WO2019101039A1 - 嘧啶磺酰胺类衍生物、其制备方法及其在医药上的应用 - Google Patents

嘧啶磺酰胺类衍生物、其制备方法及其在医药上的应用 Download PDF

Info

Publication number
WO2019101039A1
WO2019101039A1 PCT/CN2018/116196 CN2018116196W WO2019101039A1 WO 2019101039 A1 WO2019101039 A1 WO 2019101039A1 CN 2018116196 W CN2018116196 W CN 2018116196W WO 2019101039 A1 WO2019101039 A1 WO 2019101039A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
alkyl
group
mmol
added
Prior art date
Application number
PCT/CN2018/116196
Other languages
English (en)
French (fr)
Inventor
罗云富
雷茂义
栗俊苗
徐雨
魏冉
陈曙辉
Original Assignee
南京明德新药研发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES18881280T priority Critical patent/ES2936864T3/es
Priority to LTEPPCT/CN2018/116196T priority patent/LT3719013T/lt
Application filed by 南京明德新药研发股份有限公司 filed Critical 南京明德新药研发股份有限公司
Priority to BR112020010149A priority patent/BR112020010149A8/pt
Priority to HRP20230318TT priority patent/HRP20230318T1/hr
Priority to PL18881280.4T priority patent/PL3719013T3/pl
Priority to AU2018372752A priority patent/AU2018372752B2/en
Priority to RS20230197A priority patent/RS64040B1/sr
Priority to SI201830884T priority patent/SI3719013T1/sl
Priority to CA3083019A priority patent/CA3083019A1/en
Priority to FIEP18881280.4T priority patent/FI3719013T3/fi
Priority to JP2020528076A priority patent/JP7245832B2/ja
Priority to RU2020119900A priority patent/RU2773844C9/ru
Priority to EP18881280.4A priority patent/EP3719013B1/en
Priority to DK18881280.4T priority patent/DK3719013T3/da
Priority to CN201880074739.3A priority patent/CN111479808B/zh
Priority to US16/764,654 priority patent/US11319305B2/en
Publication of WO2019101039A1 publication Critical patent/WO2019101039A1/zh
Priority to IL274773A priority patent/IL274773B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring

Definitions

  • the present invention relates to a series of pyrimidine-sulfonamides, their use in the preparation ET A receptor antagonists related diseases medicament. Specifically, it relates to a derivative compound of the formula ( ⁇ ), a tautomer thereof, or a pharmaceutically acceptable composition thereof.
  • ET Endothelin
  • ET-1 is a family of 21 amino acid isomeric peptides, each having 6 hydrophobic amino acids and 2 intrachain disulfide bonds.
  • the human body has three different gene-encoded isoforms: ET-1, ET-2, and ET-3, of which ET-1 has the strongest vasoactive activity, and its contractile strength to the vein is 3 to 10 times that of the artery. It is the major isomer that causes disease.
  • ET-1 is the most abundant and functionally important endothelin family, mainly expressed in the vascular endothelium, but also in the non-vascular tissues of the heart, kidney, lung, adrenal gland and other organs.
  • ET function is not only a vascular factor that regulates blood pressure, but also a hormone that causes many hypertrophy, remodeling, fibrosis, and inflammation of tissues, such as proliferation, apoptosis, and migration.
  • diseases such as pulmonary hypertension, hypertension, sepsis, atherosclerosis, acute myocardial infarction, congestive heart failure, migraine and asthma, ET-1 levels in plasma and tissues are elevated. Endothelin receptor antagonists are therefore widely studied as very promising therapeutic agents.
  • Endothelin receptors belong to G protein coupled receptor, there are mainly ET A, ET B and ET C 3 species, which differ in different tissues and organs, the affinity of three different subtypes of endothelin, Physiological The difference in function is also large.
  • Endothelin ET A receptor on smooth muscle cells mainly distributed selectively bind shrinkage ET-1, mediated vascular smooth muscle; endothelin ET B receptors are divided ET B1 and ET B2 2 subtypes distributed in the endothelium of the former Cells, which mediate the release of endothelium-derived relaxing factor (EDRF), prostacyclin (PGI 2 ), and nitric oxide (NO), cause vasodilation; the latter are located on vascular smooth muscle and act directly as well as the ET A receptor.
  • EDRF endothelium-derived relaxing factor
  • PKI 2 prostacyclin
  • NO nitric oxide
  • ET C ET-3 receptor is a receptor selectively, mainly in neuronal cells, functions as a neurotransmitter .
  • ET-1 primarily through ET A ET B receptors and play a role.
  • Endothelin ET A receptor antagonists can be divided into receptor antagonists, ET B receptor antagonists and ET A / ET B antagonist dual three kinds, which has been demonstrated in many diseases such as subarachnoid hemorrhage, heart failure , pulmonary hypertension, essential hypertension, refractory hypertension, neurogenic inflammation, diabetic nephropathy, focal segmental glomerulosclerosis, renal failure, neurogenic inflammation, and renal failure and myocardial infarction Preclinical and/or clinical effects in post-cerebral vasospasm and the like.
  • Highly selective ET A receptor antagonists strongly inhibit the ET-1 vasoconstriction, while avoiding non-selective ET A / ET B receptor dual antagonist of adverse reactions, thereby, reduce side effects in the clinic.
  • Patent WO200205355 discloses the compound macitentan, which can be used to treat diseases associated with the action of endothelin.
  • the present invention provides a compound of the formula (I), an isomer thereof or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from the group consisting of H, F, Cl, Br, I, OH, and NH 2 ;
  • R 2 is selected from H and C 1-3 alkyl, and the C 1-3 alkyl group is optionally substituted by 1, 2 or 3 R;
  • R 3 is selected from the group consisting of H, C 1-6 alkyl, C 1-6 heteroalkyl, -C 1-3 alkyl-C 3-6 cycloalkyl, C 3-6 cycloalkyl and -C 1-3 Alkyl-3-7-membered heterocycloalkyl, said C 1-6 alkyl, C 1-6 heteroalkyl, -C 1-3 alkyl-C 3-6 cycloalkyl, C 3-6 ring
  • An alkyl or —C 1-3 alkyl-3-7-membered heterocycloalkyl group is optionally substituted by 1, 2 or 3 R;
  • R 2 is bonded to R 3 to form a 3-8 membered ring optionally substituted by 1, 2 or 3 R;
  • Ring B is selected from the group consisting of a 3-7 membered heterocycloalkyl group and a 5-6 membered heteroaryl group, and the 3-7 membered heterocycloalkyl group or a 5-6 membered heteroaryl group is optionally substituted by 1, 2 or 3 R groups. ;
  • R is independently selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CN, C 1-6 alkyl and C 1-6 heteroalkyl, said C 1-6 alkyl or C 1- 6 heteroalkyl optionally substituted by 1, 2 or 3 R';
  • R' is independently selected from the group consisting of F, Cl, Br, I, OH, NH 2 , CN, Me, CH 2 F, CHF 2 , CF 3 and Et;
  • the above R is selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CN, Me, Et, The Me, Et, Optionally substituted by 1, 2 or 3 R', other variables are as defined by the present invention.
  • the above R is selected from the group consisting of H, F, Cl, Br, I, OH, NH 2 , CN, Me, CH 2 F, CHF 2 , CF 3 , Et, Other variables are as defined by the present invention.
  • R 2 above is selected from the group consisting of H and Me, and other variables are as defined herein.
  • the above R 3 is selected from the group consisting of H, C 1-4 alkyl, C 1-4 alkyl-OC 1-4 alkyl, cyclobutylalkyl, -C 1-3 alkyl-cyclobutane
  • An alkyl group, a -C 1-3 alkyl-cyclopropyl group, a -C 1-3 alkyl-tetrahydrofuranyl group, and a -C 1-3 alkyl-tetrahydropyranyl group said C 1-4 alkyl group, C 1-4 alkyl-OC 1-4 alkyl, cyclobutylalkyl, -C 1-3 alkyl-cyclobutane, -C 1-3 alkyl-cyclopropane, -C 1-3 alkyl
  • the tetrahydrofuranyl group or the -C 1-3 alkyl-tetrahydropyranyl group is optionally substituted by 1, 2 or 3 R, and other variables are as defined in
  • R 3 is selected from the group consisting of H, Me, Et, The Me, Et, Optionally substituted by 1, 2 or 3 R, other variables are as defined by the present invention.
  • R 3 is selected from the group consisting of H, Me, Et, Other variables are as defined by the present invention.
  • R 2 and R 3 are bonded to form a 6-8 membered heterocycloalkyl group optionally substituted by 1, 2 or 3 R.
  • the structural unit Selected from Said Optionally substituted by 1, 2 or 3 R, other variables are as defined by the present invention.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • the ring B is selected from the group consisting of tetrahydrofuranyl, tetrahydrothiophenyl, 1,3-dioxolanyl, pyrrolidinyl, thiazolyl, pyrazolyl and imidazolyl, the tetrahydrofuranyl, tetra Hydrothienyl, 1,3-dioxolanyl, pyrrolidinyl, thiazolyl, pyrazolyl or imidazolyl is optionally substituted by 1, 2 or 3 R, other variables being as defined herein.
  • the structural unit Selected from Other variables are as defined by the present invention.
  • R, R 1 or R 2 are as defined in the present invention.
  • the present invention also provides the following compound, an isomer thereof or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of the above compound or a pharmaceutically acceptable salt thereof as an active ingredient together with a pharmaceutically acceptable carrier.
  • the present invention also provides a pharmaceutical said compound or a pharmaceutically acceptable salt thereof in the manufacture of the above-described composition ET A receptor antagonist on drug-related applications.
  • pharmaceutically acceptable salt refers to a salt of a compound of the invention prepared from a compound having a particular substituent found in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting a neutral amount of such a compound with a sufficient amount of a base in a neat solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic ammonia or magnesium salts or similar salts.
  • an acid addition salt can be obtained by contacting a neutral form of such a compound with a sufficient amount of an acid in a neat solution or a suitable inert solvent.
  • pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogencarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and an organic acid salt, such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, and me
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing an acid group or a base by conventional chemical methods.
  • such salts are prepared by reacting these compounds in water or an organic solvent or a mixture of the two via a free acid or base form with a stoichiometric amount of a suitable base or acid.
  • the compounds of the invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including the cis and trans isomers, the (-)- and (+)-p-enantiomers, the (R)- and (S)-enantiomers, and the diastereomeric a conformation, a (D)-isomer, a (L)-isomer, and a racemic mixture thereof, and other mixtures, such as enantiomerically or diastereomeric enriched mixtures, all of which belong to It is within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in the substituents such as alkyl groups. All such isomers, as well as mixtures thereof, are included within the scope of the invention.
  • enantiomer or “optical isomer” refer to stereoisomers that are mirror images of one another.
  • cis-trans isomer or “geometric isomer” is caused by the inability to freely rotate a single bond due to a double bond or a ring-forming carbon atom.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the molecules are in a non-mirrored relationship.
  • wedge-shaped dashed keys Represents the absolute configuration of a solid center with straight solid keys
  • straight dashed keys Indicates the relative configuration of the stereocenter, using wavy lines Indicates a wedge solid key Or wedge-shaped dotted key Or with wavy lines Represents a straight solid key And straight dashed keys
  • tautomer or “tautomeric form” mean that the different functional isomers are in dynamic equilibrium at room temperature and can be rapidly converted into each other. If tautomers are possible (as in solution), the chemical equilibrium of the tautomers can be achieved.
  • proton tautomers also known as prototropic tautomers
  • prototropic tautomers include interconversions by proton transfer, such as keto-enol isomerization and imine-enes. Amine isomerization.
  • the valence tautomer includes the mutual transformation of some of the bonding electrons.
  • keto-enol tautomerization is the interconversion between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms "enriched in one isomer”, “isomer enriched”, “enriched in one enantiomer” or “enantiomeric enriched” refer to one of the isomers or pairs
  • the content of the oligo is less than 100%, and the content of the isomer or enantiomer is 60% or more, or 70% or more, or 80% or more, or 90% or more, or 95% or more, or 96% or more, or 97% or more, 98% or more, 99% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99.8% or more, or greater than or equal to 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the two isomers or the relative percentages of the two enantiomers. For example, if one of the isomers or enantiomers is present in an amount of 90% and the other isomer or enantiomer is present in an amount of 10%, the isomer or enantiomeric excess (ee value) is 80%. .
  • optically active (R)- and (S)-isomers as well as the D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If an enantiomer of a compound of the invention is desired, it can be prepared by asymmetric synthesis or by derivatization with a chiral auxiliary wherein the resulting mixture of diastereomers is separated and the auxiliary group cleaved to provide pure The desired enantiomer.
  • a diastereomeric salt is formed with a suitable optically active acid or base, followed by conventional methods well known in the art.
  • the diastereomers are resolved and the pure enantiomer is recovered.
  • the separation of enantiomers and diastereomers is generally accomplished by the use of chromatography using a chiral stationary phase, optionally in combination with chemical derivatization (eg, formation of an amino group from an amine). Formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms that make up the compound.
  • radiolabeled compounds can be used, such as tritium (3 H), iodine -125 (125 I) or C-14 (14 C).
  • hydrogen can be replaced by heavy hydrogen to form a deuterated drug.
  • the bond composed of barium and carbon is stronger than the bond composed of common hydrogen and carbon.
  • deuterated drugs have reduced side effects and increased drug stability. Enhance the efficacy and prolong the biological half-life of the drug. Alterations of all isotopic compositions of the compounds of the invention, whether radioactive or not, are included within the scope of the invention.
  • substituted means that any one or more hydrogen atoms on a particular atom are replaced by a substituent, and may include variants of heavy hydrogen and hydrogen, as long as the valence of the particular atom is normal and the substituted compound is stable. of.
  • Oxygen substitution does not occur on the aromatic group.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the kind and number of substituents may be arbitrary on the basis of chemically achievable.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with at most two R, and each case has an independent option.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of one linking group is 0, such as -(CRR) 0 -, it indicates that the linking group is a single bond.
  • one of the variables When one of the variables is selected from a single bond, it means that the two groups to which it is attached are directly linked. For example, when L represents a single bond in A-L-Z, the structure is actually A-Z.
  • a substituent When a substituent is vacant, it means that the substituent is absent.
  • X when X is vacant in AX, the structure is actually A.
  • substituents are not indicated by which atom is attached to the substituted group, such a substituent may be bonded through any atom thereof, for example, a pyridyl group as a substituent may be passed through any one of the pyridine rings.
  • a carbon atom is attached to the substituted group.
  • the listed linking group does not indicate its direction of attachment, its connection direction is arbitrary, for example, The medium linking group L is -M-W-, and at this time, -MW- can be connected in the same direction as the reading order from left to right to form ring A and ring B. It is also possible to connect the ring A and the ring B in a direction opposite to the reading order from left to right.
  • Combinations of the linking groups, substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • hetero denotes a hetero atom or a hetero atomic group (ie, a radical containing a hetero atom), including atoms other than carbon (C) and hydrogen (H), and radicals containing such heteroatoms, including, for example, oxygen (O).
  • ring means substituted or unsubstituted cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, cycloalkynyl, heterocycloalkynyl, aryl or heteroaryl. So-called rings include single rings, interlocking rings, spiral rings, parallel rings or bridge rings. The number of atoms on the ring is usually defined as the number of elements of the ring. For example, "5 to 7-membered ring” means 5 to 7 atoms arranged in a circle. Unless otherwise specified, the ring optionally contains from 1 to 3 heteroatoms.
  • 5- to 7-membered ring includes, for example, phenyl, pyridine, and piperidinyl; on the other hand, the term “5- to 7-membered heterocycloalkyl ring” includes pyridyl and piperidinyl, but does not include phenyl.
  • ring also includes ring systems containing at least one ring, each of which "ring” independently conforms to the above definition.
  • heterocycle or “heterocyclyl” means a stable monocyclic, bicyclic or tricyclic ring containing a hetero atom or a heteroatom group which may be saturated, partially unsaturated or unsaturated ( Aromatic) which comprise a carbon atom and 1, 2, 3 or 4 ring heteroatoms independently selected from N, O and S, wherein any of the above heterocycles may be fused to a phenyl ring to form a bicyclic ring.
  • the nitrogen and sulfur heteroatoms can be optionally oxidized (i.e., NO and S(O)p, p is 1 or 2).
  • the nitrogen atom can be substituted or unsubstituted (i.e., N or NR, wherein R is H or other substituents as already defined herein).
  • the heterocyclic ring can be attached to the side groups of any hetero atom or carbon atom to form a stable structure. If the resulting compound is stable, the heterocycles described herein can undergo substitutions at the carbon or nitrogen sites.
  • the nitrogen atom in the heterocycle is optionally quaternized.
  • a preferred embodiment is that when the total number of S and O atoms in the heterocycle exceeds 1, these heteroatoms are not adjacent to each other. Another preferred embodiment is that the total number of S and O atoms in the heterocycle does not exceed one.
  • aromatic heterocyclic group or "heteroaryl” as used herein means a stable 5, 6, or 7 membered monocyclic or bicyclic or aromatic ring of a 7, 8, 9 or 10 membered bicyclic heterocyclic group, It contains carbon atoms and 1, 2, 3 or 4 ring heteroatoms independently selected from N, O and S.
  • the nitrogen atom can be substituted or unsubstituted (i.e., N or NR, wherein R is H or other substituents as already defined herein).
  • the nitrogen and sulfur heteroatoms can be optionally oxidized (i.e., NO and S(O)p, p is 1 or 2).
  • bridged rings are also included in the definition of heterocycles.
  • a bridged ring is formed when one or more atoms (ie, C, O, N, or S) join two non-adjacent carbon or nitrogen atoms.
  • Preferred bridged rings include, but are not limited to, one carbon atom, two carbon atoms, one nitrogen atom, two nitrogen atoms, and one carbon-nitrogen group. It is worth noting that a bridge always converts a single ring into a three ring. In the bridged ring, a substituent on the ring can also be present on the bridge.
  • heterocyclic compounds include, but are not limited to, acridinyl, octanoyl, benzimidazolyl, benzofuranyl, benzofuranylfuranyl, benzindenylphenyl, benzoxazolyl, benzimidin Oxazolinyl, benzothiazolyl, benzotriazolyl, benzotetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolyl, oxazolyl, 4aH-carbazolyl, Porphyrin, chroman, chromene, porphyrin-decahydroquinolinyl, 2H, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b] Tetrahydrofuranyl, furyl, furfuryl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-carbazolyl, nonenyl,
  • hydrocarbyl or its subordinate concept (such as alkyl, alkenyl, alkynyl, aryl, etc.), by itself or as part of another substituent, is meant to be straight-chain, branched or cyclic.
  • the hydrocarbon atom group or a combination thereof may be fully saturated (such as an alkyl group), a unit or a polyunsaturated (such as an alkenyl group, an alkynyl group, an aryl group), may be monosubstituted or polysubstituted, and may be monovalent (such as Methyl), divalent (such as methylene) or polyvalent (such as methine), may include divalent or polyvalent radicals with a specified number of carbon atoms (eg, C 1 -C 12 represents 1 to 12 carbons) , C 1-12 is selected from C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 and C 12 ; C 3-12 is selected from C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 and C 12 .).
  • C 1-12 is selected from C 1
  • Hydrocarbyl includes, but is not limited to, aliphatic hydrocarbyl groups including chain and cyclic, including but not limited to alkyl, alkenyl, alkynyl groups including, but not limited to, 6-12 members.
  • An aromatic hydrocarbon group such as benzene, naphthalene or the like.
  • hydrocarbyl means a straight or branched chain radical or a combination thereof, which may be fully saturated, unitary or polyunsaturated, and may include divalent and multivalent radicals.
  • saturated hydrocarbon radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, isobutyl, cyclohexyl, (cyclohexyl).
  • a homolog or isomer of a methyl group, a cyclopropylmethyl group, and an atomic group such as n-pentyl, n-hexyl, n-heptyl, n-octyl.
  • the unsaturated hydrocarbon group has one or more double or triple bonds, and examples thereof include, but are not limited to, a vinyl group, a 2-propenyl group, a butenyl group, a crotyl group, a 2-isopentenyl group, and a 2-(butadienyl group). , 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and higher homologs and isomers body.
  • heterohydrocarbyl or its subordinate concept (such as heteroalkyl, heteroalkenyl, heteroalkynyl, heteroaryl, etc.), by itself or in conjunction with another term, is represented by a number of carbon atoms and at least A stable, linear, branched or cyclic hydrocarbon radical consisting of a hetero atom or a combination thereof.
  • heteroalkyl by itself or in conjunction with another term, refers to a stable straight or branched alkyl radical or composition thereof consisting of a number of carbon atoms and at least one heteroatom.
  • the heteroatoms are selected from the group consisting of B, O, N, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen heteroatoms are optionally quaternized.
  • the hetero atom or heteroatom group may be located at any internal position of the heterohydrocarbyl group, including the position at which the hydrocarbyl group is attached to the rest of the molecule, but the terms "alkoxy”, “alkylamino” and “alkylthio” (or thioalkoxy).
  • alkyl groups which are attached to the remainder of the molecule through an oxygen atom, an amino group or a sulfur atom, respectively.
  • Up to two heteroatoms may be consecutive, for example, -CH 2 -NH-OCH 3.
  • cycloalkyl refers to any heterocyclic alkynyl group, etc., by itself or in combination with other terms, denotes a cyclized “hydrocarbyl group” or “heterohydrocarbyl group”, respectively.
  • a hetero atom may occupy a position at which the hetero ring is attached to the rest of the molecule.
  • cycloalkyl groups include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like.
  • heterocyclic groups include 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl, 1-piperazinyl and 2-piperazinyl.
  • heterocycloalkyl by itself or in conjunction with other terms, denotes a cyclized “heteroalkyl”, respectively, and further, in the case of the "heterocycloalkyl", a heteroatom may occupy a heterocycloalkyl group.
  • the heterocycloalkyl group is a 4-6 membered heterocycloalkyl group; in other embodiments, the heterocycloalkyl group is a 5-6 membered heterocycloalkane.
  • heterocycloalkyl groups include, but are not limited to, azetidinyl, oxetanyl, thioheterobutyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothiophenyl, tetrahydrofuranyl, tetra Hydropyranyl, piperidinyl, piperazinyl, morpholinyl, dioxoalkyl, dithiaalkyl, isoxazolidinyl, isothiazolidinyl, 1,2-oxazinyl, 1,2- Thiazinyl, hexahydropyridazinyl, homopiperazinyl, homopiperidinyl or oxetanyl.
  • alkyl is used to denote a straight or branched saturated hydrocarbon group, which may be monosubstituted (eg, -CH 2 F) or polysubstituted (eg, -CF 3 ), and may be monovalent (eg, Methyl), divalent (such as methylene) or polyvalent (such as methine).
  • alkyl group include methyl (Me), ethyl (Et), propyl (e.g., n-propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, s-butyl). , t-butyl), pentyl (eg, n-pentyl, isopentyl, neopentyl) and the like.
  • a cycloalkyl group includes any stable cyclic or polycyclic hydrocarbon group, any carbon atom which is saturated, may be monosubstituted or polysubstituted, and may be monovalent, divalent or multivalent.
  • Examples of such cycloalkyl groups include, but are not limited to, cyclopropyl, norbornyl, [2.2.2]bicyclooctane, [4.4.0]bicyclononane, and the like.
  • halo or “halogen”, by itself or as part of another substituent, denotes a fluorine, chlorine, bromine or iodine atom.
  • haloalkyl is intended to include both monohaloalkyl and polyhaloalkyl.
  • halo(C 1 -C 4 )alkyl is intended to include, but is not limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like. Wait.
  • examples of haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl, and pentachloroethyl.
  • alkoxy represents attached through an oxygen bridge
  • C 1-6 alkoxy groups include C 1, C 2, C 3 , C 4, C 5 , and C 6 alkoxy groups.
  • alkoxy groups include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentyloxy and S- Pentyloxy.
  • aryl denotes a polyunsaturated, aromatic hydrocarbon substituent which may be monosubstituted or polysubstituted, which may be monovalent, divalent or polyvalent, which may be monocyclic or polycyclic ( For example, 1 to 3 rings; at least one of which is aromatic), they are fused together or covalently linked.
  • heteroaryl refers to an aryl (or ring) containing one to four heteroatoms. In an illustrative example, the heteroatoms are selected from the group consisting of B, N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom is optionally quaternized.
  • a heteroaryl group can be attached to the remainder of the molecule through a heteroatom.
  • aryl or heteroaryl groups include phenyl, naphthyl, biphenyl, pyrrolyl, pyrazolyl, imidazolyl, pyrazinyl, oxazolyl, phenyl-oxazolyl, isomerism Azyl, thiazolyl, furyl, thienyl, pyridyl, pyrimidinyl, benzothiazolyl, indolyl, benzimidazolyl, indolyl, isoquinolyl, quinoxalinyl, quinolinyl, 1 -naphthyl, 2-naphthyl, 4-biphenylyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl
  • aryl groups when used in conjunction with other terms (e.g., aryloxy, arylthio, aralkyl), include aryl and heteroaryl rings as defined above.
  • aralkyl is intended to include those radicals to which an aryl group is attached to an alkyl group (eg, benzyl, phenethyl, pyridylmethyl, and the like), including wherein the carbon atom (eg, methylene) has been, for example, oxygen.
  • alkyl groups substituted by an atom such as phenoxymethyl, 2-pyridyloxymethyl 3-(1-naphthyloxy)propyl and the like.
  • leaving group refers to a functional group or atom which may be substituted by another functional group or atom by a substitution reaction (for example, an affinity substitution reaction).
  • substituent groups include triflate; chlorine, bromine, iodine; sulfonate groups such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters and the like; acyloxy groups such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to, formyl; acyl, such as alkanoyl (e.g., acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, e.g., tert-butoxycarbonyl (Boc) Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1, 1-di -(4'-methoxyphenyl)methyl; silyl groups such as trimethylsilyl (TMS) and tert-
  • hydroxy protecting group refers to a protecting group suitable for use in preventing hydroxy side reactions.
  • Representative hydroxy protecting groups include, but are not limited to, alkyl groups such as methyl, ethyl and t-butyl groups; acyl groups such as alkanoyl groups (e.g., acetyl); arylmethyl groups such as benzyl (Bn), Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and the like.
  • alkyl groups such as methyl, ethyl and t-butyl groups
  • acyl groups such as alkanoyl groups (e.g., acetyl)
  • arylmethyl groups such as benzyl (Bn), Oxybenzyl (PMB), 9-fluoreny
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments set forth below, combinations thereof with other chemical synthetic methods, and those well known to those skilled in the art. Equivalent alternatives, preferred embodiments include, but are not limited to, embodiments of the invention.
  • the compounds of the invention may be used in a variety of uses or indications, including but not limited to the specific uses or indications listed herein.
  • the solvent used in the present invention is commercially available.
  • the present invention employs the following abbreviations: aq for water; HATU for O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate ; EDC stands for N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride; m-CPBA stands for 3-chloroperoxybenzoic acid; eq stands for equivalent, equivalent; CDI stands for Carbonyldiimidazole; DCM stands for dichloromethane; PE stands for petroleum ether; DIAD stands for diisopropyl azodicarboxylate; DMF stands for N,N-dimethylformamide; DMSO stands for dimethyl sulfoxide; EtOAc stands for acetic acid Esters; EtOH for ethanol; MeOH for methanol; CBz for benzyl
  • the compounds of the present invention all exhibit extremely high activity against in vitro antagonism of human ET A receptor, and the selectivity of ET A /ET B is more than 10,000 times; characterization of the inducing effect of the compound of the present invention on PXR-mediated CYP3A expression In the experiment, it was superior to the control macitentan; in the characterization experiments on the inhibition of the five major isoenzymes of human liver microsomal cytokine P450, the compounds of the present invention were superior to macitentan; The inhibitory effect of the salt transport pump is much weaker than that of macitentan, which significantly reduces the risk of developing hepatotoxicity.
  • the compounds of the invention have good pharmacokinetic characteristics in both SD and Beagle dogs.
  • Ethylamine hydrochloride (5.00 g, 61.32 mmol) and triethylamine (18.61 g, 183.96 mmol, 25.49 mL) were added to dichloromethane (100.00 mL) at room temperature, then cooled to 0 ° C, slowly drip A solution of compound BB - 1 - 2 (61.32 mmol, crude) in dichloromethane was added (distilled for about 1 hour) and the mixture was warmed to room temperature and stirred for 16 hours.
  • Potassium tert-butoxide (1.50 g, 13.41 mmol) was added to a mixture of ethylene glycol (33.30 g, 536.49 mmol, 30.00 mL) and ethylene glycol dimethyl ether (10 mL) at room temperature under a nitrogen atmosphere. Heat to 40 ° C and stir for 0.5 hours, then add a solution of compound BB-2-2 (1.41g, 4.47mmol) in ethylene glycol dimethyl ether (20mL) to the above solution, the reaction mixture is heated to 100 ° C and continue Stir for 16 hours.
  • Step 1 Synthesis of Compound BB–3–1
  • N-propylamine (7.61 g, 128.70 mmol, 10.57 mL) and triethylamine (14.21 g, 140.40 mmol, 19.47 mL) were dissolved in dichloromethane (100.00 mL) at room temperature, then cooled to 0 ° C, slowly added compound A solution of BB - 1 - 2 (117.00 mmol, crude) in dichloromethane was added to the above reaction mixture (distilled for about 0.5 hour), and the mixture was stirred at room temperature for 18 hours under nitrogen atmosphere. After completion of the reaction, water (200 mL) was added and extracted with dichloromethane (200 mL ⁇ 2).
  • Step 1 Synthesis of Compound BB–5–1
  • Step 1 Synthesis of Compound BB–7–1
  • n-Butylamine (2.83 g, 38.64 mmol, 3.82 mL) and triethylamine (3.91 g, 38.64 mmol, 5.36 mL) were dissolved in dichloromethane (100 mL) and the reaction mixture was cooled to 0 ° C then A solution of the compound BB-1 - 2 (46.37 mmol, crude) in dichloromethane was slowly added dropwise to the above reaction mixture (distillation time was about 0.5 hour), and the reaction mixture was allowed to warm to room temperature and stirred for 16 hours. After the reaction was completed, the solvent was removed under reduced pressure. The obtained residue was added to dichloromethane (200 mL).
  • Step 1 Synthesis of Compound BB–8–1
  • Step 1 Synthesis of Compound BB–9–1
  • Step 1 Synthesis of Compound BB–10–1
  • Step 1 Synthesis of Compound BB–11–1
  • Potassium tert-butoxide (2.06 g, 18.35 mmol) was added to ethylene glycol (30.24 g, 487.25 mmol, 27.25 mL) at room temperature, and the reaction mixture was heated to 40 ° C under a nitrogen atmosphere and stirred for 0.5 hour, then A solution of compound BB-11-3 (3.30 g, 9.18 mmol) in ethylene glycol dimethyl ether (10.00 mL) was added to the mixture, and the mixture was heated to 110 ° C under nitrogen atmosphere and stirring was continued for 24 hours.
  • Step 1 Synthesis of Compound BB–12–1
  • Potassium tert-butoxide (1.17 g, 10.44 mmol) was added to a mixture of ethylene glycol (35.63 g, 574.20 mmol, 32.10 mL) and ethylene glycol dimethyl ether (10.00 mL) at room temperature under a nitrogen atmosphere. The mixture was heated to 40 ° C and stirred for 0.5 hours. Subsequently, a solution of compound BB-12-2 (1.30 g, 3.48 mmol) in ethylene glycol dimethyl ether (20.00 mL) was added in one portion to the above mixture under nitrogen. The reaction mixture was heated to 100 ° C and stirring was continued for 15 hours.
  • Step 1 Synthesis of Compound BB–13–1
  • Step 1 Synthesis of Compound BB–14–1
  • Step 1 Synthesis of Compound BB–15–1
  • Trifluoroacetic acid (3.30 g, 28.96 mmol) was added in one portion to a solution of compound BB–16–1 (1.90 g, 7.24 mmol) in dichloromethane (10.00 mL). Stir under 16 hours. After completion of the reaction, the solvent was evaporated under reduced pressure to give Compound BB - 16 - 2 (yellow white solid, 1.44 g, yield: 72.00%, trifluoroacetate).
  • 1 H NMR 400MHz, CDCl 3 ) ⁇ : 3.28-3.36 (m, 4H), 1.54-1.59 (m, 2H), 0.61-0.69 (m, 1H), 0.44-0.58 (m, 1H).
  • Potassium tert-butoxide (760.78 mg, 6.78 mmol) was added to ethylene glycol (22.20 g, 357.67 mmol) at room temperature, and the reaction mixture was heated to 40 ° C under a nitrogen atmosphere and stirred for 0.5 hour, then compound BB - 16 A solution of -3 (799.18 mg, 2.26 mmol) in ethylene glycol dimethyl ether (10.00 mL) was added to the mixture, and the mixture was heated to 110 ° C under nitrogen atmosphere and stirring was continued for 39 hours.
  • Step 1 Synthesis of Compound BB–17–1
  • Potassium tert-butoxide (390.49 mg, 3.48 mmol) was added to ethylene glycol (15.23 g, 245.36 mmol) at room temperature, and the reaction mixture was heated to 40 ° C under a nitrogen atmosphere and stirred for 0.5 hour, then compound BB - 17 A solution of -3 (430.00 mg, 1.16 mmol) in ethylene glycol dimethyl ether (10.00 mL) was slowly added dropwise to the mixture, and the mixture was heated to 110 ° C under nitrogen atmosphere and stirring was continued for 48 hours.
  • the sodium block (10.94 g, 475.78 mmol) was added portionwise to dry methanol (150 mL), and the reaction mixture was stirred at room temperature for 0.5 hour under nitrogen atmosphere, then compound WX001 -3 (40 g, 158.59 mmol)
  • a solution of methanol (100 mL) was added to the above reaction mixture, the reaction mixture was allowed to warm to room temperature under nitrogen atmosphere and stirring was continued for 15 hours, then the formazan acetate (19.81 g, 190.31 mmol) was added in one portion to the above reaction.
  • the mixture was stirred for a further 15 hours at room temperature under nitrogen. After completion of the reaction, the solvent was evaporated under reduced pressure. EtOAc m.
  • the reaction mixture was filtered, and the filter cake was washed with methanol (50mL ⁇ 2), and the filter cake was collected and dried in vacuo to give compound WX001–4.
  • the compound amine sulfonamide (1.52 g, 15.83 mmol) and the compound WX001-6 (6.5 g, 14.39 mmol) were dissolved in dimethyl sulfoxide (100 mL) at room temperature, followed by one-time addition of potassium carbonate (5.97 g, 43.17 mmol) and tetrabutylammonium fluoride trihydrate (9.08 g, 28.78 mmol) were heated to 70 ° C under a nitrogen atmosphere and stirred for 5 hours. After completion of the reaction, the mixture was cooled to room temperature, then 0.5M diluted hydrochloric acid (100 mL) and water (500 mL).
  • the aqueous phase was adjusted to pH 5-6 with 3M diluted hydrochloric acid and ethyl acetate (20 mL ⁇ 3).
  • Example 23 and Example 24 WX023 and WX024
  • ET A receptor action by the measurement signal changes 2+ compounds to human ET A receptor agonist-induced fluorescence detection method using cytosolic Ca Agent activity.
  • the functional activity of the ET A receptor antagonistic effect was tested in Eurofins-Cerep SA according to current standard operating procedures.
  • DMEM Dulbecco's modified Eagle medium solution
  • Results are percent inhibition of control response to 1 nM endothelin-1;
  • the standard positive control was BQ-123, tested in each experiment at several concentrations, using Prism data analysis to produce a concentration - response curves, IC 50 value was calculated compounds.
  • the cells were suspended in DMEM buffer (Invitrogen) and then distributed in 384 plates (100 ⁇ L/well) at a density of 3 ⁇ 10 4 cells/well;
  • Carboxolsulfonamide was mixed with a fluorescent probe (Fluo4Direct, Invitrogen) in HBSS buffer (Invitrogen) supplemented with 20 mM Hepes (Invitrogen) (pH 7.4), added to each well, and then at 37 ° C. Equilibrate with the cells for 60 minutes and equilibrate with the cells for 15 minutes at 22 °C;
  • Results are percent inhibition of control response to 0.3 nM endothelin-1;
  • the standard positive control was BQ-788, tested in each experiment at several concentrations, using Prism data analysis to produce a concentration - response curves, IC 50 value was calculated compounds.
  • the compounds of this invention exhibit both in vitro human ET A receptor antagonist activity high; the compounds of the present invention is selective for ET A ET B are more than 10,000 times.
  • P450-Glo TM solution was transferred to a copy sheet, transfer buffer 10 ml titration cell (CTF buffer) to 15 ml sterile conical tube, then add 5 [mu] l CellTiter-Fluor TM Reagent, mix by inversion.
  • CTF buffer ml titration cell
  • each well was added 100 microliters of detection reagent ONE-Glo TM. Shake the plate and mix for 5 minutes at room temperature.
  • the microplate reader was set to a 5 second pre-shake and a 5 second read hole, and the fluorescence intensity in each well was measured. A high instrument gain (sensitivity) setting should be used.
  • the positive control was rifampicin, six concentrations were tested in each experiment, and data was analyzed using Prism to generate a concentration-response curve to calculate the EC50 value of the compound.
  • Test compound WX013 Control compound (martitate) EC 50 ( ⁇ M) 27.6 ⁇ 1.33* 6.34 ⁇ 0.170*
  • the compound WX013 of the present invention has a weak induction effect on PXR-mediated CYP3A expression, and the compound macitentan has a stronger induction effect on PXR-mediated CYP3A expression. Therefore, WX013 is superior to macitentan in the characterization of PXR-mediated induction of CYP3A expression.
  • the aim of the study was to evaluate the inhibitory activity of the test article on human liver microsomal cytochrome P450 isoenzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) using a 5-in-1 probe substrate of CYP isoenzyme.
  • HLM human liver microsomes
  • the diluted serial concentration of the test article working solution is added to the incubation system containing the human liver microsomes, the probe substrate and the co-factor of the circulation system, and the control containing the solvent without the test product is used as the enzyme activity control ( 100%).
  • the concentration of the metabolite produced by the probe substrate in the sample was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Non-linear regression analysis was performed on the average percent activity versus concentration of the test article using SigmaPlot (V.11).
  • the IC50 value is calculated by a three-parameter or four-parameter recursive logarithmic equation.
  • WX005, WX013 and WX025 have very weak inhibitory effects on the five major isozymes of CYP, and the inhibitory effect of macitentan on the four major isozymes of CYP is weak, while the inhibitory effect on the isoenzyme CYP2C9 is moderate. . Therefore, WX005, WX013 and WX025 were superior to macitentan in the characterization of the inhibition of the five major isoenzymes of human liver microsomal cytokines P450.
  • This experiment evaluated the inhibitory effect of the test compound on the transport of bile salt transporters by using LC/MS/MS to detect the absorption capacity of the bile salt transporter (BSEP) to the substrate taurocholic acid TCA.
  • BSEP bile salt transporter
  • buffer A 12 ml of buffer A contained 8.16 mM AMP, 4.08 ⁇ M taurocholic acid.
  • the compound was diluted to 100 mM with DMSO; then 11 points were serially diluted 3 times; the lowest concentration was 0.169 ⁇ M.
  • the plate was shaken for 10 minutes at 4.25 °C.
  • EDTA ethylenediaminetetraacetic acid
  • the inhibitory effect of the compound WX013 of the present invention on the bile salt transfer pump (BSEP) is extremely weak, but the inhibitory effect of macitentan is strong. Therefore, the inhibitory effect of WX013 on the bile salt transfer pump is much weaker than that of macitentan, which significantly reduces the risk of developing hepatotoxicity.
  • SD rats Male, 200-300 g, 7-10 weeks old, Beijing Vital River or Shanghai Slack.
  • test compound was injected into SD rats via the tail vein (fasting overnight) or orally administered to SD rats (overnight fast). 200 ⁇ L of blood was collected from the jugular puncture at 0 hours (before administration) and 0.0833, 0.25, 0.5, 1, 2, 4, 6, 8 and 24 hours after administration, and placed in an anti-addition of EDTA-K2.
  • the mixture in the anticoagulation tube was thoroughly vortexed and mixed at 4 ° C, and then centrifuged at 13,000 rpm for 10 minutes to take plasma; orally administered orally for 0 hours ( 200 ⁇ L of blood was collected from the jugular vein at 0.5, 1, 2, 4, 6, 8 and 24 hours after administration, and placed in an anticoagulation tube (Jiangsu Kangjian Medical Products Co., Ltd.) supplemented with EDTA-K2.
  • the mixture in the anticoagulation tube was thoroughly vortexed and then centrifuged at 13,000 rpm for 10 minutes to take plasma.
  • the compounds of the present invention WX001 and WX013 have low plasma clearance ( ⁇ 5 mL/min/kg) in rats and high oral bioavailability (>70%).
  • a clear solution of the test compound is injected intravenously into beagle dogs (overlook overnight) or orally administered to beagle dogs (overnight fast).
  • the compounds of the invention WX001 and WX013 have low plasma clearance ( ⁇ 5 mL/min/kg) in beagle dogs and high oral bioavailability (>50%).

Abstract

公开了一系列嘧啶磺酰胺类化合物,及其在制备ET A受体拮抗剂相关疾病的药物中的应用。具体公开了式(Ι)所示衍生化合物、其互变异构体或其药学上可接受的组合物。

Description

嘧啶磺酰胺类衍生物、其制备方法及其在医药上的应用
相关申请的引用
本申请主张如下优先权:
CN201711168111.3,申请日2017-11-21。
技术领域
本发明涉及一系列嘧啶磺酰胺类化合物,及其在制备ET A受体拮抗剂相关疾病的药物中的应用。具体涉及式(Ι)所示衍生化合物、其互变异构体或其药学上可接受的组合物。
背景技术
内皮素(Endothelin,ET)是一个含有21个氨基酸的异构肽家族,都具有6个相同氨基酸残基组成的疏水性C端和2个链内二硫键。人体有3种不同基因编码的异构体:ET–1、ET–2和ET–3,其中ET–1的缩血管活性最强,其对静脉的收缩强度是对动脉的3~10倍,是引发疾病的主要异构体。ET–1是内皮素家族中含量最多、功能最重要的一种,主要在血管内皮中表达,但在心脏、肾、肺、肾上腺等脏器的非血管组织中也有分布。
ET功能不仅是调节血压的血管因子,也是许多细胞进程(如增殖,凋亡和迁移)进而导致组织肥大、重塑、纤维化和炎症的激素。在多种疾病如肺动脉高压、高血压、败血症、动脉粥样硬化、急性心肌梗死、充血性心力衰竭、偏头痛和哮喘等中,血浆和组织中ET–1水平会升高。因此内皮素受体拮抗剂作为非常有潜力的治疗剂被广泛地研究。
内皮素受体属于G蛋白偶联受体,目前主要有ET A、ET B和ET C 3种,它们在不同的组织和器官中分布不同,对3种内皮素亚型的亲和力也不同,生理作用差别也较大。内皮素ET A受体主要分布于平滑肌细胞上,选择性地结合ET–1,介导血管平滑肌的收缩;内皮素ET B受体分为ET B1和ET B2 2个亚型,前者分布于内皮细胞,介导内皮舒张因子(EDRF)、前列环素(PGI 2)和一氧化氮(NO)的释放,引起血管舒张;后者位于血管平滑肌上,作用和ET A受体一样直接介导静脉血管收缩,内皮素ET B受体对ET–1、ET–2和ET–3的亲和力相当;ET C受体是ET–3选择性受体,主要分布于神经元细胞,起神经递质作用。ET–1主要通过ET A和ET B受体而发挥作用。内皮素受体拮抗剂可分为ET A受体拮抗剂、ET B受体拮抗剂和ET A/ET B双重拮抗剂3种,已经证明了其在诸多疾病如蛛网膜下腔出血、心力衰竭、肺动脉高压、原发性高血压、难治性高血压、神经源性炎症、糖尿病肾病、局灶性节段性肾小球硬化症、肾衰竭、神经源性炎症、以及肾衰竭和心肌梗死后的脑血管痉挛等中的临床前和/或临床作用效果。高选择性的ET A受体拮抗剂抑制ET–1强烈的缩血管作用,同时避免非选择性的ET A/ET B受体双重拮抗剂的一些不良反应,从而减少临床上的副作用。
专利WO200205355公开了化合物马西替坦,该化合物可以用于治疗和内皮素的作用相关的疾病。
Figure PCTCN2018116196-appb-000001
发明内容
本发明提供了式(Ⅰ)所示化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2018116196-appb-000002
其中,
R 1选自H、F、Cl、Br、I、OH和NH 2
R 2选自H和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
R 3选自H、C 1-6烷基、C 1-6杂烷基、-C 1-3烷基-C 3-6环烷基、C 3-6环烷基和-C 1-3烷基-3~7元杂环烷基,所述C 1-6烷基、C 1-6杂烷基、-C 1-3烷基-C 3-6环烷基、C 3-6环烷基或-C 1-3烷基-3~7元杂环烷基任选被1、2或3个R取代;
或者,R 2与R 3连接形成一个任选被1、2或3个R取代的3-8元环;
环B选自3~7元杂环烷基和5~6元杂芳基,所述3~7元杂环烷基或5~6元杂芳基任选被1、2或3个R取代;
R分别独立地选自H、F、Cl、Br、I、OH、NH 2、CN、C 1-6烷基和C 1-6杂烷基,所述C 1-6烷基或C 1-6杂烷基任选被1、2或3个R’取代;
R’分别独立地选自F、Cl、Br、I、OH、NH 2、CN、Me、CH 2F、CHF 2、CF 3和Et;
所述C 1-6杂烷基、3~7元杂环烷基和5~6元杂芳基分别包含1、2、3或4个独立选自N、-O-、-S-、-NH-、-S(=O) 2-和-S(=O)-的杂原子或杂原子团。
本发明的一些方案中,上述R选自H、F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷基-S(=O) 2-和C 1-3烷基-O-,所述C 1-3烷基、C 1-3烷基-S(=O) 2-或C 1-3烷基-O-任选被1、2或3个R’取代,其他变量如本发明所定义。
本发明的一些方案中,上述R选自H、F、Cl、Br、I、OH、NH 2、CN、Me、Et、
Figure PCTCN2018116196-appb-000003
Figure PCTCN2018116196-appb-000004
所述Me、Et、
Figure PCTCN2018116196-appb-000005
任选被1、2或3个R’取代,其他变量如本发明所定义。
本发明的一些方案中,上述R选自H、F、Cl、Br、I、OH、NH 2、CN、Me、CH 2F、CHF 2、CF 3、Et、
Figure PCTCN2018116196-appb-000006
其他变量如本发明所定义。
本发明的一些方案中,上述R 2选自H和Me,其他变量如本发明所定义。
本发明的一些方案中,上述R 3选自H、C 1-4烷基、C 1-4烷基-O-C 1-4烷基、环丁烷基、-C 1-3烷基-环丁烷基、-C 1-3烷基-环丙烷基、-C 1-3烷基-四氢呋喃基和-C 1-3烷基-四氢吡喃基,所述C 1-4烷基、C 1-4烷基-O-C 1-4烷基、环丁烷基、-C 1-3烷基-环丁烷基、-C 1-3烷基-环丙烷基、-C 1-3烷基-四氢呋喃基或-C 1-3烷基-四氢吡喃基任选被1、2或3个R取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 3选自H、Me、Et、
Figure PCTCN2018116196-appb-000007
Figure PCTCN2018116196-appb-000008
所述Me、Et、
Figure PCTCN2018116196-appb-000009
Figure PCTCN2018116196-appb-000010
任选被1、2或3个R取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 3选自H、Me、Et、
Figure PCTCN2018116196-appb-000011
Figure PCTCN2018116196-appb-000012
Figure PCTCN2018116196-appb-000013
其他变量如本发明所定义。
本发明的一些方案中,上述R 2与R 3连接形成一个任选被1、2或3个R取代的6-8元杂环烷基。
本发明的一些方案中,上述结构单元
Figure PCTCN2018116196-appb-000014
选自
Figure PCTCN2018116196-appb-000015
所述
Figure PCTCN2018116196-appb-000016
任选被1、2或3个R取代,其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2018116196-appb-000017
选自
Figure PCTCN2018116196-appb-000018
其他变量如本发明所定义。
本发明的一些方案中,上述环B选自四氢呋喃基、四氢噻吩基、1,3-二氧戊环基、吡咯烷基、噻唑基、吡唑基和咪唑基,所述四氢呋喃基、四氢噻吩基、1,3-二氧戊环基、吡咯烷基、噻唑基、吡唑基或咪唑基任选被1、2或3个R取代,其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2018116196-appb-000019
选自
Figure PCTCN2018116196-appb-000020
其他变量如本发明所定义。
本发明还有一些方案由上述变量任意组合而来。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自
Figure PCTCN2018116196-appb-000021
其中,
R、R 1或R 2如本发明所定义。
本发明还提供了下列化合物、其异构体或其药学上可接受的盐,其选自
Figure PCTCN2018116196-appb-000022
Figure PCTCN2018116196-appb-000023
Figure PCTCN2018116196-appb-000024
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自
Figure PCTCN2018116196-appb-000025
本发明还提供了一种药物组合物,包括治疗有效量的上述的化合物或其药学上可接受的盐作为活性成分以及药学上可接受的载体。
本发明还提供了上述的化合物或其药学上可接受的盐或者上述组合物在制备ET A受体拮抗剂相关药物上的应用。
本发明的一些方案中,上述制备ET A受体拮抗剂相关药物上的应用,是用于肺动脉高压、原发性高血压、难治性高血压、糖尿病肾病和颅内血管痉挛等适应症的药物。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机氨或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成 盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(D)”或者“(+)”表示右旋,“(L)”或者“(-)”表示左旋,“(DL)”或者“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2018116196-appb-000026
和楔形虚线键
Figure PCTCN2018116196-appb-000027
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2018116196-appb-000028
和直形虚线键
Figure PCTCN2018116196-appb-000029
表示立体中心的相对构型,用波浪线
Figure PCTCN2018116196-appb-000030
表示楔形实线键
Figure PCTCN2018116196-appb-000031
或楔形虚线键
Figure PCTCN2018116196-appb-000032
或用波浪线
Figure PCTCN2018116196-appb-000033
表示直形实线键
Figure PCTCN2018116196-appb-000034
和直形虚线键
Figure PCTCN2018116196-appb-000035
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。 例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2018116196-appb-000036
中连接基团L为-M- W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2018116196-appb-000037
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2018116196-appb-000038
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,术语“杂”表示杂原子或杂原子团(即含有杂原子的原子团),包括碳(C)和氢(H)以外的原子以及含有这些杂原子的原子团,例如包括氧(O)、氮(N)、硫(S)、硅(Si)、锗(Ge)、铝(Al)、硼(B)、-O-、-S-、=O、=S、-C(=O)O-、-C(=O)-、-C(=S)-、-S(=O)、-S(=O) 2-,以及任选被取代的-C(=O)N(H)-、-N(H)-、-C(=NH)-、-S(=O) 2N(H)-或-S(=O)N(H)-。
除非另有规定,“环”表示被取代或未被取代的环烷基、杂环烷基、环烯基、杂环烯基、环炔基、杂环炔基、芳基或杂芳基。所谓的环包括单环、联环、螺环、并环或桥环。环上原子的数目通常被定义为环的元数,例如,“5~7元环”是指环绕排列5~7个原子。除非另有规定,该环任选地包含1~3个杂原子。因此,“5~7元环”包括例如苯基、吡啶和哌啶基;另一方面,术语“5~7元杂环烷基环”包括吡啶基和哌啶基,但不包括苯基。术语“环”还包括含有至少一个环的环系,其中的每一个“环”均独立地符合上述定义。
除非另有规定,术语“杂环”或“杂环基”意指稳定的含杂原子或杂原子团的单环、双环或三环,它们可以是饱和的、部分不饱和的或不饱和的(芳族的),它们包含碳原子和1、2、3或4个独立地选自N、O和S的环杂原子,其中上述任意杂环可以稠合到一个苯环上形成双环。氮和硫杂原子可任选被氧化(即NO和S(O)p,p是1或2)。氮原子可以是被取代的或未取代的(即N或NR,其中R是H或本文已经定义过的其他取代基)。该杂环可以附着到任何杂原子或碳原子的侧基上从而形成稳定的结构。如果产生的化合物是稳定的,本文所述的杂环可以发生碳位或氮位上的取代。杂环中的氮原子任选地被季铵化。一个优选方案是,当杂环中S及O原子的总数超过1时,这些杂原子彼此不相邻。另一个优选方案是,杂环中S及O原子的总数不超过1。如本文所用,术语“芳族杂环基团”或“杂芳基”意指稳定的5、6、7元单环或双环或7、8、9或10元双环杂环基的芳香环,它包含碳原子和1、2、3或4个独立地选自N、O和S的环杂原子。氮原子可以是被取代的或未取代的(即N或NR,其中R是H或本文已经定义过的其他取代基)。氮和硫杂原子可任选被氧化(即NO和S(O)p,p是1或2)。值得注意的是,芳香杂环上S和O原子的总数不超过1。桥环也包含在杂环的定义中。当一个或多个原子(即C、O、N或S)连接两个不相邻的碳原子或氮原子时形成桥环。优选的桥环包括但不限于:一个碳原子、两个碳原子、一个氮原子、两个氮原子和一个碳-氮基。值得注意的是,一个桥总是将单环转换成三环。桥环中,环上的取代基也可以出现在桥上。
杂环化合物的实例包括但不限于:吖啶基、吖辛因基、苯并咪唑基、苯并呋喃基、苯并巯基呋喃基、 苯并巯基苯基、苯并恶唑基、苯并恶唑啉基、苯并噻唑基、苯并三唑基、苯并四唑基、苯并异恶唑基、苯并异噻唑基、苯并咪唑啉基、咔唑基、4aH-咔唑基、咔啉基、苯并二氢吡喃基、色烯、噌啉基十氢喹啉基、2H,6H-1,5,2-二噻嗪基、二氢呋喃并[2,3-b]四氢呋喃基、呋喃基、呋咱基、咪唑烷基、咪唑啉基、咪唑基、1H-吲唑基、吲哚烯基、二氢吲哚基、中氮茚基、吲哚基、3H-吲哚基、异苯并呋喃基、异吲哚基、异二氢吲哚基、异喹啉基、异噻唑基、异恶唑基、亚甲二氧基苯基、吗啉基、萘啶基,八氢异喹啉基、恶二唑基、1,2,3-恶二唑基、1,2,4-恶二唑基、1,2,5-恶二唑基、1,3,4-恶二唑基、恶唑烷基、恶唑基、羟吲哚基、嘧啶基、菲啶基、菲咯啉基、吩嗪、吩噻嗪、苯并黄嘌呤基、酚恶嗪基、酞嗪基、哌嗪基、哌啶基、哌啶酮基、4-哌啶酮基、胡椒基、蝶啶基、嘌呤基、吡喃基、吡嗪基、吡唑烷基、吡唑啉基、吡唑基、哒嗪基、吡啶并恶唑、吡啶并咪唑、吡啶并噻唑、吡啶基、吡咯烷基、吡咯啉基、2H-吡咯基、吡咯基、喹唑啉基、喹啉基、4H-喹嗪基、喹喔啉基、奎宁环基、四氢呋喃基、四氢异喹啉基、四氢喹啉基、四唑基,6H-1,2,5-噻二嗪基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、噻蒽基、噻唑基、异噻唑基噻吩基、噻吩并恶唑基、噻吩并噻唑基、噻吩并咪唑基、噻吩基、三嗪基、1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基、4H-1,2,4-三唑基和呫吨基。还包括稠环和螺环化合物。
除非另有规定,术语“烃基”或者其下位概念(比如烷基、烯基、炔基、芳基等等)本身或者作为另一取代基的一部分表示直链的、支链的或环状的烃原子团或其组合,可以是完全饱和的(如烷基)、单元或多元不饱和的(如烯基、炔基、芳基),可以是单取代或多取代的,可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基),可以包括二价或多价原子团,具有指定数量的碳原子(如C 1-C 12表示1至12个碳,C 1-12选自C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11和C 12;C 3-12选自C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11和C 12。)。“烃基”包括但不限于脂肪烃基和芳香烃基,所述脂肪烃基包括链状和环状,具体包括但不限于烷基、烯基、炔基,所述芳香烃基包括但不限于6-12元的芳香烃基,例如苯、萘等。在一些实施例中,术语“烃基”表示直链的或支链的原子团或它们的组合,可以是完全饱和的、单元或多元不饱和的,可以包括二价和多价原子团。饱和烃原子团的实例包括但不限于甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、仲丁基、异丁基、环己基、(环己基)甲基、环丙基甲基,以及正戊基、正己基、正庚基、正辛基等原子团的同系物或异构体。不饱和烃基具有一个或多个双键或三键,其实例包括但不限于乙烯基、2-丙烯基、丁烯基、巴豆基、2-异戊烯基、2-(丁二烯基)、2,4-戊二烯基、3-(1,4-戊二烯基)、乙炔基、1-和3-丙炔基,3-丁炔基,以及更高级的同系物和异构体。
除非另有规定,术语“杂烃基”或者其下位概念(比如杂烷基、杂烯基、杂炔基、杂芳基等等)本身或者与另一术语联合表示由一定数目的碳原子和至少一个杂原子组成的,稳定的直链、支链或环状的烃原子团或其组合。在一些实施例中,术语“杂烷基”本身或者与另一术语联合表示由一定数目的碳原子和至少一个杂原子组成的,稳定的直链或支链的烷基原子团或其组合物。在一个典型实施例中,杂原子选自B、O、N和S,其中氮和硫原子任选地被氧化,氮杂原子任选地被季铵化。杂原子或杂原子团可以位于杂烃基的 任何内部位置,包括该烃基与分子其余部分的连接位置,但术语“烷氧基”、“烷氨基”和“烷硫基”(或硫代烷氧基)属于惯用表达,是指分别通过一个氧原子、氨基或硫原子连接到分子的其余部分的那些烷基基团。实例包括但不限于-CH 2-CH 2-O-CH 3、-CH 2-CH 2-NH-CH 3、-CH 2-CH 2-N(CH 3)-CH 3、-CH 2-S-CH 2-CH 3、-CH 2-CH 2、-S(O)-CH 3、-CH 2-CH 2-S(O) 2-CH 3、-CH=CH-O-CH 3、-CH 2-CH=N-OCH 3和–CH=CH-N(CH 3)-CH 3。至多两个杂原子可以是连续的,例如-CH 2-NH-OCH 3
除非另有规定,术语“环烃基”、“杂环烃基”或者其下位概念(比如芳基、杂芳基、环烷基、杂环烷基、环烯基、杂环烯基、环炔基、杂环炔基等等)本身或与其他术语联合分别表示环化的“烃基”、“杂烃基”。此外,就杂烃基或杂环烃基(比如杂烷基、杂环烷基)而言,杂原子可以占据该杂环附着于分子其余部分的位置。环烃基的实例包括但不限于环戊基、环己基、1-环己烯基、3-环己烯基、环庚基等。杂环基的非限制性实例包括1-(1,2,5,6-四氢吡啶基)、1-哌啶基、2-哌啶基,3-哌啶基、4-吗啉基、3-吗啉基、四氢呋喃-2-基、四氢呋喃吲哚-3-基、四氢噻吩-2-基、四氢噻吩-3-基,1-哌嗪基和2-哌嗪基。
除非另有规定,术语“杂环烷基”本身或者与其他术语联合分别表示环化的“杂烷基”,此外,就该“杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。在一些实施方案中,所述杂环烷基为4~6元杂环烷基;在另一些实施方案中,所述杂环烷基为5~6元杂环烷。杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基、四氢呋喃基、四氢吡喃基、哌啶基、哌嗪基、吗啉基、二恶烷基、二噻烷基、异恶唑烷基、异噻唑烷基、1,2-恶嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或氧杂环庚烷基。
除非另有规定,术语“烷基”用于表示直链或支链的饱和烃基,可以是单取代(如-CH 2F)或多取代的(如-CF 3),可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。烷基的例子包括甲基(Me),乙基(Et),丙基(如,n-丙基和异丙基),丁基(如,n-丁基,异丁基,s-丁基,t-丁基),戊基(如,n-戊基,异戊基,新戊基)等。
除非另有规定,环烷基包括任何稳定的环状或多环烃基,任何碳原子都是饱和的,可以是单取代或多取代的,可以是一价、二价或者多价。这些环烷基的实例包括,但不限于,环丙基、降冰片烷基、[2.2.2]二环辛烷、[4.4.0]二环癸烷等。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。此外,术语“卤代烷基”意在包括单卤代烷基和多卤代烷基。例如,术语“卤代(C 1-C 4)烷基”意在包括但不仅限于三氟甲基、2,2,2-三氟乙基、4-氯丁基和3-溴丙基等等。除非另有规定,卤代烷基的实例包括但不仅限于:三氟甲基、三氯甲基、五氟乙基,和五氯乙基。
“烷氧基”代表通过氧桥连接的具有特定数目碳原子的上述烷基,除非另有规定,C 1-6烷氧基包括C 1、C 2、C 3、C 4、C 5和C 6的烷氧基。烷氧基的例子包括但不限于:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基和S-戊氧基。
除非另有规定,术语“芳基”表示多不饱和的芳族烃取代基,可以是单取代或多取代的,可以是一价、二价或者多价,它可以是单环或多环(比如1至3个环;其中至少一个环是芳族的),它们稠合在一起或共价连接。术语“杂芳基”是指含有一至四个杂原子的芳基(或环)。在一个示范性实例中,杂原子选自B、N、O和S,其中氮和硫原子任选地被氧化,氮原子任选地被季铵化。杂芳基可通过杂原子连接到分子的其余部分。芳基或杂芳基的非限制性实施例包括苯基、萘基、联苯基、吡咯基、吡唑基、咪唑基、吡嗪基、恶唑基、苯基-恶唑基、异恶唑基、噻唑基、呋喃基、噻吩基、吡啶基、嘧啶基、苯并噻唑基、嘌呤基、苯并咪唑基、吲哚基、异喹啉基、喹喔啉基、喹啉基、1-萘基、2-萘基、4-联苯基、1-吡咯基、2-吡咯基、3-吡咯基、3-吡唑基、2-咪唑基、4-咪唑基、吡嗪基、2-恶唑基、4-恶唑基、2-苯基-4-恶唑基、5-恶唑基、3-异恶唑基、4-异恶唑基、5-异恶唑基、2-噻唑基、4-噻唑基、5-噻唑基、2-呋喃基、3-呋喃基、2-噻吩基、3-噻吩基、2-吡啶基、3-吡啶基、4-吡啶基、2-嘧啶基、4-嘧啶基、5-苯并噻唑基、嘌呤基、2-苯并咪唑基、5-吲哚基、1-异喹啉基、5-异喹啉基、2-喹喔啉基、5-喹喔啉基、3-喹啉基和6-喹啉基。上述任意一个芳基和杂芳基环系的取代基选自下文所述的可接受的取代基。
除非另有规定,芳基在与其他术语联合使用时(例如芳氧基、芳硫基、芳烷基)包括如上定义的芳基和杂芳基环。因此,术语“芳烷基”意在包括芳基附着于烷基的那些原子团(例如苄基、苯乙基、吡啶基甲基等),包括其中碳原子(如亚甲基)已经被例如氧原子代替的那些烷基,例如苯氧基甲基、2-吡啶氧甲基3-(1-萘氧基)丙基等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲和取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以有多种用途或适应症,包括但不限于本申请所列举的具体用途或适应症。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;HATU代表O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;EDC代表N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐;m-CPBA代表3-氯过氧苯甲酸;eq代表当量、等量;CDI代表羰基二咪唑;DCM代表二氯甲烷;PE代表石油醚;DIAD代表偶氮二羧酸二异丙酯;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺保护基团;Boc代表叔丁氧羰基是一种胺保护基团;HOAc代表乙酸;NaCNBH 3代表氰基硼氢化钠;r.t.代表室温;O/N代表过夜;THF代表四氢呋喃;Boc 2O代表二-叔丁基二碳酸酯;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl 2代表氯化亚砜;CS 2代表二硫化碳;TsOH代表对甲苯磺酸;NFSI代表N-氟-N-(苯磺酰基)苯磺酰胺;NCS代表1-氯吡咯烷-2,5-二酮;n-Bu 4NF代表氟化四丁基铵;iPrOH代表2-丙醇;mp代表熔点;LDA代表二异丙基胺基锂;DEA代表二乙胺;ACN代表乙腈。
化合物经手工或者
Figure PCTCN2018116196-appb-000039
软件命名,市售化合物采用供应商目录名称。
技术效果:本发明化合物都展现出对人ET A受体的体外拮抗极高活性,以及ET A/ET B的选择性都超过10000倍;本发明化合物在PXR介导CYP3A表达的诱导作用的表征实验中优于对照马西替坦;在对人肝微粒体细胞素P450的5种主要同工酶的抑制作用的表征实验中,本发明化合物均优于马西替坦;本发明化合物对胆盐转运泵的抑制作用远远弱于马西替坦,从而显著降低产生肝毒性的风险。本发明化合物在SD大鼠和比格犬体内均具有良好的药代动力学特征。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
参考例1:片段BB–1
Figure PCTCN2018116196-appb-000040
合成路线:
Figure PCTCN2018116196-appb-000041
步骤1:化合物BB–1–2的合成
室温下,将化合物BB–1–1(30.00g,211.97mmol,18.40mL)溶解于二氯甲烷(200mL)中,随后冷却至0℃,缓慢加入叔丁醇(15.71g,211.97mmol,20.40mL)的二氯甲烷(100mL)溶液(滴加时间约1小时),反应混合物升至室温并搅拌1小时。目标化合物BB–1–2(粗品)保留在反应溶剂二氯甲烷中,直接用于下一步的反应。
步骤2:化合物BB–1–3的合成
室温下,将化合物2,2,2–三氟乙胺(8.00g,80.77mmol,6.35mL)和三乙胺(24.52g,242.30mmol,33.59mL)溶解于二氯甲烷(100.00mL)中,随后冷却至0℃,缓慢加入化合物BB–1–2(80.77mmol,粗品)的二氯甲烷溶液(滴加时间约1小时),反应混合物升至室温并搅拌14小时。反应完毕后,减压除去溶剂,所得残余物加入水(150mL),用二氯甲烷(100mL)萃取,有机相丢弃。水相用1M稀盐酸调节pH至5–6,用乙酸乙酯(100mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–1–3(白色固体,15.00g,粗品)。 1H NMR(400MHz,DMSO_d 6)δ:3.55(q,J=9.8Hz,2H),1.37(s,9H).
步骤3:化合物BB–1–4的合成
室温下,将化合物BB–1–3(15.00g,53.91mmol)加入到水(150.00mL)中,反应混合物加热至110℃并搅拌1小时。反应完毕后,冷却至室温,用乙酸乙酯(100mL×3)萃取。合并有机相,用食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–1–4(黄色固体,7.50g,粗品)。 1H NMR(400MHz,DMSO_d 6)δ:7.51(t,J=7.0Hz,1H),6.83(s,2H),3.69–3.54(m,2H). 19F NMR(400MHz,DMSO_d 6)δ:–70.81(s,3F).
步骤4:化合物BB–1–5的合成
室温下,将化合物BB–1–4(1.56g,8.78mmol)和叔丁醇钾(1.97g,17.55mmol)溶解于二甲亚砜(80.00mL)中,在氮气保护下反应混合物在室温下搅拌1小时。随后将5–溴–4,6–二氯嘧啶(2.00g,8.78mmol)加入到上述反应混合物中,反应混合物在室温下继续搅拌10小时。反应完毕后,加入水(100mL),用1M稀盐酸调节pH至5–6,用乙酸乙酯(50mL×3)萃取。合并有机相,用水(50mL×2)洗涤,无水硫酸钠干燥,过滤, 滤液减压除去溶剂,残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–4/1,体积比),得到目标化合物BB–1–5(黄色固体,1.90g,收率:58.56%)。 1H NMR(400MHz,DMSO_d 6)δ:8.60(s,1H),7.51(t,J=7.0Hz,1H),6.83(s,1H),3.84(q,J=9.6Hz,2H).
步骤5:化合物BB–1的合成
室温下,将叔丁醇钾(1.73g,15.42mmol)加入到乙二醇(52.68g,848.46mmol,47.46mL)和乙二醇二甲醚(10mL)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–1–5(1.90g,5.14mmol)的乙二醇二甲醚(20mL)溶液加入到上述溶液中,在氮气保护下反应混合物加热至100℃并继续搅拌16小时。反应完毕后,冷却至室温,加入水(100mL),用2M稀盐酸调节pH至5–6,用乙酸乙酯(60mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂,残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=8/1–3/1,体积比),得到目标化合物BB–1(黄色固体,1.55g,收率:76.31%)。MS–ESI m/z:394.7[M+H] +,396.7[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.33(s,1H),6.04(s,1H),4.53(t,J=4.4Hz,2H),3.93(t,J=4.4Hz,2H),3.67(q,J=8.6Hz,2H). 19F NMR(400MHz,CDCl 3)δ:–71.87(s,3F).
参考例2:片段BB–2
Figure PCTCN2018116196-appb-000042
合成路线:
Figure PCTCN2018116196-appb-000043
步骤1:化合物BB–2–1的合成
室温下,将乙胺的盐酸盐(5.00g,61.32mmol)和三乙胺(18.61g,183.96mmol,25.49mL)加入到二氯甲烷(100.00mL)中,随后冷却至0℃,缓慢滴加化合物BB–1–2(61.32mmol,粗品)的二氯甲烷溶液(滴加时间约1小时),反应混合物升至室温并搅拌16小时。反应完毕后,减压除去溶剂,所得残余物加入水(150mL),用二氯甲烷(100mL)萃取,有机相丢弃。水相用1M稀盐酸调节pH至5–6,用乙酸乙酯(100mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–2–1(白色固体,6.00 g,粗品)。 1H NMR(400MHz,CDCl 3)δ:5.07(t,J=5.6Hz,1H),3.13–3.01(m,2H),1.43(s,9H),1.16(t,J=7.3Hz,3H).
步骤2:化合物BB–2–2的合成
室温下,将化合物BB–2–1(7.02g,31.30mmol)加入到水(200.00mL)中,反应混合物加热至110℃并搅拌1小时。应完毕后,冷却至室温,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–2–2(黄色油状物,2.87g,粗品)。 1H NMR(400MHz,CDCl 3)δ:4.80(s,2H),4.57(s,1H),3.23–3.14(m,2H),1.24(t,J=7.3Hz,3H).
步骤3:化合物BB–2–3的合成
室温下,将化合物BB–2–2(2.87g,23.12mmol)和叔丁醇钾(5.19g,46.24mmol)加入到二甲亚砜(80.00mL)中,随后将5–溴–4,6–二氯嘧啶(5.27g,23.12mmol)加入到上述反应混合物中,在氮气保护下反应混合物在室温下搅拌10小时。反应完毕后,加入水(150mL),用1M稀盐酸调节pH至5–6,乙酸乙酯(100mL×3)萃取。合并有机相,用水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–4/1,体积比),得到目标化合物BB–2–3(黄色固体,2.40g,收率:32.89%)。 1H NMR(400MHz,DMSO_d 6)δ:8.59(s,1H),2.96(q,J=7.1Hz,2H),1.02(t,J=7.0Hz,3H).
步骤4:化合物BB–2的合成
室温下,将叔丁醇钾(1.50g,13.41mmol)加入到乙二醇(33.30g,536.49mmol,30.00mL)和乙二醇二甲醚(10mL)混合液中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–2–3(1.41g,4.47mmol)的乙二醇二甲醚(20mL)溶液一次加入到上述溶液中,反应混合物加热至100℃并继续搅拌16小时。反应完毕后,冷却至室温,加入水(100mL),用2M稀盐酸调节pH至5–6,用乙酸乙酯(60mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂,残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=8/1–3/1,体积比),得到目标化合物BB–2(黄色固体,1.36g,收率:87.21%)。MS–ESI m/z:340.7[M+H] +,342.7[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.38(s,1H),7.66(s,1H),5.54(t,J=5.9Hz,1H),4.60(t,J=4.8Hz,2H),4.00(t,J=4.0Hz,2H),3.19–3.03(m,2H),2.45(br s,1H),1.21(t,J=7.2Hz,3H).
参考例3:片段BB–3
Figure PCTCN2018116196-appb-000044
合成路线:
Figure PCTCN2018116196-appb-000045
步骤1:化合物BB–3–1的合成
室温下,将正丙胺(7.61g,128.70mmol,10.57mL)和三乙胺(14.21g,140.40mmol,19.47mL)溶解于二氯甲烷(100.00mL)中,随后冷却至0℃,缓慢加入化合物BB–1–2(117.00mmol,粗品)的二氯甲烷溶液到上述反应液中(滴加时间约0.5小时),在氮气保护下反应混合物在室温下搅拌18小时。反应完毕后,加入水(200mL),用二氯甲烷(200mL×2)萃取。合并有机相,分别用1M稀盐酸(50mL)和饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–3–1(白色固体,21.00g,收率:75.32%)。 1H NMR(400MHz,CDCl 3)δ:2.93(t,J=7.0Hz,2H),1.58–1.48(m,2H),1.46–1.37(s,9H),0.88(t,J=7.4Hz,3H).
步骤2:化合物BB–3–2的合成
室温下,将化合物BB–3–1(20.00g,83.93mmol)加入到水(100.00mL)中,在氮气保护下反应混合物加热至100℃并搅拌1小时。反应完毕后,冷却至室温,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–3–2(无色油状物,10.00g,收率:86.22%)。 1H NMR(400MHz,DMSO_d 6)δ:6.44(s,2H),2.88–2.78(m,2H),1.52–1.43(m,2H),0.87(t,J=7.5Hz,3H).
步骤3:化合物BB–3–3的合成
室温下,将化合物BB–3–2(18.19g,131.66mmol)溶解于二甲亚砜(300.00mL)中,随后加入叔丁醇钾(19.70g,175.54mmol),反应混合物在室温下搅拌0.5小时。然后,将5–溴–4,6–二氯嘧啶(20.00g,87.77mmol)加入到上述反应液中,反应混合物在室温下继续搅拌48小时。反应完毕后,加入饱和食盐水(1000mL),用10%稀盐酸调节pH至4–5,乙酸乙酯(500mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到目标化合物BB–3–3(白色固体,15.00g,收率:51.85%)。 1H NMR(400MHz,CDCl 3)δ:8.58(s,1H),7.84(s,1H),5.52–5.54(m,1H),3.07(q,J=6.8Hz,2H),1.59–1.64(m,2H),0.96(t,J=7.2Hz,3H).
步骤4:化合物BB–3的合成
室温下,将叔丁醇钾(10.21g,91.02mmol)加入到乙二醇(56.50g,910.19mmol)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时。随后将化合物BB–3–3(15.00g,45.51mmol)的乙二醇二甲醚(50.00mL)溶液加入到上述溶液中,在氮气保护下反应混合物加热至100℃并继续搅拌48小时。反应完毕后,冷却至室温,加入水(200mL),用1M稀盐酸调节pH至4,乙酸乙酯(200mL×3)萃取。合并有机相,用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到目标化合物BB–3(黄色固体,7.10g,收率:40.13%)。MS–ESI m/z:354.8[M+H] +,356.8[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.39(s,1H),7.68(s,1H),5.59–5.62(m,1H),4.83–4.75(m,2H),4.02–4.00(m,2H),3.04(q,J=6.8Hz,2H),2.05(br s,1H)1.63–1.57(m,2H),0.95(t,J=7.2Hz,3H).
参考例4:片段BB–4
Figure PCTCN2018116196-appb-000046
合成路线:
Figure PCTCN2018116196-appb-000047
步骤1:化合物BB–4–1的合成
室温下,将化合物2–甲氧基乙胺(2.00g,26.63mmol,2.33mL)和三乙胺(5.39g,53.26mmol,7.38mL)溶解于二氯甲烷(100.00mL)中,随后反应混合物冷却至0℃,缓慢将化合物BB–1–2(26.63mmol,粗品)的二氯甲烷溶液加入到上述反应液中(滴加时间约0.5小时),反应混合物升至室温并搅拌15小时。反应完毕后,减压除去溶剂,所得残余物加入水(100mL),用1M盐酸调节pH至5,乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化 合物BB–4–1(白色固体,6.00g,收率:88.59%)。 1H NMR(400MHz,CDCl 3)δ:7.37(s,1H),5.50(br s,1H),3.53(t,J=5.0Hz,2H),3.40(s,3H),3.26(d,J=4.8Hz,2H),1.51(s,9H).
步骤2:化合物BB–4–2的合成
室温下,将化合物BB–4–1(6.00g,23.59mmol)加入到水(100.00mL)中,反应混合物加热至100℃并搅拌1小时。反应完毕后,冷却至室温,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–4–2(黄色固体,2.00g,收率:54.99%)。 1H NMR(400MHz,CDCl 3)δ:5.52(br s,2H),3.58–3.48(m,2H),3.41–3.19(m,5H).
步骤3:化合物BB–4–3的合成
室温下,将化合物BB–4–2(1.12g,7.24mmol)和叔丁醇钾(2.22g,19.75mmol)加入到二甲亚砜(20.00mL)中,反应混合物在室温下搅拌0.5小时,随后将5–溴–4,6–二氯嘧啶(1.50g,6.58mmol)加入到上述反应液中,反应混合物在室温下继续搅拌6小时。反应完毕后,加入水(100mL),用1M稀盐酸调节pH至6,乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:二氯甲烷/甲醇=30/1,体积比),得到目标化合物BB–4–3(黄色固体,1.40g,收率:61.56%)。 1H NMR(400MHz,CDCl 3)δ:8.57(s,1H),7.89(br s,1H),5.99(br s,1H),3.36(br d,J=2.3Hz,2H),3.32–3.20(m,5H).
步骤4:化合物BB–4的合成
室温下,将叔丁醇钾(1.36g,12.15mmol)加入到乙二醇(22.20g,357.66mmol,20.00mL)中,反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–4–3(1.40g,4.05mmol)的乙二醇二甲醚(10.00mL)溶液加入到上述溶液中,反应混合物加热至110℃并继续搅拌12小时。反应完毕后,冷却至室温,加入水(50mL),用1M稀盐酸调节pH至3,乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:二氯甲烷/甲醇=20/1,体积比),得到目标化合物BB–4(黄色固体,1.20g,收率:76.63%)。MS–ESI m/z:370.8[M+H] +,372.8[M+H] +. 1H NMR(400MHz,CDCl 3)δ:8.39(s,1H),7.64(br s,1H),6.03–5.94(m,1H),4.65–4.54(m,2H),3.99(d,J=3.0Hz,2H),3.49(t,J=5.0Hz,2H),3.33–3.19(m,5H),2.39(t,J=5.3Hz,1H).
参考例5:片段BB–5
Figure PCTCN2018116196-appb-000048
合成路线:
Figure PCTCN2018116196-appb-000049
步骤1:化合物BB–5–1的合成
室温下,将化合物2–乙氧基乙胺(5.00g,56.09mmol)和三乙胺(11.35g,112.18mmol,15.55mL)溶解于二氯甲烷(50.00mL)中,在氮气保护下反应混合物冷却至0℃,随后将化合物BB–1–2(56.09mmol,粗品)的二氯甲烷溶液滴加到上述反应液中,在氮气保护下反应混合物在室温下搅拌12小时。反应完毕后,加入水(80mL),二氯甲烷(80mL×2)萃取。合并有机相,分别用1M稀盐酸(50mL)和饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–5–1(白色固体,11.00g,收率:73.09%)。 1H NMR(400MHz,CDCl 3)δ:7.41(s,1H),5.43(t,J=5.7Hz,1H),3.50(t,J=5.0Hz,2H),3.46–3.40(m,2H),3.19(q,J=5.5Hz,2H),1.44(s,9H),1.14(t,J=7.0Hz,3H).
步骤2:化合物BB–5–2的合成
室温下,将化合物BB–5–1(10.00g,37.27mmol)加入到水(100.00mL)中,反应混合物加热至100℃并搅拌12小时。反应完毕后,冷却至室温,用乙酸乙酯(80mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–5–2(白色固体,5.20g,收率:82.95%)。 1H NMR(400MHz,CDCl 3)δ:5.02(t,J=5.8Hz,1H),5.00–4.88(m,2H),3.63–3.57(m,2H),3.55(d,J=7.0Hz,2H),3.33(d,J=5.0Hz,2H),1.22(t,J=6.2Hz,3H).
步骤3:化合物BB–5–3的合成
室温下,将化合物BB–5–2(5.00g,29.72mmol)和叔丁醇钾(10.01g,89.17mmol)加入到二甲亚砜(50.00mL)中,反应混合物加热至35℃并搅拌0.5小时,随后将5–溴–4,6–二氯嘧啶(6.77g,29.72mmol)加入到上述反应液中,反应混合物在35℃下继续搅拌12小时。反应完毕后,加入盐酸(0.5M,50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–3/1,体积比),得到目标化合物BB–5–3(浅黄色固体,2.10g,收率:16.76%)。MS–ESI m/z:358.9[M+H] +,360.8[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.49(s,1H),7.82(s,1H),5.99(t,J=5.5Hz,1H),3.47–3.43(m,2H),3.34(d,J=7.0Hz,2H),3.18(d, J=4.7Hz,2H),1.05(t,J=6.9Hz,3H).
步骤4:化合物BB–5的合成
室温下,将叔丁醇钾(1.87g,16.68mmol)加入到乙二醇(33.30g,536.49mmol,30.00mL)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–5–3(2.00g,5.56mmol)的乙二醇二甲醚(20.00mL)溶液加入到上述溶液中,在氮气保护下反应混合物加热至110℃并继续搅拌12小时。反应完毕后,冷却至室温,加入盐酸(0.5M,50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到目标化合物BB–5(浅黄色固体,1.30g,收率:60.69%)。 1H NMR(400MHz,CDCl 3)δ:8.38(s,1H),7.67(br s,1H),6.09(d,J=5.0Hz,1H),4.72–4.52(m,2H),4.00(br s,2H),3.62–3.50(m,2H),3.47–3.36(m,2H),3.31–3.20(m,2H),2.46(br s,1H),1.21–1.05(m,3H).
参考例6:片段BB–6
Figure PCTCN2018116196-appb-000050
合成路线:
Figure PCTCN2018116196-appb-000051
步骤1:化合物BB–6–1的合成
室温下,将化合物2–正丙氧基乙胺(5.00g,48.47mmol)和三乙胺(9.81g,96.94mmol,13.44mL)溶解于二氯甲烷(50.00mL)中,在氮气保护下反应混合物冷却至0℃,随后将化合物BB–1–2(48.47mmol,粗品)的二氯甲烷溶液缓慢滴加到上述反应液中,反应混合物升至室温并搅拌12小时。反应完毕后,加入水(80mL),用二氯甲烷(80mL×2)萃取。合并有机相,分别用1M稀盐酸(50mL)和饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–6–1(白色固体,11.00g,收率: 80.37%)。
步骤2:化合物BB–6–2的合成
室温下,将化合物BB–6–1(11.00g,38.96mmol)加入到水(100.00mL)中,反应混合物加热至100℃并搅拌2小时。反应完毕后,冷却至室温,用乙酸乙酯(80mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–6–2(白色固体,5.60g,收率:78.87%)。 1H NMR(400MHz,CDCl 3)δ:5.01–4.96(m,1H),4.90(br s,2H),3.58–3.66(m,2H),3.41–3.47(m,2H),3.34(d,J=4.5Hz,2H),1.55–1.68(m,2H),0.90–0.96(m,3H).
步骤3:化合物BB–6–3的合成
室温下,将化合物BB–6–2(5.00g,27.44mmol)和叔丁醇钾(9.24g,82.32mmol)加入到二甲亚砜(50.00mL)中,反应混合物加热至35℃并搅拌0.5小时,随后将5–溴–4,6–二氯嘧啶(6.25g,27.44mmol)加入到上述反应液中,反应混合物在35℃下继续搅拌12小时。反应完毕后,加入盐酸(0.5M,50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–3/1,体积比),得到目标化合物BB–6–3(浅黄色固体,2.00g,收率:18.15%)。MS–ESI m/z:372.8[M+H] +,374.8[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.48(s,1H),7.77(s,1H),5.96(t,J=5.6Hz,1H),3.43–3.47(m,2H),3.24(t,J=6.6Hz,2H),3.18(d,J=4.7Hz,2H),1.43(d,J=7.2Hz,2H),0.81(t,J=7.4Hz,3H).
步骤4:化合物BB–6的合成
室温下,将叔丁醇钾(1.80g,16.06mmol)加入到乙二醇(33.30g,536.49mmol,30.00mL)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–6–3(2.00g,5.35mmol)的乙二醇二甲醚(20.00mL)溶液加入到上述溶液中,在氮气保护下反应混合物加热至110℃并继续搅拌12小时。反应完毕后,冷却至室温,加入盐酸(0.5M,30mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到目标化合物BB–6(浅黄色固体,1.20g,收率:56.18%)。 1H NMR(400MHz,CDCl 3)δ:8.39(s,1H),7.67(s,1H),6.08(t,J=5.7Hz,1H),4.56–4.65(m,2H),3.97–4.03(m,2H),3.52–3.57(m,2H),3.33(t,J=6.6Hz,2H),3.24(q,J=5.5Hz,2H),2.44(br s,1H),1.44–1.59(m,2H),0.90(t,J=7.4Hz,3H).
参考例7:片段BB–7
Figure PCTCN2018116196-appb-000052
合成路线:
Figure PCTCN2018116196-appb-000053
步骤1:化合物BB–7–1的合成
室温下,将正丁基胺(2.83g,38.64mmol,3.82mL)和三乙胺(3.91g,38.64mmol,5.36mL)溶解于二氯甲烷(100mL)中,反应混合物冷却至0℃,随后将化合物BB–1–2(46.37mmol,粗品)的二氯甲烷溶液缓慢滴加到上述反应液中(滴加时间约0.5小时),反应混合物升至室温并搅拌16小时。反应完毕后,减压除去溶剂。所得残余物加入二氯甲烷(200mL),分别用1M稀盐酸(80mL)和水(100mL×2)洗涤。有机相用无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–7–1(白色固体,3.00g,收率:30.77%)。 1H NMR(400MHz,CDCl 3)δ:2.98(q,J=8.0Hz,2H),1.47(t,J=4.0Hz 2H),1.24–1.38(m,11H),0.86(t,J=4.0Hz,3H).
步骤2:化合物BB–7–2的合成
室温下,将化合物BB–7–1(3.00g,11.89mmol)加入到水(150.00mL)中,反应混合物加热至110℃并搅拌0.5小时。反应完毕后,冷却至室温,用二氯甲烷(50mL)萃取,有机相丢弃,水相用乙酸乙酯(100mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–7–2(无色油状物,1.10g,收率:60.78%)。 1H NMR(400MHz,CDCl 3)δ:3.06(q,J=8.0Hz,2H),1.46–1.54(m,2H),1.32(s,2H),0.87(t,J=8.0Hz,3H).
步骤3:化合物BB–7–3的合成
室温下,将化合物BB–7–2(1.10g,7.23mmol)溶于二甲亚砜(50.00mL)中,随后加入叔丁醇钾(1.22g,10.85mmol),在氮气保护下反应混合物在室温下搅拌0.5小时。然后,将5–溴–4,6–二氯嘧啶(1.98g,8.68mmol)加入到上述反应液中,在氮气保护和室温下反应混合物继续搅拌3小时。反应完毕后,加入饱和食盐水(50mL),用10%稀盐酸调节pH至4–5,乙酸乙酯(80mL)萃取。合并有机相,用水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到目标化合物BB–7–3(白色固体,350.00mg,收率:9.58%)。MS–ESI m/z:342.7[M+H] +, 344.7[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.49(s,1H),7.74(s,1H),5.41(t,J=6.0Hz,1H),3.00(q,J=7.2Hz,2H),1.47(q,J=7.6Hz,2H),1.28–1.32(m,2H),0.84(t,J=7.2Hz,3H).
步骤4:化合物BB–7的合成
室温下,将叔丁醇钾(343.36mg,3.06mmol)加入到乙二醇(3.17g,51.00mmol,2.85mL)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–7–3(350.00mg,1.02mmol)的乙二醇二甲醚(20.00mL)溶液一次性加入到上述溶液中,在氮气保护下反应混合物加热至110℃并继续搅拌15小时。反应完毕后,冷却至室温,加入冰水(50mL),用1M稀盐酸调节pH至4,乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过制备层析板(洗脱剂:二氯甲烷/甲醇=20/1,体积比),得到目标化合物BB–7(黄色固体,300.00mg,收率:79.66%)。 1H NMR(400MHz,CDCl 3)δ:8.30(s,1H),7.54(s,1H),5.44(t,J=6.0Hz,1H),4.52(t,J=4.8Hz,2H),3.92(q,J=3.2Hz,2H),2.98(q,J=6.8Hz,2H),2.31(t,J=6.0Hz,1H),1.45(q,J=8.0Hz,2H),1.26–1.32(m,2H),0.83(t,J=7.2Hz,3H).
参考例8:片段BB–8
Figure PCTCN2018116196-appb-000054
合成路线:
Figure PCTCN2018116196-appb-000055
步骤1:化合物BB–8–1的合成
室温下,将环丁基胺(5.00g,70.30mmol,6.02mL)和三乙胺(8.54g,84.36mmol,11.70mL)溶解于二氯甲烷(100.00mL)中,反应混合物冷却至0℃,随后将化合物BB–1–2(84.36mmol,粗品)的二氯甲烷溶液滴加到上述反应液中(滴加时间约0.5小时),反应混合物升至室温并搅拌15小时。反应完毕后,加入水(100mL×3)萃取。合并水相,用1M稀盐酸调节pH至5,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–8–1(白 色固体,12.00g,收率:68.19%)。 1H NMR(400MHz,CDCl 3)δ:5.35(d,J=9.8Hz,1H),3.94–3.84(m,1H),3.15(d,J=7.3Hz,1H),2.38–2.30(m,2H),2.03–1.90(m,2H),1.77–1.61(m,2H),1.50(s,9H).
步骤2:化合物BB–8–2的合成
室温下,将化合物BB–8–1(5.00g,19.98mmol)加入到水(100.00mL)中,反应混合物加热至100℃并搅拌1小时。反应完毕后,冷却至室温,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–8–2(白色固体,2.90g,收率:96.63%)。 1H NMR(400MHz,CDCl 3)δ:4.72–4.48(m,2H),4.07–3.81(m,1H),2.47–2.25(m,2H),2.04–1.90(m,2H),1.83–1.65(m,2H).
步骤3:化合物BB–8–3的合成
室温下,将化合物BB–8–2(2.90g,19.31mmol)和叔丁醇钾(4.33g,38.62mmol)加入到二甲亚砜(80.00mL)中,反应混合物在室温下搅拌0.5小时,随后将5–溴–4,6–二氯嘧啶(3.52g,15.45mmol)加入到上述反应液中,反应混合物在室温下继续搅拌15小时。反应完毕后,加入水(150mL),用1M稀盐酸调节pH至6,乙酸乙酯(200mL×3)萃取。合并有机相,用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–3/1,体积比),得到目标化合物BB–8–3(黄色固体,2.50g,收率:37.90%)。 1H NMR(400MHz,CDCl 3)δ:8.59(s,1H),7.82(s,1H),5.71(d,J=8.5Hz,1H),4.10–3.74(m,1H),2.30–2.17(m,2H),1.94–1.79(m,2H),1.74–1.58(m,2H).
步骤4:化合物BB–8的合成
室温下,将叔丁醇钾(2.46g,21.96mmol)加入到乙二醇(22.20g,357.66mmol,20.00mL)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–8–3(2.50g,7.32mmol)的乙二醇二甲醚(80.00mL)溶液加入到上述溶液中,在氮气保护下反应混合物加热至110℃并继续搅拌15小时。反应完毕后,冷却至室温,加入水(200mL),用1M稀盐酸调节pH至4,乙酸乙酯(200mL×3)萃取。合并有机相,用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1–1/1,体积比),得到目标化合物BB–8(黄色固体,1.1g,收率:40.92%)。 1H NMR(400MHz,CDCl 3)δ:8.41(s,1H),7.62(s,1H),5.72(br d,J=8.8Hz,1H),4.81–4.42(m,2H),4.03–3.96(m,2H),3.96–3.87(m,1H),2.31–2.16(m,2H),1.93–1.79(m,2H),1.73–1.61(m,2H).
参考例9:片段BB–9
Figure PCTCN2018116196-appb-000056
合成路线:
Figure PCTCN2018116196-appb-000057
步骤1:化合物BB–9–1的合成
室温下,将环丙基甲胺(5.00g,70.30mmol)和三乙胺(14.23g,140.60mmol,19.49mL)溶解于二氯甲烷(100.00mL)中,反应混合物冷却至0℃,随后加入化合物BB–1–2(70.30mmol,粗品)的二氯甲烷的溶液(滴加时间约0.5小时),在氮气保护下反应混合物升至室温并搅拌15小时。反应完毕后,减压除去溶剂,所得残留物加入水(100mL),用1M稀盐酸调节pH至5,乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–9–1(白色固体,11.00g,收率:62.51%)。 1H NMR(400MHz,CDCl 3)δ:2.94(dd,J=4.0,6.8Hz,2H),1.53–1.44(m,9H),1.11–0.94(m,1H),0.64–0.52(m,2H),0.30–0.12(m,2H).
步骤2:化合物BB–9–2的合成
室温下,将化合物BB–9–1(10.00g,39.95mmol)加入到水(100.00mL)中,反应混合物加热至100℃并搅拌1小时。反应完毕后,冷却至室温,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–9–2(白色固体,5.00g,收率:83.33%)。 1H NMR(400MHz,CDCl 3)δ:4.64–4.54(m,2H),3.64(br s,1H),3.03–2.86(m,2H),1.16–0.98(m,1H),0.63–0.42(m,2H),0.29–0.10(m,2H).
步骤3:化合物BB–9–3的合成
室温下,将化合物BB–9–2(4.94g,32.91mmol)和叔丁醇钾(4.92g,43.88mmol)加入到二甲基亚砜(80.00mL)中,在氮气保护下反应混合物在室温下搅拌0.5小时,然后加入5–溴–4,6–二氯嘧啶(5.00g,21.94mmol),在氮气保护下反应混合物在室温下继续搅拌15小时。反应完毕后,加入水(100mL),用1M稀盐酸调节pH至6,乙酸乙酯(200ml×3)萃取。合并有机相,用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石醚/乙酸乙酯=10/1–3/1,体积比),得到目标化合物BB–9–3(白色固体,5.00g,收率:66.71%)。 1H NMR(400MHz,CDCl 3)δ:8.57(s,1H),7.80(br s,1H),5.63(t,J=5.4Hz,1H),2.96(t,J=6.7Hz,2H),1.09–0.86(m,1H),0.62–0.39(m,2H),0.26–0.03(m,2H).
步骤4:化合物BB–9的合成
室温下,将叔丁醇钾(4.93g,43.91mmol)加入到乙二醇(22.20g,357.66mmol,20.00mL)中,反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–9–3(5.00g,14.64mmol)的乙二醇二甲醚(80.00mL)溶液加入到上述混合物中,反应混合物加热至110℃并继续搅拌15小时。反应完毕后,冷却至室温,加入水(200mL),用1M稀盐酸调节pH至3,乙酸乙酯(200mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1–1/1,体积比),得到目标化合物BB–9(黄色油状物,3.50g,收率:65.10%)。 1H NMR(400MHz,CDCl 3):8.45–8.29(m,1H),7.68(br s,1H),5.74(t,J=5.5Hz,1H),4.73–4.52(m,2H),4.04–3.93(m,2H),2.93(t,J=6.5Hz,2H),2.04(s,1H),1.11–0.78(m,1H),0.62–0.41(m,2H),0.14(q,J=5.0Hz,2H).
参考例10:片段BB–10
Figure PCTCN2018116196-appb-000058
合成路线:
Figure PCTCN2018116196-appb-000059
步骤1:化合物BB–10–1的合成
0℃下,将环丁基甲胺的盐酸盐(5.00g,41.12mmol)、三乙胺(10.40g,102.80mmol,14.25mL)和二氯甲烷(50.00mL)加入到化合物BB–1–2(41.12mmol,粗品)的二氯甲烷溶液中,在氮气保护下反应混合物升至室温并搅拌18小时。反应完毕后,加入水(60mL),用二氯甲烷(60mL×2)萃取。合并有机相,分别用1M稀盐酸(50mL)和饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–10–1(黄色固体,7.20g,收率:66.24%)。
步骤2:化合物BB–10–2的合成
室温下,将化合物BB–10–1(7.00g,26.48mmol)加入到水(100.00mL)中,反应混合物加热至110℃并搅拌2小时。反应完毕后,冷却至室温,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(200mL) 洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–10–2(无色油状物,3.80g,收率:87.38%)。 1H NMR(400MHz,CDCl 3)δ:5.10–4.92(m,2H),3.15–3.10(m,2H),2.54–2.50(m,1H),2.07–2.04(m,2H),1.90–1.88(m,2H),1.88–1.69(m,2H).
步骤3:化合物BB–10–3的合成
室温下,将叔丁醇钾(3.14g,28.00mmol)加入到化合物BB–10–2(2.30g,14.00mmol)的二甲基亚砜(40.00mL)溶液中,在氮气保护下反应混合物在室温下搅拌0.5小时,随后加入5–溴–4,6–二氯嘧啶(3.19g,14.00mmol),在氮气保护下反应混合物在室温下继续搅拌15小时。反应完毕后,加入水(80mL),用1M稀盐酸调节pH至4,乙酸乙酯(40mL×3)萃取。合并有机相,用饱和食盐水(40mL)洗涤,无水硫酸钠干燥,过滤,减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到目标化合物BB–10–3(黄色固体,3.10g,收率:62.29%)。 1H NMR(400MHz,CDCl 3)δ:8.49(s,1H),7.79(s,1H),5.45(t,J=6.0Hz,1H),3.03–2.98(m,2H),2.53–2.33(m,1H),2.04–1.98(m,2H),1.84–1.78(m,2H),1.63–1.57(m,2H).
步骤4:化合物BB–10的合成
室温下,将叔丁醇钾(1.89g,16.88mmol)加入到乙二醇(15.79g,254.55mmol,14.23mL)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后,将化合物BB–10–3(3.00g,8.44mmol)的乙二醇二甲醚(30.00mL)溶液加入到上述混合物中,在氮气保护下反应混合物加热至120℃并继续搅拌15小时。反应完毕后,加入水(60mL),用1M稀盐酸调节pH至4,乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/2,体积比),得到目标化合物BB–10(黄色油状物,2.50g,收率:77.73%)。 1H NMR(400MHz,CDCl 3)δ:8.39(s,1H),7.65(br s,1H),5.52(t,J=6.0Hz,1H),4.71–4.49(m,2H),4.02(br d,J=3.8Hz,2H),3.12–3.01(m,2H),2.60–2.47(m,1H),2.43(br s,1H),2.09–2.01(m,2H),1.98–1.77(m,2H),1.74–1.64(m,2H).
参考例11:片段BB–11
Figure PCTCN2018116196-appb-000060
合成路线:
Figure PCTCN2018116196-appb-000061
步骤1:化合物BB–11–1的合成
0℃下,将化合物BB–1–2(78.00mmol,粗品)的二氯甲烷溶液缓慢加入到3–甲氧基正丙胺(6.95g,78.00mmol,7.99mL)和三乙胺(15.79g,156.00mmol,21.63mL)的二氯甲烷(50.00mL)溶液中(滴加时间约0.5小时),反应混合物升至室温并搅拌18小时。反应完毕后,加入水(200mL),用二氯甲烷(150mL×2)萃取。合并有机相,分别用1M稀盐酸(50mL)和饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–11–1(白色固体,16.00g,收率:76.45%)。 1H NMR(400MHz,CDCl 3)δ:3.42(t,J=5.8Hz,2H),3.28(s,3H),3.15–3.04(m,2H),1.91–1.64(m,2H),1.43(s,9H).
步骤2:化合物BB–11–2的合成
室温下,将化合物BB–11–1(16.00g,59.63mmol)加入到水(100.00mL)中,反应混合物加热至100℃并搅拌1小时。反应完毕后,冷却至室温,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–11–2(无色油状物,8.50g,收率:84.74%)。 1H NMR(400MHz,DMSO_d 6)δ:6.49–6.38(m,3H),3.37–3.32(m,2H),3.23–3.19(m,3H),2.96–2.82(m,2H),1.73–1.63(m,2H).
步骤3:化合物BB–11–3的合成
室温下,将叔丁醇钾(2.67g,23.78mmol)加入到化合物BB–11–2(2.00g,11.89mmol)的二甲基亚砜(10.00mL)溶液中,在氮气保护下反应混合物在室温下搅拌0.5小时,随后加入5–溴–4,6–二氯嘧啶(2.71g,11.89mmol),在氮气保护下反应混合物在室温下继续搅拌15小时。反应完毕后,加入水(60mL),用0.5M稀盐酸调节pH至4,乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到目标化合物BB–11–3(白色固体,3.30g,收率:77.21%)。 1H NMR(400MHz,DMSO_d 6)δ:8.59(s,1H),3.29–3.25(m,2H),3.16(s,3H),2.96(t,J=6.9Hz,2H),1.70–1.62(m,2H).
步骤4:化合物BB–11的合成
室温下,将叔丁醇钾(2.06g,18.35mmol)加入到乙二醇(30.24g,487.25mmol,27.25mL)中,在氮气保护 下反应混合物加热至40℃并搅拌0.5小时,随后,将化合物BB–11–3(3.30g,9.18mmol)的乙二醇二甲醚(10.00mL)溶液加入上述混合物中,在氮气保护下反应混合物加热至110℃并继续搅拌24小时。反应完毕后,冷却至室温,加入水(60mL),用1M稀盐酸调节pH至4,乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/2,体积比),得到目标化合物BB–11(黄色油状物,2.20g,收率:61.34%)。 1H NMR(400MHz,CDCl 3)δ:8.51–8.08(m,1H),7.65(s,1H),6.10(t,J=5.9Hz,1H),4.67–4.45(m,2H),4.01(d,J=3.8Hz,2H),3.53–3.39(m,2H),3.34(s,3H),3.26–3.13(m,2H),2.46(br s,1H),1.85(q,J=6.0Hz,2H).
参考例12:片段BB–12
Figure PCTCN2018116196-appb-000062
合成路线:
Figure PCTCN2018116196-appb-000063
步骤1:化合物BB–12–1的合成
0℃下,将化合物BB–1–2(74.19mmol,粗品)的二氯甲烷溶液缓慢加入到3–乙氧基丙基–1–胺(7.65g,74.19mmol,8.90mL)和三乙胺(22.52g,222.58mmol,30.85mL)的二氯甲烷(40.00mL)溶液中(滴加时间约1小时),在氮气保护下反应混合物升至室温并搅拌14小时。反应完毕后,减压除去溶剂,所得残留物加入水(200mL),用二氯甲烷(100mL)萃取,有机相丢弃,水相用1M稀盐酸调节pH至5–6,乙酸乙酯(100mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–12–1(黄色固体,17.00g,粗品)。 1H NMR(400MHz,DMSO_d 6)δ:10.80(s,1H),7.51(t,J=5.8Hz,1H),3.40–3.37(m,2H),2.93(q,J=6.4Hz,2H),2.51(s,2H),1.74–1.61(m,2H),1.43(s,9H),1.10(t,J=6.8Hz,3H).
步骤2:化合物BB–12–2的合成
室温下,将化合物BB–12–1(17.00g,60.21mmol)加入到水(100.00mL)中,反应混合物加热至110℃并搅拌1小时。反应完毕后,冷却至室温,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–12–2(黄色油状物,9.00g,粗品)。 1H NMR(400MHz,DMSO_d 6)δ:6.46(s,2H),6.41(t,J=6.2Hz,1H),3.43–3.37(m,4H),2.90(q,J=6.4Hz,2H),1.75–1.60(m,2H),1.10(t,J=7.0Hz,3H).
步骤3:化合物BB–12–3的合成
室温下,将化合物BB–12–2(1.60g,8.78mmol)和叔丁醇钾(1.97g,17.55mmol)加入到二甲基亚砜(20.00mL)中,在氮气保护下反应混合物在室温下搅拌1小时,随后加入5–溴–4,6–二氯嘧啶(2.00g,8.78mmol),在氮气保护下反应混合物在室温下继续搅拌11小时。反应完毕后,加入水(100mL),用1M稀盐酸调节pH至5–6,乙酸乙酯(50ml×3)萃取。合并有机相,用水(50mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–4/1,体积比),得到目标化合物BB–12–3(黄色固体,1.30g,收率:39.64%)。 1H NMR(400MHz,DMSO_d 6)δ:8.59(s,1H),3.34–3.29(m,4H),2.98(t,J=6.8Hz,2H),1.69–1.61(m,2H),1.06(t,J=6.8Hz,3H).
步骤4:化合物BB–12的合成
室温下,将叔丁醇钾(1.17g,10.44mmol)加入到乙二醇(35.63g,574.20mmol,32.10mL)和乙二醇二甲醚(10.00mL)混合液中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后,将化合物BB–12–3(1.30g,3.48mmol)的乙二醇二甲醚(20.00mL)溶液一次性加入到上述混合物中,在氮气保护下反应混合物加热至100℃并继续搅拌15小时。反应完毕后,冷却至室温,加入水(100mL),用2M稀盐酸调节pH至5–6,乙酸乙酯(60mL×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=3/1–1/3,体积比),得到目标化合物BB–12(白色固体,1.10g,收率:79.17%)。MS–ESI m/z:398.9[M+H] +,400.9[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.29(s,1H),7.56(s,1H),6.02(t,J=6.0Hz,1H),4.52(t,J=4.6Hz,2H),3.99–3.87(m,2H),3.46–3.31(m,4H),3.11(q,J=6.4Hz,2H),2.38(t,J=6.0Hz,1H),1.80–1.71(m,2H),1.14(t,J=7.0Hz,3H).
参考例13:片段BB–13
Figure PCTCN2018116196-appb-000064
合成路线:
Figure PCTCN2018116196-appb-000065
步骤1:化合物BB–13–1的合成
0℃下,将化合物BB–1–2(49.43mmol,粗品)的二氯甲烷溶液缓慢加入到四氢呋喃–2–基甲胺(5.00g,49.43mmol,5.10mL)和三乙胺(10.00g,98.86mmol,13.70mL)的二氯甲烷(50.00mL)溶液中(滴加时间约0.5小时),在氮气保护下反应混合物升至室温并搅拌18小时。反应完毕后,加入水(100mL),用二氯甲烷(90mL×2)萃取。合并有机相,分别用1M稀盐酸(50mL)和饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–13–1(白色固体,8.30g,收率:59.90%)。 1H NMR(400MHz,CDCl 3)δ:5.75(d,J=4.8Hz,1H),4.02(dd,J=3.9,6.7Hz,1H),3.88–3.64(m,2H),3.30–2.83(m,2H),2.06–1.76(m,3H),1.71–1.18(m,10H).
步骤2:化合物BB–13–2的合成
室温下,将化合物BB–13–1(8.00g,28.54mmol)加入到水(100.00mL)中,在氮气保护下反应混合物加热至110℃并搅拌2小时。反应完毕后,冷却至室温,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–13–2(无色油状物,4.90g,收率:95.27%)。 1H NMR(400MHz,CDCl 3)δ:5.18–5.01(m,1H),4.07–3.91(m,1H),3.86–3.61(m,2H),3.27–2.90(m,2H),1.96–1.74(m,3H),1.62–1.41(m,1H).
步骤3:化合物BB–13–3的合成
室温下,将叔丁醇钾(3.86g,34.40mmol)加入到化合物BB–13–2(3.10g,17.20mmol)的二甲基亚砜(20.00mL)溶液中,在氮气保护下反应混合物在室温下搅拌0.5小时,随后加入5–溴–4,6–二氯嘧啶(3.92g,17.20mmol),在氮气保护下反应混合物在室温下继续搅拌15小时。反应完毕后,加入水(60mL),用1M稀盐酸调节pH至4,乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到目标化合物BB–13–3(黄色固体,2.10g,收率:32.85%)。 1H NMR(400MHz,CDCl 3)δ:8.65–8.36(m,1H),8.08–7.70(m,1H),5.99–5.80(m,1H),4.08–3.90(m,1H),3.82–3.55(m,2H),3.25–3.13(m,1H),3.04–2.89(m,1H),1.98–1.72(m,3H),1.60–1.44(m,1H).
步骤4:化合物BB–13的合成
室温下,将叔丁醇钾(1.27g,11.30mmol)加入到乙二醇(10.58g,170.40mmol,9.53mL)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–13–3(2.10g,5.65mmol)的乙二醇二甲醚(30.00mL)溶液加入到上述混合物中,在氮气保护下反应混合物加热至120℃并继续搅拌15小时。反应完毕后,冷却至室温,加入水(60mL),用1M稀盐酸调节pH至4,乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/2,体积比),得到目标化合物BB–13(黄色油状物,1.80g,收率:78.35%)。MS–ESI m/z:396.8[M+H] +,398.8[M+H+2] +.
参考例14:片段BB–14
Figure PCTCN2018116196-appb-000066
合成路线:
Figure PCTCN2018116196-appb-000067
步骤1:化合物BB–14–1的合成
0℃下,将化合物BB–1–2(43.41mmol,粗品)的二氯甲烷溶液加入到四氢吡喃–4–甲胺(5.00g,43.41mmol)和三乙胺(8.79g,86.82mmol,12.04mL)的二氯甲烷(50.00mL)溶液中,在氮气保护下反应混合物升至室温并搅拌12小时。反应完毕后,加入水(80mL),用二氯甲烷(80mL×2)萃取。合并有机相,分别用1M稀盐酸(50mL)和饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–14–1(灰白色油状物,5.20g,收率:40.69%)。
步骤2:化合物BB–14–2的合成
室温下,将化合物BB–14–1(5.00g,16.99mmol)加入到水(100.00mL)中,反应混合物加热至100℃并搅 拌12小时。反应完毕后,冷却至室温,用乙酸乙酯(80mL×2)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–14–2(淡黄色油状物,1.70g,收率:51.51%)。
步骤3:化合物BB–14–3的合成
35℃下,将化合物BB–14–2(1.70g,8.75mmol)和叔丁醇钾(2.95g,26.25mmol)的二甲基亚砜(50.00mL)混合物搅拌0.5小时,随后加入5–溴–4,6–二氯嘧啶(1.99g,8.75mmol),反应混合物在35℃下继续搅拌12小时。反应完毕后,加入0.5M稀盐酸(50mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到目标化合物BB–14–3(黄色固体,1.20g,收率:12.80%)。MS–ESI m/z:384.8[M+H] +,386.8[M+H+2] +.
步骤4:化合物BB–14的合成
室温下,将叔丁醇钾(1.05g,9.33mmol)加入到乙二醇(33.30g,536.49mmol,30.00mL)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–14–3(1.20g,3.11mmol)的乙二醇二甲醚(20.00mL)溶液加入到上述混合物中,在氮气保护下反应混合物加热至110℃并继续搅拌12小时。反应完毕后,冷却至室温,加入0.5M稀盐酸(30mL),用乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–0/1,体积比),得到目标化合物BB–14(淡黄色固体,200.00mg,收率:14.59%)。MS–ESI m/z:410.9[M+H] +,412.9[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.38(s,1H),7.62(br s,1H),5.65(t,J=6.5Hz,1H),4.60(t,J=4.8Hz,2H),4.05–3.89(m,4H),3.38(t,J=10.8Hz,2H),2.93(t,J=6.5Hz,2H),1.86–1.75(m,1H),1.71–1.61(m,2H),1.31–1.22(m,2H).
参考例15:片段BB–15
Figure PCTCN2018116196-appb-000068
合成路线:
Figure PCTCN2018116196-appb-000069
步骤1:化合物BB–15–1的合成
0℃下,将化合物BB–1–2(31.32mmol,粗品)的二氯甲烷溶液缓慢加入到2–甲磺酰基乙胺的盐酸盐(5.00g,31.32mmol)和三乙胺(6.34g,62.64mmol,8.68mL)的二氯甲烷(50.00mL)混合液中(滴加时间约0.5小时),在氮气保护下反应混合物升至室温并搅拌18小时。反应完毕后,加入水(100mL),用二氯甲烷(100mL×2)萃取。合并有机相,分别用1M稀盐酸(50mL)和饱和食盐水(80mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–15–1(白色固体,5.00g,收率:52.81%)。 1H NMR(400MHz,DMSO_d 6)δ:11.04(s,1H),7.83(br s,1H),3.44(br s,2H),3.35–3.30(m,2H),3.02(s,3H),1.44(s,9H).
步骤2:化合物BB–15–2的合成
室温下,将化合物BB–15–1(4.80g,15.87mmol)加入到水(100.00mL)中,在氮气保护下反应混合物加热至110℃并搅拌2小时。反应完毕后,冷却至室温,用乙酸乙酯(100mL)萃取,有机相丢弃,水相减压浓缩,得到目标化合物BB–15–2(无色油状物,2.10g,收率:65.43%)。 1H NMR(400MHz,MeOD)δ:3.55–3.47(m,2H),3.41–3.35(m,2H),3.06–3.02(s,3H).
步骤3:化合物BB–15–3的合成
室温下,将叔丁醇钾(2.22g,19.78mmol)加入到化合物BB–15–2(2.00g,9.89mmol)的二甲基亚砜(20.00mL)溶液中,在氮气保护下反应混合物在室温下搅拌0.5小时,随后加入5–溴–4,6–二氯嘧啶(2.25g,9.89mmol),在氮气保护下反应混合物在室温下继续搅拌15小时。反应完毕后,加入水(60mL),用1M稀盐酸调节pH至4,乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到目标化合物BB–15–3(黄色固体,1.80g,收率:43.98%)。MS–ESI m/z:392.8[M+H] +,394.8[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.60(s,1H),6.36(br s,1H),3.66(q,J=6.0Hz,2H),3.46–3.25(m,2H),3.09–2.82(m,3H).
步骤4:化合物BB–15的合成
在40℃和氮气保护下,将乙二醇(4.28g,68.95mmol,3.86mL)和叔丁醇钾(513.07mg,4.57mmol)的混 合物搅拌0.5小时,随后将化合物BB–15–3(0.9g,2.29mmol)的乙二醇二甲醚(30.00mL)溶液加入到上述混合物中,在氮气保护下反应混合物加热至60℃并搅拌3小时。反应完毕后,冷却至室温,加入水(60mL),用1M稀盐酸调节pH至4,乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/2,体积比),得到目标化合物BB–15(淡黄色油状物,327.27mg,收率:33.40%)。MS–ESI m/z:440.9[M+Na] +,442.9[M+Na+2] +.
参考例16:片段BB–16
Figure PCTCN2018116196-appb-000070
合成路线:
Figure PCTCN2018116196-appb-000071
步骤1:化合物BB–16–1的合成
0–5℃下,将化合物BB–1–2(9.19mmol,粗品)的二氯甲烷溶液缓慢加入到3–氮杂双环[3.1.0]己烷的盐酸(900.00mg,7.53mmol)和三乙胺(2.28g,22.58mmol)的二氯甲烷(10mL)溶液中(滴加时间约1小时),在氮气保护下反应混合物升至室温并搅拌16小时。反应完毕后,减压除去溶剂,所得残留物加入水(20mL),用1M稀盐酸调节pH至4–5,乙酸乙酯(25mL×4)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–16–1(白色固体,1.90g,收率:96.19%)。 1H NMR(400MHz,CDCl 3)δ:3.56–3.68(m,4H),1.55–1.59(m,2H),1.51(s,9H),0.69–0.74(m,1H),0.41–0.45(m,1H).
步骤2:化合物BB–16–2的合成
室温下,将三氟乙酸(3.30g,28.96mmol)一次性加入到化合物BB–16–1(1.90g,7.24mmol)的二氯甲烷(10.00mL)溶液中,在氮气保护下反应混合物在室温下搅拌16小时。反应完毕后,反应混合物减压除去溶 剂即可,得到化合物BB–16–2(灰白色固体,1.44g,收率:72.00%,三氟乙酸盐)。 1H NMR(400MHz,CDCl 3)δ:3.28–3.36(m,4H),1.54–1.59(m,2H),0.61–0.69(m,1H),0.44–0.58(m,1H).
步骤3:化合物BB–16–3的合成
室温下,将叔丁醇钾(1.75g,15.63mmol)加入到化合物BB–16–2的三氟乙酸盐(1.44g,5.21mmol)的二甲基亚砜(30.00mL)混合液中,在氮气保护下反应混合物在室温下搅拌0.5小时,随后将5–溴–4,6–二氯嘧啶(1.42g,6.25mmol)加入到上述混合物中,在氮气保护下反应混合物在室温下继续搅拌16小时。反应完毕后,加入冰水(60mL),用4M稀盐酸调节pH至4–5,用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到目标化合物BB–16–3(棕色固体,1.40g,收率:74.14%)。 1H NMR(400MHz,CDCl 3)δ:8.59(s,1H),7.80(br s,1H),3.73–3.79(m,2H),3.66–3.72(m,2H),1.58–1.62(m,2H),0.69–0.76(m,1H),0.33(q,J=4.3Hz,1H).
步骤4:化合物BB–16的合成
室温下,将叔丁醇钾(760.78mg,6.78mmol)加入到乙二醇(22.20g,357.67mmol)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–16–3(799.18mg,2.26mmol)的乙二醇二甲醚(10.00mL)溶液加入到上述混合物中,在氮气保护下反应混合物加热至110℃并继续搅拌39小时。反应完毕后,冷却至室温,减压除去溶剂,所得残余物加入冰水(60mL),用1M稀盐酸调节pH至4–5,用乙酸乙酯(60mL×2)萃取。合并有机相,用饱和食盐水(120mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过制备层析板分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到目标化合物BB–16(黄色固体,520.00mg,收率:59.45%)。 1H NMR(400MHz,CDCl 3)δ:8.38(s,1H),7.63(br s,1H),4.55–4.61(m,2H),3.94–4.02(m,2H),3.69–3.74(m,2H),3.64–3.69(m,2H),2.48(br s,1H),1.49–1.58(m,2H),0.62–0.71(m,1H),0.30–0.37(m,1H).
参考例17:片段BB–17
Figure PCTCN2018116196-appb-000072
合成路线:
Figure PCTCN2018116196-appb-000073
步骤1:化合物BB–17–1的合成
0℃下,将化合物BB–1–2(12.39mmol,粗品)的二氯甲烷溶液逐滴滴加到2–氧杂–6–氮杂螺[3.3]庚烷(1.17g,11.80mmol)和三乙胺(3.58g,35.40mmol)的二氯甲烷(10mL)溶液中(滴加时间约1小时),反应混合物升至室温并搅拌16小时。反应完毕后,减压除去溶剂,残余物加入水(20mL),用5M稀盐酸调节pH至4–5,乙酸乙酯(25mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–17–1(白色固体,1.70g,收率:51.76%)。 1H NMR(400MHz,CDCl 3)δ:7.07(br s,1H),4.79(s,4H);4.34(s,4H),1.52(s,9H).
步骤2:化合物BB–17–2的合成
室温下,将化合物BB–17–1(1.70g,6.11mmol)加入到水(10.00mL)中,反应混合物加热至100℃并搅拌1小时。反应完毕后,冷却至室温,用乙酸乙酯(10mL×3)萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到目标化合物BB–17–2(白色固体,920.00mg,收率:84.49%)。 1H NMR(400MHz,CDCl 3)δ:4.78(s,4H),4.39(br s,2H),4.04(s,4H).
步骤3:化合物BB–17–3的合成
室温下,将化合物BB–17–2(920.00mg,5.16mmol)和叔丁醇钾(1.50g,13.37mmol)加入到二甲基亚砜(15.00mL)中,反应混合物在室温下搅拌0.5小时,随后将5–溴–4,6–二氯嘧啶(1.41g,6.19mmol)加入到上述混合液中,反应混合物在室温下继续搅拌18小时。反应完毕后,加入冰水(40mL),用4M稀盐酸调节pH至4–5,乙酸乙酯(40mL×3)萃取。合并有机相,用饱和食盐水(120mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过制备层析板分离(洗脱剂:二氯甲烷/甲醇=10/1,体积比),得到目标化合物BB–17–3(棕色固体,430.00mg,收率:16.43%)。MS–ESI m/z:368.8[M+H] +,370.8[M+H+2] +.
步骤4:化合物BB–17的合成
室温下,将叔丁醇钾(390.49mg,3.48mmol)加入到乙二醇(15.23g,245.36mmol)中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后将化合物BB–17–3(430.00mg,1.16mmol)的乙二醇二甲醚(10.00 mL)溶液缓慢滴加到上述混合液中,在氮气保护下反应混合物加热至110℃并继续搅拌48小时。反应完毕后,冷却至室温,减压除去溶剂,所得残余物加入冰水(30mL),用1M稀盐酸调节pH至4–5,乙酸乙酯(30mL×4)萃取。合并有机相,用饱和食盐水(120mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备层析板分离(洗脱剂:二氯甲烷/甲醇=10/1,体积比),得到目标化合物BB–17(黄色固体,150.00mg,收率:30.86%)。MS–ESI m/z:417.0[M+Na] +,417.0[M+Na+2] +.
参考例18:片段BB–18
Figure PCTCN2018116196-appb-000074
合成路线:
Figure PCTCN2018116196-appb-000075
步骤1:化合物BB–18–2的合成
0℃下,将叔丁醇钾(7.22g,64.31mmol)的四氢呋喃(50mL)溶液逐滴滴加到甲基(三苯基)溴化鏻(22.97g,64.31mmol)的四氢呋喃(100mL)悬浮液中,在氮气保护下反应混合物升至室温并搅拌1小时,随后反应混合物冷却至0℃,一次性加入化合物BB–18–1(10.00g,42.87mmol)的四氢呋喃(50mL)溶液,在氮气保护下反应混合物升至室温并继续搅拌64小时。反应完毕后,依次加入水(50mL)和石油醚(50mL),分液。水相用石油醚(50mL×2)萃取。合并有机相,用饱和食盐水(150mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–10/1,体积比),得到化合物BB–18–2(无色油状物,5.20g,收率:48.56%)。MS–ESI m/z:232.0[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.40–7.29(m,5H),5.15(s,2H),4.76(s,2H),3.51(t,J=5.8Hz,4H),2.19(t,J=5.8Hz,4H).
步骤2:化合物BB–18–3的合成
–40℃下,将三氟乙酸(10.25g,89.92mmol)的二氯甲烷(10mL)溶液逐滴滴加到二乙基锌(1M,89.92mL)的二氯甲烷(50mL)溶液中,在氮气保护下反应混合物在–40℃搅拌0.5小时,随后二碘甲烷(24.08g,89.92mmol)的二氯甲烷(10mL)溶液加入到上述混合液中,在氮气保护下反应混合液在–40℃下继续搅拌0.5小时。然后加入化合物BB–18–2(5.20g,22.48mmol)的二氯甲烷(10mL)溶液,在氮气保护下反应混合物升至室温并再继续搅拌16小时。反应完毕后,分别加入二氯甲烷(30mL)和饱和碳酸氢钠水溶液(80mL),搅拌5分钟,有沉淀析出,滤出沉淀并分液,有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=100/1–10/1,体积比),得到黄色油状物,黄色油状物再次经过制备HPLC分离,得到化合物BB–18–3(淡黄色油状物,4.00g,收率:47.46%)。MS–ESI m/z:246.0[M+H] +. 1H NMR(400MHz,CDCl 3)δ:7.40–7.29(m,5H),5.15(s,2H),3.57–3.47(m,4H),1.35(br s,4H),0.34(s,4H).
步骤3:化合物BB–18–4的合成
室温下,向化合物BB–18–3(1.50g,6.11mmol)的四氢呋喃(15.00mL)溶液中加入湿钯碳(150.00mg,纯度:10%),在氢气(3.5MPa)氛围下反应混合物在室温下搅拌40小时。反应完毕后,反应混合物过滤,加入盐酸/乙酸乙酯(4M,10mL)搅拌15分钟,减压浓缩即可得到化合物BB–18–4(黄色固体,900.00mg,收率:99.76%,盐酸盐)。 1H NMR(400MHz,DMSO_d 6)δ:9.13(br s,2H),3.02(br s,4H),1.54(t,J=5.0Hz,4H),0.37(s,4H).
步骤4:化合物BB–18–5的合成
0℃下,将化合物BB–18–4(1.20g,8.13mmol,盐酸盐)的二氯甲烷(20mL)溶液逐滴滴加到化合物BB–1–2(8.54mmol,粗品)的二氯甲烷溶液、三乙胺(3.29g,32.52mmol)和二氯甲烷(10mL)的混合液中(滴加时间约1小时),在氮气保护下反应混合物升至室温并搅拌16小时。反应完毕后,减压除去溶剂,所得残余物加入水(20mL),用4M稀盐酸(10mL)调节pH至4–5,乙酸乙酯(25mL×4)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,得到化合物BB–18–5(淡黄色固体,1.32g,收率:55.91%)。 1H NMR(400MHz,CDCl 3)δ:7.05(br s,1H),3.47–3.40(m,4H),1.52(s,9H),1.50–1.47(m,4H),0.38(s,4H).
步骤5:化合物BB–18–6的合成
室温下,将三氟乙酸(1.53g,13.42mmol)一次性加入到化合物BB–19–5(580.00mg,2.00mmol)的二氯甲烷(3.00mL)溶液中,在氮气保护下反应混合物在室温下搅拌16小时。反应完毕后,减压除去溶剂即可得到化合物BB–18–6(淡黄色固体,600.00mg,收率:98.50%,三氟乙酸盐)。 1H NMR(400MHz,CDCl 3)δ:3.23(t,J=5.5Hz,4H),1.50(t,J=5.5Hz,4H),0.36(s,4H).
步骤6:化合物BB–18–7的合成
室温下,将叔丁醇钾(1.39g,12.42mmol)一次性加到化合物BB–18–6(1.26g,4.14mmol,三氟乙酸盐)的二甲亚砜(10.00mL)溶液中,在氮气保护下反应混合物在室温下搅拌0.5小时,随后加入5–溴–4,6–二氯嘧啶(1.04g,4.55mmol)到上述反应混合物中,在氮气保护下反应混合物在室温下再继续搅拌20小时。反应完毕后,加入冰水(20mL),用1M稀盐酸调节pH至4–5,乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(120mL)洗涤,无水硫酸钠干燥,过滤,减压除去溶剂,所得残余物经层析板分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到化合物BB–18–7(黄色油状物,600.00mg,收率:35.86%)。 1H NMR(400MHz,CDCl 3)δ:8.53(s,1H),4.40(br s,1H),3.20–3.28(m,4H),1.49–1.55(m,4H),0.35(s,4H).
步骤7:化合物BB–18的合成
室温下,将叔丁醇钾(353.46mg,3.15mmol)加入到乙二醇(16.03g,258.27mmol)的二乙醇二甲醚(3.00mL)溶液中,在氮气保护下反应混合物加热至40℃并搅拌0.5小时,随后化合物BB–18–7(400.00mg,1.05mmol)的乙二醇二甲醚(5.00mL)溶液加到上述反应液中,在氮气保护下反应混合物加热至110℃并继续搅拌40小时。反应完毕后,冷却至室温,减压除去溶剂,所得残余物加入冰水(30mL),用1M稀盐酸调节pH至5–6,乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经层析板分离(洗脱剂:乙酸乙酯/石油醚=1/1,体积比),得到化合物BB–18(黄色油状物,180.00mg,收率:42.09%)。 1H NMR(400MHz,CDCl 3)δ:8.37(s,1H),4.61–4.56(m,2H),4.01–3.97(m,2H),3.54–3.47(m,4H),1.52–1.45(m,4H),0.36–0.31(m,4H).
实施例1:WX001
Figure PCTCN2018116196-appb-000076
合成路线:
Figure PCTCN2018116196-appb-000077
步骤1:化合物WX001–2的合成
0℃下,将二氯亚砜(58.11g,488.46mmol,35.43mL)缓慢滴加到化合物WX001–1(80g,444.06mmol)的甲醇(400mL)溶液中(滴加时间约0.5小时),在氮气保护下反应混合物升至室温并搅拌10小时。反应完毕后,减压除去溶剂,所得残余物加水(300mL),用乙酸乙酯(300mL×3)萃取。合并有机相,用饱和食盐水(300mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂即可得到化合物WX001–2。 1H NMR(400MHz,CDCl 3)δ:6.80–6.71(m,3H),5.94(s,2H),3.70(s,3H),3.55(s,2H).
步骤2:化合物WX001–3的合成
0℃下,将化合物WX001–2(35g,180.24mmol)的碳酸二甲酯(118.51g,1.32mol,110.76mL)溶液缓慢滴加到钠氢(10.81g,270.36mmol,纯度:60%)的碳酸二甲酯(118.51g,1.32mol,110.76mL)混合液中(滴加时间约1小时),在氮气保护下反应混合物升至室温并搅拌15小时。反应完毕后,加入冰水(500mL),用乙酸乙酯(300mL×3)萃取。合并有机相,用饱和食盐水(300mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–5/1,体积比),得到化合物WX001–3。 1H NMR(400MHz,CDCl 3)δ:7.00–6.93(m,1H),6.85–6.77(m,2H),5.98(s,2H),4.58(s,1H),3.78(s,6H).
步骤3:化合物WX001–4的合成
0℃下,将钠块(10.94g,475.78mmol)分批加入到无水甲醇(150mL)中,在氮气保护下反应混合物在室温下搅拌0.5小时,随后将化合物WX001–3(40g,158.59mmol)的甲醇(100mL)溶液加入到上述反应液中,在氮气保护下反应混合物升至室温并继续搅拌15小时,然后将甲脒的醋酸盐(19.81g,190.31mmol)一次性加入到上述反应液中,在氮气保护下反应混合物在室温下再继续搅拌15小时。反应完毕后,减压除去溶剂,所得残余物加入2M稀盐酸(200mL),并在室温下搅拌30分钟,期间有大量的白色固体析出。反应混合物过滤,滤饼用甲醇(50mL×2)洗涤,收集滤饼,真空干燥即可得到化合物WX001–4。
步骤4:化合物WX001–5的合成
室温下,将化合物WX001–4(24g,103.36mmol)加入到三氯氧磷(594.00g,3.87mol,360.00mL)中,在氮气保护下反应混合物加热至90℃并搅拌5小时。反应完毕后,冷却至室温,将反应液缓慢倒入冰水(1000mL)中,并在室温下搅拌0.5小时,然后用乙酸乙酯(1000mL×3)萃取。合并有机相,用饱和食盐水(1000mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1,体积比),得到化合物WX001–5。 1H NMR(400MHz,CDCl 3)δ:8.78(s,1H),6.96(d,J=8.3Hz,1H),6.78(dd,J=2.5,4.0Hz,2H),6.09(s,2H).
步骤5:化合物WX001–6的合成
室温下,将化合物2–(5–溴嘧啶–2–基)氧基乙醇(8.06g,36.79mmol)和化合物WX001–5(11g,40.88mmol)溶解于甲苯(100mL)中,随后冷却至0℃,分批加入叔丁醇钾(9.17g,81.76mmol),在氮气保护下反应混合物在0℃下搅拌0.5小时。反应完毕后,反应液在0℃下加入0.5M稀盐酸(100mL),用乙酸乙酯萃取(100mL×3)。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1,体积比),得到化合物WX001–6。 1H NMR(400MHz,CDCl 3)δ:8.54–8.48(m,3H),6.86–6.74(m,3H),6.02(s,2H),4.80–4.74(m,2H),4.73–4.64(m,2H).
步骤6:化合物WX001的合成
室温下,将化合物胺基磺酰胺(1.52g,15.83mmol)和化合物WX001–6(6.5g,14.39mmol)溶解于二甲基亚砜中(100mL),随后一次性加入碳酸钾(5.97g,43.17mmol)和三水合四丁基氟化铵(9.08g,28.78mmol),在氮气保护下反应混合物加热至70℃并搅拌5小时。反应完毕后,冷却至室温,加入0.5M稀盐酸(100mL)和水(500mL),用乙酸乙酯萃取(400mL×3)。合并有机相,用饱和食盐水(500mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=3/1,然后二氯甲烷/乙酸乙酯=5/1,体积比),得到目标化合物WX001。MS–ESI m/z:510.8[M+H] +,512.8[M+H+2] +. 1H NMR(400MHz,DMSO_d 6)δ:9.29(s,1H),8.72(s,2H),8.46(s,1H),7.21(s,2H),6.91(d,J=7.8Hz,1H),6.76–6.61(m,2H),6.05(s,2H),4.69–4.62(m,2H),4.62–4.54(m,2H).
实施例2:WX002
Figure PCTCN2018116196-appb-000078
合成路线:
Figure PCTCN2018116196-appb-000079
步骤1:化合物WX002–2的合成
室温下,将化合物WX002–1(8.00g,37.37mmol)、双联嚬哪醇硼酸酯(11.39g,44.84mmol)和醋酸钾(7.33g,74.74mmol)加入到1,4–二氧六环(100.00mL)中,随后加入[1,1′–双(二苯基膦)二茂铁]二氯化钯(5.47g,7.47mmol),在氮气保护下反应混合物加热至100℃并搅拌10小时。反应完毕后,冷却至室温,过滤,滤液减压除去溶剂,所得残余物加入水(100mL),用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=20/1,体积比),得到目标化合物WX002–2。 1H NMR(400MHz,CDCl 3)δ:8.92(s,1H),8.51(s,1H),7.89(d,J=8.0Hz,1H),7.78(d,J=8.0Hz,1H),1.30(s,12H).
步骤2:化合物WX002–3的合成
室温下,将化合物BB–2(250.00mg,732.75μmol)和化合物WX002–2(287.04mg,1.10mmol)加入到1,4,–二氧六环(15.00mL)中,随后加入碳酸钾(303.82mg,2.20mmol)的水(5.00mL)溶液,在氮气保护下反应混合物在室温下搅拌0.5小时,然后将[1,1′–双(二苯基膦)二茂铁]二氯化钯(160.85mg,219.83μmol)加入到上述混合液中,在氮气保护下反应混合物加热至80℃并继续搅拌11小时。反应完毕后,冷却至室温,加入水(100mL),用乙酸乙酯(20mL×1)萃取,有机相丢弃。水相用3M稀盐酸调节pH至5–6,乙酸乙酯(20mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=10/1–1/1,体积比),得到目标化合物WX002–3。MS–ESI m/z:395.9[M+H] +. 1H NMR(400MHz,CDCl 3)δ:9.01(s,1H),8.47(s,1H),8.05(s,1H),8.02(s,1H),7.31(d,J=8.3Hz,1H),7.06(s,1H),5.52(t,J=6.0Hz,1H),4.44(t,J=4.4Hz,2H),3.77(s,2H),3.08–2.98(m,2H),2.58(br s,1H),1.15(t,J=7.2Hz,3H).
步骤3:化合物WX002的合成
室温下,将钠氢(194.20mg,4.86mmol,纯度:60%)加入到无水四氢呋喃(20.00mL)中,随后分别加入化合物WX002–3(240.00mg,606.89μmol)的无水N,N–二甲基甲酰胺(1mL)溶液和5–溴–2–氯嘧啶(234.78mg,1.21mmol)的无水四氢呋喃(1mL)溶液,在氮气保护下反应混合物加热至70℃并搅拌2小 时。反应完毕后,冷却至室温,加入饱和氯化铵溶液(30mL),用1M稀盐酸调节pH至4–5,乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备HPLC分离(流动相:乙腈/水;碱性体系:NH 4HCO 3和NH 3·H 2O),得到目标化合物WX002。MS–ESI m/z:552.0[M+H] +,554.0[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:9.08(s,1H),8.52(s,1H),8.43(s,2H),8.04(d,J=2.0Hz,2H),7.34(dd,J=8.5,1.3Hz,1H),6.87(br s,1H),5.58(s,1H),4.74(t,J=4.4Hz,2H),4.62(t,J=4.4Hz,2H),3.15–3.02(m,2H),1.21(t,J=7.3Hz,3H).
参照实施例2中的合成方法(将步骤2中的BB-2替换为片段2中相应结构),合成表1中各实施例。
表1 实施例3–7结构式
Figure PCTCN2018116196-appb-000080
Figure PCTCN2018116196-appb-000081
各实施例的LCMS和HNMR数据见表2。
表2 实施例3–7核磁及LCMS数据
Figure PCTCN2018116196-appb-000082
实施例8:WX008
Figure PCTCN2018116196-appb-000083
合成路线:
Figure PCTCN2018116196-appb-000084
步骤1:化合物WX008–2的合成
室温下,将化合物WX008–1(3.00g,14.92mmol)、联硼酸嚬哪醇酯(7.58g,29.84mmol)和醋酸钾(4.39g,44.76mmol)加入到1,4–二氧六环(30.00mL)中,随后加入[1,1′–双(二苯基膦)二茂铁]二氯化钯(3.28g,4.48mmol),在氮气保护下反应混合物加热至80℃并搅拌16小时。反应完毕后,冷却至室温,过滤,滤液减压除去溶剂,所得残余物加入水(30mL),用乙酸乙酯(20mL×3)萃取。合并有机相,无水硫酸钠干燥。过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/0–100/1,体积比),得到目标化合物WX008–2。 1H NMR(400MHz,CDCl 3)δ:7.38(dd,J=7.8,0.8Hz,1H),7.26(s,1H),6.85(d,J=7.8Hz,1H),5.97(s,2H),1.35(s,12H).
步骤2:化合物WX008–3的合成
室温下,将化合物BB–3(300.00mg,844.57μmol)、化合物WX008–2(419.04mg,1.69mmol)和磷酸钾(537.83mg,2.53mmol)加入到N,N–二甲基甲酰胺(20.00mL)中,随后加入[1,1′–双(二苯基膦)二茂铁]二氯化钯(185.39mg,253.37μmol),在氮气保护下反应混合物加热至80℃并搅拌16小时。反应完毕后,冷却至室温,加入水(100mL),用乙酸乙酯(20mL×1)萃取,有机相丢弃。水相用3M稀盐酸调节pH至5–6,乙酸乙酯(20mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经过制备层析板分离(洗脱剂:石油醚/乙酸乙酯=1/2,体积比),得到目标化合物WX008–3。MS–ESI m/z:397.0[M+H] +.
步骤3:化合物WX008的合成
室温下,将钠氢(145.30mg,3.63mmol,纯度:60%)加入到无水四氢呋喃(20mL)中,随后分别加入化合物WX008–3(180.00mg,454.06μmol)的无水N,N–二甲基甲酰胺(1mL)溶液和5–溴–2–氯嘧啶(175.66mg,908.13μmol)的无水四氢呋喃(1mL)溶液,在氮气保护下反应混合物加热至70℃并搅拌2小时。反应完毕后,冷却至室温,加入饱和氯化铵溶液(30mL),用1M稀盐酸调节pH至4–5,乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经制备HPLC分离(流动相:乙腈/水;中性体系),得到目标化合物WX008。MS–ESI m/z:552.8[M+H] +,554.8[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.49(s,2H),8.43(s,1H),6.87(d,J=8.3Hz,1H),6.73–6.68(m,2H),6.03(s,2H),5.61(t,J=6.2Hz,1H),4.73(q,J=5.0Hz,2H),4.64(t,J=4.8Hz,2H),2.96(q,J=6.8Hz,2H),1.64–1.57(m,2H),0.94(t,J=7.4Hz,3H).
参照实施例8中的合成方法(步骤2中的BB-3替换为片段2),合成表3中各实施例。
表3 实施例9–22结构式
Figure PCTCN2018116196-appb-000085
Figure PCTCN2018116196-appb-000086
Figure PCTCN2018116196-appb-000087
各实施例的LCMS和HNMR数据见表4。
表4 实施例9–22核磁及LCMS数据
Figure PCTCN2018116196-appb-000088
Figure PCTCN2018116196-appb-000089
Figure PCTCN2018116196-appb-000090
实施例23和实施例24:WX023和WX024
Figure PCTCN2018116196-appb-000091
合成路线:
Figure PCTCN2018116196-appb-000092
将化合物WX021(500.00mg,839.74μmol)经过超临界流体色谱(分离条件,色谱柱:Chiralpak AD–350*4.6mm I.D.,3μm;流动相:A:二氧化碳;B:异丙醇(0.05%二乙基胺),40%;柱温:40℃;波长:220nm)分离,收集保留时间为1.149min的样品得到WX023(ee%:100%)和保留时间为3.199min的样品得到WX024(ee%:100%)。
实施例25:WX025
Figure PCTCN2018116196-appb-000093
合成路线:
Figure PCTCN2018116196-appb-000094
步骤1:化合物WX025–2的合成
室温下,将化合物WX025–1(400.00mg,2.03mmol)、联硼酸嚬哪醇酯(618.60mg,2.44mmol)、醋酸钾(597.72mg,6.09mmol)和[1,1’–双(二苯基磷)二茂铁]二氯化钯(297.09mg,406.03μmol)加入到二氧六环(20.00mL)中,在氮气保护下反应混合物加热至100℃并搅拌反应15小时。反应完毕后,冷却至室温,减压除去溶剂,所得残留物加入水(100mL),用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经柱层析分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到目标化合物WX025–2。 1H NMR(400MHz,CDCl 3)δ:8.70(s,1H),7.99–7.98(m,1H),7.51(d,J=8.8Hz,1H),7.37(d,J=8.8Hz,1H),6.48(s,1H),1.36(s,12H).
步骤2:化合物WX025–3的合成
室温下,将化合物BB–3(300.00mg,844.57μmol)、化合物WX025–2(309.24mg,1.27mmol)、[1,1’–双(二苯基磷)二茂铁]二氯化钯(123.59mg,168.91μmol)和碳酸钾(350.18mg,2.53mmol)加入到二氧六环(20.00mL)和水(2.00mL)混合液中,在氮气保护下反应混合物加热至80℃并搅拌反应10小时。反应完毕后,冷却至室温,加入水(100mL),用1M稀盐酸调节pH至5,乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经制备层析板(洗脱剂:石油醚/乙酸乙酯=1/2,体积比),得到目标化合物WX025–3。MS–ESI m/z:393.0[M+H] +.
步骤3:化合物WX025的合成
室温下,向钠氢(83.08mg,2.08mmol,纯度:60%)的干燥四氢呋喃(20mL)混合物中依次一次性加入化合物WX025–3(180.00mg,346.76μmol)的N,N–二甲基甲酰胺(2mL)溶液和5–溴–2–氯嘧啶(67.07mg,346.76μmol)的四氢呋喃(1mL)溶液,在氮气保护下反应混合物加热至70℃并搅拌2小时。反应完毕后,冷却至室温,加入饱和氯化铵溶液(50mL),用1M稀盐酸调节pH至4–5,乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经制备HPLC分离(流动相:乙腈/水;碱性体系:NH 4HCO 3和NH 3·H 2O),得到目标化合物WX025。MS–ESI m/z:549.0 [M+H] +,551.0[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.53(s,1H),8.46–8.44(m,3H),8.03(s,1H),7.62(d,J=9.2Hz,1H),6.98(d,J=9.2Hz,1H),6.62(s,1H),5.64(s,1H),4.78–4.76(m,2H),4.67–4.65(m,2H),3.02–3.00(m,2H),1.65–1.63(m,2H),0.99(t,J=7.2Hz,3H).
参照实施例25中的合成方法(步骤2中的BB-3替换为片段2),合成表5中各实施例。
表5 实施例26–27结构式
Figure PCTCN2018116196-appb-000095
各实施例的LCMS和HNMR数据见表6.
表6 实施例26–27核磁及LCMS数据
Figure PCTCN2018116196-appb-000096
实施例28:WX028
Figure PCTCN2018116196-appb-000097
合成路线:
Figure PCTCN2018116196-appb-000098
步骤1:化合物WX028–2的合成
室温下,将化合物WX028–1(2.00g,10.15mmol)、联硼酸嚬哪醇酯(3.87g,15.23mmol)和醋酸钾(2.99g,30.45mmol)加入到乙腈(30.00mL)中,随后加入[1,1’–双(二苯基磷)二茂铁]二氯化钯(1.11g,1.52mmol),在氮气保护下反应混合物加热至60℃并搅拌16小时。反应完毕后,冷却至室温,减压除去溶剂。所得残留物加入水(20mL),用乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(80mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经制备层析板(洗脱剂:石油醚)分离得到目标化合物WX028–2。 1H NMR(400MHz,CDCl 3)δ:7.99(s,1H),7.72–7.69(m,1H),7.69(d,J=2.0Hz,1H),7.64–7.61(m,1H),6.80(d,J=1.2Hz,1H),1.39(s,12H).
步骤2:化合物WX028–3的合成
室温下,向化合物WX028–2(1.50g,6.15mmol)的甲醇(30.00mL)溶液中加入湿钯碳(50.00mg,纯度:10%),在氢气(15psi)氛围下,反应混合物在室温下搅拌16小时。反应完毕后,反应混合物过滤,滤液减压除去溶剂,得到目标化合物WX028–3。 1H NMR(400MHz,CDCl 3)δ:7.32(d,J=7.0Hz,1H),7.21(m,2H),4.55(t,J=8.5Hz,2H),3.22(t,J=8.5Hz,2H),1.34(s,12H).
步骤3:化合物WX028–4的合成
室温下,向化合物BB–18(250.00mg,613.83μmol)和化合物WX028–3(226.60mg,920.74μmol)的二氧六环(20.00mL)溶液中加入碳酸钾(254.51mg,1.84mmol)的水(2.00mL)溶液和[(二(1–金刚烷基)–N–正丁基膦)–2–(2–胺基–联苯)]氯化钯(40.00mg),在氮气保护下反应混合物加热至60℃并搅拌16小时。反应完 毕后,冷却至室温,减压除去溶剂,加入水(15mL),用1M稀盐酸调节pH至4–5,乙酸乙酯(20mL×3)萃取。合并有机相,用饱和食盐水(60mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经制备层析板分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到目标化合物WX028–4。MS–ESI m/z:447.2[M+H] +.
步骤4:化合物WX028的合成
室温下,向钠氢(300.00mg,7.50mmol,纯度:60%)的干燥四氢呋喃(15.00mL)混合液中依次一次性加入化合物WX028–4(220.00mg,492.70μmol)的N,N–二甲基甲酰胺(1.50mL)溶液和5–溴–2–氯嘧啶(190.61mg,985.40μmol),在氮气保护下反应混合物加热至75℃并搅拌1.5小时。反应完毕后,液冷却至室温,加入饱和氯化铵溶液(20mL),用1M稀盐酸调节pH至4–5,乙酸乙酯(30mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经制备层析板分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到目标化合物WX028。MS–ESI m/z:603.1[M+H] +,605.1[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.48(s,2H),8.46(s,1H),7.23(d,J=7.5Hz,1H),6.99(s,1H),6.69(d,J=7.5Hz,1H),6.63(s,1H),4.74–4.70(m,2H),4.66–4.64(m,2H),4.63–4.59(m,2H),3.49–3.44(m,4H),3.25(t,J=8.5Hz,2H),1.48–1.44(m,4H),0.34(s,4H).
参照实施例28中的合成方法(步骤3中的BB-18替换为片段2),合成表7中各实施例。
表7 实施例29–32结构式
Figure PCTCN2018116196-appb-000099
Figure PCTCN2018116196-appb-000100
各实施例的LCMS和HNMR数据见表8。
表8 实施例29–32核磁及LCMS数据
Figure PCTCN2018116196-appb-000101
实施例33:WX033
Figure PCTCN2018116196-appb-000102
合成路线:
Figure PCTCN2018116196-appb-000103
步骤1:化合物WX033–2的合成
室温下,将化合物WX033–1(2.50g,12.69mmol)、联嚬哪醇硼酸酯(6.44g,25.38mmol)和醋酸钾(3.74g,38.07mmol)加入到N,N–二甲基甲酰胺(20.00mL)中,随后加入[1,1′–双(二苯基膦)二茂铁]二氯化钯(1.86g,2.54mmol),在氮气保护下反应混合物加热至90℃并搅拌12小时。反应完毕后,冷却至室温,加水(100mL),用乙酸乙酯(100mL×3)萃取。合并有机相,用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残余物经过柱层析分离(洗脱剂:石油醚/乙酸乙酯=30/1–20/1,体积比),得到目标化合物WX033–2。 1H NMR(400MHz,CDCl 3)δ:8.14(s,1H),7.79(d,J=8.3Hz,1H),7.64(d,J=2.0Hz,1H),7.53(d,J=8.3Hz,1H),6.79(d,J=1.5Hz,1H),1.39(s,12H).
步骤2:化合物WX033–3的合成
室温下,将化合物WX033–2(500.00mg,2.05mmol)溶解于甲醇(30.00mL)中,随后加入湿钯碳(200.00mg,纯度:10%),在氢气(15psi)氛围下反应混合物加热至40℃并搅拌48小时。反应完毕后,冷却至室温,硅藻土过滤,滤液减压除去溶剂即可得到目标化合物WX033–3。 1H NMR(400MHz,CDCl 3)δ:7.62(s,1H),7.60–7.50(m,1H),6.78–6.77(m,1H),4.60–4.56(t,J=8.8Hz,2H),3.22–3.17(t,J=8.8Hz,2H),1.33(s,12H).
步骤3:化合物WX033–4的合成
室温下,将化合物BB–3(500.00mg,703.81μmol)、化合物WX033–3(259.82mg,粗品)、碳酸钾(291.82mg,2.11mmol)和[1,1′–双(二苯基膦)二茂铁]二氯化钯(103.00mg,140.76μmol)加入到二氧六环(20.00mL)和水(2.00mL)混合液中,在氮气保护下反应混合物加热至80℃并搅拌10小时。反应完毕后,冷却至室温,减压除去溶剂,所得残留物加入水(100mL),用1M稀盐酸调节pH至5,乙酸乙酯(50mL×3) 萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经制备层析板分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到目标化合物WX033–4。MS–ESI m/z:395.0[M+H] +.
步骤4:化合物WX033的合成
室温下,向钠氢(75.43mg,1.89mmol,纯度:60%)的无水四氢呋喃(20.00mL)溶液中,依次一次性加入化合物WX033–4(140.00mg,314.28μmol)的N,N–二甲基甲酰胺(2.00mL)溶液和5–溴–2–氯嘧啶(121.58mg,628.56μmol)的四氢呋喃(1mL)溶液,在氮气保护下反应混合物加热至70℃并搅拌2小时。反应完毕后,冷却至室温,加入饱和氯化铵水溶液(50mL),用1M稀盐酸调节pH至4–5,乙酸乙酯(50mL×3)萃取。合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压除去溶剂,所得残留物经制备层析板分离(洗脱剂:石油醚/乙酸乙酯=1/1,体积比),得到目标化合物WX033。MS–ESI m/z:551.1[M+H] +,553.1[M+H+2] +. 1H NMR(400MHz,CDCl 3)δ:8.50(s,2H),8.43(s,1H),7.07(s,1H),7.01–6.97(m,2H),6.83–6.78(m,1H),5.65(s,1H),4.73–4.71(m,2H),4.65–4.61(m,4H),3.25–3.20(m,2H),2.98–2.93(m,2H),1.60–1.56(m,2H),0.96(t,J=7.6Hz,3H).
参照实施例33中的合成方法(步骤3中的BB-3替换为片段2),合成表9中实施例。
表9 实施例34结构式
Figure PCTCN2018116196-appb-000104
实施例的LCMS和HNMR数据见表10.
表10 实施例34核磁及LCMS数据
Figure PCTCN2018116196-appb-000105
实验例1:人体ET A受体拮抗效应的体外测试
实验目的:
通过使用荧光检测方法测定化合物对人ET A受体激动剂诱导的胞质Ca 2+离子信号变化的作用来评估化合物在SK–N–MC细胞中内源表达的人ET A受体上的拮抗剂活性。ET A受体拮抗效应的功能活性在Eurofins-Cerep SA根据现行的标准操作程序进行测试。
实验方案:
1.将细胞悬浮于用1%FCSd补充的Dulbecco's改良的Eagle培养基溶液(DMEM,Invitrogen)中,然后以5×10 4个细胞/孔的密度分布在384板中(100μL/孔);
2.将在20mM 4-(2-羟乙基)哌嗪-1-乙磺酸(Hepes,Invitrogen)(pH7.4)补充的Hank's平衡盐溶液(HBSS,Invitrogen)中羧苯磺胺与荧光探针(Fluo4NW,Invitrogen)混合,再加入到每个孔中,然后在37℃下与细胞平衡60分钟,再在22℃下与细胞平衡15分钟;
3.将测定板置于微板读数器(CellLux,PerkinElmer)中,加入测试化合物与阳性对照的适当浓度的DMSO溶液或HBSS缓冲液,5分钟后再加入1nM内皮素–1或HBSS缓冲液(基底对照),然后测量与游离细胞溶质的Ca 2+离子浓度成比例的荧光强度变化值;
4.结果是对1nM内皮素–1的对照响应的百分比抑制;
5.标准阳性对照是BQ–123,在每个实验中测试几个浓度,使用Prism分析数据,产生一个浓度–响应的曲线,计算化合物的IC 50值。
实验例2:人体ET B受体拮抗效应的体外测试
实验目的:
通过使用荧光检测方法测定化合物对人ET B受体激动剂诱导的胞质Ca 2+离子信号变化的作用来评估化合物在转染的CHO细胞中表达人的ET B受体上的拮抗剂活性。ET B受体拮抗效应的功能活性在Eurofins-Cerep SA根据现行的标准操作程序进行测试。
实验方案:
1.将细胞悬浮在DMEM缓冲液(Invitrogen)中,然后以3×10 4细胞/孔的密度分布在384板中(100μL/孔);
2.将在20mM Hepes(Invitrogen)(pH7.4)补充的HBSS缓冲液(Invitrogen)中羧苯磺胺与荧光探针(Fluo4Direct,Invitrogen)混合,再加入到每个孔中,然后在37℃下与细胞平衡60分钟,再在22℃下与细胞平衡15分钟;
3.将测定板置于微板读数器(CellLux,PerkinElmer)中,加入测试化合物与阳性对照的适当浓度的DMSO溶液或HBSS缓冲液,5分钟后再加入0.3nM内皮素–1或HBSS缓冲液(基底对照),然后测 量与游离细胞溶质的Ca 2+离子浓度成比例的荧光强度变化值;
4.结果是对0.3nM内皮素–1的对照响应的百分比抑制;
5.标准阳性对照是BQ–788,在每个实验中测试几个浓度,使用Prism分析数据,产生一个浓度–响应的曲线,计算化合物的IC 50值。
表11 本发明化合物对人ET A与ET B受体的体外拮抗活性及对ET B的选择性
Figure PCTCN2018116196-appb-000106
结论:
本发明化合物都展现出对人ET A受体的体外拮抗极高活性;本发明化合物ET A对ET B的选择性都超过10000倍。
实验例3:人孕烷X受体(PXR)试验
实验目的:
评估化合物对PXR介导CYP3A表达的诱导作用。
实验材料和设备:
Figure PCTCN2018116196-appb-000107
实验方案:
1.在无菌条件下,将DPX2细胞解冻。
2.将DPX2细胞液分布在96孔板中(100微升/孔),将板放置在5%CO 2/37℃的培养箱中过夜。
3.在37℃水浴中解冻定量给料培养基。在室温下解冻阳性对照利福平。在定量给料培养基中制备一系列受试化合物和阳性对照稀释液。小心地从每个孔中吸出并丢弃培养基,在抽吸过程中不要打扰细胞。将100微升每种受试化合物浓度转移到预先标记的孔中。阳性对照组和空白组操作与之一样。将板放回培养箱中暴露24小时。
4.酶活性测试:
(1)将7微升Luciferin-IPA加入7毫升定量给料培养基中,通过倒置混合,倒入Luciferin-IPA试剂槽中。
(2)从培养箱取出96孔板,小心将培养基从每个孔中吸走。每孔加入50微升上述Luciferin-IPA试剂,将细胞板放回培养箱中培养60分钟。
(3)孵育期间,将P450-Glo缓冲液倒入Luciferin检测试剂中,颠倒混匀。
(4)从培养箱取出96孔板,并从每个孔中转移40微升溶液至相应的白色的96孔板中,每个孔相应的位置与原细胞板保持一致。
(5)转移P450-Glo TM溶液至复制板后,转移10毫升细胞滴定缓冲液(CTF buffer)至15毫升无菌锥形管,再加入5微升CellTiter-Fluor TM试剂,颠倒混匀。
(6)使用多孔道移液器,在原来培养细胞的96孔板中轻轻加入100微升CellTiter-Fluor TM试剂,再将细胞板送回培养箱孵育60分钟。
(7)复制板的每个孔加入40微升Luciferin检测试剂/P450-Glo缓冲液,搅拌,室温孵育20分钟。
(8)与Luciferin检测试剂孵育20分钟后,使用光度计(设置1-5秒。读出时间)测定白色96孔板的每个孔的发光。应使用相对较高的增益设置。
(9)将ONE-Glo TM荧光素酶检测缓冲液加入到ONE-Glo TM检测试剂中,颠倒混匀。
(10)在37度下孵育60分钟后,从培养箱中取出原来的96孔板,将酶标仪设置为荧光模式,并设定激发波长为380-400nm、发射波长为505nm,测定每个孔的荧光强度。
(11)从酶标仪中取出细胞板,每个孔加入100微升ONE-Glo TM检测试剂。摇板混匀,室温孵育5分钟。
(12)将酶标仪设定为5秒预摇和5秒读孔,测定每个孔中荧光强度。应使用高仪器增益(灵敏度)设置。
5.药物对PXR的激活效应用诱导倍数(fold induction)来反映,即每组的诱导倍数=药物处理组的荧光素酶活性值/溶剂对照组的荧光素酶活性值,并以此预测其对CYP3A4的诱导效应。
阳性对照是利福平,在每个实验中测试六个浓度,使用Prism分析数据,产生一个浓度–响应的曲线,计算化合物的EC50值。
实验结果:
测试结果见表12。
表12 本发明化合物对PXR介导CYP3A表达的诱导作用结果
测试化合物 WX013 对照化合物(马西替坦)
EC 50(μM) 27.6±1.33* 6.34±0.170*
*模拟曲线计算误差
结论:
本发明化合物WX013对PXR介导CYP3A表达的诱导作用较弱,化合物马西替坦对PXR介导CYP3A表达的诱导作用较强。因此,在PXR介导CYP3A表达的诱导作用的表征实验中,WX013优于马西替坦。
实验例4:人肝微粒体细胞色素P450的同工酶抑制试验
实验目的:
研究项目的目的是采用CYP同工酶的5合1探针底物来评价供试品对人肝微粒体细胞色素P450同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)的抑制活性。
实验方案:
混合人肝微粒体(HLM)购自Corning Inc.(Steuben,New York,USA),使用前都储存在低于-80℃条件下。将稀释好的系列浓度的受试品工作液加入到含有人肝微粒体、探针底物和循环体系的辅助因子的孵育体系中,不含供试品而含有溶剂的对照作为酶活性对照(100%)。探针底物生成的代谢产物在样品中的浓度采用液相色谱-串联质谱(LC-MS/MS)方法进行测定。使用SigmaPlot(V.11)对受试品平均百分比活性对浓度作非线性回归分析。通过三参数或四参数反曲对数方程来计算IC50值。
实验结果:
测试结果见表13。
表13 本发明化合物对人肝微粒体细胞色素P450的同工酶抑制结果
Figure PCTCN2018116196-appb-000108
结论:
本发明化合物WX005,WX013和WX025对CYP五个主要的同工酶抑制作用均非常微弱,马西替坦对CYP四个主要的同工酶抑制作用微弱,而对同工酶CYP2C9的抑制作用中等。因此,在对人肝微粒体细胞素P450的5种主要同工酶的抑制作用的表征实验中,WX005,WX013和WX025均优于马西替坦。
实验例5:化合物对胆盐转运泵(BSEP)的抑制作用试验
实验目的:
本实验通过应用LC/MS/MS检测胆盐转运体(BSEP)对底物牛磺胆酸TCA吸收能力的方法对受试化合物在胆盐转运体转运过程是否具有抑制作用进行评估。
实验材料:
Figure PCTCN2018116196-appb-000109
Figure PCTCN2018116196-appb-000110
溶液配制:
1.缓冲液A:
50mM HEPES pH 7.4,100mM KNO 3,10mM Mg(NO 3) 2,50mM蔗糖。
2.缓冲液B:
10mM TRIS pH 7.4,100mM KNO 3,10mM Mg(NO 3) 2,50mM蔗糖。
3.ATP缓冲液:
用缓冲液A配制,12毫升缓冲液A中含有8.16mM ATP,4.08μM牛磺胆酸。
4.AMP缓冲液:
用缓冲液A配制,12毫升缓冲液A中含有8.16mM AMP,4.08μM牛磺胆酸。
5.BSEP-Hi5-VT Vesicle溶液:
用缓冲液A配制成含有BSEP-Hi5-VT 5μg/μL溶液。
样品准备:
1.化合物用DMSO稀释至100mM;然后3倍连续稀释11个点;最低浓度0.169μM。
2.阳性参照Glyburide(优降糖)的20mM DMSO溶液;然后2倍连续稀释11个点;最低浓度19.5μM。
实验方案:
1.使用ECHO分别转移0.3微升化合物的DMSO溶液或稀释的DMSO至化合物板相应孔中。
2.分别加入ATP缓冲液14.7微升到化合物及百分之零效果(ZPE)相应的孔中。
3.分别加入AMP缓冲液14.7微升到百分之百效果(HPE)相应的孔中。
4.25℃条件下,振板10分钟。
5.分别向所有孔中加入BSEP-Hi5-VT Vesicle溶液15微升,并于25℃条件下再振板40分钟。
6.立即向所有孔中加入5微升0.5M乙二胺四乙酸(EDTA)溶液,再加入65微升缓冲液B,全部反应结束。
7.使用仪器从反应结束的化合物板转移95微升液体至过滤板。
8.在过滤板下放置液体接收板后,使用离心机离去液体,并将接收板液体弃去。
9.在过滤板中加入90微升缓冲液B,在过滤板下放置液体接收板后,使用离心机离去液体,并将接收板液体弃去,共将过滤板洗三次。
10.过滤板晾干过夜。
11.第二天加入80微升甲醇/水(80/20,体积比)溶液至过滤板。
12.过滤板帖膜后振板15分钟。
13.在过滤板下放置新的液体接收板,并离心5分种,将过滤板中所有液体过滤至接收板中。
14.在液体接收板中每个孔加入15微升内标溶液,用封膜封板。
15.使用LC/MS/MS检测接收板中牛磺胆酸的含量。
在每个实验中测试几个浓度,使用Prism分析数据,产生一个浓度–响应的曲线,计算化合物的IC 50
实验结果:
试验结果见表14。
表14 本发明化合物对胆盐转运泵(BSEP)的抑制作用结果
化合物 优降糖 马西替坦 WX013
IC 50(μM) 1.489 0.2809 43.77
结论:
本发明化合物WX013对胆盐转运泵(BSEP)的抑制作用极其微弱,但马西替坦对其抑制作用较强。因此,WX013对胆盐转运泵的抑制作用远远弱于马西替坦,从而显著降低产生肝毒性的风险。
实验例6:化合物的大鼠药代动力学评价
实验目的:
本研究受试动物选用SD雄性大鼠,应用LC/MS/MS法定量测定大鼠静脉注射或口服灌胃给予测试化合物不同时间点的血浆中的药物浓度,以评价测试化合物在大鼠体内的药代动力学特征。
实验材料:
Sprague Dawley(SD)大鼠(雄性,200-300g,7~10周龄,北京维通利华或上海斯莱克)。
实验操作:
将测试化合物的澄清溶液经尾静脉注射到SD大鼠体内(过夜禁食),或口服灌胃给予到SD大鼠(过夜禁食)。静脉注射给药于0小时(给药前)以及给药后0.0833、0.25、0.5、1、2、4、6、8和24小时从颈静脉穿刺采血200μL,置于添加了EDTA-K2的抗凝管(江苏康健医疗用品有限公司)中,在4℃,将此抗凝管中混合物充分涡旋混合,然后在13000转/分钟下离心10分钟取血浆;口服灌胃给药于0小时(给药前)以及给药后0.5、1、2、4、6、8和24小时从颈静脉穿刺采血200μL,置于添加了EDTA-K2的抗凝管(江苏康健医疗用品有限公司)中,将此抗凝管中混合物充分涡旋混合,然后在13000转/分钟下离心10分钟取血浆。采用LC/MS/MS法测定血药浓度,使用WinNonlin TM Version 6.3(Pharsight,Mountain View,CA)药动学软件,以非房室模型线性对数梯形法计算相关药代动力学参数。
实验结果:
测试结果见表15。
表15 本发明化合物在大鼠中的药代动力学参数
Figure PCTCN2018116196-appb-000111
结论:
本发明化合物WX001和WX013在大鼠体内的血浆清除率低(<5mL/min/kg),口服灌胃生物利用度高(>70%)。
实验例7:化合物的比格犬药代动力学评价
实验目的:
本研究受试动物选用雄性比格犬,应用LC/MS/MS法定量测定比格犬静脉注射或口服灌胃给予测试化合物不同时间点的血浆中的药物浓度,以评价测试化合物在比格犬体内的药代动力学特征。
实验材料:
比格犬(雄性,6-15kg,6个月以上,北京马歇尔生物科技有限公司)。
实验操作:
将测试化合物的澄清溶液经静脉注射到比格犬体内(过夜禁食),或口服灌胃给予比格犬(过夜禁食)。静脉注射给药于0小时(给药前)以及给药后0.0833、0.25、0.5、1、2、4、6、8和24小时从外周血管采血约500μL,置于添加了EDTA-K2的抗凝管(江苏康健医疗用品有限公司)中;口服灌胃给药0小时(给药前)以及给药后0.25、0.5、1、2、4、6、8和24小时从外周血管采血约500μL,置于添加了EDTA-K2的抗凝管中。在4℃,将抗凝管中混合物充分涡旋混合,然后在13000转/分钟下离心10分钟取血浆。采用LC/MS/MS法测定血药浓度,使用WinNonlin TM Version 6.3(Pharsight,Mountain View,CA)药动学软件,以非房室模型线性对数梯形法计算相关药代动力学参数。
实验结果:
测试结果见表16。
表16 本发明化合物在比格犬中的药代动力学参数
Figure PCTCN2018116196-appb-000112
结论:
本发明化合物WX001和WX013在比格犬体内的血浆清除率低(<5mL/min/kg),口服灌胃生物利用度高(>50%)。

Claims (19)

  1. 式(Ⅰ)所示化合物、其异构体或其药学上可接受的盐,
    Figure PCTCN2018116196-appb-100001
    其中,
    R 1选自H、F、Cl、Br、I、OH和NH 2
    R 2选自H和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R取代;
    R 3选自H、C 1-6烷基、C 1-6杂烷基、-C 1-3烷基-C 3-6环烷基、C 3-6环烷基和-C 1-3烷基-3~7元杂环烷基,所述C 1-6烷基、C 1-6杂烷基、-C 1-3烷基-C 3-6环烷基、C 3-6环烷基或-C 1-3烷基-3~7元杂环烷基任选被1、2或3个R取代;
    或者,R 2与R 3连接形成一个任选被1、2或3个R取代的3-8元环;
    环B选自3~7元杂环烷基和5~6元杂芳基,所述3~7元杂环烷基或5~6元杂芳基任选被1、2或3个R取代;
    R分别独立地选自H、F、Cl、Br、I、OH、NH 2、CN、C 1-6烷基和C 1-6杂烷基,所述C 1-6烷基或C 1-6杂烷基任选被1、2或3个R’取代;
    R’分别独立地选自F、Cl、Br、I、OH、NH 2、CN、M e、CH 2F、CHF 2、CF 3和Et;
    所述C 1-6杂烷基、3~7元杂环烷基和5~6元杂芳基分别包含1、2、3或4个独立选自N、-O-、-S-、-NH-、-S(=O) 2-和-S(=O)-的杂原子或杂原子团。
  2. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,R选自H、F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷基-S(=O) 2-和C 1-3烷基-O-,所述C 1-3烷基、C 1-3烷基-S(=O) 2-或C 1-3烷基-O-任选被1、2或3个R’取代。
  3. 根据权利要求2所述化合物、其异构体或其药学上可接受的盐,其中,R选自H、F、Cl、Br、I、OH、NH2、CN、Me、Et、
    Figure PCTCN2018116196-appb-100002
    所述Me、Et、
    Figure PCTCN2018116196-appb-100003
    任选被1、2或3个R’取代。
  4. 根据权利要求3所述化合物、其异构体或其药学上可接受的盐,其中,R选自H、F、Cl、Br、I、OH、 NH 2、CN、Me、CH 2F、CHF 2、CF 3、Et、
    Figure PCTCN2018116196-appb-100004
  5. 根据权利要求1~4任意一项所述化合物、其异构体或其药学上可接受的盐,其中,R 2选自H和Me。
  6. 根据权利要求1~4任意一项所述化合物、其异构体或其药学上可接受的盐,其中,R 3选自H、C 1-4烷基、C 1-4烷基-O-C 1-4烷基、环丁烷基、-C 1-3烷基-环丁烷基、-C 1-3烷基-环丙烷基、-C 1-3烷基-四氢呋喃基和-C 1-3烷基-四氢吡喃基,所述C 1-4烷基、C 1-4烷基-O-C 1-4烷基、环丁烷基、-C 1-3烷基-环丁烷基、-C 1-3烷基-环丙烷基、-C 1-3烷基-四氢呋喃基或-C 1-3烷基-四氢吡喃基任选被1、2或3个R取代。
  7. 根据权利要求6所述化合物、其异构体或其药学上可接受的盐,其中,R 3选自H、Me、Et、
    Figure PCTCN2018116196-appb-100005
    Figure PCTCN2018116196-appb-100006
    Figure PCTCN2018116196-appb-100007
    所述Me、Et、
    Figure PCTCN2018116196-appb-100008
    Figure PCTCN2018116196-appb-100009
    任选被1、2或3个R取代。
  8. 根据权利要求7所述化合物、其异构体或其药学上可接受的盐,其中,R 3选自H、Me、Et、
    Figure PCTCN2018116196-appb-100010
    Figure PCTCN2018116196-appb-100011
  9. 根据权利要求1~4任意一项所述化合物、其异构体或其药学上可接受的盐,其中,R 2与R 3连接形成一个任选被1、2或3个R取代的6-8元杂环烷基。
  10. 根据权利要求9所述化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2018116196-appb-100012
    选自
    Figure PCTCN2018116196-appb-100013
    Figure PCTCN2018116196-appb-100014
    所述
    Figure PCTCN2018116196-appb-100015
    任选被1、2或3个R取代。
  11. 根据权利要求10所述化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2018116196-appb-100016
    选自
    Figure PCTCN2018116196-appb-100017
    Figure PCTCN2018116196-appb-100018
  12. 根据权利要求1~4任意一项所述化合物、其异构体或其药学上可接受的盐,其中,环B选自四氢呋喃基、四氢噻吩基、1,3-二氧戊环基、吡咯烷基、噻唑基、吡唑基和咪唑基,所述四氢呋喃基、四氢噻吩基、1,3-二氧戊环基、吡咯烷基、噻唑基、吡唑基或咪唑基任选被1、2或3个R取代。
  13. 根据权利要求12所述化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2018116196-appb-100019
    选自
    Figure PCTCN2018116196-appb-100020
  14. 根据权利要求1~11任意一项所述化合物、其异构体或其药学上可接受的盐,其选自
    Figure PCTCN2018116196-appb-100021
    Figure PCTCN2018116196-appb-100022
    其中,
    R、R 1或R 2如权利要求1~11所定义。
  15. 下列化合物、其异构体或其药学上可接受的盐,其选自
    Figure PCTCN2018116196-appb-100023
    Figure PCTCN2018116196-appb-100024
    Figure PCTCN2018116196-appb-100025
  16. 根据权利要求15所述化合物、其异构体或其药学上可接受的盐,其选自
    Figure PCTCN2018116196-appb-100026
  17. 一种药物组合物,包括治疗有效量的根据权利要求1~16任意一项所述的化合物或其药学上可接受的盐作为活性成分以及药学上可接受的载体。
  18. 根据权利要求1~16任意一项所述的化合物或其药学上可接受的盐或者权利要求17的组合物在制备ET A受体拮抗剂相关药物上的应用。
  19. 根据权利要求18所述的应用,其特征在于,所述制备ET A受体拮抗剂相关药物是用于肺动脉高压、原发性高血压、难治性高血压、糖尿病肾病和颅内血管痉挛等适应症的药物。
PCT/CN2018/116196 2017-11-21 2018-11-19 嘧啶磺酰胺类衍生物、其制备方法及其在医药上的应用 WO2019101039A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
EP18881280.4A EP3719013B1 (en) 2017-11-21 2018-11-19 Pyrimidine sulfamide derivative and preparation method and medical application thereof
SI201830884T SI3719013T1 (sl) 2017-11-21 2018-11-19 Pirimidin sulfamidni derivat in postopek priprave ter medicinska uporaba le-tega
BR112020010149A BR112020010149A8 (pt) 2017-11-21 2018-11-19 Derivado de pirimidina sulfamida e método de preparação e aplicação médica
HRP20230318TT HRP20230318T1 (hr) 2017-11-21 2018-11-19 Derivat pirimidin sulfamida, postupak pripreme i njegova medicinska primjena
PL18881280.4T PL3719013T3 (pl) 2017-11-21 2018-11-19 Pochodna sulfamidowa pirymidyny oraz sposób jej wytwarzania i zastosowanie medyczne
AU2018372752A AU2018372752B2 (en) 2017-11-21 2018-11-19 Pyrimidine sulfamide derivative and preparation method and medical application thereof
RS20230197A RS64040B1 (sr) 2017-11-21 2018-11-19 Derivat pirimidin sulfamida i njegov postupak dobijanja i primena u medicini
ES18881280T ES2936864T3 (es) 2017-11-21 2018-11-19 Derivado de pirimidinosulfamida y método de preparación y aplicación médica del mismo
CA3083019A CA3083019A1 (en) 2017-11-21 2018-11-19 Pyrimidine sulfamide derivative and preparation method and medical application thereof
JP2020528076A JP7245832B2 (ja) 2017-11-21 2018-11-19 ピリミジンスルファミド系誘導体、その製造方法およびその医薬における使用
FIEP18881280.4T FI3719013T3 (fi) 2017-11-21 2018-11-19 Pyrimidiinisulfamidijohdannainen ja valmistusmenetelmä ja lääketieteellinen käyttö
RU2020119900A RU2773844C9 (ru) 2017-11-21 2018-11-19 Производное пиримидинсульфамида и способ его получения, и медицинское применение
LTEPPCT/CN2018/116196T LT3719013T (lt) 2017-11-21 2018-11-19 Pirimidino sulfamido darinys ir jo gavimo būdas bei medicininis taikymas
DK18881280.4T DK3719013T3 (da) 2017-11-21 2018-11-19 Pyrimidinsulfamidderivat og fremgangsmdåde til fremstilling og medicinsk anvendelse heraf
CN201880074739.3A CN111479808B (zh) 2017-11-21 2018-11-19 嘧啶磺酰胺类衍生物、其制备方法及其在医药上的应用
US16/764,654 US11319305B2 (en) 2017-11-21 2018-11-19 Pyrimidine sulfamide derivative and preparation method and medical application thereof
IL274773A IL274773B2 (en) 2017-11-21 2020-05-19 A pyrimidine sulfamide derivative and a method of its preparation and medical application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711168111 2017-11-21
CN201711168111.3 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019101039A1 true WO2019101039A1 (zh) 2019-05-31

Family

ID=66630436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116196 WO2019101039A1 (zh) 2017-11-21 2018-11-19 嘧啶磺酰胺类衍生物、其制备方法及其在医药上的应用

Country Status (19)

Country Link
US (1) US11319305B2 (zh)
EP (1) EP3719013B1 (zh)
JP (1) JP7245832B2 (zh)
CN (1) CN111479808B (zh)
AU (1) AU2018372752B2 (zh)
BR (1) BR112020010149A8 (zh)
CA (1) CA3083019A1 (zh)
DK (1) DK3719013T3 (zh)
ES (1) ES2936864T3 (zh)
FI (1) FI3719013T3 (zh)
HR (1) HRP20230318T1 (zh)
HU (1) HUE061515T2 (zh)
IL (1) IL274773B2 (zh)
LT (1) LT3719013T (zh)
PL (1) PL3719013T3 (zh)
PT (1) PT3719013T (zh)
RS (1) RS64040B1 (zh)
SI (1) SI3719013T1 (zh)
WO (1) WO2019101039A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020233694A1 (zh) * 2019-05-22 2020-11-26 石家庄智康弘仁新药开发有限公司 一种嘧啶磺酰胺类化合物的晶型及其制备方法
EP3851435A4 (en) * 2018-09-25 2021-11-24 Chinese PLA General Hospital MEDICAL USE OF PYRIMIDINE SULFONAMIDE DERIVATIVES

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005355A1 (fr) 2000-07-11 2002-01-17 Sanyo Electric Co., Ltd Dispositif recepteur de lumiere et module recepteur de lumiere comprenant ce dernier
CN1524079A (zh) * 2000-12-18 2004-08-25 ������˹ҩƷ��˾ 新颖的磺酰胺类化合物及其作为内皮素受体拮抗剂的应用
CN1711248A (zh) * 2002-12-02 2005-12-21 埃科特莱茵药品有限公司 嘧啶-磺酰胺及其作为内皮素受体拮抗剂的应用
CN101056872A (zh) * 2004-11-11 2007-10-17 埃科特莱茵药品有限公司 用于治疗心血管疾病作为内皮素受体拮抗剂的磺酰二胺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2315614C (en) * 1999-07-29 2004-11-02 Pfizer Inc. Pyrazoles
EP1160248A1 (en) * 2000-05-31 2001-12-05 Pfizer Inc. N-(Isoxazol-5-yl)-sulfonamide derivatives and their use as endothelin antagonists

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005355A1 (fr) 2000-07-11 2002-01-17 Sanyo Electric Co., Ltd Dispositif recepteur de lumiere et module recepteur de lumiere comprenant ce dernier
CN1524079A (zh) * 2000-12-18 2004-08-25 ������˹ҩƷ��˾ 新颖的磺酰胺类化合物及其作为内皮素受体拮抗剂的应用
CN1711248A (zh) * 2002-12-02 2005-12-21 埃科特莱茵药品有限公司 嘧啶-磺酰胺及其作为内皮素受体拮抗剂的应用
CN101056872A (zh) * 2004-11-11 2007-10-17 埃科特莱茵药品有限公司 用于治疗心血管疾病作为内皮素受体拮抗剂的磺酰二胺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOLLI MARTIN H.: "The Discovery of N-[5-(4-Bromophen- yl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-N' - propylsulfamide(Macitentan), an Orally Active, Potent Dual Endothelin Re- ceptor Antagonist", JOURNAL OF MEDICINAL CHEMISTRY, 3 August 2012 (2012-08-03), XP055078934 *
SIDHARTA P. N.: "Clinical Pharmacokinetics and Pharmacodynamics of the En- dothelin Receptor Antagonist Macitentan", CLIN PHARMACOKINET, 10 April 2015 (2015-04-10), XP055614382 *
SIDHARTA PATRICIA N.: "Macitentan: entry-into-humans study with a new en- dothelin receptor antagonist", EUR J CLIN PHARMACOL, 4 May 2011 (2011-05-04), XP019949637 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3851435A4 (en) * 2018-09-25 2021-11-24 Chinese PLA General Hospital MEDICAL USE OF PYRIMIDINE SULFONAMIDE DERIVATIVES
US20210393627A1 (en) * 2018-09-25 2021-12-23 Chinese Pla General Hospital Medical application of pyrimidine sulfonamides derivatives
US11628168B2 (en) * 2018-09-25 2023-04-18 Chinese Pla General Hospital Medical application of pyrimidine sulfonamides derivatives
WO2020233694A1 (zh) * 2019-05-22 2020-11-26 石家庄智康弘仁新药开发有限公司 一种嘧啶磺酰胺类化合物的晶型及其制备方法
CN113874364A (zh) * 2019-05-22 2021-12-31 石家庄智康弘仁新药开发有限公司 一种嘧啶磺酰胺类化合物的晶型及其制备方法
CN113874364B (zh) * 2019-05-22 2024-04-05 无锡智康弘义生物科技有限公司 一种嘧啶磺酰胺类化合物的晶型及其制备方法

Also Published As

Publication number Publication date
CN111479808A (zh) 2020-07-31
HUE061515T2 (hu) 2023-07-28
HRP20230318T1 (hr) 2023-05-12
EP3719013A1 (en) 2020-10-07
PT3719013T (pt) 2023-02-01
BR112020010149A8 (pt) 2023-01-17
IL274773B2 (en) 2023-08-01
CN111479808B (zh) 2023-02-24
EP3719013B1 (en) 2023-01-04
IL274773B1 (en) 2023-04-01
JP2021504330A (ja) 2021-02-15
RU2020119900A3 (zh) 2021-12-23
EP3719013A4 (en) 2021-04-21
US20200283425A1 (en) 2020-09-10
LT3719013T (lt) 2023-05-10
AU2018372752B2 (en) 2023-02-02
RU2020119900A (ru) 2021-12-23
US11319305B2 (en) 2022-05-03
DK3719013T3 (da) 2023-04-03
FI3719013T3 (fi) 2023-04-03
ES2936864T3 (es) 2023-03-22
PL3719013T3 (pl) 2023-05-08
CA3083019A1 (en) 2019-05-31
BR112020010149A2 (pt) 2020-11-10
IL274773A (en) 2020-07-30
RS64040B1 (sr) 2023-04-28
JP7245832B2 (ja) 2023-03-24
SI3719013T1 (sl) 2023-05-31
AU2018372752A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
CN110248926B (zh) Lsd1抑制剂及其制备方法和应用
BR112020001124A2 (pt) composto ou o sal farmaceuticamente aceitável do mesmo, composição farmacêutica, uso do composto ou do sal farmaceuticamente aceitável do mesmo e método para tratamento de câncer
WO2019101178A1 (zh) 作为c-MET/AXL抑制剂的尿嘧啶类化合物
JP7168149B2 (ja) Fgfr阻害剤としてのピラジン-2(1h)-オン系化合物
WO2019034075A1 (zh) Fgfr和egfr抑制剂
JP7086075B2 (ja) Ccr2/ccr5受容体拮抗剤としてのビフェニル化合物
WO2021115335A1 (zh) 作为周期蛋白依赖性激酶9抑制剂的化合物及其应用
WO2022134642A1 (zh) 芳香杂环类化合物、药物组合物及其应用
WO2019056950A1 (zh) 噻吩并二氮杂卓衍生物及其应用
EP3533787B1 (en) Pyridone compound as c-met inhibitor
CN114502561A (zh) Lsd1抑制剂
WO2019101039A1 (zh) 嘧啶磺酰胺类衍生物、其制备方法及其在医药上的应用
CN113993867A (zh) 作为fgfr和vegfr双重抑制剂的并环类化合物
CN113874379B (zh) 作为Cdc7抑制剂的四并环类化合物
CN109071469B (zh) 三环类化合物及其应用
BR112020008991A2 (pt) compostos de piridopirimidina que atuam como inibidores duais de mtorc 1/2
WO2022166721A1 (zh) 含1,4-氧杂氮杂环庚烷的并环类衍生物
WO2018224037A1 (zh) 作为at2r受体拮抗剂的羧酸衍生物
RU2773844C2 (ru) Производное пиримидинсульфамида и способ его получения, и медицинское применение
RU2773844C9 (ru) Производное пиримидинсульфамида и способ его получения, и медицинское применение
WO2023151660A1 (zh) 一种p2x3受体拮抗剂的结晶形式及其制备方法
WO2022228365A1 (zh) 六元杂芳并脲环的衍生物及其应用
WO2022053028A1 (zh) 1,2,4-三嗪-3,5(2h,4h)-二酮类化合物及其应用
TW202320769A (zh) 一種降解劑及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3083019

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020528076

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881280

Country of ref document: EP

Effective date: 20200622

ENP Entry into the national phase

Ref document number: 2018372752

Country of ref document: AU

Date of ref document: 20181119

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020010149

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020010149

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200521