以上の亀裂等であり、例えば図4に示すような欠陥を特に例示できる。
 本発明の付加反応型ポリイミド樹脂成形体は、357℃の温度で6時間加熱した場合にも、変形を生じないか、変形を生じたとしても高さが1mm未満の凸状変形を生じる程度であり、優れた熱安定性を有している。すなわち、本発明の樹脂成形体は、成形型内における成形前駆体の溶融粘度が均一であり、後述するように賦形工程で十分且つ均一に熱硬化されていることから、未反応の付加反応型ポリイミド樹脂のプレポリマーの含有量が可及的に低減されている。そのため、樹脂成形体を更に上記加熱条件で加熱処理しても、付加反応型ポリイミド樹脂のプレポリマーの反応に基づく気泡の発生や膨張等に起因する凸状変形を生じることが可及的に低減されており、熱安定性に優れている。尚、本明細書において凸状変形は、357℃の温度で6時間加熱前後の付加反応型ポリイミド樹脂成形体の最大厚みの差と定義する。
 また付加反応型ポリイミド樹脂から成る成形体は、一般に厚み15mm以上の厚物成形体としたときに内部にボイドが形成されやすいことから、機械的強度が低下する傾向があるが、本発明の樹脂成形体においては、上述した通り、気泡の発生や膨張等が低減されていることから、厚みが15mm以上の厚物成形体であっても、成形体内部のボイドの形成が抑制されている。その結果、曲げ強度が60MPa以上と大きく、優れた機械的強度を有している。
 なお、本発明の第二の付加反応型ポリイミド樹脂成形体においては、15mm以上の厚物成形体であることから、表面を研磨する等の処理により表面欠陥を取り除くことも可能であり、必ずしも第一の付加反応型ポリイミド樹脂成形体について規定するように、表面の欠陥が著しく低減されていなくてもよい。
(付加反応型ポリイミド樹脂)
 本発明の樹脂成形体を構成する付加反応型ポリイミド樹脂は、末端に付加反応基を有する芳香族ポリイミドオリゴマーから成り、従来公知の製法により調製したものを使用することができる。例えば、芳香族テトラカルボン酸二無水物、芳香族ジアミン、及び分子内に付加反応基と共に無水物基又はアミノ基を有する化合物を、各酸基の当量の合計と各アミノ基の合計とをほぼ等量となるように使用して、好適には溶媒中で反応させることによって容易に得ることができる。反応の方法としては、100℃以下、好適には80℃以下の温度で、0.1~50時間重合してアミド酸結合を有するオリゴマーを生成し、次いでイミド化剤によって化学イミド化する方法や、140~270℃程度の高温で加熱して熱イミド化する2工程からなる方法、或いは始めから140~270℃の高温で、0.1~50時間重合・イミド化反応を行わせる1工程からなる方法を例示できる。
 これらの反応で用いる溶媒は、これに限定されないが、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、γ-ブチルラクトン、N-メチルカプロラクタム等の有機極性溶媒を好適に使用できる。
 本発明において、芳香族イミドオリゴマーの末端の付加反応基は、樹脂成形体を製造する際に、加熱によって硬化反応(付加重合反応)を行う基であれば特に限定されないが、好適に硬化反応を行うことができること、及び得られた硬化物の耐熱性が良好であることを考慮すると、好ましくはフェニルエチニル基、アセチレン基、ナジック酸基、及びマレイミド基からなる群から選ばれるいずれかの反応基であることが好ましく、特にフェニルエチニル基は、硬化反応によるガス成分の発生がなく、しかも得られた樹脂成形体の耐熱性に優れていると共に機械的な強度にも優れていることから好適である。
 これらの付加反応基は、分子内に付加反応基と共に無水物基又はアミノ基を有する化合物が、芳香族イミドオリゴマーの末端のアミノ基又は酸無水物基と、好適にはイミド環を形成する反応によって、芳香族イミドオリゴマーの末端に導入される。
 分子内に付加反応基と共に無水物基又はアミノ基を有する化合物は、例えば4-(2-フェニルエチニル)無水フタル酸、4-(2-フェニルエチニル)アニリン、4-エチニル-無水フタル酸、4-エチニルアニリン、ナジック酸無水物、マレイン酸無水物等を好適に使用することができる。
 末端に付加反応基を有する芳香族イミドオリゴマーを形成するテトラカルボン酸成分としては、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、及び3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物からなる群から選ばれる少なくとも一つのテトラカルボン酸二無水物を例示することができ、特に、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を好適に使用することができる。
 末端に付加反応基を有する芳香族イミドオリゴマーを形成するジアミン成分としては、これに限定されないが、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、2,6-ジエチル-1,3-ジアミノベンゼン、4,6-ジエチル-2-メチル-1,3-ジアミノベンゼン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン等のベンゼン環を1個有するジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、ビス(2,6-ジエチル-4-アミノフェノキシ)メタン、ビス(2-エチル-6-メチル-4-アミノフェニル)メタン、4,4’-メチレン-ビス(2,6-ジエチルアニリン)、4,4’-メチレン-ビス(2-エチル-6-メチルアニリン)、2,2―ビス(3-アミノフェニル)プロパン、2,2―ビス(4-アミノフェニル)プロパンベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ジメチルベンジジン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパンベンジジン等のベンゼン環を2個有するジアミン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン,1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン等のベンゼン環を3個有するジアミン、2,2-ビス[4-[4-アミノフェノキシ]フェニル]プロパン、2,2-ビス[4-[4-アミノフェノキシ]フェニル]ヘキサフルオロプロパン等のベンゼン環を4個有するジアミン等を単独、或いは複数種混合して使用することができる。
 これらの中でも、1,3-ジアミノベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、及び2,2’-ビス(トリフルオロメチル)ベンジジンからなる群から選ばれる少なくとも二つの芳香族ジアミンによって構成された混合ジアミンを用いることが好適であり、特に、1,3-ジアミノベンゼンと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、3,4’-ジアミノジフェニルエーテルと4,4’-ジアミノジフェニルエーテルとの組み合せからなる混合ジアミン、3,4’-ジアミノジフェニルエーテルと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、4,4’-ジアミノジフェニルエーテルと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、及び2,2’-ビス(トリフルオロメチル)ベンジジンと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミンを使用することが、耐熱性と成形性の点から好適である。
 本発明で用いる末端に付加反応基を有する芳香族イミドオリゴマーは、イミドオリゴマーの繰返し単位の繰返しが、0~20、特に1~5であることが好適であり、GPCによるスチレン換算の数平均分子量が、10000以下、特に3000以下であることが好適である。繰返し単位の繰返し数が上記範囲にあることにより、溶融粘度が適切な範囲に調整されて、機能性繊維を混合することが可能になる。また高温で成形する必要がなく、成形性に優れていると共に、耐熱性、機械的強度に優れた樹脂成形体を提供することが可能になる。
 繰返し単位の繰返し数の調整は、芳香族テトラカルボン酸二無水物、芳香族ジアミン、及び分子内に付加反応基と共に無水物基又はアミノ基を有する化合物の割合を変えることにより行うことができ、分子内に付加反応基と共に無水物基又はアミノ基を有する化合物の割合を高くすることにより、低分子量化して繰返し単位の繰返し数は小さくなり、この化合物の割合を小さくすると、高分子量化して繰返し単位の繰返し数は大きくなる。
 付加反応型ポリイミド樹脂には、目的とする樹脂成形体の用途に応じて、難燃剤、着色剤、滑剤、熱安定剤、光安定剤、紫外線吸収剤、充填剤等の樹脂添加剤を公知の処方に従って配合されていてもよい。
(樹脂成形体の製造方法)
 本発明の樹脂成形体の製造方法は、付加反応型ポリイミド樹脂のプレポリマーを該付加反応型ポリイミド樹脂の増粘開始温度以上の温度で保持し、増粘開始温度より10℃低い温度条件下における溶融粘度を70~900kPa・sに上昇させる増粘工程、該増粘工程を経た付加反応型ポリイミド樹脂を粉体化し混合する粉砕混合工程、該粉体化された付加反応型ポリイミド樹脂を付加反応型ポリイミド樹脂の熱硬化温度以上の温度で賦形する賦形工程、とから成る。
 本発明の樹脂成形体の製造に使用する付加反応型ポリイミド樹脂は、架橋硬化前のプレポリマーの状態では低粘度であることから、樹脂成形体の賦形工程において、成形型に供給されたプレポリマーを増粘させると、成形型内の中央付近では粘度上昇が少なく、成形型近傍では粘度上昇が大きく、プレポリマーの粘度が均一にならないという問題がある。成形型中央部分を基準に粘度調整を行うと、成形型の器壁近傍のプレポリマーは熱分解して発泡・膨張し、その後の圧縮成形による加圧によって気泡が潰れてボイドが発生するという問題が生じる。その一方、成形型の器壁近傍のプレポリマーの粘度を基準とすれば、粘度が低すぎて成形できず、溶融樹脂が成形型から漏洩するという問題が生じることになる。
 本発明においては、賦形工程の前に、上記増粘工程によりプレポリマーの溶融粘度を増粘開始温度から10℃低い温度条件下における溶融粘度を70~900kPa・sに上昇させると共に、次いで行う粉砕混合工程により、溶融粘度が上記範囲に調整された付加反応型ポリイミド樹脂を粉体化すると共に混合して、均一な溶融粘度を有する粉体状の成形前駆体を調製する。これにより、賦形工程での増粘を不要とし、その結果、前述したように、0.5mm以上の欠陥がないか、あったとしても1個/100cm以下と著しく表面欠陥が低減された、5mm以上の厚みを有する樹脂成形体を成形することが可能になる。
[増粘工程]
 増粘工程においては、まず付加反応型ポリイミド樹脂のプレポリマー(イミドオリゴマー)を、電気炉等を用いて、付加反応型ポリイミド樹脂の増粘開始温度以上の温度で一定時間保持することによって、溶融粘度を70~900kPa・sに上昇させる、好適には増粘開始温度より15~45℃高い温度範囲で50~200分間、特に65~110分間保持することにより、増粘開始温度より10℃低い温度条件下における、プレポリマーの溶融粘度を70~900kPa・sに上昇させる。
 プレポリマーを、上記温度条件で一定時間保持することにより、プレポリマーが徐々に架橋し始めることから粘度は上昇する。また上記範囲の加熱温度及び保持時間にすることで、プレポリマーを完全に架橋硬化させることなく、粘度のみを上記範囲に上昇させることが可能になる。従って、増粘工程は、プレポリマーの増粘開始温度以上、且つ、完全に架橋硬化する温度未満にて行う。
 尚、付加反応型ポリイミド樹脂においては、反応開始温度は付加反応基に依存し、本発明において付加反応基として好適なフェニルエチニル基を有するポリイミド樹脂においては、増粘開始温度近傍である320±15℃の温度で一定時間保持することによって、溶融粘度を70~900kPa・sに上昇させることが望ましい。
 増粘工程を経た後、冷却(放冷を含む)固化することにより得られた付加反応型ポリイミド樹脂の塊は経時保管も可能であり、取扱い性に優れているが、塊の位置、例えば塊表面と塊の中心部分では粘度に差が生じている。そのため、本発明の成形前駆体は、後述する粉砕混合工程により、粉体化されていると共に混合された状態の粉体とすることが好適である。
[粉砕混合工程]
 増粘工程を経て得られた増粘開始温度より10℃低い温度条件下における溶融粘度が70~900kPa・sに調整された付加反応型ポリイミド樹脂の塊は、上述した通り、塊の位置によって粘度に差があることから、本発明においては、これを粉砕混合して粉体状の成形前駆体にする。
 粉砕混合は、ヘンシェルミキサー、タンブラーミキサー、リボンブレンダ―、ジェットミル、ローラーミル、ボールミル、スパイクミル、振動ミル等の従来公知の粉砕混合機を用いることもできるが、粉砕及び混合を同時に効率よく行うことができることから、ヘンシェルミキサーを用いることが特に好適である。
 粉体状成形前駆体の粒度は、レーザ散乱回折法により測定した平均粒径(D50)が1~1000μmの範囲にあることが好適である。
[賦形工程]
 前述したとおり、本発明の成形前駆体においては、付加反応型ポリイミド樹脂の増粘開始温度から10℃低い温度条件下において70~900kPa・sの溶融粘度を有することから、樹脂成形体の成形に際しては、粉砕混合された粉体状の成形前駆体をそのまま付加反応型ポリイミドの熱硬化温度以上の温度で賦形することができる。
 また粉砕された成形前駆体の温度を均一化するために、必要により、粉体状の成形前駆体を成形型に導入した後、成形型内で溶融温度以上増粘開始温度以下の温度で所定時間、好適には増粘開始温度より5~20℃低い温度で10~30分保持する、予備加熱工程を設けることもできる。
 成形型内に導入された粉体状の成形前駆体、或いは成形型内で予備加熱工程を経て若干溶融した状態の成形前駆体は、用いる付加反応型ポリイミド樹脂の熱硬化温度以上の温度条件下、具体的には付加反応基としてフェニルエチニル基を有するポリイミド樹脂においては360~390℃の温度で賦形することにより、所望の樹脂成形体として成形される。本発明の粉体状成形前駆体においては、粉砕混合されていることにより、成形前駆体として均一な溶融粘度を有している。その結果、熱硬化温度以上の温度で加熱すると、成形型内で場所による粘度差を生じることがなく、成形型内で均一に溶融する。その結果、圧縮成形等により加圧圧縮しても樹脂の流動が低減されていると共に、気泡や膨張の発生もないことから、前述したように、5mm以上、特に5~30mmの厚みを有し、0.5mm以上の欠陥を生じないか、或いは生じたとしても1個/100cm以下の欠陥のない樹脂成形体を成形することができる。
 尚、賦形は、5mm以上の厚みの成形体を成形するという見地からは、成形型に導入された混合物を加圧圧縮して成形する圧縮成形やトランスファー成形によることが好適であるが、射出成形や押出成形により成形してもよい。
(増粘開始温度の測定)
 用いる付加反応型ポリイミド樹脂の増粘開始温度をレオメータにより計測した。目標温度への到達速度を4℃/minとし、目標到達温度到達後120分保持する温度条件下で、パラレルプレートを用い、角周波数100rad/s、ひずみ10%として溶融粘度を測定し、最低溶融粘度を示す時間を0分とし、横軸を時間(min)、縦軸を溶融粘度(Pa・s)とした片対数グラフにプロットし、指数近似式より式(1)の係数Bを求める。付加重合ポリイミド(宇部興産社製PETI-330)において、目標温度が285℃の時のB値が0.0092であり、目標温度が290℃の時のB値が0.0141であり、増粘開始温度を290℃とした。
(溶融粘度の測定)
 用いる付加反応型ポリイミド樹脂の増粘開始温度より10℃低い温度における溶融粘度をレオメータ(TA instrument社製ARES-G2)により測定した。パラレルプレートを用い、(測定ギャップを1mm)ひずみを1%、角周波数範囲を0.1~100rad/sとして、溶融粘度を測定したときの、0.1rad/sにおける溶融粘度を測定値とした。尚、測定する際は、粉体状の成形前駆体をホットプレスにて、増粘開始温度より10℃~40℃低い温度で加熱加圧し平滑な板状にした。
(曲げ強度の測定)
 JIS K 7171(プラスチック-曲げ特性の試験方法)に準拠し、オートグラフ(島津製作所製 AG-1/50N-10kN)を用い、樹脂成形体から切り出した試験片(長さ50mm×幅10mm×厚み3mm)について試験速度1mm/minで曲げ試験を行い、曲げ強度を測定した。
 尚、樹脂成形体上面から厚み方向に、3mm、中立面から±1.5mm、成形体下面から3mmの位置で試験片を切り出した。
(表面欠陥の評価)
 欠陥の有無、個数を目視で確認し、サイズを定規、ノギス等の計測器具で測定した。成形体の全表面に存在する0.5mm以上の欠陥の数が1個/100cm以下であれば良(〇)とし、1個/100cmより多い場合は(×)とした。
(成形品の後加熱評価)
 357℃の温度で6時間加熱前後の付加反応型ポリイミド樹脂成形体の最大厚みを、ノギス、ハイトゲージ等の計測器具で測定した。厚み差が1mm未満であれば良(〇)とし、1mm以上の場合は(×)とした。
(実施例1)
 付加反応型ポリイミド(宇部興産社製PETI-330)を、電気炉内での樹脂温度330℃、65分保持し、溶融粘度を付加反応型ポリイミドの増粘開始温度から10℃低い温度である280℃における溶融粘度126.6kPa・sに調整した。その後、急冷し、室温まで冷却された付加反応型ポリイミド樹脂の塊を得た。得られた樹脂塊を粉砕混合機で粉砕混合してから圧縮成形型に供給し280℃、90分予備加熱をした後、11.0MPaに加圧しながら昇温速度0.3℃/minで320℃まで昇温し、60分間保持、さらに昇温速度0.43℃/minで371℃まで昇温、120分間保持後、徐冷してφ200mm厚さ5mmのディスク状の板を得た。
(実施例2)
 電気炉内での樹脂温度330℃、保持時間を95分に変更し、溶融粘度を付加反応型ポリイミドの増粘開始温度から10℃低い温度である280℃における溶融粘度642.9kPa・sに調整した以外は実施例1と同じとした。
(実施例3,5,7,9,11)
 成形品の厚みを表1に示す厚みとした以外は実施例1と同様にした。
(実施例4,6,8,10,12)
 成形品の厚みを表1に示す厚みとした以外は実施例2と同様とした。
(実施例13)
 電気炉内での樹脂温度330℃、保持時間を110分に変更し粘度調整した以外は実施例11と同じとした。尚、粘度調整した付加反応型ポリイミド樹脂の、増粘開始温度から10℃低い温度である280℃における溶融粘度は測定不可であったため、レオメータ内で増粘工程を再現した。レオメータ内で280℃から3.1℃/minで昇温し、330℃に到達した時点を0分として、110分経過した時点での複素粘度の値、896.3kPa・sを溶融粘度とした。測定にはφ25mmのパラレルプレートを使用し、角周波数を10rad/sに設定した。
(実施例14)
 電気炉内での樹脂温度を330℃、保持時間を120分に変更し、粘度調整した以外は、実施例11と同様にした。尚、粘度調整した付加反応型ポリイミド樹脂の、増粘開始温度から10℃低い温度である280℃における溶融粘度は測定不可であったため、レオメータ内で増粘工程を再現した。レオメータ内で280℃から3.1℃/minで昇温し、330℃に到達した時点を0分として、120分経過した時点での複素粘度の値、1151.1kPa・sを溶融粘度とした。測定にはφ25mmのパラレルプレートを使用し、角周波数を10rad/sに設定した。
(比較例1)
 付加反応型ポリイミド(宇部興産社製PETI-330)を、圧縮成形型に供給し、金型温度280℃、90分予備加熱をした後、3.3℃/minで320℃まで昇温し、金型温度320℃で45分保持して、圧縮成形時に樹脂漏れの生じない粘度になるまで上昇させた後、11.0MPaに加圧しながら昇温速度0.85℃/minで371℃まで昇温、120分間保持後、徐冷してφ200mm厚さ3mmのディスク状の板を得た。
(比較例2)
 成形品の厚みを5mmとした以外は、比較例1と同様にした。
(比較例3~7)
 金型温度を320℃、保持時間を40分に変更し、成形品の厚さを表2に示す厚みとした以外は、比較例1と同様にした。
(比較例8)
 電気炉内での樹脂温度を330℃、保持時間を60分に変更し、溶融粘度を付加反応型ポリイミドの増粘開始温度から10℃低い温度である280℃における溶融粘度60.4kpa・sに調整した以外は、実施例11と同様にした。
 実施例1~14、比較例1~8にて得られた増粘工程を経て得られた付加反応型ポリイミド樹脂の溶融粘度、成形品の表面欠陥の評価、及び成形品の後加熱評価の結果を表1及び表2に示す。なお、比較例1~7については溶融粘度が金型内の位置によって異なるので未計測とした。
 実施例5~14、比較例1,4~7にて得られた成形品の曲げ強度を表1及び表2に示す。
 実施例11で得られた成形品の表面を図2に示す。図2(A)は圧縮面、(B)は側面をそれぞれ示す。また上記後加熱評価後の表面拡大写真を図3(A)に示す。
 比較例7で得られた成形品の側面の拡大写真を図4に示す。図4から明らかなように、2~3mmのボイドが多数発生し、ボイド同士がつながってひびのようになっている箇所もあった。
 また上記後加熱評価後の表面写真を図5に示す。図5(A)は圧縮面、(B)は側面をそれぞれ示す。図5から明らかなように、凸状に変形した箇所があった。
 更に比較例5及び7で得られた成形品の厚み方向の断面を図6及び7にそれぞれ示す。図6から明らかなように、15mmの成形品である比較例5では、内部ボイドが部分的に複数形成されていた。また図7から明らかなように、厚み30mmの成形品である比較例7では、内部ボイドが全体的に多数存在していた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の樹脂成形体は、5mm以上の厚みを有する厚物の成形体でありながら、表面欠陥が著しく低減されていると共に、樹脂成形体内部のボイドの発生が抑制されており、耐熱性、耐久性、機械的強度、に優れており、自動車、電気・電子分野等の部材として種々の用途に使用できる。

Claims (11)

  1.  5mm以上の厚みを有する付加反応型ポリイミド樹脂成形体であって、成形体の全表面に存在する0.5mm以上の欠陥の数が1個/100cm以下であることを特徴とする付加反応型ポリイミド樹脂成形体。
  2.  15mm以上の厚みを有する付加反応型ポリイミド樹脂成形体であって、曲げ強度が60MPa以上であることを特徴とする付加反応型ポリイミド樹脂成形体。
  3.  前記欠陥が、最大直径が0.5mm以上の凹部又は気泡、或いは長さ0.5mm以上の亀裂である請求項1記載の付加反応型ポリイミド樹脂成形体。
  4.  曲げ強度が60MPa以上である請求項1又は3記載の付加反応型ポリイミド樹脂成形体。
  5.  前記付加反応型ポリイミド樹脂が、付加反応基としてフェニルエチニル基を有するポリイミド樹脂である請求項1~4の何れかに記載の付加反応型ポリイミド樹脂成形体。
  6.  成形体の形状が、厚みが5~30mmのディスク状又は矩形状の平板状である請求項1~5の何れかに記載の付加反応型ポリイミド樹脂成形体。
  7.  温度357℃で6時間加熱した場合に、変形を生じないか、或いは高さが1mm未満の凸状変形を生じる請求項1~6の何れかに記載の付加反応型ポリイミド樹脂成形体。
  8.  付加反応型ポリイミド樹脂のプレポリマーを該付加反応型ポリイミド樹脂の増粘開始温度以上の温度で保持し、増粘開始温度より10℃低い温度条件下における溶融粘度を70~900kPa・sに上昇させる増粘工程、該増粘工程を経た付加反応型ポリイミド樹脂を粉体化し混合する粉砕混合工程、該粉体化された付加反応型ポリイミド樹脂を付加反応型ポリイミド樹脂の熱硬化温度以上の温度で賦形する賦形工程、とから成ることを特徴とする付加反応型ポリイミド樹脂成形体の製造方法。
  9.  前記増粘工程において、前記付加反応型ポリイミド樹脂を増粘開始温度より15~45℃高い温度範囲で50~200分間保持する請求項8記載の付加反応型ポリイミド樹脂成形体の製造方法。
  10.  前記賦形工程が、圧縮成形により行われる請求項8又は9記載の付加反応型ポリイミド樹脂成形体の製造方法。
  11.  付加反応型ポリイミド樹脂から成り、該付加反応型ポリイミド樹脂の増粘開始温度から10℃低い温度条件下における溶融粘度が70~900kPa・sであることを特徴とする成形前駆体。
PCT/JP2021/021473 2020-06-05 2021-06-07 ポリイミド樹脂成形体及びその製造方法 WO2021246532A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180039667.0A CN115698144B (zh) 2020-06-05 2021-06-07 聚酰亚胺树脂成型体及其制造方法
EP21816837.5A EP4163097A1 (en) 2020-06-05 2021-06-07 Polyimide resin molded body and production method for same
JP2021552665A JP6984804B1 (ja) 2020-06-05 2021-06-07 ポリイミド樹脂成形体及びその製造方法
US18/008,080 US20230235123A1 (en) 2020-06-05 2021-06-07 Polyimide resin molded body and production method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-098791 2020-06-05
JP2020098791 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021246532A1 true WO2021246532A1 (ja) 2021-12-09

Family

ID=78830371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021473 WO2021246532A1 (ja) 2020-06-05 2021-06-07 ポリイミド樹脂成形体及びその製造方法

Country Status (5)

Country Link
US (1) US20230235123A1 (ja)
EP (1) EP4163097A1 (ja)
JP (1) JP6984804B1 (ja)
CN (1) CN115698144B (ja)
WO (1) WO2021246532A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526704A (ja) 1999-05-18 2003-09-09 アメリカ合衆国 圧入、トランスファー成形用高能力樹脂組成物とその製造法
JP2008119974A (ja) * 2006-11-13 2008-05-29 Ube Ind Ltd ポリイミド複合材料サンドイッチパネルとその製造方法
JP2009274284A (ja) * 2008-05-13 2009-11-26 Ube Ind Ltd ポリイミド複合材料からなる耐熱性サンドイッチパネル、及びその製造方法
WO2011055530A1 (ja) * 2009-11-05 2011-05-12 株式会社アイ.エス.テイ ポリイミド発泡体、ポリイミド粉体混合物、ポリイミド粉体、ポリイミド発泡体の製造方法、積層ポリイミド発泡成形体の製造方法、湾曲ポリイミド発泡成形体の製造方法、積層ポリイミド発泡成形体および湾曲ポリイミド発泡成形体
WO2016039485A1 (ja) * 2014-09-12 2016-03-17 東洋製罐グループホールディングス株式会社 繊維強化ポリイミド樹脂成形体及びその製造方法
WO2018190370A1 (ja) * 2017-04-12 2018-10-18 東洋製罐グループホールディングス株式会社 フィラー高含有組成物及び成形体の製造方法
WO2019107352A1 (ja) * 2017-11-28 2019-06-06 東洋製罐グループホールディングス株式会社 繊維強化積層体及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232996A (ja) * 2005-02-24 2006-09-07 Toray Ind Inc ポリイミド樹脂成形用材料、それを用いた成形品、ポリイミドのマテリアルリサイクル方法
JP2015074207A (ja) * 2013-10-11 2015-04-20 東レ株式会社 芳香族ポリイミド成形品の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526704A (ja) 1999-05-18 2003-09-09 アメリカ合衆国 圧入、トランスファー成形用高能力樹脂組成物とその製造法
JP2008119974A (ja) * 2006-11-13 2008-05-29 Ube Ind Ltd ポリイミド複合材料サンドイッチパネルとその製造方法
JP2009274284A (ja) * 2008-05-13 2009-11-26 Ube Ind Ltd ポリイミド複合材料からなる耐熱性サンドイッチパネル、及びその製造方法
WO2011055530A1 (ja) * 2009-11-05 2011-05-12 株式会社アイ.エス.テイ ポリイミド発泡体、ポリイミド粉体混合物、ポリイミド粉体、ポリイミド発泡体の製造方法、積層ポリイミド発泡成形体の製造方法、湾曲ポリイミド発泡成形体の製造方法、積層ポリイミド発泡成形体および湾曲ポリイミド発泡成形体
WO2016039485A1 (ja) * 2014-09-12 2016-03-17 東洋製罐グループホールディングス株式会社 繊維強化ポリイミド樹脂成形体及びその製造方法
WO2018190370A1 (ja) * 2017-04-12 2018-10-18 東洋製罐グループホールディングス株式会社 フィラー高含有組成物及び成形体の製造方法
WO2019107352A1 (ja) * 2017-11-28 2019-06-06 東洋製罐グループホールディングス株式会社 繊維強化積層体及びその製造方法

Also Published As

Publication number Publication date
US20230235123A1 (en) 2023-07-27
JP6984804B1 (ja) 2021-12-22
CN115698144B (zh) 2024-05-07
CN115698144A (zh) 2023-02-03
EP4163097A1 (en) 2023-04-12
JPWO2021246532A1 (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
US8748509B2 (en) Friction material and resin composition for friction material
JP5292091B2 (ja) 製造特性が向上したビスマレイミド樹脂系
CN106715545B (zh) 纤维增强聚酰亚胺树脂成型体及其制造方法
CN110520455B (zh) 具有高填料含量的组合物和成形体的生产方法
CN111417512A (zh) 纤维增强层压体及其制造方法
JP6679860B2 (ja) 繊維強化ポリイミド樹脂成形体及びその製造方法
JP6984804B1 (ja) ポリイミド樹脂成形体及びその製造方法
JP6794616B2 (ja) 繊維強化ポリイミド樹脂成形体及びその製造方法
CN112521641A (zh) 一种高结晶取向的聚酰亚胺膜及石墨膜
JP7405097B2 (ja) 繊維強化ポリイミド樹脂成形前駆体及びその製造方法
EP2075111B1 (en) Methods for forming composite articles from tailorable polyimide resin systems using RTM and RI techniques
EP2083037B1 (en) RTM and RI Processible Tailorable Polyimide Resin Systems and Composite Articles Formed Therefrom
JP2004323715A (ja) 発泡ポリイミド成型体およびその製法
Zhang et al. Effect of thermoplastic toughening agent on phase separation and physicochemical properties of bismaleimide resin
KR20170093013A (ko) 고온 내열용 프리프레그 제조를 위한 수지 조성물 및 그 제조 방법
Meador et al. PMR polyimides with enhanced melt flow for high temperature applications
WO2014112434A1 (ja) 成形用ポリアミドイミド樹脂組成物
JP2005281573A (ja) 発泡ポリイミド成型体およびその製法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021552665

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021816837

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021816837

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE