WO2022062700A1 - 有机电致发光器件、显示面板及显示装置 - Google Patents

有机电致发光器件、显示面板及显示装置 Download PDF

Info

Publication number
WO2022062700A1
WO2022062700A1 PCT/CN2021/110675 CN2021110675W WO2022062700A1 WO 2022062700 A1 WO2022062700 A1 WO 2022062700A1 CN 2021110675 W CN2021110675 W CN 2021110675W WO 2022062700 A1 WO2022062700 A1 WO 2022062700A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
layer
organic electroluminescent
electroluminescent device
energy level
Prior art date
Application number
PCT/CN2021/110675
Other languages
English (en)
French (fr)
Inventor
吴勇
张晓晋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/789,693 priority Critical patent/US20230056639A1/en
Publication of WO2022062700A1 publication Critical patent/WO2022062700A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an organic electroluminescence device, a display panel and a display device.
  • OLEDs organic electroluminescent displays Due to its characteristics of active light emission, high light-emitting brightness, high resolution, wide viewing angle, fast response speed, color saturation, thinness, low energy consumption and flexibility, it is known as a dream display and has become a hot mainstream display product on the market. .
  • an embodiment of the present disclosure provides an organic electroluminescent device, comprising: an anode and a cathode that are opposite to each other, a light-emitting layer located between the anode and the cathode, the light-emitting layer and the anode A first auxiliary functional layer between the light emitting layer and the cathode, and a second auxiliary functional layer between the light-emitting layer and the cathode; wherein,
  • the light-emitting layer includes a first compound, a second compound, and a third compound, wherein the Stokes shift between the absorption spectrum and the emission spectrum of the second compound is less than 70 nm, and the second compound emits light at the
  • the doping mass ratio in the layer is less than 50 wt%.
  • the overlapping area between the absorption spectrum of the second compound and the emission spectrum of the first compound is greater than 30% .
  • the overlapping area between the emission spectrum of the second compound and the absorption spectrum of the third compound is greater than 20% .
  • the peak range of the emission spectrum of the first compound is 400 nm-550 nm, and the peak value of the emission spectrum of the second compound greater than the peak of the emission spectrum of the first compound and the difference between the two is 30nm-100nm, the peak of the emission spectrum of the third compound is greater than the peak of the emission spectrum of the second compound and the difference between the two is 30nm-100nm;
  • the peak range of the absorption spectrum of the second compound is 200nm-500nm, and the peak range of the absorption spectrum of the third compound is 430nm-600nm.
  • the triplet energy level of the second compound is higher than the triplet energy level of the third compound.
  • the triplet energy level of the first compound is higher than the triplet energy level of the third compound.
  • the triplet energy level of the first compound is smaller than the triplet energy level of the contact film layer in the first auxiliary functional layer energy level; the triplet energy level of the first compound is lower than the triplet energy level of the contact film layer in the second auxiliary functional layer.
  • the first auxiliary functional layer includes at least one of the following: a hole injection layer, a hole transport layer, and an electron blocking layer ;
  • the second auxiliary functional layer includes at least one of the following: an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the second compound has the characteristic of emitting delayed fluorescence.
  • an embodiment of the present disclosure also provides a display panel including a plurality of the above-mentioned organic electroluminescent devices.
  • an embodiment of the present disclosure further provides a display device, comprising: the above-mentioned display panel.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescence device provided in an embodiment of the present disclosure
  • FIG. 2 is an absorption-emission spectrum diagram of an organic electroluminescence device provided in an embodiment of the present disclosure
  • FIG. 4 is a current efficiency-current density relationship diagram of each embodiment in the experimental data provided by the embodiments of the present disclosure.
  • the light-emitting layer is the core of the entire device, and the light-emitting layer has the most obvious impact on the overall performance of the device. Therefore, the selection of its material system also has various strict regulations, such as the difference between the LUMO and HOMO energy levels of the host material and the guest material. The collocation between the two layers and the energy level collocation between the adjacent layers will seriously affect the transport efficiency of electrons and holes. The carrier mobility of the host material also has a great influence on the exciton recombination region. Affecting the luminous efficiency of the device, the higher the overlap between the emission spectrum of the host material and the absorption spectrum of the guest material, the more conducive to the transfer of exciton energy to achieve efficient luminescence.
  • the singlet and triplet energy levels of the host material and The singlet and triplet energy levels of the guest material also have a significant impact on the exciton energy transfer in the light-emitting layer. Therefore, the available host material and guest material matching system is greatly reduced after strict selection, which also limits the way to improve organic light-emitting devices.
  • An organic electroluminescent device provided by an embodiment of the present disclosure, as shown in FIG. 1 , includes: an anode 100 and a cathode 200 that are opposite to each other, a light-emitting layer 300 located between the anode 100 and the cathode 200 , and a light-emitting layer 300 located between the light-emitting layer 300 and the cathode 200 .
  • the light-emitting layer 300 includes the first compound A, the second compound B and the third compound C, wherein, as shown in FIG. 2 , the Stokes shift x between the absorption spectrum Abs and the emission spectrum PL of the second compound B is less than 70 nm , and the doping mass ratio of the second compound B in the light emitting layer 300 is less than 50 wt %.
  • the first compound A is a host material
  • the third compound C is a guest material
  • the second compound B is a matching material.
  • the embodiments of the present disclosure provide a new selection principle for the material matching system of the light-emitting layer 300 by adjusting the material system of the light-emitting layer 300, and doping a material with a narrow Stokes shift between the host material and the guest material Matching materials can greatly improve the spectral overlap of host materials, matching materials and guest materials, and realize efficient transfer of exciton energy between host materials and guest materials. It is an organic electroluminescent device with excellent performance, and also greatly broadens the selection range of the material system of the light-emitting layer 300.
  • the overlapping area between the absorption spectrum Abs of the second compound B and the emission spectrum PL of the first compound A is generally greater than 30%.
  • Compound B for efficient energy transfer.
  • the overlapping area between the emission spectrum PL of the second compound B and the absorption spectrum Abs of the third compound C (Fig. 2 The area distributed by the horizontal line) is generally greater than 20%. Further, the overlapping area between the emission spectrum PL of the second compound B and the absorption spectrum Abs of the third compound C is preferably greater than 40%.
  • Compound C for efficient energy transfer.
  • the peak range of the emission spectrum of the first compound is 400 nm-550 nm, and the peak of the emission spectrum of the second compound is greater than the peak of the emission spectrum of the first compound.
  • the difference between the two is 30nm-100nm
  • the peak of the emission spectrum of the third compound is greater than the peak of the emission spectrum of the second compound and the difference between the two is 30nm-100nm
  • the peak range of the absorption spectrum of the second compound is 200nm -500nm
  • the peak range of the absorption spectrum of the third compound is 430nm-600nm.
  • the Stokes shift x between the absorption spectrum Abs of the second compound B and the emission spectrum PL is less than 50 nm.
  • the triplet energy level T1(B) of the second compound B generally needs to be higher than the triplet energy level T1(C) of the third compound C, In order to facilitate the transfer of excitons from the second compound B of high energy level to the third compound C of low energy level, and effectively prevent the energy from returning from the third compound C to the second compound B.
  • the triplet energy level T1(A) of the first compound A is higher than the triplet energy level T1(C) of the third compound C, so that there is Facilitates the transfer of excitons from the first compound A with a high energy level to the third compound C with a low energy level, and effectively prevents the energy from returning from the third compound C to the first compound A.
  • the triplet energy level T1(A) of the first compound A is generally slightly higher than the triplet energy level T1(B) of the second compound B, In order to facilitate the transfer of excitons from the first compound A with a high energy level to the second compound B with a low energy level, and effectively prevent the back transfer of energy from the second compound B to the first compound A.
  • the second compound B can be selected from a material with delayed fluorescence emission characteristics, and the modified material can make triplet excitons pass through inverse systems to form singlet states. excitons to ensure that the exciton energy can be transferred to the third compound through the Forrest energy, inhibiting the Dexter energy transfer to avoid energy loss and improve the efficiency of the device.
  • the doping mass ratio of the second compound B in the light-emitting layer 300 is generally less than 50 wt %, that is, the proportion of the second compound B in the light-emitting layer 300 is generally less than 50 wt %.
  • the ratio is smaller than the proportion of the first compound A.
  • the third compound C may be a fluorescent emitting material or a phosphorescent emitting material, which is not limited herein.
  • the doping mass ratio of the third compound C in the light-emitting layer 300 is generally less than 5 wt %, for example, a doping ratio of 0.1 wt %, 1 wt %, and 2 wt % can be selected.
  • the first auxiliary functional layer 400 may include at least one of the following: a hole injection layer 401, a hole transport layer 402, The electron blocking layer 403 ; the second auxiliary function layer 500 may include at least one of the following: an electron injection layer 501 , an electron transport layer 502 , and a hole blocking layer 503 .
  • the first auxiliary function layer 400 includes a hole injection layer 401, a hole transport layer 402, and an electron blocking layer 403, and the second auxiliary function layer 500 includes an electron injection layer 501, an electron transport layer 502, a hollow
  • the hole blocking layer 503 is taken as an example for illustration, and the specific lamination relationship between the film layers is shown in FIG. 1 .
  • the required auxiliary functional layers can be selected as required, for example, only the electron blocking layer 403 is selected for the first auxiliary functional layer 400, and only the hole blocking layer 503 is selected for the second auxiliary functional layer 500, etc., which will not be described in detail here. .
  • the anode 100 , the hole injection layer 401 , the hole transport layer 402 , the electron blocking layer 403 , and the light emitting layer may be sequentially formed on the substrate.
  • the base substrate can be selected from any transparent substrate material, such as glass, polyimide, and the like.
  • the anode 100 is selected as a high work function electrode material, such as transparent oxide ITO, IZO, or a composite electrode formed by Ag/ITO, Ag/IZO, CNT/ITO, CNT/IZO, GO/ITO, GO/IZO, etc.
  • a high work function electrode material such as transparent oxide ITO, IZO, or a composite electrode formed by Ag/ITO, Ag/IZO, CNT/ITO, CNT/IZO, GO/ITO, GO/IZO, etc.
  • the hole injection layer 401 can be selected from injection materials such as MoO3, F4-TCNQ, HAT-CN, etc., or P-type doping can be performed on the hole transport material, and the hole injection layer 401 can be formed by co-evaporation.
  • the thickness of the hole injection layer 401 is selected to be 5 nm ⁇ 30 nm.
  • the hole transport layer 402 has good hole transport properties, and can be selected from materials such as NPB, m-MTDATA, TPD, TAPC, etc.
  • the thickness of the hole transport layer 402 is selected from 10 nm to 2000 nm.
  • the hole mobility of the electron blocking layer 403 is 1-2 orders of magnitude higher than the electron mobility, which can effectively block the electron transport.
  • the host material in the light-emitting layer 300 that is, the first compound A can be selected from mCBP, CBP, mCP, TCTA, DMQA, TPA, etc.
  • the thickness of the light-emitting layer 300 is selected from 20 nm to 100 nm.
  • the electron mobility of the hole blocking layer 503 is 1-2 orders of magnitude higher than the hole mobility, which can effectively block the transport of holes.
  • the electron transport layer 502 has good electron transport properties, and can be selected from materials such as TmPyPB, B4PyPPM, and the like, and its thickness is selected from 20 nm to 100 nm.
  • the electron injection layer 501 can be selected from materials such as LiF, Yb, LiQ, and the like, and its thickness is selected from 1 nm to 10 nm.
  • the cathode 200 can be selected from Mg, Ag and other materials.
  • the triplet energy level T1(A) of the first compound A is generally smaller than the triplet energy level of the contact film layer in the first auxiliary functional layer 400 .
  • the triplet energy level T1 (A) of the first compound A is smaller than the triplet energy level T1 (403) of the electron blocking layer 403; at the same time, the triplet energy level of the first compound A T1(A) is generally lower than the triplet energy level of the contact film in the second auxiliary functional layer 500.
  • the triplet energy level T1(A) of the first compound A is lower than the hole blocking Triplet energy level T1 of layer 503 (503).
  • the triplet energy level T1(A) of the first compound A is smaller than the triplet energy level of the adjacent film layer, which can prevent the energy from being transferred from the light-emitting layer 300 to the adjacent film layer, and can effectively confine the excitons in the light-emitting layer. Inside the layer 300, the luminous efficiency is improved.
  • a comparative example and four examples are fabricated by using the structure of the organic electroluminescent device provided in the embodiments of the present disclosure, wherein the hole injection layer, hole transport layer, and electron blocking layer in the comparative example and the examples are The material and thickness of the layer, the hole blocking layer, the electron transport layer and the electron injection layer are the same.
  • the first compound in the light-emitting layer is TCTA
  • the second compound is DABNA
  • the third compound is PhtBuPAD.
  • the specific structural formula is as follows:
  • the doping ratio of the third compound in the comparative example and each example is 1 wt %, and the difference is only that the doping ratio of the second compound in the light-emitting layer is different.
  • the detailed parameters are shown in Table 1:
  • the ratio of the second compound 0 0.5wt% 0.3wt% 0.8wt% 1wt% hole blocking layer 10nm 10nm 10nm 10nm 10nm electron transport layer 40nm 40nm 40nm 40nm electron injection layer 1nm 1nm 1nm 1nm cathode 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm 100nm
  • an embodiment of the present disclosure further provides a display panel, which includes a plurality of the above-mentioned organic electroluminescent devices provided by the embodiments of the present disclosure. Since the principle of solving the problem of the display panel is similar to that of the aforementioned organic electroluminescent device, the implementation of the display panel may refer to the implementation of the organic electroluminescent device, and the repeated description will not be repeated.
  • an embodiment of the present disclosure further provides a display device, including the above-mentioned display panel provided by an embodiment of the present disclosure.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • Other essential components of the display device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be regarded as a limitation of the present disclosure.
  • the above-mentioned organic electroluminescent device, display panel and display device provided by the present disclosure provide a new selection principle for the material matching system of the light-emitting layer by adjusting the material system of the light-emitting layer, and doping between the host material and the guest material A collocation material with a narrow Stokes shift, thereby greatly improving the spectral overlap of the host material, collocation material, and guest material, and realizing the efficient transfer of exciton energy between the host material and the guest material.
  • the luminous efficiency of electroluminescent devices can realize organic electroluminescent devices with various excellent properties, and also greatly broaden the selection range of the material system of the light-emitting layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种有机电致发光器件、显示面板及显示装置,通过调整发光层的材料体系,提供一种新的发光层的材料搭配体系的选取原则,在主体材料和客体材料之间掺杂一种具有窄的斯托克斯位移的搭配材料,从而大幅度提高主体材料、搭配材料、客体材料的光谱重叠程度,实现主体材料和客体材料之间的激子能量高效传递,不仅可以改善有机电致发光器件的发光效率,实现具有各种优异性能的有机电致发光器件,而且也大大拓宽了发光层材料体系的选取范围。

Description

有机电致发光器件、显示面板及显示装置
相关申请的交叉引用
本公开要求在2020年09月25日提交中国专利局、申请号为202011021774.4、申请名称为“有机电致发光器件、显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤指一种有机电致发光器件、显示面板及显示装置。
背景技术
近年来,有机电致发光显示器(OLED)作为一种新型的平板显示逐渐受到更多的关注。由于其具有主动发光、发光亮度高、分辨率高、宽视角、响应速度快、色彩饱和、轻薄、低能耗以及可柔性化等特点,被誉为梦幻显示,成为目前市场上炙手可热的主流显示产品。
发明内容
一方面,本公开实施例提供了一种有机电致发光器件,包括:相对而置的阳极和阴极,位于所述阳极和所述阴极之间的发光层,位于所述发光层与所述阳极之间的第一辅助功能层,以及位于所述发光层与所述阴极之间的第二辅助功能层;其中,
所述发光层包含第一化合物、第二化合物和第三化合物,其中,所述第二化合物的吸收光谱和发射光谱之间的斯托克斯位移小于70nm,所述第二化合物在所述发光层中的掺杂质量比小于50wt%。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第二化合物的吸收光谱与所述第一化合物的发射光谱之间的交叠 面积大于30%。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第二化合物的发射光谱与所述第三化合物的吸收光谱之间的交叠面积大于20%。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一化合物的发射光谱的峰值范围为400nm-550nm,所述第二化合物的发射光谱的峰值大于所述第一化合物的发射光谱的峰值且两者的差值为30nm-100nm,所述第三化合物的发射光谱的峰值大于所述第二化合物的发射光谱的峰值且两者的差值为30nm-100nm;
所述第二化合物的吸收光谱的峰值范围为200nm-500nm,所述第三化合物的吸收光谱的峰值范围为430nm-600nm。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第二化合物的三重态能级高于所述第三化合物的三重态能级。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一化合物的三重态能级高于所述第三化合物的三重态能级。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一化合物的三重态能级小于所述第一辅助功能层中相接触膜层的三重态能级;所述第一化合物的三重态能级小于所述第二辅助功能层中相接触膜层的三重态能级。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一辅助功能层包括至少以下之一:空穴注入层、空穴传输层、电子阻挡层;
所述第二辅助功能层包括至少以下之一:电子注入层、电子传输层、空穴阻挡层。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第二化合物具有发射延迟荧光的特性。
另一方面,本公开实施例还提供了一种显示面板,包括多个上述有机电 致发光器件。
另一方面,本公开实施例还提供了一种显示装置,包括:上述显示面板。
附图说明
图1为本公开实施例提供的有机电致发光器件的结构示意图;
图2为本公开实施例提供的有机电致发光器件的吸收-发射光谱图;
图3为本公开实施例提供的实验数据中各实施例的电流密度-电压关系图;
图4为本公开实施例提供的实验数据中各实施例的电流效率-电流密度关系图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在OLED产品中发光层是整个器件的核心,发光层对器件的整体性能影响最为明显,因此其材料体系的选取也是有着各种严格的规定,比如主体材料和客体材料的LUMO和HOMO能级之间的搭配以及和相邻层之间的能级搭配会严重影响电子和空穴的传输效率,主体材料的载流子迁移率对激子复合区的影响也较大,客体材料的发光效率直接影响器件的发光效率,主体材料的发射光谱和客体材料的吸收光谱的重叠性越高越有利于激子能量的传输从而实现高效的发光,主体材料的单重态能级和三重态能级和客体材料的单重态能级和三重态能级搭配也对发光层的激子能量传递有着重大影响。因此在严格的挑选后可用的主体材料和客体材料的搭配体系大大减少,这也就限制了改善有机发光器件的途径。
本公开实施例提供的一种有机电致发光器件,如图1所示,包括:相对而置的阳极100和阴极200,位于阳极100和阴极200之间的发光层300,位于发光层300与阳极100之间的第一辅助功能层400,以及位于发光层300与阴极200之间的第二辅助功能层500;其中,
发光层300包含第一化合物A、第二化合物B和第三化合物C,其中,如图2所示,第二化合物B的吸收光谱Abs和发射光谱PL之间的斯托克斯位移x小于70nm,且第二化合物B在发光层300中的掺杂质量比小于50wt%。
具体地,在本公开实施例提供的上述有机电致发光器件中,可以认为第一化合物A为主体材料,第三化合物C为客体材料,第二化合物B为搭配材料。本公开实施例通过调整发光层300的材料体系,提供一种新的发光层300的材料搭配体系的选取原则,在主体材料和客体材料之间掺杂一种具有窄的斯托克斯位移的搭配材料,从而大幅度提高主体材料、搭配材料、客体材料的光谱重叠程度,实现主体材料和客体材料之间的激子能量高效传递,不仅可以改善有机电致发光器件的发光效率,实现具有各种优异性能的有机电致发光器件,而且也大大拓宽了发光层300材料体系的选取范围。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图2所示,第二化合物B的吸收光谱Abs与第一化合物A的发射光谱PL之间的交叠面 积(图2中斜线所分布区域)一般大于30%。
具体地,第二化合物B的吸收光谱Abs与第一化合物A的发射光谱PL之间的交叠面积越大(重叠性越高),越有利于激子能量从第一化合物A传输至第二化合物B,实现高效的能量传递。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图2所示,第二化合物B的发射光谱PL与第三化合物C的吸收光谱Abs之间的交叠面积(图2中横线所分布区域)一般大于20%。进一步地,第二化合物B的发射光谱PL与第三化合物C的吸收光谱Abs之间的交叠面积大于40%为佳。
具体地,第二化合物B的发射光谱PL与第三化合物C的吸收光谱Abs之间的交叠面积越大(重叠性越高),越有利于激子能量从第二化合物B传输至第三化合物C,实现高效的能量传递。
可选地,在本公开实施例提供的上述有机电致发光器件中,第一化合物的发射光谱的峰值范围为400nm-550nm,第二化合物的发射光谱的峰值大于第一化合物的发射光谱的峰值且两者的差值为30nm-100nm,第三化合物的发射光谱的峰值大于第二化合物的发射光谱的峰值且两者的差值为30nm-100nm;第二化合物的吸收光谱的峰值范围为200nm-500nm,第三化合物的吸收光谱的峰值范围为430nm-600nm。以便第二化合物B的吸收光谱Abs与第一化合物A的发射光谱PL之间具有较大的交叠面积,第二化合物B的发射光谱PL与第三化合物C的吸收光谱Abs之间具有较大的交叠面积。
可选地,在本公开实施例提供的上述有机电致发光器件中,第二化合物B的吸收光谱Abs和发射光谱PL之间的斯托克斯位移x小于50nm为佳。
具体地,第二化合物B的吸收光谱Abs和发射光谱PL之间的斯托克斯位移x越小越好,有利于将发光层300固定于同种颜色的波长范围内,例如将发光层300固定于蓝色的发光波长范围内。
可选地,在本公开实施例提供的上述有机电致发光器件中,第二化合物B的三重态能级T1(B)一般需要高于第三化合物C的三重态能级T1(C),以有利于激子从高能级的第二化合物B传递到低能级的第三化合物C,且有效 防止能量从第三化合物C回传至第二化合物B。
可选地,在本公开实施例提供的上述有机电致发光器件中,第一化合物A的三重态能级T1(A)高于第三化合物C的三重态能级T1(C),以有利于激子从高能级的第一化合物A传递到低能级的第三化合物C,且有效防止能量从第三化合物C回传至第一化合物A。
可选地,在本公开实施例提供的上述有机电致发光器件中,第一化合物A的三重态能级T1(A)一般稍高于第二化合物B的三重态能级T1(B),以有利于激子从高能级的第一化合物A传递到低能级的第二化合物B,且有效防止能量从第二化合物B回传至第一化合物A。
可选地,在本公开实施例提供的上述有机电致发光器件中,第二化合物B可以选取具有发射延迟荧光特性的材料,改材料可以使三重态激子通过反系间穿越形成单重态激子,以保证激子能量可以通过Forrest能量转移至第三化合物,抑制Dexter能量转移以此避免能量损失,提高器件的效率。
可选地,在本公开实施例提供的上述有机电致发光器件中,第二化合物B在发光层300中的掺杂质量比一般小于50wt%,即在发光层300中第二化合物B的占比小于第一化合物A的占比。
可选地,在本公开实施例提供的上述有机电致发光器件中,第三化合物C可以选用荧光发射材料,也可以选用磷光发射材料,在此不做限定。并且,第三化合物C在发光层300中的掺杂质量比一般小于5wt%,例如可以选择0.1wt%,1wt%,2wt%等掺杂比例。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图1所示,第一辅助功能层400可以包括至少以下之一:空穴注入层401、空穴传输层402、电子阻挡层403;第二辅助功能层500可以包括至少以下之一:电子注入层501、电子传输层502、空穴阻挡层503。
具体地,图1中是以第一辅助功能层400包含空穴注入层401、空穴传输层402、电子阻挡层403,第二辅助功能层500包含电子注入层501、电子传输层502、空穴阻挡层503为例进行说明的,具体膜层之间的层叠关系参见图 1。在实际应用时,可以根据需要选取所需的辅助功能层,例如第一辅助功能层400仅选取电子阻挡层403,第二辅助功能层500仅选取空穴阻挡层503等,在此不作详述。
具体地,本公开实施例提供的上述有机电致发光器件在实际制作时,可以在衬底基板上依次形成阳极100、空穴注入层401、空穴传输层402、电子阻挡层403、发光层300、空穴阻挡层503、电子传输层502、电子注入层501、阴极200。
具体地,衬底基板可以选为任意透明衬底材料,如玻璃、聚酰亚胺等。
阳极100选为高功函数电极材料,如透明氧化物ITO、IZO,也可为Ag/ITO、Ag/IZO、CNT/ITO、CNT/IZO、GO/ITO、GO/IZO等形成的复合电极。
空穴注入层401可以选为MoO3,F4-TCNQ,HAT-CN等注入材料,也可以在空穴传输材料进行P型掺杂,通过共蒸形成空穴注入层401。空穴注入层401的厚度选为5nm~30nm。
空穴传输层402具有良好的空穴传输特性,可以选为NPB,m-MTDATA,TPD,TAPC等材料,空穴传输层402的厚度选为10nm~2000nm。
电子阻挡层403其空穴迁移率高出电子迁移率1~2个数量级,可以有效的阻挡电子的传输,可以选为TCTA等材料,其厚度选为5nm~100nm。
发光层300中的主体材料即第一化合物A可以选为mCBP,CBP,mCP,TCTA,DMQA,TPA等材料,发光层300的厚度选为20nm~100nm。
空穴阻挡层503其电子迁移率高出空穴迁移率1~2个数量级,可以有效的阻挡空穴的传输,可以选为CBP,Bphen,TPBI等材料,其厚度选为5nm~100nm。
电子传输层502具有良好的电子传输特性,可以选为TmPyPB,B4PyPPM等材料,其厚度选为20nm~100nm。
电子注入层501可以选为LiF,Yb,LiQ等材料,其厚度选为1nm~10nm。
阴极200可以选为Mg,Ag等材料。
可选地,在本公开实施例提供的上述有机电致发光器件中,第一化合物A 的三重态能级T1(A)一般小于第一辅助功能层400中相接触膜层的三重态能级,例如在图1所示的结构中,第一化合物A的三重态能级T1(A)小于电子阻挡层403的三重态能级T1(403);同时,第一化合物A的三重态能级T1(A)一般小于第二辅助功能层500中相接触膜层的三重态能级,例如在图1所示的结构中,第一化合物A的三重态能级T1(A)小于空穴阻挡层503的三重态能级T1(503)。
具体地,第一化合物A的三重态能级T1(A)小于相邻膜层的三重态能级,可以防止能量从发光层300传递至相邻膜层,可以将激子有效的限定在发光层300的内部,提高发光效率。
具体地,采用本公开实施例提供的上述有机电致发光器件的结构制作一个对比例和四个实施例,其中,对比例与各实施例中的空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层和电子注入层的材料和厚度相同,发光层中第一化合物采用TCTA,第二化合物采用DABNA,第三化合物采用PhtBuPAD,具体结构式如下:
Figure PCTCN2021110675-appb-000001
对比例与各实施例中第三化合物的掺杂比例均为1wt%,不同之处仅在于发光层中第二化合物的掺杂比例不同。详细参数如表1所示:
表1
  对比例 实施例1 实施例2 实施例3 实施例4
空穴注入层 5nm 5nm 5nm 5nm 5nm
空穴传输层 40nm 40nm 40nm 40nm 40nm
电子阻挡层 5nm 5nm 5nm 5nm 5nm
第二化合物的比例 0 0.5wt% 0.3wt% 0.8wt% 1wt%
空穴阻挡层 10nm 10nm 10nm 10nm 10nm
电子传输层 40nm 40nm 40nm 40nm 40nm
电子注入层 1nm 1nm 1nm 1nm 1nm
阴极 100nm 100nm 100nm 100nm 100nm
上述对比例和实施例1~4的器件性能从以下数据进行比较:开启电压Von,电流效率CE、功率效率PE、外量子效率EQE、发光色度CIE,具体测量得到的数据如表2所示:
表2
  对比例 实施例1 实施例2 实施例3 实施例4
Von(V) 2.3 2.3 2.3 2.3 2.3
CE(cd/A) 20.06 17.4 18.8 20.7 21.5
PE(lm/W) 24.4 20.8 22.1 24.8 25.8
EQE 26.4 22.6 24.2 26.9 27.9
CIE 0.51,0.37 0.51,0.37 0.51,0.37 0.49,0.42 0.48,0.44
由表2和图3-图4可见,本公开所提供的实施例1~4相对于对比例在发光层中增加不同浓度的第二化合物,在保证功耗不变的情况下可以提高器件效率,并且从实施例1~4可以看出,在一定范围内随着第二化合物的比例的增加,效率也随之提高。
基于同一发明构思,本公开实施例还提供了一种显示面板,包括多个本公开实施例提供的上述有机电致发光器件。由于该显示面板解决问题的原理与前述一种有机电致发光器件相似,因此该显示面板的实施可以参见有机电致发光器件的实施,重复之处不再赘述。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示面板。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。该显示装置的实施可以参见上述有机电致发光器件的实施例,重复之处不再赘述。
本公开提供的上述有机电致发光器件、显示面板及显示装置,通过调整发光层的材料体系,提供一种新的发光层的材料搭配体系的选取原则,在主体材料和客体材料之间掺杂一种具有窄的斯托克斯位移的搭配材料,从而大幅度提高主体材料、搭配材料、客体材料的光谱重叠程度,实现主体材料和客体材料之间的激子能量高效传递,不仅可以改善有机电致发光器件的发光效率,实现具有各种优异性能的有机电致发光器件,而且也大大拓宽了发光层材料体系的选取范围。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (11)

  1. 一种有机电致发光器件,其中,包括:相对而置的阳极和阴极,位于所述阳极和所述阴极之间的发光层,位于所述发光层与所述阳极之间的第一辅助功能层,以及位于所述发光层与所述阴极之间的第二辅助功能层;其中,
    所述发光层包含第一化合物、第二化合物和第三化合物,其中,所述第二化合物的吸收光谱和发射光谱之间的斯托克斯位移小于70nm,所述第二化合物在所述发光层中的掺杂质量比小于50wt%。
  2. 如权利要求1所述的有机电致发光器件,其中,所述第二化合物的吸收光谱与所述第一化合物的发射光谱之间的交叠面积大于30%。
  3. 如权利要求1所述的有机电致发光器件,其中,所述第二化合物的发射光谱与所述第三化合物的吸收光谱之间的交叠面积大于20%。
  4. 如权利要求1所述的有机电致发光器件,其中,所述第一化合物的发射光谱的峰值范围为400nm-550nm,所述第二化合物的发射光谱的峰值大于所述第一化合物的发射光谱的峰值且两者的差值为30nm-100nm,所述第三化合物的发射光谱的峰值大于所述第二化合物的发射光谱的峰值且两者的差值为30nm-100nm;
    所述第二化合物的吸收光谱的峰值范围为200nm-500nm,所述第三化合物的吸收光谱的峰值范围为430nm-600nm。
  5. 如权利要求1所述的有机电致发光器件,其中,所述第二化合物的三重态能级高于所述第三化合物的三重态能级。
  6. 如权利要求1所述的有机电致发光器件,其中,所述第一化合物的三重态能级高于所述第三化合物的三重态能级。
  7. 如权利要求1所述的有机电致发光器件,其中,所述第一化合物的三重态能级小于所述第一辅助功能层中相接触膜层的三重态能级;所述第一化合物的三重态能级小于所述第二辅助功能层中相接触膜层的三重态能级。
  8. 如权利要求7所述的有机电致发光器件,其中,所述第一辅助功能层 包括至少以下之一:空穴注入层、空穴传输层、电子阻挡层;
    所述第二辅助功能层包括至少以下之一:电子注入层、电子传输层、空穴阻挡层。
  9. 如权利要求1所述的有机电致发光器件,其中,所述第二化合物具有发射延迟荧光的特性。
  10. 一种显示面板,其中,包括多个如权利要求1~9任一项所述的有机电致发光器件。
  11. 一种显示装置,其中,包括:如权利要求10所述的显示面板。
PCT/CN2021/110675 2020-09-25 2021-08-04 有机电致发光器件、显示面板及显示装置 WO2022062700A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/789,693 US20230056639A1 (en) 2020-09-25 2021-08-04 Organic electroluminescent device, display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011021774.4A CN112151687B (zh) 2020-09-25 2020-09-25 有机电致发光器件、显示面板及显示装置
CN202011021774.4 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022062700A1 true WO2022062700A1 (zh) 2022-03-31

Family

ID=73897011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110675 WO2022062700A1 (zh) 2020-09-25 2021-08-04 有机电致发光器件、显示面板及显示装置

Country Status (3)

Country Link
US (1) US20230056639A1 (zh)
CN (1) CN112151687B (zh)
WO (1) WO2022062700A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151687B (zh) * 2020-09-25 2024-02-09 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置
CN115050895A (zh) * 2021-03-08 2022-09-13 京东方科技集团股份有限公司 发光器件、发光基板和发光装置
CN113506855A (zh) * 2021-07-20 2021-10-15 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123749A (zh) * 2017-04-01 2017-09-01 中山大学 一种高显色指数白光有机电致发光器件及其制备方法
CN109817836A (zh) * 2017-11-18 2019-05-28 昆山国显光电有限公司 有机电致发光器件
US20200027932A1 (en) * 2018-07-20 2020-01-23 Lg Display Co., Ltd. Head mounted display device and display panel included therein
CN111341941A (zh) * 2018-12-18 2020-06-26 三星显示有限公司 杂环化合物、有机发光装置和电子设备
CN111471449A (zh) * 2019-01-07 2020-07-31 江苏三月科技股份有限公司 一种含硼有机电致发光化合物及其在有机电致发光器件上的应用
CN111653679A (zh) * 2020-06-18 2020-09-11 京东方科技集团股份有限公司 有机发光器件及其制备方法、显示面板和显示装置
CN112151687A (zh) * 2020-09-25 2020-12-29 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123749A (zh) * 2017-04-01 2017-09-01 中山大学 一种高显色指数白光有机电致发光器件及其制备方法
CN109817836A (zh) * 2017-11-18 2019-05-28 昆山国显光电有限公司 有机电致发光器件
US20200027932A1 (en) * 2018-07-20 2020-01-23 Lg Display Co., Ltd. Head mounted display device and display panel included therein
CN111341941A (zh) * 2018-12-18 2020-06-26 三星显示有限公司 杂环化合物、有机发光装置和电子设备
CN111471449A (zh) * 2019-01-07 2020-07-31 江苏三月科技股份有限公司 一种含硼有机电致发光化合物及其在有机电致发光器件上的应用
CN111653679A (zh) * 2020-06-18 2020-09-11 京东方科技集团股份有限公司 有机发光器件及其制备方法、显示面板和显示装置
CN112151687A (zh) * 2020-09-25 2020-12-29 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置

Also Published As

Publication number Publication date
CN112151687B (zh) 2024-02-09
CN112151687A (zh) 2020-12-29
US20230056639A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
TWI673894B (zh) 有機電致發光器件
US10157966B2 (en) Organic light emitting display device
WO2022042037A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2022062700A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2021254051A1 (zh) 有机发光器件及其制备方法、显示面板和显示装置
JP4785386B2 (ja) 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
KR102104978B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US9118033B2 (en) Organic light-emitting diode and display device employing the same
WO2016015422A1 (zh) 有机发光二极管阵列基板及显示装置
WO2016015395A1 (zh) 有机发光二极管阵列基板及显示装置
WO2018232947A1 (zh) Woled器件
CN106848084B (zh) 一种oled显示面板、制作方法及含有其的电子设备
CN113555510B (zh) 有机电致发光器件、显示面板及显示装置
CN112117388B (zh) 有机电致发光器件、显示面板及显示装置
WO2021227719A1 (zh) 有机电致发光器件、显示面板及显示装置
TWI650402B (zh) 有機電致發光裝置
WO2014187084A1 (zh) 一种有机电致发光器件及显示装置
WO2022062702A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2024022202A1 (zh) 发光器件、显示基板及显示装置
CN109768178B (zh) 有机电致发光器件、显示基板、显示装置
WO2015192591A1 (zh) 一种有机电致发光器件、有机电致发光显示装置
CN113328045B (zh) 发光器件及发光装置
CN108987594B (zh) 一种有机电致发光二极管和有机电致发光装置
CN111944518A (zh) 主体材料、发光层材料、发光器件、显示基板、显示装置
US20230092444A1 (en) Organic electroluminescent device, display panel, and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871077

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.06.2023)