WO2020034805A1 - 一种基于激基复合物和激基缔合物体系的有机电致发光器件 - Google Patents
一种基于激基复合物和激基缔合物体系的有机电致发光器件 Download PDFInfo
- Publication number
- WO2020034805A1 WO2020034805A1 PCT/CN2019/096495 CN2019096495W WO2020034805A1 WO 2020034805 A1 WO2020034805 A1 WO 2020034805A1 CN 2019096495 W CN2019096495 W CN 2019096495W WO 2020034805 A1 WO2020034805 A1 WO 2020034805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substituted
- unsubstituted
- group
- organic compound
- groups
- Prior art date
Links
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 167
- 239000000463 material Substances 0.000 claims abstract description 161
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 230000005284 excitation Effects 0.000 claims abstract description 12
- 125000003118 aryl group Chemical group 0.000 claims description 56
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 35
- 125000001072 heteroaryl group Chemical group 0.000 claims description 34
- 238000002347 injection Methods 0.000 claims description 31
- 239000007924 injection Substances 0.000 claims description 31
- 125000003545 alkoxy group Chemical group 0.000 claims description 28
- 229910052731 fluorine Inorganic materials 0.000 claims description 25
- 229910052796 boron Inorganic materials 0.000 claims description 24
- 229910052794 bromium Inorganic materials 0.000 claims description 24
- 229910052801 chlorine Inorganic materials 0.000 claims description 24
- 229910052740 iodine Inorganic materials 0.000 claims description 24
- 229910052799 carbon Inorganic materials 0.000 claims description 23
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 22
- 238000005401 electroluminescence Methods 0.000 claims description 21
- 238000004770 highest occupied molecular orbital Methods 0.000 claims description 20
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims description 19
- 230000000903 blocking effect Effects 0.000 claims description 18
- 229910052805 deuterium Inorganic materials 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 125000000304 alkynyl group Chemical group 0.000 claims description 16
- 230000005525 hole transport Effects 0.000 claims description 16
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 125000004104 aryloxy group Chemical group 0.000 claims description 12
- 125000004429 atom Chemical group 0.000 claims description 12
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 11
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 10
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 125000004122 cyclic group Chemical group 0.000 claims description 10
- 125000003808 silyl group Chemical class [H][Si]([H])([H])[*] 0.000 claims description 10
- 238000000862 absorption spectrum Methods 0.000 claims description 9
- 238000000295 emission spectrum Methods 0.000 claims description 9
- 125000002947 alkylene group Chemical class 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 6
- 125000000962 organic group Chemical group 0.000 claims description 6
- 125000001424 substituent group Chemical group 0.000 claims description 6
- 230000005684 electric field Effects 0.000 claims description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical class [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 4
- 125000004414 alkyl thio group Chemical group 0.000 claims description 4
- 125000003368 amide group Chemical group 0.000 claims description 4
- 150000004982 aromatic amines Chemical class 0.000 claims description 4
- 125000005264 aryl amine group Chemical group 0.000 claims description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 125000000623 heterocyclic group Chemical group 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical class P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 claims description 4
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 125000006376 (C3-C10) cycloalkyl group Chemical group 0.000 claims description 2
- 125000006736 (C6-C20) aryl group Chemical group 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- 125000001153 fluoro group Chemical group F* 0.000 claims description 2
- 125000005842 heteroatom Chemical group 0.000 claims description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 2
- 150000002823 nitrates Chemical class 0.000 claims description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims 2
- 239000007850 fluorescent dye Substances 0.000 abstract description 2
- 238000003475 lamination Methods 0.000 abstract 2
- 230000000052 comparative effect Effects 0.000 description 32
- 239000011368 organic material Substances 0.000 description 17
- 239000000758 substrate Substances 0.000 description 17
- 230000000171 quenching effect Effects 0.000 description 15
- 239000005416 organic matter Substances 0.000 description 12
- 238000010791 quenching Methods 0.000 description 9
- 235000012736 patent blue V Nutrition 0.000 description 8
- 238000005215 recombination Methods 0.000 description 8
- 230000006798 recombination Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 239000010405 anode material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000012780 transparent material Substances 0.000 description 6
- 229920001940 conductive polymer Polymers 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- -1 polycyclic hydrocarbon compounds Chemical class 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000000695 excitation spectrum Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 2
- 230000001443 photoexcitation Effects 0.000 description 2
- 238000000103 photoluminescence spectrum Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- XJKSTNDFUHDPQJ-UHFFFAOYSA-N 1,4-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC=CC=2)C=C1 XJKSTNDFUHDPQJ-UHFFFAOYSA-N 0.000 description 1
- BRSRUYVJULRMRQ-UHFFFAOYSA-N 1-phenylanthracene Chemical compound C1=CC=CC=C1C1=CC=CC2=CC3=CC=CC=C3C=C12 BRSRUYVJULRMRQ-UHFFFAOYSA-N 0.000 description 1
- ZZLQHXCRRMUGQJ-UHFFFAOYSA-N 2'-Hydroxyflavone Natural products OC1=CC=CC=C1C1=CC(=O)C2=CC=CC=C2O1 ZZLQHXCRRMUGQJ-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- DMEVMYSQZPJFOK-UHFFFAOYSA-N 3,4,5,6,9,10-hexazatetracyclo[12.4.0.02,7.08,13]octadeca-1(18),2(7),3,5,8(13),9,11,14,16-nonaene Chemical compound N1=NN=C2C3=CC=CC=C3C3=CC=NN=C3C2=N1 DMEVMYSQZPJFOK-UHFFFAOYSA-N 0.000 description 1
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Inorganic materials [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000012769 display material Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- HVQAJTFOCKOKIN-UHFFFAOYSA-N flavonol Chemical compound O1C2=CC=CC=C2C(=O)C(O)=C1C1=CC=CC=C1 HVQAJTFOCKOKIN-UHFFFAOYSA-N 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000001748 luminescence spectrum Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 229930184652 p-Terphenyl Natural products 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- AHLATJUETSFVIM-UHFFFAOYSA-M rubidium fluoride Inorganic materials [F-].[Rb+] AHLATJUETSFVIM-UHFFFAOYSA-M 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/322—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/656—Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/658—Organoboranes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/30—Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/40—Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/90—Multiple hosts in the emissive layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
Definitions
- the invention relates to the field of semiconductor technology, in particular to an organic electroluminescence device with high efficiency and long life based on exciplex and excimer systems.
- Organic electroluminescent diodes have been actively researched and developed.
- the simplest basic structure of an organic electroluminescent device includes a light-emitting layer sandwiched between opposing cathodes and anodes.
- Organic electroluminescence devices are widely regarded as the next-generation flat panel display materials because they can achieve ultra-thin, lightweight, fast response to input signals, and low-voltage DC drive.
- organic electroluminescent devices have the following light-emitting mechanism: When a voltage is applied between the electrodes sandwiching the light-emitting layer, electrons injected from the anode and holes injected from the cathode recombine to form excitons in the light-emitting layer, and the exciton relaxes. The ground state emits energy to form a photon.
- the light-emitting layer generally requires the host material to be doped with a guest material to obtain more efficient energy transfer efficiency, and to give full play to the light-emitting potential of the guest material.
- the combination of host-guest materials and the balance of electrons and holes in the host material are the key factors to obtain efficient devices.
- the carrier mobility of the electrons and holes in the existing host material often has a large difference, which causes the exciton recombination region to deviate from the light-emitting layer, resulting in low efficiency of existing devices and deviations in device stability.
- OLEDs organic light-emitting diodes
- traditional organic fluorescent materials can only use 25% singlet excitons formed by electrical excitation to emit light, and the internal quantum efficiency of the device is low (up to 25%).
- the external quantum efficiency is generally lower than 5%, which is still far from the efficiency of phosphorescent devices.
- phosphorescent materials have enhanced intersystem crossing due to the strong spin-orbit coupling of the heavy atom center, the singlet excitons and triplet excitons formed by electrical excitation can be effectively used to make the internal quantum efficiency of the device reach 100%, but Phosphorescent materials are expensive, have poor material stability, and severe device efficiency roll-off, which limits their applications in OLEDs.
- Thermally Activated Delayed Fluorescence (TADF) materials are the third generation of organic light emitting materials developed after organic fluorescent materials and organic phosphorescent materials. This kind of material generally has a small singlet-triplet energy level difference ( ⁇ EST), and triplet excitons can be converted into singlet excitons by intersystem crossing to emit light. This can make full use of the singlet and triplet excitons formed under electrical excitation, and the internal quantum efficiency of the device can reach 100%.
- the material structure is controllable, the properties are stable, the price is cheap, no precious metals are needed, and the application prospect in the field of OLEDs is broad.
- Intramolecular TADF is mainly a triplet exciton of the same molecule that is up-converted to a singlet exciton to emit light, mainly as a dopant. Heteroluminescent materials are used; and intermolecular TADF realizes the conversion of triplet excitons to singlet excitons through the charge transfer of two different molecules. It is mainly used as a host material.
- TADF materials can achieve 100% exciton utilization, there are actually the following problems: (1)
- the T1 and S1 states of the design molecule have strong CT characteristics, and the S1-T1 state energy gap is very small.
- a high T1 ⁇ S1 state exciton conversion rate is achieved, but at the same time it results in a low S1 state radiation transition rate. Therefore, it is difficult to combine (or simultaneously achieve) high exciton utilization and high fluorescence radiation efficiency;
- the traditional device light-emitting layer is matched with host-guest doping, and energy is transferred to the guest material through the host material, which makes the guest material emit light, avoids the concentration quenching of excitons, and improves device efficiency and life.
- the half-peak width of the device spectrum is large, which is not conducive to the improvement of the color purity of the device.
- the present application provides a high-efficiency organic electroluminescent device.
- the application can effectively balance the carriers in the device, reduce the exciton quenching effect, and improve the carrier recombination rate of the device; at the same time, the exciplex based on the first and second organic compounds can effectively reduce the driving voltage.
- exciton associations formed by third organic compounds can effectively use the energy of triplet excitons, reduce the quenching effect of triplet excitons, and improve the luminous efficiency and Stability;
- Exciter associations can effectively reduce the triplet exciton concentration of the host material, reduce singlet-exciton quenching and triplet-triplet quenching of the host material, and exciton association Since triplet excitons and singlet excitons are bi-molecular excited states, they can improve the thermal and chemical stability of the molecule and prevent material decomposition.
- An organic electroluminescence device includes a cathode, an anode, a light-emitting layer between the cathode and the anode, a hole transport region between the anode and the light-emitting layer, and an electron transport region between the cathode and the light-emitting layer;
- the light-emitting layer includes A host material and a guest material;
- the light-emitting layer host material includes a first organic compound, a second organic compound, and a third organic compound, and a difference between a HOMO energy level of the first organic compound and a HOMO energy level of the second organic compound is greater than or equal to 0.2 eV, The difference between the LUMO energy level of the first organic compound and the LUMO energy level of the second organic compound is greater than or equal to 0.2 eV;
- the first organic compound and the second organic compound form a mixture or a laminated interface, and generate an exciplex under the condition of light or electric field excitation; the emission spectrum of the exciplex and the absorption spectrum of the third organic compound overlap
- the singlet energy level of the exciplex is higher than the singlet energy level of the third organic compound, and the triplet energy level of the exciplex is higher than the triplet energy level of the third organic compound; and the first The organic compound and the second organic compound have different carrier transport characteristics;
- the third organic compound is doped in a mixture or a laminated interface formed by the first and second organic compounds, and forms an intramolecular excimer association; a singlet energy level of the excimer association is less than the excimer The singlet energy level of the complex, and the triplet energy level of the exciplex is less than the triplet energy level of the exciplex;
- the guest material in the light-emitting layer is a fluorescent organic compound.
- the singlet energy level of the guest material is lower than the singlet energy level of the radical.
- the triplet energy level of the guest material is lower than the triplet energy level of the radical.
- the difference between the triplet energy level and the singlet energy level of the exciplex formed by the first organic compound and the second organic compound is less than or equal to 0.2 eV.
- the third organic compound forms an excimer association, and the difference between the triplet energy level and the singlet energy level is 0.2 eV or less.
- the first organic compound and the second organic compound form a mixture at a mass ratio of 1:99 to 99: 1; the third organic compound is doped in the mixture formed by the first and second organic compounds; and the third organic compound and the first organic compound
- the mass ratio of the mixture formed by the first and second organic compounds is 1:99 to 50:50.
- the first organic compound and the second organic compound form a laminated structure having an interface
- the first organic compound is located on a hole transport side
- the second organic compound is located on an electron transport side
- the third organic compound is doped on the first In the organic compound layer or the second organic compound layer
- the mass ratio of the third organic compound to the first organic compound is 1:99 to 50:50
- the mass ratio of the third organic compound to the second organic compound is 1:99 ⁇ 50: 50.
- the mass fraction of the guest material in the light-emitting layer is 0.5% to 15% of the host material.
- the hole mobility of the first organic compound is greater than the electron mobility
- the electron mobility of the second organic compound is greater than the hole mobility
- the first organic compound is a hole-transporting material and the second organic compound is an electron-transporting material.
- Type material is
- the difference between the singlet and triplet energy levels of the guest material is less than or equal to 0.3 eV.
- the third organic compound is a compound containing a boron atom; wherein the number of boron atoms is greater than or equal to 1, and the boron atoms are bonded to other elements by sp2 hybrid orbital mode;
- the groups attached to boron are hydrogen atoms, substituted or unsubstituted C1-C6 straight-chain alkyl groups, substituted or unsubstituted C3-C10 cycloalkyl groups, substituted or unsubstituted C1-C10 hetero One of a cycloalkyl group, a substituted or unsubstituted C6-C60 aromatic group, or a substituted or unsubstituted C3-C60 heteroaryl group;
- the groups connected to the boron atom may be individually connected, or may be directly bonded to each other to form a ring, or connected to the boron after being connected to form a ring through other groups.
- the third organic compound has a number of boron atoms of 1, 2, or 3.
- the third organic compound has a structure represented by the following general formula (1):
- X 1 , X 2 , and X 3 each independently represent a nitrogen atom or a boron atom, and at least one atom of X 1 , X 2 , or X 3 is a boron atom; each time Z appears the same or different, it is represented as N or C (R);
- a, b, c, d, and e are each independently represented as 0, 1, 2, 3, or 4;
- At least one pair of carbon atoms in C 1 and C 2 , C 3 and C 4 , C 5 and C 6 , C 7 and C 8 , C 9 and C 10 may be connected to form a 5-7 membered ring structure;
- R 2 is the same or different at each occurrence and is represented by H, D, F or an aliphatic, aromatic or heteroaromatic organic group having C1-C20, wherein one or more H atoms may also be D or F Instead; here two or more substituents R2 may be connected to each other and may form a ring;
- Ra, Rb, Rc, Rd each independently represent a C1-20 alkyl group, a C3-20 branched or cycloalkyl group, a linear or branched C1-C20 alkyl-substituted silyl group, a substituted or unsubstituted C6-30 aryl, substituted or unsubstituted 5-30 membered heteroaryl, substituted or unsubstituted C5-C30 arylamine;
- the third organic compound has a structure represented by the following general formula (2):
- X 2 independently represents a nitrogen atom or a boron atom, and at least one of X 1 , X 2 , and X 3 is a boron atom;
- Z 1 -Z 11 are each independently represented as a nitrogen atom or C (R);
- a, b, c, d, and e are each independently represented as 0, 1, 2, 3, or 4;
- R 2 is the same or different at each occurrence and is represented by H, D, F or an aliphatic, aromatic or heteroaromatic organic group having C1-C20, wherein one or more H atoms may also be D or F Instead; here two or more substituents R2 may be connected to each other and may form a ring;
- Ra, Rb, Rc, Rd each independently represent a C1-20 alkyl group, a C3-20 branched or cycloalkyl group, a linear or branched C1-C20 alkyl-substituted silyl group, a substituted or unsubstituted C6-C30 aryl, substituted or unsubstituted 5-30 membered heteroaryl, substituted or unsubstituted C5-C30 arylamine;
- the third organic compound has a structure represented by the following general formula (3):
- Z and Y at different positions are independently expressed as C (R) or N;
- n is represented by the number 0, 1, 2, 3, 4 or 5;
- L is selected from a single bond, a double bond, a triple bond, an aromatic group having 6-40 carbon atoms or a heteroaromatic group having 3-40 carbon atoms base;
- R 2 is the same or different at each occurrence and is represented by H, D, F or an aliphatic, aromatic or heteroaromatic organic group having C1-C20, wherein one or more H atoms may also be D or F Instead; here two or more substituents R2 may be connected to each other and may form a ring;
- R n each independently represents a substituted or unsubstituted C1-C20 alkyl group, a C1-C20 alkyl-substituted silyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted 5-30 A membered heteroaryl group, a substituted or unsubstituted C5-C30 arylamine group;
- Ar represents a substituted or unsubstituted C1-C20 alkyl group, a C1-C20 alkyl-substituted silyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted 5-30 membered heteroaryl group
- X 1 , X 2 , and X 3 may also exist independently of each other, that is, the positions shown by X 1 , X 2 , and X 3 are independent of each other without atoms or bonds. And at least one of X 1 , X 2 , and X 3 indicates that an atom or a bond exists.
- the guest material is represented by the following general formula (5):
- X is N atom or CR 7 ;
- R 1 to R 7 each independently represent a hydrogen atom, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, a substituted or unsubstituted 3-20 membered heterocyclic ring Group, substituted or unsubstituted C2-C20 alkenyl group, substituted or unsubstituted C3-C20 cycloalkenyl group, substituted or unsubstituted alkynyl group, substituted or unsubstituted hydroxy group, substituted or unsubstituted alkoxy group , Substituted or unsubstituted alkylthio, substituted or unsubstituted C6-C30 aryl, substituted or unsubstituted 5-30 membered heteroaryl, halogen, cyano, substituted or unsubstituted aldehyde, substituted Or unsubstituted
- R 1 to R 7 may be the same or different, and at the same time, R 1 and R 2 , R 2 and R 3 , R 4 and R 5 , R 5 and R 6 may be bonded to each other to form a ring structure with 5-30 atoms. ;
- Y 1 and Y 2 may be the same or different; Y 1 and Y 2 are independently represented as substituted or unsubstituted C1-C20 alkyl, substituted or unsubstituted C3-C20 cycloalkyl, substituted or unsubstituted 3-20 membered heterocyclic group, substituted or unsubstituted C2-C20 alkenyl group, substituted or unsubstituted C3-C20 cycloalkenyl group, substituted or unsubstituted alkynyl group, substituted or unsubstituted hydroxy group, substituted Or unsubstituted alkoxy, substituted or unsubstituted alkylthio, substituted or unsubstituted C6-C30 aryl, substituted or unsubstituted 5-30 membered heteroaryl, halogen, cyano, substituted or Unsubstituted aldehyde, substituted or unsubstituted carbonyl,
- Y 1 and Y 2 in the general formula (5) are each independently represented as one of a fluoro group, a methoxy group, a trifluoromethyl group, a cyano group, and a phenyl group;
- the hole transport region includes one or more combinations of a hole injection layer, a hole transport layer, and an electron blocking layer.
- the electron transport region includes one or more combinations of an electron injection layer, an electron transport layer, and a hole blocking layer.
- the application also provides a lighting or display element including one or more organic electroluminescence devices as described above; and in the case where a plurality of devices are included, the devices are combined horizontally or vertically.
- HOMO means the highest occupied orbit of the molecule
- LUMO means the lowest empty orbit of the molecule.
- LUMO energy level difference value means a difference value of an absolute value of each energy value.
- Spectral half-peak width refers to the spectrum.
- the singlet (S1) level means the lowest singlet state energy level of the molecule
- the triplet (T1) level means the lowest triplet state energy of the molecule level.
- the “triplet energy level difference” and the “single state and triplet energy level difference” referred to in this specification mean the difference of the absolute value of each energy.
- the difference between the energy levels is expressed as an absolute value.
- the first organic compound and the second organic compound constituting the host material are independently selected from H1, H2, H3, H4, H5, H6, H7, and H8, but are not limited to the above materials, and their structures are:
- the HOMO / LUMO energy level difference between the first organic compound and the second organic compound is 0.2 eV or more.
- the mixture or interface formed by the first organic compound and the second organic compound can form an exciplex under photoexcitation, and then it can also generate an exciplex under the excitation of an electric field; the exciplex cannot be generated under the photoexcitation.
- an exciplex can be generated under the excitation of an electric field, as long as the HOMO / LUMO energy level difference between the first organic compound and the second organic compound meets the requirements.
- the first organic compound and the second organic compound in the light-emitting layer host material form a mixture, wherein the mass fraction of the first organic compound is 10% -90%, for example, it can be 9: 1 to 1: 9, preferably 8: 2 To 2: 8, preferably 7: 3 to 3: 7, and more preferably 1: 1.
- the singlet energy level of the third organic compound is lower than the singlet energy level of the exciplex, and the triplet energy level of the third organic compound is lower than the triplet energy level of the exciplex.
- the third organic compound may be selected from the following compounds, but is not limited thereto;
- the third organic compound is selected from the following compounds:
- the mass percentage of the third organic compound relative to the host material is 5-30%, preferably 10-20%;
- the guest material is a fluorescent compound, which can be selected from the following compounds, but is not limited thereto;
- the mass percentage of the guest material with respect to the host material is 0.5-15%, preferably 0.5-5%.
- the organic electroluminescent device of the present invention further includes a cathode and an anode.
- the anode comprises a metal, a metal oxide or a conductive polymer.
- the anode may have a work function in the range of about 3.5 to 5.5 eV.
- Conductive materials for anodes include carbon, aluminum, vanadium, chromium, copper, zinc, silver, gold, other metals and their alloys; zinc oxide, indium oxide, tin oxide, indium tin oxide (ITO), indium zinc oxide, and others Similar metal oxides; and mixtures of oxides and metals, such as ZnO: Al and SnO 2 : Sb.
- Both transparent and non-transparent materials can be used as anode materials.
- a transparent anode can be formed.
- transparency means a degree to which light emitted from the organic material layer is made transparent, and the light transmittance is not particularly limited.
- the organic light emitting device of this specification is a top emission type and the anode is formed on a substrate before the organic material layer and the cathode are formed, not only a transparent material but also a non-transparent material having excellent light reflectance can be used as the anode material.
- a transparent material is required to be used as the anode material, or a non-transparent material needs to be formed to be thin enough to be transparent film.
- the cathode a material having a small work function is preferable as the cathode material so that electron injection can be easily performed.
- Materials having a work function ranging from 2eV to 5eV can be used as the cathode material.
- the cathode may include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, scandium, aluminum, silver, tin, and lead or alloys thereof; materials having a multilayer structure, such as LiF / Al or LiO 2 / Al and the like are not limited thereto.
- the cathode may use the same material as the anode, in which case the cathode may be formed using the anode material as described above.
- the cathode or anode may include a transparent material.
- the organic light emitting device of the present invention may be a top emission type, a bottom emission type, or a two-sided emission type.
- the organic light emitting device of the present invention includes a hole injection layer.
- the hole injection layer may be preferably interposed between the anode and the light emitting layer.
- the hole injection layer is formed of a hole injection material known to those skilled in the art.
- the hole injection material is a material that easily receives holes from the anode at a low voltage, and the HOMO energy level of the hole injection material is preferably located between the work function of the anode material and the HOMO of the surrounding organic material layer.
- the hole injection material include, but are not limited to: metalloporphyrin-based organic materials, oligothiophene-based organic materials, aromatic amine-based organic materials, hexanitrile, hexaazabenzophenanthrene-based organic materials, and quinacridone-based organic materials.
- the organic light emitting device of the present invention includes a hole transport layer.
- the hole transporting layer may be preferably placed between the hole injection layer and the light emitting layer, or between the anode and the light emitting layer.
- the hole transport layer is formed of a hole transport material known to those skilled in the art.
- the hole transport material is preferably a material having a high hole mobility, which is capable of transferring holes from an anode or a hole injection layer to a light emitting layer.
- Specific examples of the hole transport material include, but are not limited to, arylamine-based organic materials, conductive polymers, and block copolymers having a bonded portion and a non-bonded portion.
- the organic light emitting device of the present invention further includes an electron blocking layer.
- the electron blocking layer may be preferably placed between the hole transport layer and the light emitting layer, or between the hole injection layer and the light emitting layer, or between the anode and the light emitting layer.
- the electron blocking layer is formed of an electron blocking material known to those skilled in the art, such as TCTA.
- the organic light emitting device of the present invention includes an electron injection layer.
- the electron injection layer may be preferably interposed between the cathode and the light emitting layer.
- the electron injection layer is formed of an electron injection material known to those skilled in the art.
- the electron injection layer may be formed using an electron-accepting organic compound.
- the electron-accepting organic compound a known optional compound can be used without particular limitation.
- polycyclic compounds such as p-terphenyl or tetraphenyl or derivatives thereof; polycyclic hydrocarbon compounds such as naphthalene, tetracene, pyrene, hexabenzobenzo, chrysene, anthracene, di Phenylanthracene or phenanthrene, or a derivative thereof; or a heterocyclic compound such as phenanthroline, phenanthroline, phenanthridine, acridine, quinoline, quinoxaline or phenazine, or a derivative thereof.
- inorganic materials including but not limited to: magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, thallium, aluminum, silver, tin and lead or alloys thereof; LiF, LiO 2 , LiCoO 2 , NaCl, MgF 2 , CsF, CaF 2 , BaF 2 , NaF, RbF, CsCl, Ru 2 CO 3 , YbF 3, and the like; and materials having a multilayer structure, such as LiF / Al or LiO 2 / Al and the like.
- the organic light emitting device of the present invention includes an electron transport layer.
- the electron transporting layer may be preferably interposed between the electron injection layer and the light emitting layer, or between the cathode and the light emitting layer.
- the electron transport layer is formed of an electron transport material known to those skilled in the art.
- the electron transport material is a material capable of easily receiving electrons from the cathode and transferring the received electrons to the light emitting layer. Materials having high electron mobility are preferred.
- Specific examples of the electron-transporting material include, but are not limited to: 8-hydroxyquinoline aluminum complex; composites containing 8-hydroxyquinoline aluminum; organic radical compounds; and hydroxyflavone metal complexes; and TPBi.
- the organic light emitting device of the present invention further includes a hole blocking layer.
- the hole blocking layer may be preferably placed between the electron transport layer and the light emitting layer, or between the electron injection layer and the light emitting layer, or between the cathode and the light emitting layer.
- the hole blocking layer is a layer that prevents the injected holes from passing through the light-emitting layer to the cathode, and can generally be formed under the same conditions as the hole injection layer. Specific examples include, but are not limited to, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complexes, and the like.
- the hole blocking layer may be the same layer as the electron transporting layer.
- the organic light emitting device may further include a substrate.
- a substrate Specifically, in an organic light emitting device, an anode or a cathode may be located on a substrate.
- the substrate may be a rigid substrate, such as a glass substrate, or a flexible substrate, such as a flexible film-shaped glass substrate, a plastic substrate, or a film-shaped substrate.
- an organic light emitting device can be produced using the same materials and methods known in the art. Specifically, an organic light emitting device may be produced by depositing a metal, a conductive metal oxide, or an alloy thereof on a substrate using a physical vapor deposition (PVD) method (such as sputtering or electron beam evaporation) to form an anode; An organic material layer including a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, and an electron transport layer is formed on the anode; a material that can be used to form a cathode is then deposited thereon.
- PVD physical vapor deposition
- an organic light emitting device can also be manufactured by sequentially depositing a cathode material, one or more organic material layers, and an anode material on a substrate.
- the organic light emitting composite material of the present invention can be made into an organic material layer using a solution coating method.
- solution coating method means, but is not limited to, spin coating, dip coating, doctor blade coating, inkjet printing, screen printing, spray coating, roll coating, and the like.
- the thickness of the light emitting layer and optionally the hole injection layer, the hole transport layer, the electron blocking layer, and the electron transport layer and the electron injection layer are 0.5 to 150 nm, preferably 1 to 100 nm.
- the thickness of the light emitting layer is 20 to 80 nm, and more preferably 30 to 60 nm.
- the host material of the light-emitting layer of the organic electroluminescence device provided by the present invention is composed of three kinds of materials. Among them, the mixture or interface formed by the first and second organic compounds generates an excimer complex under the conditions of light excitation and electrical excitation. . It can reduce the triplet exciton concentration of the host material, reduce the effect of triplet exciton quenching, and improve device stability.
- the second compound is a material with a carrier mobility different from that of the first compound, which can balance the carriers inside the host material, increase the exciton recombination region, and improve the device efficiency. At the same time, it can effectively solve the material color occurrence at high current density.
- the problem of offset improves the stability of the device's luminous color.
- the formed exciplex has small triplet energy and singlet energy level difference, so that triplet exciton can be quickly converted into singlet exciton, which reduces the quenching effect of triplet exciton and improves device stability.
- the singlet state forming the exciplex is higher than the singlet state energy level of the guest material, and the triplet state energy level is higher than the triplet state energy level of the guest material, which can effectively prevent energy from passing back from the guest material to the host material and further improve the device. Efficiency and stability.
- the third organic compound is an organic compound containing a boron atom, which is bonded to other atoms by the sp2 hybrid form of boron.
- boron is an electron-deficient atom, it has a strong electron-withdrawing ability, which increases the intermolecular Coulomb force; at the same time, due to the presence of boron atoms, the intramolecular rigidity is enhanced; it is easy for the material to form a molecular aggregation effect, and it is easy to produce excimer luminescence.
- the third organic compound is doped in the mixture or interface formed by the first or second organic matter (doped in the first or second organic matter), and energy is transferred from the exciplex formed by the first or second organic matter to the third organic matter.
- the compound and the third organic compound form an excimer association, which can effectively reduce the triplet exciton concentration of the host material, and reduce the singlet-exciton quenching and triplet-triplet quenching of the host material.
- the triplet excitons and singlet excitons of the excimer association can increase the thermal stability and chemical stability of the molecule and prevent the decomposition of the material, because the excitons of the triplet exciter can excite the triplet state.
- the upconverter is converted into a singlet exciton, and the energy is fully transferred to the guest material, so that the singlet and triplet states of the guest material are effectively used.
- the traditional excimer association is caused by the same two kinds of molecules to produce luminescence. It is generally considered that it is not conducive to energy transfer and luminescence. Most experiments show that the generation of excimer association is not conducive to the improvement of the luminous efficiency of materials. However, the present invention has found through experiments that reasonable material matching and optimization can not only effectively use the excimer association phenomenon and improve device efficiency, but also can significantly improve device life through reasonable material matching.
- FIG. 1 is a schematic diagram of an embodiment of an organic electroluminescent device according to the present invention.
- 2 to 4 are emission spectra of exciplex formed by first and second organic substances, absorption spectra of third organic matter, emission spectra of excimer formed by third organic matter, and absorption spectra of guest doped materials.
- FIG. 5 is the lifetime of the organic electroluminescent device prepared in the embodiment when it is operated at different temperatures.
- the singlet (S1) level means the lowest singlet state energy level of the molecule
- the triplet (T1) level means the lowest triplet state energy of the molecule level.
- the structure of the organic electroluminescent device prepared in Example 1 is shown in FIG. 1.
- the specific preparation process of the device is as follows:
- the ITO anode layer 2 on the transparent glass substrate layer 1 ultrasonically clean each with deionized water, acetone, and ethanol for 30 minutes, and then process it in a plasma cleaner for 2 minutes. Dry the ITO glass substrate and place it in a vacuum In the cavity, the vacuum degree is less than 1 * 10 -6 Torr.
- a mixture of HT1 and P1 with a thickness of 10 nm is evaporated, and the mass ratio of HT1 and P1 is 97: 3.
- HT1 is vapor-deposited as a hole transporting layer 4
- 20 nm thick EB1 is vapor-deposited as an electron blocking layer 5
- a 25 nm light-emitting layer 6 is vapor-deposited, wherein the light-emitting layer includes Host materials and guest doped dyes.
- the first, second, and third organic materials of the host materials are selected as shown in Table 1. According to the mass percentage of the host materials and the doped dyes, the rate control is performed by a film thickness meter; On the light-emitting layer 6, ET1 and Liq with a thickness of 40 nm are further evaporated, and the mass ratio of ET1 and Liq is 1: 1.
- This layer of organic material serves as a hole blocking / electron transport layer 7; Above 7, LiF with a thickness of 1 nm was vacuum-deposited, Layer is an electron injection layer 8; on the electron injection layer 8, a cathode vacuum deposition Al (80nm), the electrode layer is a cathode layer 9. Different devices have different vapor deposition film thicknesses. The selection of specific materials in Example 1 is shown in Table 1:
- Example 2-8 and Comparative Examples 1-8 adopt the method of Example 1.
- the structure of the obtained organic electroluminescent device is similar to that of Example 1.
- the specific materials used are shown in Table 1.
- Examples 9-16 and Comparative Examples 9-16 adopt the method of Example 1.
- the structure of the obtained organic electroluminescent device is similar to that of Example 1.
- the specific materials used are shown in Table 2.
- Examples 17-21 and Comparative Examples 17-21 adopt the method of Example 1.
- the structure of the obtained organic electroluminescent device is similar to that of Example 1.
- the specific materials used are shown in Table 3.
- Another main form is to first vaporize the first organic compound, and then co-evaporate the second organic compound and the third organic compound; or co-evaporate the first organic compound and the third organic compound, and then vaporize the second organic compound.
- braces are not used in tables.
- the carrier mobility of the selected materials is shown in Table 5 below:
- H1: H2 (50:50) is expressed as the mixture of the first organic compound and the second organic compound in a mass ratio of 50:50 in the host material; H1 / H2 is expressed as the first organic compound in the host material Forms an interface with a second organic compound.
- PL light excitation spectrum
- EL electric field excitation spectrum.
- Plpeak (nm) -solution is a tetrahydrofuran solution with a concentration of 2 * 10 -5 mol / L
- Plpeak (nm)-film is a film formed by three sources co-evaporation of first, second and third organic compounds.
- the material is vapor-deposited on transparent quartz glass, and then encapsulated.
- Edinburgh fluorescence spectrometer FLS980 to test the singlet and triplet energy levels of the material
- H7: H8 1: 1 (60nm) can not form a photo-induced exciplex
- the device's electrical exciplex spectrum is tested by making a device and applying electricity
- H7: H8: B-8 44: 44: 12 (60nm) is made as a device Perform luminescence spectrum test.
- the singlet and triplet energy levels of the exciplex formed by the first organic matter and the second organic matter are lower than the singlet and triplet energy levels of the first and second organic matter alone, and the singlet State-triplet state energy level difference is less than 0.2eV.
- the excimer formed by doping the third organic substance in the first and second organic substances has a singlet and triplet state lower than that of the third organic compound itself, and the energy difference between the singlet and triplet states of the excimer is less than 0.3. eV.
- the emission spectrum of the exciplex formed by the first and second organic substances and the absorption spectrum of the third organic compound have an effective overlap, ensuring that energy is transferred from the exciplex to the third organic compound.
- the emission spectrum of the excimer formed by the third organic compound and the absorption spectrum of the guest doped material have an effective overlap, ensuring that energy is transferred from the excimer to the guest doped material to emit light.
- the driving voltage, external quantum efficiency, LT90 lifetime, and spectral color are the test structures of the device at a driving current density of 10 mA / cm 2 ;
- the maximum external quantum efficiency is the maximum external quantum that can be achieved in device testing effectiveness.
- the devices of the exciplex and excimer association as the host material in Examples 1 to 21 have driving voltages that are higher than those of the device with a single host material. The decline is significant. At the same time, the device with exciplex and exciplex as the host material has a lower driving voltage than the device with exciplex as the host, but the decrease is not significant. The main reason is that radicals can effectively transfer holes and electrons, which reduces the barriers to injection of holes and electrons, thereby effectively reducing the driving voltage.
- Exciplexes and exciplexes are used as host materials. The complex mainly plays a role of reducing the voltage, and the excimer association has a certain ability to trap electrons and holes, which can reduce the voltage, but it can only help to reduce the voltage.
- the exciplex and the exciplex are significantly improved in device efficiency and device life compared to a single host material.
- the efficiency and life of the device using the excimer complex formed by the first and second organic compounds and the excimer association formed by boron-containing materials such as B-3, B-6 are significantly improved, mainly because the host material of the light-emitting layer is composed of The radical-excited complex and the excimer-associated complex are combined to form a mixture or interface formed by the first and second organic materials.
- the excited-excited complex can be generated under light or electrical excitation.
- the efficiency of the guest material while reducing the triplet exciton concentration of the host material, reducing the triplet exciton quenching effect, and increasing the device life.
- the third organic compound forms an excimer, which can effectively reduce the triplet exciton concentration of the host material, and reduce the singlet-exciton quenching and triplet-triplet quenching of the host material.
- the triplet excitons and singlet excitons of the excimer association can improve the thermal and chemical stability of the molecule and prevent the decomposition of the material because the excitons of the triplet exciter form can further reduce the triplet state.
- Excitons are converted into singlet excitons by up-conversion, and the energy is fully transferred to the guest material, so that the singlet and triplet states of the guest material are effectively used.
- the second compound is a material with a carrier mobility different from that of the first compound, which can balance the carriers in the host material, increase the exciton recombination region, and improve device efficiency. At the same time, it can effectively solve the problem of high current density materials.
- the problem of color shifting improves the stability of the device's luminous color.
- the formed exciplex has small triplet energy and singlet energy level difference, so that triplet exciton can be quickly converted into singlet exciton, which reduces the quenching effect of triplet exciton and improves device stability.
- the singlet state forming the exciplex is higher than the singlet energy level of the third organic compound, and the triplet energy level is higher than the triplet energy level of the third organic compound, which can effectively prevent the energy from returning from the third organic compound to the radical excitation recombination. Materials to further improve the efficiency and stability of the device.
- the singlet state that forms the excimer association is higher than the singlet state level of the guest material, and the triplet state level is higher than the triplet state level of the guest material, which can effectively prevent the energy from passing back from the guest material to the host material and further improve the efficiency of the device And stability.
- the third organic compound is an organic compound containing a boron atom.
- the sp2 hybrid form of boron is used to bond with other atoms.
- boron is an electron-deficient atom, it has a strong electron-withdrawing ability, which increases the Coulomb force between molecules; at the same time, due to the presence of boron atoms, the intramolecular rigidity is enhanced; it is easy for the material to form a molecular aggregation effect, and it is easy to produce excimer luminescence.
- the life of the OLED device prepared by the present invention is relatively stable when it is operated at different temperatures.
- the device comparative example 1, embodiment 1, comparative example 14, embodiment 14, comparative example 19, and embodiment 19 range from -10 to
- the lifetime (LT90) test was performed at 80 ° C. The results obtained are shown in Table 10 and Figure 5.
- the above test data is the device data of the device at 10mA / cm 2 .
- the device with the host material and the guest material used in the structure of the present application has a smaller change in device life at different temperatures than the traditional device combination, and has a higher change in device life.
- the temperature of the device keeps stable under the temperature, indicating that the device with the structure of the present application has better stability.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明涉及一种基于激基复合物和激基缔合物体系的有机电致发光器件。其中发光层主体材料包含第一、第二和第三有机化合物。第一和第二有机物形成的混合物或叠层界面,在光或电激发下产生激基复合物。第三有机化合物掺杂于第一和第二有机化合物形成的混合物或者叠层界面的一层中,第三有机化合物形成激基缔合物;激基复合物的单线态能级高于第三有机化合物的单线态能级,三线态能级高于第三有机化合物的三线态能级。激基缔合物的单线态能级高于客体材料的单线态能级,三线态能级高于客体材料的三线态能级;且第一有机化合物与第二有机化合物具有相异的载流子传输特性,客体掺杂材料为荧光化合物。本发明器件具有高效率和长寿命的特点。
Description
本发明涉及半导体技术领域,尤其是涉及一种高效率、长寿命的基于激基复合物(exciplex)和激基缔合物(excimer)体系的有机电致发光器件。
有机电致发光二极管(OLED)已经被积极的研究开发。有机电致发光器件最简单的基本结构包含发光层,夹在相对的阴极和阳极之间。有机电致发光器件由于可以实现超薄超轻量化、对输入信号响应速度快、且可以实现低压直流驱动,被认为是下一代平板显示材料而受到广泛关注。
一般认为有机电致发光器件有如下发光机理:在夹有发光层的电极之间施加电压时,从阳极注入的电子与从阴极注入的空穴在发光层中复合形成激子,激子弛豫到基态放出能量形成光子。在有机电致发光器件中,发光层一般需要主体材料掺杂客体材料以得到更高效的能量传递效率,充分发挥客体材料的发光潜能。为了获得较高的主客体能量传递效率,主客体材料的搭配以及主体材料内部电子和空穴的平衡度是获取高效器件的关键因素。现有主体材料其内部电子和空穴的载流子迁移率往往具有较大差异,导致激子复合区域偏离发光层,造成现有器件效率偏低,器件稳定性偏差。
有机发光二极管(OLEDs)在大面积平板显示和照明方面的应用引起了工业界和学术界的广泛关注。然而,传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。外量子效率普遍低于5%,与磷光器件的效率还有很大差距。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间窜越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达100%,但磷光材料存在价格昂贵,材料稳定性较差,器件效率滚落严重等问题限制了其在OLEDs的应用。
热激活延迟荧光(TADF)材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(△EST),三线态激子可以通过反系间窜越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子,器件的内量子效率可以达到100%。同时,材料结构可控,性质稳定,价格便宜无需贵重金属,在OLEDs领域的应用前景广阔。TADF材料主要有2种形式,一种是分子内TADF,另外一种是分子间TADF;分子内TADF主要是同一种分子自身的三线态激子通过上转换成单线态激子发光,主要作为掺杂发光材料使用;而分子间TADF通过两个不同分子的电荷转移实现三线态激子到单线态激子的转换,主要作为主体材料使用。
虽然理论上TADF材料可以实现100%的激子利用率,但实际上存在如下问题:(1)设计分子的T1和S1态具有强的CT特征,非常小的S1-T1态能隙,虽然可以通过TADF过程实现高T1→S1态激子转化率,但同时导致低的S1态辐射跃迁速率,因此,难于兼具(或同时实现)高激子利用率和高荧光辐射效率;
(2)由于目前采用D-A、D-A-D或者A-D-A结构的TADF材料,由于其存在较大的分子柔性,使得分子在基态和激发态的构型变化较大,材料的光谱的半峰宽(FWHM)过大,导致材料的色纯度降低;
(3)即使已经采用掺杂器件减轻T激子浓度猝灭效应,大多数TADF材料的器件在高电流密度下效率滚降严重。
(4)传统的主客体搭配方式,由于主体材料的电子和空穴传输速率不同,导致载流子复合率降低,导致器件效率降低;同时,载流子复合物区域靠近主体材料的一侧,使得载流子复合区域过于集中,导致三线态基子密度过于集中,导致载流子猝灭现象明显,器件效率和寿命降低。
传统的器件发光层搭配采用主客体掺杂形式,通过主体材料将能量传递给客体材料,使得客体材料发光,避免了激子的浓度淬灭,提升了器件效率和寿命。但是依然存在的载流子复合不充分和器件效率和寿命较低的现象。同时器件光谱的半峰宽较大,不利于器件色纯度的提高。
发明内容
针对现有技术存在的上述问题,本申请提供了一种高效率有机电致发光器件。本申请一方面能够有效平衡器件内部的载流子,降低激子淬灭效应,提高器件的载流子复合率;同时,第一、第二有机物形成的激基复合物能够有效的降低驱动电压,提升器件效率和工作稳定性;另一方面,第三有机物形成的激基缔合物能够有效的利用三线态激子的能量,降低三线态激子的淬灭效应,提高器件的发光效率和稳定性;激基缔合物一方面能够有效的降低主体材料的三线态激子浓度,降低主体材料的单线态-激子淬灭和三线态-三线态淬灭,另一方面激基缔合物的三线态激子和单线态激子由于是双分子激发态形式,能够提升分子的热稳定性和化学稳定,防止材料分解,进一步的激基缔合物能够通过将三线态激子通过上转换的方式转换成单线态激子,将能量充分传递给客体材料,使得客体材料单线态和三线态得到有效利用,有效提升了器件的发光效率和寿命;基于上述器件搭配能够有效提高有机发光器件的效率和寿命。
本发明的技术方案如下:
一种有机电致发光器件,包括阴极、阳极、阴极和阳极之间的发光层、阳极和发光层之间的空穴传输区域、阴极和发光层之间的电子传输区域;所述发光层包括主体材料和客体材料;所述发光层主体材料包含第一有机化合物、第二有机化合物和第三有机化合物,第一有机化合物的HOMO能级和第二有机化合物的HOMO能级差大于等于0.2eV,第一有机化合物的LUMO能级和第二有机化合物的LUMO能级差大于等于0.2eV;
第一有机化合物和第二有机化合物形成混合物或叠层界面,在光激发或电场激发的情况下产生激基复合物;所述激基复合物的发射光谱和第三有机化合物的吸收光谱具有重叠;所述激基复合物的单线态能级高于第三有机化合物的单线态能级,所述激基复合物的三线态能级高于第三有机化合物的三线态能级;且第一有机化合物与第二有机化合物具有相异的载流子传输特性;
第三有机化合物掺杂于第一、第二有机化合物形成的混合物或叠层界面中,并形成分子内激基缔合物;所述激基缔合物的单线态能级小于所述激基复合物的单线态能级,所述激基缔合物的三线态能级小于所述激基复合物的三线态能级;
发光层中客体材料为荧光有机化合物,客体材料的单线态能级低于基激缔合物的单线态能级,客体材料的三线态能级低于基激缔合物的三线态能级。
优选的,0.3eV≤|HOMO
第二有机化合物|-|HOMO第一有机化合物|≤1.0eV;0.3eV≤|LUMO
第二有机化合物|-|LUMO
第一有机化合物|≤1.0eV;|HOMO
第三有机化合物|<|HOMO
第二有机化合物|,|LUMO
第三有机化合物|>|LUMO
第一有机化合物|;其中|HOMO|和|LUMO|表示为化合物能级的绝对值。
优选的,第一有机化合物和第二有机化合物形成的激基复合物的三线态能级和单线态能级差小于等于0.2eV。
优选的,第三有机化合物形成激基缔合物,其三线态能级和单线态能级差小于等于0.2eV。
优选的,第一有机化合物和第二有机化合物按照1:99~99:1的质量比例形成混合物;第三有机化合物掺杂于第一、二有机物形成的混合物中;且第三有机化合物与第一、第二有机化合物形成的混合物的 质量比为1:99~50:50。
优选的,第一有机化合物和第二有机化合物形成具有界面的叠层结构,第一有机化合物位于空穴传输一侧,第二有机化合物位于电子传输一侧;第三有机化合物掺杂于第一有机化合物层或第二有机化合物层中,且第三有机化合物与第一有机化合物的质量比为1:99~50:50,或者第三有机化合物与第二有机化合物的质量比为1:99~50:50。
优选的,发光层中客体材料的质量分数为主体材料的0.5%~15%。
优选的,第一有机化合物的空穴迁移率大于电子迁移率,第二有机化合物的电子迁移率大于空穴迁移率;且第一有机化合物为传空穴型材料,第二有机化合物为传电子型材料。
优选的,所述客体材料的单线态和三线态能级差小于等于0.3eV。
优选的,第三有机化合物为含有硼原子的化合物;其中硼原子的数量大于等于1,硼原子通过sp2杂化轨道方式和其他元素进行成键;
与硼连接的基团为氢原子、取代或者未被取代的C1-C6的直链烷基、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C1-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C3-C60的杂芳基中的一种;
且与硼原子连接的基团可单独连接,也可相互直接键结成环或者通过其他基团连接成环后再与硼连接。
优选的,第三有机化合物含硼原子的数量为1、2、或3。
优选的,第三有机化合物为如下通式(1)所示结构:
其中X
1、X
2、X
3各自独立的表示氮原子或硼原子,X
1、X
2、X
3中至少有一个原子为硼原子;Z在每次出现时相同或者不同的表示为N或C(R);
a、b、c、d、e各自独立的表示为0、1、2、3或4;
C
1与C
2,C
3与C
4,C
5与C
6,C
7与C
8,C
9与C
10中至少有一对碳原子可以连接形成5-7元环结构;
R在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R
1,CN,Si(R
1)
3,P(=O)(R
1)
2,S(=O)
2R
1,具有C1-C20的直链烷基或者烷氧基基团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R
1取代,并且其中上述基团中的一个或者多个CH2基团可被-R
1C=CR
1-、-C≡C-、Si(R
1)
2、C(=O)、C=NR
1、-C(=O)O-、C(=O)NR
1-、NR
1、P(=O)(R
1)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况 下可被一个或多个R
1取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R
1取代,其中两个或更多个基团R可彼此连接并且可形成环:
R
1在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R
2,CN,Si(R
2)
3,P(=O)(R
2)
2,N(R
2)S(=O)
2R
2,具有C1-C20的直链烷基或者烷氧基基团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R
1取代,并且其中上述基团中的一个或者多个CH2基团可被-R
2C=CR
2-、-C≡C-、Si(R
2)
2、C(=O)、C=NR
2、-C(=O)O-、C(=O)NR
2-、NR
2、P(=O)(R
2)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况下可被一个或多个R
2取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R
2取代,其中两个或更多个基团R
1可彼此连接并且可形成环:
R
2在每次出现时相同或不同的表示为H、D、F或具有C1-C20的脂族、芳族或杂芳族有机基团,其中一个或多个H原子还可被D或F代替;此处两个或者更多个取代基R2可彼此连接并且可形成环;
Ra、Rb、Rc、Rd各自独立地代表C1-20的烷基、C3-20的支链或环烷基、直链或支链的C1-C20烷基取代的硅烷基、取代或未取代的C6-30的芳基、取代或未取代的5-30元杂芳基,取代或未取代C5-C30的芳胺基;
Ra、Rb、Rc、Rd基团与Z键合的情况下,所述基团Z等于C。
优选的,第三有机化合物为如下通式(2)所示结构:
其中X
1、X
3分别独立地表示为单键、B(R)、N(R)、C(R)
2、Si(R)
2、O、C=N(R)、C=C(R)
2、P(R)、P(=O)R、S或SO
2;X
2独立的表示氮原子或者硼原子,且X
1、X
2、X
3中至少有一个表示为硼原子;
Z
1-Z
11分别独立的表示为氮原子或者C(R);
a、b、c、d、e各自独立的表示为0、1、2、3或4;
R在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R
1,CN,Si(R
1)
3,P(=O)(R
1)
2,S(=O)
2R
1,具有C1-C20的直链烷基或者烷氧基基团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R
1取代,并且其中上述基团中的一个或者多个CH2基团可被-R
1C=CR
1-、-C≡C-、Si(R
1)
2、C(=O)、C=NR
1、-C(=O)O-、C(=O)NR
1-、NR
1、P(=O)(R
1)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况 下可被一个或多个R
1取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R
1取代,其中两个或更多个基团R可彼此连接并且可形成环:
R
1在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R
2,CN,Si(R
2)
3,P(=O)(R
2)
2,N(R
2)S(=O)
2R
2,具有C1-C20的直链烷基或者烷氧基基团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R
1取代,并且其中上述基团中的一个或者多个CH2基团可被-R
2C=CR
2-、-C≡C-、Si(R
2)
2、C(=O)、C=NR
2、-C(=O)O-、C(=O)NR
2-、NR
2、P(=O)(R
2)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况下可被一个或多个R
2取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R
2取代,其中两个或更多个基团R
1可彼此连接并且可形成环:
R
2在每次出现时相同或不同的表示为H、D、F或具有C1-C20的脂族、芳族或杂芳族有机基团,其中一个或多个H原子还可被D或F代替;此处两个或者更多个取代基R2可彼此连接并且可形成环;
Ra、Rb、Rc、Rd各自独立地代表C1-20的烷基、C3-20的支链或环烷基、直链或支链的C1-C20烷基取代的硅烷基、取代或未取代的C6-C30的芳基、取代或未取代的5-30元杂芳基,取代或未取代的C5-C30的芳胺基;
Ra、Rb、Rc、Rd基团与Z键合的情况下,所述基团Z等于C。
优选的,第三有机化合物为如下通式(3)所示结构:
其中X
1、X
2、X
3分别独立地表示为单键、B(R)、N(R)、C(R)
2、Si(R)
2、O、C=N(R)、C=C(R)
2、P(R)、P(=O)R、S或SO
2;
不同位置的Z、Y分别独立的表示为C(R)或者N;
K
1表示为单键、B(R)、N(R)、C(R)
2、Si(R)
2、O、C=N(R)、C=C(R)
2、P(R)、P(=O)R、S或SO
2、C1-C20的烷基取代的亚烷基、C1-C20的烷基取代的亚硅烷基、C6-C20芳基取代的亚烷基中的一种;
m表示为数字0、1、2、3、4或5;L选自单键、双键、三键、碳原子数为6-40的芳香基团或碳原子数为3-40的杂芳基;
R在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R
1,CN,Si(R
1)
3,P(=O)(R
1)
2,S(=O)
2R
1,具有C1-C20的直链烷基或者烷氧基基团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R
1取代,并且其中上述基团中的一个或者多个CH2基团可被-R
1C=CR
1-、-C≡C-、Si(R
1)
2、C(=O)、C=NR
1、-C(=O)O-、C(= O)NR
1-、NR
1、P(=O)(R
1)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况下可被一个或多个R
1取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R
1取代,其中两个或更多个基团R可彼此连接并且可形成环:
R
1在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R
2,CN,Si(R
2)
3,P(=O)(R
2)
2,N(R
2)S(=O)
2R
2,具有C1-C20的直链烷基或者烷氧基基团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R
1取代,并且其中上述基团中的一个或者多个CH2基团可被-R
2C=CR
2-、-C≡C-、Si(R
2)
2、C(=O)、C=NR
2、-C(=O)O-、C(=O)NR
2-、NR
2、P(=O)(R
2)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况下可被一个或多个R
2取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R
2取代,其中两个或更多个基团R
1可彼此连接并且可形成环:
R
2在每次出现时相同或不同的表示为H、D、F或具有C1-C20的脂族、芳族或杂芳族有机基团,其中一个或多个H原子还可被D或F代替;此处两个或者更多个取代基R2可彼此连接并且可形成环;
R
n分别独立的表示为取代或未取代的C1-C20的烷基、C1-C20的烷基取代的硅烷基、取代或未取代的C6-C30的芳基、取代或未取代的5-30元杂芳基、取代或未取代的C5-C30的芳胺基;
Ar表示为取代或未取代的C1-C20的烷基、C1-C20的烷基取代的硅烷基、取代或未取代的C6-C30的芳基、取代或未取代的5-30元杂芳基、取代或未取代的C5-C30的芳胺基或通式(4)所示结构:
K
2、K
3分别独立的单键、B(R)、N(R)、C(R)
2、Si(R)
2、O、C=N(R)、C=C(R)
2、P(R)、P(=O)R、S、S=O或SO
2、C1-C20的烷基取代的亚烷基C1-C20的烷基取代的亚硅烷基、C6-C20芳基取代的亚烷基中的一种;
*表示通式(4)和通式(3)的连接位点。
更优选的,在通式(3)中X
1、X
2、X
3还可以各自独立的不存在,即X
1、X
2、X
3所示的位置各自独立的没有原子也没有键连接,且X
1、X
2、X
3中至少有一个表示有原子或者键存在。
优选的,所述客体材料如下通式(5)所示:
其中X表示为N原子或者C-R
7;
R
1~R
7分别独立的表示为氢原子、取代或者未取代的C1-C20的烷基、取代或者未取代的C3-C20的 环烷基、取代或者未取代的3-20元的杂环基、取代或者未取代的C2-C20的烯烃基、取代或者未取代的C3-C20的环烯基、取代或者未取代的炔基、取代或者未取代的羟基、取代或者未取代的烷氧基、取代或者未取代的烷基硫基、取代或者未取代的C6-C30的芳基、取代或未取代的5-30元杂芳基、卤素、氰基、取代或者未取代的醛基、取代或者未取代的羰基、取代或者未取代的羧基、取代或者未取代的氧基羰基、取代或者未取代的酰胺基、取代或者未取代的氨基、取代或者未取代的硝基、取代或者未取代的甲硅烷基、取代或者未取代的硅烷氧基、取代或者未取代的硼基、取代或者未取代的氧化膦中的一种;
R
1~R
7各自可以相同也可以不同,同时R
1和R
2、R
2和R
3、R
4和R
5、R
5和R
6可以相互键结形成原子数5-30的环状结构;
Y
1和Y
2可以相同或者不同;Y
1和Y
2分别独立的表示为取代或者未取代的C1-C20的烷基、取代或者未取代的C3-C20的环烷基、取代或者未取代的3-20元的杂环基、取代或者未取代的C2-C20的烯烃基、取代或者未取代的C3-C20的环烯基、取代或者未取代的炔基、取代或者未取代的羟基、取代或者未取代的烷氧基、取代或者未取代的烷基硫基、取代或者未取代的C6-C30的芳基、取代或未取代的5-30元杂芳基、卤素、氰基、取代或者未取代的醛基、取代或者未取代的羰基、取代或者未取代的羧基、取代或者未取代的氧基羰基、取代或者未取代的酰胺基、取代或者未取代的氨基、取代或者未取代的硝基、取代或者未取代的甲硅烷基、取代或者未取代的硅烷氧基、取代或者未取代的硼基、取代或者未取代的氧化膦中的一种。
更优选的,通式(5)中Y
1和Y
2分别独立的表示为表示为氟基、甲氧基、三氟甲基、氰基、苯基中的一种;
优选的,所述空穴传输区域包含空穴注入层、空穴传输层、电子阻挡层中的一种或多种组合。
优选的,所述电子传输区域包含电子注入层、电子传输层、空穴阻挡层中的一种或多种组合。
本申请还提供了一种照明或显示元件,包括一个或多个如上文所述的有机电致发光器件;并且在包括多个器件的情况下,所述器件横向或纵向叠加组合。
在本发明的上下文中,除非另有说明,HOMO意指分子的最高占据轨道,而LUMO意指分子的最低空轨道。此外,本说明书中所涉及的“LUMO能级差值”意指每个能量值的绝对值的差值。光谱半峰宽(FWHM)指得是光谱。
在本发明的上下文中,除非另有说明,单重态(S1)能级意指分子的单重态最低激发态能级,而三重态(T1)能级意指分子的三重态最低激发能级。此外,本说明书中所涉及的“三重态能级差值”以及“单重态和三重态能级差值”意指每个能量的绝对值的差值。此外,各能级之间的差值用绝对值表示。
优选的,组成主体材料的第一有机化合物和第二有机化合物分别独立的选自H1、H2、H3、H4、H5、H6、H7和H8但不限于以上的材料,其结构分别为:
第一有机化合物和第二有机化合物的HOMO/LUMO能级差大于等于0.2eV。第一有机化合物和第二有机化合物形成的混合物或者界面在光激发下能够形成激基复合物,则其在电场激发下也能够产生激基复合物;在光激发下未能产生激基复合物,但是在电场激发下能够产生激基复合物,只要第一有机化合物和第二有机化合物的HOMO/LUMO能级差符合要求即可。
优选的,发光层主体材料中第一有机化合物和第二有机化合物形成混合物,其中第一有机化合物的质量分数为10%-90%,例如可为9:1至1:9,优选8:2至2:8,优选7:3至3:7,更优选1:1。
优选的,第三有机化合物的单线态能级低于激基复合物的单线态能级,第三有机化合物的三线态能级低于激基复合物的三线态能级。
优选的,第三有机化合物可以选自以下化合物,但不仅限于此;
更优选的,第三有机化合物选自以下化合物:
优选的,第三有机化合物相对于主体材料的质量百分比为5-30%,优选10-20%;
优选的,客体材料为荧光化合物,可以选自以下化合物,但不仅限于此;
优选的,客体材料相对于主体材料的质量百分比为0.5-15%,优选0.5-5%。
另一方面,本发明的有机电致发光器件还包括阴极和阳极。
优选的,阳极包括金属、金属氧化物或导电聚合物。例如,阳极可具有的功函数的范围约为3.5至5.5eV。用于阳极的导电材料包括碳、铝、钒、铬、铜、锌、银、金、其他金属及其合金;氧化锌、氧化铟、氧化锡、氧化铟锡(ITO)、氧化铟锌以及其他类似的金属氧化物;以及氧化物和金属的混合物,例如ZnO:Al和SnO
2:Sb。透明材料和非透明材料都可用作阳极材料。对于向阳极发射光的结构,可形成透明的阳极。在本文中,透明意指使从有机材料层发射的光可透过的程度,且光的透过性没有特别限制。
例如,当本说明书的有机发光器件为顶部发光型,且阳极在有机材料层和阴极形成之前形成于基底上时,不仅透明材料还有具有优异光反射性的非透明材料都可用作阳极材料。或者,当本说明书的有机发光器件为底部发光型,且阳极在有机材料层和阴极形成之前形成于基底上时,需要透明材料用作阳极材料,或者非透明材料需要形成为足够薄以致透明的薄膜。
优选的,关于阴极,优选具有小功函数的材料作为阴极材料,以便可容易地进行电子注入。具有功函数范围为2eV至5eV的材料可用作阴极材料。阴极可包含金属,例如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或其合金;具有多层结构的材料,例如LiF/Al或LiO
2/Al等,但不限于此。阴极可使用与阳极相同的材料,在这种情况下,阴极可使用如以上所述的阳极材料形成。此外,阴极或阳极可包含透明材料。
根据所使用的材料,本发明的有机发光器件可为顶部发光型、底部发光型或两侧发光型。
优选的,本发明的有机发光器件包含空穴注入层。该空穴注入层可优选地置于阳极和发光层之间。空穴注入层由本领域技术人员已知的空穴注入材料形成。空穴注入材料是一种在低电压下容易接收来自阳极的空穴的材料,并且空穴注入材料的HOMO能级优选位于阳极材料的功函数和周围有机材料层的HOMO之间。空穴注入材料的具体实例包括但不限于:金属卟啉类有机材料、寡聚噻吩类有机材料、芳胺类有机材料、六腈六氮杂苯并菲类有机材料、喹吖啶酮类有机材料、苝类有机材料、蒽醌类导电聚合物、聚苯胺类导电聚合物或聚噻吩类导电聚合物等。
优选的,本发明的有机发光器件包含空穴传输层。该空穴传输层可优选地置于空穴注入层与发光层 之间,或者置于阳极与发光层之间。空穴传输层由本领域技术人员已知的空穴传输材料形成。空穴传输材料优选为具有高空穴迁移率的材料,其能够将空穴从阳极或空穴注入层转移至发光层。空穴传输材料的具体实例包括但不限于:芳胺类有机材料、导电聚合物以及具有接合部分和非接合部分的嵌段共聚物。
优选的,本发明的有机发光器件还包含电子阻挡层。该电子阻挡层可优选地置于空穴传输层与发光层之间,或空穴注入层与发光层之间,或者置于阳极与发光层之间。电子阻挡层由本领域技术人员已知的电子阻挡材料形成,例如TCTA。
优选的,本发明的有机发光器件包含电子注入层。该电子注入层可优选地置于阴极和发光层之间。电子注入层由本领域技术人员已知的电子注入材料形成。所述电子注入层可使用电子接受有机化合物来形成。此处,作为电子接受有机化合物,可使用已知的任选的化合物,而没有特别的限制。作为此类有机化合物,可使用:多环化合物,例如对三联苯或四联苯或其衍生物;多环烃化合物,例如萘、并四苯、苝、六苯并苯、屈、蒽、二苯基蒽或菲,或其衍生物;或杂环化合物,例如,菲咯啉、红菲绕啉、菲啶、吖啶、喹啉、喹喔啉或吩嗪,或其衍生物。还可使用无机物来形成,包括但不限于:镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或其合金;LiF、LiO
2、LiCoO
2、NaCl、MgF
2、CsF、CaF
2、BaF
2、NaF、RbF、CsCl、Ru
2CO
3、YbF
3等;以及具有多层结构的材料,例如LiF/Al或LiO
2/Al等。
优选的,本发明的有机发光器件包含电子传输层。该电子传输层可优选地置于电子注入层和发光层之间,或阴极与发光层之间。电子传输层由本领域技术人员已知的电子传输材料形成。电子传输材料是一种能够容易地接收来自阴极的电子并将所接收的电子转移至发光层的材料。优选具有高电子迁移率的材料。电子传输材料的具体实例包括但不限于:8-羟基喹啉铝络合物;包含8-羟基喹啉铝的复合物;有机自由基化合物;以及羟基黄酮金属络合物;以及TPBi。
优选的,本发明的有机发光器件还包含空穴阻挡层。该空穴阻挡层可优选地置于电子传输层与发光层之间,或电子注入层与发光层之间,或者置于阴极与发光层之间。所述空穴阻挡层为通过阻止注入的空穴穿过发光层到达阴极的层,且通常可在与空穴注入层相同的条件下形成。具体包括噁二唑衍生物、三唑衍生物、菲啰啉衍生物、BCP、铝复合物等,但不限于此。
优选的,空穴阻挡层可与电子传输层为同一层。
此外,优选的,有机发光器件还可包括基底。具体而言,在有机发光器件中,阳极或阴极可位于基底上。对于基底,没有特别的限制。所述基底可以为刚性的基底,例如玻璃基底,也可以为柔性的基底,例如柔性薄膜形玻璃基底、塑料基底或膜形基底。
本发明的有机发光器件可使用本领域中已知的相同材料和方法进行生产。具体而言,有机发光器件可通过以下步骤进行生产:使用物理气相沉积(PVD)法(例如溅镀或电子束蒸镀)将金属、导电金属氧化物或其合金沉积在基底上以形成阳极;在阳极上形成包括空穴注入层、空穴传输层、电子阻挡层、发光层和电子传输层的有机材料层;随后在其上沉积可用于形成阴极的材料。此外,还可通过在基底上依序沉积阴极材料、一个或多个有机材料层和阳极材料来制造有机发光器件。此外,在制造有机发光器件期间,除了物理气相沉积法,还可使用溶液涂布法将本发明的有机发光复合材料制成有机材料层。如本说明书中所用,术语“溶液涂布法”意指旋转涂布、浸渍涂布、刮刀涂布、喷墨印刷、网印、喷涂、辊式涂布等,但不限于此。
关于各个层的厚度,没有特定的限制,本领域技术人员可根据需要和具体情况决定。
优选的,发光层以及任选地空穴注入层、空穴传输层、电子阻挡层以及电子传输层、电子注入层的厚度分别为0.5至150nm,优选1至100nm。
优选的,发光层的厚度为20至80nm,更优选30至60nm。
本发明有益的技术效果在于:
本发明提供的有机电致发光器件的发光层的主体材料由三种材料搭配组成,其中第一和第二有机化合物形成的混合物或者界面,在光激发和电激发的情况下产生激基复合物。能够减小主体材料三重态激子浓度,降低三重态激子淬灭的效应,提高器件稳定性。
第二化合物为与第一化合物载流子迁移率相异的材料,可以平衡主体材料内部的载流子,增加激子复合区域,提高器件效率,同时能够有效解决高电流密度下,材料颜色发生偏移的问题,提高了器件发光颜色的稳定性。
形成的激基复合物具有较小三线态能和单线态能级差,使得三线态激子能够迅速转换为单线态激子,降低三重态激子淬灭的效应,提升器件稳定性。同时,形成激基复合物的单线态高于客体材料的单线态能级,三线态能级高于于客体材料的三线态能级,可以有效防止能量从客体材料回传主体材料,进一步提高器件的效率以及稳定性。
第三有机化合物为含有硼原子的有机化合物,通过硼的sp2杂化形式和其他原子进行成键,形成的结构中,由于硼是缺电子原子,具有较强的吸电子能力,增加了分子间的库伦作用力;同时,由于硼原子的存在,使得分子内刚性增强;使得材料容易形成分子聚集效应,容易产生excimer发光。
第三有机化合物掺杂于第一、二有机物形成的混合物或者界面(掺杂于第一有机物或者第二有机物中)中,能量从第一、二有机物形成的激基复合物传递给第三有机化合物,第三有机化合物形成激基缔合物,能够能够有效的降低主体材料的三线态激子浓度,降低主体材料的单线态-激子淬灭和三线态-三线态淬灭。
激基缔合物的三线态激子和单线态激子由于是双分子激发态形式,能够提升分子的热稳定性和化学稳定,防止材料分解,进一步的激基缔合物能够将三线态激子通过上转换的方式转换成单线态激子,将能量充分传递给客体材料,使得客体材料单线态和三线态得到有效利用。
传统的激基缔合物是由2种相同分子作用而产生发光现象,一般认为其不利于能量传递和发光,大部分实验表明激基缔合物的产生不利于材料发光效率的提升。然而,本发明通过实验发现合理的材料搭配和优化,不仅可以有效利用激基缔合物现象,提升器件效率,而且通过合理的材料搭配,能够明显提高器件寿命。
图1为本发明有机电致发光器件的一种实施方案的示意图;
其中:1、基板层;2、阳极层;3、空穴注入层;4、空穴传输层;5、电子阻挡层;6、发光层;7、空穴阻挡/电子传输层;8、电子注入层;9、阴极层。
图2~4为第一、第二有机物形成的exciplex的发射光谱、第三有机物的吸收光谱、第三有机物形成的excimer的发射光谱和客体掺杂材料的吸收光谱。
图5为实施例制备得到的有机电致发光器件在不同温度下工作时的寿命。
下面结合附图和实施例,对本发明进行具体描述,但本发明的范围不受这些制备实施例的限制。在本发明的上下文中,除非另有说明,单重态(S1)能级意指分子的单重态最低激发态能级,而三重态(T1)能级意指分子的三重态最低激发能级。
实施例1
实施例1制备得到的有机电致发光器件结构如图1所示,器件具体制备过程如下:
清洗透明玻璃基板层1上的ITO阳极层2,分别用去离子水、丙酮、乙醇超声清洗各30分钟,然后在等离子体清洗器中处理2分钟;将ITO玻璃基板干燥处理后,置于真空腔体内,待真空度小于1*10
-6Torr,在ITO阳极层2上,蒸镀膜厚为10nm的HT1和P1混合物,HT1和P1质量比为97:3,该层为空穴注入层3;接着,蒸镀50nm厚的HT1,该层作为空穴传输层4;接着蒸镀20nm厚的EB1,该层作为电子阻挡层5;进一步,蒸镀25nm的发光层6,其中,发光层包括主体材料和客体掺杂染料,其中主体材料第一、第二和第三有机物具体材料的选用如表1所示,按照主体材料与掺杂染料的质量百分比,通过膜厚仪进行速率控制;在发光层6之上,进一步的蒸镀厚度为40nm的ET1和Liq,ET1和Liq质量比为1:1,这层有机材料作为空穴阻挡/电子传输层7;在空穴阻挡/电子传输层7之上,真空蒸镀厚度为1nm的LiF,该层为电子注入层8;在电子注入层8之上,真空蒸镀阴极Al(80nm),该层为阴极电极层9。不同的器件其蒸镀膜厚有所差异。实施例1具体材料的选用如表1所示:
实施例2-8和对比例1-8的制备方法采用实施例1的方法,得到的有机电致发光器件结构与实施例1相似;具体所用材料如表1所示。
实施例9-16和对比例9-16的制备方法采用实施例1的方法,得到的有机电致发光器件结构与实施例1相似;具体所用材料如表2所示。
实施例17-21和对比例17-21的制备方法采用实施例1的方法,得到的有机电致发光器件结构与实施例1相似;具体所用材料如表3所示。
有必要进行说明的是本发明中的主体形式具体来说有两种表现形式:一种主体形式是第一有机化合物、第二有机化合物和第三有机化合物通过三源共蒸的形式,形成一定比例的混合物,例如(H1:H2:B-6)=(45:45:10)(25nm)。另外一种主体形式是先蒸镀第一有机化合物,然后第二有机化合物、第三有机化合物共蒸;或者先使第一有机化合物、第三有机化合物共蒸,然后蒸镀第二有机化合物,例如H1(12.5nm)/(H2:B-6=90:10(12.5nm))或者(H1:B-6=90:10(12.5nm))/H2(12.5nm)。为了简洁,在表格中不使用大括号。
表1
表2
表3
表1、表2和表3中涉及到的原料如前文所示,其余材料的结构式如下所示:
其中主客体材料的能级关系表4所示:
表4
HOMO | LUMO | S1 | T1 | |
H1 | -5.85eV | -2.51eV | 3.35eV | 2.90eV |
H2 | -6.10eV | -2.82eV | 3.30eV | 2.85eV |
H3 | -5.78eV | -2.42eV | 3.50eV | 2.89eV |
H4 | -6.20eV | -2.75eV | 3.43eV | 2.83eV |
H5 | -5.64eV | -2.25eV | 3.28eV | 2.75eV |
H6 | -5.98eV | -2.50eV | 3.42eV | 2.80eV |
H7 | -5.68eV | -2.20eV | 3.50eV | 2.72eV |
H8 | -6.18eV | -2.90eV | 3.32eV | 2.68eV |
B-6 | -5.80eV | -2.68eV | 2.80eV | 2.68eV |
B-8 | 5.74eV | -2.75eV | 2.70eV | 2.58eV |
B-3 | 5.55eV | -2.85eV | 2.50eV | 2.38eV |
D-1 | 5.48eV | 2.70eV | 2.60eV | 1.8eV |
D-2 | 5.85eV | 2.72eV | 2.58eV | 2.47eV |
D-3 | 5.90eV | 3.40eV | 2.40eV | 2.30eV |
D-4 | 5.40eV | 2.76eV | 2.38eV | 1.75eV |
D-5 | 5.30eV | 3.35eV | 2.15eV | 1.6eV |
上述所选材料的载流子迁移率如下表5所示:
表5
材料名称 | 空穴迁移率(cm 2/V·S) | 电子迁移率(cm 2/V·S) |
H1 | 2.12*10 -3 | 1.63*10 -6 |
H2 | 5.01*10 -6 | 3.21*10 -4 |
H3 | 5.09*10 -3 | 2.17*10 -5 |
H4 | 2.14*10 -4 | 3.01*10 -6 |
H5 | 6.25*10 -3 | 1.86*10 -5 |
H6 | 4.66*10 -3 | 3.01*10 -5 |
H7 | 3.69*10 -3 | 2.07*10 -4 |
H8 | 5.62*10 -5 | 2.53*10 -3 |
上述主体材料的能级以及形成激基复合物如下表6所示:
表6
材料名称 | HOMO(eV) | LUMO(eV) | PLPeak(nm) | ELPeak(nm) |
H1 | -5.85 | -2.51 | 380 | / |
H2 | -6.10 | -2.82 | 385 | / |
H3 | -5.78 | -2.42 | 387 | / |
H4 | -6.20 | -2.75 | 341 | / |
H5 | -5.64 | -2.25 | 450 | / |
H6 | -5.98 | -2.50 | 388 | / |
H7 | -5.68 | -2.20 | 458 | / |
H8 | -6.18 | -2.90 | 502 | / |
H1:H2(50:50) | -5.85 | -2.82 | 460 | 458 |
H1/H2 | -5.85 | -2.82 | 458 | 459 |
H3:H4(50:50) | -5.78 | -2.75 | 450 | 451 |
H3:H4 | -5.78 | -2.75 | 449 | 448 |
H5:H6(50:50) | -5.64 | -2.50 | 485 | 483 |
H5/H6 | -5.64 | -2.50 | 484 | 482 |
H7:H8(50:50) | -5.68 | -2.90 | / | 480 |
H7/H8 | -5.68 | -2.90 | / | 481 |
注:其中H1:H2(50:50)表示为主体材料中,第一有机化合物和第二有机化合物的质量分百分比为50:50的混合物;H1/H2表示为主体材料中,第一有机化合物和第二有机化合物形成界面。其中PL代表光激发光谱,EL代表电场激发光谱。
基激缔合物(excimer)的存在可以通过溶液状态下的PL光谱和薄膜状态下的PL光谱分析得到,详细如下表7所示:
表7
注:Plpeak(nm)-溶液为浓度为2*10
-5mol/L的四氢呋喃溶液;Plpeak(nm)-薄膜为第一、第二和第三有机化合物三源共蒸形成的薄膜。
从表7可以看到,第三有机化合物在四氢呋喃溶液中的PL光谱峰要比薄膜状态下的PL光谱峰蓝移,表明在薄膜状态下第三有机化合物在溶液状态下由于浓度较低,同时受到溶剂作用,分子间的堆积较弱,不易产生excimer;而在薄膜状态下,由于分子间的距离拉近,分子堆积比较严重,产生excimer。
为了进一步说明第一有机物和第二有机物形成的激基复合物、第三有机物形成的激基缔合物的能级,将材料蒸镀在透明石英玻璃上,然后进行封装。用爱丁堡荧光光谱仪(FLS980测试材料的单线态和三线态能级),结果如下表8所示:
表8
注:H1:H2=1:1(60nm)表示为H1和H2以1:1的质量比共蒸60nm的膜厚;H1(30nm)/H2(30nm)表示为先蒸镀30nm的H1,接着在H1上继续蒸镀30nm的H2;H1:H2:B-6=45:45:10(60nm)表示为H1、H2和B-6以45:45:10的质量比进行共蒸60nm膜厚。由于H7:H8=1:1(60nm)无法形成光致exciplex,因此通过制作器件并通电测试其电致exciplex光谱;H7:H8:B-8=44:44:12(60nm)通过制作为器件进行发光光谱测试。
可以看到,第一有机物和第二有机物形成的exciplex,其单线态能级和三线态能级均比单独的第一有机物、第二有机物的单线态能级和三线态能级低,并且单线态-三线态能级差小于0.2eV。同时第三有机物掺杂于第一、第二有机物中形成的excimer,其单线态和三线态低于第三有机化合物自身的单线态和三线态,并且excimer的单线态和三线态能级差小于0.3eV。
为了研究材料之间的能量传递有效性,通过测试第一、第二有机物形成的exciplex的发射光谱、第三有机物的吸收光谱、第三有机物形成的excimer的发射光谱和客体掺杂材料的吸收光谱,观察吸收光谱和发射光谱之间是否存在重叠。具体如图2、3和4所示。
从图2、图3和图4可以看到,第一、第二有机物形成的exciplex的发射光谱和第三有机化合物的吸收光谱具有有效重叠,保证了能量由exciplex传递到第三有机化合物。第三有机化合物形成的excimer的发射光谱和客体掺杂材料的吸收光谱具有有效的重叠,保证能量由excimer传递到客体掺杂材料发光。
实施例1~21和对比例1~21制备得到的有机电致发光器进行性能测试,结果如表9所示。
表9
器件代号 | 驱动电压(V) | 外量子效率 | 最大外量子效率 | LT90寿命(h) | 光谱颜色 |
对比例1 | 5.2 | 4.5% | 5.5% | 20 | 蓝色 |
对比例2 | 5.3 | 6.0% | 8.0% | 15 | 天蓝 |
对比例3 | 5.5 | 4.8% | 5.6% | 18 | 蓝色 |
对比例4 | 5.6 | 6.2% | 8.2% | 10 | 天蓝 |
对比例5 | 4.7 | 6.0% | 8.1% | 40 | 蓝色 |
对比例6 | 4.6 | 5.8% | 6.5% | 38 | 蓝色 |
对比例7 | 4.5 | 6.8% | 8.3% | 15 | 天蓝 |
对比例8 | 4.6 | 6.6% | 8.2% | 20 | 天蓝 |
实施例1 | 4.2 | 10.8 | 14.5% | 100 | 蓝色 |
实施例2 | 4.1 | 11.0% | 14.2% | 89 | 蓝色 |
实施例3 | 4.3 | 10.5% | 13.8% | 120 | 蓝色 |
实施例4 | 4.2 | 11.2% | 14.8% | 110 | 蓝色 |
实施例5 | 4.0 | 12.0% | 15.3% | 125 | 天蓝 |
实施例6 | 4.2 | 12.2% | 15.4% | 121 | 天蓝 |
实施例7 | 4.1 | 11.4% | 15.5% | 140 | 天蓝 |
实施例8 | 4.2 | 11.2% | 15.6% | 118 | 天蓝 |
对比例9 | 5.1 | 10.2% | 16.0% | 60 | 绿光 |
对比例10 | 5.3 | 5.5% | 8.0% | 100 | 绿光 |
对比例11 | 5.2 | 10.4 | 16.0% | 65 | 绿光 |
对比例12 | 5.4 | 5.2% | 7.8% | 110 | 绿光 |
对比例13 | 4.2 | 12.5% | 18.0% | 85 | 绿光 |
对比例14 | 4.3 | 12.3 | 17.6% | 92 | 绿光 |
对比例15 | 4.0 | 5.7 | 8.3% | 123 | 绿光 |
对比例16 | 4.2 | 6.0 | 8.0% | 120 | 绿光 |
实施例9 | 4.1 | 17.0% | 23.0% | 210 | 绿光 |
实施例10 | 4.0 | 17.2% | 22.4% | 235 | 绿光 |
实施例11 | 3.9 | 18.2% | 23.5% | 240 | 绿光 |
实施例12 | 4.1 | 16.8 | 23.1 | 235 | 绿光 |
实施例13 | 4.2 | 17.0 | 22.5 | 228 | 绿光 |
实施例14 | 4.3 | 17.2 | 22.4 | 215 | 绿光 |
实施例15 | 4.0 | 17.7 | 23.0 | 207 | 绿光 |
实施例16 | 4.2 | 17.5 | 23.2 | 244 | 绿光 |
对比例17 | 5.3 | 4.0 | 5.5 | 80 | 红光 |
对比例18 | 5.2 | 3.8 | 5.6 | 85 | 红光 |
对比例19 | 5.1 | 4.5 | 6.0 | 90 | 红光 |
对比例20 | 5.2 | 4.7 | 5.9 | 104 | 红光 |
对比例21 | 5.3 | 4.6 | 6.0 | 110 | 红光 |
实施例17 | 3.9 | 8.0 | 11.5 | 307 | 红光 |
实施例18 | 3.7 | 8.1 | 12.0 | 300 | 红光 |
实施例19 | 3.8 | 8.3 | 12.1 | 311 | 红光 |
实施例20 | 4.0 | 8.5 | 12.2 | 323 | 红光 |
实施例21 | 3.8 | 8.3 | 12.5 | 342 | 红光 |
注意:上述测试结果中,驱动电压、外量子效率、LT90寿命以及光谱颜色都是器件在10mA/cm
2驱动电流密度下的测试结构;最大外量子效率为器件测试中所能达到的最大外量子效率。
从表9中数据可以看到,实施例1~21与对比例1~21相比,激基复合物和激基缔合物作为主体材料的器件,相比单主体材料的器件,其驱动电压下降明显。同时,激基复合物和激基缔合物作为主体材料的器件,相比激基复合物作为主体的器件,其驱动电压有所降低,但是降低不明显。主要原因是基激复合物能够有效的传递空穴和电子,降低了空穴和电子的注入阻碍,从而有效减低驱动电压;而激基复合物和激基缔合物作为主体材料,其中激基复合物主要起到了降低电压作用,激基缔合物具有一定的俘获电子和空穴的能力,能够降低电压,但是其只能起到辅助降低电压作用。
同时,激基复合物和激基缔合物作为主体材料,相比单主体材料的器件效率与器件寿命得到明显提高。采用第一和第二有机物形成的激基复合物搭配B-3,B-6等含硼材料形成的激基缔合物的器件效率和寿命提升明显,主要原因是其发光层的主体材料由基激复合物和激基缔合物搭配组成,第一和第二有机物材料形成的混合物或者界面,在光激发或电激发的情况下产生激基复合物,激基复合物能够提高能量 传递给客体材料的效率,同时减小主体材料三重态激子浓度,降低三重态激子淬灭效应,提高器件寿命。
第三有机化合物形成excimer,能够有效的降低主体材料的三线态激子浓度,降低主体材料的单线态-激子淬灭和三线态-三线态淬灭。激基缔合物的三线态激子和单线态激子由于是双分子激发态形式,能够提升分子的热稳定性和化学稳定,防止材料分解,进一步的激基缔合物能够通过将三线态激子通过上转换的方式转换成单线态激子,将能量充分传递给客体材料,使得客体材料单线态和三线态得到有效利用。
该类结构搭配不仅试用蓝光器件,同时也试用绿光和红光器件,表明该器件结构的普适性。
另外,第二化合物为与第一化合物载流子迁移率相异的材料,可以平衡主体材料内部的载流子,增加激子复合区域,提高器件效率,同时能够有效解决高电流密度下,材料颜色发生偏移的问题,提高了器件发光颜色的稳定性。形成的激基复合物具有较小三线态能和单线态能级差,使得三线态激子能够迅速转换为单线态激子,降低三重态激子淬灭的效应,提升器件稳定性。
形成激基复合物的单线态高于第三有机化合物的单线态能级,三线态能级高于第三有机化合物的三线态能级,可以有效防止能量从第三有机化合物回传基激复合物,进一步提高器件的效率以及稳定性。
形成激基缔合物的单线态高于客体材料的单线态能级,三线态能级高于客体材料的三线态能级,可以有效防止能量从客体材料回传主体材料,进一步提高器件的效率以及稳定性。
所述第三有机化合物为含有硼原子的有机化合物,通过硼的sp2杂化形式和其他原子进行成键,形成的结构中,由于硼是缺电子原子,具有较强的吸电子能力,增加了分子间的库伦作用力;同时,由于由于硼原子的存在,使得分子内刚性增强;使得材料容易形成分子聚集效应,容易产生excimer发光。
更进一步的,本发明制备的OLED器件在不同温度下工作时寿命也比较稳定,将器件对比例1、实施例1、对比例14、实施例14、对比例19、实施例19在-10~80℃进行寿命(LT90)测试,所得结果如表10、图5所示。
表10
类别(h)/温度℃ | -10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
对比例1(h) | 20 | 21 | 20 | 18 | 16 | 13 | 10 | 6 | 4 |
实施例1(h) | 102 | 103 | 100 | 101 | 98 | 95 | 91 | 86 | 83 |
对比例14(h) | 93 | 92 | 92 | 90 | 84 | 75 | 62 | 50 | 35 |
实施例14(h) | 216 | 217 | 215 | 213 | 208 | 200 | 186 | 174 | 165 |
对比例19(h) | 91 | 92 | 90 | 91 | 84 | 65 | 48 | 36 | 28 |
实施例19(h) | 312 | 314 | 311 | 304 | 292 | 278 | 258 | 244 | 228 |
注:以上测试数据为器件在10mA/cm
2的器件数据。
从上表10和图5所示,可以发现,本申请结构所采用的主体材料和客体材料搭配的器件其在不同的温度下,相比传统器件搭配,其器件寿命变化较小,在较高的温度下,其器件寿命保持稳定,表明本申请结构搭配的器件稳定性较好。
Claims (19)
- 一种有机电致发光器件,包括阴极、阳极、阴极和阳极之间的发光层、阳极和发光层之间的空穴传输区域、阴极和发光层之间的电子传输区域;所述发光层包括主体材料和客体材料;其特征在于,所述发光层主体材料包含第一有机化合物、第二有机化合物和第三有机化合物,第一有机化合物的HOMO能级和第二有机化合物的HOMO能级差大于等于0.2eV,第一有机化合物的LUMO能级和第二有机化合物的LUMO能级差大于等于0.2eV;第一有机化合物和第二有机化合物形成混合物或叠层界面,在光激发或电场激发的情况下产生激基复合物;所述激基复合物的发射光谱和第三有机化合物的吸收光谱具有重叠;所述激基复合物的单线态能级高于第三有机化合物的单线态能级,所述激基复合物的三线态能级高于第三有机化合物的三线态能级;且第一有机化合物与第二有机化合物具有相异的载流子传输特性;第三有机化合物掺杂于第一、第二有机化合物形成的混合物或叠层界面中,并形成分子内激基缔合物;所述激基缔合物的单线态能级小于所述激基复合物的单线态能级,所述激基缔合物的三线态能级小于所述激基复合物的三线态能级;发光层中客体材料为荧光有机化合物,客体材料的单线态能级低于基激缔合物的单线态能级,客体材料的三线态能级低于基激缔合物的三线态能级。
- 根据权利要求1所述的有机电致发光器件,其特征在于,0.3eV≤|HOMO 第二有机化合物|-|HOMO第一有机化合物|≤1.0eV;0.3eV≤|LUMO 第二有机化合物|-|LUMO 第一有机化合物|≤1.0eV;|HOMO 第三有机化合物|<|HOMO 第二有机化合物|,|LUMO 第三有机化合物|>|LUMO 第一有机化合物|;其中|HOMO|和|LUMO|表示为化合物能级的绝对值。
- 根据权利要1所述的有机电致发光器件,其特征在于,第一有机化合物和第二有机化合物形成的激基复合物的三线态能级和单线态能级差小于等于0.2eV。
- 根据权利要1所述的有机电致发光器件,其特征在于,第三有机化合物形成激基缔合物,其三线态能级和单线态能级差小于等于0.2eV。
- 根据权利要求1或2所述的有机电致发光器件,其特征在于,第一有机化合物和第二有机化合物按照1:99~99:1的质量比例形成混合物;第三有机化合物掺杂于第一、二有机物形成的混合物中;且第三有机化合物与第一、第二有机化合物形成的混合物的质量比为1:99~50:50。
- 根据权利要求1或2所述的有机电致发光器件,其特征在于,第一有机化合物和第二有机化合物形成具有界面的叠层结构,第一有机化合物位于空穴传输一侧,第二有机化合物位于电子传输一侧;第三有机化合物掺杂于第一有机化合物层或第二有机化合物层中,且第三有机化合物与第一有机化合物的质量比为1:99~50:50,或者第三有机化合物与第二有机化合物的质量比为1:99~50:50。
- 根据权利要求1所述的有机电致发光器件,其特征在于,发光层中客体材料的质量分数为主体材料的0.5%~15%。
- 根据权利要求1所述的有机电致发光器件,其特征在于,第一有机化合物的空穴迁移率大于电子迁移率,第二有机化合物的电子迁移率大于空穴迁移率;且第一有机化合物为传空穴型材料,第二有机化合物为传电子型材料。
- 根据权利要求1所述的有机电致发光器件,其特征在于,所述客体材料的单线态和三线态能级差小于等于0.3eV。
- 根据权利要求1所述的有机电致发光器件,其特征在于,第三有机化合物为含有硼原子的化合物;其中硼原子的数量大于等于1,硼原子通过sp2杂化轨道方式和其他元素进行成键;与硼连接的基团为氢原子、取代或者未被取代的C1-C6的直链烷基、取代或者未被取代的C3-C10的环烷基、取代或者未被取代的C1-C10的杂环烷基、取代或者未被取代的C6-C60的芳香基、取代或者未被取代的C3-C60的杂芳基中的一种;且与硼原子连接的基团可单独连接,也可相互直接键结成环或者通过其他基团连接成环后再与硼连接。
- 根据根据权利要求10所述的有机电致发光器件,其特征在于,第三有机化合物含硼原子的数量为1、2、或3。
- 根据权利要求1或者10所述的有机电致发光器件,其特征在于,第三有机化合物为如下通式(1)所示结构:其中X 1、X 2、X 3各自独立的表示氮原子或硼原子,X 1、X 2、X 3中至少有一个原子为硼原子;Z在每次出现时相同或者不同的表示为N或C(R);a、b、c、d、e各自独立的表示为0、1、2、3或4;C 1与C 2,C 3与C 4,C 5与C 6,C 7与C 8,C 9与C 10中至少有一对碳原子可以连接形成5-7元环结构;R在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R 1,CN,Si(R 1) 3,P(=O)(R 1) 2,S(=O) 2R 1,具有C1-C20的直链烷基或者烷氧基基团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R 1取代,并且其中上述基团中的一个或者多个CH2基团可被-R 1C=CR 1-、-C≡C-、Si(R 1) 2、C(=O)、C=NR 1、-C(=O)O-、C(=O)NR 1-、NR 1、P(=O)(R 1)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况下可被一个或多个R 1取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R 1取代,其中两个或更多个基团R可彼此连接并且可形成环:R 1在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R 2,CN,Si(R 2) 3,P(=O)(R 2) 2,N(R 2)S(=O) 2R 2,具有C1-C20的直链烷基或者烷氧基集团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R 1取代,并且其中上述基团中的一个或者多个CH2基团可被-R 2C=CR 2-、-C≡C-、Si(R 2) 2、C(=O)、C=NR 2、-C(=O)O-、C(=O)NR 2-、NR 2、P(=O)(R 2)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况下可被一个或多个R 2取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基 团可被一个或者多个基团R 2取代,其中两个或更多个基团R 1可彼此连接并且可形成环:R 2在每次出现时相同或不同的表示为H、D、F或具有C1-C20的脂族、芳族或杂芳族有机基团,其中一个或多个H原子还可被D或F代替;此处两个或者更多个取代基R2可彼此连接并且可形成环;Ra、Rb、Rc、Rd各自独立地代表C1-20的烷基、C3-20的支链或环烷基、直链或支链的C1-C20烷基取代的硅烷基、取代或未取代的C6-30的芳基、取代或未取代的5-30元杂芳基,取代或未取代C5-C30的芳胺基;Ra、Rb、Rc、Rd基团与Z键合的情况下,所述基团Z等于C。
- 根据权利要求1或者10所述的有机电致发光器件,其特征在于,第三有机化合物为如下通式(2)所示结构:其中X 1、X 3分别独立地表示为单键、B(R)、N(R)、C(R) 2、Si(R) 2、O、C=N(R)、C=C(R) 2、P(R)、P(=O)R、S或SO 2;X 2独立的表示氮原子或者硼原子,且X 1、X 2、X 3中至少有一个表示为硼原子;Z 1-Z 11分别独立的表示为氮原子或者C(R);a、b、c、d、e各自独立的表示为0、1、2、3或4;R在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R 1,CN,Si(R 1) 3,P(=O)(R 1) 2,S(=O) 2R 1,具有C1-C20的直链烷基或者烷氧基基团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R 1取代,并且其中上述基团中的一个或者多个CH2基团可被-R 1C=CR 1-、-C≡C-、Si(R 1) 2、C(=O)、C=NR 1、-C(=O)O-、C(=O)NR 1-、NR 1、P(=O)(R 1)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况下可被一个或多个R 1取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R 1取代,其中两个或更多个基团R可彼此连接并且可形成环:R 1在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R 2,CN,Si(R 2) 3,P(=O)(R 2) 2,N(R 2)S(=O) 2R 2,具有C1-C20的直链烷基或者烷氧基集团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R 1取代,并且其中上述基团中的一个或者多个CH2基团可被-R 2C=CR 2-、-C≡C-、Si(R 2) 2、C(=O)、C=NR 2、-C(=O)O-、C(=O)NR 2-、NR 2、P(=O)(R 2)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种 情况下可被一个或多个R 2取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R 2取代,其中两个或更多个基团R 1可彼此连接并且可形成环:R 2在每次出现时相同或不同的表示为H、D、F或具有C1-C20的脂族、芳族或杂芳族有机基团,其中一个或多个H原子还可被D或F代替;此处两个或者更多个取代基R2可彼此连接并且可形成环;Ra、Rb、Rc、Rd各自独立地代表C1-20的烷基、C3-20的支链或环烷基、直链或支链的C1-C20烷基取代的硅烷基、取代或未取代的C6-C30的芳基、取代或未取代的5-30元杂芳基,取代或未取代的C5-C30的芳胺基;Ra、Rb、Rc、Rd基团与Z键合的情况下,所述基团Z等于C。
- 根据权利要求1或10所述的有机电致发光器件,其特征在于,第三有机化合物为如下通式(3)所示结构:其中X 1、X 2、X 3分别独立地表示为单键、B(R)、N(R)、C(R) 2、Si(R) 2、O、C=N(R)、C=C(R) 2、P(R)、P(=O)R、S或SO 2;不同位置的Z、Y分别独立的表示为C(R)或者N;K 1表示为单键、B(R)、N(R)、C(R) 2、Si(R) 2、O、C=N(R)、C=C(R) 2、P(R)、P(=O)R、S或SO 2、C1-C20的烷基取代的亚烷基、C1-C20的烷基取代的亚硅烷基、C6-C20芳基取代的亚烷基中的一种;m表示为数字0、1、2、3、4或5;L选自单键、双键、三键、碳原子数为6-40的芳香基团或碳原子数为3-40的杂芳基;R在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R 1,CN,Si(R 1) 3,P(=O)(R 1) 2,S(=O) 2R 1,具有C1-C20的直链烷基或者烷氧基基团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R 1取代,并且其中上述基团中的一个或者多个CH2基团可被-R 1C=CR 1-、-C≡C-、Si(R 1) 2、C(=O)、C=NR 1、-C(=O)O-、C(=O)NR 1-、NR 1、P(=O)(R 1)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况下可被一个或多个R 1取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R 1取代,其中两个或更多个基团R可彼此连接并且可形成环:R 1在每次出现时相同或者不同的表示为H,D,F,Cl,Br,I,C(=O)R 2,CN,Si(R 2) 3,P(=O)(R 2) 2, N(R 2)S(=O) 2R 2,具有C1-C20的直链烷基或者烷氧基基团,或具有C3-C20的支链或环状的烷基或烷氧基基团,或具有C2-C20的烯基或炔基基团,其中上述基团可各自被一个或多个基团R 1取代,并且其中上述基团中的一个或者多个CH2基团可被-R 2C=CR 2-、-C≡C-、Si(R 2) 2、C(=O)、C=NR 2、-C(=O)O-、C(=O)NR 2-、NR 2、P(=O)(R 2)、-O-、-S-、SO或SO2代替,并且其中上述基团中的一个或多个H原子可被D、F、Cl、Br、I或CN代替,或具有5至30个芳族环原子的芳族或杂芳族环系,所述环系在每种情况下可被一个或多个R 2取代,或具有5至30个芳族环原子的芳氧基或者杂芳基基团,所述基团可被一个或者多个基团R 2取代,其中两个或更多个基团R 1可彼此连接并且可形成环:R 2在每次出现时相同或不同的表示为H、D、F或具有C1-C20的脂族、芳族或杂芳族有机基团,其中一个或多个H原子还可被D或F代替;此处两个或者更多个取代基R2可彼此连接并且可形成环;R n分别独立的表示为取代或未取代的C1-C20的烷基、C1-C20的烷基取代的硅烷基、取代或未取代的C6-C30的芳基、取代或未取代的5-30元杂芳基、取代或未取代的C5-C30的芳胺基;Ar表示为取代或未取代的C1-C20的烷基、C1-C20的烷基取代的硅烷基、取代或未取代的C6-C30的芳基、取代或未取代的5-30元杂芳基、取代或未取代的C5-C30的芳胺基或通式(4)所示结构:K 2、K 3分别独立的单键、B(R)、N(R)、C(R) 2、Si(R) 2、O、C=N(R)、C=C(R) 2、P(R)、P(=O)R、S、S=O或SO 2、C1-C20的烷基取代的亚烷基C1-C20的烷基取代的亚硅烷基、C6-C20芳基取代的亚烷基中的一种;*表示通式(4)和通式(3)的连接位点。
- 根据权利要求14所述的有机电致发光器件,其特征在于,在通式(3)中X 1、X 2、X 3还可以各自独立的不存在,即X 1、X 2、X 3所示的位置各自独立的没有原子也没有键连接,且X 1、X 2、X 3中至少有一个表示有原子或者键存在。
- 根据权利要求1所述的有机电致发光器件,其特征在于,所述发光层中客体材料如下通式(5)所示:其中X表示为N原子或者C-R 7;R 1~R 7分别独立的表示为氢原子、取代或者未取代的C1-C20的烷基、取代或者未取代的C3-C20的环烷基、取代或者未取代的3-20元的杂环基、取代或者未取代的C2-C20的烯烃基、取代或者未取代的C3-C20的环烯基、取代或者未取代的炔基、取代或者未取代的羟基、取代或者未取代的烷氧基、取代或 者未取代的烷基硫基、取代或者未取代的C6-C30的芳基、取代或未取代的5-30元杂芳基、卤素、氰基、取代或者未取代的醛基、取代或者未取代的羰基、取代或者未取代的羧基、取代或者未取代的氧基羰基、取代或者未取代的酰胺基、取代或者未取代的氨基、取代或者未取代的硝基、取代或者未取代的甲硅烷基、取代或者未取代的硅烷氧基、取代或者未取代的硼基、取代或者未取代的氧化膦中的一种;R 1~R 7各自可以相同也可以不同,同时R 1和R 2、R 2和R 3、R 4和R 5、R 5和R 6可以相互键结形成原子数5-30的环状结构;Y 1和Y 2可以相同或者不同;Y 1和Y 2分别独立的表示为取代或者未取代的C1-C20的烷基、取代或者未取代的C3-C20的环烷基、取代或者未取代的3-20元的杂环基、取代或者未取代的C2-C20的烯烃基、取代或者未取代的C3-C20的环烯基、取代或者未取代的炔基、取代或者未取代的羟基、取代或者未取代的烷氧基、取代或者未取代的烷基硫基、取代或者未取代的C6-C30的芳基、取代或未取代的5-30元杂芳基、卤素、氰基、取代或者未取代的醛基、取代或者未取代的羰基、取代或者未取代的羧基、取代或者未取代的氧基羰基、取代或者未取代的酰胺基、取代或者未取代的氨基、取代或者未取代的硝基、取代或者未取代的甲硅烷基、取代或者未取代的硅烷氧基、取代或者未取代的硼基、取代或者未取代的氧化膦中的一种。
- 根据权利要求16所述的有机电致发光器件,其特征在于,通式(5)中Y 1和Y 2分别独立的表示为表示为氟原子、甲氧基、三氟甲基、氰基、苯基中的一种;X、R 1~R 7和权利要求16表述一致。
- 根据权利要求1-18任一项所述的有机电致发光器件,其特征在于,所述空穴传输区域包含空穴注入层、空穴传输层、电子阻挡层中的一种或多种组合。
- 根据权利要求1-18任一项所述的有机电致发光器件,其特征在于,所述电子传输区域包含电子注入层、电子传输层、空穴阻挡层中的一种或多种组合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/128,133 US20210135142A1 (en) | 2018-08-15 | 2020-12-20 | Organic electroluminescent device based on exciplex and excimer system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810927113.4 | 2018-08-15 | ||
CN201810927113.4A CN110838549B (zh) | 2018-08-15 | 2018-08-15 | 一种基于激基复合物和激基缔合物体系的有机电致发光器件 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/128,133 Continuation US20210135142A1 (en) | 2018-08-15 | 2020-12-20 | Organic electroluminescent device based on exciplex and excimer system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020034805A1 true WO2020034805A1 (zh) | 2020-02-20 |
Family
ID=69525097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/096495 WO2020034805A1 (zh) | 2018-08-15 | 2019-07-18 | 一种基于激基复合物和激基缔合物体系的有机电致发光器件 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210135142A1 (zh) |
CN (1) | CN110838549B (zh) |
WO (1) | WO2020034805A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112701239A (zh) * | 2021-01-19 | 2021-04-23 | 京东方科技集团股份有限公司 | 一种有机电致发光器件及其制备方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200096337A (ko) * | 2019-02-01 | 2020-08-12 | 삼성디스플레이 주식회사 | 유기 전계 발광 소자 및 이를 포함하는 표시 장치 |
JP6902640B2 (ja) * | 2019-03-29 | 2021-07-14 | 住友化学株式会社 | 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法 |
KR20220154098A (ko) * | 2020-03-18 | 2022-11-21 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치 |
CN111969119B (zh) * | 2020-08-28 | 2024-02-02 | 京东方科技集团股份有限公司 | 有机电致发光器件、显示面板及显示装置 |
CN113321671A (zh) * | 2021-01-29 | 2021-08-31 | 南京工业大学 | 一种氟硼二吡咯类固态发光材料及其制备方法和应用、一种蓝光驱动的led |
CN113402525B (zh) * | 2021-05-21 | 2023-05-12 | 吉林奥来德光电材料股份有限公司 | 含有氰基芳香基的化合物、其合成方法、有机材料、功能层和有机电致发光器件 |
CN115513394A (zh) * | 2022-09-26 | 2022-12-23 | 武汉华星光电半导体显示技术有限公司 | 发光层、发光元件及显示面板 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6391482B1 (en) * | 1999-02-04 | 2002-05-21 | Matsushita Electric Industrial Co., Ltd. | Organic material for electroluminescent device and electroluminescent device using the same |
US20140084274A1 (en) * | 2012-09-21 | 2014-03-27 | Semiconductor Energy Laboratory Co., Ltd. | Light-Emitting Element |
CN106531897A (zh) * | 2016-12-29 | 2017-03-22 | 苏州大学 | 一种基于激基复合物的有机电致发光器件及其制备方法 |
CN107492596A (zh) * | 2017-07-14 | 2017-12-19 | 瑞声科技(南京)有限公司 | 一种发光器件及其显示装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107039593B (zh) * | 2012-04-20 | 2019-06-04 | 株式会社半导体能源研究所 | 发光元件、发光装置、电子设备以及照明装置 |
CN108610357A (zh) * | 2016-07-29 | 2018-10-02 | 江苏三月光电科技有限公司 | 一种高效率含硼有机电致发光化合物及其应用 |
-
2018
- 2018-08-15 CN CN201810927113.4A patent/CN110838549B/zh active Active
-
2019
- 2019-07-18 WO PCT/CN2019/096495 patent/WO2020034805A1/zh active Application Filing
-
2020
- 2020-12-20 US US17/128,133 patent/US20210135142A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6391482B1 (en) * | 1999-02-04 | 2002-05-21 | Matsushita Electric Industrial Co., Ltd. | Organic material for electroluminescent device and electroluminescent device using the same |
US20140084274A1 (en) * | 2012-09-21 | 2014-03-27 | Semiconductor Energy Laboratory Co., Ltd. | Light-Emitting Element |
CN106531897A (zh) * | 2016-12-29 | 2017-03-22 | 苏州大学 | 一种基于激基复合物的有机电致发光器件及其制备方法 |
CN107492596A (zh) * | 2017-07-14 | 2017-12-19 | 瑞声科技(南京)有限公司 | 一种发光器件及其显示装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112701239A (zh) * | 2021-01-19 | 2021-04-23 | 京东方科技集团股份有限公司 | 一种有机电致发光器件及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110838549A (zh) | 2020-02-25 |
CN110838549B (zh) | 2020-09-18 |
US20210135142A1 (en) | 2021-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020034805A1 (zh) | 一种基于激基复合物和激基缔合物体系的有机电致发光器件 | |
WO2020042606A1 (zh) | 一种有机电致发光器件及制备方法和显示装置 | |
CN110492005B (zh) | 一种以激基复合物作为主体材料的有机电致发光器件 | |
CN110492006B (zh) | 一种基于含硼有机化合物的电致发光器件 | |
WO2019218969A1 (zh) | 一种基于激基复合物体系搭配含硼有机化合物的电致发光器件 | |
WO2020042607A1 (zh) | 有机电致发光器件及其制备方法和显示装置 | |
WO2019062685A1 (zh) | 一种含硼有机电致发光器件及其制备方法 | |
Chen et al. | A meta-molecular tailoring strategy towards an efficient violet-blue organic electroluminescent material | |
WO2019206291A1 (zh) | 有机电致发光器件及包括其的显示器 | |
KR20100131745A (ko) | 유기광전소자용 조성물 및 이를 이용한 유기광전소자 | |
WO2020134138A1 (zh) | 有机电致发光化合物及其制备方法和有机电致发光器件 | |
WO2019185061A1 (zh) | 一种基于双二甲基芴的化合物、制备方法及其应用 | |
KR20160050614A (ko) | 유기 전계 발광 소자 | |
CN114914372A (zh) | 一种有机电致发光器件 | |
KR20160047297A (ko) | 유기 전계 발광 소자 | |
KR20120130074A (ko) | 유기광전소자용 조성물 및 이를 이용한 유기광전소자 | |
Braveenth et al. | Triazine-dibenzocarbazole based bipolar host materials for highly luminescent green and yellow phosphorescent organic light emitting diodes | |
JP2022121400A (ja) | 有機エレクトロルミネッセンス素子 | |
JP7282291B2 (ja) | 有機発光素子 | |
CN116828881A (zh) | 有机电致发光器件 | |
CN116113294A (zh) | 一种有机电致发光器件及其应用 | |
JP2023076403A (ja) | 有機エレクトロルミネッセンス素子 | |
WO2019218970A1 (zh) | 一种热活化延迟荧光有机电致发光器件 | |
WO2022138948A1 (ja) | 有機エレクトロルミネッセンス素子、発光装置、有機エレクトロルミネッセンス表示装置及び電子機器 | |
CN118742176A (zh) | 一种磷光有机电致发光器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19849226 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19849226 Country of ref document: EP Kind code of ref document: A1 |