CN114096245B - 作为ccr2/ccr5拮抗剂的杂环烷基类化合物 - Google Patents

作为ccr2/ccr5拮抗剂的杂环烷基类化合物 Download PDF

Info

Publication number
CN114096245B
CN114096245B CN202080045527.XA CN202080045527A CN114096245B CN 114096245 B CN114096245 B CN 114096245B CN 202080045527 A CN202080045527 A CN 202080045527A CN 114096245 B CN114096245 B CN 114096245B
Authority
CN
China
Prior art keywords
compound
pharmaceutically acceptable
acceptable salt
stereoisomer
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080045527.XA
Other languages
English (en)
Other versions
CN114096245A (zh
Inventor
罗云富
巴庾勇
陈燕和
陈曙辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Lingfang Biopharmaceutical Technology Co.,Ltd.
Original Assignee
Shenzhen Lingfang Biomedical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Lingfang Biomedical Technology Co ltd filed Critical Shenzhen Lingfang Biomedical Technology Co ltd
Publication of CN114096245A publication Critical patent/CN114096245A/zh
Application granted granted Critical
Publication of CN114096245B publication Critical patent/CN114096245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本发明公开了一系列带有杂环烷基结构的化合物、其异构体或其药学上可接受的盐,及其在制备治疗与CCR2/CCR5拮抗剂相关疾病药物中的应用,具体公开了式(Ι)所示化合物或其药学上可接受的盐、其异构体或其药学上可接受的盐。
Figure DDA0003973238030000011

Description

作为CCR2/CCR5拮抗剂的杂环烷基类化合物
相关申请的引用
本申请要求于2019年6月24日向中华人民共和国国家知识产权局提交的第CN201910554176.4号中国发明专利申请的权益,在此将其全部内容以援引的方式整体并入本文中。
技术领域
本发明涉及一系列带有杂环烷基结构的化合物、其异构体或其药学上可接受的盐,及其在制备治疗与CCR2/CCR5拮抗剂相关疾病药物中的应用,具体涉及式(I)所示化合物或其药学上可接受的盐、其异构体或其药学上可接受的盐。
背景技术
趋化因子是一种小的,分泌促炎细胞因子的家族,起到白细胞化学引诱物的作用。它们促进白细胞从血管床到响应炎症信号的周围组织的运输。趋化性起始于趋化因子与受体结合(GPCR),通过启动涉及增加的钙流量,环磷酸腺苷产生的抑制,细胞骨架的重排,整联蛋白的活化和细胞运动过程的信号传导途径以及增加粘附蛋白的表达。
化学诱导剂细胞因子(即趋化因子)是相对小的蛋白质(8-10kD),其刺激细胞的迁移。基于第一和第二高度保守的半胱氨酸之间的氨基酸残基的数目,将趋化因子家族分成四个亚家族。单核细胞趋化蛋白-1(MCP-1)是CC趋化因子亚家族(其中CC代表具有相邻的第一和第二半胱氨酸的亚家族)的成员并且结合细胞表面趋化因子受体2(CCR2)。MCP-1是有效的趋化因子,其在结合CCR2后介导单核细胞和淋巴细胞向炎症位点的迁移(即趋化性)。MCP-1也由心肌细胞,血管内皮细胞,成纤维细胞,软骨细胞,平滑肌细胞,肾小球系膜细胞,肺泡细胞,T淋巴细胞,食管癌等表达。单核细胞进入炎症组织后,分化成表达CCR5的巨噬细胞,提供几种促炎调节剂的次级来源,包括肿瘤坏死因子-α(TNF-α),白细胞介素-1(IL-1),IL-8CXC趋化因子亚家族,其中CXC代表第一和第二半胱氨酸之间的一个氨基酸残基),IL-12,花生四烯酸代谢物(例如PGE 2和LTB 4),氧衍生的自由基,基质金属蛋白酶和补体成分。
CCR2(也称为CKR-2,MCP-1RA或MCIRB)主要在单核细胞和巨噬细胞上表达,并且对于巨噬细胞依赖性炎症是必需的。CCR2是以高亲和力结合趋化因子MCP家族(CCL2,CCL7,CCL8等)的几个成员的G蛋白偶联受体(GPCR),引发趋化信号,导致定向受体携带细胞的迁移。慢性炎性疾病的动物模型研究已经证明,拮抗剂抑制MCP-1和CCR2之间的结合抑制炎症反应。
CCR5是结合多种CC趋化因子配体的G蛋白偶联受体,包括CCL3,CCL3L1,CCL4,CCL5,CCL7,CCL11和CCL13。相对于CCR2,CCR5的体内功能较不明确。与CCR2相比,CCR5主要表达在活化的Th1细胞和从血液单核细胞分化的组织巨噬细胞,其伴随地下调CCR2表达。已经显示CCR5在炎症和感染过程中有助于巨噬细胞的存活,并且还可以起到在发炎组织内保留巨噬细胞的作用。此外,CCR5介导Th1细胞在炎症中的募集和激活。CCR5也在破骨细胞上表达,并且对于破骨细胞形成是重要的,这表明CCR5在类风湿性关节炎病理学中的贡献作用。通过CCL4/CCR5参与的血管平滑细胞的活化也可以促成动脉粥样硬化和AIH的病理学(加速的内膜增生)。
CCR2和CCR5的互补细胞分布和差异细胞功能提供了两个受体的双重靶向可能比靶向单独受体具有更大功效的理论基础。在单核细胞/巨噬细胞生物学中,CCR2在介导从骨髓到血液和从血液到组织的单核细胞的迁移中起重要作用,其中CCR5主要调节巨噬细胞在发炎组织中的活化,存活和可能的保留。此外,CCR5阻断可以通过除了对单核细胞/巨噬细胞的影响之外抑制T细胞应答来改善双重拮抗剂的治疗潜力。基于CCR2和CCR5双重靶点的优势,CCR2/CCR5拮抗剂也开始被深入研究,进入临床的有4个药物,分别为Tobira公司的Cenicriviroc,百时美施贵宝公司的BMS-813160和辉瑞的PF-04634817。因此,CCR2/CCR5拮抗剂具有较好的成药潜力,在这里我们对CCR2/CCR5拮抗剂的杂环烷基类化合物进行专利保护。
WO2003014105A1报道了化合物Cenicriviroc(CVC)、参照物A,其结构如下所示。
Figure GDA0003973238020000021
发明内容
本发明提供了式(Ⅰ)所示化合物、其异构体或其药学上可接受的盐,
Figure GDA0003973238020000022
其中,
n选自1、2和3;
R1为4~6元杂环烷基,所述4~6元杂环烷基任选被1、2或3个Ra取代;
R2为C1-6烷基,所述C1-6烷基任选被1、2或3个Rb取代;
R3为C1-6烷氧基,所述C1-6烷氧基任选被1、2或3个Rc取代;
X1选自O、S和-NH-;
L1为-(CRR)m-;
L2为-CRR-;
m选自1、2、3和4;
各Ra、Rb和Rc分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和CH3
各R分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和CH;
所述4~6元杂环烷基分别包含1、2、3或4个独立选自-NH-、-O-、-S-和N的杂原子或杂原子团;
“*”硫原子为手性硫原子,以(R)或(S)单一对映形式或富含一种对映体形式存在。
在本发明的一些方案中,上述R2为C1-3烷基,所述C1-3烷基任选被1、2或3个Rb取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R2为CH2CH3,其他变量如本发明所定义。
在本发明的一些方案中,上述R3为C4-6烷氧基,所述C4-6烷氧基任选被1、2或3个Rc取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R3
Figure GDA0003973238020000031
其他变量如本发明所定义。
在本发明的一些方案中,上述L1为-CH2CH2-,其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure GDA0003973238020000032
Figure GDA0003973238020000033
其他变量如本发明所定义。
在本发明的一些方案中,上述L2为-CH2-,其他变量如本发明所定义。
在本发明的一些方案中,上述R1选自氧杂环丁烷基、四氢呋喃基、四氢吡喃基、六氢吡啶基、吗啉基和1,4-二氧六环基,所述氧杂环丁烷基、四氢呋喃基、四氢吡喃基、六氢吡啶基、吗啉基和1,4-二氧六环基任选被1、2或3个Ra取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R1选自
Figure GDA0003973238020000034
Figure GDA0003973238020000035
所述
Figure GDA0003973238020000036
Figure GDA0003973238020000041
任选被1、2或3个Ra取代,其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure GDA0003973238020000042
选自
Figure GDA0003973238020000043
Figure GDA0003973238020000044
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure GDA0003973238020000045
选自
Figure GDA0003973238020000046
Figure GDA0003973238020000047
Figure GDA0003973238020000048
其他变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自
Figure GDA0003973238020000049
Figure GDA0003973238020000051
其中,R1、R2、R3、X1、L1、L2如本发明所定义。
本发明还有一些方案是由上述各变量任意组合而来。
本发明还提供下式所示化合物、其异构体或其药学上可接受的盐:
Figure GDA0003973238020000052
Figure GDA0003973238020000061
Figure GDA0003973238020000071
在本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自
Figure GDA0003973238020000072
Figure GDA0003973238020000081
Figure GDA0003973238020000091
在本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自
Figure GDA0003973238020000101
Figure GDA0003973238020000111
Figure GDA0003973238020000121
本发明还提供一种药物组合物,其含有治疗有效量的上述的化合物或其药学上可接受的盐作为活性成分以及药学上可接受的载体。
本发明还提供上述化合物或其药学上可接受的盐在制备治疗与CCR2/CCR5拮抗剂相关疾病的药物中的应用。
本发明还提供上述组合物在制备治疗与非酒精性脂肪性肝炎相关疾病药物中的应用。
技术效果
本发明化合物对CCR2和CCR5受体的拮抗作用显著。本发明化合物明显降低因药物药物相互作用产生的安全风险,与抗体联用较参比化合物与抗体联用组抑瘤效果提升明显。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure GDA0003973238020000131
和楔形虚线键
Figure GDA0003973238020000132
表示一个立体中心的绝对构型,用直形实线键
Figure GDA0003973238020000133
和直形虚线键
Figure GDA0003973238020000134
表示立体中心的相对构型,用波浪线
Figure GDA0003973238020000135
表示楔形实线键
Figure GDA0003973238020000136
或楔形虚线键
Figure GDA0003973238020000137
或用波浪线
Figure GDA0003973238020000138
表示直形实线键
Figure GDA0003973238020000139
和直形虚线键
Figure GDA00039732380200001310
除非另有说明,当化合物中存在双键结构,如碳碳双键、碳氮双键和氮氮双键,且双键上的各个原子均连接有两个不同的取代基时(包含氮原子的双键中,氮原子上的一对孤对电子视为其连接的一个取代基),如果该化合物中双键上的原子与其取代基之间用波浪线
Figure GDA00039732380200001311
连接,则表示该化合物的(Z)型异构体、(E)型异构体或两种异构体的混合物。例如下式(A)表示该化合物以式(A-1)或式(A-2)的单一异构体形式存在或以式(A-1)和式(A-2)两种异构体的混合物形式存在;下式(B)表示该化合物以式(B-1)或式(B-2)的单一异构体形式存在或以式(B-1)和式(B-2)两种异构体的混合物形式存在。下式(C)表示该化合物以式(C-1)或式(C-2)的单一异构体形式存在或以式(C-1)和式(C-2)两种异构体的混合物形式存在。
Figure GDA0003973238020000141
除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚(3H),碘-125(125I)或C-14(14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR)0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure GDA0003973238020000151
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure GDA0003973238020000152
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure GDA0003973238020000153
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure GDA0003973238020000154
直形虚线键
Figure GDA0003973238020000155
或波浪线
Figure GDA0003973238020000156
表示。例如-OCH3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure GDA0003973238020000161
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure GDA0003973238020000162
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure GDA0003973238020000163
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure GDA0003973238020000164
这4种连接方式,即使-N-上画出了H原子,但是
Figure GDA0003973238020000165
仍包括
Figure GDA0003973238020000166
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基。
除非另有规定,术语“4-6元杂环烷基”本身或者与其他术语联合分别表示由4至6个环原子组成的饱和环状基团,其1、2或3个环原子为独立选自O、NH和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,术语“4-6元杂环烷基”是单环体系。此外,就该“4-6元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述4-6元杂环烷基包括4-6元、4-5元、5-6元、4元、5元、6元杂环烷基等。4-6元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)等。
除非另有规定,术语“C1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C1-6烷基包括C1-5、C1-4、C1-3、C1-2、C2-6、C2-4、C6和C5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,术语“C1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C1-3烷基包括C1-2和C2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C1-6烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至6个碳原子的烷基基团。所述C1-6烷氧基包括C1-4、C1-3、C1-2、C2-6、C2-4、C6、C5、C4和C3烷氧基等。C1-6烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)、丁氧基(包括n-丁氧基、异丁氧基、s-丁氧基和t-丁氧基)、戊氧基(包括n-戊氧基、异戊氧基和新戊氧基)、己氧基等。
除非另有规定,术语“C4-6烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含4至6个碳原子的烷基基团。所述C4-6烷氧基包括C4-6、C4-5、C6、C5、C4烷氧基等。C5-6烷氧基的实例包括但不限于丁氧基(包括n-丁氧基、异丁氧基、s-丁氧基和t-丁氧基)、戊氧基(包括n-戊氧基、异戊氧基和新戊氧基)、己氧基等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲核取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;HATU代表O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;EDC代表N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐;m-CPBA代表3-氯过氧苯甲酸;CDI代表羰基二咪唑;DCM代表二氯甲烷;PE代表石油醚;DIAD代表偶氮二羧酸二异丙酯;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺保护基团;BOC代表叔丁氧羰基是一种胺保护基团;HOAc代表乙酸;NaCNBH3代表氰基硼氢化钠;THF代表四氢呋喃;Boc2O代表二-叔丁基二碳酸酯;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl2代表氯化亚砜;CS2代表二硫化碳;TsOH代表对甲苯磺酸;NFSI代表N-氟-N-(苯磺酰基)苯磺酰胺;n-Bu4NF代表氟化四丁基铵;iPrOH代表2-丙醇;Pd(dppf)Cl2代表1,1'-二(二苯膦基)二茂铁二氯化钯(II);DEA代表二乙胺;mp代表熔点;LDA代表二异丙基胺基锂;r.t.代表室温;O/N代表过夜;eq代表当量、等量;r/min是一种转速的单位:转每分钟。
化合物依据本领域常规命名原则或者使用
Figure GDA0003973238020000171
软件命名,市售化合物采用供应商目录名称。
附图说明
图1:WX001对小鼠MC38结肠癌肿瘤模型瘤体积的影响
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
参考例1:片段BB-1A-7
Figure GDA0003973238020000181
步骤1:化合物BB-1A-2的合成
将四丁基溴化铵(86.58g,302.63mmol)和氢氧化钾(339.6g,6.05mol)悬浮于甲苯(5000mL),该混合液回流16小时,向其中加入哌啶-2-酮(500.00g,5.04mol)和对甲氧基苄氯(1.03kg,6.56mol)。该混合液保持100℃搅拌24小时。反应液冷却至室温,用水洗涤三次(2000mL×3),有机相用无水硫酸钠干燥,过滤,浓缩。浓缩液经层析柱分离得到化合物BB-1A-2。
步骤2:化合物BB-1A-4的合成
将化合物BB-1A-2(40g)和氢氧化钠(7.29g)水(200mL)溶液在80℃下搅拌24小时。在0℃下使用浓盐酸(7.38mL)中和混合物得到BB-1A-3的混合溶液。在室温下向该混合物中加入碳酸钠(65.66g)和二甲基亚砜(600mL)。然后在100℃下向混合物中滴加5-溴-2-氟-苯甲醛(46.11g)。然后将反应混合物在100℃下回流48小时。冰浴冷却下用氯化铵(1mol/L)水溶液将反应调节至pH=7,并用乙酸乙酯(1L×3)萃取。将有机层用水和盐水洗涤,用无水硫酸钠干燥并浓缩。通过柱色谱(石油醚/乙酸乙酯=200:1至1:1)纯化残余物。得到化合物BB-1A-4。
步骤3:化合物BB-1A-5的合成
向化合物BB-1A-4(10g)和碳酸钠(12.61g)的乙腈(100mL)混合物中加入碘甲烷(22g)的乙腈(50mL)溶液。在氮气保护下,反应混合物在15-30℃下搅拌24小时。将反应混合物用水(300mL)淬灭,并用乙酸乙酯(400mL×2)萃取。将有机层用盐水洗涤,经无水硫酸钠干燥,浓缩。硅胶柱层析纯化粗品(石油醚/乙酸乙酯=50:1至20:1至10:1),得到化合物BB-1A-5。
1H NMR(400MHz,CDCl3)δppm 10.31(s,1H)7.89(d,J=2.5Hz,1H)7.54(dd,J=9.0,2.51Hz,1H)7.04(d,J=8.5Hz,2H)6.97(d,J=9.0Hz,1H)6.80(d,J=8.5Hz,2H)4.21(s,2H)3.77(s,3H)3.63(s,3H)3.07(t,J=6.8Hz,2H)2.25(t,J=6.8Hz,2H)1.46-1.58(m,4H).
步骤4:化合物BB-1A-6的合成
向化合物BB-1A-5(11g)在碳酸二甲酯(42.8g)的溶液中加入甲醇钠(6.84g)。将其加热至60℃并在60℃下搅拌35小时。用氯化铵(1mol/L)水溶液调节pH(7~8),过滤反应混合物。将滤饼减压浓缩,得到化合物BB-1A-6。
1H NMR(400MHz,CDCl3)δppm 7.74(s,1H)7.26(s,1H)7.05-7.11(m,3H)6.88(d,J=8.53Hz,2H)6.53(d,J=9.03Hz,1H)4.39(s,2H)3.80(d,J=2.01Hz,6H)3.48(t,J=5.02Hz,2H)2.58(t,J=6.02Hz,2H)1.47(d,J=5.52Hz,2H).
步骤5:化合物BB-1A的合成
向化合物BB-1A-6(10g)的甲苯(50mL)溶液中加入三氟乙酸(100mL)。将反应混合物加热至60℃并且在60℃下搅拌8小时。在冰浴冷却下使用饱和碳酸氢钠中和反应混合物至pH=7,并用乙酸乙酯(250mL×2)萃取。将有机层用盐水洗涤,经无水硫酸钠干燥,浓缩。通过硅胶柱纯化残余物(石油醚/乙酸乙酯=50:1至5:1),得到化合物BB-1A。
1H NMR(400MHz,CDCl3)δppm 7.66(s,1H)7.39-7.05(m,1H)6.85(d,J=8.8Hz,1H)6.36(d,J=8.8Hz,1H)3.81(s,3H)3.51(t,J=5.2Hz 2H)2.75(d,J=6.8Hz,2H)1.49-1.40(m,2H).
步骤6:化合物BB-1A-7的合成
在25℃下,将BB-1A(7.5g,25.32mmol,1eq)和BB-2(8.92g,27.86mmol,1.1eq)溶解在二甲基亚砜(62.5mL)和水(12.5mL)中,然后向其中加入Pd(dppf)Cl2(926.50mg,1.27mmol,0.05eq)和碳酸钾(10.50g,75.97mmol,3eq),然后在80℃,氮气保护下反应18小时。先将溶液进行过滤,然后向滤液中加入水100mL,然后用乙酸乙酯萃取三次(100mL×3),合并的有机相,用饱和食盐水洗一次,然后用无水硫酸钠干燥,过滤后进行减压浓缩,得到粗品。将粗品进行柱层析分离(石油醚:乙酸乙酯EA=20:1至8:1)得到化合物BB-1A-7(8g)。
MS-ESI(m/z):410.0(M+1)+
参考例2:片段BB-1B
Figure GDA0003973238020000201
合成路线:
Figure GDA0003973238020000202
步骤1:化合物BB-1B-2的合成
在25℃下向反应物BB-1B-1(45g)的吡啶(450mL)溶液中加入对甲苯磺酰氯(55.94g),将混合物在55℃下搅拌5小时。向混合物中加入水(200mL)并用乙酸乙酯(100mL×3)萃取,合并的有机层用饱和食盐水(200mL)洗涤,有机相用无水硫酸钠干燥,过滤并减压浓缩,得到残余物。通过硅胶柱纯化残余物(石油醚/乙酸乙酯=100:1至10:1)。得到BB-1B-2。
1H NMR(400MHz,CDCl3)δppm 10.51(s,1H),8.04(d,J=2.3Hz,1H),7.73(d,J=8.5Hz,2H),7.63-7.59(m,1H),7.57-7.52(m,1H),7.24(d,J=8.0Hz,2H),3.89(s,3H),2.38(s,3H)
步骤2:化合物BB-1B-3的合成
在0℃下向BB-1B-2(59g)的DMF(200mL)溶液中加入钠氢(6.14g,60%纯度)和DMF(50mL),然后将混合物在25℃,氮气保护下搅拌2小时。然后在0℃下向混合物中加入碘化钠(23.02g)和4-溴丁酸乙酯(32.95g)。该混合物在80℃氮气保护下搅拌16小时。然后在0℃下向混合物中加入钠氢(6.14g,60%纯度)和DMF(50mL),然后将混合物在80℃氮气保护下搅拌15小时。然后向混合物中加入水(200mL)并用乙酸乙酯(50mL×3)萃取,将合并的有机层用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤。减压浓缩得到黄色油状物。在0°加入浓硫酸(100mL,98%纯度)和醋酸(157.5g)。该混合物在90℃下搅拌2.5小时。用12mol/L氢氧化钠水溶液将混合物调节至pH=8,然后用乙酸乙酯(300mL×3)萃取,用饱和食盐水(300mL)洗涤合并的有机层,无水硫酸钠干燥,过滤并减压浓缩得到残余物。用硅胶柱纯化残余物(石油醚/乙酸乙酯=50:1至5:1)。得到BB-1B-3。
步骤3:化合物BB-1B-4的合成
向反应物BB-1B-3(6g)和Boc酸酐(15.16g)溶在四氢呋喃(100mL)中,加入N,N-二甲基吡啶(4.58g),将混合物在70℃下搅拌4小时。用水(100mL)淬灭。用乙酸乙酯(100mL×3)萃取,合并的有机层用饱和食盐水(100mL)洗涤,用无水硫酸钠干燥,过滤并减压浓缩得到残余物。硅胶柱层析纯化残余物(石油醚/乙酸乙酯=50:1至20:1)得到BB-1B-4。
MS-ESI(m/z):283.9[M-55]+
步骤4:化合物BB-1B-5的合成
在25℃下向反应物BB-1B-4(2.68g)的碳酸二甲酯(50mL)溶液中加入甲醇钠(2.13g),然后将混合物在在100℃氮气保护下搅拌2小时。将混合物用水(50mL)淬灭。用乙酸乙酯(100mL×3)萃取,用饱和食盐水(100mL)洗涤合并的有机层,用无水硫酸钠干燥,过滤并减压浓缩,得到残余物。硅胶柱纯化残留物(石油醚/乙酸乙酯=50:1至5:1)得到化合物BB-1B-5。
MS-ESI(m/z):342.1[M-55]+
步骤5:化合物BB-1B-6的合成
在-40℃下向反应物BB-1B-5(1.7g)的四氢呋喃(20mL)溶液中加入硼氢化钠(484.49mg),向该混合物中加入甲醇(10mL)。将该混合物在-15℃下搅拌0.5小时。用水(50mL)淬灭。用乙酸乙酯(100mL×3)萃取该混合物。将合并的有机层用饱和食盐水(100mL)洗涤,用无水硫酸钠干燥,过滤并减压浓缩,得到化合物BB-1B-6。
步骤6:化合物BB-1B-7的合成
向反应物BB-1B-6(1.93g)和三乙胺(1.56mL)溶在四氢呋喃(20mL)溶液中并在0℃下向其中加入甲烷磺酰氯(1.29g),将该混合物在氮气保护下室温搅拌15小时。然后向该混合物中加入1,8-二氮杂环[5,4,0]-十一烯(1.14g)并在室温下搅拌1小时。用水(50mL)淬灭。用乙酸乙酯(100mL×3)萃取。将合并的有机层用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,得到残余物经硅胶柱层析纯化(石油醚/乙酸乙酯=50:1至5:1)得到化合物BB-1B-7。
MS-ESI(m/z):326.0[M-55]+
步骤7:化合物BB-1B-8的合成
氮气保护下向反应物BB-1B-7(0.35g),BB-2(351.86mg)和碳酸钾(379.64mg)在二甲基亚砜(10mL)和水的溶液中加入[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(74.77mg),然后将混合物在80℃下在氮气保护下搅拌16小时。向该混合物中加入水(50mL)并用乙酸乙酯(50mL×3)萃取,将合并的有机层用盐水(100mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过制备型薄层色谱(PE:EA=5:1)纯化得到化合物BB-1B-8。
1H NMR(400MHz,CDCl3)δppm 7.74(s,1H),7.58(s,1H),7.51(br d,J=8.8Hz,3H),7.48(br s,1H),7.01(d,J=8.8Hz,2H),4.20-4.16(m,2H),3.85-3.80(m,5H),3.56(t,J=6.7Hz,2H),2.92(s,2H),2.05(s,1H),1.66-1.58(m,2H),1.56(s,9H),1.45-1.35(m,4H),0.94(t,J=7.4Hz,3H)
步骤8:化合物BB-1B的合成
向反应物BB-1B-8(0.23g)的乙酸乙酯(10mL)溶液中加入4M的盐酸乙酸乙酯溶液(10mL),室温下搅拌1小时。该反应液用饱和碳酸氢钠水溶液调节pH=8并用乙酸乙酯(100mL×3)萃取,合并的有机层用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,得到化合物BB-1B。MS-ESI(m/z):396.3[M+1]+
参考例3:片段BB-1C
Figure GDA0003973238020000221
步骤1:化合物BB-1C-2的合成
向1M的NaOH水溶液(381.18mL)中加入甲醇(600mL)和6-氨基己酸(50g)和4-甲氧基苯甲醛(52g)。向该混合物中加入钯碳(4.5g,10%纯度)并将反应混合物在氢气(20-30psi)下室温搅拌24小时。将反应混合物过滤,滤液减压浓缩,向残余物中加入丙酮(300mL)并在室温下搅拌30分钟,过滤并用丙酮(50mL)洗涤,滤饼真空干燥,得到化合物BB-1C-2。
MS-ESI m/z:252.3[M+H]+
步骤2:化合物BB-1C-3的合成
将BB-1C-2(86g,342.19mmol,1当量)和5-溴-2-氟-苯甲醛(55.57g)溶于二甲基亚砜(350mL),向其中加入碳酸钠(90.67g)和水(175mL),反应液在100℃下搅拌12小时。将反应液倒入水(1200mL)中并用浓盐酸调节pH=3-4,用乙酸乙酯(500mL×2)萃取,合并的有机层用饱和食盐水(500mL)洗涤,无水硫酸钠干燥。过滤并浓缩,残余物经硅胶柱层析(石油醚/乙酸乙酯=10/1至1/1)得到化合物BB-1C-3。
MS-ESI m/z:434.2[M+H]+
步骤3:化合物BB-1C-4的合成
向BB-1C-3(58g)的N,N-二甲基甲酰胺(300mL)溶液中加入碘甲烷(15.49mL)和碳酸钾(36.91g)。该反应液在25℃下搅拌4小时。将反应液倒入水中(1000mL),用乙酸乙酯(500mL×2)萃取,合并的有机层用饱和食盐水(500mL)洗涤,用无水硫酸钠干燥,过滤并浓缩,残余物通过硅胶柱层析(石油醚/乙酸乙酯=10/1至7/3)得到化合物BB-1C-4。
1H NMR(400MHz,CDCl3)δppm 10.31(s,1H),7.90(d,J=2.4Hz,1H),7.54(dd,J=8.8,2.4Hz,1H),7.06(d,J=8.8Hz,2H),6.98(d,J=8.8Hz,1H),6.81(d,J=8.8Hz,2H),4.22(s,2H),3.79(s,3H),3.65(s,3H),3.06(t,J=7.6Hz,2H),2.25(t,J=7.6Hz,2H),1.58-1.51(m,4H),1.27-1.25(m,2H).
MS-ESI m/z:448.2[M+H]+
步骤4:化合物BB-1C-5的合成
向BB-1C-4(10.8g)的碳酸二乙酯(500mL)溶液中加入甲醇钠(6.51g),将反应混合物在25℃下搅拌12小时。向该反应物中加入水(500mL)并用乙酸乙酯(300mL×2)萃取,将合并的有机层用盐水(500mL)洗涤,无水硫酸钠干燥,过滤并浓缩,残余物通过硅胶柱层析(PE/EtOAc=10/1)得到BB-1C-5。
MS-ESI m/z:430.2,432.2[M+1,M+3]+
步骤5:化合物BB-1C的合成
向BB-1C-5(2.4g)的在甲苯(10mL)溶液中加入三氟乙酸(10mL),该反应液在65℃下搅拌12小时。向反应液中加入饱和碳酸钠水溶液调节pH=8~9,用乙酸乙酯(20mL×2)萃取,将合并的有机层用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤并浓缩,残余物通过硅胶柱层析(石油醚/乙酸乙酯=5/1)纯化得到化合物BB-1C。
1H NMR(400MHz,CDCl3)δppm 7.55(s,1H),7.29(dd,J=8.8,2.4Hz,1H),7.11(d,J=2.4Hz,1H),6.88(d,J=8.8Hz,1H),3.84(s,3H),3.73(s,1H),3.23(brs,2H),2.23-2.20(m,2H),1.74-1.70(m,2H),1.65-1.59(m,2H).
MS-ESI m/z:310.0[M+H]+
参考例4:片段BB-2
Figure GDA0003973238020000241
步骤1:化合物BB-2-2的合成
将化合物BB-2-1(100g,0.846mol),对甲苯磺酰氯(146.67g,769.31mmol),三乙胺(233.54g,2.31mol)溶于二氯甲烷中(0.5L),在室温下,搅拌12小时。冷却至室温,减压除去溶剂,加入水(400mL)溶解残留物,水相用乙酸乙酯萃取三次(1.5L),合并后有机相用饱和食盐水洗涤两次(400mL),无水硫酸钠干燥。滤去干燥剂后减压去除溶剂得到化合物BB-2-2。
1H NMR(400MHz,CDCl3)δppm 7.73(d,J=8.28Hz,2H)7.27(d,J=8.03Hz,2H)4.05-4.10(m,2H)3.50-3.55(m,2H)3.30(t,J=6.53Hz,2H)2.37(s,3H)1.35-1.44(m,2H)1.16-1.27(m,2H)0.81(t,J=7.40Hz,3H).
步骤2:合物BB-2的合成。
将化合物BB-2-2(170.10g,624.54mmol),对羟基苯硼酸频那醇酯(137.44g,624.54mmol)溶于乙腈(1.6L)中,在室温下加入碳酸钾(86.32g,624.54mmol)和碘化钾(10.37g,62.45mmol)。所得溶液在60℃氮气保护下加热回流并搅拌反应12小时。冷却至室温后,减压去除溶剂,加入水(500mL)溶解残留物,水相用乙酸乙酯萃取三次(2L×3),合并后减压除去溶剂,通过柱层析法得到化合物BB-2。
1H NMR(400MHz,CDCl3)δppm 7.78-7.71(m,2H),6.95-6.88(m,2H),4.19-4.12(m,2H),3.83-3.75(m,2H),3.54(t,J=6.8Hz,2H),1.65-1.57(m,2H),1.44-1.36(m,2H),1.34(s,12H),0.93(t,J=7.3Hz,3H)。
参考例5:片段BB-4A、片段BB-4B
Figure GDA0003973238020000251
步骤1:化合物BB-4-2的合成
将三苯基膦(765.61g,1.5eq)溶解在3.5L的无水四氢呋喃中,机械搅拌(219r/min)冰浴下,缓慢滴加DIAD(567.54mL)。控制内温在10℃以下,100分钟滴加完毕后提高转速至400r/min继续搅拌30分钟使其充分反应成白色粘稠状固体。继续在冰浴下缓慢滴加453.91mL的无水乙醇,90分钟加完(开始滴加反应放热比较剧烈,需要注意滴加速度),固体慢慢溶解,溶液最后变得澄清后,加入BB-4-1(300g)。撤去冰浴,加入油浴控制温度30-35℃(温度超过40℃选择性差,副产物增加),机械搅拌200r/min下搅拌5小时。将反应液在减压40℃下旋出四氢呋喃,加入4mol/L的盐酸水溶液(700mL)调节溶液pH=2。充分搅拌30min后,加入2L乙酸乙酯溶液萃取。反复萃取5次后通过TLC板和LCMS观察干净后,舍去有机相,水相加入65gNaOH搅拌40min,调节pH=10以上(放热比较剧烈,注意温度)。加入3L乙酸乙酯溶剂进行萃取,反复萃取三次后通过TLC板观察干净后合并有机相。加入40g无水硫酸钠干燥,过滤后减压蒸出乙酸乙酯得到BB-4-2。
1H NMR(400MHz,CDCl3)δppm 7.46(s,1H),4.41-4.24(m,4H),2.48(s,3H),1.39(q,J=7.4Hz,6H)MS-ESI(m/z):182.9[M+H]+
步骤2:化合物BB-4-3的合成
称取四氢铝锂(59.36g),在冰浴下加入1L的无水四氢呋喃溶液,机械搅拌转速(289r/min)。另外将化合物BB-4-2(285g)溶解在1L无水四氢呋喃中,在冰浴下缓慢滴加到上述溶液中,控制温度在10℃以下,1.5小时滴加完毕后。撤掉冰浴,在室温下维持机械搅拌转速不变反应12小时。在冰浴下,机械搅拌缓慢滴加60mL去离子水,完全反应后。缓慢滴加氢氧化钠水溶液(4mol/L,60mL)搅拌15分钟后,加入180mL的去离子水,继续搅拌20分钟。加入80g无水硫酸镁充分搅拌均匀后,减压过滤。滤饼使用5L二氯甲烷反复清洗5-6次,合并滤液后减压40℃浓缩得到BB-4-3。
1H NMR(400MHz,CDCl3)δppm 7.51(s,1H),4.82(s,3H),4.27(q,J=7.3Hz,2H),2.33(s,3H),1.69(t,J=7.3Hz,3H).
步骤3:化合物BB-4-4的合成
将化合物BB-4-3(180g)溶解于1.5L的无水二氯甲烷中,磁力搅拌,冰浴下缓慢滴加二氯亚砜(186.3mL),滴加完毕后,撤去冰浴,改成油浴加热40℃在氮气保护下搅拌6小时,通过TLC板检测反应完毕。将反应液冷取至室温,减压40℃度下蒸出溶剂后。加入二氯甲烷(1L)继续减压蒸馏,反复三次浓缩后,将水泵改成油泵继续减压旋转45min得到红色粘稠状固体190g粗品。向其中加入380mL的乙腈溶液加热到70℃回流2小时后溶解,关闭加热降低温度至室温继续搅拌12小时。在搅拌的情况下,将混合液缓慢滴加到3L的乙酸乙酯中,滴加完毕后继续搅拌30min。减压抽滤得化合物BB-4-4。
1HNMR(400MHz,DMSO-d6)δppm 9.19(s,1H),5.06(s,2H),4.24-4.20(m,2H),2.34(s,3H),1.45(t,J=7.3Hz,3H).
步骤4:化合物BB-4-5的合成
称取对氟硝基苯(97.64g)溶解于二甲基亚砜(1.1L)中,冰浴下边搅拌边加入硫化钠(59.38g),继续搅拌44小时。把化合物BB-4-4(90g)溶于DMSO(450mL)中,缓慢滴加到反应液中,用时7小时。向反应液中加入盐酸水溶液(4M,0.5L),调pH为3,加入4L水及4L乙酸乙酯进行萃取,搅拌半小时。分液完毕,水相加入氢氧化钠固体调pH至10。加入乙酸乙酯2L×2,进行萃取。合并2次萃取的有机相加入1L的饱和食盐水水洗,浓缩。有机相加入无水硫酸钠干燥,过滤,浓缩。将旋干的固体碾碎,加入2mL乙酸乙酯及100mL的石油醚,室温搅拌1小时,过滤。滤饼减压干燥,得到BB-4-5。
1H NMR(400MHz,CDCl3)δppm 8.07(d,J=8.78Hz,2H)7.37(s,1H)7.30(d,J=8.78Hz,2H)4.13(s,2H)3.92(q,J=7.28Hz,2H)2.06(s,3H)1.40(t,J=7.28Hz,3H).
步骤5:化合物BB-4-6的合成
向(1R,2R)-1,2-二苯基乙烷-1,2-二醇(100g)的异丙醇(5000mL)溶液中加入BB-4-5(64.72g),在25℃下搅拌1小时。然后向该混合物中逐滴加入四异丙氧基钛(66.32g)并在25℃下搅拌3小时。过滤混合物得到黄色固体(95g)。将所得固体(72g)溶于二氯甲烷(360mL)中,向该溶液中加入过氧叔丁醇(14.17mL,65%纯度),将该混合物在氮气保护下室温搅拌4小时。用饱和亚硫酸钠水溶液(200mL)淬灭,然后用2M盐酸水溶液调节pH~3。分液弃去有机相,水相用8M氢氧化钠水溶液调节pH~8。用乙酸乙酯(300mL×3)萃取水相。合并有机相用饱和食盐水(300mL)洗涤,干燥,过滤并真空浓缩,得到BB-4-6(粗品)。
步骤6:化合物BB-4A的合成
向反应物BB-4-6(19g)和氯化铵(34.65g)在甲醇(250mL)中的溶液中加入锌粉(42.35g)并在20℃下搅拌24小时。过滤,滤液减压浓缩得到残余物。通过制备型高效液相色谱纯化残余物得到化合物BB-4A。
1H NMR(400MHz,CDCl3)δppm 7.41(s,1H),7.14-7.09(m,J=8.5Hz,2H),6.71-6.66(m,J=8.5Hz,2H),4.07-3.94(m,4H),3.84(dd,J=1.9,7.4Hz,2H),1.69(s,3H),1.38(t,J=7.3Hz,3H)
MS-ESI(m/z):263.7(M+H)+
拆分法:化合物BB-4A,BB-4B的合成
将化合物BB-4(参考WO2018103757A1中化合物BB-3I的合成制得)经过超临界流体色谱(分离条件Column:ChiralPaK AD-3150*4.6mm I.D.,3μm流动相:A:CO2 B:乙醇(0.05%DEA),梯度:5%~40%B,5.5min,保持40%3min,然后保持5%B 1.5min,流速:2.5mL/min,柱温:40℃,波长:220nm)分离,得到异构体BB-4A(保留时间5.828min)和BB-4B(保留时间6.163min).
1H NMR(400MHz,CDCl3)δppm 7.43(s,1H),7.15-7.10(m,2H),6.71-6.66(m,2H),4.07-3.95(m,4H),3.85(dd,J=1.9,7.3Hz,2H),1.70(s,3H),1.39(t,J=7.3Hz,3H).
MS–ESI m/z:264.0[M+H]+
实施例1
Figure GDA0003973238020000271
合成路线:
Figure GDA0003973238020000281
步骤1:化合物WX001_1的合成
25℃下,将化合物BB-1A(3.89g,13.14mmol)和BB-3A(3g,26.28mmol)溶于1,2-二氯乙烷(50mL)中,向其中加入三乙酰基硼氢化钠(11.14g,52.57mmol),25℃下搅拌5小时。反应液用8M氢氧化钠水溶液调节至pH=8,用乙酸乙酯萃取(100mL×3),合并有机相,用100mL饱和食盐水洗涤1次,无水硫酸钠干燥,过滤除去干燥剂,滤液减压浓缩得到化合物WX001_1。
MS-ESI(m/z):394.20[M+1]+
1H NMR(400MHz,CDCl3)δ=7.69(s,1H),7.24(s,1H),7.23-7.20(m,1H),6.61(d,J=9.5Hz,1H),4.00(dd,J=4.4,10.9Hz,2H),3.80(s,3H),3.44-3.32(m,5H),3.07(d,J=7.0Hz,2H),2.54-2.48(m,2H),2.05-1.98(m,2H),1.65(br d,J=12.3Hz,2H),1.46-1.41(m,2H)。
步骤2:化合物WX001_2的合成
25℃下,将化合物WX001_1(0.6g,1.52mmol),化合物BB-2(487.29mg,1.52mmol)和无水碳酸钾(630.91mg,4.57mmol)溶于二甲亚砜(10mL)和水(2mL)的混合溶剂中,向其中加入加入Pd(dppf)Cl2(222.68mg,304.34μmol),反应液在80℃氮气氛围保护下搅拌20小时。将反应液倾倒入水(50mL)中,用乙酸乙酯萃取(30mL×3),合并有机相,用饱和食盐水洗1次(100mL),无水硫酸钠干燥,过滤除去干燥剂,滤液减压浓缩得到粗产品。粗产品经柱层析分离得WX001_2(0.603g)。
MS-ESI(m/z):508.20[M+1]+
1H NMR(400MHz,CDCl3)δ=7.88(s,1H),7.45(d,J=8.8Hz,2H),7.40(dd,J=2.4,8.9Hz,1H),7.34(d,J=2.3Hz,1H),6.96(d,J=8.8Hz,2H),6.82-6.77(m,1H),4.18-4.14(m,2H),4.01(dd,J=3.8,11.0Hz,2H),3.83-3.78(m,7H),3.56(t,J=6.8Hz,2H),3.48(brt,J=5.3Hz,2H),3.38(t,J=11.0Hz,2H),3.14(d,J=7.0Hz,2H),2.58-2.53(m,2H),1.70(br d,J=13.1Hz,2H),1.65-1.60(m,2H),1.51-1.44(m,3H),1.29-1.26(m,2H),0.94(t,J=7.3Hz,3H)。
步骤3:化合物WX001_3的合成
25℃下将化合物WX001_2(0.603g,872μM)溶于甲醇(10mL)和水(2mL)中加入氢氧化钠(520.50mg,13.01mmol),反应液加热至50℃搅拌43小时。反应液用2M稀盐酸溶液调节至pH=3,用乙酸乙酯萃取(30mL×3),合并有机相,用饱和食盐水洗涤1次(100mL),无水硫酸钠干燥,过滤除去干燥剂,滤液减压浓缩蒸除溶剂得WX001_3(0.537g)。
MS-ESI(m/z):494.20[M+1]+
步骤4:化合物WX001的合成
25℃下,将化合物WX001_3(0.1g,202.58μmol)和化合物BB-4A(53.35mg,202.58μmol)溶于吡啶(5mL)中,向其中加入EDCI(77.67mg,405.16μmol),反应液加热至60℃,氮气氛围保护下搅拌6小时。将反应液倾倒入水(50mL)中,用乙酸乙酯萃取(30mL×3),合并有机相,用饱和食盐水洗一次(100mL),无水硫酸钠干燥,过滤除去干燥剂,滤液减压浓缩蒸除溶剂得粗产品,粗产品制备级HPLC(碱性)分离得WX001(0.032g)。
MS-ESI(m/z):739.90[M+1]+.
1H NMR(400MHz,CDCl3)δ=7.92(br s,1H),7.75(d,J=8.8Hz,2H),7.54(s,1H),7.48-7.41(m,4H),7.34(s,2H),7.32(s,1H),6.98(d,J=8.8Hz,2H),6.84(d,J=8.8Hz,1H),4.18-4.14(m,2H),4.06(s,2H),4.05-3.99(m,2H),3.92-3.84(m,2H),3.83-3.79(m,2H),3.59-3.50(m,4H),3.39(br t,J=11.0Hz,2H),3.17(br d,J=7.0Hz,2H),2.61(br s,2H),2.10(br s,1H),1.72(br s,1H),1.69(s,4H),1.66-1.63(m,2H),1.46-1.42(m,2H),1.42-1.36(m,7H),0.94(t,J=7.3Hz,3H).
实施例18
Figure GDA0003973238020000291
合成路线:
Figure GDA0003973238020000301
步骤1:化合物WX018_1的合成
25℃,将化合物BB-1B(200mg,937.77μmol)溶于二氯甲烷(5mL),加入化合物BB-3B(370.88mg,937.77μmol)、氯化锌(63.91mg,468.88μmol,21.96μL)和硫酸镁(225.75mg,1.88mmol),搅拌2小时后,加入醋酸硼氢化钠(596.25mg,2.81mmol),反应液在氮气保护下搅拌12小时。向反应液中的加入水(50mL),用二氯甲烷(30mL×2)萃取,合并有机相,用无水硫酸钠干燥。旋干有机相,采用硅胶柱进行分离纯化(硅胶,石油醚/乙酸乙酯=10/1至3/1),得到WX018_1(360mg)。
MS-ESI(m/z):615.4[M+23]+
1H NMR(400MHz,CDCl3)δppm 7.77(s,1H),7.53(d,J=2.26Hz,1H),7.47(d,J=8.53Hz,2H),7.41(dd,J=8.78,2.26Hz,1H),6.99(d,J=8.53Hz,2H),6.88(d,J=8.53Hz,1H),4.23-4.06(m,4H),3.84-3.80(m,5H),3.56(t,J=6.65Hz,2H),3.35-3.22(m,4H),2.82(br s,2H),2.73-2.60(m,2H),1.89(br s,1H),1.74(br d,J=12.05Hz,2H),1.66-1.59(m,2H),1.46(s,9H),1.44-1.36(m,2H),1.14(br d,J=10.54Hz,2H),0.94(t,J=7.40Hz,3H).
步骤2:化合物WX018_2的合成
将化合物WX018_1(360mg,607.32μmol)溶解到盐酸/乙酸乙酯(4M,5mL)中,25℃搅拌0.5小时。用饱和碳酸钠溶液调反应液pH=8,向反应液中加入水(20mL),用乙酸乙酯(20mL×2)进行萃取,合并有机相,饱和食盐水(20mL)溶液洗涤,无水硫酸钠干燥后过滤,滤液浓缩得到化合物WX018_2(300mg)。
步骤3:化合物WX018_3的合成
将甲醛水溶液(45.34μL,浓度:37%)加入到化合物WX018_2(300mg,608.95μmol)的甲醇(3mL)和二氯甲烷(3mL)溶液中,搅拌30分钟,加入醋酸硼氢化钠(193.59mg,913.43μmol),25℃搅拌12小时。将反应液浓缩干,加入水(20mL),用乙酸乙酯(20mL×2)进行萃取,合并有机相,饱和食盐水(20mL)洗涤,无水硫酸钠干燥。过滤,滤液浓缩得到化合物WX018_3(254mg)。
MS-ESI(m/z):507.1[M+1]+
步骤4:化合物WX018_4的合成
25℃时,向化合物WX018_3(254mg,501.31μmol)的乙醇(5mL)和水(5mL)溶液中加入氢氧化钠(80.20mg,2.01mmol),50℃搅拌4小时。反应液浓缩除去乙醇,用3NHCl调pH=3,加入水(30mL),用乙酸乙酯(30mL×2)萃取,合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后过滤。滤液浓缩得到化合物WX018_4(212mg)。MS-ESI(m/z):493.0[M+1]+
步骤5:化合物WX018的合成
25℃时,将化合物WX018_4(113.33mg,430.33μmol)加入到BB-4A(212mg,430.33μmol)的吡啶(5mL)溶液中,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(82.49mg,430.33μmol),60℃搅拌12小时。向反应液中加入水(20mL),用乙酸乙酯(20mL×2)萃取,合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥后过滤,浓缩有机相,粗品采用制备HPLC(碱性)分离纯化。得到WX018(20mg)。
MS-ESI(m/z):738.3[M+1]+
1H NMR(400MHz,CDCl3)δppm 8.44(br s,1H),7.63(d,J=8.78Hz,2H),7.34-7.26(m,6H),7.17-7.13(d,J=8.78Hz,2H),6.83(m,2H),6.75(d,J=8.53Hz,1H),4.05–3.96(m,2H),3.91-4.81(m,2H),3.72-3.64(m,4H),3.42(t,J=6.65Hz,2H),3.21(br t,J=4.39Hz,2H),2.13(s,2H)2.80-2.70(m,4H),2.13(s,3H),2.03(br s,2H),1.77(br t,J=11.17Hz,2H),1.67-1.57(m,3H),1.52-1.45(m,5H),1.19(t,J=7.40Hz,5H),0.80(t,J=7.40Hz,3H)。
参照实施例1中步骤BB-1A~WX001的合成方法,合成下表中各实施例。
Figure GDA0003973238020000311
Figure GDA0003973238020000321
Figure GDA0003973238020000331
参照实施例18中步骤BB-1B~WX018的合成方法,合成下表中各实施例。
Figure GDA0003973238020000341
Figure GDA0003973238020000351
参照实施例18中步骤BB-1B~WX018的合成方法,合成下表中各实施例。
Figure GDA0003973238020000352
Figure GDA0003973238020000361
各实施例的1H NMR和MS数据
Figure GDA0003973238020000371
Figure GDA0003973238020000381
Figure GDA0003973238020000391
Figure GDA0003973238020000401
Figure GDA0003973238020000411
Figure GDA0003973238020000421
实验例1:CCR2/CCR5体外测试
实验目的:
通过FLIPR Calcium assay检测细胞内钙信号变化,以化合物的IC50值为指标,来评价化合物对CCR2和CCR5受体的抑制作用。
实验材料:
1、细胞系:将细胞接种并在37℃,5%CO2培养箱中温育过夜
CCR2/CCR5密度:1M(20k/well)
细胞株 克隆数 细胞代数 宿主细胞
CCR2 C7 P6 HEK293
CCR5 C13 P4 HEK293
2、试剂:Fluo-4 Direct,(Invitrogen,Cat#F10471)
3、装置设备:
多聚赖氨酸包的384细胞板(Greiner#781946)
384孔化合物板(Greiner#781280)
FLIPR,分子装置
ECHO,Labcyte
4、化合物:
将化合物溶解于DMSO制备成10mM溶液,并将化合物溶液放置在氮气箱中。
化合物ID 纯度 化合物重量(毫克)
Cenicriviroc(CVC) 97.00 1.15
激动剂参考化合物:
MCP-1 Sigma SRP3109 10μM stock in H<sub>2</sub>O
RANTES Sigma SRP3269 10μM stock in H<sub>2</sub>O
实验步骤和方法:
在FLIPR测定缓冲液中制备丙磺舒:向77mg丙磺舒中加入1mL FLIPR测定缓冲液,制成250mM溶液。每天新鲜制备。
2X(8uM)Fluo-4 DirectTM上样缓冲液(每10mL)
解冻一瓶Fluo-4 DirectTM晶体(F10471)
向样品瓶中加入10mLFLIPR测定缓冲液.
向每10mL的Fluo-Direct中加入0.2mL的丙磺舒。最终测定浓度为2.5mM
旋转,放置>5分钟(避光)
每天新鲜制备
实验步骤:
a)激动剂化合物制备:
将MCP-1在FLIPR测定缓冲液1:2中稀释10个点,从0.5μM(最终100nM)开始。将RANTES在FLIPR测定缓冲液1:3中稀释10个点,从0.5uM(最终100nM)开始。根据化合物板图,将20μL连续稀释的化合物缓冲液加入DRC板的每个孔中。
b)拮抗剂化合物制备:拮抗剂参考化合物
将标准化合物在DMSO 1:3中稀释11个点,从1mM开始。将受试化合物在DMSO 1:3中稀释11个点,从2mM开始。使用Echo将250nL化合物溶液转移至细胞板(Greiner#781946)
c)从培养箱中取出细胞板,并使用移液器轻轻地分配20μL 2X Fluo-4 Direct无洗涤上样缓冲液到384孔细胞培养板。最终细胞板中为体积40μL
d)在37℃5%CO2下孵育50分钟,室温10分钟
e)从培养箱中取出细胞板,并将其放入FLIPR。将复合板和吸头盒放入FLIPR
f)对于DRC板:
1)在FLIPRTETRA上运行方案
2)读取荧光信号
3)将10μL的化合物从DRC板转移到细胞板
4)读取荧光信号
5)计算从Read 90到最大允许的“最大-最小”。使用FLIPR计算每个细胞株的EC80值
6)准备激动剂参考化合物的5X EC80浓度
g)对于复合板(1-添加):
1)在FLIPRTETRA上运行方案
2)转移10微升的5XEC80浓度的激动剂参考化合物从复合板到细胞板。
3)读取荧光信号。
4)计算从Read 90到最大允许的“最大-最小”
h)使用Prism分析数据,计算化合物的IC50值。
实验结果见表1:
表1 FLIPR检测IC50(nM)测试结果
化合物编号 CCR2 CCR5 化合物编号 CCR2 CCR5
WX001 1.33 4.25 WX015 7.65 5.62
WX002 3 8.15 WX016 3.9 4.12
WX003 37 8.27 WX017 2.47 1.7
WX004 3.04 6.3 WX018 17.9 3.35
WX005 9.2 4.2 WX019 4.97 0.65
WX006 7.51 8.44 WX020 18.1 6.99
WX007 6.76 6.18 WX021 48.9 15.7
WX008 3.4 6.04 WX022 21 10.3
WX009 4.38 6.78 WX023 2.62 2.45
WX010 7.48 7.33 WX024 1.59 0.76
WX011 6.82 4.33 WX025 0.69 1.38
WX012 6.19 3.29 WX026 0.69 1.37
WX013 3.11 5.45 WX027 0.41 1.44
WX014 3.78 6.28 WX028 1.19 3.15
结论:本发明化合物对CCR2和CCR5受体的拮抗作用显著。
实验例2人肝微粒体细胞色素P450同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)活性的抑制作用
将CYP的5种同工酶的一共5个特异性探针底物非那西丁(PHenacetin,CYP1A2)、双氯芬酸(Diclofenac,CYP2C9)、(S)-美芬妥英((S)-MepHenytoin,CYP2C19)、右美沙芬(DextromethorpHan,CYP2D6)、咪达唑仑(Midazolam,CYP3A4)分别与人肝微粒体以及测试化合物共同孵育,加入还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)启动反应,在反应结束后对样品处理并采用液相色谱串联质谱联用(LC-MS/MS)法定量检测特异性底物产生的5种代谢产物对乙酰氨基酚(AcetaminopHen)、4’-羟基双氯芬酸(4’-Hydroxydiclofenac)、4’-羟基美芬妥英(4’-HydroxymepHenytoin)、右啡烷(DextrorpHan)、1’-羟基咪达唑仑(1’-Hydroxymidazolam)的浓度,以计算相应的半抑制浓度(IC50)。
表2化合物的半抑制浓度
Figure GDA0003973238020000451
实验结论:WX002,WX011对人肝微粒体细胞色素P450同工酶(CYP1A2、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6和CYP3A4)活性不存在抑制风险,其中CYP2C19参与代谢的药物仅占已上市药物的2%,而CYP3A参与代谢的药物占已上市药物的50%,参比化合物和参照物A对CYP3A4有较强抑制作用,体现在临床上会使得CYP3A4受到抑制从而对由CYP3A4代谢的其他药物暴露量提升而产生潜在安全风险,即药物药物相互作用,WX001对于药物代谢的主要代谢酶CYP3A4无抑制作用,规避了此类风险的发生。
实验例3本发明化合物在体内动物肿瘤模型上的抗肿瘤活性测试
实验目的:
在小鼠结肠癌MC38体内肿瘤模型上考察本发明化合物与小鼠抗PD-1抗体(RMP1-14,Bioxcell,货号BP0146)联用的抑瘤效果。
实验方法:
在雌性C57BL/6小鼠皮下接种MC38小鼠结肠癌细胞株,接种后按照体重随机分组,并且按照下列描述进行给药处理。
第1组(对照组):接种当天下午开始给药,每天两次按照0.1mL/10g体重的剂量灌胃给药溶媒1(5%DMSO/95%(10%HP-β-CD:β-环糊精))。接种后第11,14以及18天分别按照0.1mL/10g体重的剂量腹腔注射给予溶媒2(DPBS:杜氏磷酸缓冲液)一次。
第2组:接种后第11,14以及18天分别腹腔注射给予抗小鼠PD-1抗体(RMP1-14)一次。第11天的给药剂量为3mg/kg体重,第14天以及第18天的剂量为6mg/kg体重
第3组:接种当天下午开始给药,每天两次按照100mg/kg体重的剂量灌胃给药CVC(Cenicriviroc)(溶解于5%DMSO+95%(10%HP-β-CD),pH=4),同时接种后第11,14以及18天分别腹腔注射给予抗小鼠PD-1抗体(RMP1-14)一次。第11天的给药剂量为3mg/kg体重,第14天以及第18天的剂量为6mg/kg体重。
第4组:接种当天下午开始给药,每天两次按照100mg/kg体重的剂量灌胃给药WX001(溶解于5%DMSO+95%(10%HP-β-CD),pH=4),同时接种后第11,14以及18天分别腹腔注射给予抗小鼠PD-1抗体(RMP1-14)一次。第11天的给药剂量为3mg/kg体重,第14天以及第18天的剂量为6mg/kg体重。
实验期间每周三次称量小鼠体重,肿瘤成瘤后,与体重同步每周三次测量瘤体积,按照长×宽2/2的公式计算瘤体积;按照公式计算肿瘤增殖率和抑瘤率:肿瘤增殖率=治疗组瘤体积/对照组瘤体积×100%;抑瘤率=(对照组瘤体积-治疗组瘤体积)/对照组瘤体积。
组间用Student’s t-test进行统计学分析,p<0.05为有显著性差异。
实验结果:
表3各组的肿瘤增殖率
组别 肿瘤增殖率
Anti-PD-1抗体组 49.40%
CVC+PD-1联用组 52.58%
WX001+PD-1联用组 25.42%
WX001对小鼠MC38结肠癌肿瘤模型瘤体积的影响见说明书附图1.
实验结论:在小鼠MC38肿瘤模型上,WX001+PD-1联用组与PD-1单用组比,有明显的药效增强的作用,在第31天的肿瘤增殖率为25.42%(与溶媒组相比p<0.01,与CVC+PD-1联用组相比p<0.01)。

Claims (14)

1.式(Ⅰ)所示化合物、其立体异构体或其药学上可接受的盐,
Figure FDA0004035497580000011
其中,
n选自1、2和3;
R1为含有1个-O-杂原子的4~6元杂环烷基;
R2为-CH2CH3
结构单元
Figure FDA0004035497580000012
Figure FDA0004035497580000013
L2为-CRR-;
各R分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和CH;
“*”硫原子为手性硫原子,以(R)或(S)单一对映形式或富含一种对映体形式存在。
2.根据权利要求1所述化合物、其立体异构体或其药学上可接受的盐,其中,L2为-CH2-。
3.根据权利要求1所述化合物、其立体异构体或其药学上可接受的盐,其中,R1选自氧杂环丁烷基、四氢呋喃基、四氢吡喃基。
4.根据权利要求1所述化合物、其立体异构体或其药学上可接受的盐,其中,R1选自
Figure FDA0004035497580000014
Figure FDA0004035497580000015
5.根据权利要求1所述化合物、其立体异构体或其药学上可接受的盐,其中,结构单元
Figure FDA0004035497580000016
选自
Figure FDA0004035497580000017
Figure FDA0004035497580000021
6.根据权利要求5所述化合物、其立体异构体或其药学上可接受的盐,其中,结构单元
Figure FDA0004035497580000022
选自
Figure FDA0004035497580000023
Figure FDA0004035497580000024
7.根据权利要求1~6任意一项所述化合物、其立体异构体或其药学上可接受的盐,其选自
Figure FDA0004035497580000025
Figure FDA0004035497580000031
其中,R1、R2
Figure FDA0004035497580000032
L2如权利要求1~6任意一项所定义。
8.下式所示化合物、其立体异构体或其药学上可接受的盐:
Figure FDA0004035497580000033
Figure FDA0004035497580000041
9.根据权利要求8所示化合物、其立体异构体或其药学上可接受的盐,其选自
Figure FDA0004035497580000051
Figure FDA0004035497580000061
10.根据权利要求9所述化合物、其立体异构体或其药学上可接受的盐,其选自
Figure FDA0004035497580000062
Figure FDA0004035497580000071
Figure FDA0004035497580000081
11.一种药物组合物,包括治疗有效量的根据权利要求1~10任意一项所述的化合物、其立体异构体或其药学上可接受的盐作为活性成分以及药学上可接受的载体。
12.根据权利要求1~10任意一项所述的化合物、其立体异构体或其药学上可接受的盐或根据权利要求11所述的药物组合物在制备CCR2/CCR5拮抗剂中的应用。
13.根据权利要求1~10任意一项所述的化合物、其立体异构体或其药学上可接受的盐或根据权利要求11所述的药物组合物在制备抗肿瘤药物中的应用。
14.根据权利要求1~10任意一项所述的化合物、其立体异构体或其药学上可接受的盐或根据权利要求11所述的药物组合物在制备抗结肠癌的药物中的应用。
CN202080045527.XA 2019-06-24 2020-06-24 作为ccr2/ccr5拮抗剂的杂环烷基类化合物 Active CN114096245B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2019105541764 2019-06-24
CN201910554176 2019-06-24
PCT/CN2020/098222 WO2020259620A1 (zh) 2019-06-24 2020-06-24 作为ccr2/ccr5拮抗剂的杂环烷基类化合物

Publications (2)

Publication Number Publication Date
CN114096245A CN114096245A (zh) 2022-02-25
CN114096245B true CN114096245B (zh) 2023-02-28

Family

ID=74060722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080045527.XA Active CN114096245B (zh) 2019-06-24 2020-06-24 作为ccr2/ccr5拮抗剂的杂环烷基类化合物

Country Status (7)

Country Link
US (1) US20230002360A1 (zh)
EP (1) EP3988098A4 (zh)
JP (1) JP7292588B2 (zh)
KR (1) KR20220024199A (zh)
CN (1) CN114096245B (zh)
AU (1) AU2020301443B2 (zh)
WO (1) WO2020259620A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412261A (zh) * 2019-04-08 2021-09-17 四川科伦博泰生物医药股份有限公司 苯并咪唑化合物、其制备方法及其用途
WO2023143112A1 (zh) * 2022-01-26 2023-08-03 无锡瓴方生物医药科技有限公司 氮杂苯并八元环化合物的盐型、晶型及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014105A1 (en) * 2001-08-08 2003-02-20 Takeda Chemical Industries, Ltd. Bicyclic compound, production and use as hiv inhibitors
EP1422228A1 (en) * 2001-08-08 2004-05-26 Takeda Chemical Industries, Ltd. BENZAZEPINE DERIVATIVE&comma; PROCESS FOR PRODUCING THE SAME&comma; AND USE
WO2018103757A1 (zh) * 2016-12-09 2018-06-14 广东众生药业股份有限公司 作为ccr2/ccr5受体拮抗剂的联苯化合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058992A (ja) * 1999-06-16 2001-03-06 Takeda Chem Ind Ltd ベンゾアゼピン誘導体、その製造法および用途
JP2003119191A (ja) * 2001-08-08 2003-04-23 Takeda Chem Ind Ltd ベンゾアゼピン誘導体、その製造法および用途
EP1593681A4 (en) * 2003-02-07 2007-09-05 Takeda Pharmaceutical TRICYCLIC COMPOUND, PROCESS FOR PRODUCTION AND USE THEREOF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014105A1 (en) * 2001-08-08 2003-02-20 Takeda Chemical Industries, Ltd. Bicyclic compound, production and use as hiv inhibitors
EP1422228A1 (en) * 2001-08-08 2004-05-26 Takeda Chemical Industries, Ltd. BENZAZEPINE DERIVATIVE&comma; PROCESS FOR PRODUCING THE SAME&comma; AND USE
WO2018103757A1 (zh) * 2016-12-09 2018-06-14 广东众生药业股份有限公司 作为ccr2/ccr5受体拮抗剂的联苯化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis;Tacke F.;《Expert Opinion on Investigational Drugs》;20180216;第27卷(第3期);第301-311页 *

Also Published As

Publication number Publication date
WO2020259620A1 (zh) 2020-12-30
KR20220024199A (ko) 2022-03-03
AU2020301443A1 (en) 2022-01-27
CN114096245A (zh) 2022-02-25
EP3988098A1 (en) 2022-04-27
AU2020301443B2 (en) 2023-07-20
JP2022539752A (ja) 2022-09-13
JP7292588B2 (ja) 2023-06-19
US20230002360A1 (en) 2023-01-05
EP3988098A4 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2021259331A1 (zh) 八元含n杂环类化合物
WO2008072682A1 (ja) イミダゾ[1,2-b]ピリダジン誘導体
CN115594734B (zh) 酮酰胺衍生物及其应用
WO2008069242A1 (ja) 新規2環性複素環化合物
CN113993860A (zh) 作为kras g12c突变蛋白抑制剂的七元杂环类衍生物
CN114096245B (zh) 作为ccr2/ccr5拮抗剂的杂环烷基类化合物
WO2020239076A1 (zh) 作为甲状腺素受体-β激动剂的哒嗪酮类衍生物及其应用
JP2023525748A (ja) Bcl-2阻害剤としての化合物
WO2020038457A1 (zh) 作为JAK抑制剂的[1,2,4]三唑并[1,5-a]吡啶类化合物及其应用
CN114728967A (zh) 作为jak抑制剂的三并杂环类化合物及其应用
WO2019137201A1 (zh) 杂芳基并四氢吡啶类化合物、其制备方法、药物组合物及应用
JP7086075B2 (ja) Ccr2/ccr5受容体拮抗剤としてのビフェニル化合物
CN103508931B (zh) 六氢并环戊二烯衍生物、其制备方法及其在医药上的应用
JP7165270B2 (ja) 網膜疾患用化合物
TW202317097A (zh) 戊二醯亞胺類化合物與其應用
CN113825755A (zh) 作为irak4抑制剂的咪唑并吡啶类化合物
CN114478520A (zh) Bcl-2蛋白凋亡诱导剂及应用
CN115066425B (zh) Jak抑制剂在制备治疗jak激酶相关疾病药物中的应用
CN115667247B (zh) 吡啶类衍生物及其应用
WO2023160572A1 (zh) 吡唑类衍生物、药物组合物及应用
WO2022166721A1 (zh) 含1,4-氧杂氮杂环庚烷的并环类衍生物
CN112752749B (zh) 作为pd-l1免疫调节剂的氟乙烯基苯甲酰胺基化合物
CN115003672A (zh) 喹啉并咪唑类化合物及其应用
CN113439080A (zh) 作为pd-l1免疫调节剂的乙烯基吡啶甲酰胺基化合物
CN111971285A (zh) 咪唑并吡咯酮化合物及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Room 504, Building C1, No. 201 Linghu Avenue, Xinwu District, Wuxi City, Jiangsu Province, 214028

Patentee after: Wuxi Lingfang Biopharmaceutical Technology Co.,Ltd.

Address before: 518045 1312, building 1, Changfu Jinmao building, south of Shihua Road, Fubao community, Fubao street, Futian District, Shenzhen, Guangdong Province

Patentee before: Shenzhen Lingfang Biomedical Technology Co.,Ltd.