WO2022166721A1 - 含1,4-氧杂氮杂环庚烷的并环类衍生物 - Google Patents

含1,4-氧杂氮杂环庚烷的并环类衍生物 Download PDF

Info

Publication number
WO2022166721A1
WO2022166721A1 PCT/CN2022/074088 CN2022074088W WO2022166721A1 WO 2022166721 A1 WO2022166721 A1 WO 2022166721A1 CN 2022074088 W CN2022074088 W CN 2022074088W WO 2022166721 A1 WO2022166721 A1 WO 2022166721A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
μmol
reaction solution
added
phase
Prior art date
Application number
PCT/CN2022/074088
Other languages
English (en)
French (fr)
Inventor
吴凌云
赵乐乐
陈德恒
严小璇
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to JP2023547665A priority Critical patent/JP2024505715A/ja
Priority to EP22749000.0A priority patent/EP4289827A1/en
Priority to AU2022218443A priority patent/AU2022218443A1/en
Priority to CN202280010798.0A priority patent/CN116783189A/zh
Priority to CA3207466A priority patent/CA3207466A1/en
Publication of WO2022166721A1 publication Critical patent/WO2022166721A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Definitions

  • the present invention relates to a series of 1,4-oxazepane-containing hexacyclic derivatives and a preparation method thereof, in particular to a compound represented by formula (II) and a pharmaceutically acceptable salt thereof.
  • DPP1 Dipeptidyl peptidase 1
  • cathepsin C Dipeptidyl peptidase 1
  • DPP1 is a class of lysosomal cysteine proteases composed of four identical subunits, each consisting of a tetramer, each consisting of a heavy chain, a light chain, and an exclusive domain (Turk, D. et. al. EMBO J. 2001, 20, 6570-6582.).
  • DPP1 The main physiological role of DPP1 is to activate pro-inflammatory neutrophil serine proteases (NSPs, including neutrophil elastase, protease 3 and cathepsin G) by cleaving N-terminal dipeptides in the bone marrow.
  • NSPs pro-inflammatory neutrophil serine proteases
  • DPP1 inhibitors can fundamentally inhibit the activation of pro-inflammatory neutrophil proteases, thereby inhibiting the inflammatory response and airway damage caused by neutrophils in the airway.
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof,
  • Z is selected from N and C
  • R are independently selected from single and double bonds, wherein when When selected from double bonds, R is absent;
  • T is independently selected from N and CR3 ;
  • Each R 1 is independently selected from H, F, Cl, Br, I, -OH, -NH 2 , -CN and C 1-3 alkyl, wherein the C 1-3 alkyl is optionally or replaced by 3 Ras ;
  • R 3 is selected from H, F, Cl, Br, I, -OH, -NH 2 , -CN and C 1-3 alkyl, wherein said C 1-3 alkyl is optionally surrounded by 1, 2 or 3 R replaced by c ;
  • R 4 is selected from H, F, Cl, Br, I, -OH, -NH 2 , -CN and C 1-3 alkyl, wherein said C 1-3 alkyl is optionally surrounded by 1, 2 or 3 R replaced by d ;
  • R 5 is selected from H, F, Cl, Br, I, -OH, -NH 2 , -CN and C 1-3 alkyl, wherein said C 1-3 alkyl is optionally surrounded by 1, 2 or 3 R replaced by e ;
  • R 6 is selected from H, F, Cl, Br, I, -OH, -NH 2 , -CN and C 1-3 alkyl, wherein said C 1-3 alkyl is optionally surrounded by 1, 2 or 3 R replaced by f ;
  • n is selected from 1, 2, 3 and 4;
  • the 5-6 membered heterocycloalkyl group contains 1, 2, 3 or 4 heteroatoms or heteroatomic groups independently selected from -O-, -NH-, -S- and -N-.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • T is selected from N and CR3 ;
  • R 1 is selected from H, F, Cl, Br, I, -OH, -NH 2 , -CN and C 1-3 alkyl, wherein said C 1-3 alkyl is optionally surrounded by 1, 2 or 3 R replaced by a ;
  • R 2 is selected from H and C 1-3 alkyl, wherein said C 1-3 alkyl is optionally substituted with 1, 2 or 3 R b ;
  • R is selected from H and C 1-3 alkyl, wherein said C 1-3 alkyl is optionally substituted with 1, 2 or 3 R c ;
  • R 4 is selected from H and C 1-3 alkyl, wherein said C 1-3 alkyl is optionally substituted with 1, 2 or 3 R d ;
  • R 5 is selected from H and C 1-3 alkyl, wherein said C 1-3 alkyl is optionally substituted with 1, 2 or 3 R e ;
  • n is selected from 1, 2, 3 and 4.
  • the structural unit Z, R 1 , R 2 , R 6 and n are as defined in the present invention.
  • the carbon atoms marked with "*" and “#” are chiral carbon atoms and exist in (R) or (S) single enantiomeric form or enriched in one enantiomer.
  • the structural unit R 1 , R 2 and n are as defined in the present invention.
  • the carbon atoms marked with "*" and “#” are chiral carbon atoms and exist in (R) or (S) single enantiomeric form or enriched in one enantiomer.
  • the above-mentioned Ra , Rc , Rd and Re are independently selected from F, Cl and Br, and other variables are as defined in the present invention.
  • R b is selected from F, Cl, Br and -CH 3 , and other variables are as defined in the present invention.
  • R 1 is selected from H, F, Cl and -CH 3 , and other variables are as defined in the present invention.
  • R 1 is selected from H and F, and other variables are as defined in the present invention.
  • R 2 is selected from H, -CH 3 , wherein -CH 3 , Each independently is optionally substituted with 1, 2 or 3 R b , R b and other variables as defined herein.
  • R 2 is selected from H, -CH 3 , Other variables are as defined in the present invention.
  • R 2 is selected from H and -CH 3 , and other variables are as defined in the present invention.
  • the above R 3 is selected from H, F, Cl and Br, and other variables are as defined in the present invention. In some embodiments of the present invention, the above R 3 is selected from H, and other variables are as defined in the present invention.
  • R 4 is selected from H, and other variables are as defined in the present invention.
  • R 5 is selected from H and -CH 3 , and other variables are as defined in the present invention.
  • R 6 is selected from H, F, Cl and Br, and other variables are as defined in the present invention.
  • the structural unit R 1 , R 2 , R 6 and n are as defined in the present invention.
  • the structural unit R 1 , R 2 , R 6 and n are as defined in the present invention.
  • the carbon atoms marked with "*" and “#” are chiral carbon atoms and exist in (R) or (S) single enantiomeric form or enriched in one enantiomer.
  • R are independently selected from single and double bonds, wherein when When selected from double bonds, R is absent;
  • R 1 , R 2 , R 4 , R 5 and n are as defined in the present invention.
  • the above-mentioned compound has the structure shown in (I-1), (I-2) or (I-3):
  • T, R 1 , R 2 , R 4 , R 5 and n are as defined in the present invention.
  • the above-mentioned compound has the structure represented by formula (I-1A), (I-1B), (I-2A), (I-2B) or (I-3A):
  • T, R 1 , R 2 , R 4 and R 5 are as defined in the present invention.
  • the above compound has the structure represented by formula (I'-1A), (I'-1B), (I'-2A), (I'-2B) or (I'-3A):
  • the carbon atoms marked with "*" and “#” are chiral carbon atoms and exist in (R) or (S) single enantiomeric form or enriched in one enantiomer.
  • the above compound is of formula (I'-1A-1), (I'-1B-1), (I'-2A-1), (I'-2B-1) or (I' -3A-1) shows the structure:
  • the present invention also provides a compound of the following formula or a pharmaceutically acceptable salt thereof,
  • the present invention also provides a compound of the following formula or a pharmaceutically acceptable salt thereof,
  • the compound provided by the invention has significant inhibitory activity on DPP1 at the level of enzymes and cells; high oral exposure in rats and mice, good pharmacokinetic properties; strong distribution ability in bone marrow; can significantly inhibit the neutralization of rat bone marrow Granulocyte elastase activity.
  • the term "pharmaceutically acceptable” refers to those compounds, materials, compositions and/or dosage forms that, within the scope of sound medical judgment, are suitable for use in contact with human and animal tissue , without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • salts refers to salts of the compounds of the present invention, prepared from compounds with specific substituents discovered by the present invention and relatively non-toxic acids or bases.
  • base addition salts can be obtained by contacting such compounds with a sufficient amount of base in neat solution or in a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • acid addition salts can be obtained by contacting such compounds with a sufficient amount of acid in neat solution or in a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts including, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-toluenesulfonic, citric, tartaric, and methanesulfonic acids; also include salts of amino acids such as arginine, etc. , and salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain both basic and acidic functional groups and thus can be converted into either base
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the acid or base containing parent compound by conventional chemical methods. Generally, such salts are prepared by reacting the free acid or base form of these compounds with a stoichiometric amount of the appropriate base or acid in water or an organic solvent or a mixture of the two.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and racemic mixtures thereof and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which belong to this within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl. All such isomers, as well as mixtures thereof, are included within the scope of the present invention.
  • enantiomers or “optical isomers” refer to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” result from the inability to rotate freely due to double bonds or single bonds to ring carbon atoms.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the molecules are in a non-mirror-image relationship.
  • tautomer or “tautomeric form” refers to isomers of different functional groups that are in dynamic equilibrium and are rapidly interconverted at room temperature.
  • a chemical equilibrium of tautomers can be achieved if tautomers are possible (eg, in solution).
  • proton tautomers also called prototropic tautomers
  • prototropic tautomers include interconversions by migration of protons, such as keto-enol isomerization and imine-ene Amine isomerization.
  • Valence tautomers include interconversions by recombination of some bonding electrons.
  • keto-enol tautomerization is the interconversion between two tautomers, pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in one enantiomer” refer to one of the isomers or pairs
  • the enantiomer content is less than 100%, and the isomer or enantiomer content is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or Greater than or equal to 96%, or greater than or equal to 97%, or greater than or equal to 98%, or greater than or equal to 99%, or greater than or equal to 99.5%, or greater than or equal to 99.6%, or greater than or equal to 99.7%, or greater than or equal to 99.8%, or greater than or equal to 99.9%.
  • isomeric excess or “enantiomeric excess” refer to the difference between two isomers or relative percentages of two enantiomers. For example, if the content of one isomer or enantiomer is 90% and the content of the other isomer or enantiomer is 10%, the isomer or enantiomeric excess (ee value) is 80% .
  • Optically active (R)- and (S)-isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If one enantiomer of a compound of the present invention is desired, it can be prepared by asymmetric synthesis or derivatization with a chiral auxiliary, wherein the resulting mixture of diastereomers is separated and the auxiliary group is cleaved to provide pure desired enantiomer.
  • a diastereomeric salt is formed with an appropriate optically active acid or base, followed by conventional methods known in the art
  • the diastereoisomers were resolved and the pure enantiomers recovered.
  • separation of enantiomers and diastereomers is usually accomplished by the use of chromatography employing a chiral stationary phase, optionally in combination with chemical derivatization (eg, from amines to amino groups) formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • deuterated drugs can be formed by replacing hydrogen with deuterium, and the bonds formed by deuterium and carbon are stronger than those formed by ordinary hydrogen and carbon. Compared with non-deuterated drugs, deuterated drugs can reduce toxic side effects and increase drug stability. , enhance the efficacy, prolong the biological half-life of drugs and other advantages. All transformations of the isotopic composition of the compounds of the present invention, whether radioactive or not, are included within the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specified atom are replaced by a substituent, which may include deuterium and hydrogen variants, as long as the valence of the specified atom is normal and the substituted compound is stable.
  • oxygen it means that two hydrogen atoms are substituted. Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the type and number of substituents may be arbitrary on a chemically achievable basis.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with up to two Rs, with independent options for R in each case.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • substituents When a substituent is vacant, it means that the substituent does not exist. For example, when X in A-X is vacant, it means that the structure is actually A. When the listed substituents do not indicate through which atom it is attached to the substituted group, such substituents may be bonded through any of its atoms, for example, pyridyl as a substituent may be through any one of the pyridine ring The carbon atom is attached to the substituted group.
  • the direction of attachment is arbitrary, for example,
  • the linking group L in the middle is -MW-, at this time -MW- can connect ring A and ring B in the same direction as the reading order from left to right. It is also possible to connect ring A and ring B in the opposite direction to the reading order from left to right.
  • Combinations of the linking groups, substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • any one or more sites in the group can be linked to other groups by chemical bonds.
  • connection method of the chemical bond is not located, and there are H atoms at the connectable site, when the chemical bond is connected, the number of H atoms at the site will decrease correspondingly with the number of chemical bonds connected to the corresponding valence. the group.
  • the chemical bond connecting the site to other groups can be represented by straight solid line bonds straight dotted key or wavy lines express.
  • a straight solid bond in -OCH 3 indicates that it is connected to other groups through the oxygen atom in this group;
  • the straight dashed bond in the group indicates that it is connected to other groups through the two ends of the nitrogen atom in the group;
  • the wavy lines in the phenyl group indicate connections to other groups through the 1 and 2 carbon atoms in the phenyl group.
  • ring Indicates aromatic rings, including benzene rings and 5-6 membered heteroaromatic rings, such as ring including but not limited to Wait.
  • a 5-6 membered heteroaryl group can be attached to the remainder of the molecule through a heteroatom or a carbon atom.
  • the 5-6 membered heteroaryl groups include 5- and 6-membered heteroaryl groups.
  • Examples of the 5-6 membered heteroaryl include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl and 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrrolyl, etc.) azolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5- oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1, 2,4
  • C 1-3 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (eg methyl), divalent (eg methylene) or multivalent (eg methine) .
  • Examples of C1-3 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • the number of atoms in a ring is generally defined as the number of ring members, eg, "5-6 membered ring” refers to a “ring” of 5-6 atoms arranged around it.
  • a heteroatom may occupy the position of attachment of the heterocycloalkyl to the remainder of the molecule.
  • the 5-6 membered heterocycloalkyl includes 5- and 6-membered heterocycloalkyl.
  • 5-6 membered heterocycloalkyl examples include, but are not limited to, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl (including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.) , tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2-piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1 -piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), dioxanyl, dithianyl, isoxazolidinyl, isothiazole Alkyl, 1,2-oxazinyl, 1,2-thiazinyl, hex
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (eg, a nucleophilic substitution reaction).
  • a substitution reaction eg, a nucleophilic substitution reaction
  • representative leaving groups include triflate; chlorine, bromine, iodine; sulfonate groups such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters, etc.; acyloxy, such as acetoxy, trifluoroacetoxy, and the like.
  • Cn-n+m or Cn - Cn+m includes any particular instance of n to n+ m carbons, eg C1-12 includes C1 , C2 , C3, C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , also including any range from n to n+ m , eg C 1-12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12 , etc.; in the same way, n yuan to n +m-membered means that the number of atoms in the ring is from n to n+m, for example, 3-12-membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membere
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl groups, such as alkanoyl groups (eg, acetyl, trichloroacetyl, or trifluoroacetyl); alkoxycarbonyl groups, such as tert-butoxycarbonyl (Boc) ; Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); Arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups such as trimethylsilyl (TMS) and tert-
  • hydroxy protecting group refers to a protecting group suitable for preventing hydroxyl side reactions.
  • Representative hydroxy protecting groups include, but are not limited to: alkyl groups such as methyl, ethyl and tert-butyl; acyl groups such as alkanoyl (eg acetyl); arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and the like.
  • alkyl groups such as methyl, ethyl and tert-butyl
  • acyl groups such as alkanoyl (eg acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenyl
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, embodiments formed in combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, single crystal X-ray diffraction method (SXRD), the cultured single crystal is collected by Bruker D8 venture diffractometer, the light source is CuK ⁇ radiation, and the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • SXRD single crystal X-ray diffraction method
  • the cultured single crystal is collected by Bruker D8 venture diffractometer
  • the light source is CuK ⁇ radiation
  • the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • the volumes used in the present invention are commercially available.
  • Alloc stands for allyloxycarbonyl
  • SEM stands for trimethylsilylethoxymethyl
  • OTs stands for 4-toluenesulfonyloxy
  • OMs stands for methanesulfonyloxy
  • Boc stands for tert-butyl Oxycarbonyl
  • DCM for dichloromethane
  • DIEA for N,N-diisopropylethylamine
  • MeI for methyl iodide
  • PE for petroleum ether
  • EA for ethyl acetate
  • THF for tetrahydrofuran
  • EtOH for ethanol
  • MeOH MeOH for methanol
  • DMF stands for N,N-dimethylformamide
  • Boc 2 O stands for di-tert-butyl dicarbonate
  • NH 4 Cl stands for ammonium chloride
  • T 3 P stands for 1-propylphosphoric tricyclic anhydride
  • Pd/C stands for palladium/ Carbon catalyst
  • DMSO dimethyl sulfoxide
  • DMSO-d 6 stands for deuterated dimethyl sulfoxide
  • CD 3 OD stands for deuterated methanol
  • CDCl 3 stands for deuterated chloroform
  • D 2 O stands for deuterium water
  • Solutol stands for polyethylene glycol (15) - Hydroxystearate.
  • Figure 1 shows the results of the in vivo pharmacodynamic test of the compounds of the present invention on the elastase activity of rat bone marrow neutrophils.
  • the present invention will be described in detail by the following examples, but it does not mean any unfavorable limitation of the present invention.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, embodiments formed in combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made to the specific embodiments of the present invention without departing from the spirit and scope of the invention.
  • reaction solution was quenched with saturated ammonium chloride solution (300 mL), extracted with ethyl acetate (300 mL ⁇ 2), the organic phases were combined, dried over anhydrous sodium sulfate, concentrated under reduced pressure to obtain the crude product and subjected to silica gel column chromatography (petroleum ether/ ethyl acetate, 10/1, v/v) isolated to give intermediate C-1c.
  • MS-ESI calculated [M+H] + 371 and 373, found 371 and 373.
  • reaction solution was added to saturated sodium bicarbonate solution (100 mL), extracted with ethyl acetate (100 mL ⁇ 2), the organic phases were combined, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain the crude product through silica gel column chromatography (dichloromethane). Methane/methanol, 20/1 ⁇ 10/1, V/V) was separated to obtain intermediate K-2.
  • reaction solution was extracted with water (20 mL ⁇ 3), the organic phases were combined, washed with saturated brine (20 mL ⁇ 2), dried over anhydrous sodium sulfate, concentrated under reduced pressure to obtain the crude product and subjected to silica gel column chromatography (petroleum ether/ethyl acetate) ester, 2/1, V/V) isolated to give intermediate M-2.
  • reaction solution was quenched with ammonium chloride solution (30 mL), extracted with ethyl acetate (30 mL ⁇ 3), the organic phases were combined, washed with saturated brine (20 mL ⁇ 2), dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain the crude product And through silica gel column chromatography (petroleum ether/ethyl acetate, 1/0-100/1, V/V) to obtain intermediate Q-2.
  • reaction solution was adjusted to 4-5 with saturated aqueous citric acid solution, extracted with ethyl acetate (50 mL ⁇ 3), the organic phases were combined, washed with saturated brine (50 mL ⁇ 2), dried over anhydrous sodium sulfate and then reduced in pressure Concentrate, add n-heptane (15 mL) and stir for 15 minutes, filter, collect the filter cake, and dry to obtain intermediate Q-5, which is directly used in the next reaction.
  • T3P 50% in ethyl acetate, 278.58 mg, 876 ⁇ mol
  • DMF 3 mL
  • intermediate Q-7 243 mg, 876 ⁇ mol
  • intermediate A-5 143 mg, 584 ⁇ mol
  • Triethylamine 266 mg, 2.63 mmol
  • reaction solution was added to water (50 mL), extracted with ethyl acetate (50 mL ⁇ 3), washed with saturated brine (10 mL ⁇ 3), the organic phases were combined, dried over anhydrous sodium sulfate, and the crude product obtained by concentration under reduced pressure was passed through a silica gel column Chromatography (dichloromethane/methanol, 10/1, V/V) isolated intermediate Q-8.
  • MS-ESI calculated for [M+Na] + 526 and 528, found 526 and 528.
  • reaction solution was quenched with saturated ammonium chloride solution (50 mL), extracted with ethyl acetate (50 mL ⁇ 2), the organic phases were combined, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain the crude product, which was subjected to silica gel column chromatography (petroleum ether/ Ethyl acetate, 1/0-10/1, V/V) was isolated to give intermediate R-2.
  • T3P 50% in ethyl acetate, 389 mg, 612 ⁇ mol
  • DMF 5 mL
  • intermediate R-7 115 mg, 448 ⁇ mol
  • intermediate A-5 100 mg, 407 ⁇ mol
  • triethyl Amine 187 mg, 1.83 mmol
  • reaction solution was added to water (50 mL), extracted with ethyl acetate (50 mL ⁇ 3), washed with saturated brine (100 mL ⁇ 3), the organic phases were combined, dried over anhydrous sodium sulfate, and the crude product obtained by concentration under reduced pressure was passed through a silica gel column Chromatography (petroleum ether/ethyl acetate, 1/4, V/V) isolated intermediate R-8.
  • the crude product was separated by SFC (separation column: DAICEL CHIRALPAK AD 250mm ⁇ 30mm ⁇ 10 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.1% aqueous ammonia; gradient: phase B 60%-60%) Compound 2 is obtained. Then, it was subjected to SFC (chromatographic column: Chiralcel IG-3 50mm ⁇ 4.6mm ⁇ 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.05% diethylamine; gradient: phase B 5%- 40%) measured ee value.
  • SFC separation column: DAICEL CHIRALPAK AD 250mm ⁇ 30mm ⁇ 10 ⁇ m; mobile phase A was supercritical CO 2 , phase B was ethanol solution containing 0.1% aqueous ammonia; gradient: phase B 60%-60%) Compound 2 is obtained. Then, it was subjected to SFC (chromatographic column: Chiralcel IG-3 50mm ⁇ 4.6mm ⁇ 3 ⁇ m;
  • the crude product was separated by SFC (separation column: DAICEL CHIRALPAK AD 250mm ⁇ 30mm ⁇ 10 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.1% ammonia water; gradient: phase B 50%-50%) Compound 3 is obtained. And then through SFC (chromatographic column: Chiralcel AD-3 50mm ⁇ 4.6mm ⁇ 3 ⁇ m; mobile phase: A phase is supercritical CO 2 , B phase is ethanol solution containing 0.05% diethylamine; gradient: B phase 5%- 40%) measured ee value.
  • the crude product was separated by SFC (separation column: DAICEL CHIRALPAK AD 250mm ⁇ 30mm ⁇ 10 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.1% ammonia water; gradient: phase B 50%-50%) Compound 4 is obtained. And then through SFC (chromatographic column: Chiralcel AD-3 50mm ⁇ 4.6mm ⁇ 3 ⁇ m; mobile phase: A phase is supercritical CO 2 , B phase is ethanol solution containing 0.05% diethylamine; gradient: B phase 5%- 40%) measured ee value.
  • SFC separation column: DAICEL CHIRALPAK AD 250mm ⁇ 30mm ⁇ 10 ⁇ m; mobile phase A was supercritical CO 2 , phase B was ethanol solution containing 0.1% ammonia water; gradient: phase B 50%-50%) Compound 4 is obtained. And then through SFC (chromatographic column: Chiralcel AD-3 50mm ⁇ 4.6mm ⁇ 3 ⁇ m; mobile phase: A phase is supercritical CO 2 , B phase is ethanol solution containing
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Waters Xbridge 150mm ⁇ 25mm ⁇ 5 ⁇ m; mobile phase: phase A was an aqueous ammonia solution containing 0.05% monohydrate, and phase B was acetonitrile; gradient: phase B 16%-46%, 10 min) to separate compound 5. Then, it was subjected to SFC (chromatographic column: Chiralcel AD-3 50mm ⁇ 4.6mm ⁇ 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was isopropanol solution containing 0.05% diethylamine; gradient: phase B 40 %) to measure the ee value.
  • SFC chromatographic column: Chiralcel AD-3 50mm ⁇ 4.6mm ⁇ 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was isopropanol solution containing 0.05% diethylamine; gradient: phase B 40 %) to measure the ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX 80mm ⁇ 40mm ⁇ 3 ⁇ m; mobile phase: phase A was aqueous ammonia solution containing 0.05% monohydrate, phase B was acetonitrile; gradient: phase B 26%-56 %, 8 min) to obtain compound 7. Then, it was subjected to SFC (chromatographic column: Chiralcel AD-3 150mm ⁇ 4.6mm ⁇ 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.05% diethylamine; gradient: phase B 5%- 40%) measured ee value.
  • SFC chromatographic column: Chiralcel AD-3 150mm ⁇ 4.6mm ⁇ 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.05% diethylamine; gradient: phase B 5%- 40%
  • reaction solution was added to water (20 mL), extracted with ethyl acetate (20 mL ⁇ 2), the organic phases were combined, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain the crude product through thin-layer chromatography (developing solvent: petroleum ether). /ethyl acetate, 1/1, V/V) to obtain compound 8-2.
  • MS-ESI calculated [M+H] + 540, found 540.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX C18 75mm ⁇ 30mm ⁇ 3 ⁇ m; mobile phase: phase A was aqueous ammonia solution containing 0.05% monohydrate, phase B was acetonitrile; gradient: phase B 23%- 53%, 7 min) to isolate compound 8. And then through SFC (chromatographic column: Chiralcel AD-3 50mm ⁇ 4.6mm ⁇ 3 ⁇ m; mobile phase: A phase is supercritical CO 2 , B phase is ethanol solution containing 0.05% diethylamine; gradient: B phase 5%- 40%) measured ee value.
  • SFC chromatographic column: Chiralcel AD-3 50mm ⁇ 4.6mm ⁇ 3 ⁇ m
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Welch Ultimate XB-CN 250mm ⁇ 50mm ⁇ 10 ⁇ m; mobile phase: phase A was n-hexane, phase B was ethanol solution containing 0.1% monohydrate ammonia; gradient: phase B 25 %-65%, 15 min) to isolate compound 9.
  • Compound 9 was subjected to SFC (chromatographic column: Chiralcel OJ-3 50mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was methanol solution containing 0.05% diethylamine; gradient: phase B 5% -40%) measured ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Unisil 3-100 C18 Ultra 150mm ⁇ 50mm ⁇ 3 ⁇ m; mobile phase: phase A was aqueous solution containing 0.225% formic acid, phase B was acetonitrile; gradient: phase B 15%-45 %, 10 min) to obtain the formate salt of compound 10.
  • the formate salt of compound 10 was analyzed by SFC (column: Chiralpak AD-3 50mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was methanol solution containing 0.05% diethylamine; gradient: Phase B 5%-40%) to measure the ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Welch Ultimate XB-CN 250mm ⁇ 50mm ⁇ 10 ⁇ m; mobile phase: phase A was n-hexane, phase B was ethanol solution containing 0.1% ammonia monohydrate; gradient: phase B 25%-65%, 15 min) to isolate compound 12.
  • Compound 12 was subjected to SFC (chromatographic column: Chiralcel OJ-3 50mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was methanol solution containing 0.05% diethylamine; gradient: phase B 5% -40%) measured ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Waters Xbridge 150mm ⁇ 25mm ⁇ 5 ⁇ m; mobile phase: phase A was aqueous ammonia solution containing 0.05% monohydrate, phase B was acetonitrile; gradient: phase B 18%-48%, 9 min) to isolate compound 13.
  • Compound 13 was purified by SFC (column: Chiralcel OJ-3 50mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was 0.05% diethylamine in methanol; gradient: phase B 5%- 40%) measured ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Waters Xbridge 150mm ⁇ 25mm ⁇ 5 ⁇ m; mobile phase: phase A was aqueous ammonia solution containing 0.05% monohydrate, phase B was acetonitrile; gradient: phase B 18%-48%, 9 min) to isolate compound 14.
  • Compound 14 was subjected to SFC (chromatographic column: Chiralcel OJ-3 50mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was methanol solution containing 0.05% diethylamine; gradient: phase B 5% -40%) measured ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Synergi C18 150mm ⁇ 25mm ⁇ 10 ⁇ m; mobile phase: phase A was an aqueous solution containing 0.225% formic acid, phase B was acetonitrile; gradient: phase B 10%-40%, 10 min) to isolate the formate salt of compound 15.
  • the formate salt of compound 15 was subjected to SFC (chromatographic column: Chiralpak AD-3 50mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was methanol solution containing 0.05% diethylamine; gradient: B phase 40%) measured ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Waters Xbridge 150mm ⁇ 25mm ⁇ 5 ⁇ m; mobile phase: phase A was aqueous ammonia solution containing 0.05% monohydrate, phase B was acetonitrile; gradient: phase B 27%-57%, 9 min) to isolate compound 16.
  • Compound 16 was subjected to SFC (chromatographic column: Chiralpak AD-3 50mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was 0.05% diethylamine in methanol; gradient: phase B 40%) Measure ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex C18 80mm ⁇ 40mm ⁇ 3 ⁇ m; mobile phase: phase A was aqueous ammonia solution containing 0.05% monohydrate, phase B was acetonitrile; gradient: phase B 37%-67%, 8 min) to isolate compound 17.
  • Compound 17 was subjected to SFC (chromatographic column: Chiralpak AD-3 150mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.05% diethylamine; gradient: phase B 40% ) to measure the ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex C18 80mm ⁇ 40mm ⁇ 3 ⁇ m; mobile phase: phase A was aqueous ammonia solution containing 0.05% monohydrate, phase B was acetonitrile; gradient: phase B 42%-72%, 8 min) to isolate compound 18.
  • Compound 18 was purified by SFC (chromatographic column: Chiralcel OJ-3 50mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.05% diethylamine; gradient: , phase B 5 %-40%) to measure the ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex C18 80 ⁇ 40 mm ⁇ 3 ⁇ m; mobile phase: phase A was an aqueous ammonia solution containing 0.05% monohydrate, and phase B was acetonitrile; gradient: phase B 36%-66%, 8 min) to isolate compound 19.
  • Compound 19 was subjected to SFC (chromatographic column: Chiralcel OJ-3 100mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.05% diethylamine; gradient: phase B 5% -40%) measured ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX 80mm ⁇ 40mm ⁇ 3 ⁇ m; mobile phase: phase A was aqueous ammonia solution containing 0.05% monohydrate, phase B was acetonitrile; gradient:, phase B 33%- 63%, 8 min) to isolate compound 20.
  • Compound 20 was subjected to SFC (chromatographic column: Chiralcel AD-3 50mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.05% diethylamine; gradient: phase B 40% ) to measure the ee value.
  • the crude product was subjected to preparative high-performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX 80mm ⁇ 40mm ⁇ 3 ⁇ m; mobile phase:, phase A was 0.05% aqueous ammonia solution containing monohydrate, phase B was acetonitrile; gradient:, phase B was 32% -62%, 8 min) isolated compound 21.
  • Compound 21 was subjected to SFC (chromatographic column: Chiralcel OJ-3 100mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.05% diethylamine; gradient: phase B 5% -40%) measured ee value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX C18 75mm ⁇ 30mm ⁇ 3 ⁇ m; mobile phase: A phase was an aqueous solution containing 0.025% formic acid, B phase was acetonitrile; gradient: B phase 0%-30 %, 7 min) to obtain the formate salt of compound 22.
  • the formate salt of compound 22 was subjected to SFC (chromatographic column: Chiralcel AD-3 50mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.05% diethylamine; gradient: Phase B 5%-40%) to measure the ee value.
  • Compound 23-1 (60 mg, 87 ⁇ mol) was added to formic acid (1.5 mL) and water (0.15 mL), and the reaction solution was reacted at 25° C. for 2 hours.
  • the reaction solution was added to saturated sodium bicarbonate solution (50 mL), adjusted to pH>8 with saturated sodium bicarbonate solution, extracted with dichloromethane/methanol (4/1, V/V, 50 mL ⁇ 2), and the organic phases were combined, Dry over anhydrous sodium sulfate and concentrate under reduced pressure to obtain crude product.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX C18 75mm ⁇ 30mm ⁇ 3 ⁇ m; mobile phase: A phase was an aqueous solution containing 0.025% formic acid, B phase was acetonitrile; gradient: B phase 0%-20 %, 7 min) to obtain the formate salt of compound 23.
  • the formate salt of compound 23 was subjected to SFC (chromatographic column: Chiralcel IA 100mm ⁇ 4.6mm I.D., 3 ⁇ m; mobile phase: A phase was n-hexane containing 0.1% diethylamine, and phase B was an ethanol solution containing 0.1% diethylamine ; Gradient: B phase 80%) measured e.e. value.
  • the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX 80mm ⁇ 40mm ⁇ 3 ⁇ m; mobile phase: phase A was aqueous ammonia solution containing 0.05% monohydrate, phase B was acetonitrile; gradient: phase B 36%-66 %, 8 min) to obtain compound 24.
  • Compound 24 was subjected to SFC (chromatographic column: Chiralcel IG-3 100mm ⁇ 4.6mm ID, 3 ⁇ m; mobile phase: phase A was supercritical CO 2 , phase B was ethanol solution containing 0.05% diethylamine; gradient: phase B 40% ) to measure the ee value.
  • Recombinant human cathepsin C/DPP1 was purchased from R&D Systems;
  • rhCathepsin L Recombinant human cathepsin L (rhCathepsin L) was purchased from R&D Systems;
  • Gly-Arg-AMC (hydrochloride) was purchased from CAYMAN CHEMICAL COMPANY.
  • the compounds to be tested were diluted 5-fold to the 8th concentration, ie, from 1 mM to 12.8 nM, using a row gun. Then use 1X experimental buffer to dilute each compound to be tested into a working solution with 4% DMSO, and add 5 ⁇ L/well to the corresponding well to set up a double-well experiment. 1000 rpm, centrifugation for 1 minute;
  • fluorescence detection was performed using a multi-label analyzer with excitation wavelength of 360 nm and emission wavelength of 460 nm.
  • the IC 50 value can be obtained by curve fitting with four parameters (log(inhibitor) vs.response in GraphPad Prism --Variable slope mode).
  • Min Does not contain recombinant human cathepsin C/DPP1 and recombinant human cathepsin L (rhCathepsin L)
  • Table 1 provides the inhibitory activity of the compounds of the present invention on DPP1 enzyme.
  • the compounds of the present invention have significant inhibitory activity on DPP1 enzyme.
  • Cell culture medium 89% RPMI1640, 10% fetal bovine serum and 1% penicillin-streptomycin;
  • the compound to be tested is prepared into a 10 mM solution with DMSO;
  • the IC 50 value can be obtained by curve fitting with four parameters (“log(inhibitor) vs. response--Variable slope” mode).
  • Table 2 provides the DPP1 inhibitory activity of the compounds of the present invention on U937 cells.
  • the compounds of the present invention have good inhibitory activity on DPP1 in U937 cells.
  • CD-1 mice male, 20-40g, 4-6 weeks old, Beijing Weitonglihua
  • the rodent pharmacokinetic characteristics of the compounds after intravenous injection and oral administration were tested by standard protocols.
  • the candidate compounds were formulated into clear solutions and administered to two mice for a single intravenous injection and oral administration respectively.
  • Intravenous and oral vehicles were 1:1:8 DMSO/Solutol/water.
  • the compounds of the present invention show better bioavailability, higher area under the curve and lower clearance and tissue distribution in CD-1 mice pharmacokinetics.
  • the rodent pharmacokinetic characteristics of the compounds after intravenous injection and oral administration were tested according to the standard protocol.
  • the candidate compounds were formulated into clear solutions and administered to two rats by a single intravenous injection and oral administration.
  • Intravenous and oral vehicles were 5:95 DMSO and 10% hydroxypropyl beta cyclodextrin in water.
  • the compounds of the present invention show better bioavailability, higher area under the drug-time curve and lower clearance rate and tissue distribution in the pharmacokinetics of SD rats.
  • CD-1 mice male, 20-40g, 4-6 weeks old, Beijing Weitonglihua
  • the content of the compound in the bone marrow and plasma of mice after oral administration was tested according to the standard protocol.
  • the candidate compound was made into a clear solution with a vehicle, and the vehicle was 5:95 DMSO and 10% hydroxypropyl ⁇ -cyclodextrin aqueous solution.
  • a dose of 5 mg/kg was administered to mice as a single oral dose.
  • Whole blood and bone marrow samples were collected at 0.25, 0.5, 1, 2, 4, 6, and 24 hours, respectively.
  • Bone marrow/Plasma Ratio bone marrow AUC 0-last /plasma AUC 0-last .
  • the experimental results are shown in Table 5.
  • the compounds of the present invention have a high distribution in the bone marrow of CD-1 mice.
  • the content of the compound in the bone marrow and plasma of rats after oral administration was tested according to the standard protocol.
  • the candidate compound was made into a clear solution with a vehicle, and the vehicle was 5:95 DMSO and 10% hydroxypropyl ⁇ -cyclodextrin aqueous solution.
  • a dose of 5 mg/kg was administered to rats as a single oral dose.
  • Whole blood and bone marrow samples were collected at 0.25, 0.5, 1, 2, 4, 6, and 24 hours, respectively.
  • Bone marrow/Plasma Ratio bone marrow AUC 0-last /plasma AUC 0-last .
  • the experimental results are shown in Table 6.
  • the compounds of the present invention have a high distribution in the bone marrow of SD rats.
  • the experimental animals were administered in groups according to Table 7. 2 hours after the last administration, the bone marrow of the animals was collected, and the red blood cells were firstly lysed with the erythrocyte lysate to retain the lymphocytes, and then the lymphocytes were lysed with the lymphocyte lysate. Quantitative and neutrophil elastase enzymatic activity assays further calculate neutrophil elastase activity in the sample. The dosing schedule is shown in Table 7.
  • the compounds of the present invention can significantly inhibit the activity of neutrophil elastase in rats.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pulmonology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

涉及一系列含1,4-氧杂氮杂环庚烷的并环类衍生物及其制备方法,具体涉及式(II)所示化合物及其药学上可接受的盐。

Description

含1,4-氧杂氮杂环庚烷的并环类衍生物
本申请主张如下优先权:
CN202110164857.7,2021年02月05日;
CN202111138395.8,2021年09月27日。
技术领域
本发明涉及一系列含1,4-氧杂氮杂环庚烷的并环类衍生物及其制备方法,具体涉及式(II)所示化合物及其药学上可接受的盐。
背景技术
二肽基肽酶1(Dipeptidyl peptidase 1,DPP1)又名组织蛋白酶C,在肺脏、肾脏、肝脏、脾脏等组织中高表达。DPP1是一类溶酶体半胱氨酸蛋白酶,由四个相同的亚基组成四聚体,每一个亚基由重链、轻链和排他结构域组成(Turk,D.et.al.EMBO J.2001,20,6570-6582.)。DPP1的主要生理作用是在骨髓内通过切断N-端二肽从而活化促炎中性粒细胞丝氨酸蛋白酶(NSPs,包含中性粒细胞弹性蛋白酶、蛋白酶3和组织蛋白酶G)。NSPs与炎症调节密切相关,可活化多种细胞因子,对病原微生物清除具有重要作用。研究表明在慢性阻塞性肺病(COPD)或支气管扩张症等疾病患者气道内大多存在持续的炎症反应和NSPs过度活化,对肺部弹性蛋白等进行降解,进一步造成肺组织损伤和支气管壁组织破坏(Christine T.N.Pham,Nat.Rev.Immunol.2006,6,541-550)。DPP1抑制剂可以从根源上抑制促炎中性粒细胞蛋白酶的活化,从而抑制气道内中性粒细胞引起的炎症反应和气道损伤。
DPP1抑制剂目前还没有药物上市,Brensocatib(INS1007,又名AZD7986)是临床研究进展最快的药物,其用于支气管扩张症的二期临床已经达到主要终点,目前正在开展三期临床试验。此外,AZD7986用于慢性阻塞性肺病的治疗正在开展二期临床研究。因此,开发DPP1抑制剂具有广阔的市场前景。
发明内容
本发明提供了式(II)所示化合物或其药学上可接受的盐,
Figure PCTCN2022074088-appb-000001
其中,
Z选自N和C;
结构单元
Figure PCTCN2022074088-appb-000002
选自
Figure PCTCN2022074088-appb-000003
其中所 述结构单元
Figure PCTCN2022074088-appb-000004
选自
Figure PCTCN2022074088-appb-000005
Figure PCTCN2022074088-appb-000006
Figure PCTCN2022074088-appb-000007
分别独立地选自单键和双键,其中当
Figure PCTCN2022074088-appb-000008
选自双键时,R 2不存在;
T分别独立地选自N和CR 3
各R 1分别独立地选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R a所取代;
R 2选自H、F、Cl、Br、I、=O、-OH、-NH 2、-CN、C 1-3烷基和5-6元杂环烷基,其中所述C 1-3烷基和5-6元杂环烷基分别独立地任选被1、2或3个R b所取代;
R 3选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c所取代;
R 4选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R d所取代;
R 5选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R e所取代;
R 6选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R f所取代;
R a分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
R b分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2、-CN和C 1-3烷基;
R c分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
R d分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
R e分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
R f分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
n选自1、2、3和4;
所述5-6元杂环烷基包含1、2、3或4个独立选自-O-、-NH-、-S-和-N-的杂原子或杂原子团。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2022074088-appb-000009
其中,
Figure PCTCN2022074088-appb-000010
选自单键和双键;
结构单元
Figure PCTCN2022074088-appb-000011
选自
Figure PCTCN2022074088-appb-000012
T选自N和CR 3
R 1选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R a所取代;
R 2选自H和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R b所取代;
R 3选自H和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c所取代;
R 4选自H和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R d所取代;
R 5选自H和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R e所取代;
R a分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
R b分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
R c分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
R d分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
R e分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
n选自1、2、3和4。
本发明的一些方案中,上述化合物具有式(II′)所示结构:
Figure PCTCN2022074088-appb-000013
其中,结构单元
Figure PCTCN2022074088-appb-000014
Z、R 1、R 2、R 6和n如本发明所定义;
带“*”和“#”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
本发明的一些方案中,上述化合物具有式(I′)所示结构:
Figure PCTCN2022074088-appb-000015
其中,结构单元
Figure PCTCN2022074088-appb-000016
R 1、R 2和n如本发明所定义;
带“*”和“#”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
本发明的一些方案中,上述R a、R c、R d和R e分别独立地选自F、Cl和Br,其他变量如本发明所定义。
本发明的一些方案中,上述R b选自F、Cl、Br和-CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自H、F、Cl和-CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自H和F,其他变量如本发明所定义。
本发明的一些方案中,上述R 2选自H、-CH 3
Figure PCTCN2022074088-appb-000017
其中所述-CH 3
Figure PCTCN2022074088-appb-000018
Figure PCTCN2022074088-appb-000019
分别独立地任选被被1、2或3个R b所取代,R b及其他变量如本发明所定义。
本发明的一些方案中,上述R 2选自H、-CH 3
Figure PCTCN2022074088-appb-000020
其他变量如本发明所定义。
本发明的一些方案中,上述R 2选自H和-CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 3选自H、F、Cl和Br,其他变量如本发明所定义。本发明的一些方案中,上述R 3选自H,其他变量如本发明所定义。
本发明的一些方案中,上述R 4选自H,其他变量如本发明所定义。
本发明的一些方案中,上述R 5选自H和-CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 6选自H、F、Cl和Br,其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2022074088-appb-000021
选自
Figure PCTCN2022074088-appb-000022
Figure PCTCN2022074088-appb-000023
Figure PCTCN2022074088-appb-000024
R 2、R 3、R 4、R 5和R 6及其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2022074088-appb-000025
选自
Figure PCTCN2022074088-appb-000026
Figure PCTCN2022074088-appb-000027
Figure PCTCN2022074088-appb-000028
R 2、R 3、R 4、R 5和R 6及其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2022074088-appb-000029
选自
Figure PCTCN2022074088-appb-000030
Figure PCTCN2022074088-appb-000031
其他变量如本发明所定义。
本发明的一些方案中,上述化合物式(II-1)所示结构:
Figure PCTCN2022074088-appb-000032
其中,结构单元
Figure PCTCN2022074088-appb-000033
R 1、R 2、R 6和n如本发明所定义。
本发明的一些方案中,上述化合物式(II′-1)所示结构:
Figure PCTCN2022074088-appb-000034
其中,结构单元
Figure PCTCN2022074088-appb-000035
R 1、R 2、R 6和n如本发明所定义;
带“*”和“#”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
本发明的一些方案中,上述化合物式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2022074088-appb-000036
其中,
结构单元
Figure PCTCN2022074088-appb-000037
选自
Figure PCTCN2022074088-appb-000038
Figure PCTCN2022074088-appb-000039
Figure PCTCN2022074088-appb-000040
分别独立地选自单键和双键,其中当
Figure PCTCN2022074088-appb-000041
选自双键时,R 2不存在;
T、R 1、R 2、R 4、R 5和n如本发明所定义。
本发明的一些方案中,上述化合物具有(I-1)、(I-2)或(I-3)所示结构:
Figure PCTCN2022074088-appb-000042
其中,T、R 1、R 2、R 4、R 5和n如本发明所定义。
本发明的一些方案中,上述化合物具有式(I-1A)、(I-1B)、(I-2A)、(I-2B)或(I-3A)所示结构:
Figure PCTCN2022074088-appb-000043
其中,T、R 1、R 2、R 4和R 5如本发明所定义。
本发明的一些方案中,上述化合物具有式(I′-1A)、(I′-1B)、(I′-2A)、(I′-2B)或(I′-3A)所示结构:
Figure PCTCN2022074088-appb-000044
其中,T、R 1、R 2、R 4和R 5如本发明所定义;
带“*”和“#”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
本发明的一些方案中,上述化合物具有式(I′-1A-1)、(I′-1B-1)、(I′-2A-1)、(I′-2B-1)或(I′-3A-1)所示结构:
Figure PCTCN2022074088-appb-000045
Figure PCTCN2022074088-appb-000046
其中,T、R 1、R 2、R 4和R 5如本发明所定义;
本发明还有一些方案是由上述各变量任意组合而来。
本发明还提供了下式化合物或其药学上可接受的盐,
Figure PCTCN2022074088-appb-000047
Figure PCTCN2022074088-appb-000048
本发明还提供了下式化合物或其药学上可接受的盐,
Figure PCTCN2022074088-appb-000049
Figure PCTCN2022074088-appb-000050
Figure PCTCN2022074088-appb-000051
Figure PCTCN2022074088-appb-000052
Figure PCTCN2022074088-appb-000053
技术效果
本发明提供的化合物在酶和细胞水平上对DPP1有显著的抑制活性;在大小鼠体内口服暴露量高,药代动力学性质良好;在骨髓的分布能力强;能够显著抑制大鼠骨髓中性粒细胞弹性蛋白酶的活性。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计 量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2022074088-appb-000054
和楔形虚线键
Figure PCTCN2022074088-appb-000055
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2022074088-appb-000056
和直形虚线键
Figure PCTCN2022074088-appb-000057
表示立体中心的相对构型,用波浪线
Figure PCTCN2022074088-appb-000058
表示楔形实线键
Figure PCTCN2022074088-appb-000059
或楔形虚线键
Figure PCTCN2022074088-appb-000060
或用波浪线
Figure PCTCN2022074088-appb-000061
表示直形实线键
Figure PCTCN2022074088-appb-000062
和直形虚线键
Figure PCTCN2022074088-appb-000063
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法 相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2022074088-appb-000064
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2022074088-appb-000065
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2022074088-appb-000066
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2022074088-appb-000067
直形虚线键
Figure PCTCN2022074088-appb-000068
或波浪线
Figure PCTCN2022074088-appb-000069
表示。例如-OCH 3中的直 形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2022074088-appb-000070
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2022074088-appb-000071
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连。
Figure PCTCN2022074088-appb-000072
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2022074088-appb-000073
Figure PCTCN2022074088-appb-000074
这4种连接方式,即使-N-上画出了H原子,但是
Figure PCTCN2022074088-appb-000075
仍包括
Figure PCTCN2022074088-appb-000076
这种连接方式的基团,只是在连接1个化学键时,该位点的H会对应减少1个变成相应的一价哌啶基。
当某取代基的化学键与连接环上两原子的化学键相交时,说明该取代基可与环上任意原子成键。当某取代基连接的原子并没有指明的时候,该取代基可以与任意原子成键,如果取代基连接的原子在双环或者三环体系中,则说明该取代基可与该体系中任意环的任意原子成键。取代基及/或变量的组合只有在该组合产生稳定的化合物时才被允许。例如,结构单元
Figure PCTCN2022074088-appb-000077
表示其可在环己基或者环戊基上的任意一个位置发生取代。
除非另有规定,术语环
Figure PCTCN2022074088-appb-000078
表示芳香环,包括苯环和5-6元杂芳环,比如环
Figure PCTCN2022074088-appb-000079
包括但不限于
Figure PCTCN2022074088-appb-000080
Figure PCTCN2022074088-appb-000081
等。
除非另有规定,本发明术语“5-6元杂芳环”和“5-6元杂芳基”可以互换使用,术语“5-6元杂芳基”表示由5至6个环原子组成的具有共轭π电子体系的单环基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(=O) p,p是1或2)。5-6元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-6元杂芳基包括5元和6元杂芳基。所述5-6元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基或嘧啶基(包括2-嘧啶基和4-嘧啶基等)。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-6元环”是指环绕排列5-6个原子的“环”。
除非另有规定,术语“5-6元杂环烷基”本身或者与其他术语联合分别表示由5至6个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(=O) p,p是1或2)。其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。此外,就该“5-6元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述5-6元杂环烷基包括5元和6元杂环烷基。5-6元杂环烷基的实例包括但不限于吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基等。术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲核取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1- 3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4′-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2022074088-appb-000082
扫描,收集相关 数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的容积可经市售获得。
本发明采用下述缩略词:Alloc代表烯丙氧羰基;SEM代表三甲基硅烷基乙氧甲基;OTs代表4-甲苯磺酰氧基;OMs代表甲磺酰氧基;Boc代表叔丁氧羰基;DCM代表二氯甲烷;DIEA代表N,N-二异丙基乙胺;MeI代表碘甲烷;PE代表石油醚;EA代表乙酸乙酯;THF代表四氢呋喃;EtOH代表乙醇;MeOH代表甲醇;DMF代表N,N-二甲基甲酰胺;Boc 2O代表二碳酸二叔丁酯;NH 4Cl代表氯化铵;T 3P代表1-丙基磷酸三环酸酐;Pd/C代表钯/碳催化剂;TMSN 3代表叠氮基三甲基硅烷;NCS代表N-氯代丁二酰亚胺;HBr代表氢溴酸;AcOH代表醋酸;HATU代表O-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸盐;DBU代表1,8-二氮杂二环十一碳-7-烯;FA代表甲酸;ACN代表乙腈;TLC代表薄层色谱;HPLC代表高效液相色谱;LCMS代表液质联用色谱;SFC代表超临界流体色谱。DMSO代表二甲亚砜;DMSO-d 6代表氘代二甲亚砜;CD 3OD代表氘代甲醇;CDCl 3代表氘代氯仿;D 2O代表氘水;Solutol代表聚乙二醇(15)-羟基硬脂酸酯。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2022074088-appb-000083
软件命名,市售化合物采用供应商目录名称。
附图说明
图1为本发明化合物对大鼠骨髓中性粒细胞弹性蛋白酶活性影响的体内药效测试结果。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
中间体A
合成路线:
Figure PCTCN2022074088-appb-000084
第一步
将中间体A-1(12.5g,31.95mmol)溶解在DMF(50mL)中,依次加入DIEA(6.19g,47.93mmol)和O-苯并三氮唑-N,N,N′,N′-四甲基脲四氟硼酸酯(10.26g,31.95mmol),在25℃搅拌30分钟后,加入氨水(12M,4.79mL,57.52mmol),继续在25℃搅拌12小时。反应结束后,向反应液加入水(50mL)搅拌15分钟,过滤,收集滤饼,干燥,得到中间体A-2,直接用于下一步反应。MS-ESI计算值[M+Na] +413,实测值 413。
第二步
将中间体A-2(20.0g,50.11mmol)溶解在二氯甲烷(200mL)中,加入N-(三乙基氨磺酰)氨基甲酸甲酯(29.26mg,122.77mmol),在25℃搅拌12小时。反应结束后,向反应液加水(200mL),萃取,有机相经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,15/1~1/1,V/V)分离得到中间体A-3。MS-ESI计算值[M+H] +373,实测值373。
第三步
将中间体A-3(9.6g,25.79mmol)溶解在THF(100mL)中,加入甲烷磺酸(18.59g,193.44mmol),在25℃搅拌12小时。反应结束后,用饱和碳酸氢钠溶液调pH>8,乙酸乙酯(500mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到中间体A-4,直接用于下一步。MS-ESI计算值[M+H] +273,实测值273。
第四步
将T3P的乙酸乙酯溶液(14.03g,22.05mmol)加入DMF(100mL)中,依次加入中间体A-4(4.0g,14.7mmol),中间体A-5(3.79g,15.44mmol)和三乙胺(6.69g,66.2mmol),在25℃搅拌12小时。反应结束后,向反应液加饱和食盐水(300mL),乙酸乙酯(250mL×3)萃取,合并有机相,用饱和食盐水洗涤(500mL×3),经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,1/1~0/1,V/V)分离得到中间体A。 1H NMR(400MHz,CDCl 3)δ7.71(d,J=8.0Hz,2H),7.12-6.93(m,3H),5.20-5.12(m,1H),4.25-3.95(m,3H),3.82-3.68(m,0.5H),3.60-3.22(m,3H),3.12-2.90(m,2.5H),2.12-1.82(m,2H),1.48(s,9H)。MS-ESI计算值[M+Na] +522,实测值522。
中间体B
合成路线:
Figure PCTCN2022074088-appb-000085
将中间体A(600mg,1200μmol),乙酸钾(354mg,3600μmol)和双联嚬哪醇硼酸酯(397mg,1560μmol)加入到二甲亚砜(6mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(49mg,60μmol)。将反应液在氮气保护下加热至85℃反应5小时。反应液减压浓缩,并经过硅胶柱层析法(石油醚/乙酸乙酯,5/1~0/1,V/V)分离得到中间体B。 1H NMR(400MHz,CDCl 3)δ7.82(d,J=7.8Hz,2H),7.40-7.25(m,2H),7.08-6.98(m,1H),5.25-5.05(m,1H),4.25-3.98(m,3H),3.78-3.68(m,0.5H),3.52-2.96(m,5.5H),2.15-1.80(m,2H),1.47(s,9H),1.25(s,12H)。MS-ESI计算值[M+H] +500,实测值500。
中间体C
合成路线:
Figure PCTCN2022074088-appb-000086
第一步
将中间体C-1a(15.0g,81.42mmol)溶解在四氢呋喃(30mL)中,在-78℃下逐滴缓慢加入正丁基锂(2.5M,40.71mL,102.8mmol),反应半小时,再在-78℃下缓慢加入溶解在四氢呋喃(150mL)的中间体C-1b(21.81g,81.42mmol),在25℃下反应12小时。反应液用饱和氯化铵溶液(300mL)淬灭,乙酸乙酯(300mL×2)萃取,合并有机相,无水硫酸钠干燥,减压浓缩得到粗品并经过硅胶柱层析法(石油醚/乙酸乙酯,10/1,V/V)分离得到中间体C-1c。MS-ESI计算值[M+H] +371和373,实测值371和373。
第二步
将中间体C-1c(24.85g,66.94mmol)溶解在乙腈(200mL)中,缓慢加入盐酸(0.2M,840mL,167.34mmol),在25℃下反应12小时。反应液用甲基叔丁基醚(200mL)洗涤,用饱和碳酸氢钠水溶液调节水相的pH到8,用乙酸乙酯(1000mL×2)萃取,合并有机相,用无水硫酸钠干燥,减压浓缩得到中间体C-1d,直接用于下一步反应。MS-ESI计算值[M+H] +276和278,实测值276和278。
第三步
向中间体C-1d(6.56g,23.76mmol)中缓慢加入盐酸(3M,119mL,356mmol),在60℃下反应12小时。将反应液冷却至室温,用氢氧化钠水溶液调节溶液的pH到7,用水洗涤三次,合并有机相,用无水硫酸钠干燥,减压浓缩得到中间体C-1e,直接用于下一步反应。MS-ESI计算值[M+H] +262和264,实测值262和264。
第四步
将中间体C-1e(3.38g,12.9mmol)溶解在二氧六环(50mL)和水(100mL)中,加入碳酸钠(1.50g,14.9mmol)和Boc 2O(3.27g,14.96mmol),在25℃下反应4小时。反应液用饱和柠檬酸水溶液调节溶液的pH到4-5,用乙酸乙酯(100mL×3)萃取,合并有机相,无水硫酸钠干燥然后减压浓缩得到中间体C-1f,直接用于下一步反应。MS-ESI计算值[M-56+1] +306和308,实测值306和308。
第五步
将中间体C-1f(2.90g,8.01mmol)溶解在DMF(50mL)中,加入N-甲基吗啡啉(1.21g,12.01mmol)和O-苯并三氮唑-N,N,N′,N′-四甲基脲四氟硼酸酯(2.57g,8.01mmol),在25℃下搅拌30分钟。然后加入氯化铵水溶液(0.35M,45.75mL,16.01mmol),并在25℃下搅拌12小时。向反应液中加入水(160mL),过滤,收集滤饼,干燥,得到中间体C-1,直接用于下一步反应。MS-ESI计算值[M-56+1] +305和307,实测值305和307。
第六步
将中间体C-1(1810mg,5010μmol)溶解在四氢呋喃(25mL)中,加入甲烷磺酸(4820mg,50100μmol),在30℃下反应15小时。将反应液加入饱和碳酸氢钠溶液(25mL)中,并用饱和碳酸氢钠溶液调节pH=8~9,乙酸乙酯(50mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,10/1~5/1,V/V)分离得到中间体C-2。 1H NMR(400MHz,CD 3OD)δ7.33-7.27(m,2H),7.24-7.18(m,1H),3.58(t,J=6.8Hz,1H),3.03-2.95(m,1H),2.92-2.83(m,1H)。MS-ESI计算值[M+H] +261和263,实测值261和263。
第七步
将50%的T3P乙酸乙酯溶液(1870mg,2940μmol)加入到DMF(10mL)中,再依次加入中间体C-2(591mg,2260μmol),中间体A-5(610mg,2490μmol)和三乙胺(916mg,9050μmol),在25℃下反应4小时。将反应液加入饱和食盐水(50mL)中,乙酸乙酯(50mL×3)萃取,合并有机相,并用饱和食盐水洗涤(100mL×3),经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,100/1~10/1,V/V)分离得到中间体C。 1H NMR(400MHz,CDCl 3)δ7.26-7.19(m,2H),7.16-7.10(m,1H),4.70-4.55(m,1H),4.25-3.94(m,3H),3.88-3.75(m,0.5H),3.57-3.28(m,2H),3.27-2.95(m,3.5H),2.07-1.78(m,2H),1.46(s,9H)。MS-ESI计算值[M+Na] +510和512,实测值510和512。
中间体D
合成路线:
Figure PCTCN2022074088-appb-000087
将中间体C(52mg,106μmol)溶解在二氯甲烷(5mL)中,加入N-(三乙基氨磺酰)氨基甲酸甲酯(76mg,319μmol),在25℃下反应18小时。将反应液加入水(50mL)中,用乙酸乙酯(50mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,10/1~1/3,V/V)分离得到中间体D。 1H NMR(400MHz,CDCl 3)δ7.34-7.25(m,2H),7.22-7.14(m,1H),5.42-5.10(m,1H),4.23-3.96(m,3H),3.83-3.70(m,0.5H),3.59-2.96(m,5.5H),2.03-1.72(m,2H),1.46(s,9H)。MS-ESI计算值[M+Na] +492和494,实测值492和494。
中间体E
合成路线:
Figure PCTCN2022074088-appb-000088
将中间体E-1(300mg,1410μmol),磷酸钾(600mg,2830μmol)和双联嚬哪醇硼酸酯(539mg,2120μmol)加入到1,4-二氧六环(8mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(104mg,141μmol)。将反应液在氮气保护下加热至110℃反应12小时。反应液减压浓缩,并经过硅胶柱层析法(石油醚/乙酸乙酯,10/1~3/2,V/V)分离得到中间体E。 1H NMR(400MHz,CDCl 3)δ8.55(s,1H),7.91(d,J=8.4Hz,1H),7.51(d,J=8.4Hz,1H),4.31(s,3H),1.39(s,12H)。MS-ESI计算值[M+H] +260,实测值260。
中间体F
合成路线:
Figure PCTCN2022074088-appb-000089
将中间体F-1(300mg,1410μmol),乙酸钾(277mg,2830μmol)和双联嚬哪醇硼酸酯(539mg,2120μmol)加入到1,4-二氧六环(8mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(207mg,282μmol)。将反应液在氮气保护下加热至110℃反应12小时。反应液减压浓缩,并经过硅胶柱层析法(石油醚/乙酸乙酯,10/1~10/3,V/V)分离得到中间体F。 1H NMR(400MHz,CDCl 3)δ8.06-8.02(m,2H),7.83-7.77(m,1H),4.33(s,3H),1.40(s,12H)。MS-ESI计算值[M+H] +260,实测值260。
中间体G
合成路线:
Figure PCTCN2022074088-appb-000090
第一步
将中间体G-1(20.0g,139.3mmol)溶解在THF(100mL)中,加入羰基二咪唑(24.85g,153.23mmol),在80℃反应1小时。反应液用1M稀盐酸调pH至6,过滤,收集滤饼,干燥,得到中间体G-2,直接用于下一步反应。MS-ESI计算值[M+H] +170,实测值170。
第二步
将中间体G-2(25.3g,149.2mmol)和碳酸铯(97.2g,298.41mmol)加入DMF(100mL)中。在25℃搅拌20分钟后加入碘甲烷(25.4g,179.05mmol),继续在25℃反应2小时。向反应液中加入水(500mL), 过滤,收集滤饼,干燥,得到中间体G-3,直接用于下一步反应。MS-ESI计算值[M+H] +184,实测值184。
第三步
将中间体G-3(1800mg,9800μmol),乙酸钾(2890mg,29410μmol)和双联嚬哪醇硼酸酯(4980mg,19610μmol)加入到1,4-二氧六环(20mL)中,后向反应液中加入醋酸钯(132mg,588μmol)和2-二环己基磷-2′,4′,6′-三异丙基联苯(280mg,588μmol)。将反应液在氮气保护下加热至80℃反应3小时。反应液减压浓缩,并经过硅胶柱层析法(石油醚/乙酸乙酯,20/1~3/1,V/V)分离得到中间体G。 1H NMR(400MHz,CDCl 3)δ7.64(d,J=8.0Hz,1H),7.42(s,1H),7.22(d,J=8.0Hz,1H),3.44(s,3H),1.38(s,12H)。MS-ESI计算值[M+H] +276,实测值276。
中间体H
合成路线:
Figure PCTCN2022074088-appb-000091
将中间体H-1(995mg,4400μmol),乙酸钾(1300mg,13200μmol)和双联嚬哪醇硼酸酯(2240mg,8800μmol)加入到1,4-二氧六环(10mL)中,后向反应液中加入醋酸钯(60mg,264μmol)和2-二环己基磷-2′,4′,6′-三异丙基联苯(126mg,264μmol)。将反应液在氮气保护下加热至80℃反应3小时。反应液减压浓缩,并经过硅胶柱层析法(石油醚/乙酸乙酯,10/1~1/1,V/V)分离得到中间体H。 1H NMR(400MHz,CDCl 3)δ7.96-7.86(m,2H),7.86-7.81(m,1H),4.41-4.34(s,2H),3.21(s,3H),1.32(s,12H)。MS-ESI计算值[M+H] +274,实测值274。
中间体I
合成路线:
Figure PCTCN2022074088-appb-000092
第一步
将中间体I-1(50mg,254μmol),I-2(106mg,381μmol)和碳酸钾(87mg,634μmol)加入DMF(3mL)中。将反应液加热至120℃反应14小时。将反应液加入饱和食盐水(50mL),乙酸乙酯(50mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经薄层层析法(展开剂:石油醚/乙酸乙酯,3/1,V/V)分离得到中间体I-3和中间体I-4。
中间体I-3: 1H NMR(400MHz,CDCl 3)δ7.96(s,1H),7.63(s,1H),7.58(d,J=8.5Hz,1H),7.24(d,J=8.5Hz,1H),4.54-4.46(m,1H),4.38-4.22(m,2H),3.05-2.88(m,2H),2.28-2.16(m,2H),2.06-1.94(m,2H),1.49(s,9H)。
中间体I-4: 1H NMR(400MHz,CDCl 3)δ7.85(s,1H),7.80(s,1H),7.44(d,J=8.8Hz,1H),7.08(d,J=8.8Hz,1H),4.52-4.40(m,1H),4.35-4.14(m,2H),2.94-2.76(m,2H),2.20-2.12(m,2H),2.09-1.92(m,2H),1.41(m,9H)。
第二步
将中间体I-3(50mg,131μmol),乙酸钾(32mg,329μmol)和双联嚬哪醇硼酸酯(67mg,263μmol)加入到1,4-二氧六环(3mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(19mg,26μmol)。将反应液在氮气保护下加热至110℃反应12小时。反应液减压浓缩,并经过硅胶柱层析法(石油醚/乙酸乙酯,100/1~4/1,V/V)分离得到中间体I。 1H NMR(400MHz,CDCl 3)δ8.02(s,1H),7.94(s,1H),7.74(d,J=8.1Hz,1H),7.57(d,J=8.1Hz,1H),4.74-4.61(m,1H),4.42-4.25(m,2H),3.05-2.90(m,2H),2.33-2.18(m,2H),2.04-1.95(m,2H),1.50(s,9H),1.40(s,12H)。MS-ESI计算值[M-56+1] +372,实测值372。
中间体J
合成路线:
Figure PCTCN2022074088-appb-000093
将中间体I-4(50mg,131μmol),乙酸钾(32mg,329μmol)和双联嚬哪醇硼酸酯(67mg,263μmol)加入到1,4-二氧六环(3mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(19mg,26μmol)。将反应液在氮气保护下加热至110℃反应12小时。反应液减压浓缩,并经过硅胶柱层析法(石油醚/乙酸乙酯,100/1~4/1,V/V)分离得到中间体J。 1H NMR(400MHz,CDCl 3)δ8.27(s,1H),7.97-7.91(m,1H),7.67-7.61(m,1H),7.49-7.42(m,1H),4.69-4.55(m,1H),4.42-4.22(m,2H),3.04-2.86(m,2H),2.32-2.23(m,2H),2.11-2.07(m,2H),1.50(s,9H),1.28(s,12H)。MS-ESI计算值[M+H] +428,实测值428。
中间体K
合成路线:
Figure PCTCN2022074088-appb-000094
第一步
将中间体I-3(500mg,1310μmol)溶解在二氯甲烷(5mL)中,加入三氟乙酸(1540mg,13510μmol)后在25℃反应1小时。反应液减压浓缩得到含有中间体K-1的粗品,直接用于下一步反应。MS-ESI计算值[M+H] +280和282,实测值280和282。
第二步
将中间体K-1(364mg,1300μmol)溶解在四氢呋喃(10mL)中,加入甲醛的水溶液(37%,0.67mL,9090μmol),在25℃下搅拌30分钟后,加入三乙酰氧基硼氢化钠(550mg,2600μmol)和乙酸(117mg,1950μmol),在25℃下搅拌2小时。将反应液加入饱和碳酸氢钠溶液(100mL)中,乙酸乙酯(100mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,20/1~10/1,V/V)分离得到中间体K-2。 1H NMR(400MHz,CDCl 3)δ7.96(s,1H),7.67(s,1H),7.59(d,J=8.5Hz,1H),7.25(d,J=8.5Hz,1H),4.47-4.34(m,1H),3.23-3.05(m,2H),2.53-2.19(m,7H),2.16-2.01(m,2H)。MS-ESI计算值[M+H] +294和296,实测值294和296。
第三步
将中间体K-2(320mg,1090μmol),乙酸钾(267mg,2720μmol)和双联嚬哪醇硼酸酯(414mg,1630μmol)加入到1,4-二氧六环(3mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(80mg,109μmol)。将反应液在氮气保护下加热至110℃反应12小时。反应液减压浓缩,并经过硅胶柱层析法(二氯甲烷/甲醇,10/1~20/3,V/V)分离得到中间体K。 1H NMR(400MHz,CDCl 3)δ8.00(s,1H),7.92(s,1H),7.74(d,J=8.0Hz,1H),7.58(d,J=8.3Hz,1H),4.80-4.71(m,1H),3.46-3.36(m,2H),2.90-2.76(m,2H),2.62(s,3H),2.52-2.28(m,4H),1.39(m,12H)。MS-ESI计算值[M+H] +342,实测值342。
中间体L
合成路线:
Figure PCTCN2022074088-appb-000095
第一步
将中间体I-1(500mg,2.54mmol)溶解在二甲基亚砜(5mL)中,缓慢加入碳酸钾(491mg,3.55mmol),2-碘丙烷(518mg,3.05mmol),在15℃反应12小时。反应液中用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,减压浓缩得到粗品并经过硅胶柱层析法(石油醚/乙酸乙酯,10/1,V/V)分离得到中间体L-1。MS-ESI计算值[M+H] +239和241,实测值239和241。
第二步
将中间体L-1(233mg,974μmol),乙酸钾(191mg,1.95mmol)和双联嚬哪醇硼酸酯(371mg,1.46mmol)加入到1,4-二氧六环(3mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(143mg,195μmol)。将反应液在氮气保护下加热至110℃反应12小时。反应液减压浓缩得到中间体L,直接用于下一步反应。MS-ESI计算值[M+H] +287,实测值287。
中间体M
合成路线:
Figure PCTCN2022074088-appb-000096
第一步
将中间体I-1(500mg,2.54mmol),中间体M-1(686mg,3.81mmol)溶解在DMF(5mL)中,缓慢加入碳酸钾(879mg,6.34mmol),四丁基碘化铵(94mg,254μmol)在氮气保护下120℃反应14小时。反应液中用水(20mL×3)萃取,合并有机相,用饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,减压浓缩得到粗品并经过硅胶柱层析法(石油醚/乙酸乙酯,2/1,V/V)分离得到中间体M-2。 1H NMR(400MHz,CDCl 3)δ8.00(s,1H),7.68(s,1H),7.62(d,J=8.5Hz,1H),7.34-7.21(m,1H),4.67-4.54(m,1H),4.27-4.13(m,2H),3.72-3.57(m,2H),2.51-2.28(m,2H),2.09-1.92(m,2H)。MS-ESI计算值[M+H] +281和283,实测值281和283。
第二步
将中间体M-2(237mg,843μmol),乙酸钾(248mg,2.53mmol)和双联嚬哪醇硼酸酯(321.09mg,1.26mmol)加入到1,4-二氧六环(3mL)中,后向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(62mg,84μmol)。将反应液在氮气保护下加热至110℃反应12小时。将反应液减压浓缩得到中间体M,直接用于下一步反应。MS-ESI计算值[M+H] +329,实测值329。
中间体N
合成路线:
Figure PCTCN2022074088-appb-000097
将中间体N-1(201mg,1.02mmol),乙酸钾(298mg,3.04mmol)和双联嚬哪醇硼酸酯(385mg,1.52mmol)加入到1,4-二氧六环(2mL)中,后向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(74mg,101μmol)。将反应液在氮气保护下加热至90℃反应12小时。将反应液用乙酸乙酯(10mL×3)萃取,无水硫酸钠干燥,然后减压浓缩得到中间体N,直接用于下一步反应。MS-ESI计算值[M+H] +245,实测值245。
中间体O
合成路线:
Figure PCTCN2022074088-appb-000098
将中间体O-1(200mg,1.02mmol),乙酸钾(297mg,3.03mmol)和双联嚬哪醇硼酸酯(385mg,1.52mmol)加入到1,4-二氧六环(2mL)中,后向反应液中加入1,1-双(二苯基磷)二茂铁氯化钯(74mg,101μmol)。将反应液在氮气保护下加热至90℃反应12小时。将反应液用乙酸乙酯(10mL×3)萃取,无水硫酸钠干燥,然后减压浓缩得到中间体O,直接用于下一步反应。MS-ESI计算值[M+H] +245,实测值245。
中间体P
合成路线:
Figure PCTCN2022074088-appb-000099
第一步
将中间体P-1(500mg,2.34mmol)溶解在乙腈(5mL)中,缓慢加入碳酸钾(516mg,3.74mmol),碘甲烷(1.66g,3.05mmol),在50℃反应12小时。反应液中用乙酸乙酯(20mL×3)萃取,合并有机相,用无水硫酸钠干燥,减压浓缩得到粗品并经过硅胶柱层析法(石油醚/乙酸乙酯,5/1,V/V)分离得到中间体P-2。MS-ESI计算值[M+H] +228和230,实测值228和230。
第二步
将中间体P-2(174mg,762.87μmol),乙酸钾(225mg,2.29mmol)和双联嚬哪醇硼酸酯(291mg,1.14mmol)加入到1,4-二氧六环(2mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(56mg,76.29μmol)。将反应液在氮气保护下加热至90℃反应12小时。反应液减压浓缩得到中间体P,直接用于下一步反应。MS-ESI计算值[M+H] +276,实测值276。
中间体Q
合成路线:
Figure PCTCN2022074088-appb-000100
第一步
将中间体C-1a(3g,16.28mmol)溶解在四氢呋喃(30mL)中,在-78℃下缓慢加入正丁基锂(2.5M,13.03mL),反应半小时,再在-78℃下缓慢加入溶解在四氢呋喃(10mL)的中间体Q-1(4.86g,17.1mmol),在25℃下反应12小时。反应液中用氯化铵溶液(30mL)淬灭,乙酸乙酯(30mL×3)萃取,合并有机相,用饱和食盐水(20mL×2)洗涤,无水硫酸钠干燥,减压浓缩得到粗品并经过硅胶柱层析法(石油醚/乙酸乙酯,1/0-100/1,V/V)分离得到中间体Q-2。 1H NMR(400MHz,CDCl 3)δ7.51(d,J=2.0Hz,1H),7.31-7.28 (m,1H),7.09(d,J=8.3Hz,1H),4.26-4.33(m,1H),3.74(s,3H),3.68-3.60(m,4H),3.45-3.37(m,1H),2.94-2.86(m,1H),2.25-2.17(m,1H),1.01(m,J=6.8Hz,3H),0.65(d,J=6.8Hz,3H)。MS-ESI计算值[M+H] +387和389,实测值387和389。
第二步
将中间体Q-2(6.4g,16.51mmol)溶解在乙腈(30mL)中,缓慢加入盐酸(0.2M,173mL),在25℃下反应12小时。反应液用正庚烷(30mL×2)洗涤,水相用饱和碳酸氢钠水溶液调节溶液的pH到8,用乙酸乙酯(30mL×3)萃取,合并有机相,用无水硫酸钠干燥,减压浓缩得到中间体Q-3,直接用于下一步反应。 1H NMR(400MHz,CDCl 3)δ7.57-7.52(m,1H),7.37-7.32(m,1H),7.12(d,J=8.2Hz,1H),3.82-3.76(m,1H),3.71(s,3H),3.22-3.15(m,1H),2.92-2.85(m,1H)。MS-ESI计算值[M+H] +292和294,实测值292和294。
第三步
向中间体Q-3(3.42g,11.69mmol)中缓慢加入盐酸(3M,55mL),在60℃下反应16小时。将反应液冷却至室温,用氢氧化钠水溶液调节溶液的pH到7,用水洗涤三次,合并有机相,用无水硫酸钠干燥,减压浓缩得到中间体Q-4,直接用于下一步反应。MS-ESI计算值[M+H] +278和280,实测值278和280。
第四步
将中间体Q-4(4g,14.36mmol)溶解在二氧六环(40mL)中,加入碳酸钠溶液(2M,7.90mL)和Boc 2O(3.64g,16.66mmol),在25℃下反应4小时。反应液用饱和柠檬酸水溶液调节溶液的pH到4-5,用乙酸乙酯(50mL×3)萃取,合并有机相,用饱和食盐水(50mL×2)洗涤,无水硫酸钠干燥然后减压浓缩,加入正庚烷(15mL)搅拌15分钟,过滤,收集滤饼,干燥,得到中间体Q-5,直接用于下一步反应。 1H NMR(400MHz,MeOD-d 4)δ7.68-7.54(m,1H),7.48-7.37(m,1H),7.24(d,J=8.2Hz,1H),4.59-4.40(m,1H),3.43-3.36(m,1H),3.02-2.83(m,1H),1.37(s,9H)。MS-ESI计算值[M+H] +378和380,实测值378和380。
第五步
将中间体Q-5(1.06g,2.79mmol)溶解在DMF(5mL)中,缓慢加入氨水(12M,696.56μL),N-甲基吗啡啉(423mg,4.18mmol),在25℃下搅拌30分钟。然后在0℃下加入HATU(1.06g,2.79mmol),在25℃下反应12小时。向反应液中加入水(20mL),过滤,滤饼用水洗涤三次,收集滤饼,干燥得到中间体Q-6直接用于下一步反应。 1H NMR(400MHz,DMSO-d 6)δ7.66(d,J=1.8Hz,1H),7.53-7.44(m,1H),6.90(d,J=9.0Hz,1H),4.22-4.15(m,1H),3.18-3.07(m,1H),2.85-2.74(m,1H),1.28(s,9H)。MS-ESI计算值[M+Na] +399和401,实测值399和401。
第六步
向中间体Q-6(1g,2.65mmol)溶解在二氯甲烷(10mL)中,缓慢加入三氟乙酸(12.13g,106.35mmol),在25℃下反应12小时。将反应液用饱和碳酸氢钠水溶液调pH大于8,用乙酸乙酯(10mL×3)萃取,用饱和食盐水(10mL×3)洗涤,合并有机相,用无水硫酸钠干燥,减压浓缩得到中间体Q-7,直接用于下一步反应。MS-ESI计算值[M+H] +277和279,实测值277和279。
第七步
将T 3P(50%乙酸乙酯溶液,278.58mg,876μmol)溶解在DMF(3mL)中,加入中间体Q-7(243mg,876μmol),中间体A-5(143mg,584μmol),然后再加入三乙胺(266mg,2.63mmol),在25℃下反应12小时。 反应液加入水(50mL)中,用乙酸乙酯(50mL×3)萃取,饱和食盐水(10mL×3)洗涤,合并有机相,用无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,10/1,V/V)分离得到中间体Q-8。MS-ESI计算值[M+Na] +526和528,实测值526和528。
第八步
将中间体Q-8(350mg,693μmol),N-(三乙基氨磺酰)氨基甲酸甲酯(826mg,3.47mmol)加入到二氯甲烷(3mL)中,在25℃下反应12小时。将反应液加入水(20mL)中,用乙酸乙酯(10mL×2)萃取,无水硫酸钠干燥,减压浓缩得到中间体Q,直接用于下一步反应。MS-ESI计算值[M+Na] +508和510,实测值508和510。
中间体R
合成路线:
Figure PCTCN2022074088-appb-000101
第一步
将中间体C-1a(2.0g,10.86mmol)溶解在四氢呋喃(30mL)中,在-78℃下逐滴缓慢加入正丁基锂(2.5M,6.08mL,15.20mmol),反应半小时,再在-78℃下缓慢加入溶解在四氢呋喃(15mL)的中间体R-1(2.87g,10.86mmol),在25℃下反应12小时。反应液用饱和氯化铵溶液(50mL)淬灭,乙酸乙酯(50mL×2)萃取,合并有机相,无水硫酸钠干燥,减压浓缩得到粗品并经过硅胶柱层析法(石油醚/乙酸乙酯,1/0-10/1,V/V)分离得到中间体R-2。 1H NMR(400MHz,CDCl 3)δ7.27(s,1H),7.21(d,J=8.0Hz,1H),6.97(d,J=8.3Hz,1H),4.30-4.21(m,1H),3.73(s,3H),3.64(s,3H),3.59-3.54(m,1H),3.26-3.17(m,1H),2.92-2.83(m,1H),2.33(s,3H),2.26-2.15(m,1H),1.00(d,J=6.8Hz,3H),0.64(d,J=6.8Hz,3H)。MS-ESI计算值[M+H] +367和369,实测值367和369。
第二步
将中间体R-2(2.7g,7.35mmol)溶解在乙腈(9mL)中,缓慢加入盐酸(0.2M,77mL,15.44mmol),在25℃下反应12小时。反应液用甲基叔丁基醚(20mL)洗涤,用饱和碳酸氢钠水溶液调节水相的pH到 8,用乙酸乙酯(100mL×3)萃取,合并有机相,用无水硫酸钠干燥,减压浓缩得到中间体R-3,直接用于下一步反应。 1H NMR(400MHz,CDCl 3)δ7.33(s,1H),7.29-7.27(m,1H),7.02(d,J=8.0Hz,1H),3.71(s,3H),3.70-3.66(m,1H),3.12-3.03(m,1H),2.81-2.72(m,1H),2.33(s,3H)。MS-ESI计算值[M+H] +272和274,实测值272和274。
第三步
向中间体R-3(2.0g,7.35mmol)中缓慢加入盐酸(3M,37mL,110mmol),在60℃下反应16小时。将反应液冷却至室温,用氢氧化钠水溶液调节溶液的pH到7,用水洗涤三次,合并有机相,用无水硫酸钠干燥,减压浓缩得到中间体R-4,直接用于下一步反应。MS-ESI计算值[M+H] +258和260,实测值258和260。
第四步
将中间体R-4(1.93g,7.48mmol)溶解在二氧六环(20mL)和水(80mL)中,加入碳酸钠(1.59g,14.95mmol)和Boc 2O(1.71g,7.85mmol),在25℃下反应4小时。反应液用饱和柠檬酸水溶液调节溶液的pH到4-5,用乙酸乙酯(200mL×3)萃取,合并有机相,无水硫酸钠干燥然后减压浓缩得到中间体R-5,直接用于下一步反应。MS-ESI计算值[M-H] -356和358,实测值356和358。
第五步
将中间体R-5(2.68g,7.48mmol)溶解在DMF(15mL)中,加入N-甲基吗啡啉(1.14g,11.22mmol)和HATU(2.84g,7.48mmol),在0℃下搅拌30分钟。然后加入氨水(865μL,22.44mmol),并在25℃下搅拌12小时。向反应液中加入水(100mL),用乙酸乙酯(100mL×3)萃取,合并有机相,并用饱和食盐水(200mL×3)洗涤,无水硫酸钠干燥,然后减压浓缩,并经过硅胶柱层析法(石油醚/乙酸乙酯,1/4-1/3,V/V)分离得到中间体R-6。 1H NMR(400MHz,MeOD-d 4)δ7.31(s,1H),7.23(d,J=8.0Hz,1H),7.08(s,1H),4.34-4.20(m,1H),3.17-3.08(m,1H),2.81-2.73(m,1H),2.35(s,3H),1.35(s,9H)。MS-ESI计算值[M-100] +257和259,实测值257和259。
第六步
将中间体R-6(2.3g,6.44mmol)溶解在THF(40mL)中,缓慢加入甲烷磺酸(6.19g,64.38mmol),在25℃下反应12小时。将反应液用饱和碳酸氢钠水溶液调pH大于8,用乙酸乙酯(10mL×3)萃取,合并有机相,用无水硫酸钠干燥,然后减压浓缩,并经过硅胶柱层析法(二氯甲烷/甲醇,20/-10/1,V/V)分离得到中间体R-7。 1H NMR(400MHz,MeOD-d 4)δ7.37-7.34(m,1H),7.29-7.25(m,1H),7.12(d,J=8.0Hz,1H),3.31-3.26(m,1H),2.92-2.81(m,1H),2.59-2.52(m,1H),2.29(s,3H)。MS-ESI计算值[M+H] +257和259,实测值257和259。
第七步
将T3P(50%乙酸乙酯溶液,389mg,612μmol)溶解在DMF(5mL)中,加入中间体R-7(115mg,448μmol),中间体A-5(100mg,407μmol),然后再加入三乙胺(187mg,1.83mmol),在25℃下反应12小时。反应液加入水(50mL)中,用乙酸乙酯(50mL×3)萃取,饱和食盐水(100mL×3)洗涤,合并有机相,用无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,1/4,V/V)分离得到中间体R-8。 1H NMR(400MHz,CDCl 3)δ7.29-7.11(m,3H),6.95(d,J=8.4Hz,1H),4.67-4.50(m,1H),4.13-3.81(m,3H),3.80-3.68(m,0.5H),3.54-3.33(m,1.5H),3.28-3.15(m,0.5H),3.12-2.82(m,3.5H),2.26(s,3H),1.94-1.71(m,2H),1.38(s,9H)。MS-ESI计算值[M+Na] +506和508,实测值506和508。
第八步
将中间体R-8(190mg,393μmol),N-(三乙基氨磺酰)氨基甲酸甲酯(280mg,1.18mmol)加入到二氯甲烷(5mL)中,在25℃下反应12小时。将反应液加入水(50mL)中,用乙酸乙酯(50mL×2)萃取,无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,10/3,V/V)分离得到中间体R。 1H NMR(400MHz,CDCl 3)δ7.37-7.34(s,1H),7.33-7.28(m,1H),7.23-7.12(m,1H),7.11-7.05(m,1H),5.13-4.98(m,1H),4.25-3.97(m,3H),3.82-3.70(m,0.5H),3.56-3.17(m,3H),3.15-2.94(m,2.5H),2.36(s,3H),2.01-1.80(m,2H),1.45(m,9H)。MS-ESI计算值[M+Na] +488和490,实测值488和490。
中间体S
合成路线:
Figure PCTCN2022074088-appb-000102
第一步
将中间体S-1(200mg,948μmol)溶解在乙腈(10mL)中,加入1-氯甲基-4-氟-1,4-二氮杂双环[2.2.2]辛烷二(四氟硼酸)盐(419mg,.1.18mmol),在90℃反应2小时。将反应液倒入水(50mL)中,用乙酸乙酯(30mL×2)萃取,合并有机相,用无水硫酸钠干燥,减压浓缩得到粗品并经过薄层层析法(石油醚/乙酸乙酯,20/3,V/V)分离得到中间体S-2。 1H NMR(400MHz,CDCl 3)δ7.53-7.47(m,2H),7.24(d,J=8.8Hz,1H),3.89(s,3H)。MS-ESI计算值[M+H] +229和231,实测值229和231。
第二步
将中间体S-2(33mg,144μmol),乙酸钾(35mg,369μmol)和双联嚬哪醇硼酸酯(55mg,216μmol)加入到1,4-二氧六环(3mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(21mg,29μmol)。将反应液在氮气保护下加热至90℃反应12小时。反应液减压浓缩并经过硅胶柱层析法(石油醚/乙酸乙酯,20/3,V/V)分离得到中间体S。 1H NMR(400MHz,CDCl 3)δ7.73(d,J=1.8Hz,1H),7.56(d,J=8.0Hz,1H),7.49-7.43(m,1H),3.87(s,3H),1.31(s,12H)。MS-ESI计算值[M+H] +277,实测值277。
中间体T
合成路线:
Figure PCTCN2022074088-appb-000103
将中间体T-1(500mg,2.33mmol),乙酸钾(571mg,5.81mmol)和双联嚬哪醇硼酸酯(886mg,3.49mmol)加入到1,4-二氧六环(6mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(170mg,232μmol)。将反应液在氮气保护下加热至100℃反应12小时。反应液减压浓缩并经过硅胶柱层析法(石油醚/乙酸乙酯,3/2,V/V)分离得到中间体T。 1H NMR(400MHz,CDCl 3)δ8.28-8.10(m,1H),7.79(s,1H),7.24-7.18(m,1H),1.38(s,12H)。MS-ESI计算值[M+H] +263,实测值263。
中间体U
合成路线:
Figure PCTCN2022074088-appb-000104
将中间体U-1(50mg,237μmol),乙酸钾(58mg,593μmol)和双联嚬哪醇硼酸酯(90mg,355μmol)加入到1,4-二氧六环(3mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(35mg,47μmol)。将反应液在氮气保护下加热至100℃反应12小时。反应液减压浓缩得到中间体U,直接用于下一步。MS-ESI计算值[M+H] +177,实测值177。
中间体V
合成路线:
Figure PCTCN2022074088-appb-000105
将中间体V-1(100mg,507μmol),乙酸钾(125mg,1.27mmol)和双联嚬哪醇硼酸酯(193mg,761μmol)加入到1,4-二氧六环(3mL)中,后向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯(74mg,101μmol)。将反应液在氮气保护下加热至100℃反应12小时。反应液减压浓缩得到中间体V,直接用于下一步。MS-ESI计算值[M+Na] +267,实测值267。
实施例1
合成路线:
Figure PCTCN2022074088-appb-000106
第一步
将中间体A(60mg,120μmol),中间体E(41mg,156μmol)和碳酸钾(50mg,360μmol)加入乙腈(8mL)和水(2mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(20mg,24μmol)。将反应液在氮气保护下加热至80℃反应2小时。将反应液加入水(20mL)中,用乙酸乙酯(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(石油 醚/乙酸乙酯,10/1~1/4,V/V)分离得到化合物1-1。MS-ESI计算值[M+Na] +527,实测值527。
第二步
将化合物1-1(60mg,119μmol)加入到甲酸(2mL)中,反应液在50℃反应10分钟。将反应液加入到饱和碳酸氢钠溶液(30mL)中,并用饱和碳酸氢钠溶液调节pH=8~9,二氯甲烷(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经SFC(分离柱:DAICEL CHIRALPAK AD 250mm×30mm×10μm;流动相:A相为超临界CO 2,B相为含0.1%氨水的乙醇溶液;梯度:B相50%-50%)分离得到化合物1。后再经SFC(色谱柱:Chiralcel AD-3 50mm×4.6mm×3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相5%-40%)测e.e.值。
化合物1:e.e.%=100.00%,RT=2.547min。 1H NMR(400MHz,CDCl 3)δ8.23(s,1H),7.77(d,J=8.4Hz,1H),7.66(d,J=8.0Hz,2H),7.60(d,J=8.4Hz,1H),7.45(d,J=8.0Hz,2H),7.22(d,J=8.8Hz,1H),5.27-5.19(m,1H),4.35(s,3H),4.13-4.10(m,1H),4.03-3.96(m,1H),3.79-3.71(m,1H),3.34-3.26(m,1H),3.22-3.15(m,2H),3.10-3.03(m,1H),3.02-2.93(m,1H),2.92-2.84(m,1H),1.93-1.77(m,2H)。MS-ESI计算值[M+H] +405,实测值405。
实施例2
合成路线:
Figure PCTCN2022074088-appb-000107
第一步
将中间体A(80mg,160μmol),化合物2-1(42mg,240μmol)和碳酸钾(66mg,480μmol)加入乙腈(6mL)和水(2mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(26mg,32μmol)。将反应液在氮气保护下加热至80℃反应2小时。将反应液加入水(20mL)中,用乙酸乙酯(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,10/1~3/7,V/V)分离得到化合物2-2。MS-ESI计算值[M+Na] +526,实测值526。
第二步
将化合物2-2(80mg,158μmol)加入到甲酸(1.5mL)和水(0.15mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(30mL)中,并用饱和碳酸氢钠溶液调节pH=8~9,二氯甲烷(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经SFC(分离柱:DAICEL CHIRALPAK AD 250mm×30mm×10μm;流动相:A相为超临界CO 2,B相为含0.1%氨水的乙醇溶液;梯度:B相60%-60%)分离得到化合物2。后再经SFC(色谱柱:Chiralcel IG-3 50mm×4.6mm×3μm;流动 相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相5%-40%)测e.e.值。
化合物2:e.e.%=100.00%,RT=2.759min。 1H NMR(400MHz,CD 3OD)δ8.00(s,1H),7.81(d,J=8.4Hz,1H),7.78-7.68(m,3H),7.48-7.37(m,3H),5.38-5.20(m,1H),4.19-4.11(m,1H),4.10(s,3H),4.02-3.96(m,1H),3.83-3.74(m,1H),3.32-3.15(m,3H),2.98-2.88(m,1H),2.86-2.77(m,1H),2.74-2.65(m,1H),1.99-1.77(m,2H)。MS-ESI计算值[M+H] +404,实测值404。
实施例3
合成路线:
Figure PCTCN2022074088-appb-000108
第一步
将中间体A(80mg,160μmol),化合物3-1(42mg,240μmol)和碳酸钾(66mg,480μmol)加入乙腈(8mL)和水(2mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(26mg,32μmol)。将反应液在氮气保护下加热至80℃反应2小时。将反应液加入水(20mL)中,用乙酸乙酯(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,100/1~20/1,V/V)分离得到化合物3-2。MS-ESI计算值[M+Na] +526,实测值526。
第二步
将化合物3-2(74mg,147μmol)加入到甲酸(1.5mL)和水(0.15mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(30mL)中,并用饱和碳酸氢钠溶液调节pH=8~9,二氯甲烷(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经SFC(分离柱:DAICEL CHIRALPAK AD 250mm×30mm×10μm;流动相:A相为超临界CO 2,B相为含0.1%氨水的乙醇溶液;梯度:B相50%-50%)分离得到化合物3。后再经SFC(色谱柱:Chiralcel AD-3 50mm×4.6mm×3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相5%-40%)测e.e.值。
化合物3:e.e.%=100.00%,RT=2.456min。 1H NMR(400MHz,CD 3OD)δ8.05(s,1H),7.97(s,1H),7.74-7.69(m,1H),7.68-7.60(m,3H),7.39(d,J=8.0Hz,2H),5.14-5.08(m,1H),4.14-4.10(m,1H),4.09(s,3H),4.02-3.93(m,1H),3.82-3.74(m,1H),3.31-3.26(m,1H),3.23-3.15(m,2H),2.93-2.85(m,1H),2.82-2.72(m,1H),2.68-2.61(m,1H),1.95-1.77(m,2H)。MS-ESI计算值[M+H] +404,实测值404。
实施例4
合成路线:
Figure PCTCN2022074088-appb-000109
第一步
将中间体A(60mg,120μmol),中间体F(47mg,180μmol)和碳酸钾(33mg,240μmol)加入乙腈(8mL)和水(2mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(20mg,24μmol)。将反应液在氮气保护下加热至80℃反应2小时。将反应液加入水(20mL)中,用乙酸乙酯(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,10/1~1/3,V/V)分离得到化合物4-1。MS-ESI计算值[M+Na] +527,实测值527。
第二步
将化合物4-1(58mg,115μmol)加入到甲酸(1.5mL)和水(0.15mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(30mL)中,并用饱和碳酸氢钠溶液调节pH=8~9,二氯甲烷(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经SFC(分离柱:DAICEL CHIRALPAK AD 250mm×30mm×10μm;流动相:A相为超临界CO 2,B相为含0.1%氨水的乙醇溶液;梯度:B相50%-50%)分离得到化合物4。后再经SFC(色谱柱:Chiralcel AD-3 50mm×4.6mm×3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相5%-40%)测e.e.值。
化合物4:e.e.%=100.00%,RT=2.247min。 1H NMR(400MHz,CDCl 3)δ8.12(d,J=8.8Hz,1H),7.73-7.65(m,3H),7.62(d,J=8.8Hz,1H),7.46(d,J=8.0Hz,1H),7.25-7.19(m,1H),5.30-5.18(m,1H),4.36(s,3H),4.15-4.08(m,1H),4.05-3.96(m,1H),3.83-3.72(m,1H),3.38-3.28(m,1H),3.24-3.12(m,2H),3.11-3.03(m,1H),3.02-2.93(m,1H),2.93-2.83(m,1H),1.95-1.77(m,2H)。MS-ESI计算值[M+H] +405,实测值405。
实施例5
合成路线:
Figure PCTCN2022074088-appb-000110
Figure PCTCN2022074088-appb-000111
第一步
将中间体A(100mg,200μmol),中间体H(76mg,280μmol)和碳酸钾(55mg,400μmol)加入乙腈(8mL)和水(2mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(32mg,40μmol)。将反应液在氮气保护下加热至80℃反应3小时。将反应液加入水(20mL)中,用乙酸乙酯(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过薄层层析法(石油醚/乙酸乙酯,0/1,V/V)分离得到化合物5-1。MS-ESI计算值[M+Na] +541,实测值541。
第二步
将化合物5-1(56mg,108μmol)加入到甲酸(1.0mL)和水(0.1mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(30mL)中,并用饱和碳酸氢钠溶液调节pH=8~9,二氯甲烷(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Waters Xbridge 150mm×25mm×5μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相16%-46%,10min)分离得到化合物5。后再经SFC(色谱柱:Chiralcel AD-3 50mm×4.6mm×3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的异丙醇溶液;梯度:B相40%)测e.e.值。
化合物5:e.e.%=100.00%,RT=0.747min。 1H NMR(400MHz,CDCl 3)δ7.91(d,J=8.0Hz,1H),7.70-7.65(m,1H),7.65-7.60(m,3H),7.43(d,J=8.0Hz,2H),7.24-7.17(m,1H),5.28-5.16(m,1H),4.45(s,2H),4.14-4.08(m,1H),4.04-3.96(m,1H),3.82-3.71(m,1H),3.37-3.28(m,1H),3.24(s,3H),3.19-3.14(m,2H),3.09-3.03(m,1H),3.01-2.85(m,2H),1.95-1.79(m,2H)。MS-ESI计算值[M+H] +419,实测值419。
实施例6
合成路线:
Figure PCTCN2022074088-appb-000112
第一步
将中间体C(80mg,164μmol),中间体G(90mg,328μmol)和磷酸钾(104mg,491μmol)加入四氢呋 喃(8mL)和水(3mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基磷)二茂铁]二氯化钯(21mg,32μmol)。将反应液在氮气保护下加热至60℃反应6小时。将反应液加入水(20mL)中,用乙酸乙酯(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过薄层层析法(展开剂:二氯甲烷/甲醇,20/1,V/V)分离得到化合物6-1。MS-ESI计算值[M+H] +557,实测值557。
第二步
将化合物6-1(104mg,187μmol)溶解在二氯甲烷(10mL)中,加入N-(三乙基氨磺酰)氨基甲酸甲酯(67mg,280μmol),在25℃下反应12小时。将反应液加入水(50mL)中,用乙酸乙酯(50mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的含有化合物6-2的粗品直接用于下一步反应。MS-ESI计算值[M+Na] +561,实测值561。
第三步
将化合物6-2(95mg,177μmol)加入到甲酸(1.7mL)和水(0.5mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(30mL)中,并用饱和碳酸氢钠溶液调节pH=8~9,二氯甲烷(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Waters Xbridge 150mm×25mm×5μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相22%-52%,10min)分离得到化合物6。后再后经SFC(色谱柱:Chiralcel OJ-3 50mm×4.6mm×3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相5%-40%)测e.e.值。
化合物6:e.e.%=100.00%,RT=2.123min。 1H NMR(400MHz,CD 3OD)δ7.51-7.39(m,5H),7.32(d,J=8.2Hz,1H),5.19-5.14(m,1H),4.15-4.08(m,1H),4.05-3.95(m,1H),3.84-3.74(m,1H),3.46(s,3H),3.29-3.16(m,3H),2.97-2.88(m,1H),2.85-2.75(m,1H),2.70-2.62(m,1H),1.98-1.79(m,2H)。MS-ESI计算值[M+H] +439,实测值439。
实施例7
合成路线:
Figure PCTCN2022074088-appb-000113
第一步
将中间体C(100mg,205μmol),中间体F(69mg,266μmol)和磷酸钾(130mg,614μmol)加入四氢呋喃(8mL)和水(3mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基磷)二茂铁]二氯化钯(27mg,41μmol)。将反应液在氮气保护下加热至70℃反应5小时。将反应液加入水(20mL)中,用乙酸乙酯(20 mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,100/1~20/1,V/V)分离得到化合物7-1。MS-ESI计算值[M+Na] +563,实测值563。
第二步
将化合物7-1(110mg,203μmol)溶解在二氯甲烷(5mL)中,加入N-(三乙基氨磺酰)氨基甲酸甲酯(122mg,512μmol),在25℃下反应22小时。将反应液加入水(50mL)中,用乙酸乙酯(50mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,10/1~1/4,V/V)分离得到化合物7-2。MS-ESI计算值[M+Na] +545,实测值545。
第三步
将化合物7-2(101mg,193μmol)加入到甲酸(1.5mL)和水(0.3mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(30mL)中,并用饱和碳酸氢钠溶液调节pH=8~9,二氯甲烷(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex Gemini-NX 80mm×40mm×3μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相26%-56%,8min)分离得到化合物7。后再经SFC(色谱柱:Chiralcel AD-3 150mm×4.6mm×3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相5%-40%)测e.e.值。
化合物7:e.e.%=91.78%,RT=6.090min。 1H NMR(400MHz,CD 3OD)δ8.10-7.98(m,2H),7.74(d,J=8.8Hz,1H),7.63-7.53(m,2H),7.48(t,J=8.0Hz,1H),5.21-5.16(m,1H),4.38(s,3H),4.16-4.09(m,1H),4.06-3.97(m,1H),3.84-3.74(m,1H),3.40-3.24(m,2H),3.23-3.16(m,1H),2.99-2.88(m,1H),2.85-2.74(m,1H),2.70-2.62(m,1H),1.99-1.78(m,2H)。MS-ESI计算值[M+H] +423,实测值423。
实施例8
合成路线:
Figure PCTCN2022074088-appb-000114
第一步
将中间体C(100mg,205μmol),化合物8-1(43mg,245μmol)和碳酸钾(85mg,614μmol)加入乙腈(4mL)和水(1mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(33mg,41μmol)。将反应液在氮气保护下加热至80℃反应12小时。将反应液加入水(20mL)中,用乙酸乙酯(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过薄层层析法(展开剂:石油醚/乙酸乙酯,1/1,V/V)分离得到化合物8-2。MS-ESI计算值[M+H] +540,实测值540。
第二步
将化合物8-2(100mg,185μmol)溶解在二氯甲烷(6mL)中,加入N-(三乙基氨磺酰)氨基甲酸甲酯(66mg,278μmol),在25℃下反应12小时。将反应液加入水(50mL)中,用乙酸乙酯(50mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(展开剂:二氯甲烷/甲醇,20/1,V/V)分离得到化合物8-3。MS-ESI计算值[M-56+H] +466,实测值466。
第三步
将化合物8-3(95mg,182μmol)加入到甲酸(1.5mL)和水(0.1mL)中,反应液在40℃反应12小时。将反应液加入到饱和碳酸氢钠溶液(30mL)中,并用饱和碳酸氢钠溶液调节pH=8~9,二氯甲烷(20mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18 75mm×30mm×3μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相23%-53%,7min)分离得到化合物8。后再经SFC(色谱柱:Chiralcel AD-3 50mm×4.6mm×3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相5%-40%)测e.e.值。
化合物8:e.e.%=84.21%,RT=2.200min。 1H NMR(400MHz,CD 3OD)δ8.00(s,1H),7.87-7.71(m,2H),7.58-7.31(m,4H),5.23-5.15(m,1H),4.16-4.10(m,1H),4.09(s,3H),4.03-3.94(m,1H),3.82-3.73(m,1H),3.39-3.15(m,3H),2.94-2.86(m,1H),2.84-2.73(m,1H),2.69-2.61(m,1H),1.98-1.77(m,2H)。MS-ESI计算值[M+H] +422,实测值422。
实施例9
合成路线:
Figure PCTCN2022074088-appb-000115
第一步
将中间体A(250mg,874μmol),中间体L(392.6mg,786μmol)和碳酸钾(241mg,1.75mmol)加入乙腈(2mL)和水(0.5mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(143mg,175μmol)。将反应液在氮气保护下加热至80℃反应3小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物9-1。MS-ESI计算值[M+H] +532,实测值532。
第二步
将化合物9-1(169mg,318μmol)加入到甲酸(2.0mL)和水(0.2mL)中,反应液在25℃反应3小时。将反应液加入到饱和碳酸氢钠溶液(20mL)中,并用饱和碳酸氢钠溶液调节pH 8~9,乙酸乙酯(10mL× 3)萃取,合并有机相,用饱和食盐水(20mL×2)洗涤,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Welch Ultimate XB-CN 250mm×50mm×10μm;流动相:A相为正己烷,B相为含0.1%一水合氨乙醇溶液;梯度:B相25%-65%,15min)分离得到化合物9。化合物9经SFC(色谱柱:Chiralcel OJ-3 50mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的甲醇溶液;梯度:B相5%-40%)测e.e.值。
化合物9:e.e.%=93.00%,RT=1.896min。 1H NMR(400MHz,CD 3OD)δ8.05(s,1H),7.85-7.77(m,2H),7.73(d,J=8.3Hz,2H),7.51-7.39(m,3H),5.20-5.13(m,1H),5.12-5.03(m,1H),4.20-4.13(m,1H),4.05-3.95(m,1H),3.85-3.76(m,1H),3.32-3.28(m,1H),3.27-3.18(m,2H),2.98-2.89(m,1H),2.87-2.78(m,1H),2.76-2.67(m,1H),1.98-1.83(m,2H),1.60(d,J=6.6Hz,6H)。MS-ESI计算值[M+H] +432,实测值432。
实施例10
合成路线:
Figure PCTCN2022074088-appb-000116
第一步
将中间体C(200mg,699μmol),中间体L(341mg,699μmol)和磷酸钾(371mg,1.75mmol)加入四氢呋喃(3mL)和水(1mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(143mg,175μmol)。将反应液在氮气保护下加热至80℃反应3小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物10-1。MS-ESI计算值[M-56+1] +512,实测值512。
第二步
将化合物10-1(300mg,528μmol),N-(三乙基氨磺酰)氨基甲酸甲酯(309mg,1.29mmol)加入到二氯甲烷(3mL)中。反应液在25℃反应12小时。反应液用水(10×3mL)和饱和食盐水(10×3mL)洗涤,无水硫酸钠干燥,减压浓缩得到化合物10-2,直接用于下一步反应。MS-ESI计算值[M+H] +550,实测值550。
第三步
将化合物10-2(200mg,364μmol)加入到甲酸(2.0mL)和水(0.2mL)中,反应液在25℃反应3小时。将反应液用二氯甲烷(5mL×3)萃取,合并有机相,用饱和食盐水(5mL×2)洗涤,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Unisil 3-100 C18 Ultra 150mm×50mm×3μm;流动相:A相为含0.225%甲酸水溶液,B相为乙腈;梯度:B相15%-45%,10min)分离得到化合物10的甲酸盐。化合物10的甲酸盐经SFC(色谱柱:Chiralpak AD-3 50mm×4.6mm I.D.,3μm;流动相:A相 为超临界CO 2,B相为含0.05%二乙胺的甲醇溶液;梯度:B相5%-40%)测e.e.值。
化合物10:e.e.%=83.46%,RT=1.879min。 1H NMR(400MHz,CD 3OD)δ8.10-8.03(m,1H),7.91-7.81(m,2H),7.65-7.43(m,4H),5.24-5.15(m,1H),5.13-5.04(m,1H),4.46-4.35(m,1H),4.16-4.04(m,1H),3.92-3.81(m,1H),3.60-3.47(m,1H),3.42-3.36(m,1H),3.30-3.24(m,1H),3.23-3.13(m,1H),3.08-2.95(m,1H),2.20-1.99(m,2H),1.60(d,J=6.7Hz,6H)。MS-ESI计算值[M+H] +450,实测值450。
实施例11
合成路线:
Figure PCTCN2022074088-appb-000117
第一步
将中间体A(250mg,762μmol),中间体M(342mg,685μmol)和碳酸钾(210mg,1.52mmol)加入乙腈(2mL)和水(0.5mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(124mg,152μmol)。将反应液在氮气保护下加热至80℃反应3小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,20/1,V/V)分离得到化合物11-1。MS-ESI计算值[M+H] +574,实测值574。
第二步
将化合物11-1(100mg,174μmol)加入到甲酸(2.0mL)和水(0.2mL)中,反应液在25℃反应3小时。将反应液用碳酸氢钠溶液(10mL)淬灭,用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(20mL×2)洗涤,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Waters Xbridge 150mm×25mm×5μm;流动相:A相为含0.05%一氨水溶液,B相为乙腈;梯度:B相25%-55%,9min)分离得到化合物11。化合物11经SFC(色谱柱:Chiralcel OD-3 50mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的甲醇溶液;梯度:B相5%-40%)测e.e.值。
化合物11:e.e.%=95.846%,RT=2.026min。 1H NMR(400MHz,CD 3OD)δ8.06(s,1H),7.91-7.79(m,2H),7.75(d,J=7.2Hz,2H),7.54-7.42(m,3H),5.24-5.08(m,1H),4.26-4.08(m,3H),4.06-3.95(m,1H),3.85-3.60(m,5H),3.09-2.66(m,5H),2.50-2.26(m,2H),2.10-1.79(m,4H)。MS-ESI计算值[M+H] +474,实测值474。
实施例12
合成路线:
Figure PCTCN2022074088-appb-000118
第一步
将中间体C(200mg,609μmol),中间体M(297.58mg,609μmol)和磷酸钾(323mg,1.52mmol)加入四氢呋喃(3mL)和水(1mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(79mg,122μmol)。将反应液在氮气保护下加热至60℃反应12小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,5/1-0/1,V/V)分离得到化合物12-1。MS-ESI计算值[M+H] +610,实测值610。
第二步
将化合物12-1(107mg,176μmol),N-(三乙基氨磺酰)氨基甲酸甲酯(102mg,430μmol)加入到二氯甲烷(3mL)中。反应液在25℃反应12小时。反应液用水(10mL×3)和饱和食盐水(10mL×3)洗涤,无水硫酸钠干燥,减压浓缩得到化合物12-2,直接用于下一步反应。MS-ESI计算值[M+H] +592,实测值592。
第三步
将化合物12-2(90mg,152μmol)加入到甲酸(2.0mL)和水(0.2mL)中,反应液在25℃反应3小时。将反应液用碳酸氢钠溶液(30mL)淬灭,用二氯甲烷(20mL×3)萃取,合并有机相,用饱和食盐水(20mL×2)洗涤,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Welch Ultimate XB-CN 250mm×50mm×10μm;流动相:A相为正己烷,B相为含0.1%一水合氨的乙醇溶液;梯度:B相25%-65%,15min)分离得到化合物12。化合物12经SFC(色谱柱:Chiralcel OJ-3 50mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的甲醇溶液;梯度:B相5%-40%)测e.e.值。
化合物12:e.e.%=96.59%,RT=2.110min。 1H NMR(400MHz,CD 3OD)δ8.07(s,1H),7.92(s,1H),7.84(d,J=8.4Hz,1H),7.62-7.52(m,2H),7.50-7.44(m,2H),5.23-5.17(m,1H),5.02-4.92(m,1H),4.20-4.10(m,3H),4.07-3.96(m,1H),3.86-3.68(m,3H),3.41-3.35(m,1H),3.30-3.18(m,2H),2.98-2.89(m,1H),2.86-2.77(m,1H),2.72-2.63(m,1H),2.42-2.27(m,2H),2.03-1.81(m,4H)。MS-ESI计算值[M+H] +492,实测值492。
实施例13
合成路线:
Figure PCTCN2022074088-appb-000119
第一步
将中间体D(58mg,236μmol),中间体N(100mg,213μmol)和磷酸钾(125mg,591μmol)加入四氢呋喃(3mL)和水(1mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(31mg,47μmol)。将反应液在氮气保护下加热至60℃反应12小时。将反应液用乙酸乙酯(10mL×3)萃取,饱和食盐水(10mL×3)洗涤,无水硫酸钠干燥,然后减压浓缩减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物13-1。MS-ESI计算值[M+H] +508,实测值508。
第二步
将化合物13-1(95mg,187μmol)加入到甲酸(0.5mL)和水(0.1mL)中,反应液在25℃反应3小时。将反应液用碳酸氢钠溶液(20mL)淬灭,用二氯甲烷(20mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Waters Xbridge 150mm×25mm×5μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相18%-48%,9min)分离得到化合物13。化合物13经SFC(色谱柱:Chiralcel OJ-3 50mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为0.05%二乙胺的甲醇溶液;梯度:B相5%-40%)测e.e.值。
化合物13:e.e.%=88.24%,RT=1.769min。 1H NMR(400MHz,CD 3OD)δ8.58-8.48(m,1H),7.90(s,1H),7.83(s,1H),7.66-7.55(m,3H),7.50(t,J=8.0Hz,1H),7.35-7.25(m,1H),5.23-5.17(m,1H),4.22-4.13(m,1H),4.06-3.98(m,1H),3.87-3.78(m,1H),3.50-3.41(m,1H),3.29-3.20(m,2H),3.02-2.78(m,2H),2.75-2.62(m,1H),2.01-1.82(m,2H)。MS-ESI计算值[M+H] +408,实测值408。
实施例14
合成路线:
Figure PCTCN2022074088-appb-000120
第一步
将中间体D(58mg,236μmol),中间体O(100mg,213μmol)和磷酸钾(125mg,591μmol)加入四氢呋喃(3mL)和水(1mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(31mg,47.25μmol)。将反应液在氮气保护下加热至60℃反应12小时。将反应液用乙酸乙酯(10mL×3)萃取,饱和食盐水(10mL×3)洗涤,无水硫酸钠干燥,然后减压浓缩减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物14。MS-ESI计算值[M+H] +508,实测值508。
第二步
将化合物14-1(100mg,197μmol)加入到甲酸(0.5mL)和水(0.1mL)中,反应液在25℃反应3小时。将反应液用碳酸氢钠溶液(10mL)淬灭,用乙酸乙酯(10mL×3)萃取,饱和食盐水(20mL×2)洗涤,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Waters Xbridge 150mm×25mm×5μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相18%-48%,9min)分离得到化合物14。化合物14经SFC(色谱柱:Chiralcel OJ-3 50mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的甲醇溶液;梯度:B相5%-40%)测e.e.值。
化合物14:e.e.%=67%,RT=1.956min。 1H NMR(400MHz,CD 3OD)δ8.89-8.76(m,1H),7.93(d,J=1.3Hz,1H),7.71-7.60(m,3H),7.57-7.44(m,3H),5.25-5.11(m,1H),4.30-4.21(m,1H),4.11-4.00(m,1H),3.88-3.77(m,1H),3.41-3.35(m,1H),3.29-3.23(m,2H),3.17-2.95(m,2H),2.88-2.74(m,1H),2.11-1.87(m,2H)。MS-ESI计算值[M+H] +408,实测值408。
实施例15
合成路线:
Figure PCTCN2022074088-appb-000121
第一步
将中间体C(180mg,654μmol),中间体P(288mg,589μmol)和磷酸钾(347mg,1.64mmol)加入四氢呋喃(3mL)和水(1mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(85mg,131μmol)。将反应液在氮气保护下加热至60℃反应12小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物15-1。MS-ESI计算值[M+H] +557,实测值557。
第二步
将化合物15-1(196mg,351μmol),N-(三乙基氨磺酰)氨基甲酸甲酯(206mg,862μmol)加入到二氯甲 烷(3mL)中。反应液在15℃反应12小时。反应液用水(20mL×3)和饱和食盐水(20mL×3)洗涤,无水硫酸钠干燥,减压浓缩得到化合物15-2,直接用于下一步反应。MS-ESI计算值[M+H] +539,实测值539。
第三步
将化合物15-2(100mg,186μmol)加入到甲酸(0.5mL)和水(0.1mL)中,反应液在25℃反应3小时。将反应液加入到饱和碳酸氢钠溶液(25mL)中,二氯甲烷(20mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex Synergi C18 150mm×25mm×10μm;流动相:A相为含0.225%甲酸的水溶液,B相为乙腈;梯度:B相10%-40%,10min)分离得到化合物15的甲酸盐。化合物15的甲酸盐经SFC(色谱柱:Chiralpak AD-3 50mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的甲醇溶液;梯度:B相40%)测e.e.值。
化合物15:e.e.%=82.26%,RT=0.879min。 1H NMR(400MHz,CD 3OD)δ7.55-7.25(m,3H),6.97-6.83(m,2H),6.76(d,J=8.3Hz,1H),5.24-5.04(m,1H),4.32-4.26(m,2H),4.24-4.14(m,1H),4.05-3.96(m,1H),3.85-3.77(m,1H),3.32-3.19(m,5H),3.08-2.97(m,1H),2.95(s,3H),2.94-2.88(m,1H),2.82-2.69(m,1H),2.09-1.80(m,2H)。MS-ESI计算值[M+H] +439,实测值439。
实施例16
合成路线:
Figure PCTCN2022074088-appb-000122
第一步
将中间体Q(239mg,491μmol),化合物8-1(87mg,491μmol)和磷酸钾(261mg,1.23mmol)加入四氢呋喃(3mL)和水(1mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(64mg,98μmol)。将反应液在氮气保护下加热至70℃反应12小时。反应液用乙酸乙酯(10mL×3)萃取,饱和食盐水(10mL×3)洗涤,合并有机相,用无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物16-1。MS-ESI计算值[M-55] +482,实测值482。
第二步
将化合物16-1(167mg,310μmol)加入到甲酸(0.5mL)和水(0.1mL)中,反应液在25℃搅拌3小时。将反应液用碳酸氢钠溶液(10mL)淬灭,用乙酸乙酯(10mL×3)萃取,合并有机相,用饱和食盐水(20mL×2)洗涤,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Waters Xbridge 150mm×25mm×5μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相 27%-57%,9min)分离得到化合物16。化合物16经SFC(色谱柱:Chiralpak AD-3 50mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为0.05%二乙胺的甲醇溶液;梯度:B相40%)测e.e.值。
化合物16:e.e.%=100%,RT=0.790min。 1H NMR(400MHz,CDCl 3)δ8.03(s,1H),7.81(d,J=8.4Hz,1H),7.74(d,J=1.5Hz,1H),7.63-7.53(m,2H),7.47(d,J=8.0Hz,1H),7.42-7.31(m,2H),5.32-5.22(m,1H),4.23-4.12(s,4H),4.10-4.03(m,1H),3.85-3.76(m,1H),3.45-3.32(m,3H),3.02-2.92(m,3H),2.07-1.79(m,2H)。MS-ESI计算值[M+H] +438,实测值438。
实施例17
合成路线:
Figure PCTCN2022074088-appb-000123
第一步
将中间体R(100mg,214μmol),化合物8-1(75mg,428μmol)和磷酸钾(159mg,751μmol)加入四氢呋喃(6mL)和水(3mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(28mg,43μmol)。将反应液在氮气保护下加热至70℃反应5小时。反应液加入水(30mL)中,并用乙酸乙酯(30mL×2)萃取,合并有机相,用无水硫酸钠干燥,减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,3/2,V/V)分离得到化合物17-1。 1H NMR(400MHz,CDCl 3)δ7.98(s,1H),7.75(d,J=8.5Hz,1H),7.56-7.46(m,3H),7.39-7.25(m,3H),5.25-5.10(m,1H),4.24-4.00(m,6H),3.83-3.70(m,0.5H),3.58-3.48(m,1H),3.47-3.00(m,4.5H),2.48(s,3H),2.01-1.78(m,2H),1.46(s,9H)。MS-ESI计算值[M+Na] +540,实测值540。
第二步
将化合物17-1(80mg,154μmol)加入到甲酸(1.5mL)和水(0.15mL)中,反应液在25℃搅拌2小时。将反应液用碳酸氢钠溶液(50mL)淬灭,用二氯甲烷(50mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex C18 80mm×40mm×3μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相37%-67%,8min)分离得到化合物17。化合物17经SFC(色谱柱:Chiralpak AD-3 150mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相40%)测e.e.值。
化合物17:e.e.%=100%,RT=2.581min。 1H NMR(400MHz,MeOD-d 4)δ7.99(s,1H),7.78(d,J=8.5Hz,1H),7.72(s,1H),7.56(s,1H),7.52(d,J=7.8Hz,1H),7.45-7.39(m,1H),7.33(d,J=7.8Hz,1H),5.18-5.13(m,1H),4.14-4.10(m,1H),4.09(s,3H),4.05-3.96(m,1H),3.84-3.75(m,1H),3.39-3.32(m,1H),3.24-3.15(m,2H), 2.96-2.85(m,1H),2.83-2.73(m,1H),2.79-2.60(m,1H),2.48(s,3H),1.98-1.79(m,2H)。MS-ESI计算值[M+H] +418,实测值418。
实施例18
合成路线:
Figure PCTCN2022074088-appb-000124
第一步
将中间体D(50mg,106μmol),中间体S(33mg,117μmol)和磷酸钾(56mg,266μmol)加入THF(6mL)和水(3mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(14mg,22μmol)。将反应液在氮气保护下加热至70℃反应5小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,1/1,V/V)分离得到化合物18-1。 1H NMR(400MHz,CDCl 3)δ7.70(d,J=8.3Hz,1H),7.49-7.31(m,5H),7.26(d,J=7.5Hz,1H),5.27-5.11(m,1H),4.22-4.00(m,3.5H),3.96(s,3H),3.81-3.70(m,0.5H),3.61-3.42(m,1.5H),3.32-3.05(m,3.5H),2.04-1.85(m,2H),1.45(s,9H)。MS-ESI计算值[M+Na] +562,实测值562。
第二步
将化合物18-1(84mg,155μmol)加入到甲酸(1.5mL)和水(0.15mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(20mL)中,并用饱和碳酸氢钠溶液调节pH 8,二氯甲烷(70mL×3)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex C18 80mm×40mm×3μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相42%-72%,8min)分离得到化合物18。化合物18经SFC(色谱柱:Chiralcel OJ-3 50mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:,B相5%-40%)测e.e.值。
化合物18:e.e.%=100.00%,RT=3.989min。 1H NMR(400MHz,CD 3OD)δ7.72(d,J=11.0Hz,2H),7.58-7.49(m,2H),7.49-7.42(m,2H),5.22-5.14(m,1H),4.17-4.09(m,1H),4.05-3.90(m,4H),3.84-3.75(m,1H),3.39-3.33(m,1H),3.30-3.24(m,1H),3.23-3.15(m,1H),2.98-2.86(m,1H),2.84-2.73(m,1H),2.70-2.60(m,1H),1.99-1.78(m,2H)。MS-ESI计算值[M+H] +440,实测值440。
实施例19
合成路线:
Figure PCTCN2022074088-appb-000125
第一步
将中间体D(50mg,106μmol),中间体T(56mg,212μmol)和磷酸钾(68mg,319μmol)加入THF(6mL)和水(3mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(14mg,22μmol)。将反应液在氮气保护下加热至70℃反应3小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,10/7,V/V)分离得到化合物19-1。 1H NMR(400MHz,CDCl 3)δ8.16(s,1H),7.47-7.30(m,5H),7.00(d,J=10.8Hz,1H),5.30-5.13(m,1H),4.18-4.09(m,3H),3.83-3.71(m,0.5H),3.61-3.47(m,1.5H),3.44-3.07(m,4H),2.00-1.89(m,2H),1.46(s,9H)。MS-ESI计算值[M+Na] +548,实测值548。
第二步
将化合物19-1(30mg,57μmol)加入到甲酸(1.5mL)和水(0.15mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(20mL)中,并用饱和碳酸氢钠溶液调节pH=8,二氯甲烷(30mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex C18 80×40mm×3μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相36%-66%,8min)分离得到化合物19。化合物19经SFC(色谱柱:Chiralcel OJ-3 100mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相5%-40%)测e.e.值。
化合物19:e.e.%=100.00%,RT=3.563min。 1H NMR(400MHz,CD 3OD)δ8.13(s,1H),7.59(s,1H),7.54-7.42(m,3H),7.14(d,J=11.3Hz,1H),5.23-5.13(m,1H),4.16-4.08(m,1H),4.04-3.94(m,1H),3.84-3.74(m,1H),3.39-3.33(m,1H),3.29-3.22(m,1H),3.21-3.15(m,1H),2.97-2.86(m,1H),2.84-2.74(m,1H),2.68-2.60(m,1H),1.98-1.79(m,2H)。MS-ESI计算值[M+H] +426,实测值426。
实施例20
合成路线:
Figure PCTCN2022074088-appb-000126
第一步
将中间体D(47mg,100μmol),中间体U(51mg,200μmol)和碳酸钾(35mg,250μmol)加入二氧六环(6mL)和水(3mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(16mg,20μmol)。将反应液在氮气保护下加热至80℃反应8小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,0/1,V/V)分离得到化合物20-1。MS-ESI计算值[M+H] +522,实测值522。
第二步
将化合物20-1(31mg,59μmol)加入到甲酸(1.5mL)和水(0.15mL)中,反应液在25℃反应5小时。将反应液加入到饱和碳酸氢钠溶液(20mL)中,并用饱和碳酸氢钠溶液调节pH=8,二氯甲烷(30mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex Gemini-NX 80mm×40mm×3μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:,B相33%-63%,8min)分离得到化合物20。化合物20经SFC(色谱柱:Chiralcel AD-3 50mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相40%)测e.e.值。
化合物20:e.e.%=99.46%,RT=0.598min。 1H NMR(400MHz,CD 3OD)δ8.60(d,J=1.5Hz,1H),8.15(s,1H),7.63-7.42(m,4H),6.62(d,J=3.0Hz,1H),5.16-5.08(m,1H),4.13-3.99(m,2H),3.93(s,3H),3.83-3.74(m,1H),3.38-3.32(m,1H),3.30-3.23(m,2H),3.01-2.91(m,1H),2.91-2.79(m,2H),1.98-1.79(m,2H)。MS-ESI计算值[M+H] +422,实测值422。
实施例21
合成路线:
Figure PCTCN2022074088-appb-000127
第一步
将中间体D(50mg,105μmol),中间体V(49mg,200μmol)和碳酸钾(58mg,421μmol)加入二氧六环(10mL)和水(5mL)中。在氮气保护下,向反应液中加入[1,1′-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷复合物(17mg,21μmol)。将反应液在氮气保护下加热至85℃反应12小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,20/1~10/1,V/V)分离得到化合物21-1。MS-ESI计算值[M+H] +508,实测值508。
第二步
将化合物21-1(180mg,354μmol)加入到甲酸(1.5mL)和水(0.15mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(20mL)中,并用饱和碳酸氢钠溶液调节pH=8,二氯甲烷(30mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex Gemini-NX 80mm×40mm×3μm;流动相:,A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:,B相32%-62%,8min)分离得到化合物21。化合物21经SFC(色谱柱:Chiralcel OJ-3 100mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相5%-40%)测e.e.值。
化合物21:e.e.%=98.58%,RT=3.576min。 1H NMR(400MHz,CD 3OD)δ8.58(d,J=1.8Hz,1H),8.06(d,J=1.0Hz,1H),7.64(d,J=3.3Hz,1H),7.54-7.43(m,3H),6.64(d,J=3.3Hz,1H),5.23-5.15(m,1H),4.14-4.09(m,1H),4.04-3.96(m,1H),3.84-3.75(m,1H),3.39-3.33(m,1H),3.30-3.23(m,1H),3.22-3.15(m,1H),2.97-2.88(m,1H),2.83-2.74(m,1H),2.68-2.60(m,1H),1.98-1.79(m,2H)。MS-ESI计算值[M+H] +408,实测值408。
实施例22
合成路线:
Figure PCTCN2022074088-appb-000128
第一步
将中间体D(70mg,149μmol),中间体I(95mg,223μmol)和磷酸钾(95mg,447μmol)加入THF(5mL)和水(2mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(19mg,30μmol)。将反应液在氮气保护下加热至70℃反应2小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,10/7,V/V)分离得到化合物22-1。 1H NMR(400MHz,CDCl 3)δ8.03(s,1H),7.79(d,J=8.3Hz,1H),7.58(s,1H),7.50-7.43(m,1H),7.43-7.33(m,3H),7.23(d,J=8.5Hz,1H),5.27-5.13(m,1H),4.69-4.58 (m,1H),4.43-4.21(m,2H),4.21-4.13(m,1H),4.09-4.01(m,1H),3.78-3.69(m,0.5H),3.60-3.44(m,1.5H),3.42-3.19(m,3.5H),3.17-3.08(m,0.5H),3.06-2.90(m,2H),2.35-2.19(m,2H),2.09-2.04(m,2H),2.03-1.99(m,1H),1.99-1.87(m,2H),1.49(s,9H),1.45(s,9H)。MS-ESI计算值[M+Na] +713,实测值713。
第二步
将化合物22-1(70mg,101μmol)加入到甲酸(1.5mL)和水(0.3mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(50mL)中,并用饱和碳酸氢钠溶液调节pH 8,二氯甲烷/甲醇(4/1,V/V,50mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18 75mm×30mm×3μm;流动相:A相为含0.025%甲酸的水溶液,B相为乙腈;梯度:B相0%-30%,7min)分离得到化合物22的甲酸盐。化合物22的甲酸盐经SFC(色谱柱:Chiralcel AD-3 50mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相5%-40%)测e.e.值。
化合物22:e.e.%=75.40%,RT=2.230min。 1H NMR(400MHz,CD 3OD)δ8.09(s,1H),7.92(s,1H),7.84(d,J=8.4Hz,1H),7.62-7.52(m,2H),7.52-7.42(m,2H),5.19-5.13(m,1H),5.13-5.02(m,1H),4.44-4.34(m,1H),4.16-4.03(m,1H),3.88-3.80(m,1H),3.67-3.58(m,2H),3.57-3.48(m,1H),3.40-3.32(m,2H),3.30-3.13(m,4H),3.07-2.97(m,1H),2.54-2.39(m,2H),2.35-2.24(m,2H),2.17-1.98(m,2H)。MS-ESI计算值[M+H] +491,实测值491。
实施例23
合成路线:
Figure PCTCN2022074088-appb-000129
第一步
将中间体D(50mg,106μmol),中间体J(91mg,212μmol)和磷酸钾(68mg,319μmol)加入THF(5mL)和水(2mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(14mg,21μmol)。将反应液在氮气保护下加热至70℃反应2小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(石油醚/乙酸乙酯,1/3,V/V)分离得到化合物23-1。 1H NMR(400MHz,CDCl 3)δ8.05-7.93(m,1H),7.88(s,1H),7.73(d,J=8.8Hz,1H),7.50-7.15(m,6H),5.25-5.13(m,1H),4.66-4.53(m,1H),4.43-4.25(m,2H),4.21-3.98(m,3H),3.83-3.73(m,0.5H),3.61-3.49(m,1H),3.44-3.15m,3.5H),3.13-2.87(m,3H),2.33-2.21(m,2H),2.20-2.07(m,2H),2.00-1.85(m,2H),1.50(s,9H),1.46(s,9H)。MS-ESI计算值[M+Na] +713,实测值713。
第二步
将化合物23-1(60mg,87μmol)加入到甲酸(1.5mL)和水(0.15mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(50mL)中,并用饱和碳酸氢钠溶液调节pH>8,二氯甲烷/甲醇(4/1,V/V,50mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18 75mm×30mm×3μm;流动相:A相为含0.025%甲酸的水溶液,B相为乙腈;梯度:B相0%-20%,7min)分离得到化合物23的甲酸盐。化合物23的甲酸盐经SFC(色谱柱:Chiralcel IA 100mm×4.6mm I.D.,3μm;流动相:A相为含0.1%二乙胺的正己烷,B相为含0.1%二乙胺的乙醇溶液;梯度:B相80%)测e.e.值。
化合物23:e.e.%=90.87%,RT=6.608min。 1H NMR(400MHz,CD 3OD)δ8.41-8.29(m,1H),7.90-7.75(m,2H),7.56-7.38(m,4H),5.25-5.10(m,1H),4.45-4.35(m,1H),4.15-4.02(m,1H),3.92-3.78(m,1H),3.70-3.47(m,3H),3.44-3.36(m,1H),3.28-3.10(m,5H),3.08-2.95(m,1H),2.52-2.38(m,4H),2.15-1.97(m,2H)。MS-ESI计算值[M+H] +491,实测值491。
实施例24
合成路线:
Figure PCTCN2022074088-appb-000130
第一步
将中间体D(70mg,149μmol),中间体K(101mg,298μmol)和磷酸钾(95mg,447μmol)加入THF(5mL)和水(2mL)中。在氮气保护下,向反应液中加入[1,1-双(二叔丁基膦)二茂铁]二氯化钯(19mg,30μmol)。将反应液在氮气保护下加热至70℃反应2小时。将反应液减压浓缩得到的粗品经过硅胶柱层析法(二氯甲烷/甲醇,20/1~10/1,V/V)分离得到化合物24-1。 1H NMR(400MHz,CDCl 3)δ8.01(s,1H),7.78(d,J=8.3Hz,1H),7.60(s,1H),7.51-7.23(m,5H),5.28-5.10(m,1H),4.58-4.42(m,1H),4.25-3.98(m,3H),3.81-3.68(m,0.5H),3.60-3.46(m,1H),3.41-2.80(m,7H),2.58-2.39(m,1.5H),2.38(s,3H),2.34-2.22(m,2H),2.14-2.02(m,2H),2.00-1.81(m,2H),1.45(s,9H)。MS-ESI计算值[M+H] +605,实测值605。
第二步
将化合物24-1(110mg,182μmol)加入到甲酸(1.5mL)和水(0.15mL)中,反应液在25℃反应2小时。将反应液加入到饱和碳酸氢钠溶液(50mL)中,并用饱和碳酸氢钠溶液调节pH=8,二氯甲烷/甲醇 (4/1,V/V,50mL×2)萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗产品。粗产品经制备高效液相色谱法(色谱柱:Phenomenex Gemini-NX 80mm×40mm×3μm;流动相:A相为含0.05%一水合氨水溶液,B相为乙腈;梯度:B相36%-66%,8min)分离得到化合物24。化合物24经SFC(色谱柱:Chiralcel IG-3 100mm×4.6mm I.D.,3μm;流动相:A相为超临界CO 2,B相为含0.05%二乙胺的乙醇溶液;梯度:B相40%)测e.e.值。
化合物24:e.e.%=84.10%,RT=3.362min。 1H NMR(400MHz,CD 3OD)δ8.04(s,1H),7.91(s,1H),7.83(d,J=8.5Hz,1H),7.62-7.52(m,2H),7.51-7.41(m,2H),5.24-5.17(m,1H),4.82-4.74(m,1H),4.21-4.13(m,1H),4.07-3.99(m,1H),3.86-3.77(m,1H),3.41-3.41(m,1H),3.39-3.35(m,1H),3.31-3.23(m,2H),3.18-3.11(m,2H),3.03-2.94(m,1H),2.91-2.83(m,1H),2.77-2.68(m,1H),2.54-2.47(m,2H),2.45(s,3H),2.45-2.37(m,2H),2.12-2.04(m,2H),2.02-1.85(m,2H)。MS-ESI计算值[M+H] +505,实测值505。
生物学活性评估:
实验例1:DPP1酶活性的抑制效应测试
实验材料:
重组人源组织蛋白酶C/DPP1购自R&D Systems;
重组人源组织蛋白酶L(rhCathepsin L)购自R&D Systems;
Gly-Arg-AMC(盐酸盐)购自CAYMAN CHEMICAL COMPANY。
实验方法:
1X激活缓冲液:5mM DTT 0.01%(V/V)Triton X-100(现用现配);
1X实验缓冲液:50mM NaCl 5mM DTT 0.01%(V/V)Triton X-100(现用现配);
使用1X激活缓冲液将重组人源组织蛋白酶C/DPP1酶和重组人源组织蛋白酶L(rhCathepsin L)酶分别稀释到浓度2ng/μL和0.4ng/μL;取相等体积的两个酶工作液混匀后置于25℃孵育60分钟;
将待测化合物用排枪进行5倍稀释至第8个浓度,即从1mM稀释至12.8nM。再用1X实验缓冲液将待测化合物各梯度稀释成DMSO为4%的工作液,5μL/孔加到对应孔中,设置双复孔实验。1000转,离心1分钟;
取5μL/孔孵育结束后的酶混合液加入到白色微孔板中,此时每孔中DPP1酶量为5ng;空白对照孔加入5μL/孔1X实验缓冲液;
用1X实验缓冲液将Gly-Arg-AMC(盐酸盐)稀释到25μM,取10μL/孔加入到白色微孔板中,此时底物浓度为12.5μM,微孔板在离心机上1000转离心1分钟,此时化合物浓度从10μM至0.128nM,离心完毕后,微孔板贴膜,在25℃中孵育60分钟;
结束孵育后采用多标记分析仪进行荧光检测,激发波长360nm;发射波长460nm。
数据分析:
利用方程式(Sample-Min)/(Max-Min)×100%将原始数据换算成酶活,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中log(inhibitor)vs.response--Variable slope模式得出)。
Max:含有重组人源组织蛋白酶C/DPP1,重组人源组织蛋白酶L(rhCathepsin L)和Gly-Arg-AMC(盐酸盐)
Min:不含有重组人源组织蛋白酶C/DPP1和重组人源组织蛋白酶L(rhCathepsin L)
表1提供了本发明的化合物对DPP1酶的抑制活性。
表1本发明化合物对DPP1酶的抑制活性测试结果
化合物 IC 50(nM)
化合物2 26.78
化合物4 10.83
化合物5 28.27
化合物6 0.84
化合物7 2.52
化合物8 3.57
化合物9 14.03
化合物10 4.39
化合物12 2.38
化合物13 20.36
化合物14 28.09
化合物15 3.65
化合物16 9.18
化合物17 22.52
化合物18 1.23
化合物19 4.55
化合物20 11.46
化合物21 17.34
化合物22 0.76
化合物24 1.00
结论:本发明化合物对DPP1酶有显著的抑制活性。
实验例2:U937细胞抑制DPP1活性测试
实验材料:
1)实验试剂耗材
名称 品牌货号
U937 普诺赛-CL-0239
RPMI1640培养基 BI-01-100-1ACS
胎牛血清 Gibco-10099-141
双抗(青霉素、链霉素) Procell-PB180120
细胞板 COSTAR-3603
2)实验仪器
名称 品牌货号
细胞计数板 求精
Victor Nivo PerkinElmer
实验方法:
1)细胞接种
(1)细胞培养基:89%RPMI1640,10%胎牛血清和1%青霉素-链霉素;
(2)培养基,置于37℃水浴预热;
(3)将细胞培养瓶中的细胞悬液取出放入15mL离心管中,放入离心机1000rpm/min,离心5分钟;
(4)离心完后,弃去上清,加入2mL培养基重悬细胞,取出适量的细胞悬液与台盼蓝混匀后取出约0.01mL细胞悬液计数;
(5)用培养基将细胞悬液稀释到铺板所需的细胞密度6.67×10^5个细胞每毫升;
(6)在细胞板每孔中加入30μL细胞悬液,放入含5%CO 2的37℃培养箱中培养备用;
(7)取所需的细胞量和培养基于新的T75培养瓶中继续培养。
2)加药
(1)用DMSO将待测化合物配制成10mM溶液;
(2)对化合物进行8个浓度梯度,5倍稀释,即从2mM到0.0256μM设置双复孔实验,向中间板中加入78μL培养基,再按照相应位置转移2μL每孔的梯度稀释化合物至中间板,混匀后,转移10μL每孔到细胞板中,转移到细胞板中的化合物终浓度为10μM到0.128nM。细胞板置于二氧化碳培养箱中孵育1小时;
(3)孵育1小时后,加入100μM的Gly-Phe-AFC探针溶液,即取60mM的Gly-Phe-AFC探针储存液用培养基稀释到500μM的工作液,转移10μL每孔到细胞板中,细胞板置于二氧化碳培养箱中孵育1小时;
3)读板、分析数据:
(1)读板:细胞孵育完成后,将细胞板取出,在Victor Nivo上读板。
数据分析:
利用方程式(Sample-Min)/(Max-Min)×100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中″log(inhibitor)vs.response--Variable slope″模式得出)。表2提供了本发明的化合物对U937细胞DPP1抑制活性。
表2本发明化合物对U937细胞DPP1抑制活性的测试结果
化合物 IC 50(nM)
化合物2 8.95
化合物4 1.32
化合物5 9.32
化合物6 0.64
化合物7 2.49
化合物8 2.40
化合物10 8.53
化合物12 1.81
化合物13 6.33
化合物14 2.79
化合物18 5.43
化合物19 8.70
化合物20 9.58
化合物21 9.27
化合物24 3.12
结论:本发明的化合物对U937细胞DPP1有良好的抑制活性。
实验例3:本发明化合物的小鼠药代动力学评价
实验目的:测试化合物在CD-1小鼠体内药代动力学
实验材料:CD-1小鼠(雄性,20-40g,4-6周龄,北京维通利华)
实验操作:
以标准方案测试化合物静脉注射及口服给药后的啮齿类动物药代特征,实验中候选化合物配成澄清溶液, 分别给予两只小鼠单次静脉注射及口服给药。静注和口服溶媒为1∶1∶8的DMSO/Solutol/水。收集24小时内的全血样品至商品化EDTA2K抗凝管中,6000g离心3分钟,分离上清得血浆样品,加入20倍体积含内标的乙腈溶液沉淀蛋白,离心取上清液加入等倍体积的水再离心取上清进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如表观分布容积、清除率、半衰期、药时曲线下面积等。实验结果见表3。
表3本发明化合物的小鼠药代动力学测试结果
Figure PCTCN2022074088-appb-000131
结论:本发明化合物在CD-1小鼠药代动力学中表现出较好的生物利用度,较高的药时曲线下面积和较低的清除率和组织分布。
实验例4:本发明化合物的大鼠药代动力学评价
实验目的:测试化合物在SD大鼠体内药代动力学
实验材料:SD大鼠(雄性,200-300g,6-10周龄,北京维通利华)
实验操作:
以标准方案测试化合物静脉注射及口服给药后的啮齿类动物药代特征,实验中候选化合物配成澄清溶液,分别给予两只大鼠单次静脉注射及口服给药。静注和口服溶媒为5∶95的DMSO和10%羟丙基β环糊精水溶液。收集24小时内的全血样品至商品化EDTA2K抗凝管中,6000g离心3分钟,分离上清得血浆样品,加入20倍体积含内标的乙腈溶液沉淀蛋白,离心取上清液加入等倍体积的水再离心取上清进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如表观分布容积、清除率、半衰期、药时曲线下面积等。实验结果见表4。
表4本发明化合物的大鼠药代动力学测试结果
Figure PCTCN2022074088-appb-000132
结论:本发明化合物在SD大鼠药代动力学中表现出较好的生物利用度,较高的药时曲线下面积和较低的清除率和组织分布。
实验例5:本发明化合物的小鼠组织(骨髓)分布评价
实验目的:测试本发明化合物在CD-1小鼠骨髓和血浆的分布情况
实验材料:CD-1小鼠(雄性,20-40g,4-6周龄,北京维通利华)
实验操作:
以标准方案测试化合物口服给药后在小鼠骨髓和血浆中的含量,实验中候选化合物用溶媒配成澄清溶液,溶媒为5∶95的DMSO和10%羟丙基β环糊精水溶液,按照5mg/kg的剂量,给予小鼠单次口服给药。在0.25,0.5,1,2,4,6,24小时分别采集全血样品和骨髓样品。收集全血样品至商品化EDTA2K抗凝管中,6000g离心3分钟,分离上清得血浆样品,加入含内标的乙腈溶液沉淀蛋白,离心取上清液,加入等倍体积的水,混匀后以LC-MS/MS分析方法定量分析血药浓度,并计算药时曲线下面积。取小鼠两侧股骨和胫骨,剔除肌肉,剪开一端,朝下放置于离心管中,8000rpm离心1分钟,沉淀物即为骨髓,将骨髓与50%的甲醇水混合研磨成匀浆,取匀浆加入含内标的乙腈溶液沉淀蛋白,离心取上清液,加入等倍体积的水,混匀后以LC-MS/MS分析方法定量分析骨髓药物浓度,并计算药时曲线下面积。
骨髓/血浆分布系数的计算公式为:Bone marrow/Plasma Ratio=骨髓AUC 0-last/血浆AUC 0-last。实验结果如表5。
表5本发明化合物的小鼠骨髓/血浆分布测试结果
Figure PCTCN2022074088-appb-000133
结论:本发明化合物在CD-1小鼠的骨髓中有较高的分布。
实验例6:本发明化合物的大鼠组织(骨髓)分布评价
实验目的:测试化合物在SD大鼠骨髓和血浆的分布情况
实验材料:SD大鼠(雄性,200-300g,6-10周龄,北京维通利华)
实验操作:
以标准方案测试化合物口服给药后在大鼠骨髓和血浆中的含量,实验中候选化合物用溶媒配成澄清溶液,溶媒为5∶95的DMSO和10%羟丙基β环糊精水溶液,按照5mg/kg的剂量,给予大鼠单次口服给药。在0.25,0.5,1,2,4,6,24小时分别采集全血样品和骨髓样品。收集全血样品至商品化EDTA2K抗凝管中,6000g离心3分钟,分离上清得血浆样品,加入含内标的乙腈溶液沉淀蛋白,离心取上清液,加入等倍体积的水,混匀后以LC-MS/MS分析方法定量分析血药浓度,并计算药时曲线下面积。取大鼠左侧股骨,剔除肌肉,剪开一端,朝下放置于离心管中,8000rpm离心1分钟,沉淀物即为骨髓,将骨髓与50%的甲醇水混合研磨成匀浆,取匀浆加入含内标的乙腈溶液沉淀蛋白,离心取上清液,加入等倍体积的水,混匀后以LC-MS/MS分析方法定量分析骨髓药物浓度,并计算药时曲线下面积。
骨髓/血浆分布系数的计算公式为:Bone marrow/Plasma Ratio=骨髓AUC 0-last/血浆AUC 0-last。实验结果如表6。
表6本发明化合物的大鼠骨髓/血浆分布测试结果
Figure PCTCN2022074088-appb-000134
Figure PCTCN2022074088-appb-000135
结论:本发明化合物在SD大鼠的骨髓中有较高的分布。
实验例7:本发明化合物对大鼠骨髓中性粒细胞弹性蛋白酶活性影响的体内药效评价
实验目的:评价本发明化合物对SD大鼠骨髓中性粒细胞弹性蛋白酶活性的影响。
实验材料:SD大鼠(雄性,200-300g,6-10周龄,北京维通利华)
实验操作:
实验动物按照表7进行分组给药,在末次给药2小时后,采集动物骨髓,先用红细胞裂解液裂解红细胞、保留淋巴细胞,再用淋巴细胞裂解液裂解淋巴细胞,取上清液进行蛋白定量和中性粒细胞弹性蛋白酶酶活测定,进一步计算样品中中性粒细胞弹性蛋白酶的活性。给药方案见表7。
表7实验动物分组及给药方案
Figure PCTCN2022074088-appb-000136
实验指标:
计算骨髓样品中性粒细胞弹性蛋白酶活性。实验结果见图1。
结论:本发明化合物在大鼠体内能够显著抑制中性粒细胞弹性蛋白酶活性。

Claims (21)

  1. 式(II)化合物或其药学上可接受的盐,
    Figure PCTCN2022074088-appb-100001
    其中,
    Z选自N和C;
    结构单元
    Figure PCTCN2022074088-appb-100002
    选自
    Figure PCTCN2022074088-appb-100003
    其中所述结构单元
    Figure PCTCN2022074088-appb-100004
    选自
    Figure PCTCN2022074088-appb-100005
    Figure PCTCN2022074088-appb-100006
    Figure PCTCN2022074088-appb-100007
    分别独立地选自单键和双键,其中当
    Figure PCTCN2022074088-appb-100008
    选自双键时,R 2不存在;
    T分别独立地选自N和CR 3
    各R 1分别独立地选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R a所取代;
    R 2选自H、F、Cl、Br、I、=O、-OH、-NH 2、-CN、C 1-3烷基和5-6元杂环烷基,其中所述C 1-3烷基和5-6元杂环烷基分别独立地任选被1、2或3个R b所取代;
    R 3选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c所取代;
    R 4选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R d所取代;
    R 5选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R e所取代;
    R 6选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R f所取代;
    R a分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
    R b分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2、-CN和C 1-3烷基;
    R c分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
    R d分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
    R e分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
    R f分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
    n选自1、2、3和4;
    所述5-6元杂环烷基包含1、2、3或4个独立选自-O-、-NH-、-S-和-N-的杂原子或杂原子团。
  2. 根据权利要求1所述的化合物或其药学上可接受的盐,其中所述化合物具有式(II′)所示结构:
    Figure PCTCN2022074088-appb-100009
    其中,结构单元
    Figure PCTCN2022074088-appb-100010
    Z、R 1、R 2、R 6和n如权利要求1所定义;
    带“*”和“#”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
  3. 根据权利要求1或2所述的化合物或其药学上可接受的盐,其中,R b选自F、Cl、Br和-CH 3
  4. 根据权利要求1或2所述的化合物或其药学上可接受的盐,其中,R 1选自H、F、Cl和-CH 3
  5. 根据权利要求1或2所述的化合物或其药学上可接受的盐,其中,R 2选自H、-CH 3
    Figure PCTCN2022074088-appb-100011
    Figure PCTCN2022074088-appb-100012
    其中所述-CH 3
    Figure PCTCN2022074088-appb-100013
    分别独立地任选被被1、2或3个R b所取代。
  6. 根据权利要求5所述的化合物或其药学上可接受的盐,其中,R 2选自H、-CH 3
    Figure PCTCN2022074088-appb-100014
    Figure PCTCN2022074088-appb-100015
  7. 根据权利要求1或2所述的化合物或其药学上可接受的盐,其中,R 3选自H、F、Cl和Br。
  8. 根据权利要求1或2所述的化合物或其药学上可接受的盐,其中,R 4选自H。
  9. 根据权利要求1或2所述的化合物或其药学上可接受的盐,其中,R 5选自H和-CH 3
  10. 根据权利要求1或2所述的化合物或其药学上可接受的盐,其中,R 6选自H、F、Cl和Br。
  11. 根据权利要求1或2所述的化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2022074088-appb-100016
    选自
    Figure PCTCN2022074088-appb-100017
  12. 根据权利要求11所述的化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2022074088-appb-100018
    选自
    Figure PCTCN2022074088-appb-100019
  13. 根据权利要求12所述的化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2022074088-appb-100020
    选自
    Figure PCTCN2022074088-appb-100021
    Figure PCTCN2022074088-appb-100022
  14. 根据权利要求1所述的化合物或其药学上可接受的盐,其中所述化合物具有式(II-1)所示结构:
    Figure PCTCN2022074088-appb-100023
    其中,结构单元
    Figure PCTCN2022074088-appb-100024
    R 1、R 2、R 6和n如权利要求1所定义。
  15. 根据权利要求14所述的化合物或其药学上可接受的盐,其中所述化合物具有式(II′-1)所示结构:
    Figure PCTCN2022074088-appb-100025
    其中,结构单元
    Figure PCTCN2022074088-appb-100026
    R 1、R 2、R 6和n如权利要求14所定义;
    带“*”和“#”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
  16. 根据权利要求14所述的化合物或其药学上可接受的盐,其中所述化合物具有式(I)所示化合物或其药学上可接受的盐,
    Figure PCTCN2022074088-appb-100027
    其中,
    结构单元
    Figure PCTCN2022074088-appb-100028
    选自
    Figure PCTCN2022074088-appb-100029
    Figure PCTCN2022074088-appb-100030
    Figure PCTCN2022074088-appb-100031
    分别独立地选自单键和双键,其中当
    Figure PCTCN2022074088-appb-100032
    选自双键时,R 2不存在;
    T分别独立地选自N和CR 3
    R 3选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c所取代;
    R 4选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R d所取代;
    R 5选自H、F、Cl、Br、I、-OH、-NH 2、-CN和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R e所取代;
    R c分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
    R d分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
    R e分别独立地选自F、Cl、Br、I、=O、-OH、-NH 2和-CN;
    R 1、R 2和n如权利要求14所定义。
  17. 根据权利要求16所述的化合物或其药学上可接受的盐,其中所述化合物具有式(I-1)、(I-2)或(I-3)所示结构:
    Figure PCTCN2022074088-appb-100033
    Figure PCTCN2022074088-appb-100034
    其中,T、R 1、R 2、R 4、R 5和n如权利要求16所定义。
  18. 根据权利要求17所述的化合物或其药学上可接受的盐,其中所述化合物具有式(I-1A)、(I-1B)、(I-2A)、(I-2B)或(I-3A)所示结构:
    Figure PCTCN2022074088-appb-100035
    其中,T、R 1、R 2、R 4和R 5如权利要求17所定义。
  19. 根据权利要求18所述的化合物或其药学上可接受的盐,其中所述化合物具有式(I′-1A)、(I′-1B)、(I′-2A)、(I′-2B)或(I′-3A)所示结构:
    Figure PCTCN2022074088-appb-100036
    Figure PCTCN2022074088-appb-100037
    其中,T、R 1、R 2、R 4和R 5如权利要求18所定义;
    带“*”和“#”的碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
  20. 下式化合物或其药学上可接受的盐,
    Figure PCTCN2022074088-appb-100038
    Figure PCTCN2022074088-appb-100039
  21. 根据权利要求20所述的化合物或其药学上可接受的盐,其中所述化合物为:
    Figure PCTCN2022074088-appb-100040
    Figure PCTCN2022074088-appb-100041
    Figure PCTCN2022074088-appb-100042
    Figure PCTCN2022074088-appb-100043
    Figure PCTCN2022074088-appb-100044
PCT/CN2022/074088 2021-02-05 2022-01-26 含1,4-氧杂氮杂环庚烷的并环类衍生物 WO2022166721A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023547665A JP2024505715A (ja) 2021-02-05 2022-01-26 1,4-オキサゼパンを含む縮合環誘導体
EP22749000.0A EP4289827A1 (en) 2021-02-05 2022-01-26 Fused ring derivatives containing 1,4-oxazepane
AU2022218443A AU2022218443A1 (en) 2021-02-05 2022-01-26 Fused ring derivatives containing 1,4-oxazepane
CN202280010798.0A CN116783189A (zh) 2021-02-05 2022-01-26 含1,4-氧杂氮杂环庚烷的并环类衍生物
CA3207466A CA3207466A1 (en) 2021-02-05 2022-01-26 Fused ring derivatives containing 1,4-oxazepane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110164857.7 2021-02-05
CN202110164857 2021-02-05
CN202111138395.8 2021-09-27
CN202111138395 2021-09-27

Publications (1)

Publication Number Publication Date
WO2022166721A1 true WO2022166721A1 (zh) 2022-08-11

Family

ID=82740908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074088 WO2022166721A1 (zh) 2021-02-05 2022-01-26 含1,4-氧杂氮杂环庚烷的并环类衍生物

Country Status (6)

Country Link
EP (1) EP4289827A1 (zh)
JP (1) JP2024505715A (zh)
CN (1) CN116783189A (zh)
AU (1) AU2022218443A1 (zh)
CA (1) CA3207466A1 (zh)
WO (1) WO2022166721A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160542A1 (zh) * 2022-02-22 2023-08-31 四川海思科制药有限公司 二肽基肽酶抑制剂化合物的盐及晶型

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945851A (zh) * 2007-12-12 2011-01-12 阿斯利康(瑞典)有限公司 肽基腈和其作为二肽基肽酶i抑制剂的用途
CN102574830A (zh) * 2009-05-07 2012-07-11 阿斯利康(瑞典)有限公司 取代的1-氰基乙基杂环基甲酰胺化合物750
CN105980367A (zh) * 2014-01-24 2016-09-28 阿斯利康(瑞典)有限公司 (2s)-n-[(1s)-1-氰基-2-苯基乙基]-1,4-氧杂氮杂环庚烷-2-甲酰胺作为二肽基肽酶i抑制剂
CN109789150A (zh) * 2016-07-29 2019-05-21 英斯梅德股份有限公司 某些用于治疗支气管扩张的(2s)-n-[(1s)-1-氰基-2-苯乙基]-1,4-氧杂氮杂环庚烷-2-甲酰胺
US20190247400A1 (en) * 2018-02-07 2019-08-15 Insmed Incorporated Certain (2s)-n-[(1s)-1-cyano-2-phenylethyl]-1,4-oxazepane-2-carboxamides for treating granulomatosis with polyangiitis
WO2020018547A1 (en) * 2018-07-17 2020-01-23 Insmed Incorporated Certain (2s)-n-[(1s)-1-cyano-2-phenylethyl]-1,4-oxazepane-2-carboxamides for treating lupus nephritis
WO2020018551A1 (en) * 2018-07-17 2020-01-23 Insmed Incorporated Certain (2s)- n-[(1s)-1-cyano-2-phenylethyl]-1,4- oxazepane-2-carboxamides for treating inflammatory bowel disease
CN112055593A (zh) * 2018-03-01 2020-12-08 阿斯利康(瑞典)有限公司 包含(2s)-n-{(1s)-1-氰基-2-[4-(3-甲基-2-氧代-2,3-二氢-1,3-苯并噁唑-5-基)苯基]乙基}-1,4-氧杂氮杂环庚烷-2-甲酰胺的药物组合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945851A (zh) * 2007-12-12 2011-01-12 阿斯利康(瑞典)有限公司 肽基腈和其作为二肽基肽酶i抑制剂的用途
CN102574830A (zh) * 2009-05-07 2012-07-11 阿斯利康(瑞典)有限公司 取代的1-氰基乙基杂环基甲酰胺化合物750
CN105980367A (zh) * 2014-01-24 2016-09-28 阿斯利康(瑞典)有限公司 (2s)-n-[(1s)-1-氰基-2-苯基乙基]-1,4-氧杂氮杂环庚烷-2-甲酰胺作为二肽基肽酶i抑制剂
CN109789150A (zh) * 2016-07-29 2019-05-21 英斯梅德股份有限公司 某些用于治疗支气管扩张的(2s)-n-[(1s)-1-氰基-2-苯乙基]-1,4-氧杂氮杂环庚烷-2-甲酰胺
US20190247400A1 (en) * 2018-02-07 2019-08-15 Insmed Incorporated Certain (2s)-n-[(1s)-1-cyano-2-phenylethyl]-1,4-oxazepane-2-carboxamides for treating granulomatosis with polyangiitis
CN112055593A (zh) * 2018-03-01 2020-12-08 阿斯利康(瑞典)有限公司 包含(2s)-n-{(1s)-1-氰基-2-[4-(3-甲基-2-氧代-2,3-二氢-1,3-苯并噁唑-5-基)苯基]乙基}-1,4-氧杂氮杂环庚烷-2-甲酰胺的药物组合物
WO2020018547A1 (en) * 2018-07-17 2020-01-23 Insmed Incorporated Certain (2s)-n-[(1s)-1-cyano-2-phenylethyl]-1,4-oxazepane-2-carboxamides for treating lupus nephritis
WO2020018551A1 (en) * 2018-07-17 2020-01-23 Insmed Incorporated Certain (2s)- n-[(1s)-1-cyano-2-phenylethyl]-1,4- oxazepane-2-carboxamides for treating inflammatory bowel disease

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHRISTINE T. N., PHAM, NAT. REV. IMMUNOL., vol. 6, 2006, pages 541 - 550
TURK, D, EMBO J., vol. 20, 2001, pages 6570 - 6582

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160542A1 (zh) * 2022-02-22 2023-08-31 四川海思科制药有限公司 二肽基肽酶抑制剂化合物的盐及晶型

Also Published As

Publication number Publication date
JP2024505715A (ja) 2024-02-07
AU2022218443A1 (en) 2023-09-21
CN116783189A (zh) 2023-09-19
CA3207466A1 (en) 2022-08-11
EP4289827A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
WO2022222995A1 (zh) 吡啶酰胺类化合物
CN103476768A (zh) 6,5-杂环炔丙醇化合物及其用途
JP7168149B2 (ja) Fgfr阻害剤としてのピラジン-2(1h)-オン系化合物
EA034015B1 (ru) Модуляторы р2х7
WO2020052647A1 (zh) 作为lsd1抑制剂的杂螺环类化合物及其应用
WO2022063308A1 (zh) 一类1,7-萘啶类化合物及其应用
WO2022166721A1 (zh) 含1,4-氧杂氮杂环庚烷的并环类衍生物
WO2023284651A1 (zh) N-(2-氨基苯基)苯甲酰胺类化合物及其应用
WO2020238776A1 (zh) 取代的稠合双环类衍生物、其制备方法及其在医药上的应用
WO2022199670A1 (zh) 6-氨基甲酸酯取代的杂芳环衍生物
CN113874379B (zh) 作为Cdc7抑制剂的四并环类化合物
CN114096245B (zh) 作为ccr2/ccr5拮抗剂的杂环烷基类化合物
US11932652B2 (en) Pyrrolidinyl urea derivatives and application thereof in TrkA-related diseases
WO2023160572A1 (zh) 吡唑类衍生物、药物组合物及应用
WO2019085996A1 (zh) 作为mTORC1/2双激酶抑制剂的吡啶并嘧啶类化合物
TWI814092B (zh) 稠合的三并環衍生物及其在藥學上的應用
WO2022199635A1 (zh) 苄氨基喹唑啉类衍生物
WO2023280317A1 (zh) 苄氨基三并环类化合物及其应用
WO2019101039A1 (zh) 嘧啶磺酰胺类衍生物、其制备方法及其在医药上的应用
TW202214261A (zh) 硼酸類化合物
WO2023241618A1 (zh) 氨基嘧啶类化合物及其应用
WO2024066984A1 (zh) 三并环类衍生物、药物组合物以及应用
WO2024067813A1 (zh) 芳香乙炔类衍生物及其制备方法和其医药上的用途
WO2021098810A1 (zh) 用作选择性雄激素受体调节剂的化合物
TW202309013A (zh) 酮類衍生物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280010798.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18275706

Country of ref document: US

Ref document number: 3207466

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023547665

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022749000

Country of ref document: EP

Ref document number: 2022218443

Country of ref document: AU

Ref document number: AU2022218443

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749000

Country of ref document: EP

Effective date: 20230905

ENP Entry into the national phase

Ref document number: 2022218443

Country of ref document: AU

Date of ref document: 20220126

Kind code of ref document: A