WO2019095355A1 - Procédé de préparation d'un matériau composite qui contient un polymère conducteur qui contient du soufre - Google Patents

Procédé de préparation d'un matériau composite qui contient un polymère conducteur qui contient du soufre Download PDF

Info

Publication number
WO2019095355A1
WO2019095355A1 PCT/CN2017/111795 CN2017111795W WO2019095355A1 WO 2019095355 A1 WO2019095355 A1 WO 2019095355A1 CN 2017111795 W CN2017111795 W CN 2017111795W WO 2019095355 A1 WO2019095355 A1 WO 2019095355A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
conductive polymer
preparation
graphene
mixture
Prior art date
Application number
PCT/CN2017/111795
Other languages
English (en)
Chinese (zh)
Inventor
黄文弘
Original Assignee
迪吉亚节能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迪吉亚节能科技股份有限公司 filed Critical 迪吉亚节能科技股份有限公司
Priority to PCT/CN2017/111795 priority Critical patent/WO2019095355A1/fr
Priority to CN201780001723.5A priority patent/CN110073526A/zh
Publication of WO2019095355A1 publication Critical patent/WO2019095355A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for preparing a composite material containing a sulfur-containing conductive polymer, and more particularly to a composite material for a sulfur-containing conductive polymer on an electrode of a secondary battery.
  • Lithium batteries are currently the most popular mobile device power supply because of their high operating voltage and high energy density.
  • lithium batteries of various chemical compositions have been developed, among which lithium-sulfur batteries have attracted attention because of their higher capacitance than general lithium metal oxide batteries.
  • An object of the present invention is to provide a method for preparing a sulfur-containing conductive polymer, which can improve the form of sulfur in a lithium-sulfur battery, and can effectively recycle and reuse the sulfur active material to maintain the charging capacity of the battery. And improve battery life.
  • the present invention provides a method for preparing a sulfur-containing conductive polymer, which comprises the following steps:
  • the sulfur, the polymer and the graphene are uniformly mixed into a mixture; Step 6.
  • the mixture is heated to 80 to 120° in an inert gas atmosphere ( :, dried and dehydrogenated to form a conductive polymer) ; ⁇ 0 2019/095355 ⁇ (:17 ⁇ 2017/111795 and steps (: .
  • the mixture of step 6 is at 150° (: to 300° (: temperature range and 14.5? 8:1 to 725? 8:1)
  • the pressure range is maintained at a constant temperature of 0.5 to 3 hours to dehydrogenation to initiate a sulfur melting reaction to form a sulfur-conductive polymer and form a composite of a sulfur-containing conductive polymer with graphene.
  • the material ratio in the mixture in step 8 is sulfur 10-95 ⁇ 1%, polymer 4.9-89 , graphene 0.1-85%.
  • the purity of sulfur is from 99.50% to 99.99%.
  • the graphene is a single crystal graphene having a particle size of 0.2-5!1111, and the number of layers is a single layer or a plurality of layers.
  • the polymer is selected from one of the group consisting of: polyvinylidene fluoride Polyvinyl fluoride ( ), polyacrylonitrile $ eight, polystyrene $3), polyethylene oxide $£0).
  • the inert gas is argon or nitrogen.
  • the form of the composite material of the sulfur-containing conductive polymer formed in the step is powder, granule, block or fiber.
  • FIG. 1 is a flow chart of an embodiment of a method for preparing a sulfur-containing conductive polymer composite material of the present invention.
  • FIG. 2 is a schematic structural view of an embodiment of a composite material of a sulfur-containing conductive polymer of the present invention.
  • FIG 3 is a charge and discharge graph of an embodiment of a battery using the composite material of the present invention.
  • FIG. 4 is a charge and discharge cycle diagram of an embodiment of a battery using the composite material of the present invention.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for preparing a sulfur-containing conductive polymer composite material, the preparation method comprising the following steps: Step 8. Sulfur, polymer And uniformly mixing the graphene into a mixture; the step of heating the mixture to 80 to 120 ° C in an inert gas atmosphere, drying and dehydrogenating to form a conductive polymer; and the step (:.
  • the mixture of 6 is maintained at a constant temperature of 0.5 to 3 hours at a temperature range of 150° (: to 300°) and a pressure range of 14.5 to 8:1 to 725 to 8:1 to a dehydrogenation sulfur-smelting reaction to form a A sulfur conductive polymer and a composite material of a sulfur-containing conductive polymer with graphene.
  • the material ratio in the mixture in the foregoing step 8 is 10-95% of sulfur, polymerization.
  • the purity of sulfur is 99.50% to 99.99%
  • graphene is a large-area single crystal graphene having a particle size of 2.2-5!1111, and the number of layers is a single layer or a plurality of layers
  • the polymer is selected from the group below One of the groups: polyvinylidene fluoride. ?), Polyvinyl fluoride?), Polyacrylonitrile VIII, Polystyrene 3), Polyoxyethylene £0).
  • the inert gas in the foregoing step 8 is argon (eight) or nitrogen (N 2 ).
  • the foregoing step (the formed sulfur-containing conductive polymer composite material has a sulfur content of 50-90 1%, and the graphene can increase the conductivity of the composite material
  • the composite material of the sulfur conductive polymer may be powder, granule, block or fiber, and can be normally charged and discharged at room temperature.
  • FIG. 2 For the structure of the composite material of the sulfur-containing conductive polymer of the present invention, please refer to the embodiment shown in FIG. 2 . It includes a stacked layered graphene 20, and a sulfur-containing conductive polymer 10 sandwiched in the layered graphene 20.
  • a lithium-sulfur battery cell includes a positive electrode, a negative electrode, a separator, and an electrolyte
  • the positive electrode structure is: a composite material of a sulfur-containing conductive polymer/solvent/adhesive/conductive agent/coagulant/foil, negative electrode
  • the structure is: metal lithium/copper foil, the diaphragm is a wet diaphragm, and the electrolyte is a liquid or colloidal electrolyte.
  • 3 is a charge and discharge curve of the battery in the present example, and the charge and discharge curve in the figure shows that the composite material of the present invention is used in the positive electrode of the lithium sulfur battery, and the charge and discharge rate of the battery can reach 100%.
  • Fig. 4 is a charge and discharge cycle curve of the battery in the present example.
  • the graph shows that the charge rate of the battery is less than 3% after charging and discharging cycles of 1 (: (battery capacity) 500 times, showing good stability.
  • the present invention has the following advantages:
  • the present invention can effectively recycle the active substance of sulfur, thereby improving the charging rate of battery cycle charging.
  • the present invention can prevent sulfur from flowing into a liquid in the charge and discharge process and flow in the battery, thereby improving the number of cycles of charging the battery, improving the stability of the battery, and prolonging the life of the battery.
  • the present invention can achieve the intended purpose, and provides a method for preparing a sulfur-containing conductive polymer capable of improving the charging capacity and life of the battery, which is highly industrial.
  • the value of the use, the invention patent application is filed according to law.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un matériau composite d'un polymère conducteur qui contient du soufre, le procédé de préparation comprenant les étapes suivantes : étape A. le mélangeage uniforme de soufre, de polymère et de graphène en un mélange ; étape B. le chauffage du mélange à une température de 80 à 120 °C dans une atmosphère de gaz inerte, puis la réalisation d'un séchage et d'une déshydrogénation pour former un polymère conducteur ; et étape C. le maintien du mélange de l'étape B à une température qui varie de 150 °C à 300 °C et une plage de pression de 14,5 Psi à 725 Psi pendant 0,5 à 3 heures pour effectuer une réaction de début de fusion de déshydrogénation-sulfuration pour former un polymère conducteur de soufre, et la formation d'un matériau composite de polymère conducteur, qui contient du soufre, avec du graphène.
PCT/CN2017/111795 2017-11-20 2017-11-20 Procédé de préparation d'un matériau composite qui contient un polymère conducteur qui contient du soufre WO2019095355A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/111795 WO2019095355A1 (fr) 2017-11-20 2017-11-20 Procédé de préparation d'un matériau composite qui contient un polymère conducteur qui contient du soufre
CN201780001723.5A CN110073526A (zh) 2017-11-20 2017-11-20 含硫导电聚合物的复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111795 WO2019095355A1 (fr) 2017-11-20 2017-11-20 Procédé de préparation d'un matériau composite qui contient un polymère conducteur qui contient du soufre

Publications (1)

Publication Number Publication Date
WO2019095355A1 true WO2019095355A1 (fr) 2019-05-23

Family

ID=66539207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111795 WO2019095355A1 (fr) 2017-11-20 2017-11-20 Procédé de préparation d'un matériau composite qui contient un polymère conducteur qui contient du soufre

Country Status (2)

Country Link
CN (1) CN110073526A (fr)
WO (1) WO2019095355A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130040197A1 (en) * 2011-08-08 2013-02-14 Battelle Memorial Institute Polymer-Sulfur Composite Materials for Electrodes in Li-S Energy Storage Devices
CN103715399A (zh) * 2012-09-29 2014-04-09 苏州宝时得电动工具有限公司 电极复合材料及其制备方法、正极、具有该正极的电池
CN103811731A (zh) * 2012-11-09 2014-05-21 中国科学院金属研究所 一种石墨烯-硫复合电极材料及其制备方法和应用
CN104022267A (zh) * 2014-05-28 2014-09-03 上海纳米技术及应用国家工程研究中心有限公司 夹层结构硫/石墨烯/导电聚合物复合材料及制备和应用
CN105453309A (zh) * 2011-05-03 2016-03-30 上海交通大学 用于Li-S电池的包含石墨烯的正极材料及其制备方法
CN106876698A (zh) * 2015-12-12 2017-06-20 中国科学院大连化学物理研究所 一种锂硫电池用正极材料的制备及正极材料和应用
US9773581B2 (en) * 2012-11-30 2017-09-26 Robert Bosch Gmbh Cathode material for a Li—S battery and the method for preparing the same, a cathode made of the cathode material and a Li—S battery comprising the cathode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592257B1 (ko) * 2014-08-07 2016-02-05 광주과학기술원 리튬전지용 복합 양극 활물질 및 이의 제조방법
CN104538606B (zh) * 2014-12-19 2017-04-05 江苏华东锂电技术研究院有限公司 硫基复合正极材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453309A (zh) * 2011-05-03 2016-03-30 上海交通大学 用于Li-S电池的包含石墨烯的正极材料及其制备方法
US20130040197A1 (en) * 2011-08-08 2013-02-14 Battelle Memorial Institute Polymer-Sulfur Composite Materials for Electrodes in Li-S Energy Storage Devices
CN103715399A (zh) * 2012-09-29 2014-04-09 苏州宝时得电动工具有限公司 电极复合材料及其制备方法、正极、具有该正极的电池
CN103811731A (zh) * 2012-11-09 2014-05-21 中国科学院金属研究所 一种石墨烯-硫复合电极材料及其制备方法和应用
US9773581B2 (en) * 2012-11-30 2017-09-26 Robert Bosch Gmbh Cathode material for a Li—S battery and the method for preparing the same, a cathode made of the cathode material and a Li—S battery comprising the cathode
CN104022267A (zh) * 2014-05-28 2014-09-03 上海纳米技术及应用国家工程研究中心有限公司 夹层结构硫/石墨烯/导电聚合物复合材料及制备和应用
CN106876698A (zh) * 2015-12-12 2017-06-20 中国科学院大连化学物理研究所 一种锂硫电池用正极材料的制备及正极材料和应用

Also Published As

Publication number Publication date
CN110073526A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
CN110556529B (zh) 具有多层核壳结构的负极复合材料及其制备方法和应用
CN106654177B (zh) 一种干法制备电池电容复合电极的方法
JP5619359B2 (ja) 電極組立体及びそれを含むリチウム二次電池
JP6263823B2 (ja) 負極スラリー、負極スラリーの製造方法及び二次電池
CN109713215B (zh) 补锂负极片及其制备方法、锂离子电池
JP7128290B2 (ja) リチウム二次電池用の負極活物質及びこれを含むリチウム二次電池
CN104681857A (zh) 一种可折叠锂离子电池及其制作方法
JP6918224B2 (ja) 電極及びこれを含むリチウム二次電池
WO2014071717A1 (fr) Plaque d'électrode négative au silicium de batterie au lithium ion, son procédé de préparation et batterie au lithium ion
CN110993891A (zh) 一种含硅负极片、其制备方法及锂离子电池
JP7313362B2 (ja) バインダ分布が最適化した二次電池用負極及びこれを含む二次電池
JP2009105046A (ja) リチウム二次電池用負極及びこれを用いたリチウム二次電池
CN114068857A (zh) 一种电极片的制备方法及其应用
JP5393414B2 (ja) 全固体リチウム二次電池の再生方法
JP2021531619A (ja) リチウム二次電池用負極活物質及びそれを含む二次電池
TWI331817B (en) Cathode of lithium ion battery, method for manufacturing the same and lithium ion battery using the cathode
WO2021036955A1 (fr) Pièce polaire négative, batterie rechargeable au lithium et dispositif ayant une batterie rechargeable au lithium
CN109638231A (zh) 氧化亚硅复合负极材料及其制备方法和锂离子电池
JP2022534760A (ja) ケイ素主体アノードセルにおける電極の直接コーティング
WO2019095355A1 (fr) Procédé de préparation d'un matériau composite qui contient un polymère conducteur qui contient du soufre
WO2023122922A1 (fr) Électrolyte composite et batterie à semi-conducteur le comprenant
WO2020125442A1 (fr) Matériau composite d'aluminium-carbone et son procédé de préparation, électrode négative, batterie secondaire et appareil électrique
TW201922884A (zh) 含硫導電聚合物之複合材料的製備方法
JP2002025540A (ja) 非水電解質二次電池および非水電解質二次電池用極板の製造方法
CN111554899A (zh) 一种电极浆料的混料方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932305

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17932305

Country of ref document: EP

Kind code of ref document: A1