WO2020134138A1 - 有机电致发光化合物及其制备方法和有机电致发光器件 - Google Patents

有机电致发光化合物及其制备方法和有机电致发光器件 Download PDF

Info

Publication number
WO2020134138A1
WO2020134138A1 PCT/CN2019/103106 CN2019103106W WO2020134138A1 WO 2020134138 A1 WO2020134138 A1 WO 2020134138A1 CN 2019103106 W CN2019103106 W CN 2019103106W WO 2020134138 A1 WO2020134138 A1 WO 2020134138A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
organic electroluminescent
layer
Prior art date
Application number
PCT/CN2019/103106
Other languages
English (en)
French (fr)
Inventor
王辉
李文军
黄悦
陈明
李建行
姜晓晨
马晓宇
Original Assignee
吉林奥来德光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林奥来德光电材料股份有限公司 filed Critical 吉林奥来德光电材料股份有限公司
Publication of WO2020134138A1 publication Critical patent/WO2020134138A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • C07D335/12Thioxanthenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D411/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the technical field of luminescent materials, in particular to an organic electroluminescent compound, a preparation method thereof, and an organic electroluminescent device.
  • An electroluminescence device is an automatic light-emitting device, and its advantage is that it provides a wider viewing angle, a larger contrast ratio, and a faster response time.
  • An organic EL element is a self-luminous element that utilizes the principle that by applying an electric field, the recombination of holes injected from the anode and electrons injected from the cathode can cause the fluorescent substance to emit light. It has the following structure: anode, cathode and organic layer between them.
  • the organic layer includes multiple layers of different materials, such as a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer, an electron transport layer (ETL), and electron injection Layer (EIL).
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • EIL electron injection Layer
  • the most important factor that determines the luminous efficiency in organic EL devices is the luminescent material. So far, fluorescent materials have been widely used as light-emitting materials. However, in view of the electroluminescence mechanism, since the phosphorescent material theoretically enhances the luminous efficiency by four times compared with the fluorescent material, the development of the phosphorescent light-emitting material has been extensively studied. Iridium (III) complexes have been widely referred to as phosphorescent doping materials. At present, 4,4′-N,N′-dicarbazole-biphenyl (CBP), 9,10-bis(2-naphthyl)anthracene (ADN), etc. are widely used as known phosphorescent host materials.
  • CBP 4,4′-N,N′-dicarbazole-biphenyl
  • ADN 9,10-bis(2-naphthyl)anthracene
  • Organic EL devices containing phosphorescent host materials require higher driving voltages. Meanwhile, in order to improve the efficiency and stability of the organic EL device, it is required to have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the hole transport layer can change the hole transport efficiency from the hole to the light emitting layer, the luminous efficiency, the life, etc.
  • CuPc copper phthalocyanine
  • NPB 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl
  • TPD N,N′-diphenyl-N,N '-Bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine
  • organic EL devices using these materials have problems in quantum efficiency and service life, and quantum efficiency and life need to be further improved.
  • the present disclosure provides an organic electroluminescent compound having the structure of Chemical Formula 1:
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted C 1 -C 30 alkyl, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 3 -C 30 heteroaryl or arylamine; or connected with adjacent substituents to form a monocyclic or polycyclic ring, for example, C 3 -C 30 alicyclic ring or aromatic ring, the carbon atom of which can be replaced by at least one selected Heteroatoms from nitrogen, oxygen and sulfur;
  • Ar 3 is selected from substituted or unsubstituted C 1 -C 30 alkyl, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 3 -C 30 heteroaryl, Aromatic amine group or aliphatic amine group; or connected with adjacent substituents to form a monocyclic or polycyclic ring, for example, C 3 -C 30 alicyclic ring or aromatic ring, the carbon atom of which can be replaced by at least one selected from nitrogen, Heteroatoms of oxygen and sulfur;
  • L is a substituted or unsubstituted C 6 -C 30 aryl group
  • X is selected from -O-, -S-, -SO 2 -, -Si-, -Sn- or -Ge-;
  • R 1 and R 2 are each independently selected from hydrogen, deuterium, halogen, cyano, carboxy, nitro, hydroxy, substituted or unsubstituted C 1 -C 30 hydrocarbyl, substituted or unsubstituted C 1- C 30 alkoxy, substituted or unsubstituted C 3 -C 30 cycloalkyl, substituted or unsubstituted C 3 -C 30 cycloalkenyl, substituted or unsubstituted C 3 to C 7 Heterocycloalkyl, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 3 to C 30 heteroaryl, -NR 3 R 4 , -SiR 5 R 6 R 7- , -SR 8 , -OR 9 , -COR 10 , -B (OR 11 ) (OR 12 ); or R 1 and R 2 are connected to adjacent substituents to form a substituted or unsubstituted
  • R 3 to R 12 are each independently selected from substituted or unsubstituted C 1 -C 30 alkyl, substituted or unsubstituted C 6 -C 30 aryl, or substituted or unsubstituted C 3- C 30 heteroaryl; or connected to adjacent substituents to form a substituted or unsubstituted monocyclic or polycyclic ring, for example, C 3 -C 30 aliphatic ring or aromatic ring;
  • a, b are selected from integers 1 to 4.
  • the organic electroluminescent compound is selected from compounds of the structure shown in Chemical Formula 2-4:
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted C 6 -C 20 aryl, substituted or unsubstituted C 15 -C 26 heteroaryl or Triarylamine;
  • Ar 3 is selected from substituted or unsubstituted C 6 -C 25 aryl, substituted or unsubstituted C 5 to C 24 heteroaryl or triarylamine.
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted C 10 -C 14 aryl, substituted or unsubstituted C 18 -C 22 heteroaryl or triphenylamine;
  • Ar 3 is selected from Substituted or unsubstituted C 10 -C 20 aryl, substituted or unsubstituted C 12 -C 18 heteroaryl or triphenylamine group.
  • Ar 1 and Ar 2 are each independently selected from the following structures:
  • Ar 3 is selected from the following structures:
  • R is selected from hydrogen, halo, cyano, C 1 ⁇ C 30 alkyl group is, C 6 ⁇ C 50 aryl group is, C 7 ⁇ C 50 aralkyl group is, C alkoxy aryl group of 7 ⁇ C 50 Group, C 7 -C 50 arylalkylmercapto group or C 5 -C 50 heteroaryl group.
  • organic electroluminescent compound is selected from compounds having the structure shown in Chemical Formula 1-135:
  • the present disclosure also provides a method for preparing an organic electroluminescent compound, which includes the following steps: Step 1. Preparation of intermediate 1: dissolve compound 2 in tetrahydrofuran, then add n-butyl lithium, stir well, and then add tetrahydrofuran The dissolved compound 1 is stirred at room temperature to prepare intermediate 1; Step 2, the preparation of the compound represented by chemical formula 1: dissolve intermediate 1 and compound 3 in dichloromethane, then add the dissolved in dichloromethane Boron trifluoride etherate is stirred at room temperature to prepare the compound represented by Chemical Formula 1;
  • the synthetic route is as follows:
  • Hal represents halogen
  • step 1 includes the following steps:
  • step 2 includes the following steps:
  • the present disclosure also provides an organic electroluminescent device including the above organic electroluminescent compound.
  • the organic electroluminescent device includes a first electrode, a second electrode, and an organic layer interposed between the first electrode and the second electrode, wherein the organic layer contains At least one compound of the structure shown in Chemical Formula 1.
  • the organic layer includes at least a light-emitting layer; in one or more embodiments, the organic layer further includes at least one selected from a hole injection layer, a hole transport layer, an electron transport layer, an electron A layer consisting of an injection layer, a hole blocking layer, and an electron blocking layer.
  • the compound of the structure shown in Chemical Formula 1 is contained in a hole injection layer, a hole transport layer, an electron transport layer, a light emitting layer, an electron injection layer, a hole blocking layer, and an electron blocking layer In one or more layers.
  • the above-mentioned organic electroluminescent device is selected from a flat panel display, a flat luminous body, a surface emitting OLED luminous body for lighting, a flexible luminous body, a copier, a printer, an LCD backlight or a light source of a metering machine, a display panel, and a logo.
  • the present disclosure also provides the application of the above-mentioned organic electroluminescent devices in the preparation of organic light-emitting devices, organic solar cells, electronic paper, organic photoreceptors, or organic thin-film transistors.
  • the present disclosure provides an organic electroluminescent compound having the structure shown in Chemical Formula 1:
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted C 1 -C 30 alkyl, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 3 -C 30 heteroaryl or arylamine; or connected with adjacent substituents to form a monocyclic or polycyclic ring, for example, C 3 -C 30 alicyclic ring or aromatic ring, the carbon atom of which can be replaced by at least one selected Heteroatoms from nitrogen, oxygen and sulfur;
  • Ar 3 is selected from substituted or unsubstituted C 1 -C 30 alkyl, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 3 -C 30 heteroaryl, Aromatic amine group or aliphatic amine group; or connected with adjacent substituents to form a monocyclic or polycyclic ring, for example, C 3 -C 30 alicyclic ring or aromatic ring, the carbon atom of which can be replaced by at least one selected from nitrogen, Heteroatoms of oxygen and sulfur;
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted C 6 -C 20 aryl, substituted or unsubstituted C 15 -C 26 heteroaryl or Triarylamine group
  • Ar 3 is selected from substituted or unsubstituted C 6 -C 25 aryl group, substituted or unsubstituted C 5 -C 24 heteroaryl group or triarylamine group
  • Ar 1 and Ar 2 Each independently selected from substituted or unsubstituted C 10 -C 14 aryl, substituted or unsubstituted C 18 -C 22 heteroaryl or triphenylamine
  • Ar 3 is selected from substituted or unsubstituted C 10 -C 20 aryl, substituted or unsubstituted C 12 -C 18 heteroaryl or triphenylamine;
  • L is a substituted or unsubstituted C 6 -C 30 aryl group; for example, benzene or deuterated benzene;
  • X is selected from -O-, -S-, -SO 2 -, -Si-, -Sn- or -Ge-;
  • R 1 and R 2 are each independently selected from hydrogen, deuterium, halogen, cyano, carboxy, nitro, hydroxy, substituted or unsubstituted C 1 -C 30 hydrocarbyl, substituted or unsubstituted C 1- C 30 alkoxy, substituted or unsubstituted C 3 -C 30 cycloalkyl, substituted or unsubstituted C 3 -C 30 cycloalkenyl, substituted or unsubstituted C 3 -C 7 Heterocycloalkyl, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 3 -C 30 heteroaryl, -NR 3 R 4 , -SiR 5 R 6 R 7- , -SR 8 , -OR 9 , -COR 10 , -B (OR 11 ) (OR 12 ); for example, R 1 and R 2 are hydrogen, methyl, or isopropyl;
  • R 1 and R 2 are connected to adjacent substituents to form a substituted or unsubstituted monocyclic or polycyclic ring, for example, C 3 -C 30 alicyclic ring or aromatic ring, the carbon atoms of which may be replaced by at least one Heteroatoms selected from nitrogen, oxygen and sulfur; for example, naphthalene, anthracene or pyrene, or substituted naphthalene, anthracene or pyrene; for example, the above substituents are methyl or phenyl;
  • R 3 to R 12 are each independently selected from substituted or unsubstituted C 1 -C 30 alkyl, substituted or unsubstituted C 6 -C 30 aryl, or substituted or unsubstituted C 3- C 30 heteroaryl; or connected to adjacent substituents to form a substituted or unsubstituted monocyclic or polycyclic ring, for example, C 3 -C 30 aliphatic ring or aromatic ring;
  • a and b are selected from integers 1 to 4; for example, a and b are 1.
  • the organic electroluminescent compound is selected from compounds of the structure shown in Chemical Formula 2-4:
  • Ar 1 and Ar 2 are each independently selected from the following structures:
  • Ar 3 is selected from the following structures:
  • R is hydrogen, halogen, cyano, C 1 -C 30 alkyl, C 6 -C 50 aryl, C 7 -C 50 aralkyl, C 7 -C 50 arylalkoxy , C 7 ⁇ C 50 arylalkylmercapto group or C 5 ⁇ C 50 heteroaryl group;
  • R is hydrogen, benzene, methyl or isopropyl
  • the alkyl group is a straight-chain alkyl group, a branched-chain alkyl group, a cycloalkyl group, a straight-chain alkyl group substituted with at least one substituent, a branched-chain alkyl group substituted with at least one substituent, or at least one substituent Substituted cycloalkyl; wherein, the substituent is independently selected from one or more of halogen, cyano, hydroxyl, and mercapto.
  • the aryl group is an unsubstituted aryl group or an aryl group substituted with at least one substituent; wherein, the substituent independently selects halogen, amino, cyano, nitro, Hydroxy or mercapto;
  • the arylalkyl group is preferably an unsubstituted arylalkyl group or an arylalkyl group substituted with at least one substituent; wherein, the substituent independently selects halogen, amino, cyano, nitro, hydroxyl or mercapto ;
  • the arylalkoxy group is preferably an unsubstituted arylalkoxy group or an arylalkoxy group substituted with at least one substituent; wherein, the substituent independently selects halogen, amino, cyano, nitro, Hydroxy or mercapto;
  • the arylalkylmercapto group is preferably an unsubstituted arylalkylmercapto group or an arylalkylmercapto group substituted with at least one substituent; wherein, the substituent independently selects halogen, amino, cyano, nitro, hydroxyl, or mercapto ;
  • the heteroaryl group is an unsubstituted heteroaryl group or a heteroaryl group substituted with at least one substituent; wherein, the heteroatom in the heteroaryl group is nitrogen, sulfur, or oxygen;
  • the substituent independently selects halogen, amino, cyano, nitro, hydroxyl or mercapto;
  • the organic electroluminescent compound is selected from compounds of the structure shown in Chemical Formula 1-135:
  • the present disclosure also provides a method for preparing an organic electroluminescent compound, including the following steps:
  • Step 1 Preparation of Intermediate 1: Dissolve Compound 2 in tetrahydrofuran, then add n-butyllithium, stir well, then add Compound 1 dissolved in tetrahydrofuran, and stir at room temperature to prepare Intermediate 1;
  • Step 2 Preparation of the compound represented by Chemical Formula 1: Dissolve Intermediate 1 and Compound 3 in dichloromethane, then add boron trifluoride ether dissolved in dichloromethane, and perform stirring reaction at room temperature to prepare Chemical Formula 1 The compound shown;
  • the synthetic route is as follows:
  • R 1 and R 2 , X, Ar 1 , Ar 2 , Ar 3 , L, and a and b are as defined in the above Chemical Formula 1, and Hal represents halogen.
  • step 1 includes the following steps:
  • step 2 includes the following steps:
  • the present disclosure also provides an organic electroluminescent device including the above organic electroluminescent compound.
  • the organic electroluminescent device includes:
  • the above-mentioned materials may contain a separate organic electroluminescent compound according to the present disclosure, or may further include conventional materials generally used for organic electroluminescent materials.
  • One of the first and second electrodes is an anode, and the other is a cathode.
  • the organic layer includes a light-emitting layer, and further includes at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a hole blocking layer, and an electron blocking layer.
  • the organic electroluminescent compound according to the present disclosure may be included in at least one of the light emitting layer and the hole transport layer.
  • the compound of the structure shown in Chemical Formula 1 is included in one or more of the hole injection layer, the hole transport layer, the electron transport layer, the light emitting layer, the electron injection layer, the hole blocking layer, and the electron blocking layer.
  • the organic layer includes at least a hole injection layer, a hole transport layer, a layer with both hole injection and hole transport skills, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer And one or more of the layers with both electronic transmission and electronic injection skills.
  • organic layer in this disclosure refers to all layers disposed between the first electrode and the second electrode of the organic electroluminescent device.
  • the compound of the structure shown in Chemical Formula 1 can be used as a light-emitting host or doped in other fluorescent hosts;
  • the compound of the structure shown in Chemical Formula 1 can be used as a hole transport layer, a hole injection layer, and both Hole injection also has a hole transport function layer.
  • the organic electroluminescent device is selected from a flat panel display, a flat luminous body, a surface emitting OLED luminous body for lighting, a flexible luminous body, a copier, a printer, an LCD backlight, or a light source of a metering machine , Display board, logo.
  • the device prepared by the compound containing the structure shown in Chemical Formula 1 of the present disclosure can be used for organic light emitting device (OLED), organic solar cell (OSC), electronic paper (e-Paper), organic photoreceptor (OPC) or organic Thin Film Transistor (OTFT).
  • OLED organic light emitting device
  • OSC organic solar cell
  • e-Paper electronic paper
  • OPC organic photoreceptor
  • OTFT organic Thin Film Transistor
  • the device described in the present disclosure can form an anode by evaporating metal and conductive oxides and their alloys on the substrate by thin film evaporation, electron beam evaporation, physical vapor deposition, etc., or can also use a spin coating (spin- coating) or thin strip lead evaporation; tape-casting, doctor-blading, screen-printing, ink-jet printing or thermal-imaging methods can also be used Reduce the number of layers to manufacture.
  • spin coating spin- coating
  • thin strip lead evaporation tape-casting, doctor-blading, screen-printing, ink-jet printing or thermal-imaging methods
  • the present disclosure provides a hole transport material that can be used in an organic EL device and can solve the conventional technical problems.
  • the traditional hole-transporting materials are mainly based on triaryl derivatives. Although it has a hole-transporting ability and a low driving voltage, it has to introduce a large number of substituents in its structure to increase its molecular weight in order to obtain a suitable glass transition temperature. However, this reduces the triplet energy or LUMO energy, which leads to the deterioration of the organic electroluminescent device.
  • An ideal hole transport material requires a high glass transition temperature, hole injection ability and hole transport ability, as well as suitable triplet energy and LUMO energy.
  • the present disclosure proposes a solution to introduce an arylamine and a heterocyclic ring to the 9-position of heteroanthracene.
  • arylamines hole injection/transport capabilities, high power efficiency, and long life are obtained;
  • heterocycles an appropriate glass transition temperature is obtained, thereby obtaining high-quality organic electroluminescent materials.
  • Devices made from the compounds provided by the present disclosure have excellent current efficiency and power efficiency and long life.
  • the preparation method of the organic electroluminescent compound provided by the present disclosure is simple and easy to implement, with high output, and is suitable for industrial production.
  • Compound 11 was prepared according to the method of Example 1 (yield 83%, MW: 810.0). The difference from Example 1 is that Intermediate 1-11 is used instead of Intermediate 1-1, and Intermediate 2-11 is used instead of Intermediate 2-1.
  • Compound 20 was prepared according to the method of Example 1 (yield 79%, MW: 921.11). The difference from Example 1 is that Intermediate 1-20 is used instead of Intermediate 1-1, and Intermediate 2-20 is used instead of Intermediate 2-1.
  • Compound 25 was prepared according to the method of Example 1 (yield 83%, MW: 818.42). The difference from Example 1 is that Intermediate 1-25 is used instead of Intermediate 1-1, and Intermediate 2-25 is used instead of Intermediate 2-1.
  • Compound 33 was prepared according to the method of Example 1 (yield 77%, MW: 783.83). The difference from Example 1 is that Intermediate 1-33 is used instead of Intermediate 1-1, and Intermediate 2-33 is used instead of Intermediate 2-1.
  • Compound 45 was prepared according to the method of Example 1 (yield 84%, MW: 835.21). The difference from Example 1 is that intermediate 1-45 is used instead of intermediate 1-1, and intermediate 2-45 is used instead of intermediate 2-1.
  • Compound 46 was prepared according to the method of Example 1 (yield 82%, MW: 772.45). The difference from Example 1 is that Intermediate 1-46 is used instead of Intermediate 1-1, and Intermediate 2-46 is used instead of Intermediate 2-1.
  • Compound 57 was prepared according to the method of Example 1 (yield 79%, MW: 708.81). The difference from Example 1 is that Intermediate 1-57 is used instead of Intermediate 1-1, and Intermediate 2-57 is used instead of Intermediate 2-1.
  • Compound 72 was prepared according to the method of Example 1 (yield 84%, MW: 733.39). The difference from Example 1 is that intermediate 1-72 is used instead of intermediate 1-1, and intermediate 2-72 is used instead of intermediate 2-1.
  • Compound 103 was prepared according to the method of Example 1 (yield 85%, MW: 867.44). The difference from Example 1 is that intermediate 1-103 is used instead of intermediate 1-1, and intermediate 2-103 is used instead of intermediate 2-1.
  • Compound 41 was prepared according to the method of Example 1 (yield 87%, MW: 651.39). The difference from Example 1 is that Intermediate 1-107 is used instead of Intermediate 1-1, and Intermediate 2-107 is used instead of Intermediate 2-1.
  • Example 12 Manufacturing an organic electroluminescent device containing Compound 1
  • the coating thickness is The ITO glass substrate was washed twice in distilled water, ultrasonically washed for 30 minutes, repeatedly washed with distilled water twice, ultrasonically washed for 10 minutes, after the distilled water was cleaned, isopropyl alcohol, acetone, methanol and other solvents were ultrasonically washed in order and dried. Transfer to a plasma cleaner, wash the substrate for 5 minutes, and send it to a vapor deposition machine. 4,4',4"-tri[2-naphthylphenylamino]triphenylamine (2-TNATA) with a thickness of 50nm was vapor-deposited on the prepared ITO transparent electrode as a hole injection layer.
  • 2-TNATA 4,4',4"-tri[2-naphthylphenylamino]triphenylamine
  • Compound 1 vacuum-deposited a hole transport layer with a thickness of 30 nm on the formed hole injection layer. Then, a blue host material 9,10-bis(2-naphthyl) with a thickness of 30 nm was deposited on the hole transport layer ) Anthracene (ADN) and doped material bis(4,6-difluorophenylpyridine-N,C 2 )pyridineformyl iridium (FIrpic). The weight ratio of host material and doped material is 95:5. TPBi with a thickness of 40 nm is vacuum-evaporated on the light-emitting layer as a hole blocking layer and an electron transport layer.
  • ADN Anthracene
  • FIrpic doped material bis(4,6-difluorophenylpyridine-N,C 2 )pyridineformyl iridium
  • Lithium fluoride (LiF) with a thickness of 0.5 nm is vacuum-evaporated on the electron-transport layer as an electron injection layer. Aluminium plated with a thickness of 150nm was used as the cathode to complete the preparation of the organic electroluminescent device.
  • the luminescence characteristic test was measured using a KEITHLEY 2400 source measurement unit and a CS-2000 spectroradiometer to evaluate Driving voltage, luminous brightness, luminous efficiency.
  • Example 13 Fabrication of an organic electroluminescent device containing compound 11
  • Example 12 The compound 1 in Example 12 was replaced with the compound 11, and other methods were the same, and an organic electroluminescence device containing the compound 11 was produced.
  • Example 14 Fabrication of an organic electroluminescent device containing compound 20
  • Example 12 The compound 1 in Example 12 was replaced with the compound 20, and other methods were the same, and an organic electroluminescence device containing the compound 20 was produced.
  • Example 15 Fabrication of an organic electroluminescent device containing compound 25
  • Example 12 The compound 1 in Example 12 was replaced with the compound 25, and the organic electroluminescent device containing the compound 25 was produced in the same manner as the other methods.
  • Example 16 Manufacture of an organic electroluminescent device containing compound 33
  • Example 12 The compound 1 in Example 12 was replaced with the compound 33, and other methods were the same, and an organic electroluminescence device containing the compound 33 was produced.
  • Example 17 Fabrication of an organic electroluminescent device containing compound 45
  • Example 12 The compound 1 in Example 12 was replaced with the compound 45, and other methods were the same, and an organic electroluminescence device containing the compound 45 was produced.
  • Example 18 Fabrication of an organic electroluminescent device containing compound 46
  • Example 12 The compound 1 in Example 12 was replaced with the compound 46, and other methods were the same, and an organic electroluminescent device containing the compound 46 was produced.
  • Example 19 Fabrication of an organic electroluminescent device containing compound 57
  • Example 12 The compound 1 in Example 12 was replaced with the compound 57, and the organic EL device containing the compound 57 was produced in the same manner as the other methods.
  • Example 20 Fabrication of an organic electroluminescent device containing compound 72
  • Example 12 The compound 1 in Example 12 was replaced with the compound 72, and other methods were the same, and an organic electroluminescence device containing the compound 72 was produced.
  • Example 21 Fabrication of an organic electroluminescent device containing compound 103
  • Example 12 The compound 1 in Example 12 was replaced with the compound 103, and other methods were the same, and an organic electroluminescence device containing the compound 103 was produced.
  • Example 22 Fabrication of an organic electroluminescent device containing compound 107
  • Example 12 The compound 1 in Example 12 was replaced with the compound 107.
  • the organic EL device containing the compound 107 was produced in the same manner as in the other methods.
  • Example 23 Manufacture of organic electroluminescent devices containing NPD
  • the material of the hole transport layer was replaced by Compound 1 with N'-bis(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4 , 4'-diamine (NPD), other methods are the same, making organic electroluminescent devices containing NPD.
  • Table 1 shows the test results of the luminescence characteristics of the compounds prepared by the examples of the present disclosure and the organic electroluminescent devices prepared by NPD.
  • the compounds provided by the present disclosure have suitable glass transition temperatures, and the luminous efficiency and lifespan of devices prepared from the compounds of the present disclosure as a hole transport layer are higher than those prepared from NPD as a hole transport layer. Improved significantly.
  • the present disclosure proposes a solution to introduce arylamine and heterocycle to the 9-position of heteroanthracene.
  • arylamines By introducing arylamines, hole injection/transport capabilities, high power efficiency, and long life are obtained; by introducing heterocycles, an appropriate glass transition temperature is obtained, thereby obtaining high-quality organic electroluminescent materials.
  • Devices made from the compounds provided by the present disclosure have excellent current efficiency and power efficiency and long life.
  • the preparation method of the organic electroluminescent compound provided by the present disclosure is simple and easy to implement, with high output, and is suitable for industrial production.

Abstract

本公开涉及发光材料技术领域,具体涉及一种有机电致发光化合物及其制备方法和有机电致发光器件。为了解决传统空穴传输材料中存在的问题而得到理想的材料,本公开提出向杂蒽的9-位引入芳基胺和杂环的解决方案。通过引入芳基胺获得了空穴注入能力/传输能力,高功率效率、长寿命;通过引入杂环获得适当玻璃态转变温度,从而获得了优质的有机电致发光材料。由本公开提供的化合物制备的器件具有极佳电流效率和功率效率以及长寿命。本公开提供的有机电致发光化合物的制备方法,简单易行,产量高,适于工业化生产。

Description

有机电致发光化合物及其制备方法和有机电致发光器件
相关申请的交叉引用
本申请要求于2018年12月29日提交中国国家知识产权局的申请号为201811640915.3、名称为“有机电致发光化合物及其制备方法和有机电致发光器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及发光材料技术领域,具体涉及一种有机电致发光化合物及其制备方法和有机电致发光器件。
背景技术
电致发光装置(EL装置)为自动发光装置,其优点在于其提供较宽的视角、较大的对比率和较快的响应时间。
有机EL元件是利用了如下原理的自发光元件:通过施加电场,利用由阳极注入的空穴与由阴极注入的电子的复合能使荧光性物质发光。它具有如下结构:阳极、阴极以及介于两者之间的有机物层。为了提高有机EL元件的效率和稳定性,有机物层包括具有不同材料的多层,例如空穴注入层(HIL)、空穴传输层(HTL)、发光层、电子传输层(ETL)和电子注入层(EIL)。
在这种有机EL装置中,当在阳极和阴极之间施加电压时,来自阳极的空穴和来自阴极的电子注入有机物层。产生的激子在迁移至基态时产生具有特定波长的光。
决定有机EL装置中的发光效率的最重要因素是发光材料。到目前为止,荧光材料已经广泛用作发光材料。然而,鉴于电致发光机制,由于磷光材料在理论上与荧光材料相比使发光效率增强四倍,因此磷光发光材料的开发得到广泛研究。铱(III)络合物已广泛地被称为磷光掺杂材料。目前,4,4′-N,N′-二咔唑-联苯(CBP)、9,10-二(2-萘基)蒽(ADN)等作为已知的磷光主体材料得到广泛的应用。尽管这些材料提供良好发光特征,但其具有以下缺点:(1)由于其较低玻璃态转变温度和不良热稳定性,导致装置的寿命降低。(2)包含磷光主体材料的有机EL装置需要较高的驱动电压。同时,为了提高有机EL装置的效率和稳定性,需要其具有包含空穴注入层、空穴传输层、发光层、电子传输层和电子注入层的多层结构。空穴传输层可改变空穴到发光层的空穴传输效率、发光效率、寿命等。因此,使用铜酞菁(CuPc)、4,4′-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N′-二苯基-N,N′-双(3-甲基苯基)-(1,1′-联苯)-4,4′-二胺(TPD)等作为空穴传输材料。然而,使用这些材料的有机EL装置在量子效率和使用寿命方面存在问题,量子效率和寿命需要进一步提高。
发明内容
本公开提供一种有机电致发光化合物,具有化学式1的结构:
Figure PCTCN2019103106-appb-000001
其中,Ar 1和Ar 2各自独立地选自经取代或未经取代的C 1-C 30烷基、经取代或未经取代C 6-C 30芳基、经取代或未经取代的C 3-C 30杂芳基或芳胺基;或与相邻取代基连接形成单环或多环,例如,C 3-C 30脂环族环或芳香族环,其碳原子可置换为至少一个选自氮、氧和硫的杂原子;
Ar 3选自经取代或未经取代的C 1-C 30烷基、经取代或未经取代的C 6-C 30芳基、经取代或未经取代的C 3-C 30杂芳基、芳胺基或者脂肪胺基;或与相邻取代基连接形成单环或多环,例如,C 3-C 30脂环族环或芳香族环,其碳原子可置换为至少一个选自氮、氧和硫的杂原子;
L为经取代或未经取代的C 6-C 30芳基;
X选自-O-、-S-、-SO 2-、-Si-、-Sn-或者-Ge-;
R 1和R 2各自独立地选自氢、氘、卤素、氰基、羧基、硝基、羟基、经取代或未经取代的C 1-C 30烃基、经取代或未经取代的C 1-C 30烷氧基、经取代或未经取代的C 3-C 30环烷基、经取代或未经取代的C 3-C 30环烯基、经取代或未经取代的C 3到C 7杂环烷基、经取代或未经取代的C 6-C 30芳基、经取代或未经取代的C 3到C 30杂芳基、-NR 3R 4、-SiR 5R 6R 7-、-SR 8、-OR 9、-COR 10、-B(OR 11)(OR 12);或R 1和R 2与相邻取代基连接形成经取代或未经取代的单环或多环,例如,C 3-C 30脂环族环或芳香族环,其碳原子可置换成至少一个选自氮、氧和硫的杂原子;
R 3到R 12各自独立地选自经取代或未经取代的C 1-C 30烷基、经取代或未经取代的C 6-C 30芳基或经取代 或未经取代的C 3-C 30杂芳基;或与相邻取代基连接形成经取代或未经取代的单环或多环,例如,C 3-C 30脂肪族环或芳香族环;
a,b选自整数1到4。
在一种或多种实施方式中,有机电致发光化合物选自化学式2-4所示结构的化合物:
Figure PCTCN2019103106-appb-000002
在一种或多种实施方式中,Ar 1和Ar 2各自独立地选自经取代或未经取代C 6-C 20芳基、经取代或未经取代的C 15-C 26杂芳基或三芳胺基;Ar 3选自经取代或未经取代的C 6-C 25芳基、经取代或未经取代的C 5到C 24杂芳基或三芳胺基。
例如,Ar 1和Ar 2各自独立地选自经取代或未经取代C 10-C 14芳基、经取代或未经取代的C 18-C 22杂芳基或三苯胺基;Ar 3选自经取代或未经取代的C 10-C 20芳基、经取代或未经取代的C 12-C 18杂芳基或三苯胺基。
在一种或多种实施方式中,Ar 1和Ar 2各自独立地选自以下结构:
Figure PCTCN2019103106-appb-000003
Ar 3选自以下结构:
Figure PCTCN2019103106-appb-000004
其中,R选自氢、卤素、氰基、C 1~C 30的烷基、C 6~C 50的芳基、C 7~C 50的芳烷基、C 7~C 50的芳基烷氧基、C 7~C 50的芳基烷巯基或C 5~C 50的杂芳基。
例如,有机电致发光化合物选自化学式1-135所示结构的化合物:
Figure PCTCN2019103106-appb-000005
Figure PCTCN2019103106-appb-000006
Figure PCTCN2019103106-appb-000007
Figure PCTCN2019103106-appb-000008
本公开还提供了一种有机电致发光化合物的制备方法,包括以下步骤:步骤1、中间体1的制备:将化合物2溶于四氢呋喃,接着加入正丁基锂,搅拌均匀,再加入用四氢呋喃溶解的化合物1,室温下进行搅拌反应,制备得到中间体1;步骤2、化学式1所示化合物的制备:将中间体1和化合物3溶解于二氯甲烷,接着加入溶解于二氯甲烷中的三氟化硼乙醚,室温下进行搅拌反应,制备得到化学式1所示的化合物;
其合成路线如下:
Figure PCTCN2019103106-appb-000009
其中Hal表示卤素。
在一种或多种实施方式中,步骤1包括以下步骤:
在反应容器中加入化合物2和四氢呋喃之后,在氮气氛围下使用所述容器冷却到-78℃;接着将正丁基锂逐滴添加到前述混合物中,在-78℃下搅拌混合物30分钟后,将其在室温下搅拌3小时,并且冷却到-78℃;此后,将溶解于四氢呋喃中的化合物1逐滴添加到混合物中;添加后,使反应温度升温到室温,并且搅拌混合物16小时;接着将氯化铵水溶液添加到反应溶液中以完成反应,并且用乙酸乙酯萃取反应溶液;接着使用硫酸镁干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂;用管柱色谱法纯化剩余物质获得中间体1。
在一种或多种实施方式中,步骤2包括以下步骤:
将中间体1、化合物3和二氯甲烷加入反应容器中之后,用氮气充分置换空气三次;将溶解于100mL二氯甲烷中的三氟化硼乙醚逐滴添加到前述混合物中;在室温下搅拌混合物2小时后,用蒸馏水淬灭,并且用二氯甲烷萃取混合物;接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂;用柱色谱法纯化剩余物质获得化学式1所示的化合物。
本公开还提供了一种包含上述有机电致发光化合物的有机电致发光器件。
在一种或多种实施方式中,有机电致发光器件包括第一电极、第二电极和置于所述第一电极和第二电极之间的有机物层,其中,所述有机物层中包含有至少一种化学式1所示结构的化合物。
在一种或多种实施方式中,有机物层至少包括发光层;在一种或多种实施方式中,有机物层还包括至少一个选自空穴注入层、空穴传输层、电子传输层、电子注入层、空穴阻挡层以及电子阻挡层组成的组的层。
在一种或多种实施方式中,化学式1所示结构的化合物包含在空穴注入层、空穴传输层、电子传输层、发光层、电子注入层、空穴阻挡层以及电子阻挡层中的一层或多层中。
例如,上述有机电致发光器件选自平面面板显示、平面发光体、照明用面发光OLED发光体、柔性发光体、复印机、打印机、LCD背光灯或计量机的光源、显示板、标识。
本公开还提供了上述有机电致发光器件在制备有机发光器件、有机太阳电池、电子纸、有机感光体或有机薄膜晶体管中的应用。
具体实施方式
本公开提供一种有机电致发光化合物,具有化学式1所示的结构:
Figure PCTCN2019103106-appb-000010
其中,Ar 1和Ar 2各自独立地选自经取代或未经取代的C 1-C 30烷基、经取代或未经取代C 6-C 30芳基、经取代或未经取代的C 3-C 30杂芳基或芳胺基;或与相邻取代基连接形成单环或多环,例如,C 3-C 30脂环族环或芳香族环,其碳原子可置换为至少一个选自氮、氧和硫的杂原子;
Ar 3选自经取代或未经取代的C 1-C 30烷基、经取代或未经取代的C 6-C 30芳基、经取代或未经取代的C 3-C 30杂芳基、芳胺基或者脂肪胺基;或与相邻取代基连接形成单环或多环,例如,C 3-C 30脂环族环或芳香族环,其碳原子可置换为至少一个选自氮、氧和硫的杂原子;
在一种或多种实施方式中,Ar 1和Ar 2各自独立地选自经取代或未经取代C 6-C 20芳基、经取代或未经取代的C 15-C 26杂芳基或三芳胺基,Ar 3选自经取代或未经取代的C 6-C 25芳基、经取代或未经取代的C 5-C 24杂芳基或三芳胺基;例如,Ar 1和Ar 2各自独立地选自经取代或未经取代C 10-C 14芳基、经取代或未经取代的C 18-C 22杂芳基或三苯胺基;Ar 3选自经取代或未经取代的C 10-C 20芳基、经取代或未经取代的C 12-C 18杂芳基或三苯胺基;
L为经取代或未经取代的C 6-C 30芳基;例如,苯或氘代苯;
X选自-O-、-S-、-SO 2-、-Si-、-Sn-或者-Ge-;
R 1和R 2各自独立地选自氢、氘、卤素、氰基、羧基、硝基、羟基、经取代或未经取代的C 1-C 30烃基、经取代或未经取代的C 1-C 30烷氧基、经取代或未经取代的C 3-C 30环烷基、经取代或未经取代的C 3-C 30环烯基、经取代或未经取代的C 3-C 7杂环烷基、经取代或未经取代的C 6-C 30芳基、经取代或未经取代的C 3-C 30杂芳基、-NR 3R 4、-SiR 5R 6R 7-、-SR 8、-OR 9、-COR 10、-B(OR 11)(OR 12);例如,R 1和R 2为氢、甲基或异丙基;
或R 1和R 2与相邻取代基连接形成经取代或未经取代的单环或多环,例如,C 3-C 30脂环族环或芳香族环,其碳原子可置换成至少一个选自氮、氧和硫的杂原子;例如,萘、蒽或芘,或取代的萘、蒽或芘;例如,上述取代基为甲基或苯基;
R 3到R 12各自独立地选自经取代或未经取代的C 1-C 30烷基、经取代或未经取代的C 6-C 30芳基或经取代或未经取代的C 3-C 30杂芳基;或与相邻取代基连接形成经取代或未经取代的单环或多环,例如,C 3-C 30脂肪族环或芳香族环;
a,b选自整数1到4;例如,a、b为1。
在一种或多种实施方式中,有机电致发光化合物选自化学式2-4所示结构的化合物:
Figure PCTCN2019103106-appb-000011
在一种或多种实施方式中,Ar 1和Ar 2各自独立地选自以下结构:
Figure PCTCN2019103106-appb-000012
Ar 3选自以下结构:
Figure PCTCN2019103106-appb-000013
其中,R为氢、卤素、氰基、C 1~C 30的烷基、C 6~C 50的芳基、C 7~C 50的芳烷基、C 7~C 50的芳基烷氧基、C 7~C 50的芳基烷巯基或C 5~C 50的杂芳基;
例如,R为氢、苯、甲基或异丙基;
其中,所述烷基为直链烷基、支链烷基、环烷基、至少1个取代基取代的直连烷基、至少1个取代基取代的支链烷基或至少1个取代基取代的环烷基;其中,所述取代基独立的选自卤素、氰基、羟基和巯基中的一种或几种。
在一种或多种实施方式中,所述芳基为未取代的芳基或至少1个取代基取代的芳基;其中,所述取代基独立的选择卤素、氨基、氰基、硝基、羟基或巯基;
所述芳基烷基优选为未取代的芳基烷基或至少1个取代基取代的芳基烷基;其中,所述取代基独立的选择卤素、氨基、氰基、硝基、羟基或巯基;
所述芳基烷氧基优选为未取代的芳基烷氧基或至少1个取代基取代的芳基烷氧基;其中,所述取代基独立的选择卤素、氨基、氰基、硝基、羟基或巯基;
所述芳基烷巯基优选为未取代的芳基烷巯基或至少1个取代基取代的芳基烷巯基;其中,所述取代基独立的选择卤素、氨基、氰基、硝基、羟基或巯基;
在一种或多种实施方式中,所述杂芳基为未取代的杂芳基或至少1个取代基取代的杂芳基;其中,杂芳基中的杂原子为氮、硫或氧;所述取代基独立的选择卤素、氨基、氰基、硝基、羟基或巯基;
且所述—R表示在其所在苯环的任意位置。
在一种或多种实施方式中,所述有机电致发光化合物选自化学式1-135所示结构的化合物:
Figure PCTCN2019103106-appb-000014
Figure PCTCN2019103106-appb-000015
Figure PCTCN2019103106-appb-000016
Figure PCTCN2019103106-appb-000017
本公开还提供一种有机电致发光化合物的制备方法,包括以下步骤:
步骤1、中间体1的制备:将化合物2溶于四氢呋喃,接着加入正丁基锂,搅拌均匀,再加入用四氢呋喃溶解的化合物1,室温下进行搅拌反应,制备得到中间体1;
步骤2、化学式1所示化合物的制备:将中间体1和化合物3溶解于二氯甲烷,接着加入溶解于二氯甲烷中的三氟化硼乙醚,室温下进行搅拌反应,制备得到化学式1所示的化合物;
其合成路线如下:
Figure PCTCN2019103106-appb-000018
其中,R 1和R 2、X、Ar 1、Ar 2、Ar 3、L、及a和b如上述化学式1中所定义,并且Hal表示卤素。
在一种或多种实施方式中,步骤1包括以下步骤:
在反应容器中加入化合物2和四氢呋喃之后,在氮气氛围下使用所述容器冷却到-78℃;接着将正丁基锂缓慢逐滴添加到前述混合物中,在-78℃下搅拌混合物30分钟后,将其在室温下搅拌3小时,并且冷却到-78℃;此后,将溶解于四氢呋喃中的化合物1缓慢逐滴添加到混合物中;添加后,使反应温度缓慢升温到室温,并且搅拌混合物16小时;接着将氯化铵水溶液添加到反应溶液中以完成反应,并且用乙酸乙酯萃取反应溶液;接着使用硫酸镁干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂;用管柱色谱法纯化剩余物质获得中间体1。
在一种或多种实施方式中,步骤2包括以下步骤:
将中间体1、化合物3和二氯甲烷加入反应容器中之后,用氮气充分置换空气三次;将溶解于100mL二氯甲烷中的三氟化硼乙醚缓慢逐滴添加到前述混合物中;在室温下搅拌混合物2小时后,用蒸馏水淬灭,并且用二氯甲烷萃取混合物;接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂;用柱色谱法纯化剩余物质获得化学式1所示的化合物。
本公开还提供包含上述有机电致发光化合物的有机电致发光器件。
在一种或多种实施方式中,所述有机电致发光器件包括:
第一电极、第二电极和置于所述两电极之间的有机物层,其中,所述有机物层中包含有至少一种化学式1所示结构的化合物;化学式1所示结构的化合物可以是单一形态或与其它物质混合存在于有机物层中。例如,上述材料可以包含单独的根据本公开的有机电致发光化合物,或可还包括一般用于有机电致发光材料的常规材料。所述第一和第二电极中的一个是阳极,且另一个是阴极。例如,所述有机物层包含发光层,并且还包含至少一个选自空穴注入层、空穴传输层、电子传输层、电子注入层、空穴阻挡层以及电子阻挡层组成的组的层。
在发光层和空穴传输层中的至少一个中可以包含根据本公开的有机电致发光化合物。
其中,化学式1所示结构的化合物包含在空穴注入层、空穴传输层、电子传输层、发光层、电子注入层、空穴阻挡层以及电子阻挡层中的一层或多层中。
其中,所述有机物层至少包括空穴注入层、空穴传输层、既具备空穴注入又具备空穴传输技能层,电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层和既具备电子传输又具备电子注入技能层中的一种或几种。
本公开中术语“有机物层”指的是有机电致发光器件第一电极和第二电极之间部署的全部层。
当化学式1所示结构的化合物存在于所述有机物层中的发光层时,所述化学式1所示结构的化合物可以作为发光主体或者掺杂在其它荧光主体中;
当化学式1所示结构的化合物存在于所述有机物层中的空穴传输层或者空穴注入层时,所述化学式1所示结构的化合物可以作为空穴传输层、空穴注入层以及既具备空穴注入又具备空穴传输功能层。
在一种或多种实施方式中,上述有机电致发光器件选自平面面板显示、平面发光体、照明用面发光OLED发光体、柔性发光体、复印机、打印机、LCD背光灯或计量机的光源、显示板、标识。
本公开所述的包含有化学式1所示结构的化合物制备的器件可以用于有机发光器件(OLED)、有机太阳电池(OSC)、电子纸(e-Paper)、有机感光体(OPC)或有机薄膜晶体管(OTFT)。
本公开所述的器件可以通过薄膜蒸镀、电子束蒸发、物理气相沉积等方法在基板上蒸镀金属以及具有导电性的氧化物及他们的合金形成阳极,也可以采用旋转涂膜(spin-coating)或薄带带头蒸镀;还可以采用成型(tape-casting)、刮片法(doctor-blading)、丝网印刷(Screen-Printing)、喷墨印刷或热成像(Thermal-Imaging)等方法减少层数制造。
本公开的有益效果是:
本公开提供一种能够用于有机EL装置中的可解决传统技术问题的空穴传输材料。传统的空穴传输材料基本以三芳基衍生物为主。虽然其具有空穴传输能力和低驱动电压,但是为了获得合适的玻璃态转变温度而不得不在其结构上引入大量的取代基提升其分子量。但是这样却降低三重态能量或LUMO能量,从而导致有机电致发光器件的劣化。理想的空穴传输材料需要高玻璃态转变温度、空穴注入能力和空穴传输能力,以及适合三重态能量和LUMO能量。因此,为了解决传统空穴传输材料中存在的问题而得到理想的材料,本公开提出向杂蒽的9-位引入芳基胺和杂环的解决方案。通过引入芳基胺获得了空穴注入能力/传输能力,高功率效率、长寿命;通过引入杂环获得适当玻璃态转变温度,从而获得了优质的有机电致发光材料。
由本公开提供的化合物制备的器件具有极佳电流效率和功率效率以及长寿命。
本公开提供的有机电致发光化合物的制备方法,简单易行,产量高,适于工业化生产。
实施例1:制备化合物1
Figure PCTCN2019103106-appb-000019
在反应容器中加入溴苯(60mmol)和200mL四氢呋喃之后,在氮气氛围下使用所述容器冷却到-78℃。接着将正丁基锂(2.5M,60mmol)缓慢逐滴添加到混合物中。在-78℃下搅拌混合物30分钟后,将其在室温下搅拌3小时,并且冷却到-78℃。此后,将溶解于200mL四氢呋喃中的占吨酮(60mmol)缓慢逐滴添加到混合物中。添加后,使反应温度缓慢升温到室温,并且搅拌混合物16小时。接着将氯化铵水溶液添加到反应溶液中以完成反应,并且用乙酸乙酯萃取反应溶液。接着使用硫酸镁干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂。用管柱色谱法纯化剩余物质获得化合物1-1(13.15g,产率为80%,MW:274.23)。
将化合物1-1(45mmol)、三苯基胺(46mmol)和500L二氯甲烷加入反应容器中之后,用氮气充分置换空气三次。将溶解于100mL二氯甲烷中的三氟化硼乙醚(46mmol)缓慢逐滴添加到混合物中。在室温下搅拌混合物2小时后,用蒸馏水淬灭,并且用二氯甲烷萃取混合物。接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂。用柱色谱法纯化剩余物质获得化合物1(20.30g,产率为90%,MW:501.33)。
实施例2:制备化合物11
Figure PCTCN2019103106-appb-000020
按照实施例1的方法制备化合物11(产率为83%,MW:810.0)。与实施例1的不同之处在于使用中 间体1-11代替中间体1-1,使用中间体2-11代替中间体2-1。
实施例3:制备化合物20
Figure PCTCN2019103106-appb-000021
按照实施例1的方法制备化合物20(产率为79%,MW:921.11)。与实施例1的不同之处在于使用中间体1-20代替中间体1-1,使用中间体2-20代替中间体2-1。
实施例4:制备化合物25
Figure PCTCN2019103106-appb-000022
按照实施例1的方法制备化合物25(产率为83%,MW:818.42)。与实施例1的不同之处在于使用中间体1-25代替中间体1-1,使用中间体2-25代替中间体2-1。
实施例5:制备化合物33
Figure PCTCN2019103106-appb-000023
按照实施例1的方法制备化合物33(产率为77%,MW:783.83)。与实施例1的不同之处在于使用中间体1-33代替中间体1-1,使用中间体2-33代替中间体2-1。
实施例6:制备化合物45
Figure PCTCN2019103106-appb-000024
按照实施例1的方法制备化合物45(产率为84%,MW:835.21)。与实施例1的不同之处在于使用中间体1-45代替中间体1-1,使用中间体2-45代替中间体2-1。
实施例7:制备化合物46
Figure PCTCN2019103106-appb-000025
按照实施例1的方法制备化合物46(产率为82%,MW:772.45)。与实施例1的不同之处在于使用中间体1-46代替中间体1-1,使用中间体2-46代替中间体2-1。
实施例8:制备化合物57
Figure PCTCN2019103106-appb-000026
按照实施例1的方法制备化合物57(产率为79%,MW:708.81)。与实施例1的不同之处在于使用中间体1-57代替中间体1-1,使用中间体2-57代替中间体2-1。
实施例9:制备化合物72
Figure PCTCN2019103106-appb-000027
按照实施例1的方法制备化合物72(产率为84%,MW:733.39)。与实施例1的不同之处在于使用中间体1-72代替中间体1-1,使用中间体2-72代替中间体2-1。
实施例10:制备化合物103
Figure PCTCN2019103106-appb-000028
按照实施例1的方法制备化合物103(产率为85%,MW:867.44)。与实施例1的不同之处在于使用中间体1-103代替中间体1-1,使用中间体2-103代替中间体2-1。
实施例11:制备化合物107
Figure PCTCN2019103106-appb-000029
按照实施例1的方法制备化合物41(产率为87%,MW:651.39)。与实施例1的不同之处在于使用中间体1-107代替中间体1-1,使用中间体2-107代替中间体2-1。
实施例12:制造含有化合物1的有机电致发光器件
将涂层厚度为
Figure PCTCN2019103106-appb-000030
的ITO玻璃基板放在蒸馏水中清洗2次,超声波洗涤30分钟,用蒸馏水反复清洗2次,超声波洗涤10分钟,蒸馏水清洗结束后,异丙醇、丙酮、甲醇等溶剂按顺序超声波洗涤以后干燥,转移到等离子体清洗机里,将上述基板洗涤5分钟,送到蒸镀机里。将已经准备好的ITO透明电极上蒸镀厚度为50nm的4,4',4”-三[2-萘基苯基氨基]三苯基胺(2-TNATA)作为空穴注入层。然后将化合物1在形成的空穴注入层上面真空蒸镀厚度为30nm的空穴传输层。然后在上述空穴传输层上蒸镀厚度为30nm的蓝色主体材料9,10-二(2-萘基)蒽(ADN)和掺杂材料双(4,6-二氟苯基吡啶-N,C 2)吡啶甲酰合铱(FIrpic)。主体材料和掺杂材料的重量比为95:5。接着在上述发光层上真空蒸镀厚度为40nm的TPBi作为空穴阻挡层及电子传输层。在上述电子传输层上真空蒸镀厚度为0.5nm氟化锂(LiF),作为电子注入层。最后蒸镀厚度为150nm的铝作为阴极,以此完成了有机电致发光器件的制备。对得到的器件的性能发光特性测试,测量采用KEITHLEY 2400型源测量单元,CS-2000分光辐射亮度计,以评价驱动电压,发光亮度,发光效率。
实施例13:制造含有化合物11的有机电致发光器件
将实施例12中的化合物1置换为化合物11,其他方法相同,制作含有化合物11的有机电致发光器件。
实施例14:制造含有化合物20的有机电致发光器件
将实施例12中的化合物1置换为化合物20,其他方法相同,制作含有化合物20的有机电致发光器件。
实施例15:制造含有化合物25的有机电致发光器件
将实施例12中的化合物1置换为化合物25,其他方法相同,制作含有化合物25的有机电致发光器件。
实施例16:制造含有化合物33的有机电致发光器件
将实施例12中的化合物1置换为化合物33,其他方法相同,制作含有化合物33的有机电致发光器件。
实施例17:制造含有化合物45的有机电致发光器件
将实施例12中的化合物1置换为化合物45,其他方法相同,制作含有化合物45的有机电致发光器件。
实施例18:制造含有化合物46的有机电致发光器件
将实施例12中的化合物1置换为化合物46,其他方法相同,制作含有化合物46的有机电致发光器件。
实施例19:制造含有化合物57的有机电致发光器件
将实施例12中的化合物1置换为化合物57,其他方法相同,制作含有化合物57的有机电致发光器件。
实施例20:制造含有化合物72的有机电致发光器件
将实施例12中的化合物1置换为化合物72,其他方法相同,制作含有化合物72的有机电致发光器件。
实施例21:制造含有化合物103的有机电致发光器件
将实施例12中的化合物1置换为化合物103,其他方法相同,制作含有化合物103的有机电致发光器件。
实施例22:制造含有化合物107的有机电致发光器件
将实施例12中的化合物1置换为化合物107,其他方法相同,制作含有化合物107的有机电致发光器件。
实施例23:制造含有NPD的有机电致发光器件
按照实施例12的方法,将空穴传输层的材料由化合物1置换为N'-二(1-萘基)-N,N'-二苯基-(1,1'-联苯)-4,4'-二胺(NPD),其他方法相同,制作含有NPD的有机电致发光器件。
表1为本公开实施例制备的化合物以及NPD制备的有机电致发光器件的发光特性测试结果。
表1
Figure PCTCN2019103106-appb-000031
从上表可看出本公开提供的化合物有适合的玻璃态转变温度,并且由本公开的化合物作为空穴传输层制备的器件的发光效率及寿命相对于由NPD作为空穴传输层制备的器件有显著的提高。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本公开创造的保护范围之中。
工业实用性
本公开提出向杂蒽的9-位引入芳基胺和杂环的解决方案。通过引入芳基胺获得了空穴注入能力/传输能力,高功率效率、长寿命;通过引入杂环获得适当玻璃态转变温度,从而获得了优质的有机电致发光材料。由本公开提供的化合物制备的器件具有极佳电流效率和功率效率以及长寿命。本公开提供的有机电致发光化合物的制备方法,简单易行,产量高,适于工业化生产。

Claims (15)

  1. 一种有机电致发光化合物,具有化学式1的结构:
    Figure PCTCN2019103106-appb-100001
    其中,Ar 1和Ar 2各自独立地选自经取代或未经取代的C 1-C 30烷基、经取代或未经取代C 6-C 30芳基、经取代或未经取代的C 3-C 30杂芳基或芳胺基;或与相邻取代基连接形成单环或多环,例如,C 3-C 30脂环族环或芳香族环,其碳原子可置换为至少一个选自氮、氧和硫的杂原子;
    Ar 3选自经取代或未经取代的C 1-C 30烷基、经取代或未经取代的C 6-C 30芳基、经取代或未经取代的C 3-C 30杂芳基、芳胺基或者脂肪胺基;或与相邻取代基连接形成单环或多环,例如,C 3-C 30脂环族环或芳香族环,其碳原子可置换为至少一个选自氮、氧和硫的杂原子;
    L为经取代或未经取代的C 6-C 30芳基;
    X选自-O-、-S-、-SO 2-、-Si-、-Sn-或者-Ge-;
    R 1和R 2各自独立地选自氢、氘、卤素、氰基、羧基、硝基、羟基、经取代或未经取代的C 1-C 30烃基、经取代或未经取代的C 1-C 30烷氧基、经取代或未经取代的C 3-C 30环烷基、经取代或未经取代的C 3-C 30环烯基、经取代或未经取代的C 3到C 7杂环烷基、经取代或未经取代的C 6-C 30芳基、经取代或未经取代的C 3到C 30杂芳基、-NR 3R 4、-SiR 5R 6R 7-、-SR 8、-OR 9、-COR 10、-B(OR 11)(OR 12);或R 1和R 2与相邻取代基连接形成经取代或未经取代的单环或多环,例如,C 3-C 30脂环族环或芳香族环,其碳原子可置换成至少一个选自氮、氧和硫的杂原子;
    R 3到R 12各自独立地选自经取代或未经取代的C 1-C 30烷基、经取代或未经取代的C 6-C 30芳基或经取代或未经取代的C 3-C 30杂芳基;或与相邻取代基连接形成经取代或未经取代的单环或多环,例如,C 3-C 30脂肪族环或芳香族环;
    a,b选自整数1到4。
  2. 根据权利要求1所述的有机电致发光化合物,其中,所述有机电致发光化合物选自化学式2-4所示结构的化合物:
    Figure PCTCN2019103106-appb-100002
  3. 根据权利要求1所述的有机电致发光化合物,其中,Ar 1和Ar 2各自独立地选自经取代或未经取代C 6-C 20芳基、经取代或未经取代的C 15-C 26杂芳基或三芳胺基;Ar 3选自经取代或未经取代的C 6-C 25芳基、经取代或未经取代的C 5到C 24杂芳基或三芳胺基。
  4. 根据权利要求1所述的有机电致发光化合物,其中,Ar 1和Ar 2各自独立地选自经取代或未经取代C 10-C 14芳基、经取代或未经取代的C 18-C 22杂芳基或三苯胺基;Ar 3选自经取代或未经取代的C 10-C 20芳基、经取代或未经取代的C 12-C 18杂芳基或三苯胺基。
  5. 根据权利要求1所述的有机电致发光化合物,其中,Ar 1和Ar 2各自独立地选自以下结构:
    Figure PCTCN2019103106-appb-100003
    Ar 3选自以下结构:
    Figure PCTCN2019103106-appb-100004
    其中,R选自氢、卤素、氰基、C 1~C 30的烷基、C 6~C 50的芳基、C 7~C 50的芳烷基、C 7~C 50的芳基烷氧基、C 7~C 50的芳基烷巯基或C 5~C 50的杂芳基。
  6. 根据权利要求1所述的有机电致发光化合物,其中,所述有机电致发光化合物选自化学式1-135所示结构的化合物:
    Figure PCTCN2019103106-appb-100005
    Figure PCTCN2019103106-appb-100006
    Figure PCTCN2019103106-appb-100007
    Figure PCTCN2019103106-appb-100008
  7. 根据权利要求1-6中任一项所述的有机电致发光化合物的制备方法,包括以下步骤:
    步骤1、中间体1的制备:将化合物2溶于四氢呋喃,接着加入正丁基锂,搅拌均匀,再加入用四氢呋喃溶解的化合物1,室温下进行搅拌反应,制备得到中间体1;
    步骤2、化学式1所示化合物的制备:将中间体1和化合物3溶解于二氯甲烷,接着加入溶解于二氯甲烷中的三氟化硼乙醚,室温下进行搅拌反应,制备得到化学式1所示的化合物;
    其合成路线如下:
    Figure PCTCN2019103106-appb-100009
    其中Hal表示卤素。
  8. 根据权利要求7所述的制备方法,其中,所述步骤1包括以下步骤:
    在反应容器中加入化合物2和四氢呋喃之后,在氮气氛围下使用所述容器冷却到-78℃;接着将正丁基锂逐滴添加到前述混合物中,在-78℃下搅拌混合物30分钟后,将其在室温下搅拌3小时,并且冷却到-78℃;此后,将溶解于四氢呋喃中的化合物1逐滴添加到混合物中;添加后,使反应温度升温到室温,并且搅拌混合物16小时;接着将氯化铵水溶液添加到反应溶液中以完成反应,并且用乙酸乙酯萃取反应溶液;接着使用硫酸镁干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂;用管柱色谱法纯化剩余物质获得中间体1。
  9. 根据权利要求7所述的制备方法,其中,所述步骤2包括以下步骤:
    将中间体1、化合物3和二氯甲烷加入反应容器中之后,用氮气充分置换空气三次;将溶解于100mL二氯甲烷中的三氟化硼乙醚逐滴添加到前述混合物中;在室温下搅拌混合物2小时后,用蒸馏水淬灭,并且用二氯甲烷萃取混合物;接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂;用柱色谱法纯化剩余物质获得化学式1所示的化合物。
  10. 包含权利要求1-6中任一项所述的有机电致发光化合物的有机电致发光器件。
  11. 根据权利要求10所述的有机电致发光器件,包括第一电极、第二电极和置于所述第一电极和第二电极之间的有机物层,其中,所述有机物层中包含有至少一种化学式1所示结构的化合物。
  12. 根据权利要求11所述的有机电致发光器件,其中,所述有机物层至少包括发光层;
    优选地,所述有机物层还包括至少一个选自空穴注入层、空穴传输层、电子传输层、电子注入层、空穴阻挡层以及电子阻挡层组成的组的层。
  13. 根据权利要求12所述的有机电致发光器件,其中,化学式1所示结构的化合物包含在空穴注入层、空穴传输层、电子传输层、发光层、电子注入层、空穴阻挡层以及电子阻挡层中的一层或多层中。
  14. 根据权利要求10至13中任一项所述的有机电致发光器件,其中,所述有机电致发光器件选自平面面板显示、平面发光体、照明用面发光OLED发光体、柔性发光体、复印机、打印机、LCD背光灯或计量机的光源、显示板、标识。
  15. 根据权利要求10至14中任一项所述的有机电致发光器件在制备有机发光器件、有机太阳电池、电子纸、有机感光体或有机薄膜晶体管中的应用。
PCT/CN2019/103106 2018-12-29 2019-08-28 有机电致发光化合物及其制备方法和有机电致发光器件 WO2020134138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811640915.3 2018-12-29
CN201811640915.3A CN109748898B (zh) 2018-12-29 2018-12-29 有机电致发光化合物及其制备方法和有机电致发光器件

Publications (1)

Publication Number Publication Date
WO2020134138A1 true WO2020134138A1 (zh) 2020-07-02

Family

ID=66404421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103106 WO2020134138A1 (zh) 2018-12-29 2019-08-28 有机电致发光化合物及其制备方法和有机电致发光器件

Country Status (2)

Country Link
CN (1) CN109748898B (zh)
WO (1) WO2020134138A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095731A (ko) * 2019-02-01 2020-08-11 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109748898B (zh) * 2018-12-29 2023-04-28 吉林奥来德光电材料股份有限公司 有机电致发光化合物及其制备方法和有机电致发光器件
CN112062718B (zh) * 2019-05-25 2024-02-06 吉林奥来德光电材料股份有限公司 有机电致发光化合物和包含所述化合物的有机电致发光装置
CN110078727B (zh) * 2019-05-28 2021-01-08 吉林奥来德光电材料股份有限公司 一种有机电致发光化合物及其制法和有机电致发光器件
CN110028505B (zh) * 2019-05-28 2020-12-22 吉林奥来德光电材料股份有限公司 有机电致发光化合物及其制备方法和有机电致发光装置
CN111620855B (zh) * 2020-06-12 2022-03-25 烟台九目化学股份有限公司 一种含苯并氧杂蒽类化合物材料及其应用
CN111793002A (zh) * 2020-07-23 2020-10-20 吉林奥来德光电材料股份有限公司 一种有机发光化合物及其制备方法和有机电致发光器件
CN112079731B (zh) * 2020-09-18 2023-04-28 吉林奥来德光电材料股份有限公司 一种发光辅助材料及其制备方法和应用
CN113582854B (zh) * 2021-07-30 2024-01-26 上海钥熠电子科技有限公司 化合物及其在有机电致发光显示器件中的应用
CN115160272B (zh) * 2021-09-15 2023-10-31 陕西莱特光电材料股份有限公司 一种含氮化合物及使用其的电子元件和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259937A (ja) * 1995-03-24 1996-10-08 Toyo Ink Mfg Co Ltd 正孔輸送材料およびその用途
JPH10338871A (ja) * 1996-01-29 1998-12-22 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
CN104557856A (zh) * 2014-12-31 2015-04-29 南京邮电大学 一种9,9-二芳基噻杂蒽-10,10-二氧化物的制备方法
CN107057681A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含有氧杂蒽结构的光电材料及其在oled领域的应用
CN109748898A (zh) * 2018-12-29 2019-05-14 吉林奥来德光电材料股份有限公司 有机电致发光化合物及其制备方法和有机电致发光器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102526212B1 (ko) * 2014-08-08 2023-04-28 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259937A (ja) * 1995-03-24 1996-10-08 Toyo Ink Mfg Co Ltd 正孔輸送材料およびその用途
JPH10338871A (ja) * 1996-01-29 1998-12-22 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
CN104557856A (zh) * 2014-12-31 2015-04-29 南京邮电大学 一种9,9-二芳基噻杂蒽-10,10-二氧化物的制备方法
CN107057681A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含有氧杂蒽结构的光电材料及其在oled领域的应用
CN109748898A (zh) * 2018-12-29 2019-05-14 吉林奥来德光电材料股份有限公司 有机电致发光化合物及其制备方法和有机电致发光器件

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
16 November 1984 (1984-11-16), ANONYMOUS, XP055715581, retrieved from STN Database accession no. 34941-39-4 *
18 August 2005 (2005-08-18), ANONYMOUS, XP055715584, retrieved from STN Database accession no. 860735-54-2 *
8 August 2005 (2005-08-08), ANONYMOUS, XP055715582, retrieved from STN Database accession no. 858848-63-2 *
HOOSHANG PIRELAH ET AL: "Generation of 10-Thiaanthracenes by the Reaction of an Aryllithium with Thioxanthylium Salts", TETRAHEDRON LETTERS, vol. 17, no. 50, 1 January 1976 (1976-01-01), pages 4409 - 4612, XP055715519, DOI: 10.1016/S0040-4039(00)93944-3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095731A (ko) * 2019-02-01 2020-08-11 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102524481B1 (ko) 2019-02-01 2023-04-20 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자

Also Published As

Publication number Publication date
CN109748898B (zh) 2023-04-28
CN109748898A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN109748898B (zh) 有机电致发光化合物及其制备方法和有机电致发光器件
KR102143368B1 (ko) 안트라센 유도체 및 이를 포함하는 유기 발광 소자
CN109796960B (zh) 一种有机电致发光化合物及制法和应用
CN112062718B (zh) 有机电致发光化合物和包含所述化合物的有机电致发光装置
JP2024028704A (ja) 有機電界発光素子
CN109776334B (zh) 有机电致发光化合物及其制法和器件
CN110330472B (zh) 一种蓝光材料及其制备方法和应用
CN109180560A (zh) 一种有机发光化合物及制法和含该化合物的有机电致发光器件
CN109694378B (zh) 多杂芳族化合物及使用其的有机电激发光元件
CN109970575B (zh) 有机电致发光化合物及其制法和应用
KR101165698B1 (ko) 신규 화합물을 포함하는 유기전기소자, 및 유기전기소자용 신규 화합물 및 조성물
WO2020073605A1 (zh) 一种有机发光化合物及制法和含该化合物的有机电致发光器件
JP2004006287A (ja) 有機エレクトロルミネッセンス素子
KR20130121597A (ko) 트리페닐아민을 사용한 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자
CN109776393A (zh) 一种有机发光化合物及制法和该化合物的有机电致发光器件
CN108658953A (zh) 一种基于二苯并呋喃和咔唑的化合物及其用途和发光器件
KR20130121516A (ko) 신규한 아릴아민을 사용한 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자
JP2018524379A (ja) 複素環式化合物、ならびに、電気光学デバイスまたは光電子デバイスにおける複素環式化合物の使用
CN114702489A (zh) 一种含有菲和邻菲罗啉的有机电子材料及其应用
WO2020000920A1 (zh) 一种有机发光化合物及其制备方法和有机电致发光器件
WO2021103728A1 (zh) 一种有机化合物和使用该化合物的有机电致发光器件
CN103570742A (zh) 稠合化合物以及包括该化合物的有机发光装置
KR20130120855A (ko) 티오펜를 사용한 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자
CN108003121A (zh) 一种菲类化合物及其用途和有机电致发光器件
KR102304989B1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905346

Country of ref document: EP

Kind code of ref document: A1