WO2022062702A1 - 有机电致发光器件、显示面板及显示装置 - Google Patents
有机电致发光器件、显示面板及显示装置 Download PDFInfo
- Publication number
- WO2022062702A1 WO2022062702A1 PCT/CN2021/110677 CN2021110677W WO2022062702A1 WO 2022062702 A1 WO2022062702 A1 WO 2022062702A1 CN 2021110677 W CN2021110677 W CN 2021110677W WO 2022062702 A1 WO2022062702 A1 WO 2022062702A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- exciplex
- organic electroluminescent
- electroluminescent device
- value
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 183
- 239000010410 layer Substances 0.000 claims description 100
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims description 46
- 238000004770 highest occupied molecular orbital Methods 0.000 claims description 27
- 238000000295 emission spectrum Methods 0.000 claims description 25
- 238000002347 injection Methods 0.000 claims description 19
- 239000007924 injection Substances 0.000 claims description 19
- 239000002346 layers by function Substances 0.000 claims description 18
- 230000000903 blocking effect Effects 0.000 claims description 17
- 238000000862 absorption spectrum Methods 0.000 claims description 16
- 230000005525 hole transport Effects 0.000 claims description 11
- 238000005401 electroluminescence Methods 0.000 claims description 10
- 230000003111 delayed effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 12
- 230000005284 excitation Effects 0.000 abstract description 6
- 230000003287 optical effect Effects 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 36
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 36
- 229940126062 Compound A Drugs 0.000 description 27
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 238000005215 recombination Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XWQVQSXLXAXOPJ-QNGMFEMESA-N 4-[[[6-[5-chloro-2-[[4-[[(2r)-1-methoxypropan-2-yl]amino]cyclohexyl]amino]pyridin-4-yl]pyridin-2-yl]amino]methyl]oxane-4-carbonitrile Chemical compound C1CC(N[C@H](C)COC)CCC1NC1=CC(C=2N=C(NCC3(CCOCC3)C#N)C=CC=2)=C(Cl)C=N1 XWQVQSXLXAXOPJ-QNGMFEMESA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 230000001443 photoexcitation Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 1
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 1
- CINYXYWQPZSTOT-UHFFFAOYSA-N 3-[3-[3,5-bis(3-pyridin-3-ylphenyl)phenyl]phenyl]pyridine Chemical compound C1=CN=CC(C=2C=C(C=CC=2)C=2C=C(C=C(C=2)C=2C=C(C=CC=2)C=2C=NC=CC=2)C=2C=C(C=CC=2)C=2C=NC=CC=2)=C1 CINYXYWQPZSTOT-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- LTUJKAYZIMMJEP-UHFFFAOYSA-N 9-[4-(4-carbazol-9-yl-2-methylphenyl)-3-methylphenyl]carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C(=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C)C(C)=C1 LTUJKAYZIMMJEP-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- DKHNGUNXLDCATP-UHFFFAOYSA-N dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile Chemical compound C12=NC(C#N)=C(C#N)N=C2C2=NC(C#N)=C(C#N)N=C2C2=C1N=C(C#N)C(C#N)=N2 DKHNGUNXLDCATP-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/40—Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/90—Multiple hosts in the emissive layer
Definitions
- the present disclosure relates to the field of display technology, and in particular, to an organic electroluminescence device, a display panel and a display device.
- OLEDs organic electroluminescent displays Due to its characteristics of active light emission, high light-emitting brightness, high resolution, wide viewing angle, fast response speed, saturated color, thin and light, low energy consumption and flexibility, it is known as a dream display and has become a hot mainstream display product on the market. .
- an embodiment of the present disclosure provides an organic electroluminescent device, comprising: an anode and a cathode that are opposite to each other, a light-emitting layer located between the anode and the cathode, the light-emitting layer and the anode A first auxiliary functional layer between the light emitting layer and the cathode, and a second auxiliary functional layer between the light-emitting layer and the cathode; wherein,
- the light-emitting layer includes a first compound, a second compound, a third compound, and a fourth compound, wherein the first compound and the second compound can form a first exciplex, and the second compound and the The third compound can form a second exciplex, the emission spectrum peak of the first exciplex is smaller than the emission spectrum peak of the second exciplex, and the emission spectrum of the first exciplex is The overlapping area between the absorption spectrum and the third compound is greater than the first set value, and the overlapping area between the emission spectrum of the second exciplex and the absorption spectrum of the fourth compound is greater than the first setting value. Second set value.
- the overlapping area between the emission spectrum of the first excimer compound and the absorption spectrum of the third compound greater than or equal to 5%;
- the overlapping area between the emission spectrum of the second exciplex and the absorption spectrum of the fourth compound is greater than or equal to 5%.
- the mass of the first compound accounts for the weight of the first compound, the second compound and the third compound
- the mass ratio of the total mass is greater than or equal to 30wt%
- the mass ratio of the mass of the second compound to the total mass of the first compound, the second compound and the third compound is greater than or equal to 40 wt %;
- the mass ratio of the mass of the third compound to the total mass of the first compound, the second compound and the third compound is less than or equal to 30wt%;
- the mass ratio of the fourth compound to the total mass of the first compound, the second compound and the third compound is less than or equal to 2 wt %.
- the singlet energy level of the first exciplex is greater than the singlet energy level of the second exciplex state energy level
- the triplet energy level of the first exciplex is greater than the triplet energy level of the second exciplex
- the singlet energy level of the second exciplex is greater than the singlet energy level of the fourth compound.
- the difference between the HOMO value of the second compound and the HOMO value of the first compound is greater than 0.2 eV;
- the difference between the LUMO value of the second compound and the LUMO value of the first compound is greater than 0.2 eV.
- the difference between the HOMO value of the first compound and the HOMO value of the third compound is greater than 0.1 eV;
- the difference between the LUMO value of the third compound and the LUMO value of the first compound is greater than 0.1 eV.
- the difference between the HOMO value of the second compound and the HOMO value of the third compound is greater than 0.3 eV;
- the difference between the LUMO value of the second compound and the LUMO value of the third compound is greater than 0.3 eV.
- the LUMO value of the first compound and the film layer in the first auxiliary functional layer that is in contact with the light-emitting layer The difference between the LUMO values is greater than or equal to 0.3eV; the difference between the LUMO value of the first compound and the LUMO value of the second auxiliary functional layer in contact with the light-emitting layer is greater than or equal to 0.3eV.
- the first auxiliary functional layer includes at least one of the following: a hole injection layer, a hole transport layer, and an electron blocking layer ;
- the second auxiliary functional layer includes at least one of the following: an electron injection layer, an electron transport layer, and a hole blocking layer.
- the hole mobility of the first compound is greater than the electron mobility
- the hole mobility of the third compound is greater than electron mobility
- the electron mobility of the second compound is greater than the hole mobility.
- the molecular distance between the third compound and the fourth compound is greater than and less than
- the molecular distance between the second compound and the fourth compound is greater than and less than
- the third compound has the characteristic of emitting delayed fluorescence.
- an embodiment of the present disclosure further provides a display panel including a plurality of the above-mentioned organic electroluminescent devices.
- an embodiment of the present disclosure further provides a display device, comprising: the above-mentioned display panel.
- FIG. 1 is a schematic structural diagram of an organic electroluminescence device provided in an embodiment of the present disclosure
- FIG. 2 is an absorption-emission spectrum diagram of an organic electroluminescence device provided in an embodiment of the present disclosure
- FIG. 3 is an energy transfer relationship diagram of an organic electroluminescent device according to an embodiment of the present disclosure
- FIG. 4 is an energy level relationship diagram of an organic electroluminescent device provided by an embodiment of the present disclosure.
- FIG. 5 is a molecular relationship diagram of an organic electroluminescent device provided by an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
- OLEDs organic electroluminescent diodes
- TADF thermally activated delayed fluorescence
- Electrons and holes recombine to form excitons, of which 25% are singlet excitons and 75% are triplet excitons.
- Fluorescent OLEDs emit light through singlet exciton radiation, so their theoretical internal quantum efficiency IQE ⁇ 25% , while the theoretical IQE of phosphorescent OLED and TADF-OLED is as high as 100%. Therefore, how to improve the external quantum efficiency (EQE) of fluorescent OLEDs has always been the focus of research.
- EQE external quantum efficiency
- One of the fundamental directions for improving the EQE of fluorescent OLEDs is to obtain fluorescently emitted singlet excitons through the Forster energy transfer process.
- the host material obtains singlet excitons and triplet excitons in the excited state and triggers the radiation transition, and the singlet excitons are transferred through the Forster energy transfer process, so an auxiliary material is required to convert the triplet state of the host material.
- Excitons are converted into singlet excitons, among which phosphorescent materials and TADF materials are widely used exciton conversion materials.
- Phosphorescent materials can convert singlet excitons to triplet excitons through the intersystem crossing process ISC for radiation.
- TADF materials can convert triplet excitons to enhance the inverse intersystem crossing process RISC into singlet excitons for radiation emission fluorescence.
- a typical device structure using singlet excitons the most common method is to mix host materials, TADF sensitizers, and fluorescent emitter materials, wherein the fluorescent emitter materials can also be replaced by phosphorescent emitter materials. Effectively improve OLED efficiency.
- exciton energy transfer is carried out simultaneously through Forster energy transfer and Dexter energy transfer process, and the Dexter energy transfer process will cause a large amount of energy loss, thereby reducing the efficiency of the device.
- An organic electroluminescent device provided by an embodiment of the present disclosure, as shown in FIG. 1 , includes: an anode 100 and a cathode 200 that are opposite to each other, a light-emitting layer 300 located between the anode 100 and the cathode 200 , and a light-emitting layer 300 located between the light-emitting layer 300 and the cathode 200 .
- the light-emitting layer 300 includes a first compound A, a second compound B, a third compound C and a fourth compound D, wherein the first compound A and the second compound B can form the first exciplex 310, the second compound B and The third compound C can form the second exciplex 320.
- the PL peak of the emission spectrum of the first exciplex 310 is smaller than the PL peak of the emission spectrum of the second exciplex 320.
- the overlapping area between the emission spectrum PL of the complex 310 and the absorption spectrum Abs of the third compound C (the area distributed by the oblique lines in FIG. 2 ) is greater than the first set value, and the emission spectrum PL of the second exciplex 320
- the overlapping area with the absorption spectrum Abs of the fourth compound D (the area distributed by the horizontal line in FIG. 2 ) is larger than the second set value.
- the light-emitting layer 300 includes the first compound A, the second compound B, the third compound C, the fourth compound D, the first compound A and the second compound B forms the first exciplex under photoexcitation and electrical excitation, the second compound B and the third compound C form the second exciplex under photoexcitation and electric excitation, and the two exciplexes can convert the triplet state
- the excitons improve the inverse intersystem crossing process, RISC is converted into singlet excitons for radiation emission fluorescence, and then the singlet excitons are effectively used for Forster energy transfer, and Dexter energy transfer is suppressed to avoid energy loss and achieve effective use of exciton energy. , improve the efficiency of the device.
- the emission spectrum PL of the first exciplex 310 and the third The absorption spectrum Abs of compound C has an overlapping area, so the exciton energy formed by the first exciplex 310 can be transferred to the third compound C, and then the third compound C and the second compound B are combined to form The second exciplex 320. Since there is an overlapping area between the emission spectrum of the second exciplex 320 and the absorption spectrum of the fourth compound D, the exciton energy formed by the second exciplex 320 can be transferred to the fourth compound D.
- the RISC is converted into singlet excitons for radiation emission fluorescence, and the singlet excitons are effectively used for Forster energy transfer. , to suppress the Dexter energy transfer to avoid energy loss, achieve effective use of exciton energy, and improve the efficiency of the device.
- the overlapping area between the emission spectrum PL of the first excimer compound 310 and the absorption spectrum Abs of the third compound C is greater than or equal to 5%. Specifically, the larger the overlapping area (the higher the overlap) between the emission spectrum PL of the first exciplex 310 and the absorption spectrum Abs of the third compound C, the more favorable the exciton energy from the first excimer recombination is. The compound 310 is transported to the third compound C to achieve efficient energy transfer.
- the overlapping area between the emission spectrum PL of the second excimer compound 320 and the absorption spectrum Abs of the fourth compound D is greater than or equal to 5% .
- the larger the overlapping area (the higher the overlap) between the emission spectrum PL of the second exciplex 320 and the absorption spectrum Abs of the fourth compound D the more favorable the exciton energy from the second excimer recombination is.
- the compound 320 is transferred to the fourth compound D, achieving efficient energy transfer.
- the first compound A, the second compound B, and the third compound C may be considered as host materials, and the total amount may be considered as 100%, and the adjustment of three Different proportions of each compound in the total amount will lead to different device efficiencies.
- the fourth compound D can be regarded as a guest material. By adjusting the doping ratio of the fourth compound D in the total mass of the host material, different device efficiencies can be obtained. Specifically, Ground, the mass ratio of the first compound A to the total mass of the first compound A, the second compound B and the third compound C is generally greater than or equal to 30wt%; the mass of the second compound B accounts for the first compound A and the second compound C.
- the mass ratio of the total mass of the compound B and the third compound C is generally greater than or equal to 40wt%; the mass ratio of the third compound C to the total mass of the first compound A, the second compound B and the third compound C is generally less than or equal to 30wt%; the mass ratio of the fourth compound D to the total mass of the first compound A, the second compound B and the third compound C is generally less than or equal to 2wt%.
- the second compound A can not only form the first exciplex 310 with the first compound A, but also form the second exciplex 320 with the third compound C, the second compound The proportion of B is generally the largest.
- the first exciplex 310 can excite the third compound C, therefore, the proportion of the third compound C is generally the least.
- the specific relationship between the proportion of the three compounds and the device parameters is detailed in the subsequent experimental parameters.
- the triplet energy level S1 of the first exciplex 310 is generally greater than the triplet energy level S1 of the second exciplex 320 , which is beneficial to realize the singlet state of the first exciplex 310
- the exciton S1 effectively transfers energy to the singlet energy level S1 of the second exciplex 320 through the Forster energy transfer (FET) (it can be considered that the first exciplex 310 excites the third compound C to generate a second exciton. base complex 320), suppressing Dexter energy transfer (DET) between triplet energy levels T1 with large energy loss.
- FET Forster energy transfer
- DET Dexter energy transfer
- the singlet energy level S1 of the second exciplex 320 is generally larger than the singlet energy level S1 of the fourth compound D, which is beneficial to realize that the singlet excitons S1 of the second exciplex 320 pass through the Forster energy Transfer (FET), which effectively transfers energy to the singlet energy level S1 of the fourth compound D, suppresses the Dexter energy transfer (DET) between the triplet energy levels T1 with large energy loss, and can effectively improve the exciton energy transfer. , thereby enhancing the efficiency of organic electroluminescent devices.
- FET Forster energy Transfer
- DET Dexter energy transfer
- the third compound C may have the characteristic of emitting delayed fluorescence, and may convert triplet excitons to enhance the inverse intersystem crossing process RISC into singlet excitons. It is beneficial to suppress the Dexter energy transfer (DET) between the triplet energy levels T1 with large energy loss, and realize the singlet excitons S1 of the second exciplex 320 through Forster energy transfer (FET ) to efficiently transfer energy to the singlet energy level S1 of the fourth compound D.
- DET Dexter energy transfer
- FET Forster energy transfer
- the difference between the HOMO value of the second compound B and the HOMO value of the first compound A is generally greater than 0.2 eV
- the difference between the LUMO value of B and the LUMO value of the first compound A is generally greater than 0.2 eV.
- the HOMO value refers to the absolute value of the HOMO energy level
- the LUMO value refers to the absolute value of the LUMO energy level
- the difference between the HOMO value of the first compound A and the HOMO value of the third compound C is generally greater than 0.1 eV
- the third compound The difference between the LUMO value of A and the LUMO value of the first compound C is generally greater than 0.1 eV.
- the difference between the HOMO value of the second compound B and the HOMO value of the third compound C is generally greater than 0.3 eV
- the difference between the LUMO value of B and the LUMO value of the third compound C is generally greater than 0.3 eV.
- the above energy level relationship facilitates the formation of the first exciplex 310 by the first compound A and the second compound B, and the formation of the second exciplex 320 by the second compound B and the third compound C.
- the first auxiliary functional layer 400 may include at least one of the following: a hole injection layer 401, a hole transport layer 402, The electron blocking layer 403 ; the second auxiliary function layer 500 may include at least one of the following: an electron injection layer 501 , an electron transport layer 502 , and a hole blocking layer 503 .
- the first auxiliary function layer 400 includes a hole injection layer 401, a hole transport layer 402, and an electron blocking layer 403, and the second auxiliary function layer 500 includes an electron injection layer 501, an electron transport layer 502, a hollow
- the hole blocking layer 503 is taken as an example for illustration, and the specific lamination relationship between the film layers is shown in FIG. 1 .
- the required auxiliary functional layers can be selected as required, for example, only the electron blocking layer 403 is selected for the first auxiliary functional layer 400, and only the hole blocking layer 503 is selected for the second auxiliary functional layer 500, etc., which will not be described in detail here. .
- the anode 100 , the hole injection layer 401 , the hole transport layer 402 , the electron blocking layer 403 , and the light emitting layer may be sequentially formed on the substrate.
- the base substrate can be selected from any transparent substrate material, such as glass, polyimide, and the like.
- the anode 100 is selected as a high work function electrode material, such as transparent oxide ITO, IZO, or a composite electrode formed by Ag/ITO, Ag/IZO, CNT/ITO, CNT/IZO, GO/ITO, GO/IZO, etc.
- a high work function electrode material such as transparent oxide ITO, IZO, or a composite electrode formed by Ag/ITO, Ag/IZO, CNT/ITO, CNT/IZO, GO/ITO, GO/IZO, etc.
- the hole injection layer 401 can be selected from injection materials such as MoO3, F4-TCNQ, HAT-CN, etc., or P-type doping can be performed on the hole transport material, and the hole injection layer 401 can be formed by co-evaporation.
- the thickness of the hole injection layer 401 is selected to be 5 nm ⁇ 20 nm.
- the hole transport layer 402 has good hole transport properties, and can be selected from materials such as NPB, m-MTDATA, TPD, TAPC, etc.
- the thickness of the hole transport layer 402 is selected from 10 nm to 2000 nm.
- the hole mobility of the electron blocking layer 403 is 1-2 orders of magnitude higher than the electron mobility, which can effectively block the electron transport.
- the electron mobility of the hole blocking layer 503 is 1-2 orders of magnitude higher than the hole mobility, and its HOMO energy level is deep, which can effectively prevent the transport of holes and make the exciton recombination region in the light-emitting layer.
- Common materials are BCP, TPBI, TBB, TPD, etc.
- the electron transport layer 502 has good electron transport properties, and can be selected from materials such as TmPyPB, B4PyPPM, and the like, and its thickness is selected from 20 nm to 100 nm.
- the electron injection layer 501 can be selected from materials such as LiF, Yb, LiQ, and the like, and its thickness is selected from 1 nm to 10 nm.
- the cathode 200 can be selected from one or more materials of Al, Ag, and Mg.
- the difference between the LUMO value of the first compound A and the LUMO value of the first auxiliary functional layer 400 in contact with the light-emitting layer 300 is generally greater than or equal to 0.3eV, for example, in the structure shown in FIG.
- the difference between the LUMO value of the first compound A and the LUMO value of the electron blocking layer EBL is generally greater than or equal to 0.3eV, specifically, ⁇ LUMO A ⁇ - ⁇ LUMO EBL ⁇ ⁇ 0.3eV;
- the difference between the LUMO value of the first compound A and the LUMO value of the second auxiliary functional layer 500 in contact with the light-emitting layer 300 is generally greater than or equal to 0.3eV, for example, in the structure shown in FIG.
- the difference between the LUMO value of a compound A and the LUMO value of the void barrier layer HBL is generally greater than or equal to 0.3 eV, specifically, ⁇ LUMO A ⁇ - ⁇ LUMO HBL ⁇ 0.3eV.
- the above energy level relationship facilitates the injection of holes and electrons into the light-emitting layer 300 to fix the exciton recombination region within the light-emitting layer 300 .
- the hole mobility of the first compound A is generally greater than the electron mobility
- the hole mobility of the third compound C is greater than the electron mobility, that is, The first compound A and the third compound C are selected as hole-type host materials; at this time, the electron mobility of the second compound B must be greater than the hole mobility, that is, the second compound B is selected as an electron-type host material.
- the second exciplex 320 is formed by the second compound B and the third compound C.
- the first compound A and the third compound C are selected as electron-type host materials
- the second compound B is selected as a hole-type host material.
- the molecular distance between the third compound C and the fourth compound D needs to be greater than and less than The molecular spacing can generally be controlled at The molecular distance between the second compound B and the fourth compound D is greater than and less than
- two comparative examples and six examples are fabricated by using the structures of the organic electroluminescent devices provided in the embodiments of the present disclosure, wherein the film layers of the comparative examples are the same as those in the respective examples.
- ITO was used as the anode, and a 10 nm hole injection layer HIL, a 100 nm hole transport layer HTL, a 5 nm electron blocking layer EBL, a light emitting layer, a 5 nm hole blocking layer HBL, a 20 nm electron transport layer ETL,
- the 5 nm electron injection layers EIL and AL serve as cathodes.
- CDBP is used as the first compound A
- POT2T is used as the second compound B
- DABNA-1 is used as the third compound C
- PO-01 is used as the fourth compound D.
- the host materials in Comparative Example 1 are the first compound A and the second compound B, that is, only the first exciplex is formed in Comparative Example 1
- the subject materials in Comparative Example 2 are the second compound B and the third compound C, That is, only the second exciplex is formed in Comparative Example 2
- the doping ratio of the fourth compound D in Examples 1 to 5 is the same, and only the ratio parameter of the three compounds in the host material is adjusted.
- Table 1 The detailed parameters are shown in Table 1:
- Example 1 40wt% 40wt% 20wt% 0.5wt% Comparative Example 1 50wt% 50wt% 0 0.5wt% Comparative Example 2 0 50wt% 50wt% 0.5wt% Example 2 45wt% 40wt% 15wt% 0.5wt% Example 3 45wt% 45wt% 10wt% 0.5wt%
- Example 4 30wt% 45wt% 25wt% 0.5wt%
- Example 5 40wt% 45wt% 15wt% 0.5wt%
- Example 6 40wt% 45wt% 15wt% 1wt%
- the host materials in the light-emitting layers of Examples 1-6 provided by the present disclosure adopt three compounds to form two exciplexes, which can improve the device efficiency.
- the proportion of the third compound C in the host material is neither too small nor too large, so as to avoid the increase of the proportion of other compounds and the reduction of the molecular spacing, which is not conducive to forest energy transfer.
- the first compound A The proportion difference with the second compound B is also not too large, so as not to reduce the molecular distance of the compound with a large proportion, which is not conducive to forest energy transfer.
- an embodiment of the present disclosure further provides a display panel, as shown in FIG. 7 , including a plurality of the above-mentioned organic electroluminescence devices provided by the embodiment of the present disclosure.
- the display panel includes: a base substrate 01, a thin film transistor 02 located on the base substrate 01, an anode 100 connected to the drain of the thin film transistor 02, a pixel defining layer 03 for defining the light-emitting area of each pixel, and spacers 04, a first auxiliary functional layer 400 such as a hole injection layer and a hole transport layer, a second auxiliary functional layer 500 such as a light-emitting layer 300, an electron transport layer, etc., and the cathode 200, etc.
- the first auxiliary function layer 400, the second auxiliary function layer 500, the cathode 200 and other film layers are film layers arranged on the entire surface of the base substrate 01.
- the material of the light-emitting layer 300 in the light-emitting area of different pixels is different and the thickness may also be different. different.
- FIG. 7 only illustrates an implementable structure of the pixel light-emitting regions of R, G, and B and the thin film transistor of one pixel, and the structure of the display panel is not limited to this. Since the principle of solving the problem of the display panel is similar to that of the aforementioned organic electroluminescent device, the implementation of the display panel may refer to the implementation of the organic electroluminescent device, and the repeated description will not be repeated.
- an embodiment of the present disclosure further provides a display device, including the above-mentioned display panel provided by an embodiment of the present disclosure.
- the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
- Other essential components of the display device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be regarded as a limitation of the present disclosure.
- the light-emitting layer includes a first compound, a second compound, a third compound, and a fourth compound, and the first compound and the second compound are excited by light and electricity.
- the first exciplex is formed, the second compound and the third compound form a second exciplex under optical excitation and electrical excitation, and the exciton energy formed by the first exciplex can be transferred to the third compound, Then, the third compound and the second compound are combined to form a second exciplex, and the exciton energy formed by the second exciplex can be transferred to the fourth compound.
- the triplet excitons are converted into singlet excitons for radiative emission fluorescence when they recombine to form exciplexes, and the singlet excitons are effectively used for Forster energy transfer.
- Dexter energy transfer is suppressed to avoid energy loss, effectively utilize exciton energy, and improve device efficiency.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本公开提供了一种有机电致发光器件、显示面板及显示装置,发光层包含第一化合物、第二化合物、第三化合物、第四化合物,第一化合物和第二化合物在光激发和电激发下形成第一激基复合物,第一激基复合物复合而成的激子能量可以传递至第三化合物,之后由第三化合物和第二化合物复合形成第二激基复合物,第二激基复合物复合而成的激子能量可以传递至第四化合物。在以上激子能量传递过程中,复合形成激基复合物时三重态激子提高反系间穿越过程转换为单重态激子进行辐射发射荧光,有效利用单重态激子进行Forster能量传递,抑制Dexter能量传递以此避免能量损失,达到有效利用激子能量,提高器件的效率。
Description
相关申请的交叉引用
本公开要求在2020年09月25日提交中国专利局、申请号为202011019914.4、申请名称为“一种有机电致发光器件、显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开涉及显示技术领域,尤指一种有机电致发光器件、显示面板及显示装置。
近年来,有机电致发光显示器(OLED)作为一种新型的平板显示逐渐受到更多的关注。由于其具有主动发光、发光亮度高、分辨率高、宽视角、响应速度快、色彩饱和、轻薄、低能耗以及可柔性化等特点,被誉为梦幻显示,成为目前市场上炙手可热的主流显示产品。
发明内容
一方面,本公开实施例提供了一种有机电致发光器件,包括:相对而置的阳极和阴极,位于所述阳极和所述阴极之间的发光层,位于所述发光层与所述阳极之间的第一辅助功能层,以及位于所述发光层与所述阴极之间的第二辅助功能层;其中,
所述发光层包含第一化合物、第二化合物、第三化合物和第四化合物,其中,所述第一化合物和所述第二化合物能够形成第一激基复合物,所述第二化合物和所述第三化合物能够形成第二激基复合物,所述第一激基复合物的发射光谱峰值小于所述第二激基复合物的发射光谱峰值,所述第一激基复合物的发射光谱和所述第三化合物的吸收光谱之间的交叠面积大于第一设定 值,所述第二激基复合物的发射光谱和所述第四化合物的吸收光谱之间的交叠面积大于第二设定值。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一激基复合物的发射光谱和所述第三化合物的吸收光谱之间的交叠面积大于或等于5%;
所述第二激基复合物的发射光谱和所述第四化合物的吸收光谱之间的交叠面积大于或等于5%。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一化合物的质量占所述第一化合物和所述第二化合物和所述第三化合物的总质量的质量比大于或等于30wt%;
所述第二化合物的质量占所述第一化合物和所述第二化合物和所述第三化合物的总质量的质量比大于或等于40wt%;
所述第三化合物的质量占所述第一化合物和所述第二化合物和所述第三化合物的总质量的质量比小于或等于30wt%;
所述第四化合物的质量占所述第一化合物和所述第二化合物和所述第三化合物的总质量的质量比小于或等于2wt%。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一激基复合物的单重态能级大于所述第二激基复合物的单重态能级,所述第一激基复合物的三重态能级大于所述第二激基复合物的三重态能级;
所述第二激基复合物的单重态能级大于所述第四化合物的单重态能级。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第二化合物的HOMO值和所述第一化合物的HOMO值之差大于0.2eV;
所述第二化合物的LUMO值和所述第一化合物的LUMO值之差大于0.2eV。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器 件中,所述第一化合物的HOMO值和所述第三化合物的HOMO值之差大于0.1eV;
所述第三化合物的LUMO值和所述第一化合物的LUMO值之差大于0.1eV。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第二化合物的HOMO值和所述第三化合物的HOMO值之差大于0.3eV;
所述第二化合物的LUMO值和所述第三化合物的LUMO值之差大于0.3eV。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一化合物的LUMO值和所述第一辅助功能层中与所述发光层相接触膜层的LUMO值之差大于或等于0.3eV;所述第一化合物的LUMO值和所述第二辅助功能层中与所述发光层相接触膜层的LUMO值之差大于或等于0.3eV。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一辅助功能层包括至少以下之一:空穴注入层、空穴传输层、电子阻挡层;
所述第二辅助功能层包括至少以下之一:电子注入层、电子传输层、空穴阻挡层。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一化合物的空穴迁移率大于电子迁移率,所述第三化合物的空穴迁移率大于电子迁移率;
所述第二化合物的电子迁移率大于空穴迁移率。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第三化合物具有发射延迟荧光的特性。
另一方面,本公开实施例还提供了一种显示面板,包括多个上述有机电致发光器件。
另一方面,本公开实施例还提供了一种显示装置,包括:上述显示面板。
图1为本公开实施例提供的有机电致发光器件的结构示意图;
图2为本公开实施例提供的有机电致发光器件的吸收-发射光谱图;
图3为本公开实施例提供的有机电致发光器件的能量转移关系图;
图4为本公开实施例提供的有机电致发光器件的能级关系图;
图5为本公开实施例提供的有机电致发光器件的分子关系图;
图6为本公开实施例提供的实验数据中各实施例的电流密度-电压关系图;
图7为本公开实施例提供的显示面板的结构示意图。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领 域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
近年以来,随着磷光OLED和热激活延迟荧光(TADF)OLED的出现,有机电致发光二极管(OLED)克服了荧光OLED固有的低效率障碍,器件性能得到迅速提高。电子与空穴复合形成激子,其中25%是单重态激子,75%是三重态激子,荧光OLED是通过单重态激子辐射进行发光,因此其理论内量子效率IQE≤25%,而磷光OLED和TADF-OLED的理论IQE高达100%。因此如何提高荧光OLED外量子效率EQE一直是研究的焦点。
荧光OLED的提高EQE的一个基本方向是通过Forster能量转移过程获得荧光发射的单重态激子。一般来说,主体材料在激发态获得单重态激子和三重态激子并触发辐射跃迁,单重态激子通过Forster能量转移过程进行传递,因此需要一种辅助材料将主体材料的三重态激子转换为单重态激子,其中磷光材料和TADF材料是一种广泛应用的激子转换材料,磷光材料可将单重态激子通过系间穿越过程ISC转换为三重态激子进行辐射发射磷光,而TADF材料可将三重态激子提高反系间穿越过程RISC转换为单重态激子进行辐射发射荧光。一种典型利用单重态激子的器件结构,最常见的方法是将主体材料、TADF敏化剂、荧光发射体材料混合,其中荧光发射体材料也可用磷光发射体材料代替,利用该方法可有效的提高OLED效率。但是在该体系中激子能量传递是同时通过Forster能量传递和Dexter能量传递过程进行的,Dexter能量传递过程中会导致能量大量损失,从而降低器件的效率。
本公开实施例提供的一种有机电致发光器件,如图1所示,包括:相对而置的阳极100和阴极200,位于阳极100和阴极200之间的发光层300,位 于发光层300与阳极100之间的第一辅助功能层400,以及位于发光层300与阴极200之间的第二辅助功能层500;其中,
发光层300包含第一化合物A、第二化合物B、第三化合物C和第四化合物D,其中,第一化合物A和第二化合物B能够形成第一激基复合物310,第二化合物B和第三化合物C能够形成第二激基复合物320,如图2所示,第一激基复合物310的发射光谱PL峰值小于第二激基复合物320的发射光谱PL峰值,第一激基复合物310的发射光谱PL和第三化合物C的吸收光谱Abs之间的交叠面积(图2中斜线所分布区域)大于第一设定值,第二激基复合物320的发射光谱PL和第四化合物D的吸收光谱Abs之间的交叠面积(图2中横线所分布区域)大于第二设定值。
具体地,在本公开实施例提供的上述有机电致发光器件中,发光层300包含第一化合物A、第二化合物B、第三化合物C、第四化合物D,第一化合物A和第二化合物B在光激发和电激发下形成第一激基复合物,第二化合物B和第三化合物C在光激发和电激发下形成第二激基复合物,两种激基复合物可以将三重态激子提高反系间穿越过程RISC转换为单重态激子进行辐射发射荧光,之后有效利用单重态激子进行Forster能量传递,抑制Dexter能量传递以此避免能量损失,达到有效利用激子能量,提高器件的效率。
具体地,如图2所示,由于第一激基复合物310的发射光谱PL峰值小于第二激基复合物320的发射光谱PL峰值,第一激基复合物310的发射光谱PL和第三化合物C的吸收光谱Abs之间具有交叠面积,因此,第一激基复合物310复合而成的激子能量可以传递至第三化合物C,之后由第三化合物C和第二化合物B复合形成第二激基复合物320。由于第二激基复合物320的发射光谱和第四化合物D的吸收光谱之间具有交叠面积,因此,第二激基复合物320复合而成的激子能量可以传递至第四化合物D。在以上激子能量传递过程中,复合形成激基复合物时三重态激子提高反系间穿越过程RISC转换为单重态激子进行辐射发射荧光,有效利用单重态激子进行Forster能量传递,抑制Dexter能量传递以此避免能量损失,达到有效利用激子能量,提高器件 的效率。
可选地,在本公开实施例提供的上述有机电致发光器件中,第一激基复合物310的发射光谱PL和第三化合物C的吸收光谱Abs之间的交叠面积大于或等于5%。具体地,第一激基复合物310的发射光谱PL和第三化合物C的吸收光谱Abs之间的交叠面积越大(重叠性越高),越有利于激子能量从第一激基复合物310传输至第三化合物C,实现高效的能量传递。
可选地,在本公开实施例提供的上述有机电致发光器件中,第二激基复合物320的发射光谱PL和第四化合物D的吸收光谱Abs之间的交叠面积大于或等于5%。具体地,第二激基复合物320的发射光谱PL和第四化合物D的吸收光谱Abs之间的交叠面积越大(重叠性越高),越有利于激子能量从第二激基复合物320传输至第四化合物D,实现高效的能量传递。
可选地,在本公开实施例提供的上述有机电致发光器件中,第一化合物A、第二化合物B和第三化合物C可以认为是主体材料,其总量可以认为是100%,调节三个化合物在总量中不同的占比会导致器件效率不同,第四化合物D可以认为是客体材料,通过调节第四化合物D在主体材料的总质量的掺杂比例可以得到不同的器件效率,具体地,第一化合物A的质量占第一化合物A和第二化合物B和第三化合物C的总质量的质量比一般大于或等于30wt%;第二化合物B的质量占第一化合物A和第二化合物B和第三化合物C的总质量的质量比一般大于或等于40wt%;第三化合物C的质量占第一化合物A和第二化合物B和第三化合物C的总质量的质量比一般小于或等于30wt%;第四化合物D的质量占第一化合物A和第二化合物B和第三化合物C的总质量的质量比一般小于或等于2wt%。
具体地,在主体材料中,由于第二化合物A既可以和第一化合物A形成第一激基复合物310,又可以和第三化合物C形成第二激基复合物320,因此,第二化合物B的占比一般最大。并且,第一激基复合物310可以激发第三化合物C,因此,第三化合物C的占比一般最少。具体三种化合物的占比和器件参数之间的关系详见后续的实验参数。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图3所示,第一激基复合物310的单重态能级S1一般大于第二激基复合物320的单重态能级S1,同时第一激基复合物310的三重态能级S1一般大于第二激基复合物320的三重态能级S1,有利于实现第一激基复合物310的单重态激子S1通过Forster能量传递(FET),将能量有效传递至第二激基复合物320的单重态能级S1(可以认为第一激基复合物310激发第三化合物C后生成第二激基复合物320),抑制能量损耗较大的三重态能级T1之间的Dexter能量转移(DET)。同时,第二激基复合物320的单重态能级S1一般大于第四化合物D的单重态能级S1,有利于实现第二激基复合物320的单重态激子S1通过Forster能量传递(FET),将能量有效传递至第四化合物D的单重态能级S1,抑制能量损耗较大的三重态能级T1之间的Dexter能量转移(DET),能有效提高激子能量传递,从而增强有机电致发光器件的效率。
可选地,在本公开实施例提供的上述有机电致发光器件中,第三化合物C可以具有发射延迟荧光的特性,可以将三重态激子提高反系间穿越过程RISC转换为单重态激子进行辐射发射荧光,有利于抑制能量损耗较大的三重态能级T1之间的Dexter能量转移(DET),实现第二激基复合物320的单重态激子S1通过Forster能量传递(FET),将能量有效传递至第四化合物D的单重态能级S1。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图4所示,第二化合物B的HOMO值和第一化合物A的HOMO值之差一般大于0.2eV,第二化合物B的LUMO值和第一化合物A的LUMO值之差一般大于0.2eV。具体地,∣HOMO
B∣-∣HOMO
A∣>0.2eV,∣LUMO
B∣-∣LUMO
A∣>0.2eV。
值得注意的是,HOMO值指的是HOMO能级的绝对值,LUMO值指的是LUMO能级的绝对值。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图4所示,第一化合物A的HOMO值和第三化合物C的HOMO值之差一般大于0.1eV,第三化合物A的LUMO值和第一化合物C的LUMO值之差一般大于0.1eV。 具体地,∣HOMO
A∣-∣HOMO
C∣>0.1eV,∣LUMO
C∣-∣LUMO
A∣>0.1eV。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图4所示,第二化合物B的HOMO值和第三化合物C的HOMO值之差一般大于0.3eV,第二化合物B的LUMO值和第三化合物C的LUMO值之差一般大于0.3eV。具体地,∣HOMO
B∣-∣HOMO
C∣>0.3eV,∣LUMO
B∣-∣LUMO
C∣>0.3eV。
具体地,上述能级关系有助于第一化合物A和第二化合物B形成第一激基复合物310,以及第二复合物B和第三复合物C形成第二激基复合物320。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图1所示,第一辅助功能层400可以包括至少以下之一:空穴注入层401、空穴传输层402、电子阻挡层403;第二辅助功能层500可以包括至少以下之一:电子注入层501、电子传输层502、空穴阻挡层503。
具体地,图1中是以第一辅助功能层400包含空穴注入层401、空穴传输层402、电子阻挡层403,第二辅助功能层500包含电子注入层501、电子传输层502、空穴阻挡层503为例进行说明的,具体膜层之间的层叠关系参见图1。在实际应用时,可以根据需要选取所需的辅助功能层,例如第一辅助功能层400仅选取电子阻挡层403,第二辅助功能层500仅选取空穴阻挡层503等,在此不作详述。
具体地,本公开实施例提供的上述有机电致发光器件在实际制作时,可以在衬底基板上依次形成阳极100、空穴注入层401、空穴传输层402、电子阻挡层403、发光层300、空穴阻挡层503、电子传输层502、电子注入层501、阴极200。
具体地,衬底基板可以选为任意透明衬底材料,如玻璃、聚酰亚胺等。
阳极100选为高功函数电极材料,如透明氧化物ITO、IZO,也可为Ag/ITO、Ag/IZO、CNT/ITO、CNT/IZO、GO/ITO、GO/IZO等形成的复合电极。
空穴注入层401可以选为MoO3,F4-TCNQ,HAT-CN等注入材料,也可以在空穴传输材料进行P型掺杂,通过共蒸形成空穴注入层401。空穴注入层401的厚度选为5nm~20nm。
空穴传输层402具有良好的空穴传输特性,可以选为NPB,m-MTDATA,TPD,TAPC等材料,空穴传输层402的厚度选为10nm~2000nm。
电子阻挡层403其空穴迁移率高出电子迁移率1~2个数量级,可以有效的阻挡电子的传输,可以选为TCTA等材料,其厚度选为5nm~100nm。
空穴阻挡层503其电子迁移率高出空穴迁移率1~2个数量级,其HOMO能级较深,有效的阻止空穴的传输,使激子复合区在发光层,常用材料有BCP、TPBI、TBB、TPD等。
电子传输层502具有良好的电子传输特性,可以选为TmPyPB,B4PyPPM等材料,其厚度选为20nm~100nm。
电子注入层501可以选为LiF,Yb,LiQ等材料,其厚度选为1nm~10nm。
阴极200可以选为Al、Ag、Mg中一种或多种材料。
可选地,在本公开实施例提供的上述有机电致发光器件中,第一化合物A的LUMO值和第一辅助功能层400中与发光层300相接触膜层的LUMO值之差一般大于或等于0.3eV,例如在图1所示的结构中,第一化合物A的LUMO值和电子阻挡层EBL的LUMO值之差一般大于或等于0.3eV,具体地,∣LUMO
A∣-∣LUMO
EBL∣≥0.3eV;第一化合物A的LUMO值和第二辅助功能层500中与发光层300相接触膜层的LUMO值之差一般大于或等于0.3eV,例如在图1所示的结构中,第一化合物A的LUMO值和空虚阻挡层HBL的LUMO值之差一般大于或等于0.3eV,具体地,∣LUMO
A∣-∣LUMO
HBL∣≥0.3eV。
具体地,上述能级关系有助于空穴和电子注入到发光层300中,以将激子复合区固定在发光层300内。
可选地,在本公开实施例提供的上述有机电致发光器件中,第一化合物A的空穴迁移率一般大于电子迁移率,且第三化合物C的空穴迁移率大于电子迁移率,即第一化合物A和第三化合物C选用空穴型主体材料;此时,第二化合物B的电子迁移率需大于空穴迁移率,即第二化合物B选用电子型主体材料。以有助于第一化合物A和第二化合物B形成第一激基复合物310,第 二化合物B和第三化合物C形成第二激基复合物320。反之亦可,即第一化合物A和第三化合物C选用电子型主体材料,第二化合物B选用空穴型主体材料。具体地,一般空穴型主体材料的空穴迁移率>1*10
-6cm
2/V*S>电子迁移率,电子型主体材料的电子迁移率>1*10
-6cm
2/V*S>空穴迁移率。
可选地,在本公开实施例提供的上述有机电致发光器件中,为了在发光层300中抑制Dexter能量传递,提高Forster能量传递,需要发生能量转移的分子之间具有较大的间隙,因此,如图5所示,第三化合物C与第四化合物D之间的分子间距需要大于
且小于
分子间距一般可以控制在
第二化合物B第四化合物D之间的分子间距大于
且小于
具体地,采用本公开实施例提供的上述有机电致发光器件的结构制作两个对比例和六个实施例,其中,对比例与各实施例中的膜层结构相同,具体地,均采用,ITO作为阳极,在其上依次制作10nm的空穴注入层HIL、100nm的空穴传输层HTL、5nm的电子阻挡层EBL、发光层、5nm的空穴阻挡层HBL、20nm的电子传输层ETL、5nm的电子注入层EIL和AL作为阴极。其中,发光层中第一化合物A采用CDBP,第二化合物B采用POT2T,第三化合物C采用DABNA-1,第四化合物D采用为PO-01。比较例1中的主体材料为第一化合物A和第二化合物B,即比较例1中仅形成第一激基复合物,比较例2中的主题材料为第二化合物B和第三化合物C,即比较例2中仅形成第二激基复合物,实施例1~5中的第四化合物D的掺杂占比相同,仅调节主体材料中三个化合物之间的占比参数。详细参数如表1所示:
A/(A+B+C) | B/(A+B+C) | C/(A+B+C) | D/(A+B+C) | |
实施例1 | 40wt% | 40wt% | 20wt% | 0.5wt% |
比较例1 | 50wt% | 50wt% | 0 | 0.5wt% |
比较例2 | 0 | 50wt% | 50wt% | 0.5wt% |
实施例2 | 45wt% | 40wt% | 15wt% | 0.5wt% |
实施例3 | 45wt% | 45wt% | 10wt% | 0.5wt% |
实施例4 | 30wt% | 45wt% | 25wt% | 0.5wt% |
实施例5 | 40wt% | 45wt% | 15wt% | 0.5wt% |
实施例6 | 40wt% | 45wt% | 15wt% | 1wt% |
表1
上述对比例和实施例的器件性能从以下数据进行比较:电流效率CE、功率效率PE、外量子效率EQE、发光色度CIE,具体测量得到的数据如表2所示:
表2
由表2和图6可见,本公开所提供的实施例1~6相对于对比例1~2在发光层中的主体材料采用三种化合物形成两种激基复合物可以提高器件效率。从实施例1~5比较可以看出,在主体材料内第三化合物C的比例不易过小也不宜过大,以免其他化合物比例增加后缩小分子间距而不利于forester能量转移,同时第一化合物A和第二化合物B的占比差异也不易过大,以免占比较大的化合物缩小分子间距而不利于forester能量转移。并且,从实施例5和实施例6比较可以看出,在一定范围内增加第四化合物D的掺杂比列,会提高器件效率。
基于同一发明构思,本公开实施例还提供了一种显示面板,如图7所示,包括多个本公开实施例提供的上述有机电致发光器件。具体地,显示面板包括:衬底基板01、位于衬底基板01上的薄膜晶体管02、与薄膜晶体管02的漏极连接的阳极100、用于限定各像素发光区域的像素限定层03、隔垫物04、在像素限定层03上依次形成的空穴注入层和空穴传输层等第一辅助功能层400、发光层300、电子传输层等第二辅助功能层500、阴极200等,其中,第一辅助功能层400、第二辅助功能层500和阴极200等膜层为在衬底基板01上整面设置的膜层,在不同像素发光区域的发光层300材质各不相同且厚度也可以不同。图7中仅示意出了R、G、B的像素发光区域和一个像素的薄膜晶体管的一种可实施的结构,显示面板的结构并不局限于此。由于该显示面板解决问题的原理与前述一种有机电致发光器件相似,因此该显示面板的实施可以参见有机电致发光器件的实施,重复之处不再赘述。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示面板。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。该显示装置的实施可以参见上述有机电致发光器件的实施例,重复之处不再赘述。
本公开提供的上述有机电致发光器件、显示面板及显示装置,发光层包含第一化合物、第二化合物、第三化合物、第四化合物,第一化合物和第二化合物在光激发和电激发下形成第一激基复合物,第二化合物和第三化合物在光激发和电激发下形成第二激基复合物,第一激基复合物复合而成的激子能量可以传递至第三化合物,之后由第三化合物和第二化合物复合形成第二激基复合物,第二激基复合物复合而成的激子能量可以传递至第四化合物。在以上激子能量传递过程中,复合形成激基复合物时三重态激子提高反系间穿越过程转换为单重态激子进行辐射发射荧光,有效利用单重态激子进行Forster能量传递,抑制Dexter能量传递以此避免能量损失,达到有效利用激子 能量,提高器件的效率。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (15)
- 一种有机电致发光器件,其中,包括:相对而置的阳极和阴极,位于所述阳极和所述阴极之间的发光层,位于所述发光层与所述阳极之间的第一辅助功能层,以及位于所述发光层与所述阴极之间的第二辅助功能层;其中,所述发光层包含第一化合物、第二化合物、第三化合物和第四化合物,其中,所述第一化合物和所述第二化合物能够形成第一激基复合物,所述第二化合物和所述第三化合物能够形成第二激基复合物,所述第一激基复合物的发射光谱峰值小于所述第二激基复合物的发射光谱峰值,所述第一激基复合物的发射光谱和所述第三化合物的吸收光谱之间的交叠面积大于第一设定值,所述第二激基复合物的发射光谱和所述第四化合物的吸收光谱之间的交叠面积大于第二设定值。
- 如权利要求1所述的有机电致发光器件,其中,所述第一激基复合物的发射光谱和所述第三化合物的吸收光谱之间的交叠面积大于或等于5%;所述第二激基复合物的发射光谱和所述第四化合物的吸收光谱之间的交叠面积大于或等于5%。
- 如权利要求1所述的有机电致发光器件,其中,所述第一化合物的质量占所述第一化合物和所述第二化合物和所述第三化合物的总质量的质量比大于或等于30wt%;所述第二化合物的质量占所述第一化合物和所述第二化合物和所述第三化合物的总质量的质量比大于或等于40wt%;所述第三化合物的质量占所述第一化合物和所述第二化合物和所述第三化合物的总质量的质量比小于或等于30wt%;所述第四化合物的质量占所述第一化合物和所述第二化合物和所述第三化合物的总质量的质量比小于或等于2wt%。
- 如权利要求1所述的有机电致发光器件,其中,所述第一激基复合物的单重态能级大于所述第二激基复合物的单重态能级,所述第一激基复合物 的三重态能级大于所述第二激基复合物的三重态能级;所述第二激基复合物的单重态能级大于所述第四化合物的单重态能级。
- 如权利要求1所述的有机电致发光器件,其中,所述第二化合物的HOMO值和所述第一化合物的HOMO值之差大于0.2eV;所述第二化合物的LUMO值和所述第一化合物的LUMO值之差大于0.2eV。
- 如权利要求1所述的有机电致发光器件,其中,所述第一化合物的HOMO值和所述第三化合物的HOMO值之差大于0.1eV;所述第三化合物的LUMO值和所述第一化合物的LUMO值之差大于0.1eV。
- 如权利要求1所述的有机电致发光器件,其中,所述第二化合物的HOMO值和所述第三化合物的HOMO值之差大于0.3eV;所述第二化合物的LUMO值和所述第三化合物的LUMO值之差大于0.3eV。
- 如权利要求7所述的有机电致发光器件,其中,所述第一化合物的LUMO值和所述第一辅助功能层中与所述发光层相接触膜层的LUMO值之差大于或等于0.3eV;所述第一化合物的LUMO值和所述第二辅助功能层中与所述发光层相接触膜层的LUMO值之差大于或等于0.3eV。
- 如权利要求8所述的有机电致发光器件,其中,所述第一辅助功能层包括至少以下之一:空穴注入层、空穴传输层、电子阻挡层;所述第二辅助功能层包括至少以下之一:电子注入层、电子传输层、空穴阻挡层。
- 如权利要求1-9任一项所述的有机电致发光器件,其中,所述第一化合物的空穴迁移率大于电子迁移率,所述第三化合物的空穴迁移率大于电子迁移率;所述第二化合物的电子迁移率大于空穴迁移率。
- 如权利要求1-9任一项所述的有机电致发光器件,其中,所述第三化合物具有发射延迟荧光的特性。
- 一种显示面板,其中,包括多个如权利要求1~13任一项所述的有机电致发光器件。
- 一种显示装置,其中,包括:如权利要求14所述的显示面板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/787,471 US20230043738A1 (en) | 2020-09-25 | 2021-08-04 | Organic electroluminescent device, display panel, and display apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011019914.4 | 2020-09-25 | ||
CN202011019914.4A CN112151686B (zh) | 2020-09-25 | 2020-09-25 | 有机电致发光器件、显示面板及显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022062702A1 true WO2022062702A1 (zh) | 2022-03-31 |
Family
ID=73897940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/110677 WO2022062702A1 (zh) | 2020-09-25 | 2021-08-04 | 有机电致发光器件、显示面板及显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230043738A1 (zh) |
CN (1) | CN112151686B (zh) |
WO (1) | WO2022062702A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112151686B (zh) * | 2020-09-25 | 2024-04-23 | 京东方科技集团股份有限公司 | 有机电致发光器件、显示面板及显示装置 |
CN117501828A (zh) * | 2022-04-21 | 2024-02-02 | 京东方科技集团股份有限公司 | 有机发光器件、显示装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140034927A1 (en) * | 2012-08-03 | 2014-02-06 | Semiconductor Energy Laboratory Co., Ltd. | Light-Emitting Element, Light-Emitting Device, Display Device, Electronic Appliance, and Lighting Device |
US20170179417A1 (en) * | 2012-04-13 | 2017-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, electronic device, and lighting device |
US20170338436A1 (en) * | 2016-05-20 | 2017-11-23 | Semiconductor Energy Laboratory Co., Ltd. | Light-Emitting Element, Display Device, Electronic Device, and Lighting Device |
US20180151630A1 (en) * | 2016-11-30 | 2018-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device |
CN112151686A (zh) * | 2020-09-25 | 2020-12-29 | 京东方科技集团股份有限公司 | 有机电致发光器件、显示面板及显示装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW519770B (en) * | 2001-01-18 | 2003-02-01 | Semiconductor Energy Lab | Light emitting device and manufacturing method thereof |
US20060134464A1 (en) * | 2004-12-22 | 2006-06-22 | Fuji Photo Film Co. Ltd | Organic electroluminescent element |
JP5325707B2 (ja) * | 2008-09-01 | 2013-10-23 | 株式会社半導体エネルギー研究所 | 発光素子 |
KR20190014600A (ko) * | 2011-03-23 | 2019-02-12 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 소자 |
-
2020
- 2020-09-25 CN CN202011019914.4A patent/CN112151686B/zh active Active
-
2021
- 2021-08-04 US US17/787,471 patent/US20230043738A1/en active Pending
- 2021-08-04 WO PCT/CN2021/110677 patent/WO2022062702A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170179417A1 (en) * | 2012-04-13 | 2017-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, electronic device, and lighting device |
US20140034927A1 (en) * | 2012-08-03 | 2014-02-06 | Semiconductor Energy Laboratory Co., Ltd. | Light-Emitting Element, Light-Emitting Device, Display Device, Electronic Appliance, and Lighting Device |
US20170338436A1 (en) * | 2016-05-20 | 2017-11-23 | Semiconductor Energy Laboratory Co., Ltd. | Light-Emitting Element, Display Device, Electronic Device, and Lighting Device |
US20180151630A1 (en) * | 2016-11-30 | 2018-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device |
CN112151686A (zh) * | 2020-09-25 | 2020-12-29 | 京东方科技集团股份有限公司 | 有机电致发光器件、显示面板及显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112151686B (zh) | 2024-04-23 |
US20230043738A1 (en) | 2023-02-09 |
CN112151686A (zh) | 2020-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3499598B1 (en) | Organic light-emitting diode and preparation method thereof, and display device | |
US10026904B2 (en) | Organic light emitting devices | |
WO2022042037A1 (zh) | 有机电致发光器件、显示面板及显示装置 | |
WO2023000961A1 (zh) | 有机电致发光器件、显示面板及显示装置 | |
WO2022062702A1 (zh) | 有机电致发光器件、显示面板及显示装置 | |
WO2022062700A1 (zh) | 有机电致发光器件、显示面板及显示装置 | |
KR20100072644A (ko) | 유기전계발광소자 | |
CN112117388B (zh) | 有机电致发光器件、显示面板及显示装置 | |
CN102931355A (zh) | Oled器件 | |
US20230092444A1 (en) | Organic electroluminescent device, display panel, and display apparatus | |
CN111785858B (zh) | 发光显示器件及其制备方法、显示装置 | |
CN111944518A (zh) | 主体材料、发光层材料、发光器件、显示基板、显示装置 | |
CN105789460A (zh) | 激基复合物的白光有机电致发光器件及其制备方法 | |
WO2023201651A1 (zh) | 有机发光器件、显示装置 | |
CN106299155A (zh) | Oled发光器件及显示装置 | |
CN105789462A (zh) | 掺杂cbp的蓝色有机电致发光器件及其制备方法 | |
CN105789470A (zh) | 一种白光有机电致发光器件及其制备方法 | |
CN115172636A (zh) | 发光器件、显示面板及显示装置 | |
CN111384252A (zh) | 一种oled器件结构 | |
CN105789471A (zh) | 白光有机电致发光器件及其制备方法 | |
CN105789459A (zh) | 红色有机电致发光器件及其制备方法 | |
CN105789472A (zh) | 蓝色有机电致发光器件及其制备方法 | |
CN105789457A (zh) | 两种铱配合物混合的白光有机电致发光器件及其制备方法 | |
CN105789458A (zh) | 一种铱配合物的白光有机电致发光器件及其制备方法 | |
CN105762296A (zh) | 掺杂cbp的红色有机电致发光器件及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21871079 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21871079 Country of ref document: EP Kind code of ref document: A1 |