WO2023201651A1 - 有机发光器件、显示装置 - Google Patents

有机发光器件、显示装置 Download PDF

Info

Publication number
WO2023201651A1
WO2023201651A1 PCT/CN2022/088278 CN2022088278W WO2023201651A1 WO 2023201651 A1 WO2023201651 A1 WO 2023201651A1 CN 2022088278 W CN2022088278 W CN 2022088278W WO 2023201651 A1 WO2023201651 A1 WO 2023201651A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite transmission
energy
auxiliary material
auxiliary
lowest
Prior art date
Application number
PCT/CN2022/088278
Other languages
English (en)
French (fr)
Inventor
孙海雁
张晓晋
王丹
王斯琦
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000830.7A priority Critical patent/CN117501828A/zh
Priority to PCT/CN2022/088278 priority patent/WO2023201651A1/zh
Publication of WO2023201651A1 publication Critical patent/WO2023201651A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an organic light-emitting device and a display device.
  • OLED Organic Light Emitting Device
  • An OLED includes an anode, a cathode, and an organic light-emitting layer disposed between the anode and cathode. Its light-emitting principle is to inject holes and electrons from the anode and cathode into the light-emitting layer respectively. When electrons and holes meet in the light-emitting layer, , electrons and holes recombine in the light-emitting layer to generate excitons, which emit light while transitioning from the excited state to the ground state.
  • OLEDs usually use phosphorescent materials as light-emitting materials. Since phosphorescent materials contain precious metal atoms, the material cost is high and there is a risk of contamination, which is not conducive to low-cost display applications.
  • Related technologies have proposed the use of pure organic light-emitting materials with thermally active delay fluorescence (TADF) characteristics, but the related structures have problems such as triplet exciton annihilation.
  • TADF thermally active delay fluorescence
  • the purpose of this disclosure is to provide an organic light-emitting device and a display device that can effectively suppress Dexter energy transfer, reduce energy loss, and thereby improve device efficiency.
  • an organic light-emitting device including a light-emitting layer including a first host material, a second host material, at least one auxiliary material and at least one doping material;
  • the first body material and the second body material form a first composite transmission material; the auxiliary material and the second body material form a second composite transmission material;
  • the first body material, the second body material, the first composite transmission material, the second composite transmission material and the doping material satisfy,
  • S1(A) is the lowest singlet energy of the first host material or the second host material
  • S1(CH) is the lowest singlet energy of the first composite transmission material or the second composite transmission material
  • Heavy state energy is the lowest singlet energy of the doped material
  • T1(A) is the lowest triplet energy of the first host material or the second host material
  • T1(CH) is the lowest triplet energy of the first composite transmission material or the second composite transmission material
  • T1(C) is the lowest triplet energy of the doped material.
  • the first body material, the second body material, the first composite transmission material, the second composite transmission material and the auxiliary material satisfy,
  • S1(CH1) is the lowest singlet energy of the first composite transmission material
  • S1(CH2) is the lowest singlet energy of the second composite transmission material
  • S1(B) is the lowest triplet energy of the auxiliary material
  • T1(B) is the lowest triplet energy of the auxiliary material
  • T1(CH1) is the lowest triplet energy of the first composite transmission material
  • T1(CH2) is the lowest triplet energy of the second composite transmission material
  • the first body material, the second body material and the auxiliary material satisfy,
  • HOMO(A1) is the highest occupied molecular orbital HOMO energy level of the first host material
  • LUMO(A1) is the lowest unoccupied molecular orbital LUMO energy level of the first host material
  • HOMO (A2) is the highest occupied molecular orbital HOMO energy level of the second host material
  • LUMO (A2) is the lowest unoccupied molecular orbital LUMO energy level of the second host material
  • HOMO(B) is the highest occupied molecular orbital HOMO energy level of the auxiliary material
  • LUMO(B) is the lowest unoccupied molecular orbital LUMO energy level of the auxiliary material.
  • the first body material, the second body material and the auxiliary material satisfy,
  • the first host material and the auxiliary material are hole-type materials, and the second host material is an electron-type material;
  • the hole mobility of the first host material is higher than the hole mobility of the auxiliary material.
  • the difference between the hole mobility and the electron mobility of the auxiliary material does not exceed two orders of magnitude.
  • the first composite transmission material and the second composite transmission material satisfy,
  • ⁇ E ST (CH) is the energy level difference between the lowest singlet energy of the first composite transmission material and the lowest triplet energy of the first composite transmission material, or is the energy level of the second composite transmission material. The difference between the energy levels of the lowest singlet energy and the lowest triplet energy of the second composite transmission material.
  • the auxiliary material is a delayed fluorescent material, and the auxiliary material satisfies
  • ⁇ E ST (B) is the difference between the energy levels of the lowest singlet energy of the auxiliary material and the lowest triplet energy of the auxiliary material.
  • the emission spectrum of the second composite transmission material overlaps with the absorption spectrum of the doping material, and the overlapping area is the sum of the area of the emission spectrum of the second composite material.
  • the ratio is a, a ⁇ 30%;
  • the emission spectrum of the auxiliary material overlaps with the absorption spectrum of the doping material, and the ratio of the overlap area to the area of the emission spectrum of the auxiliary material is b, b ⁇ 30%.
  • the at least one auxiliary material includes a first auxiliary material and a second auxiliary material
  • the second composite transmission material includes a first sub-composite transmission material and a second sub-composite transmission material
  • the first auxiliary material and the second body material form the first sub-composite transmission material, and the second auxiliary material and the second body material form the second sub-composite transmission material;
  • the second auxiliary material and second sub-composite transmission material satisfy,
  • S1(B2) is the lowest triplet energy of the second auxiliary material
  • T1(B2) is the lowest triplet energy of the second auxiliary material
  • S1(CH22) is the lowest triplet energy of the second sub-composite transmission material
  • T1(CH22) is the lowest triplet energy of the second sub-composite transmission material
  • the first composite transmission material, the first auxiliary material, the second auxiliary material, the first sub-composite transmission material and the second sub-composite transmission material is satisfactory
  • S1(CH1) is the lowest singlet energy of the first composite transmission material
  • S1(CH2) is the lowest singlet energy of the second composite transmission material
  • S1(B1) is the lowest triplet energy of the second auxiliary material
  • T1(B1) is the lowest triplet energy of the second auxiliary material
  • S1(CH21) is the lowest triplet energy of the first sub-composite transmission material
  • T1(CH21) is the lowest triplet energy of the first sub-composite transmission material
  • the first auxiliary material and the second auxiliary material satisfy,
  • HOMO(B1) is the highest occupied molecular orbital HOMO energy level of the first auxiliary material
  • HOMO(B2) is the highest occupied molecular orbital HOMO energy level of the second auxiliary material.
  • the doping material is selected from fluorescent materials containing boron and nitrogen elements.
  • the first host material is selected from the group consisting of hollow materials containing one or more of a carbazole group, a spirofluorene group, a biphenyl group, and an acridine group. Cavity material.
  • the second host material is selected from the group consisting of one or more groups including a cyano group, a pyridine group, a pyrimidine group, a triazine group, and a phosphorus oxygen group. electronic materials.
  • the auxiliary material is selected from materials containing electron-donating groups and electron-withdrawing groups, and the electron-donating groups are selected from carbazole groups, phenoxazine groups, One or more of an acridine group, a fluorene group, a dibenzothiophene group, and a dibenzofuran group, and the electron-withdrawing group is selected from a cyano group, a triazine group, and a phosphorus oxygen group. one or more of the groups.
  • the organic light-emitting device further includes a cathode and an anode, and the light-emitting layer is provided between the anode and the cathode;
  • the luminescent layer includes a first luminescent layer and a second luminescent layer, and the second luminescent layer is located on a side of the first luminescent layer away from the anode;
  • the first luminescent layer includes the first host material, and the second luminescent layer includes the second host material;
  • At least one of the first luminescent layer and the second luminescent layer contains the auxiliary material
  • At least one of the first light emitting layer and the second light emitting layer includes the doping material.
  • the organic light-emitting device further includes a cathode and an anode, and the light-emitting layer is provided between the anode and the cathode;
  • the luminescent layer includes a first luminescent layer and a second luminescent layer, and the second luminescent layer is located on a side of the first luminescent layer away from the anode;
  • the first luminescent layer includes the first host material and the first auxiliary material
  • the second luminescent layer includes the second host material and the second auxiliary material
  • At least one of the first light emitting layer and the second light emitting layer includes the doping material.
  • a display device including the organic light-emitting device as described in the first aspect.
  • the first host material and the second host material form a first composite transmission material
  • the auxiliary material and the second host material form a second composite transmission material
  • both the first composite transmission material and the second composite transmission material Helps disperse excitons, suppresses the non-radiative transition of triplet excitons, reduces the degradation of materials caused by triplet quenching, improves material stability, and transfers Forster energy to doped materials for radiation Transition luminescence effectively suppresses Dexter energy transfer, reduces energy loss, and thereby improves device efficiency.
  • Figure 1 is a schematic structural diagram of an organic light-emitting device in an exemplary embodiment of the present disclosure
  • Figure 2 is a schematic diagram of the structure of the light-emitting layer in an exemplary embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the structure of the light-emitting layer in another exemplary embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of another structure of the light-emitting layer in another exemplary embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of the energy transmission structure in an exemplary embodiment of the present disclosure.
  • Figure 6 is an emission absorption spectrum diagram of A1-2 and A2-7 in an exemplary embodiment of the present disclosure
  • Figure 7 is an emission absorption spectrum diagram of B-3 and A2-7 in an exemplary embodiment of the present disclosure
  • Figure 8 is an emission spectrum diagram of B-5 and A2-7 in an exemplary embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided to provide a thorough understanding of embodiments of the present disclosure.
  • a structure When a structure is "on" another structure, it may mean that the structure is integrally formed on the other structure, or that the structure is “directly” placed on the other structure, or that the structure is “indirectly” placed on the other structure through another structure. on other structures.
  • TADF material is the third generation of organic light-emitting materials developed after organic fluorescent materials and organic phosphorescent materials. It has developed rapidly in recent years and is an organic light-emitting diode technology with good application potential.
  • TADF materials have a small singlet-triplet energy level difference ( ⁇ EST), and triplet excitons can be converted into singlet excitons to emit light through reverse intersystem crossing (RISC), using electrical excitation.
  • RISC reverse intersystem crossing
  • the internal quantum efficiency of the device can reach 100% due to the singlet excitons and triplet excitons formed under the conditions.
  • the material structure is controllable, the properties are stable, the price is cheap and no precious metals are needed, and it has good application prospects.
  • TADF materials can theoretically achieve 100% exciton utilization, existing single-layer or double-layer luminescent layer structures have problems such as severe non-radiative attenuation and triplet exciton annihilation.
  • an organic light-emitting device including a luminescent layer 500 .
  • the luminescent layer 500 includes a first host material, a second host material, at least one auxiliary material and at least one doped material. Miscellaneous materials; the first body material and the second body material form the first composite transmission material; the auxiliary material and the second body material form the second composite transmission material; the first body material, the second body material, the first composite transmission material, the third Two composite transmission materials and doping materials satisfy,
  • S1(A) is the lowest singlet energy of the first host material or the second host material
  • S1(CH) is the lowest singlet energy of the first composite transmission material or the second composite transmission material
  • S1(C) is the lowest singlet energy of the doped material
  • T1(A) is the lowest triplet energy of the first host material or the second host material
  • T1(CH) is the lowest triplet energy of the first composite transmission material or the second composite transmission material.
  • State energy, T1(C) is the lowest triplet energy of the doped material.
  • the first host material and the second host material form a first composite transmission material
  • the auxiliary material and the second host material form a second composite transmission material
  • both the first composite transmission material and the second composite transmission material Helps disperse excitons, suppresses the non-radiative transition of triplet excitons, reduces the degradation of materials caused by triplet quenching, improves material stability, and transfers Forster energy to doped materials for radiation Transition luminescence effectively suppresses Dexter energy transfer, reduces energy loss, and thereby improves device efficiency.
  • the organic light-emitting device includes an anode 100 , a cathode 900 and a luminescent layer 600 .
  • the luminescent layer 500 is disposed between the anode 100 and the cathode 900 .
  • the light-emitting layer 500 includes a first host material, a second host material, at least one auxiliary material and at least one doping material.
  • the organic light-emitting device further includes a hole injection layer (HIL) 200, a hole transport layer (HTL) 300, a first exciton blocking layer (EBL) 400, a second exciton blocking layer (HBL) )600, electron transport layer (ETL) 700 and electron injection layer (EIL) 800.
  • the hole injection layer 200 (HIL), the hole transport layer (HTL) 300 and the first exciton blocking layer (EBL) 400 are located between the anode 100 and the light emitting layer 500.
  • the second exciton blocking layer (HBL) 600, electron A transport layer (ETL) 700 and an electron injection layer (EIL) 800 are located between the light emitting layer 500 and the cathode 900 .
  • the hole injection layer 200 is used to lower the barrier for holes injected from the anode, so that holes can be effectively injected from the anode 100 into the light-emitting layer 500, thereby improving hole injection efficiency.
  • the hole transport layer 300 is used to achieve directional and orderly controllable migration of injected holes.
  • the first exciton blocking layer 400 is used to form a migration barrier for electrons or excitons, and prevent electrons or excitons from migrating out of the light-emitting layer 500 .
  • the light-emitting layer 500 is used to recombine electrons and holes to form excitons to emit light.
  • the second exciton blocking layer 600 is used to form a migration barrier for holes or excitons, and prevent holes or excitons from migrating out of the light-emitting layer 500 .
  • the electron transport layer 700 is used to achieve directional and orderly controllable migration of injected electrons.
  • the electron injection layer 800 is used to lower the potential barrier for electron injection from the cathode, so that electrons can be effectively injected from the cathode 900 into the light-emitting layer 500 .
  • the anode 100 may employ a material with a high work function.
  • the anode 100 can be made of transparent oxide material, such as indium tin oxide (ITO) or indium zinc oxide (IZO), and the thickness of the anode can be about 80 nm to 200 nm.
  • the anode 100 can adopt a composite structure of metal and transparent oxide, such as Ag/ITO or Ag/IZO.
  • the thickness of the metal layer in the anode 100 can be about 80nm to 100nm, and the thickness of the transparent oxide in the anode 100 The thickness may be about 5 nm to 20 nm, so that the average reflectivity of the anode 100 in the visible light region is about 85% to 95%.
  • the cathode 900 can be formed from a metal material through an evaporation process.
  • the metal material can be magnesium (Mg), silver (Ag) or aluminum (Al), or an alloy material.
  • Mg:Ag alloy the Mg:Ag ratio is about 3:7 to 1:9
  • the thickness of the cathode 900 can be about 10nm to 20nm, so that the average transmittance of the cathode 900 at the wavelength of 530nm is about 50% to 60 %.
  • the cathode 900 can be made of magnesium (Mg), silver (Ag), aluminum (Al) or an Mg:Ag alloy.
  • the thickness of the cathode 900 can be about greater than 80 nm, so that the cathode 900 has good reflectivity.
  • the hole injection layer 200 may adopt a single material, such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis(pentafluorophenyl)borate and/or dipyrazine.
  • [2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN), CuPc and other materials, or doped materials can be used , if the hole transport material is p-type doped, the p-doping ratio is about 0.5% to 10%, such as N,N'-bis(naphthyl-1-yl)-N,N'-diphenyl-biphenyl Aniline (NPB): 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone (F4-TCNQ), 4,4'-cyclohexylidenebis[ N,N-bis(4-methylphenyl)aniline] (TAPC): MnO 3 , etc.
  • the thickness of the hole injection layer 200 may be approximately 5 nm to 20 nm.
  • the hole transport layer 300 can be formed through an evaporation process using materials with high hole mobility, such as carbazole, methylfluorene, spirofluene, dibenzothiophene or furan.
  • the thickness of the hole transport layer 300 may be approximately 100 nm to 140 nm.
  • the first exciton blocking layer 400 may have a thickness of approximately 1 nm to 10 nm and is configured to transmit holes, block electrons, and block excitons generated within the light emitting layer.
  • the second exciton blocking layer 600 has a thickness of approximately 2 nm to 10 nm and is configured to block holes and block excitons generated within the light emitting layer.
  • the electron transport layer 700 can be prepared by blending thiophene, imidazole or azine derivatives with lithium quinolate.
  • the proportion of lithium quinolate is about 30% to 70%.
  • the thickness of the electron transport layer 700 may be approximately 20 nm to 70 nm.
  • the electron injection layer 800 can be formed through an evaporation process using materials such as lithium fluoride (LiF), lithium 8-hydroxyquinolate (LiQ), ytterbium (Yb), or calcium (Ca).
  • the thickness of layer 800 may be approximately 0.5 nm to 2 nm.
  • the light emitting layer 600 includes a first host material, a first host material, at least one auxiliary material and at least one doping material.
  • the first host material and the second host material form a first composite transmission material
  • the auxiliary material and the second host material form a second composite transmission material
  • the first composite transmission material, the second composite transmission material and the auxiliary material can be used to disperse excitons or Transfer exciton energy to the doped material to cause the doped material to emit light.
  • the first host material, the second host material, the first composite transmission material, the second composite transmission material and the doping material satisfy,
  • S1(A) is the lowest singlet energy of the first host material or the second host material
  • S1(CH) is the lowest singlet energy of the first composite transmission material or the second composite transmission material
  • S1(C) is the lowest singlet energy of the doped material
  • T1(A) is the lowest triplet energy of the first host material or the second host material
  • T1(CH) is the lowest triplet energy of the first composite transmission material or the second composite transmission material
  • T1(C) is the doping material the lowest triplet energy.
  • the first composite transmission material, the second composite transmission material and the auxiliary material all have the opportunity to generate excitons, thereby dispersing the excitons to avoid excessive concentration of excitons on a specific material, thereby reducing the risk of excitons due to excitons. If the concentration of ions is too high at a certain location, the triplet exciton will be quenched, thereby improving the luminous efficiency of the device.
  • the lowest singlet energy and the lowest triplet energy of the first composite transmission material and the second composite transmission material are lower than the lowest singlet energy and the lowest triplet energy of the first host material and the second host material, and are higher Due to the lowest singlet state energy and the lowest triplet state energy of the doping material, the exciton energy can be transferred to the doping material through various channels, causing radiative transition and emitting light, thereby improving device efficiency.
  • the first body material, the second body material, the first composite transmission material, the second composite transmission material and the auxiliary material satisfy,
  • S1(CH1) is the lowest singlet state energy of the first composite transmission material
  • S1(CH2) is the lowest singlet state energy of the second composite transmission material
  • S1(B) is the lowest triplet energy of the auxiliary material
  • T1(B) is the lowest triplet energy of the auxiliary material
  • T1(CH1) is the lowest triplet energy of the first composite transmission material
  • T1(CH2) is the lowest triplet energy of the second composite transmission material
  • the exciton energy can be transferred to the doped material through multi-stage transfer or multiple pathways.
  • the exciton energy can be transferred to the auxiliary material through the first composite transmission material, and the auxiliary material can be used as a material to transfer the exciton energy to the second composite transmission material, and then transfer it to the doped material. or to the second composite transmission material via the first composite transmission material, and then to the doping material; or directly to the doping material via the first composite transmission material.
  • Transmission through multiple channels not only achieves the separation of the exciton recombination center and the luminescence center, but also disperses the exciton energy within the entire device, reduces triplet quenching and the degradation of the material caused by triplet quenching, and improves the stability of the material. and device efficiency.
  • the lowest singlet energy or the lowest triplet energy of the host material is relatively high, thereby confining the excitons in the composite transmission material or auxiliary material, reducing the backflow of excitons and avoiding a decrease in luminous efficiency.
  • ⁇ peak(CH1) is the wavelength of the strongest emission peak of the first composite transmission material
  • ⁇ peak(CH2) is the wavelength of the strongest emission peak of the second composite transmission material
  • ⁇ peak(B) is the strongest emission peak of the auxiliary material. wavelength.
  • the first body material, the second body material and the auxiliary material satisfy,
  • HOMO(A1) is the highest occupied molecular orbital HOMO energy level of the first host material
  • LUMO(A1) is the lowest unoccupied molecular orbital LUMO energy level of the first host material
  • HOMO(A2) is the highest occupied molecular orbital LUMO energy level of the second host material.
  • HOMO energy level of occupied molecular orbitals LUMO(A2) is the lowest unoccupied molecular orbital LUMO energy level of the second host material
  • HOMO(B) is the highest occupied molecular orbital HOMO energy level of the auxiliary material
  • LUMO(B) is the LUMO energy level of the auxiliary material The lowest unoccupied molecular orbital LUMO energy level.
  • materials that meet the above energy level range help the first host material and the second host material form the first composite transmission material, and the auxiliary material and the second host material form the second composite transmission material.
  • the first host material and the auxiliary material are hole-type materials
  • the second host material is an electron-type material.
  • the hole mobility of the first host material is higher than the hole mobility of the auxiliary material to ensure the concentration of holes in the light-emitting layer.
  • the difference between the hole mobility and the electron mobility of the auxiliary material does not exceed two orders of magnitude.
  • the difference between the hole mobility and the electron mobility can be m, m ⁇ 10 1 , or m ⁇ 10 2 , where m can be greater than 0 and less than 10 any value.
  • the first host material is selected from hole-type materials containing one or more groups among carbazole groups, spirofluene groups, biphenyl groups, and acridine groups.
  • the carbazole group can be composed of carbazole The carbazolyl group formed by losing one hydrogen atom, or the carbazolylidene group formed by losing two hydrogen atoms, or the connecting group formed by losing more hydrogen atoms, which is not limited in this disclosure;
  • the spirofluorene group may be composed of spirofluorene A spirofluorenyl group formed by losing one hydrogen atom, or a spirofluorenylidene group formed by losing two hydrogen atoms, or a connecting group formed by losing more hydrogen atoms, which are not specifically limited by this disclosure;
  • the biphenyl group can be composed of biphenyl A biphenyl group formed by losing one hydrogen atom, or a biphenylene group formed by losing two hydrogen atoms, or a connecting group formed by losing more hydrogen atoms, which are not specifically limited by this disclosure;
  • the acridine group can be composed of acridine
  • An acridinyl group formed by losing one hydrogen atom, an acridinylene group formed by losing two hydrogen atoms, or a connecting group formed by losing more hydrogen atoms, are not specifically limited in this disclosure.
  • the first host material may also be a hole-type material containing other groups, and the groups contained therein are not specifically limited in this disclosure.
  • the first host material is selected from the group consisting of:
  • the second host is selected from electronic materials containing one or more of a cyano group, a pyridine group, a pyrimidine group, a triazine group, and a phosphorus oxygen group.
  • the cyano group may be cyano (-CN);
  • the pyridine group can be composed of pyridine A pyridinyl group formed by losing one hydrogen atom, a pyridylene group formed by losing two hydrogen atoms, or a connecting group formed by losing more hydrogen atoms, which are not specifically limited by this disclosure;
  • Pyrimidine can be composed of pyrimidine A pyrimidinyl group formed by losing one hydrogen atom, a pyrimidinyl group formed by losing two hydrogen atoms, or a connecting group formed by losing more hydrogen atoms, which are not specifically limited by this disclosure;
  • Triazine groups can be composed of triazine A triazinyl group formed by losing one hydrogen atom, a triazinylidene group formed by losing two hydrogen atoms, or a connecting group formed by losing more hydrogen atoms are not specifically limited in this disclosure.
  • the second host material may also be an electronic material containing other groups, and the groups contained therein are not specifically limited in this disclosure.
  • the second body material is selected from the group consisting of the following structures:
  • the first composite transmission material and the second composite transmission material satisfy,
  • ⁇ E ST (CH) is the energy level difference between the lowest singlet energy of the first composite transmission material and the lowest triplet energy of the first composite transmission material, or is the energy level difference between the lowest singlet energy of the second composite transmission material and The difference between the energy levels of the lowest triplet energy of the second composite transmission material.
  • ⁇ E ST (CH) ⁇ 0.2 eV.
  • the auxiliary material is a delayed fluorescent material, and the auxiliary material satisfies
  • ⁇ E ST (B) is the energy level difference between the lowest singlet energy of the auxiliary material and the lowest triplet energy of the auxiliary material.
  • ⁇ E ST (B) ⁇ 0.15 eV.
  • the excitons formed when the ground state is excited are divided into two categories, one is singlet excitons, and the other is triplet excitons. According to the spin statistical rules, singlet excitons and triplet excitons The ratio of state excitons produced is 25%:75%.
  • the energy range difference between the first composite transmission material and the second composite transmission material is small, and they have certain thermally activated delayed fluorescence (TADF) performance.
  • TADF thermally activated delayed fluorescence
  • Part of the triplet energy can be returned to the singlet energy through reverse intersystem jump (RISC), and then transferred to the doped material through Foster Resonance Energy Transfer (FET).
  • RISC reverse intersystem jump
  • FET Foster Resonance Energy Transfer
  • the first composite transmission material can also be transferred to the first auxiliary material or the second composite transmission material.
  • the auxiliary material is a delayed fluorescent material, and its triplet energy can also return to the singlet energy through the reverse intersystem crossing process, and then transfer the energy to the second composite transmission material or doping material.
  • the reverse intersystem jump process can transfer almost all the energy through the singlet state to the next-level energy transfer material or doped material via the Ford energy.
  • the doped material can simultaneously utilize the singlet exciton and the triplet state. An exciton that transitions to its own singlet state emits light. During the entire luminescence process, the Dexter energy transfer between triplet states is largely suppressed, reducing energy loss and improving device performance.
  • the emission spectrum of the second composite transmission material overlaps with the absorption spectrum of the doping material, and the ratio of the overlap area to the area of the emission spectrum of the second composite material is a, a ⁇ 30%; preferably Land, a ⁇ 50%, such as 60% or 70%, etc.
  • the emission spectrum of the auxiliary material overlaps with the absorption spectrum of the doping material, and the ratio of the overlap area to the area of the emission spectrum of the auxiliary material is b, b ⁇ 30%, preferably, b ⁇ 50%, Such as 60% or 70% etc.
  • the emission spectrum of the first composite transmission material overlaps with the absorption spectrum of the doping material, and the ratio of the overlap area to the area of the emission spectrum of the first composite material is c, c ⁇ 20%;
  • c ⁇ b ⁇ a is used to prevent exciton backflow and ensure the step-by-step transfer of energy.
  • the present disclosure can improve the efficiency by setting the overlapping area of the emission spectrum of the second composite transmission material or auxiliary material and the absorption spectrum of the doping material to be greater than or equal to 30%, preferably 50%, of the emission spectrum of the second composite transmission material or auxiliary material. Improve the luminous efficiency of the device and improve the life of the device.
  • the light-emitting layer includes two auxiliary materials, that is, at least one auxiliary material includes a first auxiliary material and a second auxiliary material;
  • the second composite transmission material includes a first sub-composite transmission material and a second sub-composite transmission material
  • the first auxiliary material and the second body material form a first sub-composite transmission material, and the second auxiliary material and the second body material form a second sub-composite transmission material;
  • the second auxiliary material and the second sub-composite transmission material satisfy,
  • S1(B2) is the lowest triplet energy of the second auxiliary material
  • T1(B2) is the lowest triplet energy of the second auxiliary material
  • S1(CH22) is the lowest triplet state energy of the second sub-composite transmission material
  • T1(CH22) is the lowest triplet state energy of the second sub-composite transmission material
  • exciton energy can be transmitted to the doped material through more channels, which can further disperse the exciton energy transfer to a certain extent and alleviate the degradation of the material.
  • the first composite transmission material, the first auxiliary material, the second auxiliary material, the first sub-composite transmission material and the second sub-composite transmission material satisfy,
  • S1(CH1) is the lowest singlet state energy of the first composite transmission material
  • S1(CH2) is the lowest singlet state energy of the second composite transmission material
  • S1(B1) is the lowest triplet energy of the second auxiliary material
  • T1(B1) is the lowest triplet energy of the second auxiliary material
  • S1(CH21) is the lowest triplet state energy of the first sub-composite transmission material
  • T1(CH21) is the lowest triplet state energy of the first sub-composite transmission material
  • ⁇ peak(B2) is the wavelength of the strongest emission peak of the second auxiliary material
  • ⁇ peak(CH22) is the wavelength of the strongest emission peak of the second sub-composite transmission material
  • the first auxiliary material and the second auxiliary material satisfy,
  • HOMO(B1) is the highest occupied molecular orbital HOMO energy level of the first auxiliary material
  • HOMO(B2) is the highest occupied molecular orbital HOMO energy level of the second auxiliary material.
  • the auxiliary materials are selected from materials containing electron-donating groups and electron-withdrawing groups, and the electron-donating groups are selected from carbazole groups, phenoxazine groups, acridine groups, and fluorene groups.
  • the electron-donating groups are selected from carbazole groups, phenoxazine groups, acridine groups, and fluorene groups.
  • the electron-withdrawing group is selected from one or more of cyano groups, triazine groups, and phosphorus oxygen groups.
  • the phenoxazine group is composed of phenoxazine
  • the phenoxazinyl group formed by losing one hydrogen atom, the phenoxylidene group formed by losing two hydrogen atoms, or the connecting group formed by losing more hydrogen atoms, are not specifically limited in this disclosure.
  • the dibenzothiophene group is composed of the dibenzothiophene group A dibenzothiophenyl group formed by losing one hydrogen atom, a dibenzothiophenylene group formed by losing two hydrogen atoms, or a connecting group formed by losing more hydrogen atoms are not specifically limited in this disclosure.
  • the dibenzofuran group is composed of dibenzofuran A dibenzofuranyl group formed by losing one hydrogen atom, a dibenzofurylene group formed by losing two hydrogen atoms, or a connecting group formed by losing more hydrogen atoms, are not specifically limited in this disclosure.
  • the auxiliary material is selected from the group consisting of the following structures:
  • the light-emitting layer includes two doping materials, that is, at least one doping material includes a first doping material and a second doping material.
  • the doping material is selected from fluorescent materials containing boron and nitrogen.
  • the fluorescence quantum yield PLQY of the doped material is >80%, and the doping ratio in the light-emitting layer is no more than 2%, and preferably the doping ratio is less than 1%.
  • the doping ratio refers to the proportion of the doping material to the total of the host material, auxiliary materials and doping materials.
  • the doping material contains at least one nitrogen atom, and boron is three-coordinated or four-coordinated.
  • the doping material is selected from the group consisting of:
  • the luminescent layer 500 includes a first luminescent layer 510 and a second luminescent layer 520 .
  • the second luminescent layer 520 is disposed on a side of the first luminescent layer 510 away from the anode 100 . side; the first light-emitting layer 510 includes a first host material, and the second light-emitting layer 520 includes a second host material; at least one of the first light-emitting layer 510 and the second light-emitting layer 520 includes an auxiliary material; the first light-emitting layer 510 and the second light-emitting layer 520 include an auxiliary material. At least one of the two light-emitting layers 520 includes doping material.
  • the luminescent layer 500 includes a first luminescent layer 510 and a second luminescent layer 520.
  • the second luminescent layer 520 is provided on a side of the first luminescent layer 510 away from the anode 100;
  • the first luminescent layer 510 includes The first host material and the first auxiliary material,
  • the second light-emitting layer 520 includes the second host material and the second auxiliary material; at least one of the first light-emitting layer 510 and the second light-emitting layer 520 includes a doping material.
  • the present disclosure also provides a display device, including the aforementioned organic light-emitting device.
  • the display device can be: a mobile phone, a tablet computer, a television, a monitor, a laptop, a digital photo frame or a navigator, or any other product or component with a display function.
  • the organic light-emitting device provided by the present disclosure will be described in detail below in conjunction with specific test data and so on.
  • An anode is formed on a glass substrate.
  • the anode may include an indium tin oxide film layer.
  • the anode can be deposited by vacuum evaporation. Then, a hole injection layer is formed on the anode by evaporation, a hole transport layer is formed on the hole injection layer, and a first exciton blocking layer is formed on the hole transport layer.
  • the first luminescent layer was formed by co-evaporating A1-2:B-3 (70%:30%), and A2-7:B-3:C-5 (64%:35%:1%) was co-evaporated. forming a second luminescent layer;
  • the cathode may include silver.
  • the other aspects of the luminescent layer are the same as those in Example 3.
  • A1-2:B-3:C-5 (59%:40%:1%) was co-evaporated to form a luminescent layer, and the rest was the same as in Example 3.
  • A2-7:B-3:C-5 (59%:40%:1%) was co-evaporated to form a luminescent layer, and the rest was the same as in Example 3.
  • A1-2:B-3 (70%:30%) was co-evaporated to form the first luminescent layer, and A1-2:B-5:C-5 (59%:40%:1%) was co-evaporated to form the second luminescent layer.
  • the other aspects of the luminescent layer are the same as those in Example 3.
  • Examples 3 and 4 compared with Comparative Examples 1 to 3, the efficiency and lifespan are improved.
  • the reason may be that in Examples 3 and 4, A1-2 and A2-7 form The first composite transmission material, B-3 and A2-7 form the second composite transmission material.
  • the composite transmission materials formed have the opportunity to form excitons and transfer exciton energy, which greatly suppresses the non-linearity of triplet excitons. Radiative transition reduces the degradation of materials caused by triplet quenching, improves material stability, and transfers Forster energy to the next energy transmission channel, or transfers to doped materials to perform radiative transition and emit light, reducing energy loss and thereby improving device efficiency.
  • Example 4 Compared with Example 3, the lifespan of Example 4 is further improved because the second sub-composite transmission material formed by A2-7 and B-5 is additionally added, which causes the overall exciton energy in the device to be relatively dispersed, which alleviates the material problem to a certain extent. of deterioration.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

提供一种有机发光器件和显示装置。有机发光器件包括发光层(500),包括第一主体材料、第二主体材料、至少一种辅助材料和至少一种掺杂材料;第一主体材料与第二主体材料形成第一复合传输材料;辅助材料与第二主体材料形成第二复合传输材料;S1(A)>S1(CH)>S1(C);T1(A)>T1(CH)>T1(C);S1(A)为主体材料的最低单重态能量,S1(CH)为复合传输材料的最低单重态能量,S1(C)为掺杂材料的最低单重态能量;T1(A)为主体材料的最低三重态能量,T1(CH)为复合传输材料的最低三重态能量,T1(C)为掺杂材料的最低三重态能量。有助于抑制德克斯特能量转移,减少能量损失,进而提升器件效率。

Description

有机发光器件、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种有机发光器件和显示装置。
背景技术
有机电致发光器件(Organic Light Emitting Device,简称OLED)为主动发光器件,具有发光、超薄、广视角、高亮度、高对比度、较低耗电、极高反应速度等优点,已逐渐成为极具发展前景的下一代显示技术。一种OLED包括阳极、阴极以及设置在阳极和阴极之间的有机发光层,其发光原理是将空穴、电子分别由阳极、阴极注入至发光层,当电子和空穴在发光层中相遇时,电子和空穴在发光层复合从而产生激子(exciton),在从激发态转变为基态的同时,这些激子发光。
目前,OLED通常采用磷光材料作为发光材料。由于磷光材料中含有贵重金属原子,材料成本高,且存在污染风险,因而不利于实现低成本的显示应用。相关技术提出了使用具有热活化延迟荧光(Thermal active delay fluorescent,简称TADF)特性的纯有机发光材料的方案,但相关结构存在三重态激子湮灭等问题。
所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种有机发光器件和显示装置,有效抑制德氏(Dexter)能量转移,减少能量损失,进而提升器件效率。
为实现上述发明目的,本公开采用如下技术方案:
根据本公开的第一个方面,提供一种有机发光器件,包括发光层,所述发光层包括第一主体材料、第二主体材料、至少一种辅助材料和至少一种掺杂材料;
所述第一主体材料与所述第二主体材料形成第一复合传输材料;所 述辅助材料与所述第二主体材料形成第二复合传输材料;
所述第一主体材料、所述第二主体材料、所述第一复合传输材料、所述第二复合传输材料和所述掺杂材料满足,
S1(A)>S1(CH)>S1(C);
T1(A)>T1(CH)>T1(C);
其中,S1(A)为所述第一主体材料或所述第二主体材料的最低单重态能量,S1(CH)为所述第一复合传输材料或所述第二复合传输材料的最低单重态能量,S1(C)为所述掺杂材料的最低单重态能量;
T1(A)为所述第一主体材料或所述第二主体材料的最低三重态能量,T1(CH)为所述第一复合传输材料或所述第二复合传输材料的最低三重态能量,T1(C)为所述掺杂材料的最低三重态能量。
在本公开的一种示例性实施例中,所述第一主体材料、所述第二主体材料、第一复合传输材料、第二复合传输材料和所述辅助材料满足,
S1(A)>S1(CH1)>S1(CH2),S1(A)>S1(B)>S1(CH2);
T1(A)>T1(CH1)>T1(CH2),T1(A)>T1(B)>T1(CH2);
其中,S1(CH1)为所述第一复合传输材料的最低单重态能量;S1(CH2)为所述第二复合传输材料的最低单重态能量;
S1(B)为所述辅助材料的最低三重态能量;T1(B)为所述辅助材料的最低三重态能量;
T1(CH1)为所述第一复合传输材料的最低三重态能量;T1(CH2)为所述第二复合传输材料的最低三重态能量。
在本公开的一种示例性实施例中,所述第一主体材料、所述第二主体材料和所述辅助材料满足,
|HOMO(A2)-LUMO(A1)|≥3.5eV,|HOMO(A1)-LUMO(A2)|≤3eV,|HOMO(B)-LUMO(A2)|≥2.3eV;
其中,HOMO(A1)为所述第一主体材料的最高占据分子轨道HOMO能级,LUMO(A1)为所述第一主体材料的最低未占据分子轨道LUMO能级;
HOMO(A2)为所述第二主体材料的最高占据分子轨道HOMO能级,LUMO(A2)为所述第二主体材料的最低未占据分子轨道LUMO能级;
HOMO(B)为所述辅助材料的最高占据分子轨道HOMO能级, LUMO(B)为所述辅助材料的最低未占据分子轨道LUMO能级。
在本公开的一种示例性实施例中,所述第一主体材料、所述第二主体材料和所述辅助材料满足,
|HOMO(A1)|>|HOMO(B)|≥5.6eV;
|LUMO(B)|>|LUMO(A2)|≥1eV。
在本公开的一种示例性实施例中,所述第一主体材料和所述辅助材料为空穴型材料,所述第二主体材料为电子型材料;
所述第一主体材料的空穴迁移率高于所述辅助材料的空穴迁移率。
在本公开的一种示例性实施例中,所述辅助材料的空穴迁移率和电子迁移率的差值不超过两个数量级
在本公开的一种示例性实施例中,所述第一复合传输材料、所述第二复合传输材料满足,
ΔE ST(CH)≤0.3eV;
其中,ΔE ST(CH)为所述第一复合传输材料的最低单重态能量与所述第一复合传输材料的最低三重态能量的能级之差,或为所述第二复合传输材料的最低单重态能量与所述第二复合传输材料的最低三重态能量的能级之差。
在本公开的一种示例性实施例中,所述辅助材料为延迟荧光材料,所述辅助材料满足,
ΔE ST(B)≤0.3eV;
其中,ΔE ST(B)为所述辅助材料的最低单重态能量与所述辅助材料的最低三重态能量的能级之差。
在本公开的一种示例性实施例中,所述第二复合传输材料的发射光谱与所述掺杂材料的吸收光谱具有重叠,该重叠面积与所述第二复合材料的发射光谱的面积之比为a,a≥30%;
所述辅助材料的发射光谱与所述掺杂材料的吸收光谱具有重叠,该重叠面积与所述辅助材料的发射光谱的面积之比为b,b≥30%。
在本公开的一种示例性实施例中,所述至少一种辅助材料包括第一辅助材料和第二辅助材料;
第二复合传输材料包括第一子复合传输材料和第二子复合传输材料;
所述第一辅助材料和所述第二主体材料形成所述第一子复合传输材料,所述第二辅助材料和所述第二主体材料形成所述第二子复合传输材料;
所述第二辅助材料、第二子复合传输材料满足,
S1(B2)>S1(CH22);
T1(B2)>T1(CH22);
其中,S1(B2)为所述第二辅助材料的最低三重态能量;T1(B2)为所述第二辅助材料的最低三重态能量;
S1(CH22)为所述第二子复合传输材料的最低三重态能量;T1(CH22)为所述第二子复合传输材料的最低三重态能量。
在本公开的一种示例性实施例中,所述第一复合传输材料、所述第一辅助材料、所述第二辅助材料、所述第一子复合传输材料和所述第二子复合传输材料满足,
S1(CH1)>S1(B2)>S1(B1)>S1(CH21)>S1(CH22);
T1(CH1)>T1(B2)>T1(B1)>T1(CH21)>T1(CH22);
其中,S1(CH1)为所述第一复合传输材料的最低单重态能量;S1(CH2)为所述第二复合传输材料的最低单重态能量;
S1(B1)为所述第二辅助材料的最低三重态能量;T1(B1)为所述第二辅助材料的最低三重态能量;
S1(CH21)为所述第一子复合传输材料的最低三重态能量;T1(CH21)为所述第一子复合传输材料的最低三重态能量。
在本公开的一种示例性实施例中,所述第一辅助材料和所述第二辅助材料满足,
|HOMO(B2)|-|HOMO(B1)|≤0.5eV;
其中,HOMO(B1)为所述第一辅助材料的最高占据分子轨道HOMO能级,HOMO(B2)为所述第二辅助材料的最高占据分子轨道HOMO能级。
在本公开的一种示例性实施例中,所述掺杂材料选自含硼元素和氮元素的荧光材料。
在本公开的一种示例性实施例中,所述第一主体材料选自含有咔唑基团、螺芴基团、联苯基团、吖啶基团中一种或多种基团的空穴型材料。
在本公开的一种示例性实施例中,所述第二主体材料选自含有氰基团、 吡啶基团、嘧啶基团、三嗪基团、磷氧基团中一种或多种基团的电子型材料。
在本公开的一种示例性实施例中,所述辅助材料选自含有给电子基团和吸电子基团的材料,所述给电子基团选自咔唑基团、吩恶嗪基团、吖啶基团、芴基团、二苯并噻吩基团、二苯并呋喃基团中的一种或多种,所述吸电子基团选自氰基团、三嗪基团、磷氧基团中的一种或多种。
在本公开的一种示例性实施例中,所述有机发光器件还包括阴极和阳极,所述发光层设于所述阳极和所述阴极之间;
所述发光层包括第一发光层和第二发光层,所述第二发光层设于所述第一发光层远离所述阳极的一侧;
所述第一发光层包含所述第一主体材料,所述第二发光层包含所述第二主体材料;
所述第一发光层和所述第二发光层中至少一者包含所述辅助材料;
所述第一发光层和所述第二发光层中至少一者包含所述掺杂材料。
在本公开的一种示例性实施例中,所述有机发光器件还包括阴极和阳极,所述发光层设于所述阳极和所述阴极之间;
所述发光层包括第一发光层和第二发光层,所述第二发光层设于所述第一发光层远离所述阳极的一侧;
所述第一发光层包含所述第一主体材料和所述第一辅助材料,所述第二发光层包含所述第二主体材料和所述第二辅助材料;
所述第一发光层和所述第二发光层中至少一者包含所述掺杂材料。
根据本公开的第二个方面,提供一种显示装置,包括如第一方面所述的有机发光器件。
本公开提供的有机发光器件,第一主体材料与第二主体材料形成第一复合传输材料,辅助材料与第二主体材料形成第二复合传输材料,第一复合传输材料和第二复合传输材料均有助于分散激子,抑制三重态激子的非辐射跃迁,减少三重态猝灭对材料造成的劣化,提升材料稳定性,并通过福斯特(Forster)能量转移至掺杂材料,进行辐射跃迁发光,有效抑制德氏(Dexter)能量转移,减少能量损失,进而提升器件效率。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1是本公开示例性实施例中有机发光器件结构示意图;
图2是本公开示例性实施例中发光层结构示意图;
图3是本公开另一示例性实施例中发光层结构示意图;
图4是本公开另一示例性实施例中发光层又一结构示意图;
图5是本公开示例性实施例中能量传输结构示意图;
图6是本公开示例性实施例中A1-2、A2-7发射吸收光谱图;
图7是本公开示例性实施例中B-3、A2-7发射吸收光谱图;
图8是本公开示例性实施例中B-5、A2-7发射光谱图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的主要技术创意。
当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
TADF材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料,近年来获得较快发展,是具有较好应用潜力的有机发光二极管技术。TADF材料具有较小的单重态-三重态能级差(△EST),三重态激子可以通过反系间窜越(Reverse Intersystem Crossing,简称RISC)转变成单重态激子发光,利用电激发下形成的单重态激子和三重态激子,器件的内量子效率可以达到100%,材料结构可控,性质稳定,价格便宜无需贵重金属,具有良好的应用前景。虽然理论上TADF材料可以实现100%的激子利用率,但现有单层发光层或双层发光层结构存在非辐射衰减严重和三重态激子湮灭等问题。
如图1至图3所示,本公开实施方式中提供一种有机发光器件,包括发光层500,发光层500包括第一主体材料、第二主体材料、至少一种辅助材料和至少一种掺杂材料;第一主体材料与第二主体材料形成第一复合传输材料;辅助材料与第二主体材料形成第二复合传输材料;第一主体材料、第二主体材料、第一复合传输材料、第二复合传输材料和掺杂材料满足,
S1(A)>S1(CH)>S1(C);
T1(A)>T1(CH)>T1(C);
其中,S1(A)为第一主体材料或第二主体材料的最低单重态能量,S1(CH)为第一复合传输材料或第二复合传输材料的最低单重态能量,S1(C)为掺杂材料的最低单重态能量;T1(A)为第一主体材料或第二主体材料的最低三重态能量,T1(CH)为第一复合传输材料或第二复合传输材料的最低三重态能量,T1(C)为掺杂材料的最低三重态能量。
本公开提供的有机发光器件,第一主体材料与第二主体材料形成第一复合传输材料,辅助材料与第二主体材料形成第二复合传输材料,第一复合传输材料和第二复合传输材料均有助于分散激子,抑制三重态激子的非辐射跃迁,减少三重态猝灭对材料造成的劣化,提升材料稳定性,并通过 福斯特(Forster)能量转移至掺杂材料,进行辐射跃迁发光,有效抑制德氏(Dexter)能量转移,减少能量损失,进而提升器件效率。
下面结合附图对本公开实施方式提供的有机发光器件的各部件进行详细说明:
如图1所示,本公开提供的有机发光器件包括阳极100、阴极900和发光层600,发光层500设置在阳极100和阴极900之间。发光层500包括第一主体材料、第二主体材料、至少一种辅助材料和至少一种掺杂材料。在本公开一些实施例中,有机发光器件还包括空穴注入层(HIL)200、空穴传输层(HTL)300、第一激子阻挡层(EBL)400、第二激子阻挡层(HBL)600、电子传输层(ETL)700和电子注入层(EIL)800。空穴注入层200(HIL)、空穴传输层(HTL)300和第一激子阻挡层(EBL)400位于阳极100和发光层500之间,第二激子阻挡层(HBL)600、电子传输层(ETL)700和电子注入层(EIL)800位于发光层500和阴极900之间。空穴注入层200用于降低从阳极注入空穴的势垒,使空穴能从阳极100有效注入到发光层500中,提高空穴注入效率。空穴传输层300用于为实现注入空穴定向有序的可控迁移。第一激子阻挡层400用于对电子或激子形成迁移势垒,阻止电子或激子从发光层500中迁移出来。发光层500用于使电子和空穴复合形成激子而发出光线。第二激子阻挡层600用于对空穴或激子形成迁移势垒,阻止空穴或激子从发光层500中迁移出来。电子传输层700用于实现注入电子定向有序的可控迁移。电子注入层800用于降低从阴极注入电子的势垒,使电子能从阴极900有效地注入到发光层500中。
在示例性实施例中,阳极100可以采用具有高功函数的材料。对于底发射型OLED,阳极100可以采用透明氧化物材料,如氧化铟锡(ITO)或氧化铟锌(IZO)等,阳极的厚度可以约为80nm至200nm。对于顶发射型OLED,阳极100可以采用金属和透明氧化物的复合结构,如Ag/ITO或Ag/IZO等,阳极100中金属层的厚度可以约为80nm至100nm,阳极100中透明氧化物的厚度可以约为5nm至20nm,使阳极100在可见光区的平均反射率约为85%~95%。
在示例性实施例中,对于顶发射型OLED,阴极900可以采用金属材料,通过蒸镀工艺形成,金属材料可以采用镁(Mg)、银(Ag)或铝(Al),或 者采用合金材料,如Mg:Ag的合金,Mg:Ag比例约为3:7至1:9,阴极900的厚度可以约为10nm至20nm,使阴极900在波长530nm处的平均透过率约为50%~60%。对于底发射型OLED,阴极900可以采用镁(Mg)、银(Ag)、铝(Al)或Mg:Ag的合金,阴极900的厚度可以约大于80nm,使阴极900具有良好的反射率。
在示例性实施例中,空穴注入层200可以采用单一材料,如4-异丙基-4’-甲基二苯基碘鎓四(五氟苯基)硼酸盐和/或二吡嗪并[2,3-f:2’,3’-h]喹喔啉-2,3,6,7,10,11-六甲腈(HAT-CN),CuPc等材料,或者可以采用掺杂材料,如对空穴传输材料进行p型掺杂,p掺杂比例约为0.5%至10%,如N,N’-二(萘-1-基)-N,N’-二苯基-联苯胺(NPB):2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌(F4-TCNQ),4,4’-亚环己基双[N,N-双(4-甲基苯基)苯胺](TAPC):MnO 3等。空穴注入层200的厚度可以约为5nm至20nm。
在示例性实施例中,空穴传输层300可以采用空穴迁移率较高的材料,如咔唑类、甲基芴、螺芴、二苯并噻吩或呋喃等材料,通过蒸镀工艺形成,空穴传输层300的厚度可以约为100nm至140nm。
在示例性实施例中,第一激子阻挡层400的厚度可以约为1nm至10nm,配置为传递空穴、阻挡电子以及阻挡发光层内产生的激子。
在示例性实施例中,第二激子阻挡层600的厚度约为2nm至10nm,配置为阻挡空穴以及阻挡发光层内产生的激子。
在示例性实施例中,电子传输层700可以采用噻吩类、咪唑类或吖嗪类衍生物等,通过与喹啉锂共混的方式制备,喹啉锂的比例约为30%至70%,电子传输层700的厚度可以约为20nm至70nm。
在示例性实施方式中,电子注入层800可以采用氟化锂(LiF)、8-羟基喹啉锂(LiQ)、镱(Yb)或钙(Ca)等材料,通过蒸镀工艺形成,电子注入层800的厚度可以约为0.5nm至2nm。
如图2至图4所示,发光层600包括第一主体材料、第一主体材料、至少一种辅助材料和至少一种掺杂材料。第一主体材料和第二主体材料形成第一复合传输材料,辅助材料和第二主体材料形成第二复合传输材料,第一复合传输材料、第二复合传输材料和辅助材料可用于分散激子或传输激子能量至掺杂材料,以使掺杂材料发光。
第一主体材料、第二主体材料、第一复合传输材料、第二复合传输材料和掺杂材料满足,
S1(A)>S1(CH)>S1(C);
T1(A)>T1(CH)>T1(C);
其中,S1(A)为第一主体材料或第二主体材料的最低单重态能量,S1(CH)为第一复合传输材料或第二复合传输材料的最低单重态能量,S1(C)为掺杂材料的最低单重态能量;
T1(A)为第一主体材料或第二主体材料的最低三重态能量,T1(CH)为第一复合传输材料或第二复合传输材料的最低三重态能量,T1(C)为掺杂材料的最低三重态能量。
本公开中,第一复合传输材料、第二复合传输材料和辅助材料上都有机会产生激子,从而将激子分散,避免激子在某一特定的材料上浓度过大,从而减少由于激子在某个位置浓度过高而导致三重态激子的猝灭,提升器件的发光效率。此外,第一复合传输材料和第二复合传输材料的最低单重态能量和最低三重态能量,低于第一主体材料和第二主体材料的最低单重态能量和最低三重态能量,并高于掺杂材料的最低单重态能量和最低三重态能量,使激子能量可通过多种途径传递至掺杂材料,进行辐射跃迁发光,提升器件效率。
在本公开一些实施例中,第一主体材料、第二主体材料、第一复合传输材料、第二复合传输材料和辅助材料满足,
S1(A)>S1(CH1)>S1(CH2),S1(A)>S1(B)>S1(CH2);
T1(A)>T1(CH1)>T1(CH2),T1(A)>T1(B)>T1(CH2);
其中,S1(CH1)为第一复合传输材料的最低单重态能量;S1(CH2)为第二复合传输材料的最低单重态能量;
S1(B)为辅助材料的最低三重态能量;T1(B)为辅助材料的最低三重态能量;
T1(CH1)为第一复合传输材料的最低三重态能量;T1(CH2)为第二复合传输材料的最低三重态能量。
在该实施例中,激子能量可通过多级传递或多个途径传递至掺杂材料。举例而言,由于S1(A)>S1(CH1)>S1(CH2),S1(A)>S1(B)>S1 (CH2);T1(A)T1(CH1)>T1(CH2),T1(A)T1(B)>T1(CH2);激子能量可经第一复合传输材料传输至辅助材料,辅助材料可作为材料将激子能量传输至第二复合传输材料,随后再传递至掺杂材料;或经由第一复合传输材料传递至第二复合传输材料,随后再传递至掺杂材料;或经由第一复合传输材料直接传递至掺杂材料。多种途径传递,不仅实现了激子复合中心和发光中心的分离,并使整个器件内的激子能量较为分散,减少三重态猝灭以及三重态猝灭对材料的劣化,提升材料的稳定性和器件的效率。此外,主体材料的最低单重态能量或最低三重态能量较高,从而将激子限制在复合传输材料或辅助材料中,减少激子的回流,避免发光效率下降。
在本公开一些实施例中,λpeak(CH1)<λpeak(CH2),λpeak(B)<λpeak(CH2);
其中,λpeak(CH1)为第一复合传输材料的最强发射峰的波长,λpeak(CH2)为第二复合传输材料的最强发射峰的波长;λpeak(B)为辅助材料的最强发射峰的波长。
在本公开一些实施例中,第一主体材料、第二主体材料和辅助材料满足,
|HOMO(A2)-LUMO(A1)|≥3.5eV,|HOMO(A1)-LUMO(A2)|≤3eV,|HOMO(B)-LUMO(A2)|≥2.3eV;
其中,HOMO(A1)为第一主体材料的最高占据分子轨道HOMO能级,LUMO(A1)为第一主体材料的最低未占据分子轨道LUMO能级;HOMO(A2)为第二主体材料的最高占据分子轨道HOMO能级,LUMO(A2)为第二主体材料的最低未占据分子轨道LUMO能级;HOMO(B)为辅助材料的最高占据分子轨道HOMO能级,LUMO(B)为辅助材料的最低未占据分子轨道LUMO能级。
在该实施例中,满足上述能级范围内的材料,有助于第一主体材料和第二主体材料形成第一复合传输材料,辅助材料与第二主体材料形成第二复合传输材料。
进一步地,在一些实施例中,|HOMO(A1)|>|HOMO(B)|≥5.6eV;
|LUMO(B)|>|LUMO(A2)|≥1eV。
在本公开一些实施例中,第一主体材料和辅助材料为空穴型材料,第二主体材料为电子型材料。第一主体材料的空穴迁移率高于辅助材料的空穴迁移率,以保证发光层中空穴的浓度。
在本公开一些实施例中,辅助材料的空穴迁移率和电子迁移率的差值不超过两个数量级。当辅助材料的空穴迁移率大于电子迁移率时,空穴迁移率与电子迁移率的差值可以为m、m×10 1、或m×10 2,其中,m可以为大于0,小于10的任意数值。
在本公开一些实施例中,第一主体材料选自含有咔唑基团、螺芴基团、联苯基团、吖啶基团中一种或多种基团的空穴型材料。
咔唑基团可以是由咔唑
Figure PCTCN2022088278-appb-000001
失去一个氢原子形成的咔唑基,或失去两个氢原子形成的亚咔唑基,或失去更多个氢原子形成的连接基团,具体本公开不做限定;
螺芴基团可以是由螺芴
Figure PCTCN2022088278-appb-000002
失去一个氢原子形成的螺芴基,或失去两个氢原子形成的亚螺芴基,或失去更多个氢原子形成的连接基团,具体本公开不做限定;
联苯基团可以是由联苯
Figure PCTCN2022088278-appb-000003
失去一个氢原子形成的联苯基,或失去两个氢原子形成的亚联苯基,或失去更多个氢原子形成的连接基团,具体本公开不做限定;
吖啶基团可以是由吖啶
Figure PCTCN2022088278-appb-000004
失去一个氢原子形成的吖啶基,或失去两个氢原子形成的亚吖啶基,或失去更多个氢原子形成的连接基团,具体本公开不做限定。
此外,本公开中,第一主体材料也可以是包含其他基团的空穴型材料,其所包含的基团本公开不做特殊限定。
在本公开一些实施例中,第一主体材料选自如下化合物所组成的组:
Figure PCTCN2022088278-appb-000005
在本公开一些实施例中,第二主体选自含有氰基团、吡啶基团、嘧啶基团、三嗪基团、磷氧基团中一种或多种基团的电子型材料。
本公开中,氰基团可以是氰基(-CN);
吡啶基团可以是由吡啶
Figure PCTCN2022088278-appb-000006
失去一个氢原子形成的吡啶基,或失去两个氢原子形成的亚吡啶基,或失去更多个氢原子形成的连接基团,具体本公开不做限定;
嘧啶可以是由嘧啶
Figure PCTCN2022088278-appb-000007
失去一个氢原子形成的嘧啶基,或失去两个氢原子形成的亚嘧啶基,或失去更多个氢原子形成的连接基团,具体本公开不做限定;
三嗪基团可以是由三嗪
Figure PCTCN2022088278-appb-000008
失去一个氢原子形成的三嗪基,或失去两个氢原子形成的亚三嗪基,或失去更多个氢原子形成的连接基团,具体本公开不做限定。
此外,本公开中,第二主体材料也可以是包含其他基团的电子型材料,其所包含的基团本公开不做特殊限定。
在本公开一些实施例中,第二主体材料选自如下结构所组成的组:
Figure PCTCN2022088278-appb-000009
在本公开一些实施例中,第一复合传输材料、第二复合传输材料满足,
ΔE ST(CH)≤0.3eV;
其中,ΔE ST(CH)为第一复合传输材料的最低单重态能量与第一复合传输材料的最低三重态能量的能级之差,或为第二复合传输材料的最低单重态能量与第二复合传输材料的最低三重态能量的能级之差。
优选地,ΔE ST(CH)≤0.2eV。
在本公开一些实施例中,辅助材料为延迟荧光材料,辅助材料满足,
ΔE ST(B)≤0.3eV;
其中,ΔE ST(B)为辅助材料的最低单重态能量与辅助材料的最低三重态能量的能级之差。
优选地,ΔE ST(B)≤0.15eV。
如图5所示,基态受激发时形成的激子分为两类,一类为单重态激子,另一类为三重态激子,根据自旋统计规则,单重态激子和三重态激子产生的比例为25%:75%。本公开中第一复合传输材料、第二复合传输材料的能极差较小,具备一定的热活化延迟荧光(Thermally activated delayed fluorescence.TADF)性能,第一复合传输材料和第二复合传输材料的部分三重态能量可以通过反向系间蹿跃(RISC)回到单重态能量,进而通过福氏能量传递(Foster Resonance Energy Transfer,简称FET)方式传递给掺杂材料。其中,第一复合传输材料还可传递给第一辅助材料或第二复合传输材料。辅助材料为延迟荧光材料,其三重态能量也可以通过反向系间窜越过 程回到单重态能量,进而将能量传递给第二复合传输材料或掺杂材料。这样,反向系间蹿跃过程可以几乎将全部能量经由单重态通过福氏能量转移到下一级能量传输材料或掺杂材料,掺杂材料能够同时利用单重态激子和从三重态跃迁至自身单重态的激子进行发光。在整个发光过程中,三重态与三重态之间的德氏(Dexter)能量传递很大程度上被抑制,减少了能量损失,提升了器件性能。
在本公开一些实施例中,第二复合传输材料的发射光谱与掺杂材料的吸收光谱具有重叠,该重叠面积与第二复合材料的发射光谱的面积之比为a,a≥30%;优选地,a≥50%,如60%或70%等。
所述辅助材料的发射光谱与所述掺杂材料的吸收光谱具有重叠,该重叠面积与所述辅助材料的发射光谱的面积之比为b,b≥30%,优选地,b≥50%,如60%或70%等。
在本公开一些实施例中,第一复合传输材料的发射光谱与掺杂材料的吸收光谱具有重叠,该重叠面积与第一复合材料的发射光谱的面积之比为c,c≥20%;
进一步地,c<b<a,以防止激子回流,保证能量的逐级传递。
第二复合传输材料或辅助材料的发射光谱与掺杂材料的吸收光谱的重叠面积越大,能量转移越充分,掺杂材料发光更充分,并减少第二复合传输材料或辅助材料上的能量猝灭,提高激子利用率,提升效率,改善器件寿命。本公开通过设置第二复合传输材料或辅助材料的发射光谱与掺杂材料的吸收光谱的重叠面积,大于或等于第二复合传输材料或辅助材料的发射光谱的30%,优选50%,可提高器件的发光效率,改善器件的寿命。
如图3和图4所示,在本公开一些实施例中,发光层包含两种辅助材料,即至少一种辅助材料包括第一辅助材料和第二辅助材料;
第二复合传输材料包括第一子复合传输材料和第二子复合传输材料;
第一辅助材料和第二主体材料形成第一子复合传输材料,第二辅助材料和第二主体材料形成第二子复合传输材料;
第二辅助材料、第二子复合传输材料满足,
S1(B2)>S1(CH22);T1(B2)>T1(CH22);
其中,S1(B2)为第二辅助材料的最低三重态能量;T1(B2)为第 二辅助材料的最低三重态能量;
S1(CH22)为第二子复合传输材料的最低三重态能量;T1(CH22)为第二子复合传输材料的最低三重态能量。
在该实施例中,激子能量可通过更多个途径传输至掺杂材料,在一定程度上可进一步分散激子能量传递,缓解材料的劣化。
在本公开一些实施例中,第一复合传输材料、第一辅助材料、第二辅助材料、第一子复合传输材料和第二子复合传输材料满足,
S1(CH1)>S1(B2)>S1(B1)>S1(CH21)>S1(CH22);
T1(CH1)>T1(B2)>T1(B1)>T1(CH21)>T1(CH22);
其中,S1(CH1)为第一复合传输材料的最低单重态能量;S1(CH2)为第二复合传输材料的最低单重态能量;
S1(B1)为第二辅助材料的最低三重态能量;T1(B1)为第二辅助材料的最低三重态能量;
S1(CH21)为第一子复合传输材料的最低三重态能量;T1(CH21)为第一子复合传输材料的最低三重态能量。
在本公开一些实施例中,λpeak(B2)<λpeak(CH22);
其中,λpeak(B2)为第二辅助材料的最强发射峰的波长,λpeak(CH22)为第二子复合传输材料的最强发射峰的波长。
在本公开一些实施例中,第一辅助材料和第二辅助材料满足,
|HOMO(B2)|-|HOMO(B1)|≤0.5eV;
优选地,|HOMO(B2)|-|HOMO(B1)|≤0.2eV;
其中,HOMO(B1)为第一辅助材料的最高占据分子轨道HOMO能级,HOMO(B2)为第二辅助材料的最高占据分子轨道HOMO能级。
在本公开一些实施例中,辅助材料选自含有给电子基团和吸电子基团的材料,给电子基团选自咔唑基团、吩恶嗪基团、吖啶基团、芴基团、二苯并噻吩基团、二苯并呋喃基团中的一种或多种,吸电子基团选自氰基团、三嗪基团、磷氧基团中的一种或多种。
本公开中,吩恶嗪基团由吩恶嗪
Figure PCTCN2022088278-appb-000010
失去一个氢原子形成的吩恶嗪基,或失去两个氢原子形成的亚吩恶嗪基,或失去更多个氢原子形 成的连接基团,具体本公开不做限定。
本公开中,二苯并噻吩基团由二苯并噻吩基团
Figure PCTCN2022088278-appb-000011
失去一个氢原子形成的二苯并噻吩基,或失去两个氢原子形成的亚二苯并噻吩基,或失去更多个氢原子形成的连接基团,具体本公开不做限定。
本公开中,二苯并呋喃基团由二苯并呋喃
Figure PCTCN2022088278-appb-000012
失去一个氢原子形成的二苯并呋喃基,或失去两个氢原子形成的亚二苯并呋喃基,或失去更多个氢原子形成的连接基团,具体本公开不做限定。
在本公开一些实施例中,辅助材料选自如下结构所组成的组:
Figure PCTCN2022088278-appb-000013
在本公开一些实施例中,发光层包含两种掺杂材料,即至少一种掺杂材料包括第一掺杂材料和第二掺杂材料。
在本公开一些实施例中,掺杂材料选自含硼元素和氮元素的荧光材料。掺杂材料的荧光量子产率PLQY>80%,在发光层中掺杂比例不大于2%,优选掺杂比例小于1%。掺杂比例是指掺杂材料占主体材料、辅助材料和掺杂材料三者总和的比例。
具体地,掺杂材料至少含有一个氮原子,且硼进行三配位或四配位。
在一些实施例中,掺杂材料选自如下结构所组成的组:
Figure PCTCN2022088278-appb-000014
如图1至图4所示,在本公开一些实施例中,发光层500包括第一发光层510和第二发光层520,第二发光层520设于第一发光层510远离阳极100的一侧;第一发光层510包含第一主体材料,第二发光层520包含第二主体材料;第一发光层510和第二发光层520中至少一者包含辅助材料;第一发光层510和第二发光层520中至少一者包含掺杂材料。
在本公开另一实施例中,发光层500包括第一发光层510和第二发光层520,第二发光层520设于第一发光层510远离阳极100的一侧;第一发光层510包含第一主体材料和第一辅助材料,第二发光层520包含第二主体材料和第二辅助材料;第一发光层510和第二发光层520中至少一者包含掺杂材料。
本公开还提供一种显示装置,包括前述的有机发光器件。显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航 仪,或任何其它具有显示功能的产品或部件。
下面将结合具体试验数据等,对本公开提供的有机发光器件进行详细说明。
实施例1
采用蒸镀工艺,分别蒸镀化合物A1-2和化合物A2-7的单层膜,以及将化合物A1-2和化合物A2-7按摩尔比值1:1混合蒸镀的混合膜,其吸收发射光谱如图6所示,在图6中,混合膜发光光谱出现红移,与单层膜光谱明显不同,表明化合物A1-2和化合物A2-7形成第一复合传输材料。
实施例2:
采用蒸镀工艺,分别蒸镀化合物B-3的单层膜,以及将化合物B-3和化合物A2-7按摩尔比值1:1混合蒸镀的混合膜,其吸收发射光谱如图7所示,混合膜发光光谱出现红移,表明化合物B-3和化合物A2-7形成第二复合传输材料。
实施例3:
采用蒸镀工艺,分别蒸镀化合物B-5的单层膜,以及将化合物B-5和化合物A2-7按摩尔比值1:1混合蒸镀的混合膜,其发射光谱如图8所示,表明化合物B-5和化合物A2-7也可以形成第二复合传输材料。
分别测试上述实施例中化合物A1-2、A2-7、B-3、B-5,以及形成的复合传输材料的能级,结果如表1所示:
表1
材料 HOMO(eV) LUMO(eV) S1(eV) T1(eV)
A1-2 5.83 2.46 3.41 3.02
A2-7 6.45 3.22 3.60 2.95
B-3 5.65 3.10 2.52 2.51
B-5 5.78 3.18 2.61 2.60
A1-2:A2-7     2.69 2.67
B-3:A2-7     2.44 2.41
B-5:A2-7     2.35 2.32
为了验证本申请提供的有机发光器件的性能,制备相应的有机发光器件并对其进行性能测试。
实施例3
在玻璃基板上形成阳极。阳极可以包括氧化铟锡膜层。阳极可通过真空蒸镀法沉积形成。随后在阳极上蒸镀形成空穴注入层,在空穴注入层上形成空穴传输层,在空穴传输层上形成第一激子阻挡层。
随后,采用共同蒸镀A1-2:B-3(70%:30%)形成第一发光层,共同蒸镀A2-7:B-3:C-5(64%:35%:1%)形成第二发光层;
之后再依次蒸镀形成第二激子阻挡层、电子传输层、电子注入层和阴极,阴极可以包括银。
实施例4
共同蒸镀A1-2:B-3(70%:30%)形成第一发光层,共同蒸镀A2-7:B-5:C-5(59%:40%:1%)形成第二发光层,其他与实施例3相同。
对比例1
共同蒸镀A1-2:B-3:C-5(59%:40%:1%)形成发光层,其他与实施例3相同。
对比例2
共同蒸镀A2-7:B-3:C-5(59%:40%:1%)形成发光层,其他与实施例3相同。
对比例3
共同蒸镀A1-2:B-3(70%:30%)形成第一发光层,共同蒸镀A1-2:B-5:C-5(59%:40%:1%)形成第二发光层,其他与实施例3相同。
上述制备形成的有机发光器件,性能测试结构如表2所示;
表2
Figure PCTCN2022088278-appb-000015
表2中,电压、效率和寿命是以对比例1为基准,其他对比例或实施例相比对比例1的百分比。
实施例3和实施例4,相比对比例1至对比例3,效率和寿命均有所提高,其原因可能是因为在实施例3和实施例4中,A1-2和A2-7形成了第一复合传输材料,B-3和A2-7形成了第二复合传输材料,形成的复合传输材料上均有机会形成激子并传递激子能量,很大程度地抑制三重态激子的非辐射跃迁,减少三重态猝灭对材料造成的劣化,提升材料稳定性,并通过Forster能量转移到下一能量传输通道,或者转移到掺杂材料,进行辐射跃迁发光,减少了能量损失,进而提升器件效率。
实施例4相比实施例3,寿命进一步提升,是由于额外增加了A2-7和B-5形成的第二子复合传输材料,导致器件内整体的激子能量比较分散,一定程度缓解了材料的劣化。
应可理解的是,本公开不将其应用限制到本说明书提出的部件的详细结构和布置方式。本公开能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本公开的范围内。应可理解的是,本说明书公开和限定的本公开延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本公开的多个可替代方面。本说明书的实施方式说明了已知用于实现本公开的最佳方式,并且将使本领域技术人员能够利用本公开。

Claims (19)

  1. 一种有机发光器件,包括发光层,所述发光层包括第一主体材料、第二主体材料、至少一种辅助材料和至少一种掺杂材料;
    所述第一主体材料与所述第二主体材料形成第一复合传输材料;所述辅助材料与所述第二主体材料形成第二复合传输材料;
    所述第一主体材料、所述第二主体材料、所述第一复合传输材料、所述第二复合传输材料和所述掺杂材料满足,
    S1(A)>S1(CH)>S1(C);T1(A)>T1(CH)>T1(C);
    其中,S1(A)为所述第一主体材料或所述第二主体材料的最低单重态能量,S1(CH)为所述第一复合传输材料或所述第二复合传输材料的最低单重态能量,S1(C)为所述掺杂材料的最低单重态能量;
    T1(A)为所述第一主体材料或所述第二主体材料的最低三重态能量,T1(CH)为所述第一复合传输材料或所述第二复合传输材料的最低三重态能量,T1(C)为所述掺杂材料的最低三重态能量。
  2. 根据权利要求1所述的有机发光器件,其中,所述第一主体材料、所述第二主体材料、第一复合传输材料、第二复合传输材料和所述辅助材料满足,
    S1(A)>S1(CH1)>S1(CH2),S1(A)>S1(B)>S1(CH2);
    T1(A)>T1(CH1)>T1(CH2),T1(A)>T1(B)>T1(CH2);
    其中,S1(CH1)为所述第一复合传输材料的最低单重态能量;S1(CH2)为所述第二复合传输材料的最低单重态能量;
    S1(B)为所述辅助材料的最低三重态能量;T1(B)为所述辅助材料的最低三重态能量;
    T1(CH1)为所述第一复合传输材料的最低三重态能量;T1(CH2)为所述第二复合传输材料的最低三重态能量。
  3. 根据权利要求1所述的有机发光器件,其中,所述第一主体材料、所述第二主体材料和所述辅助材料满足,
    |HOMO(A2)-LUMO(A1)|≥3.5eV,|HOMO(A1)-LUMO(A2)|≤3eV,|HOMO(B)-LUMO(A2)|≥2.3eV;
    其中,HOMO(A1)为所述第一主体材料的最高占据分子轨道HOMO 能级,LUMO(A1)为所述第一主体材料的最低未占据分子轨道LUMO能级;
    HOMO(A2)为所述第二主体材料的最高占据分子轨道HOMO能级,LUMO(A2)为所述第二主体材料的最低未占据分子轨道LUMO能级;
    HOMO(B)为所述辅助材料的最高占据分子轨道HOMO能级,LUMO(B)为所述辅助材料的最低未占据分子轨道LUMO能级。
  4. 根据权利要求3所述的有机发光器件,其中,所述第一主体材料、所述第二主体材料和所述辅助材料满足,
    |HOMO(A1)|>|HOMO(B)|≥5.6eV;
    |LUMO(B)|>|LUMO(A2)|≥1eV。
  5. 根据权利要求1所述的有机发光器件,其中,所述第一主体材料和所述辅助材料为空穴型材料,所述第二主体材料为电子型材料;
    所述第一主体材料的空穴迁移率高于所述辅助材料的空穴迁移率。
  6. 根据权利要求5所述的有机发光器件,其中,所述辅助材料的空穴迁移率和电子迁移率的差值不超过两个数量级。
  7. 根据权利要求1所述的有机发光器件,其中,所述第一复合传输材料、所述第二复合传输材料满足,
    ΔE ST(CH)≤0.3eV;
    其中,ΔE ST(CH)为所述第一复合传输材料的最低单重态能量与所述第一复合传输材料的最低三重态能量的能级之差,或为所述第二复合传输材料的最低单重态能量与所述第二复合传输材料的最低三重态能量的能级之差。
  8. 根据权利要求1所述的有机发光器件,其中,所述辅助材料为延迟荧光材料,所述辅助材料满足,
    ΔE ST(B)≤0.3eV;
    其中,ΔE ST(B)为所述辅助材料的最低单重态能量与所述辅助材料的最低三重态能量的能级之差。
  9. 根据权利要求1所述的有机发光器件,其中,所述第二复合传输材料的发射光谱与所述掺杂材料的吸收光谱具有重叠,该重叠面积与所述第二复合材料的发射光谱的面积之比为a,a≥30%;
    所述辅助材料的发射光谱与所述掺杂材料的吸收光谱具有重叠,该重 叠面积与所述辅助材料的发射光谱的面积之比为b,b≥30%。
  10. 根据权利要求1所述的有机发光器件,其中,所述至少一种辅助材料包括第一辅助材料和第二辅助材料;
    第二复合传输材料包括第一子复合传输材料和第二子复合传输材料;
    所述第一辅助材料和所述第二主体材料形成所述第一子复合传输材料,所述第二辅助材料和所述第二主体材料形成所述第二子复合传输材料;
    所述第二辅助材料、第二子复合传输材料满足,
    S1(B2)>S1(CH22);
    T1(B2)>T1(CH22);
    其中,S1(B2)为所述第二辅助材料的最低三重态能量;T1(B2)为所述第二辅助材料的最低三重态能量;
    S1(CH22)为所述第二子复合传输材料的最低三重态能量;T1(CH22)为所述第二子复合传输材料的最低三重态能量。
  11. 根据权利要求10所述的有机发光器件,其中,所述第一复合传输材料、所述第一辅助材料、所述第二辅助材料、所述第一子复合传输材料和所述第二子复合传输材料满足,
    S1(CH1)>S1(B2)>S1(B1)>S1(CH21)>S1(CH22);
    T1(CH1)>T1(B2)>T1(B1)>T1(CH21)>T1(CH22);
    其中,S1(CH1)为所述第一复合传输材料的最低单重态能量;S1(CH2)为所述第二复合传输材料的最低单重态能量;
    S1(B1)为所述第二辅助材料的最低三重态能量;T1(B1)为所述第二辅助材料的最低三重态能量;
    S1(CH21)为所述第一子复合传输材料的最低三重态能量;T1(CH21)为所述第一子复合传输材料的最低三重态能量。
  12. 根据权利要求10所述的有机发光器件,其中,所述第一辅助材料和所述第二辅助材料满足,
    |HOMO(B2)|-|HOMO(B1)|≤0.5eV;
    其中,HOMO(B1)为所述第一辅助材料的最高占据分子轨道HOMO能级,HOMO(B2)为所述第二辅助材料的最高占据分子轨道HOMO能级。
  13. 根据权利要求1所述的有机发光器件,其中,所述掺杂材料选自 含硼元素和氮元素的荧光材料。
  14. 根据权利要求1所述的有机发光器件,其中,所述第一主体材料选自含有咔唑基团、螺芴基团、联苯基团、吖啶基团中一种或多种基团的空穴型材料。
  15. 根据权利要求1所述的有机发光器件,其中,所述第二主体材料选自含有氰基团、吡啶基团、嘧啶基团、三嗪基团、磷氧基团中一种或多种基团的电子型材料。
  16. 根据权利要求5所述的有机发光器件,其中,所述辅助材料选自含有给电子基团和吸电子基团的材料,所述给电子基团选自咔唑基团、吩恶嗪基团、吖啶基团、芴基团、二苯并噻吩基团、二苯并呋喃基团中的一种或多种,所述吸电子基团选自氰基团、三嗪基团、磷氧基团中的一种或多种。
  17. 根据权利要求1所述的有机发光器件,其中,所述有机发光器件还包括阴极和阳极,所述发光层设于所述阳极和所述阴极之间;
    所述发光层包括第一发光层和第二发光层,所述第二发光层设于所述第一发光层远离所述阳极的一侧;
    所述第一发光层包含所述第一主体材料,所述第二发光层包含所述第二主体材料;
    所述第一发光层和所述第二发光层中至少一者包含所述辅助材料;
    所述第一发光层和所述第二发光层中至少一者包含所述掺杂材料。
  18. 根据权利要求10所述的有机发光器件,其中,所述有机发光器件还包括阴极和阳极,所述发光层设于所述阳极和所述阴极之间;
    所述发光层包括第一发光层和第二发光层,所述第二发光层设于所述第一发光层远离所述阳极的一侧;
    所述第一发光层包含所述第一主体材料和所述第一辅助材料,所述第二发光层包含所述第二主体材料和所述第二辅助材料;
    所述第一发光层和所述第二发光层中至少一者包含所述掺杂材料。
  19. 一种显示装置,包括如权利要求1-18任一项所述的有机发光器件。
PCT/CN2022/088278 2022-04-21 2022-04-21 有机发光器件、显示装置 WO2023201651A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000830.7A CN117501828A (zh) 2022-04-21 2022-04-21 有机发光器件、显示装置
PCT/CN2022/088278 WO2023201651A1 (zh) 2022-04-21 2022-04-21 有机发光器件、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088278 WO2023201651A1 (zh) 2022-04-21 2022-04-21 有机发光器件、显示装置

Publications (1)

Publication Number Publication Date
WO2023201651A1 true WO2023201651A1 (zh) 2023-10-26

Family

ID=88418767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088278 WO2023201651A1 (zh) 2022-04-21 2022-04-21 有机发光器件、显示装置

Country Status (2)

Country Link
CN (1) CN117501828A (zh)
WO (1) WO2023201651A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994628A (zh) * 2017-12-29 2019-07-09 昆山国显光电有限公司 有机电致发光器件及有机电致发光器件的制备方法
CN111416049A (zh) * 2020-04-07 2020-07-14 苏州大学 双激基复合物主体材料在制备磷光oled器件中的应用
CN111653679A (zh) * 2020-06-18 2020-09-11 京东方科技集团股份有限公司 有机发光器件及其制备方法、显示面板和显示装置
CN112151686A (zh) * 2020-09-25 2020-12-29 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置
CN112909197A (zh) * 2021-02-08 2021-06-04 吉林奥来德光电材料股份有限公司 超荧光叠层器件及其制备方法、显示面板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994628A (zh) * 2017-12-29 2019-07-09 昆山国显光电有限公司 有机电致发光器件及有机电致发光器件的制备方法
CN111416049A (zh) * 2020-04-07 2020-07-14 苏州大学 双激基复合物主体材料在制备磷光oled器件中的应用
CN111653679A (zh) * 2020-06-18 2020-09-11 京东方科技集团股份有限公司 有机发光器件及其制备方法、显示面板和显示装置
CN112151686A (zh) * 2020-09-25 2020-12-29 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置
CN112909197A (zh) * 2021-02-08 2021-06-04 吉林奥来德光电材料股份有限公司 超荧光叠层器件及其制备方法、显示面板和显示装置

Also Published As

Publication number Publication date
CN117501828A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
TWI673894B (zh) 有機電致發光器件
CN109088008B (zh) 一种有机发光器件及显示面板
KR101419810B1 (ko) 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자
US20220416190A1 (en) Organic light-emitting device and preparation method therefor, display panel, and display device
TW543337B (en) Highly stable and efficient OLEDs with a phosphorescent-doped mixed layer architecture
CN108807481B (zh) 一种有机发光显示面板及显示装置
US10763449B2 (en) Organic light-emitting diode (OLED) display panel, fabrication method and electronic device thereof
CN111969119A (zh) 有机电致发光器件、显示面板及显示装置
TW201210101A (en) Organic electroluminescent element
CN110492007B (zh) 一种吖啶化合物及其在机电致发光器件中的应用
KR102585841B1 (ko) 유기발광다이오드 및 이를 포함하는 유기발광장치
CN113555510B (zh) 有机电致发光器件、显示面板及显示装置
CN110335954B (zh) 一种高效稳定的白光有机电致发光器件及其制备方法
WO2022062699A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2022062700A1 (zh) 有机电致发光器件、显示面板及显示装置
CN111883680A (zh) 有机电致发光器件和显示装置
WO2022078094A1 (zh) 发光器件、显示基板
WO2022062702A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2020120791A1 (en) Organic light emitting device, a method for manufacturing the same and a composition for use therein
Gao et al. Highly Efficient White Organic Light‐Emitting Diodes with Controllable Excitons Behavior by a Mixed Interlayer between Fluorescence Blue and Phosphorescence Yellow‐Emitting Layers
WO2023201651A1 (zh) 有机发光器件、显示装置
TWI708827B (zh) 有機發光二極體
CN111944518A (zh) 主体材料、发光层材料、发光器件、显示基板、显示装置
WO2022217600A1 (zh) 有机电致发光器件和显示装置
CN111785858B (zh) 发光显示器件及其制备方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000830.7

Country of ref document: CN