WO2014112434A1 - 成形用ポリアミドイミド樹脂組成物 - Google Patents
成形用ポリアミドイミド樹脂組成物 Download PDFInfo
- Publication number
- WO2014112434A1 WO2014112434A1 PCT/JP2014/050294 JP2014050294W WO2014112434A1 WO 2014112434 A1 WO2014112434 A1 WO 2014112434A1 JP 2014050294 W JP2014050294 W JP 2014050294W WO 2014112434 A1 WO2014112434 A1 WO 2014112434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molding
- polyamideimide
- polyamideimide resin
- resin composition
- binder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/14—Polyamide-imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1035—Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Definitions
- the present invention relates to a polyamide-imide resin composition that can be melt-molded and has excellent mechanical, chemical, and thermal properties and is useful for molding applications.
- Polyamideimide resin is most frequently used as a varnish or film because it is a material excellent in mechanical strength, heat resistance, electrical properties, chemical resistance, and the like.
- plate materials and round bars, etc. obtained by molding methods such as injection molding, extrusion molding, compression molding, etc., taking advantage of excellent properties such as mechanical strength and heat resistance, are used for electrical / electronic parts, automotive parts, military / aircraft, Development for industrial materials such as industrial equipment is also underway.
- the polymerization method of the polyamideimide resin can be polymerized by a production method such as a direct polymerization method, an isocyanate polymerization method, an acid chloride method, or an imide dicarboxylic acid method.
- a production method such as a direct polymerization method, an isocyanate polymerization method, an acid chloride method, or an imide dicarboxylic acid method.
- two main polymerization methods are a direct polymerization method and an isocyanate polymerization method.
- the polymerization method of polyamide-imide resin that can be melt-molded is only a polyamide-imide resin having a low glass viscosity and a glass transition temperature (Tg) of about 250 ° C. obtained by a direct polymerization method.
- Tg glass transition temperature
- the molded product has insufficient mechanical strength and is easily brittle and chipped. Therefore, after molding, it is essential to perform post-curing treatment at high temperature for a long time, which is an issue from the viewpoint of productivity. ing.
- the polyamide-imide resin obtained by the isocyanate polymerization method is difficult to be melt-molded.
- the main reason is due to the gelation phenomenon in which polymerization by heating reaction of the molecular terminal isocyanate functional group proceeds and a gel-like product is generated.
- gelation occurs inside the molding machine table, the gelled product is greatly removed. Costs may be required or the molding machine itself may need to be discarded.
- Patent Document 1 As a method for improving the melt moldability of the polyamideimide resin obtained by the isocyanate polymerization method, in Patent Document 1, the production reaction of the imide group is substantially completed after the formation of the amide group in the production of the polyamideimide.
- the method of performing, and patent document 2 the method of changing the ratio of the acid component and isocyanate component of aromatic polyamide-imide resin is each disclosed. Although it seems that it can be molded by the molding method such as injection molding method and extrusion molding method from the characteristic value of flow start temperature and glass transition temperature (Tg) of polyamideimide resin obtained by this manufacturing method, According to the above, when it was actually molded, a gel-like material or the like was generated inside the molding machine table, making it impossible to mold.
- Tg glass transition temperature
- the present situation has not necessarily solved the problem of the polyamide-imide resin comprising the isocyanate polymerization method.
- the present invention was devised in view of the current state of the prior art, and its purpose is that it can be melt-molded and / or compression-molded, does not require post-curing treatment, and has mechanical strength, chemical,
- An object of the present invention is to provide a molding polyamideimide resin composition capable of obtaining an industrial material excellent in heat resistance and the like.
- the inventors of the present invention have completed the present invention as a result of intensive investigations in order to solve the problem of the polyamideimide resin, particularly the problem of the polyamideimide resin comprising the isocyanate polymerization process.
- the following resin composition is provided.
- the tetracarboxylic dianhydride is oxydiphthalic dianhydride, 3,3′4,4′-biphenyltetracarboxylic dianhydride, 3,3′4,4′-benzophenonetetracarboxylic dianhydride
- the polyamideimide resin composition for molding according to (1) which is at least one selected from the group consisting of 3,3′4,4′-diphenylsulfonetetracarboxylic dianhydride.
- the endblocker is at least one selected from the group consisting of phthalic anhydride, p-vinylbenzoic acid, alcohols, and phenols. Composition.
- the binder is any one of (1) to (4), wherein the binder is at least one selected from the group consisting of oligomers or polymers having a glass transition temperature (Tg) of 200 ° C. to 280 ° C.
- Tg glass transition temperature
- melt molding is possible, and in particular, a molded product obtained by a compression molding method does not need to be subjected to post-cure treatment, and has excellent performance such as mechanical strength and heat resistance. It is a composition capable of obtaining an industrial material useful in terms of productivity.
- FIG. 2 is a cross-sectional view of a fracture surface in a bending test of a molded article of Example 1.
- FIG. It is sectional drawing of the torn surface in the bending test of the molded article of Example 2.
- FIG. 5 is a cross-sectional view of a fracture surface in a bending test of a molded product of Comparative Example 1.
- FIG. 5 is a cross-sectional view of a fracture surface in a bending test of a molded product of Comparative Example 2.
- the polyamide-imide resin composition for molding according to the present invention is a polyamide-imide molecule-terminated isocyanate having a composition designed so that the resin is not brittle by introducing a rigid component into the polyamide-imide resin skeleton and imparting heat resistance to the resin. Block the functional group to stop the progress of the polymerization reaction and obtain a polyamideimide polymer solution with the optimal logarithmic viscosity, and then pulverize the water-precipitated and solidified polyamideimide resin to obtain a powder with an optimal particle size.
- thermoplastic polyimide resin thermoplastic polyetherimide resin
- thermoplastic polyetherimide resin thermoplastic polyetherimide resin
- the press temperature for press-molding the polyamideimide resin needs to be a high temperature close to the thermal decomposition temperature of the polyamideimide resin.
- Many of these polyamide-imide resins have a flow softening temperature higher than or near the thermal decomposition temperature, so that molding is limited or practically impossible to mold.
- the composition is designed in consideration of the following points.
- a rigid component is introduced into the polyamideimide resin skeleton of the molding polyamideimide resin composition of the present invention to increase the thermal decomposition starting temperature.
- the inventors of the present application have found that if a rigid component is introduced, heat resistance is obtained, but the resin becomes hard and brittle, and cracks and chips are likely to occur, and the resin design is made to impart toughness to the polyamideimide resin.
- the polyamide-imide resin for molding of the present invention based on the above technical idea can obtain toughness by introducing a rigid component with trimellitic anhydride and 3,3′4,4′-benzophenonetetracarboxylic dianhydride as acid components.
- Polyamideimide polymer terminals formed by polymerization with 4,4′-diphenylmethane diisocyanate (MDI) are blocked with phthalic anhydride.
- the binding material of the present invention functions as a connection between resins, for example, between pellet-shaped resins or between pulverized powdered resins, and increases the bonding force between the resins, thereby stabilizing the shape and stabilizing the dispersion.
- the purpose is to improve the performance such as the improvement of the adhesive strength and the adhesive force, and thereby to provide a composition that does not require post-cure without lowering the mechanical strength and heat resistance.
- the toughness is greatly imparted by including a binder in the polyamideimide resin for molding of the present invention.
- This is a composition that does not require post-cure treatment by improving toughness from resin design without lowering mechanical strength, heat resistance and the like.
- the binder added to the composition of the present invention is at least one selected from the group consisting of oligomers or polymers consisting of oligomers or polymers having a glass transition temperature (Tg) of 200 ° C. to 280 ° C. It is more preferable that it contains at least one selected from the group consisting of a thermoplastic polyimide resin or a thermoplastic polyetherimide resin.
- Tg glass transition temperature
- the binder is dried and dehydrated in advance, and then mixed and molded with the molding resin in the same form. In some areas, the binder is processed into a powder form and dried with the powdered molding resin. After mixing, for example, a molding method is proposed in which the molding temperature is set to 250 to 400 ° C. and then simultaneously molded and then cooled to obtain molded products such as plate materials and round bars. can do.
- the polyamide-imide resin of the present invention is a polyamide-imide resin comprising an isocyanate polymerization process, and is a polyamide-imide resin obtained by polymerizing an acid component comprising a trimellitic anhydride and a tetracarboxylic dianhydride and a diisocyanate component.
- the terminal isocyanate functional group of the molecule is blocked with a terminal blocking agent to obtain a polyamideimide polymer solution having a logarithmic viscosity of 0.4 to 0.7 dl / g.
- the polyamideimide polymer solution is submerged, solidified, dried and then pulverized to obtain a polyamideimide resin powder having an average particle size (median d50) of 5 ⁇ m to 100 ⁇ m, thereby obtaining a molding resin, particularly a compression molding resin. It is done.
- trimellitic anhydride of the polyamideimide resin used in the polyamideimide resin composition for molding of the present invention can be preferably used in an amount of 75 to 85 mol%, preferably 83 mol%, relative to 100 mol% of the total acid component. is there.
- tetracarboxylic dianhydride of the polyamideimide resin used in the polyamideimide resin composition for molding of the present invention pyromellitic anhydride, oxydiphthalic dianhydride, 3,3′4,4′-biphenyltetracarboxylic acid Anhydride, 3,3'4,4'-benzophenone tetracarboxylic dianhydride, 3,3'4,4'-diphenylsulfone tetracarboxylic dianhydride, 4,4 '-(2,2-hexafluoro Isopropylidene) diphthalic dianhydride, m (p) -terphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1- Examples include carboxymethyl-2,3,5-cyclopentanetricarboxylic acid-2,6: 3,5-dianhydride, among
- MDI 4,4′-diphenylmethane diisocyanate
- terminal blocking agent of the polyamideimide resin used in the molding polyamideimide resin composition of the present invention examples include phthalic anhydride, p-vinylbenzoic acid, alcohols and phenols. These end-blocking agents can be used alone or as a mixture, but compounds having a boiling point of 200 ° C. or higher, preferably 250 ° C. or higher are preferred, and phthalic anhydride is preferred, preferably in the range of 4 to 20 mol%, preferably Is 4 mol%.
- the above-mentioned acid component and diisocyanate component can be synthesized by any method in a solvent or in a solid phase, but general-purpose solution polymerization is preferable, and as a solvent used for solution polymerization, Examples thereof include high boiling polar solvents such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylurea, dimethylsulfoxide, ⁇ -butyrolactone, dimethyldinone, and preferably N-methyl-2-pyrrolidone can be used.
- the reaction can be carried out at a temperature of 70 ° C. to 200 ° C. in this solvent, preferably at a temperature of 130 to 150 ° C.
- the polymerization by the isocyanate polymerization production method according to the present invention is not limited in that it can accelerate the reaction by adding a catalyst of amines, alkali metals, alkaline earth metal compounds, and salts thereof, if necessary. Absent. Examples of use are KF (potassium fluoride) and DBU (1,8-diazabicyclo-7-undecene), and about 1 mol% is added for polymerization.
- the end-capping agent may be added together with other raw materials from the beginning of the polymerization to obtain the end-capped polyamide-imide resin of the polyamide-imide resin composition for molding of the present invention, and the amidation reaction starts. It may be added immediately after the addition. Batch addition is preferable in terms of reducing the complexity of manufacturing workability.
- the polyamide-imide polymer solution obtained by the present invention is preferably used particularly in the case of compression molding by making it into the form of a powder that has been submerged and solidified, dried and then pulverized by a pulverizer.
- a pulverizer In the case of injection molding or extrusion molding, it is preferable to pelletize once and use because it is easy to mold.
- the irregular polyamideimide resin obtained by submerging, solidifying and drying is first coarsely pulverized so that the irregular pulverization length of the irregular polyamideimide resin is as uniform as possible.
- a powder having an average particle size (median d50) in the range of 5 to 100 ⁇ m can be used, and a powder having an average particle size in the range of 5 to 50 ⁇ m is preferably packed closely during compression molding. It is preferable because it is easy.
- the pulverizer can be arbitrarily selected according to the situation and is not limited.
- the binder used in the polyamideimide resin composition for molding of the present invention is a thermoplastic resin composed of an oligomer and / or polymer having a glass transition temperature (Tg) of 200 ° C. to 280 ° C. as described above.
- thermoplastic polyimide and thermoplastic polyetherimide can be preferably used.
- thermoplastic polyimide resin which is a binder used in the present invention
- a method for producing a thermoplastic polyimide resin is, for example, by subjecting ether diamine and tetracarboxylic dianhydride as raw materials to a condensation polymerization reaction with an organic diamine in the presence of an organic solvent.
- the obtained manufacturing method can be used.
- thermoplastic polyimide resin examples include EXTEM (registered trademark) XH1005 (Tg 267 ° C), EXTEM (registered trademark) XH1015 (Tg 267 ° C), EXTEM (registered trademark) UH1006 (Tg 280 ° C) (all commercially available from SABIC), and the like. However, it is not limited to this.
- thermoplastic polyetherimide which is a binder used in the present invention
- a specific organic diamine As the organic diamine, meta-phenylenediamine or para A phenylenediamine such as phenylenediamine is used and a known production method can be used.
- thermoplastic polyetherimide examples include, but are not limited to, ULTEM (registered trademark) CRS5001 (Tg225 ° C.), ULTEM (registered trademark) XH6050 (Tg247 ° C) (all commercially available from SABIC).
- binders are preferably contained in the range of at least 5 wt% to 50 wt% with respect to the polyamideimide resin powder obtained by the present invention. More preferably, it is 20 to 40% by weight. If the amount is less than 5% by weight, the bonding strength between the particles is weak and it is difficult to obtain mechanical strength. Even if it is contained in an amount of 50% by weight or more, the bonding force is hardly changed. It tends to occur and is not preferable.
- the glass transition temperature (Tg) of the binder used in the present invention is preferably in the range of 200 ° C to 280 ° C. More preferably, it is 220 to 250 ° C.
- Tg is 200 ° C. or lower
- problems such as mold contamination and releasability are likely to occur.
- Tg is 280 ° C. or higher
- the melt fluidity tends to be lowered, so that the binding force is lowered and it becomes difficult to obtain sufficient mechanical strength. Therefore, when the molding temperature is raised to improve the melt fluidity, the polyamide-imide resin is undesirably deteriorated due to thermal deterioration and mechanical strength and heat resistance are lowered.
- the form of the thermoplastic resin used in the present invention is not particularly limited. However, for example, when used for compression molding, the powder form is a preferable form because it improves moldability.
- the average particle size of the powder when this binder is used for compression molding is a fine powder and does not limit the range of the particle size, but is preferably used for the average particle size range of the polyamide-imide resin If so, it can be used more preferably.
- the molding polyamideimide resin composition for molding of the present invention can sufficiently cope with these molding methods, and as a method for adjusting the mixing, a method of mixing powders, pellets, or mixing powder and pellets is effective. is there.
- the melt molding temperature of the molding polyamideimide resin composition of the present invention in the molding method should usually be set to be not less than the flow softening temperature of the polyamideimide resin and not more than the thermal decomposition temperature.
- the lowest temperature is first determined by the flow softening temperature of the binder, and as a rough guide, 20 to 150 ° C. from the glass transition temperature (Tg) of the binder,
- Tg glass transition temperature
- the temperature is set by adding 40 to 80 ° C.
- the temperature is 220 to 400 ° C, preferably 280 to 350 ° C, more preferably 300 to 330 ° C.
- HAAKE MiniLab II small resin kneading / extrusion molding machine
- HAAKE MiniLab II small resin kneading / extrusion molding machine
- a filler may be used as necessary.
- the filler may be fibrous or non-fibrous, or a combination thereof.
- the filler include, but are not limited to, glass fiber, carbon fiber, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, and metal fiber.
- Non-fibrous fillers such as talc, alumina, titanium oxide, silicon oxide, magnesium oxide, calcium carbonate, barium sulfate, magnesium hydroxide, and calcium hydroxide can be used, but the present invention is not limited thereto.
- the amount of the filler to be blended is not particularly limited, but can be usually 1 to 90 parts by weight with respect to 100 parts by weight of the polyamideimide resin composition of the present invention.
- the glass transition temperature (Tg) of the polyamideimide resin composition for molding of the present invention is preferably 250 ° C. or higher.
- the TGA (5% weight loss temperature) of the polyamideimide resin composition for compression molding of the present invention is 350 ° C. or higher, preferably 400 ° C. or higher.
- the glass transition temperature (Tg) of the molding material composed of the polyamideimide resin composition for molding of the present invention is preferably 300 ° C. or higher.
- the TGA (5% weight loss temperature) of the molding material comprising the polyamideimide resin composition for compression molding of the present invention is 350 ° C. or higher, preferably 400 ° C. or higher.
- Freeze-pulverized polyamideimide polymer solution was submerged and solidified and then dried and freeze-ground using a freezer mill to obtain a powder sample.
- HAAKE MiniLab II About 7 g of a sample was added and melt moldability was evaluated.
- Test equipment HAAKE MiniLab II (HAAKE) Setting conditions 300 to 330 ° C x 60 minutes Environment Nitrogen atmosphere Rotation speed 100rpm Evaluation rank ⁇ : Viscosity was increased and extrusion was possible.
- TMA trimellitic anhydride
- B TDA 3,3′4,4′-benzophenone tetracarboxylic dianhydride
- OPA phthalic anhydride
- MDI 4,4′-diphenylmethane diisocyanate
- KF potassium fluoride
- Example 1 The polyamideimide resin powder (BTDA-2) obtained in the Reference Example was mixed with 30 wt% of the binder ULTEM CRS 5001 (Tg 225 ° C., particle size 15 ⁇ m) with respect to the total amount of the composition, mixed and stirred, then 100 ° C. 4 Time drying treatment was performed. Next, the sample that had been dried and taken out was filled in a molding die, and a maximum melt pressure was applied at 320 ° C. for 60 minutes using a 20-ton pressure press molding machine to produce a pressure-melt molded plate material. No cracks were observed in this plate material, and it did not break even when folded by hand.
- Example 2 A 20-ton pressure press molding machine in which a binder ULTENXH6050 (Tg 247 ° C., particle size 13 ⁇ m) is mixed in an amount of 30 wt% with respect to the total amount of the composition in place of the binder of Example 1 and the same treatment as in Example 1 is performed.
- a pressure-melt molded sheet was prepared and evaluated under the same conditions as in Example 1. No cracks were observed in this plate material, and it did not break even when folded by hand.
- the bending strength was 44.2 MPa
- the bending elastic modulus was 1032 MPa
- the elongation was 8.3%.
- a DSC and TGA measurement of a sample obtained by freezing and pulverizing the fractured pieces obtained in the bending test showed a glass transition temperature (Tg) of 320 ° C. and a 5% weight loss starting temperature of 484 ° C. Moreover, the mixing
- Example 3 Instead of the binder of Example 1, a binder EXTEMMXH1005 (Tg 267 ° C., particle size 11 ⁇ m) was blended at 30 wt% with respect to the total amount of the composition, and the same treatment as in Example 1 was carried out. Thus, a pressure-melt molded sheet was prepared and evaluated under the same conditions as in Example 1. No cracks were observed in this plate material, and it did not break even when folded by hand. Next, when a bending test was performed, the bending strength was 28.4 MPa, the bending elastic modulus was 937 MPa, and the elongation was 4.3%. Table 1 shows the evaluation results.
- Example 4 The polyamideimide resin powder (BTDA-2) obtained in the reference example was blended with 30 wt% of the binder EXTEMMXH6050 (Tg 247 ° C.) with respect to the total amount of the composition, mixed and kneaded, and then added to MiniLab II set at 300 ° C. A 7 g sample was charged and melt-kneaded at a rotation speed of 30 rpm for about 3 to 5 minutes to evaluate extrudability. There was no particular problem with melt extrudability.
- the polyamideimide resin composition for molding of the present invention can be compression-molded, and is excellent in heat resistance, mechanical strength, electrical properties, chemical resistance, etc. It is used for industrial materials such as automobile parts, military demand / aircraft, and industrial equipment.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
【課題】ポリアミドイミド樹脂は、耐熱性、機械的強度、電気特性、耐薬品性に優れた材料であるが溶融成形性が劣り特にイソシアネート重合法の製法から得られるポリアミドイミド樹脂は、高温加熱成形でゲル化し成形ができなかった。 【解決手段】ポリアミドイミド樹脂の分子構造に剛直成分の導入と靭性を有するポリアミドイミド樹脂骨格とし、ポリアミドイミド分子末端イソシアネート官能基を封鎖し重合反応を抑制し、特定の対数粘度によって得られるポリアミドイミド樹脂に熱可塑性結着材を含ませることによって樹脂同士間の結合力を高め、ポストキュア不用でも機械的強度、耐熱性などに優れる圧縮成形用ポリアミドイミド樹脂組成物。
Description
本発明は、溶融成形が可能で機械的、化学的、熱的特性に優れ、成形用途として有用なポリアミドイミド樹脂組成物に関するものである。
ポリアミドイミド樹脂は、機械的強度、耐熱性、電気特性、耐薬品性等に優れた材料であることからワニスやフィルムとして最も多く使用されている。また、機械的強度や耐熱性等の優れた特性を生かし射出成形、押出成形、圧縮成形などの成形方法によって得られた板材や丸棒などは、電気・電子部品、自動車部品、軍需・航空機、産業機器などの工業材料用途への展開も進められている。
ポリアミドイミド樹脂の重合法は、直接重合法、イソシアネート重合法、酸クロライド法、イミドジカルボン酸法等の製法によって重合し得ることが出来る。現在では直接重合法とイソシアネート重合法の2つの重合製法が主流となっている。
一般的に溶融成形が可能なポリアミドイミド樹脂の重合製法は、直接重合法によって得られた対数粘度が低いガラス転移温度(Tg)が250℃前後のポリアミドイミド樹脂のみである。しかし。成形直後の成形品は機械的強度が不足し脆く欠けが発生し易いため成形した後、高温で長時間のポストキュア処理を施すことが必須条件となっており、生産性面からの課題となっている。
一方、イソシアネート重合製法で得られるポリアミドイミド樹脂は、溶融成形が困難である。その主な理由は、分子末端イソシアネート官能基の加熱反応による重合が進行しゲル状物が発生するゲル化現象によるもので、成形機台内部でゲル化が発生するとそのゲル化物の除去に多大の費用が必要であったり、或いは成形機械そのものを廃棄しなくてはならない場合もある。
そこで、イソシアネート重合製法によって得られるポリアミドイミド樹脂の溶融成形性の改良方法として、特許文献1では、ポリアミドイミドを製造するに際して、実質的にアミド基の生成が終了してからイミド基の生成反応を行う方法、特許文献2では、芳香族ポリアミドイミド樹脂の酸成分とイソシアネート成分の割合を変える方法がそれぞれ開示されている。確かにこの製造方法によって得られたポリアミドイミド樹脂の流動開始温度やガラス転移温度(Tg)の特性値から射出成形法や押出成形法などの成形方法で成形出来そうに思えるが、発明者の検討によれば、実際に成形してみると、成形機台内部でゲル状物などが発生し成形出来なくなった。この様にイソシアネート重合製法からなるポリアミドイミド樹脂の問題を必ずしも解決するに至っていないのが現状である。その他、成形性を得る解決手段として、ポリアミドイミド樹脂骨格に柔軟性や溶融性を付与する基の導入とか可塑剤などを配合することも考えられるが上記同様に問題解決に至っていないのが現状である。
本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、溶融成形及び/又は圧縮成形が可能であって、ポストキュア処理が不用で、且つ機械的強度、化学的、耐熱性等に優れた工業材料を得ることができる成形用ポリアミドイミド樹脂組成物を提供することにある。
本発明者らは上記ポリアミドイミド樹脂の課題に於いて、特にイソシアネート重合製法からなるポリアミドイミド樹脂の課題を解決するために、鋭意検討した結果、本発明の完成に至った。
すなわち、本発明によれば以下の樹脂組成物が提供される。
(1)トリメリット酸無水物とテトラカルボン酸二無水物からなる酸成分と4,4‘―ジフェニルメタンジイソシアネートのジイソシアネート成分と反応させて得られるポリアミドイミド分子の末端イソシアネート官能基が末端封鎖剤で封鎖されてなり、対数粘度0.4~0.7dl/gであるポリアミドイミド樹脂に結着材を含むことを特徴とする成形用ポリアミドイミド樹脂組成物。
(2)前記テトラカルボン酸二無水物が、オキシジフタル酸二無水物、3,3‘4,4’―ビフェニルテトラカルボン酸二無水物、3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物、3,3‘4,4’-ジフェニルスルホンテトラカルボン酸二無水物からなる群より選択される少なくとも1種以上である(1)記載の成形用ポリアミドイミド樹脂組成物。
(3)前記末端封鎖剤が無水フタル酸、p-ビニル安息香酸、アルコール類、フェノール類からなる群より選択される少なくとも1種以上である(1)又は(2)記載の成形用ポリアミドイミド樹脂組成物。
(4)前記結着材が熱可塑性ポリイミド樹脂または熱可塑性ポリエーテルイミド樹脂からなる群より選択される少なくとも1種以上を含む(1)~(3)のいずれかに記載の成形用ポリアミドイミド樹脂組成物。
(5)前記結着材は、ガラス転移温度(Tg)が200℃から280℃のオリゴマーまたはポリマーからなる群より選択される少なくとも1種以上である、(1)~(4)のいずれかに記載の成形用ポリアミドイミド樹脂組成物。
(6)前記結着剤を5重量%以上含有する、(1)~(5)のいずれかに記載の成形用ポリアミド樹脂組成物。
(7)粉末状であることを特徴とする(1)~(6)のいずれかに記載の成形用ポリアミドイミド樹脂組成物。
(8)前記粉末の平均粒子径(メジアンd50)が5μmから100μmであることを特徴とする(7)記載の成形用ポリアミドイミド樹脂組成物。
(9)(1)~(8)のいずれかに記載の圧縮成形用ポリアミドイミド樹脂組成物。
(1)トリメリット酸無水物とテトラカルボン酸二無水物からなる酸成分と4,4‘―ジフェニルメタンジイソシアネートのジイソシアネート成分と反応させて得られるポリアミドイミド分子の末端イソシアネート官能基が末端封鎖剤で封鎖されてなり、対数粘度0.4~0.7dl/gであるポリアミドイミド樹脂に結着材を含むことを特徴とする成形用ポリアミドイミド樹脂組成物。
(2)前記テトラカルボン酸二無水物が、オキシジフタル酸二無水物、3,3‘4,4’―ビフェニルテトラカルボン酸二無水物、3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物、3,3‘4,4’-ジフェニルスルホンテトラカルボン酸二無水物からなる群より選択される少なくとも1種以上である(1)記載の成形用ポリアミドイミド樹脂組成物。
(3)前記末端封鎖剤が無水フタル酸、p-ビニル安息香酸、アルコール類、フェノール類からなる群より選択される少なくとも1種以上である(1)又は(2)記載の成形用ポリアミドイミド樹脂組成物。
(4)前記結着材が熱可塑性ポリイミド樹脂または熱可塑性ポリエーテルイミド樹脂からなる群より選択される少なくとも1種以上を含む(1)~(3)のいずれかに記載の成形用ポリアミドイミド樹脂組成物。
(5)前記結着材は、ガラス転移温度(Tg)が200℃から280℃のオリゴマーまたはポリマーからなる群より選択される少なくとも1種以上である、(1)~(4)のいずれかに記載の成形用ポリアミドイミド樹脂組成物。
(6)前記結着剤を5重量%以上含有する、(1)~(5)のいずれかに記載の成形用ポリアミド樹脂組成物。
(7)粉末状であることを特徴とする(1)~(6)のいずれかに記載の成形用ポリアミドイミド樹脂組成物。
(8)前記粉末の平均粒子径(メジアンd50)が5μmから100μmであることを特徴とする(7)記載の成形用ポリアミドイミド樹脂組成物。
(9)(1)~(8)のいずれかに記載の圧縮成形用ポリアミドイミド樹脂組成物。
本発明の成形用ポリアミドイミド樹脂組成物によれば、溶融成形が可能で、特に圧縮成形法によって得られる成形品は、ポストキュア処理を施す必要がなく機械的強度、耐熱性などの性能に優れ生産性の面に於いても有用な工業材料を得ることができる組成物である。
本発明からなる成形用ポリアミドイミド樹脂組成物は、ポリアミドイミド樹脂骨格に剛直成分を導入し耐熱性を付与させると共に樹脂に靭性を与えて樹脂が脆くならない様に組成設計し、ポリアミドイミド分子末端イソシアネート官能基を封鎖し重合反応の進行を停止させると共に最適な対数粘度のポリアミドイミドポリマー溶液を得て、水沈・固化したポリアミドイミド樹脂を粉砕処理し最適粒子径の粉末にすることで成形性を向上させると共に、熱可塑性ポリイミド樹脂または熱可塑性ポリエーテルイミド樹脂などの結着材を含ませつなぎとして機能させることによってポリアミドイミド粉末の粒子間の結合力を高め、そのことによって成形直後に於いても機械的強度や耐熱性を低下させることなく得ることを可能とするものである。
ところで、特許文献1によるとポリアミドイミド樹脂をプレス成形するプレス温度は、ポリアミドイミド樹脂の熱分解温度に近い高温であることが必要であると記載されている。これらポリアミドイミド樹脂の多くは流動軟化温度が熱分解温度より高めかあるいはその近傍にあるため、成形が限定されるかあるいは事実上成形不可能であると言えるものである。
そこで本発明の成形用ポリアミドイミド樹脂組成物に於いては、下記の点を留意し組成設計をしたものである。
まず本発明の成形用ポリアミドイミド樹脂組成物のポリアミドイミド樹脂骨格に剛直成分を導入し熱分解開始温度を高くする。
但し、剛直成分を導入すれば耐熱性は得られるものの樹脂が硬く脆くなりやすく割れや欠けが発生し易くなることを本願発明者は見出し、ポリアミドイミド樹脂に靭性を付与させる樹脂設計とした。
上記のようにポリアミドイミド樹脂骨格を変えることだけではなく、成形時に起こり易い重合反応を抑制するため予めポリアミドイミド樹脂の末端反応基を封鎖しておく手段を採用することにより、さらに成形性が飛躍的に改良された。
上記技術思想による本発明の成形用ポリアミドイミド樹脂は、酸成分としてトリメリット酸無水物と3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物で剛直成分を導入し、靭性が得られる4,4‘-ジフェニルメタンジイソシアネート(MDI)との重合からなるポリアミドイミドポリマー末端を無水フタル酸で封鎖したものである。
本発明の組成物の特徴の一つは、上記成形用ポリアミドイミド樹脂に結着材を含ませることにある。本発明の結着材とは、樹脂同士間、例えばペレット状樹脂同士間或いは粉砕加工した粉状樹脂同士間のつなぎとして機能させ各々の樹脂同士間の結合力を高め、形状安定化、分散安定化及び接着力向上などの性能向上を目的に含ませるものであって、そのことによって機械的強度や耐熱性を低下させることなくポストキュア不用な組成物としたことにある。
上記本発明の成形用ポリアミドイミド樹脂に結着材を含ませることによって靭性が大きく付与される。これは樹脂設計からの靭性付与と合わせて機械的強度や耐熱性などを低下させることなく向上させてポストキュア処理不要の組成物としたのである。
本発明の組成物に加えられる結着材としては、ガラス転移温度(Tg)が200℃から280℃のオリゴマーまたはポリマーからなるオリゴマー又はポリマーからなる群より選択されてなる少なくとも1種以上であることが好ましく、熱可塑性ポリイミド樹脂又は熱可塑性ポリエーテルイミド樹脂からなる群より選択されてなる少なくとも1種以上を含むことがより好ましい。予め結着材を乾燥処理して脱水した後そのままの形態で成形樹脂と共に混合成形する場合やある域は、結着材を粉末形態に加工して乾燥処理された粉末形態の成形樹脂と共に攪拌・混合した後、例えば成形温度が250℃から400℃以内に設定された成形機台に投入して同時成形し、その後、冷却することで板材や丸棒等の成形品を得る成形方法などを提案することができる。
以下、本発明の成形用ポリアミドイミド樹脂組成物についてより具体的に説明する。本発明のポリアミドイミド樹脂は、イソシアネート重合製法からなるポリアミドイミド樹脂であって、トリメリット酸無水物とテトラカルボン酸二無水物からなる酸成分とジイソシアネート成分とを重合反応して得られるポリアミドイミドの分子の末端イシシアネート官能基を末端封鎖剤で封鎖し対数粘度0.4~0.7dl/gのポリアミドイミドポリマー溶液を得る。そして、ポリアミドイミドポリマー溶液を水沈・固化して乾燥した後に粉砕処理して平均粒子径(メジアンd50)5μmから100μmのポリアミドイミド樹脂粉末を得ることによって成形用樹脂、特に圧縮成形用樹脂が得られる。
本発明の成形用ポリアミドイミド樹脂組成物に用いられるポリアミドイミド樹脂のトリメリット酸無水物は、全酸成分100モル%に対して、75~85モル%が好ましく使用でき、好ましくは83モル%である。
本発明の成形用ポリアミドイミド樹脂組成物に用いられるポリアミドイミド樹脂のテトラカルボン酸二無水物として、無水ピロメリット酸、オキシジフタル酸二無水物、3,3‘4,4’-ビフェニルテトラカルボン酸二無水物、3,3‘4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3‘4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4‘―(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、m(p)―ターフェニルー3,4,3’、4‘-テトラカルボン酸二無水物、シクロブタンー1,2,3,4-テトラカルボン酸二無水物、1-カルボキシメチルー2,3,5-シクロペンタントリカルボン酸―2,6:3,5-二無水物などが例示され、この中で、オキシギフタル酸二無水物、3,3‘4,4’-ビフェニルテトラカルボン酸二無水物、3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物、3,3‘4,4’-ジフェニルスルホンテトラカルボン酸二無水物が好ましく使用でき、特に好ましくは、3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物が使用できる。全酸成分100モル%に対して5~20モル%の範囲で共重合でき、好ましくは15モル%である。
本発明の成形用ポリアミドイミド樹脂組成物に用いられるポリアミドイミド樹脂の全成分100モル%のジイソシアネートとして、イソシアネート重合製法で使用されるジイソシアネート類の中でも4,4‘-ジフェニルメタンジイソシアネート(MDI)が好ましく使用できる。
本発明の成形用ポリアミドイミド樹脂組成物に用いられるポリアミドイミド樹脂の末端封鎖剤として、無水フタル酸、p-ビニル安息香酸、アルコール類、フェノール類が例示できる。これ等末端封鎖剤は、一種または混合で使用できるが沸点が200℃以上、好ましくは250℃以上の化合物の使用が好ましく、中でも無水フタル酸が好ましく4~20モル%の範囲で使用でき、好ましくは4モル%である。
本発明によるイソシアネート重合製法による重合は、上記の酸成分とジイソシアネート成分を、溶媒中、固相中いずれかの方法で合成できるが、特に汎用的な溶液重合が好ましく、溶液重合に用いる溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチル尿素、ジメチルスルホキシド、γ―ブチロラクトン、ジメチルジノン等の高沸点極性溶媒が例示され、好ましくN-メチル-2-ピロリドンが使用できる。この溶媒中、70℃~200℃の温度で反応することができ、好ましくは130~150℃の温度で反応させる。
また、本発明によるイソシアネート重合製法による重合には必要に応じて、アミン類、アルカリ金属、アルカリ土類金属化合物、およびこれ等の塩の触媒を添加して反応を速めることもでき限定するものではない。使用する例示として、KF(フッ化カリウム)、DBU(1,8-ジアザビシクロー7-ウンデセン)が挙げられ1モル%程度添加し重合する。
本発明の成形用ポリアミドイミド樹脂組成物の末端封鎖したポリアミドイミド樹脂を得るための末端封鎖剤の添加時期は、重合当初から他の原料と共に一括添加してもよく、また、アミド化反応が開始した直後に添加するなどのいずれかでも構わない。製造作業性の煩雑性を低減する意味では一括添加が好ましい。
本発明のポリアミドイミド分子末端イソシアネート官能基封鎖することによる効果として、ポリアミドイミド重合時の異常加熱による暴走重合反応の抑制、重合によって得たポリアミドイミドポリマー溶液の長期保存安定性の確保、成形時の重合反応進行によるゲル化現象の防止などが挙げられる。
本発明によって得られたポリアミドイミドポリマー溶液は、水沈・固化した後乾燥し粉砕機によって粉砕した粉末の形態にすることにより特に圧縮成形の場合に好ましく使用される。射出成形や押出成形する場合、一度ペレッ化し使用することが成形し易いので好ましい。
本発明のポリアミドイミド樹脂の粉末化は、水沈・固化し乾燥して得られた不揃いのポリアミドイミド樹脂をまず粗粉砕し不揃いのポリアミドイミド樹脂の粉砕長を出来る限り揃え粉末し易くする。次の段階の粉砕で平均粒子径(メジアンd50)が5~100μm範囲の粉末を使用することが出来、好ましくは平均粒子径5~50μmの範囲の粉末にすることが圧縮成形するに際し細密充填し易いので好ましい。粉砕機は、状況に応じて任意に選択でき限定するものではないが冷凍粉砕機、スピードミル、ターボミル、ジェットミル、ビーズミル、ミキサー、振動粉砕機、相対流粉砕機、衝撃粉砕機、圧縮粉砕機など多種の粉砕機が用途に合わせて使用できる。
本発明の成形用ポリアミドイミド樹脂組成物に使用する結着材は、前記のようにガラス転移温度(Tg)が200℃から280℃のオリゴマー及び/またはポリマーからなる熱可塑性樹脂であって、具体的には熱可塑性ポリイミド、熱可塑性ポリエーテルイミドが好ましく使用できる。
まず本発明に使用する結着材である熱可塑性ポリイミド樹脂の製造方法は、例えば、エーテルジアミンとテトラカルボン酸二無水物を原料として、有機溶媒の存在下で有機ジアミンと縮合重合反応することによって得られ公知の製造方法が利用できる。
上記熱可塑性ポリイミド樹脂として、EXTEM(登録商標)XH1005(Tg267℃),EXTEM(登録商標)XH1015(Tg267℃),EXTEM(登録商標)UH1006(Tg280℃)(すべてSABIC社から市販)などが挙げられるがこれに限定されない。
本発明に使用する結着材である熱可塑性ポリエーテルイミドの製造方法は、例えば、ビスフェノールA無水物と特定の有機ジアミンとの反応から製造されるもので、有機ジアミンとしてメタ・フェニレンジアミンやパラ・フェニレンジアミンなどのフェニレンジアミンが使用され公知の製造方法が利用できる。
上記熱可塑性ポリエーテルイミドとして、ULTEM(登録商標)CRS5001(Tg225℃),ULTEM(登録商標)XH6050(Tg247℃)(すべてSABIC社から市販)などが挙げられるがこれらに限定されない。
これ等の結着材は本発明によって得られるポリアミドイミド樹脂粉末に対して、少なくとも5重量%から50重量%の範囲で含まれることが好ましい。より好ましくは20重量%から40重量%である。5重量%以下では粒子間の結合力が弱く機械的強度が得られ難く、50重量%以上含ませても結合力は殆ど変わらず性能改善の効果が少なく増量すると汚染や離型性不良などが発生し易くなり好ましくない。
また本発明に使用される結着材のガラス転移温度(Tg)は、200℃から280℃の範囲が好ましい。更に好ましくは220℃から250℃が好ましい。Tg200℃以下は金型汚染や離型性不良などの問題が発生し易くなる。またTgが280℃以上の場合は、溶融流動性が低下し易くなることによって結着力が低下し充分な機械的強度が得られ難くなるので好ましくない。そのため成形温度を上げ溶融流動性の改善を図った場合、ポリアミドイミド樹脂が熱劣化を起こし機械的強度や耐熱性が低下し好ましくない。
また本発明に使用される熱可塑性樹脂の形態は特に限定するものではないが、例えば圧縮成形に用いる場合、粉末形態の方が成形性にとって良くなるので好ましい形態である。この結着材を圧縮成形に使用する場合の粉末の平均粒子径は、微粉末であって粒子径の範囲を限定するものではないが、好ましくは使用するにはポリアミドイミド樹脂の平均粒子径範囲であればより好ましく使用できる。
また、通常の成形加工法として前記圧縮成形法以外に、射出成形法、押出成形法、中空成形法、ブロー成形法などがある。本発明の成形用ポリアミドイミド樹脂組成物もこれ等の成形法に充分対応が可能であって、その混合調整方法には、粉末同士、ペレット同士、あるいは粉末とペレットを混合する方法などが有効である。
前記成形法における本発明の成形用ポリアミドイミド樹脂組成物の溶融成形温度は、通常、ポリアミドイミド樹脂の流動軟化温度以上で、且つ熱分解温度以下に設定されるべきである。本発明の成形用ポリアミドイミド樹脂組成物の場合、まず結着材の流動軟化温度によって最低温度が決められ概ねその目安としては結着材のガラス転移温度(Tg)より20℃から150℃、更に好ましくは40℃から80℃加算した温度設定とすることが好ましく、本発明では、220℃から400℃、好ましくは280℃から350℃、更に好ましくは300℃から330℃である。
本発明の成形用ポリアミドイミド樹脂組成物の溶融成形温度の条件設定、溶融成形性などの評価手段として、HAAKE MiniLab II(小型樹脂混練・押出成型機)を使用するのが好適である。本機では7cc程度の樹脂サンプルで混練の状態や混練中の粘度測定も可能である。
本発明においては、必要に応じて充填材を用いてもよい。充填材の形状としては繊維状であっても非繊維状であってもよく、これ等を組み合わせてもよい。充填材としては、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、金属繊維などが挙げられこれ等に限定するものではない。またタルク、アルミナ、酸化チタン、酸化珪素、酸化マグネシウム、炭酸カルシウム、硫酸バリウム、水酸化マグネシウム、水酸化カルシウムなどの非繊維状充填材が挙げられこれ等に限定するものではない。
かかる充填材のその配合量は特に制限はないが、通常本発明のポリアミドイミド樹脂組成物100重量部に対して1から90重量部配合することができる。
本発明の成形用ポリアミドイミド樹脂組成物のガラス転移温度(Tg)は、250℃以上が好ましい。
本発明の圧縮成形用ポリアミドイミド樹脂組成物のTGA(5%減量温度)は、350℃以上、好ましくは400℃以上である。
本発明の成形用ポリアミドイミド樹脂組成物からなる成形材のガラス転移温度(Tg)は、300℃以上が好ましい。
本発明の圧縮成形用ポリアミドイミド樹脂組成物からなる成形材のTGA(5%減量温度)は、350℃以上、好ましくは400℃以上である。
次に本発明の実施例について具体的に説明するが、本発明はこれらの実施例により制限されるものではなく、発明の主旨に基づいたこれら以外の多くの実施態様を含むことは言うまでもない。
(1)対数粘度(dl/g)
試料0.5gをN-メチルー2-ピロリドン100mlに溶解して得られたポリアミドイミドポリマー溶液を用いて、ウベローデ粘度管で25℃において測定した。
試料0.5gをN-メチルー2-ピロリドン100mlに溶解して得られたポリアミドイミドポリマー溶液を用いて、ウベローデ粘度管で25℃において測定した。
(2)ガラス転移温度(Tg)
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した後、冷凍粉砕機で粉砕した試料をDSC(示差走査熱量測定装置)にて測定した。
成形体の測定は、成形体を冷凍粉砕機で粉砕した試料をDSC(示差走査熱量測定装置)にて測定した。
測定装置 Q100 INSTRUMENTS社製
測定条件 温度 30℃→350℃(ホールド1分)→30℃→350℃
昇温速度 20℃/分
雰囲気 窒素
試料 5mg程度
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した後、冷凍粉砕機で粉砕した試料をDSC(示差走査熱量測定装置)にて測定した。
成形体の測定は、成形体を冷凍粉砕機で粉砕した試料をDSC(示差走査熱量測定装置)にて測定した。
測定装置 Q100 INSTRUMENTS社製
測定条件 温度 30℃→350℃(ホールド1分)→30℃→350℃
昇温速度 20℃/分
雰囲気 窒素
試料 5mg程度
(3)重量減少開始温度
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した後、冷凍粉砕機で粉砕した試料をTGA(熱重量測定装置)にて測定した。
成形体の測定は、成形体を冷凍粉砕機で粉砕した試料をTGA(熱重量測定装置)にて測定した。1000℃まで熱処理し、5%重量減量した温度を読んだ。
装置 Q50 INSTRUMENTS社製
定条件 温度 30℃~1000℃
昇温速度 50℃/min
雰囲気 大気(20ml/min)
試料 10mg程度
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した後、冷凍粉砕機で粉砕した試料をTGA(熱重量測定装置)にて測定した。
成形体の測定は、成形体を冷凍粉砕機で粉砕した試料をTGA(熱重量測定装置)にて測定した。1000℃まで熱処理し、5%重量減量した温度を読んだ。
装置 Q50 INSTRUMENTS社製
定条件 温度 30℃~1000℃
昇温速度 50℃/min
雰囲気 大気(20ml/min)
試料 10mg程度
(4)冷凍粉砕
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した樹脂をフリーザーミルを用い冷凍粉砕し粉末試料とした。
フリーザーミル#6770-115 SPEX社製
粉末処理方法 SPEX社製のマニュアルに従い、液体窒素で冷やし粉砕した。
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した樹脂をフリーザーミルを用い冷凍粉砕し粉末試料とした。
フリーザーミル#6770-115 SPEX社製
粉末処理方法 SPEX社製のマニュアルに従い、液体窒素で冷やし粉砕した。
(5)粉末の粒子径
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した後、数回冷凍粉砕した試料をレーザ回析/散乱式粒度分布測定装置「LA-910 for Windows(登録商標)」<HORIBA>を用い測定した。
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した後、数回冷凍粉砕した試料をレーザ回析/散乱式粒度分布測定装置「LA-910 for Windows(登録商標)」<HORIBA>を用い測定した。
(6)HAAKE MiniLab II
試料約7gを投入し、溶融成形性を評価した。
試験装置 HAAKE MiniLab II(HAAKE社)
設定条件 300から330℃×60分
環境 窒素雰囲気
回転数 100rpm
評価ランク
○ :粘度増粘が少なく押出しできた
× :増粘し流動しなくなった
試料約7gを投入し、溶融成形性を評価した。
試験装置 HAAKE MiniLab II(HAAKE社)
設定条件 300から330℃×60分
環境 窒素雰囲気
回転数 100rpm
評価ランク
○ :粘度増粘が少なく押出しできた
× :増粘し流動しなくなった
(7)加圧溶融成形板材作製
80mm長×10mm幅×4mm厚の金型を作製し、試料約6gから7g入れ20Ton加熱溶融プレス機で加圧プレス成形し曲げ試験用板材を得た。
加圧プレス成形装置 (株)神藤金属工業所製20tonプレス機
型式 SFA-20
使用圧力 最大150kg/cm2
成形条件 本発明実施例 320℃×60分
市販品 320℃×60分
評価 板材の目視検査と手折りを実施し評価した。
ポストキュア 市販品の下記ポストキュア条件
常温→191℃×1日→218℃×1日→252℃×1日→260℃×10日
割れの評価ランク
○ :成形後の割れなし、手折りで破壊しない
△ :成形後の割れはあるが、ポストキュア処理によって手折り破壊しない
× :成形後に割れがあり、手折りで時々破壊する
80mm長×10mm幅×4mm厚の金型を作製し、試料約6gから7g入れ20Ton加熱溶融プレス機で加圧プレス成形し曲げ試験用板材を得た。
加圧プレス成形装置 (株)神藤金属工業所製20tonプレス機
型式 SFA-20
使用圧力 最大150kg/cm2
成形条件 本発明実施例 320℃×60分
市販品 320℃×60分
評価 板材の目視検査と手折りを実施し評価した。
ポストキュア 市販品の下記ポストキュア条件
常温→191℃×1日→218℃×1日→252℃×1日→260℃×10日
割れの評価ランク
○ :成形後の割れなし、手折りで破壊しない
△ :成形後の割れはあるが、ポストキュア処理によって手折り破壊しない
× :成形後に割れがあり、手折りで時々破壊する
(8)曲げ試験評価
JIS K 7171:208に準じて測定を実施した。
試料片形状 80mm長×10mm幅×4mm厚み
支点間距離 64mm
試験速度 1mm/min
ローデセル 5kN
試験環境温度 23℃
JIS K 7171:208に準じて測定を実施した。
試料片形状 80mm長×10mm幅×4mm厚み
支点間距離 64mm
試験速度 1mm/min
ローデセル 5kN
試験環境温度 23℃
(9)曲げ試験片の破断面SEM観察
曲げ試験で得られた試験片の破断面を走査電子顕微鏡(SEM)で結着状態を観察した。
走査電子顕微鏡 日立製 S-4500
倍率 ×250
結着状態評価 ○:問題なし △:やや問題あり ×:問題あり
曲げ試験で得られた試験片の破断面を走査電子顕微鏡(SEM)で結着状態を観察した。
走査電子顕微鏡 日立製 S-4500
倍率 ×250
結着状態評価 ○:問題なし △:やや問題あり ×:問題あり
(参考例)
反応容器に仕込み0.4モル、NCO/酸=0.98として、トリメリット酸無水物(TMA)83モル%、3,3‘4,4’-ベンゾフェノンテトラカルボン酸二無水物(B
TDA)15モル、無水フタル酸(OPA)4モル%、4、4‘-ジフェニルメタンジイソシアネート(MDI)100モル%、フッ化カリウム(KF)0.01モル%を固形分が20%になるようにN-メチルー2-ピロリドンと共に仕込み攪拌しながらスタートから20分で100℃に立上げて100℃60分継続し、100℃から120℃へ10分で立上げて120℃で60分継続し、120℃から150℃へ20分で立上げて150℃で3時間反応して終了してポリアミドイミドポリマー溶液を得た後室温まで冷却した。このポリアミドイミドポリマー溶液を水中に投入し凝固させ充分水洗した後乾燥した。得られたポリアミドイミドポリマーの対数粘度は0.45dl/gであった。次に、冷凍粉砕処理して得られた平均粒子径(d50)71μmのポリアミドイミド樹脂粉末(BTDA-2)のDSC、TGA測定したところガラス転移温度(Tg)は293℃、5%減量開始温度は420℃であった。表1に評価結果を示した。
反応容器に仕込み0.4モル、NCO/酸=0.98として、トリメリット酸無水物(TMA)83モル%、3,3‘4,4’-ベンゾフェノンテトラカルボン酸二無水物(B
TDA)15モル、無水フタル酸(OPA)4モル%、4、4‘-ジフェニルメタンジイソシアネート(MDI)100モル%、フッ化カリウム(KF)0.01モル%を固形分が20%になるようにN-メチルー2-ピロリドンと共に仕込み攪拌しながらスタートから20分で100℃に立上げて100℃60分継続し、100℃から120℃へ10分で立上げて120℃で60分継続し、120℃から150℃へ20分で立上げて150℃で3時間反応して終了してポリアミドイミドポリマー溶液を得た後室温まで冷却した。このポリアミドイミドポリマー溶液を水中に投入し凝固させ充分水洗した後乾燥した。得られたポリアミドイミドポリマーの対数粘度は0.45dl/gであった。次に、冷凍粉砕処理して得られた平均粒子径(d50)71μmのポリアミドイミド樹脂粉末(BTDA-2)のDSC、TGA測定したところガラス転移温度(Tg)は293℃、5%減量開始温度は420℃であった。表1に評価結果を示した。
(実施例1)
参考例で得られたポリアミドイミド樹脂粉末(BTDA-2)に結着材ULTEMCRS5001(Tg225℃、粒子径15μm)を、組成物の総量に対して30wt%配合し混合・攪拌した後、100℃4時間乾燥処理を行った。次に乾燥処理し取出した試料を成形金型に充填し、20ton加圧プレス成形機を用い320℃60分間最大使用圧力を
掛け加圧溶融成形板材を作製した。この板材には割れが観察されず手折りしても破壊しなかった。次に、曲げ試験を行なったところ曲げ強度は33.0MPa、曲げ弾性率が795MPa、伸びが8.5%であった。曲げ試験で得られた破断片を冷凍粉砕し粉状にした試料のDSC、TGA測定したところガラス転移温度(Tg)は331℃、5%減量開始温度は500℃であった。またSEM観察で結着状態から配合効果を確認した。表1に評価結果とSEM観察結果を示した。
参考例で得られたポリアミドイミド樹脂粉末(BTDA-2)に結着材ULTEMCRS5001(Tg225℃、粒子径15μm)を、組成物の総量に対して30wt%配合し混合・攪拌した後、100℃4時間乾燥処理を行った。次に乾燥処理し取出した試料を成形金型に充填し、20ton加圧プレス成形機を用い320℃60分間最大使用圧力を
掛け加圧溶融成形板材を作製した。この板材には割れが観察されず手折りしても破壊しなかった。次に、曲げ試験を行なったところ曲げ強度は33.0MPa、曲げ弾性率が795MPa、伸びが8.5%であった。曲げ試験で得られた破断片を冷凍粉砕し粉状にした試料のDSC、TGA測定したところガラス転移温度(Tg)は331℃、5%減量開始温度は500℃であった。またSEM観察で結着状態から配合効果を確認した。表1に評価結果とSEM観察結果を示した。
(実施例2)
実施例1の結着材に代えて結着材ULTENXH6050(Tg247℃、粒子径13μm)を、組成物の総量に対して30wt%配合し実施例1と同様な処理を行ない20ton加圧プレス成形機で実施例1と同条件下加圧溶融成形板材を作製し評価した。この板
材には割れが観察されず手折りしても破壊しなかった。次に、曲げ試験を行なったところ曲げ強度は44.2MPa、曲げ弾性率が1032MPa、伸びが8.3%であった。曲げ試験で得られた破断片を冷凍粉砕し粉状にした試料のDSC、TGA測定したところガラス転移温度(Tg)は320℃、5%減量開始温度は484℃であった。またSEM観察で結着状態から配合効果を確認した。表1に評価結果とSEM観察結果を示した。
実施例1の結着材に代えて結着材ULTENXH6050(Tg247℃、粒子径13μm)を、組成物の総量に対して30wt%配合し実施例1と同様な処理を行ない20ton加圧プレス成形機で実施例1と同条件下加圧溶融成形板材を作製し評価した。この板
材には割れが観察されず手折りしても破壊しなかった。次に、曲げ試験を行なったところ曲げ強度は44.2MPa、曲げ弾性率が1032MPa、伸びが8.3%であった。曲げ試験で得られた破断片を冷凍粉砕し粉状にした試料のDSC、TGA測定したところガラス転移温度(Tg)は320℃、5%減量開始温度は484℃であった。またSEM観察で結着状態から配合効果を確認した。表1に評価結果とSEM観察結果を示した。
(実施例3)
実施例1の結着材に代えて結着材EXTEMXH1005(Tg267℃、粒子径11μm)を、組成物の総量に対して30wt%配合し実施例1と同様な処理を行ない20ton加圧プレス成形機で実施例1と同条件下加圧溶融成形板材を作製し評価した。この板材
には割れが観察されず手折りしても破壊しなかった。次に、曲げ試験を行なったところ曲げ強度は28.4MPa、曲げ弾性率が937MPa、伸びが4.3%であった。表1に評価結果を示した。
実施例1の結着材に代えて結着材EXTEMXH1005(Tg267℃、粒子径11μm)を、組成物の総量に対して30wt%配合し実施例1と同様な処理を行ない20ton加圧プレス成形機で実施例1と同条件下加圧溶融成形板材を作製し評価した。この板材
には割れが観察されず手折りしても破壊しなかった。次に、曲げ試験を行なったところ曲げ強度は28.4MPa、曲げ弾性率が937MPa、伸びが4.3%であった。表1に評価結果を示した。
(実施例4)
参考例で得られたポリアミドイミド樹脂粉末(BTDA-2)に結着材EXTEMXH6050(Tg247℃)を組成物の総量に対して30wt%配合し混合・混練した後、300℃に設定した
MiniLabIIに約7g試料を投入し、回転数30rpmで約3~5分間溶融混練して押出性を評価した。溶融押出性は特に問題が無かった。
参考例で得られたポリアミドイミド樹脂粉末(BTDA-2)に結着材EXTEMXH6050(Tg247℃)を組成物の総量に対して30wt%配合し混合・混練した後、300℃に設定した
MiniLabIIに約7g試料を投入し、回転数30rpmで約3~5分間溶融混練して押出性を評価した。溶融押出性は特に問題が無かった。
(比較例1)
参考例で得られたポリアミドイミド樹脂粉末(BTDA-2)を乾燥処理した後、20ton加圧プレス成形機を用い320℃60分間最大使用圧力を掛け加圧溶融成形板材を
作製した。この板材には割れが観察され手折りしたら数本の板材が破壊した。次に、曲げ試験を行なったところ曲げ強度は9.6MPa、曲げ弾性率が370MPa、伸びが3.6%であった。曲げ試験で得られた破断片を冷凍粉砕し粉状にした試料のDSC、TGA測定したところガラス転移温度(Tg)は350℃までの測定では鮮明なピークが確認できなかった。5%減量開始温度は446℃であった。またSEM観察で粒子の分散状態を確認した。表1に評価結果とSEM観察結果を示した。
参考例で得られたポリアミドイミド樹脂粉末(BTDA-2)を乾燥処理した後、20ton加圧プレス成形機を用い320℃60分間最大使用圧力を掛け加圧溶融成形板材を
作製した。この板材には割れが観察され手折りしたら数本の板材が破壊した。次に、曲げ試験を行なったところ曲げ強度は9.6MPa、曲げ弾性率が370MPa、伸びが3.6%であった。曲げ試験で得られた破断片を冷凍粉砕し粉状にした試料のDSC、TGA測定したところガラス転移温度(Tg)は350℃までの測定では鮮明なピークが確認できなかった。5%減量開始温度は446℃であった。またSEM観察で粒子の分散状態を確認した。表1に評価結果とSEM観察結果を示した。
(比較例2)
トリメリット酸無水物(TMA)、ピロメリット酸無水物、無水フタル酸の酸成分とアミン成分として4,4‘-ジアミノジフェニルエーテル、1,4-フェニレンジアミンからなる対数粘度0.5dl/g、平均粒子径28μmのポリアミドイミド樹脂粉末(市販品)を乾燥処理した後、で20ton加圧プレス成形機を用い320℃60分間最大使用圧力を
掛け加圧溶融成形板材を作製した。この板材には割れが観察され手折りしたら数本の板材が破壊した。次に、曲げ試験を行なったところ曲げ強度は24.3MPa、曲げ弾性率が822MPa、伸びが4.1%であった。曲げ試験で得られた破断片を冷凍粉砕し粉状にした試料のDSC、TGA測定したところガラス転移温度(Tg)は286℃、5%減量開始温度は490℃であった。またSEM観察で粒子の分散状態も確認した。表1に評価結果とSEM観察結果を示した。
トリメリット酸無水物(TMA)、ピロメリット酸無水物、無水フタル酸の酸成分とアミン成分として4,4‘-ジアミノジフェニルエーテル、1,4-フェニレンジアミンからなる対数粘度0.5dl/g、平均粒子径28μmのポリアミドイミド樹脂粉末(市販品)を乾燥処理した後、で20ton加圧プレス成形機を用い320℃60分間最大使用圧力を
掛け加圧溶融成形板材を作製した。この板材には割れが観察され手折りしたら数本の板材が破壊した。次に、曲げ試験を行なったところ曲げ強度は24.3MPa、曲げ弾性率が822MPa、伸びが4.1%であった。曲げ試験で得られた破断片を冷凍粉砕し粉状にした試料のDSC、TGA測定したところガラス転移温度(Tg)は286℃、5%減量開始温度は490℃であった。またSEM観察で粒子の分散状態も確認した。表1に評価結果とSEM観察結果を示した。
(比較例3)
比較例2で得られた加圧溶融成形板材を用いて市販品の技術資料に従ってポストキュアを実施した。
この板材を用いて曲げ試験を行なったところ曲げ強度は28.2MPa、曲げ弾性率が1005MPa、伸びが2.9%であって、数本の板材の割れが確認された。表1に評価結果を示した。
比較例2で得られた加圧溶融成形板材を用いて市販品の技術資料に従ってポストキュアを実施した。
この板材を用いて曲げ試験を行なったところ曲げ強度は28.2MPa、曲げ弾性率が1005MPa、伸びが2.9%であって、数本の板材の割れが確認された。表1に評価結果を示した。
本発明の成形用ポリアミドイミド樹脂組成物は、圧縮成形が可能で、ポストキュアが不用で成形上がりに於いても耐熱性、機械的強度、電気特性、耐薬品性等に優れ電気・電子部品、自動車部品、軍需・航空機、産業機器などの工業材料用途に使用されるものである。
Claims (9)
- トリメリット酸無水物とテトラカルボン酸二無水物からなる酸成分と4,4‘―ジフェニルメタンジイソシアネートのジイソシアネート成分と反応させて得られるポリアミドイミド分子の末端イソシアネート官能基が末端封鎖剤で封鎖されてなり、対数粘度0.4~0.7dl/gであるポリアミドイミド樹脂に結着材を含むことを特徴とする成形用ポリアミドイミド樹脂組成物。
- 前記テトラカルボン酸二無水物が、オキシジフタル酸二無水物、3,3‘4,4’―ビフェニルテトラカルボン酸二無水物、3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物、3,3‘4,4’-ジフェニルスルホンテトラカルボン酸二無水物からなる群より選択される少なくとも1種以上である請求項1記載の成形用ポリアミドイミド樹脂組成物。
- 前記末端封鎖剤が無水フタル酸、p-ビニル安息香酸、アルコール類、フェノール類からなる群より選択される少なくとも1種以上である請求項1又は2記載の成形用ポリアミドイミド樹脂組成物。
- 前記結着材が熱可塑性ポリイミド樹脂または熱可塑性ポリエーテルイミド樹脂からなる群より選択される少なくとも1種以上を含む請求項1~3のいずれかに記載の成形用ポリアミドイミド樹脂組成物。
- 前記結着材は、ガラス転移温度(Tg)が200℃から280℃のオリゴマーまたはポリマーからなる群より選択される少なくとも1種以上である、請求項1~4のいずれかに記載の成形用ポリアミドイミド樹脂組成物。
- 前記結着剤を5重量%以上含有する、請求項1~5のいずれかに記載の成形用ポリアミド樹脂組成物。
- 粉末状であることを特徴とする請求項1~6のいずれかに記載の成形用ポリアミドイミド樹脂組成物。
- 前記粉末の平均粒子径(メジアンd50)が5μmから100μmであることを特徴とする請求項7記載の成形用ポリアミドイミド樹脂組成物。
- 請求項1~8のいずれかに記載の圧縮成形用ポリアミドイミド樹脂組成物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014502940A JPWO2014112434A1 (ja) | 2013-01-18 | 2014-01-10 | 成形用ポリアミドイミド樹脂組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-007583 | 2013-01-18 | ||
JP2013007583 | 2013-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014112434A1 true WO2014112434A1 (ja) | 2014-07-24 |
Family
ID=51209525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050294 WO2014112434A1 (ja) | 2013-01-18 | 2014-01-10 | 成形用ポリアミドイミド樹脂組成物 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014112434A1 (ja) |
WO (1) | WO2014112434A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5880326A (ja) * | 1981-11-06 | 1983-05-14 | Hitachi Chem Co Ltd | ポリアミドイミド樹脂の製造法 |
JPH07207157A (ja) * | 1993-12-03 | 1995-08-08 | Mitsubishi Gas Chem Co Inc | 樹脂組成物 |
JP2010508427A (ja) * | 2006-11-03 | 2010-03-18 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | キャップしたポリイミドまたはポリアミドイミドの溶液 |
WO2013065714A1 (ja) * | 2011-10-31 | 2013-05-10 | 東洋紡株式会社 | 圧縮成形用ポリアミドイミド樹脂組成物 |
-
2014
- 2014-01-10 WO PCT/JP2014/050294 patent/WO2014112434A1/ja active Application Filing
- 2014-01-10 JP JP2014502940A patent/JPWO2014112434A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5880326A (ja) * | 1981-11-06 | 1983-05-14 | Hitachi Chem Co Ltd | ポリアミドイミド樹脂の製造法 |
JPH07207157A (ja) * | 1993-12-03 | 1995-08-08 | Mitsubishi Gas Chem Co Inc | 樹脂組成物 |
JP2010508427A (ja) * | 2006-11-03 | 2010-03-18 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | キャップしたポリイミドまたはポリアミドイミドの溶液 |
WO2013065714A1 (ja) * | 2011-10-31 | 2013-05-10 | 東洋紡株式会社 | 圧縮成形用ポリアミドイミド樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014112434A1 (ja) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102143989B (zh) | 使用2-苯基-4,4’-二氨基二苯基醚类的可溶性末端改性酰亚胺低聚物、清漆、其固化物、及其酰亚胺预浸料、以及耐热性优异的纤维增强层合板 | |
CA2853977C (en) | Crosslinking compounds for high glass transition temperature polymers | |
CN104725635A (zh) | 具有高的热氧化稳定性的聚酰亚胺粉末 | |
CN114729187A (zh) | 树脂组合物、树脂成型体和其制造方法 | |
TWI875696B (zh) | 聚醯亞胺樹脂組成物 | |
JP7405097B2 (ja) | 繊維強化ポリイミド樹脂成形前駆体及びその製造方法 | |
TW202212471A (zh) | 樹脂組成物及成形體 | |
JP7250593B2 (ja) | 粒子状イミドオリゴマーおよびその製造方法 | |
WO2014112434A1 (ja) | 成形用ポリアミドイミド樹脂組成物 | |
JP5435207B2 (ja) | 末端変性イミドオリゴマー | |
CN114867788A (zh) | 聚酰亚胺树脂组合物及成形体 | |
JP4214531B2 (ja) | 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物 | |
WO2013065714A1 (ja) | 圧縮成形用ポリアミドイミド樹脂組成物 | |
CN116875027A (zh) | 介电阻燃复合材料及其制备方法 | |
CN116249732B (zh) | 聚酰亚胺树脂组合物和成型体 | |
JP2986644B2 (ja) | ポリイミド樹脂組成物 | |
Zhang et al. | Soluble Polyimide‐Modified Epoxy Resin With Enhanced Comprehensive Performances | |
JP7510317B2 (ja) | イミド基を持つアミド酸オリゴマーを含有する不定形粒子およびその製造方法 | |
TWI888645B (zh) | 聚醯亞胺樹脂組成物及成形體 | |
WO2021246532A1 (ja) | ポリイミド樹脂成形体及びその製造方法 | |
CN110437463B (zh) | 树枝状聚合物、其制备方法及其应用 | |
JP2009173847A (ja) | 熱可塑性樹脂組成物および成形品 | |
JP2006193610A (ja) | 樹脂組成物およびその製造方法 | |
JP2644363B2 (ja) | ポリイミド系樹脂組成物 | |
Eßmeister | Preparation and characterization of polyimide-based composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014502940 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14740251 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14740251 Country of ref document: EP Kind code of ref document: A1 |