WO2019093321A1 - ガラスパネル - Google Patents
ガラスパネル Download PDFInfo
- Publication number
- WO2019093321A1 WO2019093321A1 PCT/JP2018/041178 JP2018041178W WO2019093321A1 WO 2019093321 A1 WO2019093321 A1 WO 2019093321A1 JP 2018041178 W JP2018041178 W JP 2018041178W WO 2019093321 A1 WO2019093321 A1 WO 2019093321A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- suction hole
- glass
- metal material
- glass panel
- pair
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/6612—Evacuated glazing units
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C27/00—Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
- C03C27/06—Joining glass to glass by processes other than fusing
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/663—Elements for spacing panes
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/663—Elements for spacing panes
- E06B3/66304—Discrete spacing elements, e.g. for evacuated glazing units
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/677—Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
- E06B3/6775—Evacuating or filling the gap during assembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/249—Glazing, e.g. vacuum glazing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B80/00—Architectural or constructional elements improving the thermal performance of buildings
- Y02B80/22—Glazing, e.g. vaccum glazing
Definitions
- a gap formed by aligning a pair of glass plates and the pair of glass plates with a spacer interposed between the glass plates and bonding the peripheral portion of the pair of glass plates And the peripheral sealing metal material for airtightly forming the gap portion, and one glass plate of the pair of glass plates has a suction hole penetrating to the front and back in the glass plate, and the inside of the gap portion
- the present invention relates to a glass panel in which the air is sucked and depressurized and the suction holes are sealed with a metal material for suction hole sealing having a thermal expansion coefficient different from that of the pair of glass plates.
- the inventors adopted, for example, a method of solidifying the sealing material for sealing the suction hole by dropping the metal material for sealing the suction hole from above the suction hole and maintaining an airtight state. Since the thermal expansion coefficient of the suction hole sealing metal material is larger than that of the glass plate, the reaction force resulting from the thermal contraction of the suction hole sealing metal material causes the tensile stress to be internal stress around the suction hole on the gap side. It turned out to occur. Moreover, the atmospheric pressure by depressurizing the gap of the sheet glass also generates tensile stress as an internal stress around the suction hole on the gap side.
- an object of the present invention is to solve the problem of the strength around the suction hole on the gap side due to the suction hole sealing metal material and the internal stress due to the pressure reduction, and to provide a more safe glass panel. is there.
- the feature composition of the glass panel concerning the present invention is a gap part formed by arranging a pair of glass plates and the pair of glass plates by interposing a spacer between these glass plates. And a peripheral sealing metal material for airtightly forming the gap by joining the peripheral portions of the pair of glass plates, one of the glass plates of the pair is the glass plate.
- the suction holes are formed to penetrate through the front and back, and the air in the gap is sucked to reduce the pressure, and the suction holes are sealed with a metal material for suction hole sealing having a thermal expansion coefficient different from that of the pair of glass plates.
- the first tensile stress Fa generated by the suction hole sealing metal material and the second tensile stress Fb generated on the side of the gap around the suction hole due to pressure reduction are respectively expressed by the following formulas (1a) and (1b).
- Fa (-0.0157 Tg + 0.1 945) * Dw * Dg (1a)
- Fb 0.0361 Pd 2 / Tg 2.2 (1 b)
- the sum of the first tensile stress Fa and the second tensile stress Fb should be smaller than the long-term allowable stress of the glass edge, and the equation (1) can be obtained using the equations (1a) and (1b). According to the above equation (1), the sum of the first tensile stress Fa and the second tensile stress Fb is kept smaller than the long-term allowable stress Fc of the glass edge by adjusting the protrusion diameter Dw appropriately, and stress concentration It can prevent the destruction of the glass.
- the protrusion diameter Dw of the suction hole sealing metal material may be fixed and set so as to satisfy the following formula (2).
- Dg ⁇ (Fc ⁇ 0.0361Pd 2 / Tg 2.2 ) / ⁇ ( ⁇ 0.0157Tg + 0.1945) * Dw ⁇ (2)
- the first tensile stress Fa be set so as to satisfy the following equation (4).
- the suction hole sealing metal material 15 may be solidified by dropping from above the suction hole to maintain an airtight state.
- the metal material 15 for sealing a suction hole may be in close contact with the glass surface and may further infiltrate into the suction hole 4.
- the risk of damage due to internal stress around the suction hole 4 can be reduced by setting the thickness Tg of the glass plate, the pillar interval Pd, the diameter Dw and the thickness Dg of the protrusion 16.
- the spacer is composed of a plurality of pillars sandwiched in a matrix at a predetermined pitch Pd so as to maintain a predetermined distance between the pair of glass plates, and the pillars It may be arranged at a pitch narrower than the pitch of other parts in the vicinity. According to the same configuration, when the pillar interval is narrowed, the second tensile stress Fb generated on the side of the gap around the suction hole is reduced along with the pressure reduction.
- the spacer is composed of a plurality of pillars sandwiched in a matrix at a predetermined pitch so as to maintain a predetermined distance between the pair of glass plates, and at least one other different from the plurality of pillars
- the pillar may be provided closer to the suction hole than the plurality of pillars.
- the width of the peripheral sealing metal material in a thickness direction view with respect to a plane of the glass panel is preferably 1 to 10 mm.
- the thickness of at least one of the pair of glass plates is preferably 0.3 to 15 mm.
- the width of the protrusion may be 2 to 30 mm.
- the thickness of the protrusion may be 0.1 to 20 mm.
- the pitch of the spacers may be 5 to 100 mm.
- the diameter of the suction hole may be 2 to 10 mm.
- an edge of at least the gap of the suction hole is formed in a curved surface or chamfered.
- the strength problem around the suction hole on the gap side due to the metal material for sealing the suction hole and the internal stress due to the pressure reduction is solved, and the safety is improved. It came to be able to provide an excellent glass panel.
- the glass panel P is formed by interposing a plurality of columnar spacers 2 with a constant spacer pitch Pd in a matrix shape between a pair of opposing glass plates 1A and 1B and a pair of glass plates 1A and 1B.
- a gap V to be formed, a peripheral sealing metal material 3 for sealing the peripheral portion V1 of the gap V, and a suction hole 4 penetrating one glass plate 1A of the pair of glass plates 1A and 1B Have.
- the suction hole 4 is sealed with a suction hole sealing metal material 15 which extends to cover the suction hole 4.
- the two glass plates 1A and 1B are transparent float glass, and the gap V is depressurized to 1.33 Pa (1.0 ⁇ 10 -2 Torr) or less. This is because the air in the gap V is depressurized by discharging the air inside the air through the suction hole 4, and the peripheral sealing metal material 3 and the suction hole are sealed to maintain the depressurized state of the gap V It is sealed by the metal material 15 for the purpose.
- the spacer 2 is cylindrical and has a diameter of about 0.3 to 1.0 mm and a height of about 30 ⁇ m to 1.0 mm.
- the spacer 2 is a material which does not buckle even when subjected to a compressive stress caused by the atmospheric pressure acting on the glass plates 1A and 1B, for example, a compressive strength of 4.9 ⁇ 10 8 Pa (5 ⁇ 10 3 kgf / cm 2 ) It is formed of the above material, preferably stainless steel (SUS 304) or the like.
- FIG. 3 is a flowchart showing a method of manufacturing the glass panel P of FIG.
- two glass base plates (not shown) of predetermined thickness made of float glass are respectively cut into predetermined dimensions, for example, 1200 mm ⁇ 900 mm, and glass plates 1A and 1B having the same shape and size are prepared.
- the suction hole 4 is drilled in the vicinity of one of the four corners of the glass plate 1A by a drill or the like (Step S32) (drilling step).
- a pair of glass plates using at least one method of pure water brush washing, liquid washing and light washing 1A and 1B are washed (step S33) (washing step).
- the cleaning solution contains, for example, an alkaline detergent or ozone water.
- an abrasive may be contained in the cleaning solution.
- the abrasive for example, fine particles containing cerium oxide as a main component are used.
- a plurality of spacers 2 are arranged in a matrix at a constant spacer pitch Pd on the cleaned glass plate 1B in which the suction holes 4 are not provided, and the cleaned glass plates 1A are overlapped to form a pair of The glass plates 1A and 1B are paired (step S34).
- step S35 peripheral sealing
- FIG. 4 is a diagram used to describe peripheral sealing in step S35 of FIG.
- the metal introducing device 5 has a surface plate 6 formed in a step shape having a high portion 6a and a low portion 6b lower than the high portion 6a, and the high portion 6a has a pair of glass plates 1A , And 1B, and the supply tower 7 that supplies solder to the pair of glass plates 1A and 1B in the lower portion 6b.
- the lower portion 6b of the step-like surface plate 6 two rail members 12 are disposed along the pair of glass plates 1A and 1B, and the feed tower 7 is disposed on the moving mechanism 13 traveling on the rail members 12. Is placed on the
- the feed tower 7 includes a ridge portion 9 having a rectangular cross-sectional shape for storing liquid phase or solid phase solder, and an electrothermal heater 10 incorporated in the side wall portion of the ridge portion 9 and heating the solder stored in the ridge portion 9. And an introduction passage 11 having a long cross section, which communicates with the bottom of the collar 7 and opens toward the outside of the peripheral portion V1 of the pair of glass plates 1A and 1B; And an introduction plate 8.
- the lead-in plate 8 is extended from the lead-in path 11 and fitted into the peripheral portion V1 of the pair of glass plates 1A and 1B, whereby the solder intrudes into the gap V together with its surface tension.
- the gravity of the solder at the liquid level ⁇ H in the collar portion 9 is applied to the solder at the site of the introduction plate 8, thereby promoting the penetration of the solder into the peripheral portion V1 of the pair of glass plates 1A and 1B. .
- the introducing plate 8 may have a shape in which bending portions 8A in a state of being waved up and down several times in the moving direction are formed at two places at intervals (bellows shape). That is, by the movement of the introduction plate 8 having the bending portion 8A, the bending portion 8A having a spring action lightly rubs the surface of the glass plate, and the adhesion of the solder to the glass surface is further improved. The effect of ensuring the airtightness of Part V can be exhibited.
- the introducing plate 8 may have a bow shape having a spring action or a flat plate having no bent portion. However, for the reasons described above, the introduction plate 8 having the bending portion 8A is more advantageous.
- the introduction plate 8 is moved from the groove 14 of the pair of glass plates 1A and 1B.
- the peripheral sealing metal material 3 penetrates the entire peripheral portion V1 of the pair of glass plates 1A and 1B through the introduction plate 8.
- the peripheral portion V1 of the gap V formed between the pair of glass plates 1A and 1B is airtightly sealed by the peripheral sealing metal material 3.
- the groove portion 14 is provided at the corner of the glass panel P, and when inserting the introduction plate 8 into the gap portion V, the pair of glass plates 1A, It is a place where the corner on the side of the gap V of 1 B is chamfered.
- step S36 the suction cup 4 is attached to the main surface on the atmosphere side of the glass plate 1A so as to cover the suction hole 4 with the exhaust cup in the vicinity of the suction hole 4
- vacuuming is performed to discharge gas molecules in the gap portion V to the outside (step S36).
- the pump used in this step is not limited to the above-described rotary pump or turbo molecular pump, and may be any pump that can be connected to the exhaust cup and can be suctioned.
- the suction hole sealing metal material 15 is dropped so as to cover the suction hole 4 and the glass surface in the vicinity of the suction hole 4 and the suction hole sealing metal material 15 are adhered and sealed (Step S37 ).
- the gap V formed between the pair of glass plates 1A and 1B is sealed.
- step S33 the main surfaces of the pair of glass plates 1A and 1B are washed (step S33), and the glass surface in the vicinity of the suction holes 4 and the metal material 15 for sealing the suction holes are adhered to seal
- step S37 The respective steps up to stopping (step S37) are respectively carried out in a space where chemical contamination of air can be controlled chemically or physically.
- the pair of glass plates 1A and 1B are cleaned using a liquid cleaning method.
- the pair of glass plates 1A and 1B may be cleaned using at least one of vacuum (freezing) cleaning, UV cleaning, ozone cleaning, and plasma cleaning.
- vacuum (freezing) cleaning a cleaning method for cleaning glass plates 1A and 1B.
- disassembled or scattered from the main surface of a pair of glass plate 1A, 1B can be suppressed, and the initial performance of glass panel P can be exhibited over a long time.
- Ti is used as the peripheral sealing metal material 3 in a solder having a melting temperature of 250 ° C. or less, for example, a solder having a composition of 91.2 Sn-8.8 Zn (eutectic point temperature: 198 ° C.).
- the peripheral portion V1 of the pair of glass plates 1A and 1B is sealed using the added solder.
- the peripheral sealing metal material 3 is not limited thereto, and at least one material selected from the group consisting of Sn, Cu, In, Bi, Zn, Pb, Sb, Ga, and Ag.
- the peripheral portion V1 of the pair of glass plates 1A and 1B may be sealed using a sealing material having a melting point of 250 ° C. or less.
- the peripheral sealing metal material 3 may include at least one material selected from the group consisting of Al, Cr, and Si instead of or in addition to Ti. Thereby, the adhesiveness of the peripheral sealing metal material 3 and the glass component of a pair of glass plate 1A, 1B can be improved.
- the suction hole sealing metal material 15 a solder having a melting temperature of 250 ° C. or less, for example, a solder having a composition of 91.2 Sn-8.8 Zn (eutectic point temperature: 198 ° C.) is used.
- the suction hole 4 is sealed using the solder added.
- the suction hole sealing metal material 15 is not limited thereto, and at least one selected from the group consisting of Sn, Cu, In, Bi, Zn, Pb, Sb, Ga, and Ag.
- the suction holes 4 may be sealed using a sealing material which is a metal material containing a material and whose melting temperature is 250 ° C. or less. When Sn is selected, 90% or more is sufficient, and in the case of Sn to which Cu is added, the amount of Cu needs to be 0.1% or less.
- the suction hole sealing metal material 15 may include at least one material selected from the group consisting of Al, Cr, and Si instead of or in addition to Ti. Furthermore, the suction hole sealing metal material 15 may use solder of a component different from the peripheral sealing metal material 3. The adhesion of the glass is improved by incorporating Ti (titanium) in the suction hole sealing metal material 15 or the peripheral sealing metal material 3.
- the pressure in the gap portion V is reduced to 1.33 Pa or less.
- the present invention is not limited to this, and the pressure in the gap portion V may be reduced to substantially vacuum. Thereby, the heat insulation performance of glass panel P can further be raised.
- the lower limit of the pair of glass plate thicknesses Tg is 0.3 mm or more. Moreover, Preferably it is 0.5 mm or more. More preferably, it is 1 mm or more.
- the amount of heat stored in the glass itself decreases if the pair of glass plates has a small thickness Tg, so the amount of heat released into air per unit time increases during peripheral sealing, and the peripheral sealing metal material 3 is cooled. It is easy to be done. Therefore, it becomes possible to accelerate the solidification of the molten peripheral sealing metal material 3.
- the rigidity of a glass plate will fall when a glass plate becomes thin, the deformation amount of the glass plate by the external force of the same magnitude
- the upper limit of the pair of glass plate thicknesses Tg is 15 mm or less. Preferably, it is 12 mm or less. More preferably, it is 10 mm or less.
- the rigidity of the glass plate is increased, so the amount of deformation of the glass plate due to the same external force is reduced. Therefore, in the glass panel P, since the tensile stress generated near the surface of the suction hole 4 on the side of the gap is reduced, the long-term durability is improved.
- the glass plate thickness Tg is increased, the amount of inflow of the suction hole sealing metal material 15 into the suction holes 4 is reduced when the suction holes are sealed. Therefore, the protrusion of the suction hole sealing metal material 15 on the gap side becomes small, and it becomes difficult to relieve the tensile stress generated in the vicinity of the surface of the suction hole 4 on the gap side.
- a pair of glass plate 1A, 1B is float glass, it is not restricted to this.
- the pair of glass plates 1A and 1B may be, for example, template glass, frosted glass provided with a light diffusing function by surface treatment, meshed glass, lined glass plate, tempered glass, double tempered glass according to the application as described above.
- Various glasses such as low reflection glass, high transmission glass plate, ceramic glass plate, special glass having a heat ray or ultraviolet absorbing function, or a combination thereof can be appropriately selected and used.
- soda silica glass, soda lime glass, borosilicate glass, aluminosilicate glass, various kinds of crystallized glass and the like can be used.
- the beveled portion 14 chamfers the corner portion on the gap portion V side of the glass plates 1A and 1B into a planar shape, but the present invention is not limited to this. If it is a form which makes insertion board 8 easy to insert, it can select suitably and can provide in glass board 1A and 1B.
- the spacer pitch Pd is 5 to 100 mm, preferably 5 to 80 mm, more preferably 5 to 60 mm.
- the spacer 2 is formed of stainless steel, it is not limited to this.
- the spacer 2 is, for example, metal such as inconel, iron, aluminum, tungsten, nickel, chromium, titanium, carbon steel, chromium steel, nickel steel, nickel chromium steel, manganese steel, chromium manganese steel, chromium molybdenum steel, silicon steel, It may be formed of an alloy such as brass, solder, duralumin, or one having high rigidity such as ceramic or glass.
- the spacer 2 is not limited to a cylindrical shape, and may have various shapes such as an angular shape or a spherical shape.
- the gap height Vh is 30 ⁇ m to 1 mm.
- the height of the spacer 2 is substantially the same.
- an evaporation getter is used to adsorb gas molecules in the gap V, or a non-evaporation getter that adsorbs and removes gas molecules by heating and activation is used.
- the non-evaporable getter and the evaporable getter may be used in combination.
- the getter material (adsorbent) and the adsorbent accommodation hole may be two or more.
- peripheral sealing metal material 3 is formed using the metal introduction device 5, it is not limited to this.
- the peripheral sealing metal material 3 may be formed using any one of an anodic bonding method, an ultrasonic bonding method, a multistage bonding method, a laser bonding method and a pressure bonding method. Thereby, the adhesiveness to the pair of glass plates 1A and 1B of the peripheral sealing metal material 3 can be improved.
- the width Rw of the peripheral sealing metal material 3 in the thickness direction view with respect to the plane of the glass panel P is 1 mm or more and 10 mm or less. If the width Rw is smaller than 1 mm, it will be difficult to maintain the seal of the gap V of the glass panel P. If it exceeds 10 mm, the amount of heat exchange generated through the peripheral sealing metal material 3 becomes excessive. More preferably, the width Rw is 1 mm or more and 5 mm or less. In this case, in addition to holding the sealing of the gap V of the glass panel P, the amount of heat exchange can be further reduced.
- a portion where the suction hole sealing metal material 15 after sealing protrudes from the atmosphere side surface of the glass plate 1A is referred to as a protruding portion 16.
- the protrusion diameter Dw of the protrusion 16 (the same as the width of the contact portion 33 in contact with the glass plate 1A of FIG. 1) is 2 to 30 mm. More preferably, it is 2 to 15 mm. However, the protrusion diameter Dw is larger than the suction hole diameter Sw in any case. Further, the protrusion thickness Dg of the protrusion 16 is 0.1 to 20 mm. Preferably, it is 0.1 to 10 mm. In addition, the contraction stress which generate
- the suction hole diameter Sw is 2 to 10 mm. Preferably, it is 2 to 5 mm. In the case of tempered glass, the suction pore size Sw is preferably larger than the glass thickness and 10 mm or less. This is to allow the wind to pass through the suction holes 4 at the time of air cooling and strengthening.
- At least the lower edge of the suction hole 4 may be formed in a curved shape or may be chamfered (a small surface may be provided on the edge).
- the suction hole sealing metal material 15 is self-weighted by a mass of solder provided above the supply port, a heater for heating and melting the same, and a dropping device for dropping the molten suction hole sealing metal material 15.
- the inside of the guide cylinder 20 is dropped.
- the molten suction hole sealing metal material 15 spreads on the surface on the atmosphere side of the glass plate 1A and forms a protrusion 16 in accordance with the inner diameter of the guide cylinder 20.
- the protrusion 16 in the suction hole sealing metal material 15 generates a solder contraction stress Fa1 due to the cooling.
- the thermal expansion coefficient of the glass plate 1A (for example, 8 to 9 ⁇ 10 ⁇ 6 / ° C. (normal temperature to 350 ° C. for float glass in general) is the thermal expansion coefficient of the suction hole sealing metal material 15 (for example, this embodiment) In the form, it is smaller than 24 ⁇ 10 ⁇ 6 / ° C., and ordinary solder is about 15 ⁇ 10 ⁇ 6 / ° C. to 30 ⁇ 10 ⁇ 6 / ° C.), thus producing an upper compressive stress Fa 2.
- This upper compressive stress Fa 2 The reaction force is generated as a first tensile stress Fa (shearing force) in the vicinity of the edge 4 e of the suction hole 4 on the gap side.
- Fa first tensile stress
- the spacers 2 are arranged along the plane of the pair of glass and the plates 1A and 1B with a predetermined interval Pd (spacer pitch) in the form of a matrix.
- the spacer 2 forms a gap V and inhibits heat conduction between the pair of glass plates 1A and 1B.
- the atmospheric pressure Fb1 acts on the glass plates 1A and 1B supported by the spacer 2, and a second tensile stress Fb is generated on the gap V side of the glass plate 1A.
- FIGS. 8A to 8C are created using the results of experiments carried out using 8, 10 and 12 mm of the projection diameter Dw of the suction hole sealing metal material 15 and the numerical values derived from the results.
- FIG. FIG. 8A is a plot of the value of the protrusion thickness Dg and the corresponding value of the first tensile stress Fa. Furthermore, each plot point was grouped based on the protrusion diameter Dw, and an approximate straight line of each group was added. From this figure, the first tensile stress Fa is proportional to the protrusion thickness Dg, and the relationship can be expressed by the following equation.
- Fa A * Dg (1a-1) Fa: First tensile stress (MPa), Dg: Projection thickness of the suction hole sealing metal material 15 (mm)
- A is a proportionality coefficient (first proportionality coefficient) in equation (1a-1).
- FIG. 8A It can be seen from FIG. 8A that the first proportionality factor A is determined by the protrusion diameter Dw.
- FIG. 8B is a plot of the value of the protrusion diameter Dw and the value of the first proportionality coefficient A corresponding thereto. Furthermore, each plot point was divided into groups based on the glass sheet thickness Tg, and an approximate straight line of each group was added. From this figure, the first proportionality coefficient A is proportional to the protrusion diameter Dw, and the relationship can be expressed by the following equation.
- A B * Dw (1a-2)
- Dw Protrusion diameter of the suction hole sealing metal material 15 (mm)
- B is a proportionality coefficient (second proportionality coefficient) in equation (1a-2).
- the second proportionality factor B is determined by the glass plate thickness Tg.
- FIG. 8C plots the glass plate thickness Tg and the value of the second proportionality coefficient B corresponding thereto, and adds an approximate straight line. From this figure, the second proportionality coefficient B is proportional to the glass plate thickness Tg, and the relationship can be shown by the following equation.
- the first tensile stress Fa is as the following formula (1a).
- Tg glass plate thickness (mm)
- Dw protrusion diameter of the suction hole sealing metal material 15 (mm)
- Dg protrusion thickness of the suction hole sealing metal material 15 (mm)
- FIG. 9A is a plot of the value of the spacer pitch Pd and the corresponding value of the second tensile stress Fb. Furthermore, each plot point was grouped based on the glass sheet thickness Tg, and an approximate curve of each group was added. From this figure, the second tensile stress Fb is determined by the value of the spacer pitch Pd, and the relationship can be expressed by the following equation. The multiplier of the spacer pitch Pd is 2 by approximation.
- Fb C * Pd 2 (1b-1)
- Fb Second tensile stress (MPa)
- Pd Spacer pitch (distance) (mm)
- C is a proportionality coefficient (third proportionality coefficient) in equation (1b-1).
- the third proportional coefficient C is determined by the glass plate thickness Tg.
- FIG. 9B plots the value of the glass sheet thickness Tg and the corresponding value of the third proportional coefficient C, and adds an approximate curve. From this figure, the relationship between the third proportional coefficient C and the glass plate thickness Tg can be expressed by the following equation. By the approximation, the multiplier of the thickness Tg of the glass plate is ⁇ 2.2.
- Tg glass plate thickness (mm)
- the second tensile stress Fb is as shown by the following formula (1b).
- Fb 0.0361 Pd 2 / Tg 2.2 (1 b)
- Fb Second tensile stress
- Pd Spacer pitch (spacing mm)
- Tg Glass plate thickness (mm)
- the long-term allowable stress Fc at the edge of the glass sheet is 7 MPa.
- Fc is uniquely determined by the material, and Tg is determined by the specification. It is desirable that Pd be long in terms of heat insulation, and is determined by the heat insulation specification of the glass panel. Therefore, these elements are difficult to control. Therefore, glass breakage can be prevented in advance by controlling the protrusion thickness Dg and the diameter Dw.
- float glass is used, and the long-term allowable stress Fc at the edge of the glass plate is 7 MPa, but when tempered glass is used, Fc can be set up to 69 MPa at maximum. is there. Depending on the specification of reinforcement, Fc can be adjusted between 7 and 69 MPa. However, the effects of the present invention can be exhibited even in a numerical range including these Fc values (Fc 5 to 15 MPa for float glass and 50 to 80 MPa for tempered glass).
- the second tensile stress Fb is proportional to the square of the spacing Pd of the pillars. Therefore, the stress concentration on the edge 4 e can be reduced by reducing the distance between the pillars. According to this principle, in the embodiment of FIG. 10, the second tensile stress Fb is reduced by providing the middle pillars 2 'at half intervals of the ordinary pillars 2. Therefore, since the larger first tensile stress Fa can be accepted, the protrusion diameter Dw can be enlarged to perform more reliable sealing.
- the second tensile stress Fb generated on the side of the gap around the suction hole due to the pressure reduction is reduced by using the intermediate pillar 2 'having a short arrangement interval as a spacer.
- various configurations can be used as long as the spacing between pillars is shorter than the usual spacing around the suction holes 4 as a spacer.
- another reinforcing pillar 2 ′ ′ may be provided without providing the intermediate pillar 2 ′.
- the intermediate pillars 2 'and the reinforcing pillars 2 may be the same as or different from the ordinary pillars.
- the suction hole sealing metal material (solder) 15 is dropped and solidified, but may be supplied and solidified by a method other than dropping.
- the present invention can be used as a glass panel with high thermal insulation performance.
- a glass panel with high thermal insulation performance For example, use as a heat insulating glass panel that requires long-term durability, for construction, for vehicles (window glass of cars, railway cars, ships etc.), or for doors and walls of various devices such as refrigerators and heat retention devices.
- a heat insulating glass panel that requires long-term durability, for construction, for vehicles (window glass of cars, railway cars, ships etc.), or for doors and walls of various devices such as refrigerators and heat retention devices.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Joining Of Glass To Other Materials (AREA)
- Securing Of Glass Panes Or The Like (AREA)
Abstract
Description
Dw<=(Fc-0.0361Pd2/Tg2.2)/{(-0.0157Tg+0.1945)*Dg} ・・・(1)
但し、Fc:ガラスエッジの長期許容応力、Tg:ガラス板厚み(mm)、Dw:吸引孔封止用金属材料の突出部直径(mm)、Dg:吸引孔封止用金属材料の突出部厚み(mm)、Pd:スペーサーピッチ(mm)
Fa=(-0.0157Tg+0.1945)*Dw*Dg (1a)
Fb=0.0361Pd2/Tg2.2 (1b)
上記式(1)によれば、突出部直径Dwを適宜調整することで、第一引張応力Fa、第二引張応力Fbの合算を、ガラスエッジの長期許容応力Fcより小さく維持し、応力集中によるガラスの破壊を防ぐことができる。
Dg<=(Fc-0.0361Pd2/Tg2.2)/{(-0.0157Tg+0.1945)*Dw} ・・・(2)
これにより、突出部厚みDgを適宜調整することで、上記同様に応力集中によるガラスの破壊を防ぐことができる。
Fa=(-0.0157Tg+0.1945)*Dw*Dg<=5MPa (3)
Fa=(-0.0157Tg+0.1945)*Dw*Dg<=3MPa (4)
安全率を2未満で設定し、応力のばらつきを考慮した結果による。
同構成により、吸引孔封止用金属材料15はガラス面に密着し、さらに吸引孔4に浸入する場合もある。
同構成によれば、ピラー間隔が狭くなることにより、前記減圧に伴い前記吸引孔周囲の間隙部側において生じる第二引張応力Fbが減少するからである。
同様の理由により、前記スペーサーは、前記一対のガラス板間に所定の間隔を保持すべく所定のピッチでマトリックス状に挟持された複数のピラーよりなり、前記複数のピラーと異なる少なくとも一つの他のピラーを前記複数のピラーよりも前記吸引孔に近接させて設けてもよい。
図1において、ガラスパネルPは、対向する一対のガラス板1A,1Bと、一対のガラス板1A,1B間に、マトリックス状に一定のスペーサーピッチPdで複数の柱状のスペーサー2を介在させることにより形成される間隙部Vと、間隙部Vの周縁部V1をシールする周辺封止用金属材料3と、一対のガラス板1A,1Bの内の一方のガラス板1Aを貫通する吸引孔4とを有する。吸引孔4は、その吸引孔4の周りにまで至って覆う吸引孔封止用金属材料15で封止されてある。
まず、フロートガラスから成る所定の厚さの2枚のガラス素板(不図示)を所定の寸法、例えば、1200mm×900mmに夫々切断し、同一形状且つ同一サイズであるガラス板1A,1Bを準備し(ステップS31)、ガラス板1Aに、その四隅のうちいずれか1つの近傍において吸引孔4をドリル等によって穿設する(ステップS32)(穿設ステップ)。
図4において、金属導入装置5は、高部6aと、高部6aより低い低部6bとを有して段差状に形成された定盤6を有し、高部6aにおいて一対のガラス板1A,1Bを保持すると共に、低部6bにおいて一対のガラス板1A,1Bにハンダを供給する供給塔7を保持する。段差状定盤6の低部6bには、上記一対のガラス板1A,1Bに沿って2本のレール部材12が配され、上記供給塔7はレール部材12上を走行する移動機構13の上に載置されている。
つまり、屈曲部8Aを有する導入板8の移動によって、バネ作用を有する屈曲部8Aが、ガラス板の表面を軽く擦りつけるようになり、ハンダのガラス面への付着性をより向上させて、間隙部Vの気密性が確実化される効果を発揮できるようになる。
これにより、一対のガラス板1A,1B間に形成された間隙部Vが密閉される。
尚、Snを選択した場合、90%以上あればよく、また、Cuを添加したSnの場合、Cuの量は、0.1%以下にする必要がある。
さらに、吸引孔封止用金属材料15は、周辺封止用金属材料3と異なる成分のハンダを用いても良い。
尚、吸引孔封止用金属材料15または周辺封止用金属材料3にTi(チタン)を含有させることにより、ガラスの密着性が向上する。
さらに、一対のガラス板1A,1Bの組成についても、ソーダ珪酸ガラス、ソーダ石灰ガラス、ホウ珪酸ガラス、アルミノ珪酸ガラス、各種結晶化ガラス等を使用することができる。
また、突出部16の突出部厚みDgは0.1~20mmである。好ましくは、0.1~10mmである。
尚、突出部16とガラス板1Aとの接触面が広いほど、発生する収縮応力が大きくなる。また、突出部直径Dwが小さいほど、吸引孔4を正確に封止する難易度が上がる。
因みに、フリットで封止する真空ガラスでは、ガラスとフリットとの間で熱膨張差がないため、封止温度が高く(500℃)ても応力の影響は小さかったために、大気圧を考慮した強度設計(ガラス厚みTgとピラー間隔Pd)をすれば良かった。
しかし、フリットに比べ、ハンダは、ガラスとの濡れ性が悪いために、封止に多くの体積が必要となる。この体積(DgとDw)によって応力が発生するために、強度設計に考慮しなければならないことを新たに見出し、第1引張応力Faの導入に至った。
つまり、ハンダを高温で封止するには熱膨張差が大きく封止は不可能で、250℃以下という温度範囲で実施可能となることを見出した。
例えば、スズ(Sn)ハンダ全般の溶融温度である180℃~250℃の温度範囲、あるいは、熱膨張係数15~30×10-6/℃である。
図8Aは、突出部厚みDgの値とそれに対応する第一引張応力Faの値とをプロットしたものである。さらに、各プロット点を突出部直径Dwに基づきグループ分けし、それぞれのグループの近似直線を追加した。この図より、前記第一引張応力Faは、突出部厚みDgに比例しており、その関係は、以下の式で示すことができる。
Fa:第一引張応力(MPa)、Dg:吸引孔封止用金属材料15の突出部厚み(mm)
ここで、Aは式(1a-1)における比例係数(第一比例係数)である。
図8Bは、突出部直径Dwの値とそれに対応する第一比例係数Aの値とをプロットしたものである。さらに、各プロット点をガラス板厚みTgに基づきグループ分けし、それぞれのグループの近似直線を追加した。この図より、第一比例係数Aは、突出部直径Dwに比例しており、その関係は、以下の式で示すことができる。
A:第一比例係数、Dw:吸引孔封止用金属材料15の突出部直径(mm)
ここで、Bは式(1a-2)のおける比例係数(第二比例係数)である。
図8Cは、ガラス板厚みTgとそれに対応する第二比例係数Bの値とをプロットし、近似直線を追加したものである。この図より、第二比例係数Bは、ガラス板厚みTgに比例しており、その関係は、以下の式で示すことができる。
B:第二比例係数、Tg:ガラス板厚み(mm)
Tg:ガラス板厚み(mm)、Dw:吸引孔封止用金属材料15の突出部直径(mm)、Dg:吸引孔封止用金属材料15の突出部厚み(mm)
Fb:第二引張応力(MPa)、Pd:スペーサーピッチ(間隔)(mm)
ここで、Cは式(1b-1)における比例係数(第三比例係数)である。
図9Bは、ガラス板厚みTgの値とそれに対応する第三比例係数Cの値とをプロットし、近似曲線を追加したものである。この図より、第三比例係数Cとガラス板厚みTgとの関係は、以下の式で示すことができる。なお、近似により、ガラス板の厚みTgの乗数は-2.2としている。
C:第三比例係数、Tg:ガラス板厚み(mm)
Fb:第二引張応力、Pd:スペーサーピッチ(間隔mm)、Tg:ガラス板厚み(mm)
Dw<=(Fc-0.0361Pd2/Tg2.2)/{(-0.0157Tg+0.1945)*Dg} ・・・(1)
Dg<=(Fc-0.0361Pd2/Tg2.2)/{(-0.0157Tg+0.1945)*Dw} ・・・(2)
これにより、突出部直径Dw及び厚みDgを適宜調整することで、応力集中によるガラス板の破壊を防止することができる。
以下に他の実施の形態を説明する。
なお、以下の他の実施形態において、上記実施形態と同様の部材には同一の符号を附してある。
Claims (14)
- 一対のガラス板と、前記一対のガラス板をこれらガラス板間にスペーサーを介在させて配向配置することにより形成される間隙部と、前記一対のガラス板の周縁部を接合することにより前記間隙部を気密に構成する周辺封止用金属材料とを備え、前記一対のガラス板の内の一方のガラス板は、そのガラス板において表裏に貫通する吸引孔を有し、前記間隙部内の空気を吸引して減圧すると共に前記吸引孔を前記一対のガラス板と熱膨張係数が異なる吸引孔封止用金属材料で封止してあるガラスパネルであって、
前記吸引孔封止用金属材料は、前記吸引孔上で気密状態を保つものであり、
前記吸引孔封止用金属材料は、前記吸引孔と平面視で同心円状に形成してあり、
次式(1)を満たすガラスパネル。
Dw<=(Fc-0.0361Pd2/Tg2.2)/{(-0.0157Tg+0.1945)*Dg} ・・・(1)
但し、 Tg:ガラス板厚み(mm)、Dw:吸引孔封止用金属材料の突出部直径(mm)、Dg:吸引孔封止用金属材料の突出部厚み(mm)、Pd:スペーサーピッチ(mm)、Fc:ガラスエッジの長期許容応力 - 前記吸引孔封止用金属材料の突出部直径Dwが固定であり、次式(2)を満たすように設定されている請求項1記載のガラスパネル。
Dg<=(Fc-0.0361Pd2/Tg2.2)/{(-0.0157Tg+0.1945)*Dw} ・・・(2) - 第一引張応力Faが、次式(3)を満たすように設定されている請求項1又は2に記載のガラスパネル。
Fa=(-0.0157Tg+0.1945)*Dw*Dg<=5MPa (3) - 第一引張応力Faが、次式(4)を満たすように設定されている請求項1又は2に記載のガラスパネル。
Fa=(-0.0157Tg+0.1945)*Dw*Dg<=3MPa (4) - 前記吸引孔封止用金属材料は、前記吸引孔上より滴下することにより固化して気密状態を保つものである請求項1~4のいずれかに記載のガラスパネル。
- 前記スペーサーは、前記一対のガラス板間に所定の間隔を保持すべく所定のピッチでマトリックス状に挟持された複数のピラーよりなり、
前記ピラーは、前記吸引孔の近傍において他の部分のピッチよりも狭いピッチで配置されている請求項1~5のいずれかに記載のガラスパネル。 - 前記スペーサーは、前記一対のガラス板間に所定の間隔を保持すべく所定のピッチでマトリックス状に挟持された複数のピラーよりなり、
前記複数のピラーと異なる少なくとも一つの他のピラーを前記複数のピラーよりも前記吸引孔に近接させて設けてある請求項1~6のいずれかに記載のガラスパネル。 - 前記ガラスパネルの平面に対する厚み方向視における前記周辺封止用金属材料の幅が、1~10mmである請求項1~7のいずれかに記載のガラスパネル。
- 前記一対のガラス板の少なくとも一方の厚みが、0.3~15mmである請求項1~8のいずれかに記載のガラスパネル。
- 前記突出部の幅が、2~30mmである請求項1~9のいずれかに記載のガラスパネル。
- 前記突出部の厚みが、0.1~20mmである請求項1~10のいずれかに記載のガラスパネル。
- 前記スペーサーのピッチが、5~100mmである請求項1~11のいずれかに記載のガラスパネル。
- 前記吸引孔の直径が、2~10mmである請求項1~12のいずれかに記載のガラスパネル。
- 前記吸引孔の少なくとも下部の縁部は曲面状に形成され、または面取りされている請求項1~13のいずれかに記載のガラスパネル。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019552804A JPWO2019093321A1 (ja) | 2017-11-10 | 2018-11-06 | ガラスパネル |
US16/761,730 US10988972B2 (en) | 2017-11-10 | 2018-11-06 | Glass panel |
CN201880071628.7A CN111315703B (zh) | 2017-11-10 | 2018-11-06 | 玻璃面板 |
KR1020207016133A KR102391705B1 (ko) | 2017-11-10 | 2018-11-06 | 글라스 패널 |
EP18875408.9A EP3708550A4 (en) | 2017-11-10 | 2018-11-06 | GLASS PANEL |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017217841 | 2017-11-10 | ||
JP2017-217841 | 2017-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019093321A1 true WO2019093321A1 (ja) | 2019-05-16 |
Family
ID=66439187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/041178 WO2019093321A1 (ja) | 2017-11-10 | 2018-11-06 | ガラスパネル |
Country Status (6)
Country | Link |
---|---|
US (1) | US10988972B2 (ja) |
EP (1) | EP3708550A4 (ja) |
JP (1) | JPWO2019093321A1 (ja) |
KR (1) | KR102391705B1 (ja) |
CN (1) | CN111315703B (ja) |
WO (1) | WO2019093321A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021525212A (ja) * | 2018-05-25 | 2021-09-24 | エージーシー グラス ユーロップAgc Glass Europe | 高性能の真空絶縁グレージングユニット |
RU2818173C1 (ru) * | 2019-09-04 | 2024-04-25 | Гластон Джермани Гмбх | Способ и устройство для сборки изоляционных стеклянных панелей, а также изоляционная стеклянная панель, полученная таким образом |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12043574B2 (en) * | 2018-05-30 | 2024-07-23 | Panasonic Intellectual Property Management Co., Ltd. | Glass panel unit manufacturing method |
US11609038B2 (en) * | 2018-11-08 | 2023-03-21 | Lg Electronics Inc. | Panel assembly, refrigerator, and home appliances |
CN112945711B (zh) * | 2021-01-22 | 2023-03-28 | 吉林大学 | 一种薄板对焊焊缝多角度拉伸试验专用夹具 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07508967A (ja) * | 1992-01-31 | 1995-10-05 | ザ ユニバーシテイ オブ シドニイ | 熱絶縁ガラスパネルの改良 |
JPH09268035A (ja) | 1996-04-03 | 1997-10-14 | Nippon Sheet Glass Co Ltd | 複層ガラス |
JP2002137940A (ja) | 2000-10-31 | 2002-05-14 | Nippon Sheet Glass Co Ltd | ガラスパネルの製造方法とそのガラスパネル |
JP2002241149A (ja) * | 2001-02-14 | 2002-08-28 | Nippon Sheet Glass Co Ltd | ガラスパネル |
JP2011068532A (ja) * | 2009-09-28 | 2011-04-07 | Hitachi Metals Ltd | 溶融金属の充填装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2621397A (en) * | 1949-01-27 | 1952-12-16 | Pittsburgh Plate Glass Co | Pore hole seal for double windows |
US2887737A (en) * | 1954-07-12 | 1959-05-26 | Pittsburgh Plate Glass Co | Sealing means for glazing unit |
JP3828341B2 (ja) * | 1996-06-17 | 2006-10-04 | 日本板硝子株式会社 | 真空複層ガラス |
WO2001047827A1 (fr) * | 1999-12-24 | 2001-07-05 | Nippon Sheet Glass Co., Ltd. | Procede de production de panneau de verre et panneau de verre |
JP2002187743A (ja) * | 2000-12-21 | 2002-07-05 | Nippon Sheet Glass Co Ltd | ガラス孔の封止方法 |
JP2002187745A (ja) * | 2000-12-21 | 2002-07-05 | Nippon Sheet Glass Co Ltd | ガラスパネルの製造方法 |
JP2003192399A (ja) * | 2001-12-25 | 2003-07-09 | Nippon Sheet Glass Co Ltd | ガラスパネル吸引孔用蓋体とその蓋体の使用方法 |
JP2003192400A (ja) * | 2001-12-25 | 2003-07-09 | Nippon Sheet Glass Co Ltd | ガラスパネル |
US9371683B2 (en) * | 2012-05-18 | 2016-06-21 | Guardian Industries Corp. | Method and apparatus for making vacuum insulated glass (VIG) window unit including pump-out tube |
KR101402552B1 (ko) * | 2012-09-18 | 2014-06-02 | 주식회사 에피온 | 진공유리 패널 및 그 제조 방법 |
WO2015006847A1 (en) * | 2013-07-19 | 2015-01-22 | Litezone Technologies Inc. | Pressure compensated glass unit |
-
2018
- 2018-11-06 JP JP2019552804A patent/JPWO2019093321A1/ja active Pending
- 2018-11-06 EP EP18875408.9A patent/EP3708550A4/en not_active Withdrawn
- 2018-11-06 CN CN201880071628.7A patent/CN111315703B/zh active Active
- 2018-11-06 KR KR1020207016133A patent/KR102391705B1/ko active IP Right Grant
- 2018-11-06 WO PCT/JP2018/041178 patent/WO2019093321A1/ja unknown
- 2018-11-06 US US16/761,730 patent/US10988972B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07508967A (ja) * | 1992-01-31 | 1995-10-05 | ザ ユニバーシテイ オブ シドニイ | 熱絶縁ガラスパネルの改良 |
JPH09268035A (ja) | 1996-04-03 | 1997-10-14 | Nippon Sheet Glass Co Ltd | 複層ガラス |
JP2002137940A (ja) | 2000-10-31 | 2002-05-14 | Nippon Sheet Glass Co Ltd | ガラスパネルの製造方法とそのガラスパネル |
JP2002241149A (ja) * | 2001-02-14 | 2002-08-28 | Nippon Sheet Glass Co Ltd | ガラスパネル |
JP2011068532A (ja) * | 2009-09-28 | 2011-04-07 | Hitachi Metals Ltd | 溶融金属の充填装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3708550A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021525212A (ja) * | 2018-05-25 | 2021-09-24 | エージーシー グラス ユーロップAgc Glass Europe | 高性能の真空絶縁グレージングユニット |
JP7337849B2 (ja) | 2018-05-25 | 2023-09-04 | エージーシー グラス ユーロップ | 高性能の真空絶縁グレージングユニット |
RU2818173C1 (ru) * | 2019-09-04 | 2024-04-25 | Гластон Джермани Гмбх | Способ и устройство для сборки изоляционных стеклянных панелей, а также изоляционная стеклянная панель, полученная таким образом |
Also Published As
Publication number | Publication date |
---|---|
CN111315703B (zh) | 2022-11-29 |
JPWO2019093321A1 (ja) | 2020-12-17 |
EP3708550A4 (en) | 2021-06-16 |
KR20200075878A (ko) | 2020-06-26 |
US10988972B2 (en) | 2021-04-27 |
EP3708550A1 (en) | 2020-09-16 |
KR102391705B1 (ko) | 2022-04-27 |
US20200332588A1 (en) | 2020-10-22 |
CN111315703A (zh) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019093321A1 (ja) | ガラスパネル | |
CN111315704B (zh) | 玻璃面板和玻璃窗 | |
JP4049607B2 (ja) | ガラスパネルの製造方法とその方法で製造されたガラスパネル | |
JP2005320229A (ja) | 減圧ガラスパネル及びその製造方法 | |
KR102391704B1 (ko) | 글라스 패널 | |
WO2019093323A1 (ja) | ガラスパネル | |
WO2019093325A1 (ja) | ガラスパネル | |
JPWO2003000613A1 (ja) | ガラスパネルの製造方法 | |
JP2002167246A (ja) | ガラスパネルの製造方法 | |
CN111295363B (zh) | 玻璃面板的制造方法和玻璃面板 | |
WO2019093326A1 (ja) | 溶融金属供給装置、これを用いたガラスパネルの製法及びガラスパネル | |
JP2002255591A (ja) | ガラスパネルの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18875408 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019552804 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207016133 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018875408 Country of ref document: EP Effective date: 20200610 |