WO2019095664A1 - 有机电致发光器件 - Google Patents
有机电致发光器件 Download PDFInfo
- Publication number
- WO2019095664A1 WO2019095664A1 PCT/CN2018/089279 CN2018089279W WO2019095664A1 WO 2019095664 A1 WO2019095664 A1 WO 2019095664A1 CN 2018089279 W CN2018089279 W CN 2018089279W WO 2019095664 A1 WO2019095664 A1 WO 2019095664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electroluminescent device
- organic electroluminescent
- activated delayed
- thermally activated
- host material
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 109
- 230000003111 delayed effect Effects 0.000 claims abstract description 29
- 230000005525 hole transport Effects 0.000 claims abstract description 27
- 239000007850 fluorescent dye Substances 0.000 claims abstract description 23
- 230000001235 sensitizing effect Effects 0.000 claims description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 claims description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 2
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 claims description 2
- 150000003513 tertiary aromatic amines Chemical class 0.000 claims description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims 1
- 239000010410 layer Substances 0.000 description 50
- 238000012546 transfer Methods 0.000 description 10
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 8
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 8
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000002346 layers by function Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- UVRNFNCBMQHWLB-UHFFFAOYSA-N 10-[4-(4-phenoxazin-10-ylphenyl)sulfonylphenyl]phenoxazine Chemical compound C12=CC=CC=C2N(C2=C(O1)C=CC=C2)C1=CC=C(S(=O)(=O)C2=CC=C(N3C4=CC=CC=C4OC4=C3C=CC=C4)C=C2)C=C1 UVRNFNCBMQHWLB-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
- H10K50/121—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/623—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/20—Delayed fluorescence emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/30—Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/40—Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/381—Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/656—Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/656—Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
- H10K85/6565—Oxadiazole compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
Definitions
- the invention belongs to the technical field of display, and in particular relates to an organic electroluminescent element.
- OLEDs Organic light-emitting diodes
- a fluorescent OLED device capable of achieving a 25% internal quantum efficiency limitation mainly employs a thermally activated delayed fluorescence (TADF) mechanism.
- the TADF mechanism utilizes an organic small molecular material having a small singlet-triplet energy level difference ( ⁇ E ST ), and its triplet excitons can pass through the reverse intersystem crossing (RISC) under the absorption of ambient heat. This process is transformed into singlet excitons, which theoretically achieve a quantum efficiency of 100% in the device.
- RISC reverse intersystem crossing
- the present invention is to solve the problem of low efficiency of the fluorescent electroluminescent device in the prior art.
- the present invention provides an organic electroluminescent device having a first electrode, a second electrode, and an organic functional layer between the first electrode and the second electrode, the organic functional layer including a stacked arrangement The hole transport layer and the light emitting layer, wherein the hole transport layer and the light emitting layer form an interface exciplex at the interface.
- the luminescent layer comprises a sensitizing material, a first host material and a fluorescent dye
- the sensitizing material is a thermally activated delayed fluorescent material
- the hole transport layer material and the first of the luminescent layer The host material forms an interface exciplex.
- the triplet energy level of the exciplex is smaller than the triplet energy level of the hole transport layer material, and the triplet energy level of the exciplex is smaller than the first main body The triplet level of the material.
- the emission spectrum of the exciplex is red-shifted compared to the hole transport material and the first host material.
- the singlet energy level of the exciplex is greater than the singlet energy level of the thermally activated delayed fluorescent material; the triplet energy level of the exciplex is greater than the thermally activated delayed fluorescent material The triplet level.
- the energy level difference between the HOMO level and the LUMO level of the first host material is greater than 2.5 eV.
- the singlet state and the triplet energy level difference of the thermally activated delayed fluorescent material are less than 0.2 eV.
- the fluorescent dye accounts for 0.1-20%, preferably 0.5-10%, of the mass of the first host material; and the thermally activated retardation fluorescent material accounts for 5 of the mass of the first host material. -80%, preferably 10-40%.
- the hole transport layer contains a hole transport layer material having a hole transporting ability, and a single layer or a plurality of layers may be provided as needed, and the hole transport layer material has a tertiary aromatic amine or carbazole.
- the compound of the unit, preferably, the material of the hole transport layer adopts one of the following structures:
- the first host material contains one or more units of a carbonyl group, a phosphine oxide, a pyrimidine or a pyridine.
- the first host material adopts any one of the following structures:
- the thermally activated delayed fluorescent material has both a donor unit and a acceptor unit, and the donor unit is composed of one or more than one donor group; the acceptor unit is one or More than one acceptor group is attached.
- the donor group is selected from the group consisting of:
- the acceptor group is selected from the group consisting of:
- the thermally activated delayed fluorescent material includes at least one of the following structures:
- the fluorescent dye includes at least any one of the following structures, which can be selected according to the color of light:
- the organic electroluminescent device having a first electrode, a second electrode, and an organic functional layer between the first electrode and the second electrode, the organic functional layer comprising a stacked hole transport layer and A light-emitting layer comprising a sensitizing material, a first host material, and a fluorescent dye.
- a pure organic fluorescent emitter free of noble metal can be obtained, an interface exciplex is formed by the hole transport layer material and the first host material in the light emitting layer, and the fluorescent dye is further sensitized by the thermal activation retardation fluorescent material as a sensitizer .
- the thermally activated delayed fluorescence sensitized fluorescence (TSF) organic electroluminescent device prepared by the invention has an external quantum efficiency exceeding about 5% of the external quantum efficiency of the conventional fluorescent device, and greatly improves the luminescence of the fluorescent OLED device. Efficiency, with low turn-on voltage, low roll-off and so on. Finally, a high efficiency, low roll-off thermal activation-delay-fluorescence-sensitized fluorescence (TSF) organic electroluminescent device is obtained.
- the hole transport layer material and the first host material in the light-emitting layer form an interface exciplex.
- the high cross-system crossing (RISC) rate of the exciplex can inhibit Dexter energy transfer (DET) from the exciplex to the fluorescent dye.
- enhancement from exciplex to thermally activated delayed fluorescent material Energy transfer can greatly promote the ratio of singlet excitons (>25%) of thermally activated delayed fluorescent materials while inhibiting triplet excitons ( ⁇ 75%), which also inhibits the activation of thermally activated delayed fluorescent materials to fluorescent dyes.
- Dexter Energy Transfer (DET) Therefore, the exciton loss of Dexter energy transfer (DET) can be greatly reduced by two paths, which is advantageous for improving device efficiency.
- the fluorescent dye in the organic electroluminescent device provided by the invention can adopt an ordinary fluorescent dye, and combines the hole transport layer material with the first host material in the light-emitting layer to form an interface exciplex, which is more efficient than the existing device. high.
- Fluorescent dyes of the present invention may also employ fluorescent dyes having electron-inert terminal substituents. Due to its large spatial effect, the inert unit can spatially shield the electron-active core of the fluorescent dye, which not only increases the intermolecular distance, but also reduces the orbital overlap of adjacent molecules. Therefore, Dexter energy transfer (DET) can be effectively suppressed.
- the organic electroluminescent device provided by the invention wherein the thermally activated delayed fluorescent material and the first host material are doped in the luminescent layer, can dilute the thermally activated delayed fluorescent material to suppress the quenching effect caused by aggregation, and can further improve Device efficiency.
- FIG. 1 is a schematic diagram of energy level transfer of an organic electroluminescent device of the present invention
- FIG. 2 is a schematic structural view of an organic electroluminescent device according to Embodiment 1 of the present invention.
- Figure 3 is a fluorescence spectrum (emission spectrum) of a hole transport layer material, a first host material, and a mixture of the two in Embodiment 1 of the present invention
- Example 4 is a test spectrum of an organic electroluminescent device in Example 1 and Comparative Example 1 of the present invention.
- the present embodiment provides an organic electroluminescent device, as shown in FIG. 2, comprising a first electrode 1, a hole transport layer 2, a light-emitting layer 3, an electron transport layer 4, an electron injection layer 5, and a second electrode.
- the structure of the organic electroluminescent device is: ITO/TAPC (50 nm) / TCTA (10 nm) / luminescent layer (30 nm) / BPBiPA (30 nm) / LiF (0.5 nm) / Al (150 nm), that is, the material of the first electrode 1 is ITO, the material of the hole transport layer 2 includes TAPC and TCTA, wherein TCTA also has an electron blocking effect, and the material of the electron transport layer 4 is BPBiPA, the material of the electron injection layer 5.
- the luminescent layer 3 includes a first host material PhCzTRz, a TADF sensitizer PXZ-DPS, and a fluorescent dye PhtBuPAD.
- the above brackets are layer thickness data. The specific structure is as follows:
- TCTA is greater than PhCzTrz is greater than PhtBuPAD.
- the hole transport layer material, the first host material mixture (TCTA and PhCzTrz mixture) spectrum, the hole transport layer material (TCTA), the first host material (PhCzTrz), the emission spectrum is significantly red-shifted, indicating two An interface exciplex is formed.
- the hole transport layer material forms an interface exciplex with the first host material in the light-emitting layer 3.
- the high cross-system crossing (RISC) rate of the exciplex can inhibit Dexter energy transfer (DET) from the exciplex to the fluorescent dye.
- enhancement from exciplex to thermally activated delayed fluorescent material Energy transfer can greatly promote the ratio of singlet excitons (>25%) of thermally activated delayed fluorescent materials while inhibiting triplet excitons ( ⁇ 75%), which also inhibits the activation of thermally activated delayed fluorescent materials to fluorescent dyes.
- Dexter Energy Transfer (DET). Through these two paths, the exciton loss of Dexter energy transfer (DET) can be greatly reduced, which is beneficial to improve device efficiency.
- the thermally activated delayed fluorescent material in the luminescent layer and the first host material are doped, and the thermally activated delayed fluorescent material can be diluted to suppress the quenching effect caused by aggregation, and the device efficiency can be further improved.
- This embodiment provides an organic electroluminescent device having the same structure as Embodiment 1, and the first host material is replaced by:
- This embodiment provides an organic electroluminescent device having the same structure as in Embodiment 1, and the TADF material is replaced by:
- This embodiment provides an organic electroluminescent device having the same structure as in Embodiment 1, a TCTA in the hole transporting material, replaced by:
- This embodiment provides an organic electroluminescent device having the same structure as Embodiment 1, and the first host material is replaced by:
- This embodiment provides an organic electroluminescent device having the same structure as Embodiment 1, and the first host material is replaced by:
- This embodiment provides an organic electroluminescent device having the same structure as in Embodiment 1, and the hole transporting material is replaced by:
- This embodiment provides an organic electroluminescent device having the same structure as in Embodiment 1, and the hole transporting material is replaced by:
- This embodiment provides an organic electroluminescent device having the same structure as in Embodiment 1, and the TADF material is replaced by:
- This embodiment provides an organic electroluminescent device having the same structure as in Embodiment 1, and the TADF material is replaced by:
- the fluorescent dye accounts for 0.1-20%, preferably 0.5-10%, of the mass of the first host material; and the heat activated retardation fluorescent material accounts for 5 of the mass of the first host material. -80%, preferably 10-40%.
- the first host material may be selected from the group consisting of:
- the hole transporting material may be selected from the group consisting of:
- the fluorescent dye can be selected from the following compounds:
- the sensitizing material that is, the TADF material, may be selected from the following compounds:
- the structure of the organic electroluminescent device is not limited thereto, and any of the organic electroluminescent devices within the scope of the claims may achieve the object of the present invention and fall within the protection scope of the present invention;
- the preparation process refers to the prior art, and will not be described in detail in this specification.
- the present comparative example provides an organic electroluminescent device having the same structure as in Embodiment 1, except that the first host material which forms an exciplex with the hole transport layer in the light-emitting layer is removed, and the TADF sensitizer is used alone as The first host material is used.
- the structure of the organic electroluminescent device is: ITO/TAPC (30 nm) / TCTA (10 nm) / luminescent layer (30 nm) / BPBiPA (30 nm) / LiF (1 nm) / Al (150 nm).
- the luminescent layer comprises: the first host material is PXZ-DPS, and the fluorescent object is PhtBuPAD.
- the device's current, voltage, brightness, and luminescence spectra were tested simultaneously using a PR 650 spectral scanning luminance meter and a Keithley K 2400 source meter system.
- the organic electroluminescent devices provided in Examples 1-4 and Comparative Example 1 were tested. As shown in FIG. 4, the external quantum efficiency of the device provided in Example 1 was greater than that in Comparative Example 1.
- Example 1 2.4 (0.36, 0.58) twenty four Example 2 2.5 (0.36, 0.58) twenty three Example 3 2.5 (0.36, 0.58) twenty three Example 4 2.4 (0.36, 0.58) twenty four Comparative example 1 2.9 (0.36, 0.58) 19
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明属于显示技术领域,具体涉及了一种有机电致发光器件,尤其涉及一种高效的荧光器件。发光层包括热活化延迟荧光材料、第一主体材料和荧光染料。空穴传输层能够与第一主体材料形成界面型激基复合物并通过热活化延迟荧光材料作为敏化剂进一步敏化荧光染料。本发明制备的热活化延迟荧光敏化荧光(TSF)有机电致发光器件,外量子效率超过了传统荧光器件约5%的外量子效率,大幅度提升了荧光OLED器件的发光效率,同时具备低开启电压、低滚降的等优点。
Description
本发明属于显示技术领域,具体涉及一种有机电致发光元件。
有机电致发光二极管(organic light-emitting diodes,OLEDs)由于超薄、重量轻、能耗低、主动发光、视角宽、响应快等优点,在显示和照明领域有极大的应用前景,越来越受到人们的重视。
1987年,美国Eastman Kodak公司的邓青云(C.W.Tang)和Vanslyke首次报道了利用透明导电膜作阳极,Alq3作发光层,三芳胺作空穴传输层,Mg/Ag合金作阴极,制成了双层有机电致发光器件。传统荧光材料易于合成,材料稳定,器件寿命较长,但是由于电子自旋禁阻的原因最多只能利用25%的单线态激子进行发光,75%的三线态激子被浪费掉,器件外效率往往低于5%,需要进一步提高。
为了提高激子利用率,人们提出在分子中引入重金属原子,利用重原子效应来实现单线态与三线态的旋轨耦合以此来利用75%的三线态激子,实现100%的内量子效率。但是由于含有重金属原子,材料成本较高限制了其进一步的发展。
能实现突破25%的内量子效率限制的荧光OLED器件主要采用热活化延迟荧光(TADF:Thermally Activated Delayed Fluorescence)机制。TADF机制是利用具有较小单重态-三重态能级差(ΔE
ST)的有机小分子材料,其三重态激子在吸收环境热能下可通过反向系间窜越(RISC:reverse intersystem crossing)这一过程转化为单重态激子,理论上其器件内量子效率能达到100%。但是现有技术中,还是存在荧光电致发光器件效率低的问题。
发明内容
因此,本发明要解决是现有技术中荧光电致发光器件效率低的问题。
为此,本发明提供一种有机电致发光器件,具有第一电极、第二电极以及 位于所述第一电极和所述第二电极之间的有机功能层,所述有机功能层包括层叠设置的空穴传输层和发光层,其中,所述空穴传输层与发光层在界面处形成界面激基复合物。
前述有机电致发光器件中,发光层包括敏化材料、第一主体材料和荧光染料,所述敏化材料为热活化延迟荧光材料,所述空穴传输层材料与所述发光层中第一主体材料形成界面激基复合物。
前述有机电致发光器件中,所述激基复合物的三线态能级小于所述空穴传输层材料的三线态能级,所述激基复合物的三线态能级小于所述第一主体材料的三线态能级。激基复合物的发射光谱较空穴传输材料以及第一主体材料有所红移。
前述有机电致发光器件中,激基复合物的单线态能级大于所述热活化延迟荧光材料的单线态能级;所述激基复合物的三线态能级大于所述热活化延迟荧光材料的三线态能级。
前述有机电致发光器件中,第一主体材料的HOMO能级和LUMO能级的能级差大于2.5eV。
前述有机电致发光器件中,热活化延迟荧光材料的单线态与三线态能级差小于0.2eV。
前述有机电致发光器件中,荧光染料占所述第一主体材料质量的0.1-20%,优选地,为0.5-10%;所述热活化延迟荧光材料占所述第一主体材料质量的5-80%,优选为10-40%。
前述有机电致发光器件中,空穴传输层中含有具有传输空穴能力的空穴传输层材料,可根据需要设置单层或多层,空穴传输层材料为具有三级芳香胺或者咔唑单元的化合物,优选地,空穴传输层材料采用如下结构中的一种:
前述有机电致发光器件中,第一主体材料中含有羰基、膦氧、嘧啶或吡啶中一种或多种单元,优选地,第一主体材料采用以下结构中的任一种:
前述有机电致发光器件中,热活化延迟荧光材料同时存在给体单元和受体单元,所述给体单元为一个或大于一个的给体基团连接构成的;所述受体单元 为一个或大于一个的受体基团连接构成的。
前述有机电致发光器件中,给体基团选自以下基团:
前述有机电致发光器件中,受体基团选自以下基团:
前述有机电致发光器件中,热活化延迟荧光材料至少包括以下结构中的一种:
前述有机电致发光器件中,荧光染料至少包括以下结构中的任一种,可根据光色自行选择:
本发明技术方案,具有如下优点:
1、本发明提供的有机电致发光器件,具有第一电极、第二电极以及位于第一电极和第二电极之间的有机功能层,所述有机功能层包括层叠设置的空穴传输层和发光层,所述发光层包括敏化材料、第一主体材料和荧光染料。能够制得无贵金属的纯有机荧光发射体,通过空穴传输层材料与发光层中的第一主体材料形成界面激基复合物,并通过热活化延迟荧光材料作为敏化剂进一步敏化荧光染料。本发明制备的热活化延迟荧光敏化荧光(TADF-Sensitized Fluorescence,TSF)有机电致发光器件,外量子效率超过了传统荧光器件约5%的外量子效率,大幅度提升了荧光OLED器件的发光效率,同时具备低开启电压、低滚降等优点。最终得到高效率、低滚降的热活化-延迟-荧光敏化荧光(TSF)有机电致发光器件。
2、本发明提供的有机电致发光器件,如图1所示,空穴传输层材料与发光层中的第一主体材料形成界面激基复合物。一方面,作为竞争过程,激基复合物的高反系间穿越(RISC)速率可以抑制从激基复合物到荧光染料的德克斯特能量转移(DET)。另一方面,从激基复合物到热活化延迟荧光材料的增强
能量转移可以极大地促进热活化延迟荧光材料的单重态激子(>25%)的比例,同时抑制三重态激子(<75%),这也抑制了热活化延迟荧光材料到荧光染料的 德克斯特能量转移(DET)。因此,可以通过两个路径大大减少德克斯特能量转移(DET)的激子损失,有利于提高器件效率。
3、本发明提供的有机电致发光器件中荧光染料可采用普通荧光染料,结合空穴传输层材料与发光层中的第一主体材料形成界面激基复合物,与现有器件相比,效率高。本发明中荧光染料还可以采用具有电子惰性末端取代基的荧光染料。惰性单元由于其较大的空间效应,可空间屏蔽荧光染料的电子活性核心,不仅增加分子间距离,还减少相邻分子的轨道重叠。因此,可以有效抑制德克斯特能量转移(DET)。
4、本发明提供的有机电致发光器件,发光层中热活化延迟荧光材料、第一主体材料适配掺杂,能够稀释热活化延迟荧光材料以抑制聚集引起的猝灭效应,可以实现进一步提高器件效率。
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中有机电致发光器件的能级传递示意图;
图2为本发明实施例1中有机电致发光器件的结构示意图;
图3是本发明实施例1中空穴传输层材料、第一主体材料以及两者混合物的荧光光谱(发射光谱);
图4是本发明实施例1和对比例1中有机电致发光器件的测试谱图;
附图标记:
1-第一电极、2-空穴传输层、3-发光层、4-电子传输层、5-电子注入层、6-第二电极。
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描 述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明可以以许多不同的形式实施,而不应该被理解为限于在此阐述的实施例。相反,提供这些实施例,使得本公开将是彻底和完整的,并且将把本发明的构思充分传达给本领域技术人员,本发明将仅由权利要求来限定。在附图中,为了清晰起见,会夸大层和区域的尺寸和相对尺寸。应当理解的是,当元件例如层被称作“形成在”或“设置在”另一元件“上”时,该元件可以直接设置在所述另一元件上,或者也可以存在中间元件。相反,当元件被称作“直接形成在”或“直接设置在”另一元件上时,不存在中间元件。
实施例1
本实施例提供一种有机电致发光器件,如图2所示,包括第一电极1、空穴传输层2、发光层3、电子传输层4、电子注入层5和第二电极。作为本发明的一个实施例,具体地,有机电致发光器件的结构为:ITO/TAPC(50nm)/TCTA(10nm)/发光层(30nm)/BPBiPA(30nm)/LiF(0.5nm)/Al(150nm),即第一电极1的材料为ITO,空穴传输层2的材料包括TAPC和TCTA,其中TCTA还具有电子阻挡的作用,电子传输层4的材料为BPBiPA,电子注入层5的材料为LiF,第二电机的材料为Al。其中,发光层3包括,第一主体材料PhCzTRz,TADF敏化剂PXZ-DPS,荧光染料PhtBuPAD。上述括号中为层厚数据。具体结构如下所示:
其中三线态能级:TCTA大于PhCzTrz大于PhtBuPAD。
如图3所示空穴传输层材料、第一主体材料混合物(TCTA与PhCzTrz混合物)光谱相比空穴传输层材料(TCTA)、第一主体材料(PhCzTrz)的发射光谱明显红移,说明两者形成界面激基复合物。空穴传输层材料与发光层3中的第一主体材料形成界面激基复合物。一方面,作为竞争过程,激基复合物的高反系间穿越(RISC)速率可以抑制从激基复合物到荧光染料的德克斯特能量转移(DET)。另一方面,从激基复合物到热活化延迟荧光材料的增强
能量转移可以极大地促进热活化延迟荧光材料的单重态激子(>25%)的比例,同时抑制三重态激子(<75%),这也抑制了热活化延迟荧光材料到荧光染料的德克斯特能量转移(DET)。通过这两个路径可以大大减少德克斯特能量转移(DET)的激子损失,有利于提高器件效率。
同时,发光层中热活化延迟荧光材料、第一主体材料适配掺杂,能够稀释热活化延迟荧光材料以抑制聚集引起的猝灭效应,可以实现进一步提高器件效率。
实施例2
本实施例提供一种有机电致发光器件,其结构同实施例1,第一主体材料替换为:
实施例3
本实施例提供一种有机电致发光器件,其结构同实施例1,TADF材料替换为:
实施例4
本实施例提供一种有机电致发光器件,其结构同实施例1,空穴传输材料中的一个TCTA,替换为:
实施例5
实施例6
实施例7
实施例8
实施例9
实施例10
以上实施例1-10中,荧光染料占所述第一主体材料质量的0.1-20%,优选地,为0.5-10%;所述热活化延迟荧光材料占所述第一主体材料质量的5-80%,优选为10-40%。
以上实施例中,第一主体材料可选自如下化合物:
空穴传输材料可选自如下化合物:
荧光染料可选自如下化合物:
敏化材料即TADF材料,可以选自以下化合物:
作为本发明的可变换实施例,有机电致发光器件的结构不限于此,在权利要求书限定范围内的任意有机电致发光器件均可实现本发明的目的,属于本发明的保护范围;其制备工艺参考现有技术,本说明书中不再赘述。
对比例1
本对比例提供一种有机电致发光器件,其结构同实施例1,不同的是,发光 层中将与空穴传输层形成激基复合物的第一主体材料去除,TADF敏化剂单独作为第一主体材料使用。
具体地,有机电致发光器件的结构为:ITO/TAPC(30nm)/TCTA(10nm)/发光层(30nm)/BPBiPA(30nm)/LiF(1nm)/Al(150nm)。
其中,发光层包括,第一主体材料为PXZ-DPS,荧光客体为PhtBuPAD。
测试例
器件的电流、电压、亮度、发光光谱等特性采用PR 650光谱扫描亮度计和Keithley K 2400数字源表系统同步测试。对实施例1-4和对比例1中的所提供的有机电致发光器件进行测试,如图4所示,实施例1中所提供的器件的外量子效率大于对比例1中的器件。
开启电压 | 色坐标CIE(x,y) | 最大子效率(%) | |
实施例1 | 2.4 | (0.36,0.58) | 24 |
实施例2 | 2.5 | (0.36,0.58) | 23 |
实施例3 | 2.5 | (0.36,0.58) | 23 |
实施例4 | 2.4 | (0.36,0.58) | 24 |
对比例1 | 2.9 | (0.36,0.58) | 19 |
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
Claims (17)
- 一种有机电致发光器件,包括空穴传输层及发光层,其中,所述空穴传输层与发光层的界面处形成界面激基复合物。
- 根据权利要求1所述的有机电致发光器件,其中,所述发光层包括敏化材料、第一主体材料和荧光染料,所述敏化材料为热活化延迟荧光材料,所述空穴传输层的材料与所述发光层中的所述第一主体材料形成界面激基复合物。
- 根据权利要求2所述的有机电致发光器件,其中,所述激基复合物的三线态能级小于所述空穴传输层材料的三线态能级,所述激基复合物的三线态能级小于所述第一主体材料的三线态能级。
- 根据权利要求2所述的有机电致发光器件,其中,所述激基复合物的单线态能级大于所述热活化延迟荧光材料的单线态能级;所述激基复合物的三线态能级大于所述热活化延迟荧光材料的三线态能级。
- 根据权利要求2所述的有机电致发光器件,其中,所述第一主体材料的HOMO能级和LUMO能级的能级差大于2.5eV。
- 根据权利要求2所述的有机电致发光器件,其中,所述热活化延迟荧光材料的单线态与三线态能级差小于0.2eV。
- 根据权利要求2所述的有机电致发光器件,其中,所述荧光染料占第一主体材料质量的0.1-20%,所述热活化延迟荧光材料占第一主体材料质量的5-80%。
- 根据权利要求7所述的有机电致发光器件,其中,所述荧光染料占第一主体材料质量的0.5-10%,所述热活化延迟荧光材料占第一主体材料质量的10-40%。
- 根据权利要求2所述的有机电致发光器件,其中,所述空穴传输层的材料为具有三级芳香胺或者咔唑单元的化合物。
- 根据权利要求2所述的有机电致发光器件,其中,所述第一主体材料中含有羰基、膦氧、嘧啶或吡啶中一种或多种单元。
- 根据权利要求2所述的电致发光器件,其中,所述的热活化延迟荧光材料同时存在给体单元和受体单元,所述给体单元为一个或大于一个的给体基团连接构成的;所述受体单元为一个或大于一个的受体基团连接构成的。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/552,319 US11362295B2 (en) | 2017-11-18 | 2019-08-27 | Organic electroluminescent device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711151474.6 | 2017-11-18 | ||
CN201711151474.6A CN109817836A (zh) | 2017-11-18 | 2017-11-18 | 有机电致发光器件 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/552,319 Continuation US11362295B2 (en) | 2017-11-18 | 2019-08-27 | Organic electroluminescent device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019095664A1 true WO2019095664A1 (zh) | 2019-05-23 |
Family
ID=65431027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/089279 WO2019095664A1 (zh) | 2017-11-18 | 2018-05-31 | 有机电致发光器件 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11362295B2 (zh) |
CN (2) | CN112420965B (zh) |
TW (1) | TWI673894B (zh) |
WO (1) | WO2019095664A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110911576A (zh) * | 2019-11-29 | 2020-03-24 | 昆山国显光电有限公司 | 一种有机电致发光器件及显示装置 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3565018B1 (en) * | 2018-05-04 | 2024-05-08 | Samsung Display Co., Ltd. | Organic electroluminescent device emitting blue light |
CN109713166A (zh) * | 2018-12-21 | 2019-05-03 | 苏州大学 | 一种高效荧光有机发光二极管及其制备方法 |
US11864462B2 (en) * | 2019-10-18 | 2024-01-02 | Lg Display Co., Ltd. | Organic light emitting diode and organic light emitting device including the same |
KR20210046439A (ko) * | 2019-10-18 | 2021-04-28 | 엘지디스플레이 주식회사 | 유기발광다이오드 및 유기발광장치 |
CN112331777B (zh) * | 2019-10-30 | 2022-01-11 | 广东聚华印刷显示技术有限公司 | 量子点电致发光器件 |
CN110878062A (zh) * | 2019-11-27 | 2020-03-13 | 武汉华星光电半导体显示技术有限公司 | 热活化延迟荧光材料及其制备方法和电致发光器件 |
US20230095786A1 (en) * | 2020-01-10 | 2023-03-30 | Kyushu University, National University Corporation | Light emitting material, delayed phosphor, organic light emitting diode, screen, display and method for producing display |
CN111952478B (zh) * | 2020-08-25 | 2024-03-12 | 烟台大学 | 界面激基复合物的单发光层白光磷光有机电致发光器件 |
KR20220034511A (ko) * | 2020-09-11 | 2022-03-18 | 엘지디스플레이 주식회사 | 유기발광다이오드 및 유기발광장치 |
CN112117388B (zh) * | 2020-09-23 | 2023-10-24 | 京东方科技集团股份有限公司 | 有机电致发光器件、显示面板及显示装置 |
CN112151687B (zh) * | 2020-09-25 | 2024-02-09 | 京东方科技集团股份有限公司 | 有机电致发光器件、显示面板及显示装置 |
KR20220042625A (ko) * | 2020-09-28 | 2022-04-05 | 엘지디스플레이 주식회사 | 유기발광다이오드 및 유기발광장치 |
CN112510062B (zh) * | 2020-11-27 | 2022-08-16 | 电子科技大学 | 一种上转换器件红外复合波长成像系统及其搭建测试方法 |
CN112993176A (zh) * | 2020-12-30 | 2021-06-18 | 北京交通大学 | 一种基于tadf材料的白光电致发光器件及其制备方法 |
JP2022159059A (ja) * | 2021-03-31 | 2022-10-17 | 保土谷化学工業株式会社 | p-ジフェニル化合物誘導体混合物および製造方法 |
CN113921740B (zh) * | 2021-11-18 | 2023-09-01 | 昆山国显光电有限公司 | 一种有机电致发光器件及显示装置 |
CN115418216A (zh) * | 2022-08-31 | 2022-12-02 | 季华恒烨(佛山)电子材料有限公司 | 一种发光组合物及有机电致发光器件 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014220450A (ja) * | 2013-05-10 | 2014-11-20 | 国立大学法人山形大学 | 有機エレクトロルミネッセンス素子 |
CN104247076A (zh) * | 2012-04-20 | 2014-12-24 | 株式会社半导体能源研究所 | 发光元件、发光装置、电子设备以及照明装置 |
JP2015170793A (ja) * | 2014-03-10 | 2015-09-28 | Jx日鉱日石エネルギー株式会社 | 有機エレクトロルミネッセンス素子及び該素子を有する発光装置 |
CN105895811A (zh) * | 2015-01-26 | 2016-08-24 | 北京维信诺科技有限公司 | 一种热活化敏化荧光有机电致发光器件 |
CN106328816A (zh) * | 2015-06-16 | 2017-01-11 | 昆山国显光电有限公司 | 一种有机电致发光器件及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140078683A (ko) * | 2011-09-30 | 2014-06-25 | 유디씨 아일랜드 리미티드 | 유기 전계 발광 소자, 및 신규 이리듐 착물 |
US9130182B2 (en) * | 2013-06-28 | 2015-09-08 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, lighting device, light-emitting device, and electronic device |
GB2540969B (en) * | 2015-07-31 | 2017-12-27 | Cambridge Display Tech Ltd | Method of doping an organic semiconductor and doping composition |
CN105503766B (zh) * | 2015-12-18 | 2018-06-22 | 昆山国显光电有限公司 | 一种热活化延迟荧光材料及有机电致发光器件 |
CN106898700B (zh) * | 2015-12-18 | 2019-06-25 | 昆山国显光电有限公司 | 一种磷光有机电致发光器件 |
-
2017
- 2017-11-18 CN CN202011229968.3A patent/CN112420965B/zh active Active
- 2017-11-18 CN CN201711151474.6A patent/CN109817836A/zh active Pending
-
2018
- 2018-05-31 WO PCT/CN2018/089279 patent/WO2019095664A1/zh active Application Filing
- 2018-06-05 TW TW107119352A patent/TWI673894B/zh active
-
2019
- 2019-08-27 US US16/552,319 patent/US11362295B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104247076A (zh) * | 2012-04-20 | 2014-12-24 | 株式会社半导体能源研究所 | 发光元件、发光装置、电子设备以及照明装置 |
JP2014220450A (ja) * | 2013-05-10 | 2014-11-20 | 国立大学法人山形大学 | 有機エレクトロルミネッセンス素子 |
JP2015170793A (ja) * | 2014-03-10 | 2015-09-28 | Jx日鉱日石エネルギー株式会社 | 有機エレクトロルミネッセンス素子及び該素子を有する発光装置 |
CN105895811A (zh) * | 2015-01-26 | 2016-08-24 | 北京维信诺科技有限公司 | 一种热活化敏化荧光有机电致发光器件 |
CN106328816A (zh) * | 2015-06-16 | 2017-01-11 | 昆山国显光电有限公司 | 一种有机电致发光器件及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110911576A (zh) * | 2019-11-29 | 2020-03-24 | 昆山国显光电有限公司 | 一种有机电致发光器件及显示装置 |
CN110911576B (zh) * | 2019-11-29 | 2023-02-17 | 昆山国显光电有限公司 | 一种有机电致发光器件及显示装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI673894B (zh) | 2019-10-01 |
US11362295B2 (en) | 2022-06-14 |
CN109817836A (zh) | 2019-05-28 |
US20190386235A1 (en) | 2019-12-19 |
TW201843857A (zh) | 2018-12-16 |
CN112420965B (zh) | 2023-10-24 |
CN112420965A (zh) | 2021-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019095664A1 (zh) | 有机电致发光器件 | |
WO2019128104A1 (zh) | 有机电致发光器件及有机电致发光器件的制备方法 | |
WO2017107749A1 (zh) | 一种有机电致发光器件 | |
WO2019227777A1 (zh) | 一种有机电致发光器件 | |
WO2016107537A1 (zh) | 一种具有rgb像素区的有机电致发光装置 | |
CN108011040B (zh) | 一种绿光有机电致发光器件 | |
TW543337B (en) | Highly stable and efficient OLEDs with a phosphorescent-doped mixed layer architecture | |
CN108011047B (zh) | 一种红光有机电致发光器件 | |
CN105418533B (zh) | 一种红光热活化延迟荧光材料及有机电致发光器件 | |
WO2023024445A1 (zh) | 螺环化合物、制剂、有机电致发光二极管及显示装置 | |
WO2017101657A1 (zh) | 一种磷光有机电致发光器件 | |
CN209104191U (zh) | 一种有机发光二极管和显示面板 | |
WO2019128105A1 (zh) | 有机电致发光器件 | |
WO2019109608A1 (zh) | 有机电致发光器件 | |
CN104835916A (zh) | 一种基于荧光掺杂发光层的高效有机电致发光器件 | |
JP2009182322A (ja) | 有機エレクトロルミネッセンス装置 | |
WO2020034805A1 (zh) | 一种基于激基复合物和激基缔合物体系的有机电致发光器件 | |
CN109817818A (zh) | 一种有机电致发光器件和显示装置 | |
CN109638170B (zh) | 一种有机电致光电元件 | |
WO2022062700A1 (zh) | 有机电致发光器件、显示面板及显示装置 | |
CN112117388B (zh) | 有机电致发光器件、显示面板及显示装置 | |
CN102569660A (zh) | 一种叠层结构有机电致发光器件 | |
US11613530B2 (en) | Thermally activated delayed fluorescent molecular material, method for synthesizing the same, and organic electroluminescent device | |
WO2019041867A1 (zh) | 有机电致发光器件 | |
WO2018129922A1 (zh) | 白色有机电致发光器件及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18879015 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18879015 Country of ref document: EP Kind code of ref document: A1 |