WO2019093037A1 - 液晶配向剤、液晶配向膜及び液晶素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶素子 Download PDF

Info

Publication number
WO2019093037A1
WO2019093037A1 PCT/JP2018/037278 JP2018037278W WO2019093037A1 WO 2019093037 A1 WO2019093037 A1 WO 2019093037A1 JP 2018037278 W JP2018037278 W JP 2018037278W WO 2019093037 A1 WO2019093037 A1 WO 2019093037A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
polymer
aligning agent
Prior art date
Application number
PCT/JP2018/037278
Other languages
English (en)
French (fr)
Inventor
拓也 村上
裕矢 前田
伸夫 安池
岡田 敬
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2019552662A priority Critical patent/JP7074141B2/ja
Priority to CN201880060292.4A priority patent/CN111095092B/zh
Priority to KR1020207009461A priority patent/KR102323108B1/ko
Publication of WO2019093037A1 publication Critical patent/WO2019093037A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present disclosure relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal element.
  • Liquid crystal elements are widely used in televisions, mobile devices, various monitors, and the like.
  • the amount of light transmission is adjusted by controlling the alignment of liquid crystal molecules in the liquid crystal cell by the liquid crystal alignment film, and various functions (for example, display function and light control function) as the liquid crystal element are realized. ing.
  • the liquid crystal alignment film is also required to further improve its performance, and various liquid crystal alignment agents have been proposed to realize this (for example, patent) See documents 1 to 3).
  • Patent Document 1 discloses a liquid crystal aligning agent for obtaining a liquid crystal alignment film having a small volume resistance value in order to reduce so-called "burn-in" in which a displayed image remains as an afterimage even after switching the image.
  • This liquid crystal aligning agent contains a polyamic acid or derivative thereof obtained using a diamine having a specific structure in which a nitrogen atom is protected by a tert-butoxycarbonyl group.
  • Patent Document 2 has an aliphatic heterocycle such as piperidine and a tertiary amine structure to obtain a liquid crystal alignment film having high voltage holding ratio and rubbing resistance and capable of quickly relieving accumulated charges.
  • Patent Document 3 discloses that using a diamine having a specific structure in which two or three aromatic rings are directly bonded, a liquid crystal alignment film having a small residual DC is obtained.
  • Patent No. 5929298 gazette International Publication No. 2015/122413 JP 2011-154100 A
  • liquid crystal elements have been applied to a wide range of devices and applications ranging from large-screen liquid crystal TVs to small display devices such as smartphones and tablet PCs, and further improvement in the display quality of liquid crystal elements has increased compared to the past. Is becoming important. Along with this, further improvement in performance of the liquid crystal alignment film is required.
  • the present disclosure has been made in view of the above-mentioned circumstances, and it is possible to obtain a liquid crystal alignment film having a low resistance value and high transparency, and to obtain a liquid crystal element having good liquid crystal alignment and little burn-in.
  • One object of the present invention is to provide a liquid crystal aligning agent capable of
  • X 1 is a tetravalent organic group
  • X 2 is a divalent organic group represented by the following Formula (3A):
  • R 1 and R 2 are And each independently represents a hydrogen atom or a monovalent organic group having 1 to 6 carbon atoms.
  • a 1 , A 2 and A 3 are each independently a single bond or a divalent organic group
  • Y 1 and Y 2 are each independently a single bond or an oxygen atom And a sulfur atom or "-NR 10- "
  • R 10 is a hydrogen atom or a monovalent organic group
  • Z 1 and Z 2 are each independently a group represented by the following formula (4A), 5A) or a divalent cyclic group represented by (6A), wherein a hydrogen atom bonded to an atom constituting a ring may be substituted by a substituent, and the substituent is bonded to A 1 or A 2 May form a ring, "*" indicates a bond.
  • a 51 to A 54 each independently represent a divalent cyclic group obtained by removing two hydrogen atoms from the ring portion of a benzene ring, a pyridine ring or a pyrimidine ring
  • R 51 to R 54 each independently represent a hydrogen atom or a monovalent organic group
  • R 55 to R 58 each independently represent 1 A3, b3, c3 and d3 each independently represent an integer of 0 to 4.
  • a3, b3, c3 and d3 are 2 or more, a plurality of R 55 and R in the formula are used.
  • 56 , R 57 and R 58 may be the same as or different from each other.
  • "*" Represents a bond.
  • liquid crystal aligning agent it is possible to obtain a liquid crystal alignment film having a low resistance value and a high transparency. Further, by forming a liquid crystal alignment film using the above-mentioned liquid crystal alignment agent, it is possible to obtain a liquid crystal element having good liquid crystal alignment and less burn-in.
  • FIG. 1 is an ultraviolet-visible absorption spectrum of the polymer of Examples 1A to 7A.
  • FIG. 2 shows UV-visible absorption spectra of the polymers of Comparative Examples 1A to 6A.
  • FIG. 3 is a view showing the relationship between the HOMO level of the polymers of Examples 1A to 7A and Comparative Examples 2A, 3A, 5A, and 6A and ⁇ 400 nm / V.
  • FIG. 4 is an ultraviolet-visible absorption spectrum of the polymer of Examples 1B to 8B.
  • FIG. 5 is an ultraviolet-visible absorption spectrum of the polymer of Comparative Examples 1B to 5B.
  • FIG. 6 is a view showing the relationship between the HOMO level of the polymers of Examples 1B to 8B and Comparative Examples 2B to 5B and ⁇ 400 nm / V.
  • FIG. 7 is a graph showing the relationship between I 2 / I 3 and ⁇ 400 nm / V of the polymers of Examples 1B to 8B and Comparative Examples 1B to 5B.
  • hydrocarbon group is meant to include a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group.
  • chain hydrocarbon group means a straight chain hydrocarbon group and a branched hydrocarbon group which do not contain a cyclic structure in the main chain and are composed only of a chain structure. However, it may be saturated or unsaturated.
  • alicyclic hydrocarbon group means a hydrocarbon group containing only an alicyclic hydrocarbon structure as a ring structure and not including an aromatic ring structure.
  • aromatic hydrocarbon group means a hydrocarbon group containing an aromatic ring structure as a ring structure.
  • aromatic hydrocarbon group it is not necessary to be composed of only an aromatic ring structure, and a part thereof may contain a chain structure or an alicyclic hydrocarbon structure.
  • the polymer (P) is at least one selected from the group consisting of a polymer (PA) and a polymer (PB). Each of the polymer (PA) and the polymer (PB) will be described below.
  • the polymer (PA) has a fused ring structure of an aromatic ring and a nitrogen-containing aliphatic heterocycle, and specifically, it is represented by the partial structure represented by the above formula (1A) and the above formula (2A) And at least one selected from the group consisting of In the above formulas (1A) and (2A), X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative.
  • tetracarboxylic acid derivative is meant to include tetracarboxylic acid dianhydride, tetracarboxylic acid diester and tetracarboxylic acid diester dihalide.
  • R 1 and R 2 for example, a monovalent hydrocarbon group and the like can be mentioned.
  • it is an alkyl group having 1 to 10 carbon atoms.
  • X 2 is a divalent organic group represented by the above formula (3A).
  • Z 1 and Z 2 are each independently a divalent cyclic group represented by Formula (4A), (5A), or (6A) above.
  • Q 1 in the above formulas (4A) and (5A) is an oxygen atom, a sulfur atom, a methylene group or -NH-
  • Q 2 in the above formula (6A) is a single bond, an oxygen atom, a sulfur atom , A methylene group or -NH-.
  • Q 1 be a methylene group in that the hole transportability of the resulting polymer is high and the reduction effect of the accumulated charge of the film formed using the polymer (PA) can be sufficiently obtained.
  • 2 is preferably a single bond or an oxygen atom.
  • the nitrogen atoms in the above formulas (4A), (5A) and (6A) are preferably bonded to an aromatic ring in that the improvement effect of the DC residual image characteristics of the obtained liquid crystal element is high.
  • At least one hydrogen atom bonded to an atom constituting a ring may be substituted by a substituent, and the substituent is bonded to A 1 or A 2 to form a ring structure It may be Examples of the substituent that Z 1 and Z 2 have include an alkyl group such as methyl, ethyl and propyl, an alkoxy group such as methoxy, a fluorine atom and a hydroxyl group.
  • Q 1 and Q 2 are a methylene group or —NH—, the hydrogen atom of Q 1 or Q 2 may be substituted by a substituent.
  • Z 1 and Z 2 are represented by the above formula (4A) among the above formulas (4A) to (6A) in that a resin film in which charge is less easily accumulated is obtained and a compound is easily synthesized.
  • a group is preferable, and a structure in which Q 1 is a methylene group in the above formula (4A) is particularly preferable.
  • a 1 , A 2 and A 3 are each independently a single bond or a divalent organic group.
  • Examples of the divalent organic group represented by A 1 to A 3 include a divalent hydrocarbon group having 1 to 30 carbon atoms, and a carbon-carbon bond of the hydrocarbon group represented by —O—, —S— or —CO -, - COO -, - NR 41 -, - CONR 41 - and a divalent group (wherein, R 41 is a hydrogen atom or a monovalent organic group) with, and a divalent heterocyclic group, and carbon At least one hydrogen atom bonded to an atom may be substituted by a substituent (eg, a methoxy group, a fluorine atom, etc.).
  • a substituent eg, a methoxy group, a fluorine atom, etc.
  • a 1 to A 3 be a divalent group having a single bond or an aromatic ring from the viewpoint of obtaining a resin film in which the accumulated charge of the film is further reduced.
  • aromatic ring is meant to include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • each of A 1 to A 3 is a group represented by the following formula (7A), (8A), (9A) or (10A) Is preferred.
  • R 12 to R 16 each independently represent a halogen atom or a monovalent organic group
  • Q 4 represents a single bond, an oxygen atom, a sulfur atom, or 1 carbon atom 1-3 alkanediyl group or "-NR 11 -" (. proviso, R 11 is hydrogen atom or a monovalent organic group)
  • c and d are each independently 0-4 It is an integer
  • b is an integer of 0 to 3
  • e is an integer of 0 to 6.
  • "*" indicates a bond.
  • examples of the monovalent organic group of R 12 to R 16 include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and the like.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned.
  • a to e are preferably 0 to 2, more preferably 0 or 1.
  • Q 4 is preferably a single bond, an oxygen atom or a sulfur atom, and more preferably a single bond.
  • Y 1 and Y 2 are each independently a single bond, an oxygen atom, a sulfur atom or “—NR 10 —” (R 10 is a hydrogen atom or a monovalent organic group).
  • R 10 is a hydrogen atom or a monovalent organic group.
  • the monovalent organic group of R 10 include an alkyl group having 1 to 6 carbon atoms, a protective group and the like.
  • a protecting group a carbamate type protecting group, an amide type protecting group, an imide type protecting group, a sulfonamide type protecting group etc. are mentioned, for example.
  • the tert-butoxycarbonyl group is preferable in that it is highly removable by heat and in that the amount of the deprotected portion remaining in the film is reduced.
  • at least one of Y 1 and Y 2 is preferably a single bond, and more preferably both are single bonds.
  • each of A 3 and A 4 independently represents a divalent hydrocarbon group or a divalent nitrogen-containing aromatic heterocyclic group.
  • Q 5 and Q 6 are each independently And an oxygen atom, a sulfur atom, a methylene group, an ethylene group, -NR 40- , -CH 2 -O-, -CH 2 -S-, -CH 2 -NR 40- (wherein R 40 has 1 carbon atom)
  • R 20 and R 21 each independently represent a halogen atom or a monovalent organic group having one or more carbon atoms
  • f and g each represent a monovalent hydrocarbon group of ⁇ 6.
  • "*" represents a bond.
  • each of A 5 and A 6 independently represents a single bond, a divalent hydrocarbon group or a divalent nitrogen-containing aromatic heterocyclic group.
  • Q 7 and Q 8 each represent each, independently, an oxygen atom, a sulfur atom, a methylene group, an ethylene group, -NR 40 -, - CH 2 -O -, - CH 2 -S -, - CH 2 -NR 40 - in which .R 22 and R 23 is, .D 1 is a halogen atom or a monovalent organic group each independently the formula (7A), (8A), a divalent group represented by (9A) or (10A). h and i each independently represent an integer of 0 to 4. "*" represents a bond. (In the formula (12A-3), each of A 7 and A 8 independently represents a divalent hydrocarbon group or a divalent nitrogen-containing aromatic heterocyclic group.
  • Q 9 and Q 10 are each independently and, an oxygen atom, a sulfur atom, a methylene group or -NR 40 - .R 26 and R 27 are each independently .a1 and a2 is a halogen atom or a monovalent organic group and is independently It is an integer of 0 to 4. "*" indicates a bond.)
  • a 9 and A 10 are each independently a single bond, a divalent hydrocarbon group or a divalent nitrogen-containing aromatic heterocyclic group.
  • Q 11 and Q 12 are Each independently represents an oxygen atom, a sulfur atom, a methylene group or -NR 40- R 28 and R 29 each independently represent a halogen atom or a monovalent organic group b1 and b2 each represent Independently, it is an integer of 0 to 4.
  • "*" indicates a bond.
  • examples of the monovalent organic group of R 20 to R 23 and R 26 to R 29 include, for example, an alkyl group having 1 to 10 carbon atoms and 1 carbon atom. There may be mentioned alkoxy groups of -10. As a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned. f to i, a1, a2, b1 and b2 are preferably 0 to 2, more preferably 0 or 1.
  • a 3 and A 4 in the above formula (12A-1) and A 7 and A 8 in the formula (12A-3) are preferably divalent aromatic ring groups
  • the above formula (12A-2) A 5 and A 6 therein, and A 9 and A 10 in the formula (12A-4) are preferably a single bond or a divalent aromatic ring group.
  • Specific examples of the divalent aromatic ring group include groups in which two hydrogen atoms have been removed from the ring portion of a benzene ring, naphthalene ring, anthracene ring, pyridine ring or pyrimidine ring.
  • the polymer (PA) is at least one selected from the group consisting of polyamic acid, polyamic acid ester and polyimide.
  • the polymer (PA) is derived from a diamine compound having a partial structure derived from a tetracarboxylic acid derivative and a divalent organic group represented by the above formula (3A) (hereinafter, also referred to as "specific diamine A”).
  • a partial structure of The synthesis method of the polymer (PA) is not particularly limited, and can be obtained by a conventional method of organic chemistry.
  • polyamic acid (hereinafter also referred to as “polyamic acid (PA)”) is, for example, a tetracarboxylic acid dianhydride and a diamine compound containing a specific diamine A; Can be obtained by reacting
  • the tetracarboxylic acid dianhydride used in the synthesis of the polyamic acid (PA) is not particularly limited, and examples thereof include aliphatic tetracarboxylic acid dianhydride, alicyclic tetracarboxylic acid dianhydride, and aromatic tetracarboxylic acid diamide. Anhydride etc. are mentioned. Specific examples thereof include aliphatic tetracarboxylic acid dianhydrides such as ethylenediaminetetraacetic acid dianhydride;
  • Examples of alicyclic tetracarboxylic acid dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-Tricarboxycyclopentylacetic acid dianhydride, 5- (2,5-dioxotetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1 , 3-dione, 5- (2,5-dioxotetrahydrofuran-3-yl) -8-methyl-3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2,5-Dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 3,5
  • aromatic tetracarboxylic acid dianhydride for example, pyromellitic acid dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, p-phenylene bis (trimellitic acid monoester anhydride), ethylene glycol Bis (anhydrotrimellitate), 1,3-propylene glycol bis (anhydrotrimellitate), 3,3 ', 4,4'-benzophenonetetracarboxylic acid dianhydride etc.
  • the tetracarboxylic acid dianhydride described in JP-A-2010-97188 can be used.
  • one kind of tetracarboxylic acid dianhydride can be used alone or in combination of two or more kinds.
  • a 1 , A 2 and A 3 are each independently a single bond or a divalent organic group, and Y 1 and Y 2 are each independently a single bond or an oxygen atom A sulfur atom or “—NR 10 —” (wherein R 10 is a hydrogen atom or a monovalent organic group)
  • Z 1 and Z 2 are each independently a group of the above formula (4A), ( 5A) or a divalent cyclic group represented by (6A), wherein a hydrogen atom bonded to an atom constituting a ring may be substituted by a substituent, and the substituent is bonded to A 1 or A 2 May form a ring)
  • a 5 , A 6 , Q 7 , Q 8 , R 22 , R 23 , h and i each have the same meaning as the above formula (12A-2).
  • a 7 , A 8 , Q 9 , Q 10 , R 26 , R 27 , a 1 and a 2 are each as defined in the above formula (12A-3).
  • D 2 is a divalent group represented by the above formula (7A), (8A), (9A) or (10A).
  • a 9 , A 10 , Q 11 , Q 12 , R 28 , R 29 , b1 and b2 each have the same meaning as in the above formula (12A-4).
  • the divalent hydrocarbon group of A 3 to A 10 is preferably a divalent aromatic hydrocarbon group, and is preferably a benzene ring, a naphthalene ring or an anthracene ring. More preferably, it is a group in which 2 hydrogen atoms have been removed from the ring portion.
  • the divalent nitrogen-containing aromatic heterocyclic group is preferably a group obtained by removing two hydrogen atoms from the ring portion of a pyridine ring or a pyrimidine ring. It is preferable that D 1 and D 2 be a divalent group in which Q 4 in the above formula (9A) is a single bond in that the reduction effect of the accumulated charge of the film is high.
  • specific examples of the specific diamine A include, for example, compounds represented by the following formulas (d-1A) to (d-32A).
  • the specific diamine A is represented by the above-mentioned formula (13A) or the formula (14A) from the viewpoint of obtaining a polymer having better light transmittance and easiness of synthesis. It is preferred to use a compound.
  • a compound Specifically, in the above formulas (d-1A) to (d-9A), formulas (d-13A), formulas (d-14A), and formulas (d-17A) to (d-26A), respectively
  • the compounds represented by the above formulas (d-1A) to (d-7A), (d-13A), (d-14A), and (d-17A) to (d-20A) are preferable.
  • the compounds represented by each are particularly preferred.
  • specific diamine A can be used individually by 1 type or in combination of 2 or more types.
  • the specific diamine A may be used as a diamine compound, but other diamines other than the specific diamine A may be used together with the specific diamine A.
  • diamines are not particularly limited as long as they do not have a partial structure represented by the above formula (3A), and examples thereof include aliphatic diamines, alicyclic diamines, aromatic diamines and diaminoorganosiloxanes.
  • aliphatic diamines for example, metaxylylenediamine, ethylenediamine, 1,3-propanediamine, tetramethylenediamine, hexamethylenediamine and the like
  • alicyclic diamines for example, p-cyclohexanediamine, 4 , 4'-methylenebis (cyclohexylamine), etc .;
  • aromatic diamine for example, dodecanoxydiaminobenzene, hexadecanoxydiaminobenzene, octadecanoxydiaminobenzene, cholestanyloxydiaminobenzene, cholesteryloxydiaminobenzene, cholestanyl diaminobenzoate, cholesteryl diaminobenzoate, diaminobenzoic acid Lanostanyl, 3,6-bis (4-aminobenzoyloxy) cholestane, 3,6-bis (4-aminophenoxy) cholestane, 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-butyl Cyclohexane, 2,5-diamino-N, N-diallylaniline, the following formula (E-1) (In formula (E-1), X I and X II each independently represent a single bond, -O-, -COO- or
  • R II is a single bond or an alkanediyl group having 1 to 3 carbon atoms, a is 0 or 1, b is an integer of 0 to 2, c is an integer of 1 to 20, and d is 0 or 1. However, a and b can not simultaneously be 0.)
  • Side chain type diamines such as compounds represented by: P-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-ethylenedianiline, 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenyl sulfide, 4-aminophenyl-4'-aminobenzoate, 4 4,4'-diaminoazobenzene, 3,5-diaminobenzoic acid, 1,2-bis (4-aminophenoxy) ethane, 1,5-bis (4-aminophenoxy) pentane, N, N'-di (4- Aminophenyl) -N, N'
  • the use ratio of the specific diamine A is preferably 5 mol% or more based on the total amount of diamine compounds used in the synthesis of the polyamic acid (PA), from the viewpoint of sufficiently obtaining the effects of the present disclosure. More preferably, it is 10 mol% or more, still more preferably 20 mol% or more.
  • the specific diamine A can be obtained by appropriately combining the usual methods of organic chemistry.
  • a dinitro intermediate having a nitro group in place of the primary amino group in the above formula (11A) is synthesized, and then the nitro group of the obtained dinitro intermediate is aminated using an appropriate reduction system And the like.
  • the method for synthesizing the dinitro intermediate can be appropriately selected depending on the desired compound.
  • the nitro compound (15A-1) and the halogen compound (15A-2) are reacted, if necessary, in a solvent in the presence of a catalyst to obtain the above formula (15A-4)
  • a dinitro intermediate (15A-3) which is a precursor of a diamine represented by
  • the secondary amino group-containing compound (16A-1) and the halogen compound (16A-2) are reacted, if necessary, in a solvent in the presence of a catalyst to give a table of the above formula (16A-4).
  • Dinitro intermediate (16A-3) which is a precursor of the diamine to be obtained.
  • a 11 and A 12 each represent a single bond or a divalent organic group
  • Q 21 to Q 23 each represent an oxygen atom, a sulfur atom, a methylene group, an ethylene group, -NR 40- , -CH 2- O -, - CH 2 -S - , - CH 2 -NR 40 - a
  • D 3 is a divalent group represented by any one of the above formulas (7A) ⁇ (10A), X 3 ⁇
  • Each X 5 is independently a halogen atom.
  • Polyamic acid (PA) can be obtained by reacting the above-described tetracarboxylic acid dianhydride and diamine compound, as required, together with a molecular weight modifier (eg, acid monoanhydride, monoamine compound, monoisocyanate compound, etc.) You can get it.
  • a molecular weight modifier eg, acid monoanhydride, monoamine compound, monoisocyanate compound, etc.
  • the ratio of tetracarboxylic acid dianhydride and diamine compound used in the synthesis reaction of polyamic acid (PA) is that the acid anhydride group of tetracarboxylic acid dianhydride is equivalent to one equivalent of the amino group of the diamine compound. A ratio of 0.2 to 2 equivalents is preferred.
  • the synthesis reaction of polyamic acid (PA) is preferably carried out in an organic solvent.
  • the reaction temperature at this time is preferably -20 ° C to 150 ° C, and the reaction time is preferably 0.1 to 24 hours.
  • the organic solvent used for the reaction include aprotic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, hydrocarbons and the like.
  • organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, ⁇ -butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol And one or more selected from the group consisting of halogenated phenols as a solvent, or a mixture of one or more of these and another organic solvent (eg, butyl cellosolve, diethylene glycol diethyl ether, etc.).
  • organic solvent eg, butyl cellosolve, diethylene glycol diethyl ether, etc.
  • the amount of the organic solvent used is preferably such that the total amount of the tetracarboxylic acid dianhydride and the diamine compound is 0.1 to 50% by mass with respect to the total amount of the reaction solution.
  • the reaction solution in which polyamic acid (PA) is dissolved may be used as it is for preparation of a liquid crystal aligning agent, or it may be used for preparation of a liquid crystal aligning agent after isolating polyamic acid (PA) contained in the reaction solution. May be
  • polyamic acid ester When the polymer (PA) is a polyamic acid ester, at least one of R 1 and R 2 in the partial structure represented by the formula (1A) is a monovalent organic compound having 1 to 6 carbon atoms. It is a polymer having a structural unit which is a group.
  • the polyamic acid ester can be produced, for example, by a method of reacting the polyamic acid (PA) obtained as described above with an esterification agent (eg methanol, ethanol, N, N-dimethylformamide diethyl acetal etc.),
  • an esterification agent eg methanol, ethanol, N, N-dimethylformamide diethyl acetal etc.
  • the carboxylic acid diester and the diamine compound containing the specific diamine A are preferably denatured in an organic solvent, for example 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4 Method of reacting in the presence of -methylmorpholinium halide, carbonylimidazole, phosphorus-based condensing agent, etc., [III] tetracarboxylic acid diester dihalide, and a diamine compound containing a specific diamine A, preferably in an organic solvent A suitable base (eg, tertiary amine
  • the tetracarboxylic acid diester used in the above [II] can be obtained by ring-opening tetracarboxylic acid dianhydride with an alcohol or the like.
  • the tetracarboxylic acid diester dihalide used in the above [III] can be obtained by reacting the tetracarboxylic acid diester obtained as described above with a suitable chlorinating agent such as thionyl chloride.
  • the polyamic acid ester may have only an amic acid ester structure, or may be a partially esterified product in which an amic acid structure and an amic acid ester structure coexist.
  • the solution When a polyamic acid ester is obtained as a solution by the above reaction, the solution may be used as it is for the preparation of a liquid crystal aligning agent, and after the polyamic acid ester contained in the reaction solution is isolated, the liquid crystal aligning agent is prepared. You may use it.
  • a polymer (PA) is a polyimide
  • the said polyimide is a polymer which has a partial structure represented by the said Formula (2A).
  • the polyimide can be obtained, for example, by dehydration ring closure and imidization of the polyamic acid (PA) synthesized as described above.
  • the polyimide may be a completely imidized product obtained by dehydrating and ring closing all of the amic acid structure possessed by its precursor polyamic acid (PA), and only a part of the amic acid structure is dehydrating and ring closing, and the amic acid It may be a partial imidate in which the structure and the imide ring structure coexist.
  • the imidation ratio of the polyimide is preferably 40 to 100%, more preferably 60 to 90%.
  • the imidation ratio is a percentage representing the ratio of the number of imide ring structures to the total number of amic acid structures of polyimide and the number of imide ring structures.
  • part of the imide ring may be an isoimide ring.
  • the dehydration ring closure of the polyamic acid (PA) is preferably carried out by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to this solution, and heating as necessary.
  • a dehydrating agent for example, an acid anhydride such as acetic anhydride, propionic anhydride, trifluoroacetic anhydride and the like can be used.
  • the amount of the dehydrating agent used is preferably 0.01 to 20 moles relative to 1 mole of the polyamic acid's amic acid structure.
  • the dehydration ring closure catalyst for example, tertiary amines such as pyridine, collidine, lutidine and triethylamine can be used.
  • the amount of the dehydrating ring-closing catalyst used is preferably 0.01 to 10 moles relative to 1 mole of the dehydrating agent used.
  • an organic solvent to be used the organic solvent illustrated as what is used for the synthesis of polyamic acid (PA) can be mentioned.
  • the reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., and the reaction time is preferably 1.0 to 120 hours.
  • the reaction solution containing a polyimide thus obtained may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparing a liquid crystal aligning agent after isolating the polyimide.
  • the polymer (PB) has at least one selected from the group consisting of the partial structure represented by the above formula (1B) and the partial structure represented by the above formula (2B).
  • the above formula (1B) binds to A 53 "-NR 53 -", and binds to A 54 "-NR 54 -", respectively, relative to the other groups attached to A 53, A 54 It is bound to meta position.
  • each of “—NR 51 —” and “—NR 52 ⁇ ” bonded to the biphenyl structure is bonded to the other group (phenylene group) at the meta position.
  • a 51 to A 54 each represent a divalent cyclic group obtained by removing two hydrogen atoms from the ring portion of a benzene ring, a pyridine ring or a pyrimidine ring.
  • the divalent cyclic group of A 51 to A 54 may have a substituent at the ring portion. Examples of the substituent include alkyl groups such as methyl group, ethyl group and propyl group, alkoxy groups such as methoxy group, and fluorine atom.
  • a 51 to A 54 are benzene rings in that a polymer exhibiting excellent hole transportability can be obtained, and the effect of reducing the accumulated charge of the film can be sufficiently obtained, and that the compound can be easily synthesized. Is preferred.
  • R 51 to R 54 monovalent hydrocarbon groups are preferable from the viewpoint of improving the light transmittance of the film.
  • Specific examples thereof include alkyl groups such as methyl, ethyl, propyl, butyl and pentyl; cycloalkyls such as cyclohexyl and methylcyclohexyl; and aryls such as phenyl, tolyl and naphthyl.
  • aralkyl groups such as benzyl group and the like.
  • an alkyl group having 1 to 3 carbon atoms or a phenyl group is preferable.
  • 0 to 2 is preferable, and 0 is more preferable for a3, b3, c3 and d3.
  • a plurality of R 55 , R 56 , R 57 and R 58 in the formula may be the same or different from each other.
  • the polymer (PB) has at least one of the partial structure represented by the above formula (1B) and the partial structure represented by the above formula (2B) in the main chain.
  • the polymer (PB) for example, a main skeleton of polyamic acid, polyimide, polyamic acid ester, polyorganosiloxane, polyester, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene-phenylmaleimide) derivative, poly (meth) acrylate, etc. And polymers thereof.
  • the polymer (PB) is at least one selected from the group consisting of polyamic acids, polyamic acid esters and polyimides (hereinafter referred to as “polymer (PB1) in that it can be a resin film with less accumulated charge. It is preferable that it is also ").
  • the polymer (PB1) is preferably a polymer having at least one selected from the group consisting of a partial structure represented by the following formula (3B) and a partial structure represented by the following formula (4B).
  • X 51 is a tetravalent organic group
  • X 52 is a divalent group represented by the following Formula (5B) or Formula (6B):
  • R 63 And R 64 each independently represents a hydrogen atom or a monovalent organic group having 1 to 6 carbon atoms.
  • B 51 to B 54 each independently represent a single bond or a divalent organic group.
  • a 51 to A 54 , R 51 to R 58 , a3, b3 , C3 and d3 are as defined in the above formulas (1B) and (2B).
  • "*" Represents a bond.
  • X 51 is a tetravalent organic group derived from a tetracarboxylic acid derivative.
  • the above description is applied to specific examples and preferable examples of A 51 to A 54 , R 51 to R 58 , a 3, b 3, c 3 and d 3 among X 52 .
  • Examples of the monovalent organic group of R 63 and R 64 include monovalent hydrocarbon groups such as a methyl group, an ethyl group, a propyl group and a phenyl group.
  • Examples of the divalent organic group represented by B 51 to B 54 include a divalent hydrocarbon group having 1 to 30 carbon atoms, and —O—, —S— and —CO between carbon-carbon bonds of the hydrocarbon group.
  • At least one hydrogen atom bonded to a carbon atom may be substituted by a substituent (eg, a methoxy group, a fluorine atom, etc.).
  • B 51 ⁇ B 54 is in that the hole-transporting and hole injection property is better polymer is obtained, a single bond or a "* -R 61 -Y 51 - * 1" (wherein, R 61 is a divalent a hydrocarbon group, Y 51 is, -NR 60 -, -. a O- or -S- "* 1" indicates a bond to a 51 ⁇ a 54, "*" represents a bond Is preferred, and a single bond is particularly preferred.
  • B 51 to B 54 are preferably single bonds.
  • the synthesis method of the polymer (PB1) is not particularly limited, and the polymer (PB1) can be obtained by a conventional method of organic chemistry according to the main skeleton.
  • the polymer (PB1) is a polyamic acid
  • the polyamic acid (hereinafter, also referred to as “polyamic acid (PB)”) is, for example, tetracarboxylic acid dianhydride and the above formula (1B) or formula (2B)
  • a diamine compound containing a diamine having a partial structure preferably, a divalent organic group represented by the above formula (5B) or the formula (6B)) represented by) (hereinafter also referred to as “specific diamine B”) It is preferable to obtain by the method of making and reacting.
  • the tetracarboxylic acid dianhydride used in the synthesis of the polyamic acid (PB) is not particularly limited, and examples thereof include aliphatic tetracarboxylic acid dianhydride, alicyclic tetracarboxylic acid dianhydride, and aromatic tetracarboxylic acid 2 Anhydride etc. are mentioned. For these examples, the descriptions of tetracarboxylic acid dianhydrides that can be used in the synthesis of polyamic acids (PA) apply.
  • one type of tetracarboxylic acid dianhydride may be used alone or in combination of two or more.
  • a compound represented by the following formula (7B) and a compound represented by the following formula (8B) can be preferably used.
  • a 53 , A 54 , R 53 , R 54 , R 57 , R 58 , c 3 and d 3 are the same as the above formula (1B)
  • B 53 and B 54 are the above formula (5 B)
  • a 51 , A 52 , R 51 , R 52 , R 55 , R 56 , a3 and b3 are the same as the above formula (2B)
  • B 51 and B 52 are the above formula (6B) It is synonymous with
  • a 51 to A 54 , R 51 to R 58 , B 51 to B 54 and a 3 to d 3 in the above formulas (7B) and (8B) are the above formulas (1B) and (2B)
  • the descriptions of (5), (5B), (6B) apply respectively.
  • specific diamine B the compound represented by following formula (10B) or Formula (11B) can be used preferably.
  • Specific examples of the specific diamine B include, for example, compounds represented by the following formulas (d-1B) to (d-24B).
  • the compound represented by each of the formula (d-13B), the formula (d-14B) and the formula (d-16B) corresponds to the compound represented by the above formula (7B), and the following formula (d-1B) ), Formula (d-3B), formula (d-4B), formula (d-6B), formula (d-7B), formula (d-9B), formula (d-11B), formula (d-12B)
  • the compounds represented by Formula (d-14B), Formula (d-15B) and Formulas (d-17B) to Formula (d-24B) correspond to the compounds represented by Formula (8B).
  • the compound represented by the above formula (7B) can be preferably used as the specific diamine B in that light transmittance in the visible region of the resulting polymer can be made better, and the resistance of the resin film can be preferably used. It is more preferable to use the compound represented by the said Formula (10 B) at the point which can reduce a value more.
  • compounds represented by the above-mentioned formula (d-1B), formula (d-2B), formula (d-4B), formula (d-5B) and formula (d-7B) are particularly preferable. .
  • the specific diamine B may be used as a diamine compound, but other diamines other than the specific diamine B may be used together with the specific diamine B.
  • the other diamine is not particularly limited as long as it is a diamine not having a partial structure represented by the above formula (1B) or formula (2B), and for example, aliphatic diamine, alicyclic diamine, aromatic diamine and diamino An organosiloxane etc. are mentioned.
  • the descriptions of the compounds exemplified as other diamines which may be used in the synthesis of polyamic acid (PA) apply.
  • other diamines can be used singly or in combination of two or more.
  • the use ratio of the specific diamine B is preferably 5 mol% or more based on the total amount of diamine compounds used in the synthesis of the polyamic acid (PB), from the viewpoint of sufficiently obtaining the effects of the present disclosure. More preferably, it is 10 mol% or more, more preferably 20 mol% or more.
  • the specific diamine B can be obtained by appropriately combining the usual methods of organic chemistry.
  • a dinitro intermediate having a nitro group in place of the primary amino group in the above formulas (7B) and (8B) is synthesized, and then the nitro group of the obtained dinitro intermediate is appropriately reduced And the like.
  • the method for synthesizing the dinitro intermediate can be appropriately selected depending on the desired compound. For example, by reacting an amino group-containing nitro compound (13B-1) and a halogen compound (13B-2) having a biphenyl structure in a solvent, if necessary, in the presence of a catalyst, the following formula (13B) A dinitro intermediate (13B-3) which is a precursor of a diamine represented by -4) can be obtained.
  • dinitro intermediate (14B-3) which is a precursor of a diamine represented by the following formula (14B-4)
  • an amino group-containing nitro compound (14B-1) and a halogen compound having a biphenyl structure It can be obtained by reacting 14B-2) in the presence of a catalyst, if necessary, in a solvent.
  • the synthesis method of the specific diamine B is not limited to the above. Depending on the starting nitro compound, it is also possible to obtain compounds having different structures that bind to the biphenyl structure.
  • a 55 and A 56 each represent a divalent cyclic group obtained by removing two hydrogen atoms from the ring portion of a benzene ring, a pyridine ring or a pyrimidine ring, and may have a substituent in the ring portion R 71 and R 72 each represents a hydrogen atom or a monovalent organic group, B 53 and B 54 each represent a single bond or a divalent organic group, and X 53 to X 56 each independently represent a halogen It is an atom.
  • the polyamic acid (PB) can be obtained by reacting the above-described tetracarboxylic acid dianhydride and a diamine compound together with a molecular weight modifier as required.
  • the description of polyamic acid (PA) applies to various specific conditions for the synthesis reaction of polyamic acid (PB).
  • a polymer (PB) is a polyimide
  • the said polyimide is a polymer which has a partial structure represented by said Formula (4B).
  • the polyimide can be obtained, for example, by dehydration ring closure and imidation of the polyamic acid (PB) synthesized as described above.
  • the description in the case where the polymer (PA) is a polyimide is applied to various specific conditions of the synthesis reaction of the polyimide.
  • the solution viscosity of the polymer (P) is preferably one having a solution viscosity of 10 to 800 mPa ⁇ s when made into a solution having a concentration of 10% by mass, and one having a solution viscosity of 15 to 500 mPa ⁇ s. Is more preferred.
  • the solution viscosity (mPa ⁇ s) is E for a polymer solution having a concentration of 10% by mass prepared using a good solvent (for example, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.) of the polymer (P). It is a value measured at 25 ° C. using a mold rotational viscometer.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of the polymer (P) is preferably 1,000 to 500,000, more preferably 5,000 to 100,000. It is.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • the polymer (P) to be contained in the liquid crystal aligning agent may be used alone or in combination of two or more.
  • the polymer (P) is used in applications where reduction of stored charge and light transparency are simultaneously required, for example, liquid crystal element materials (eg, liquid crystal alignment film, flattening film for liquid crystal display, interlayer insulating film, etc.), organic EL It can be preferably applied as an element material (for example, a planarization film for organic EL, an electron transport layer and the like), an optical film (for example, a retardation film, a viewing angle compensation film and the like) and the like.
  • the polymer (PA) exhibits excellent hole transportability and hole injection through the ITO electrode and has a small absorption coefficient and excellent light transmittance, so the polymer (PA) should be used.
  • the polymer (PB) has a high HOMO level, exhibits excellent hole transportability and hole injectability through an ITO electrode, has a small absorption coefficient, and is excellent in light transmittance, and further has a main chain axis Since the uniaxial linearity in the direction is high, the use of the polymer (PB) is preferable in that it is possible to obtain a resin film having a low resistance value and excellent in light transmittance and liquid crystal alignment. Due to these properties, the polymer (P) can be suitably used as a liquid crystal alignment film material.
  • the liquid crystal aligning agent of this indication contains a polymer (P).
  • the content ratio of the polymer (P) in the liquid crystal aligning agent is preferably 10 parts by mass or more, more preferably 20 parts by mass with respect to a total of 100 parts by mass of solid components (components other than the solvent) in the liquid crystal aligning agent.
  • the content is more preferably 30 parts by mass or more.
  • the polymer (P) contained in the liquid crystal aligning agent may be used alone or in combination of two or more.
  • the liquid crystal aligning agent of this indication may contain other components other than a polymer (P).
  • a polymer different from the polymer (P) hereinafter also referred to as “other polymer”
  • a compound having at least one epoxy group in the molecule a functional silane compound, oxidation
  • An inhibitor, a metal chelate compound, a hardening accelerator, a surfactant, a filler, a dispersant, a photosensitizer, an acid generator, a base generator, a radical generator and the like can be mentioned.
  • These compounding ratios can be suitably selected according to each compound in the range which does not impair the effect of this indication.
  • the other polymers are used for the purpose of suppressing a decrease in voltage holding ratio and for the purpose of improving the liquid crystal alignment.
  • the main skeleton of the other polymer is not particularly limited, and examples thereof include polyamic acid, polyimide, polyamic acid ester, polyorganosiloxane, polyester, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene-phenylmaleimide) derivative, poly (meth) And polymers having an acrylate or the like as a main skeleton.
  • the other polymer is preferably at least one selected from the group consisting of polyamic acid, polyamic acid ester and polyimide.
  • the blending ratio is preferably 1 to 95% by mass, more preferably 5 to 90% by mass, with respect to the total amount of polymer in the liquid crystal aligning agent. 80 mass% is more preferable.
  • the liquid crystal aligning agent of the present disclosure is prepared as a liquid composition in which the polymer (P) and the other components optionally used are preferably dissolved in a suitable solvent.
  • the organic solvent to be used is, for example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, ⁇ -butyrolactone, ⁇ -butyrolactam, N, N-dimethylformamide N, N-dimethylacetamide, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl methoxypropionate, ethyl ethoxy propionate, ethylene glycol methyl ether, Ethylene glycol ethyl ether, ethylene glycol n-propyl ether, ethylene glycol i-propyl ether, ethylene glycol n-butyl ether (butyl
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass. That is, a liquid crystal aligning agent is apply
  • the liquid crystal aligning film of this indication is formed of the liquid crystal aligning agent prepared as mentioned above.
  • the liquid crystal element of the present disclosure includes a liquid crystal alignment film formed using the liquid crystal alignment agent described above.
  • the operation mode of the liquid crystal in the liquid crystal element is not particularly limited, and, for example, TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, VA (Vertical Alignment) type (VA-MVA type, VA-PVA type, etc. are included)
  • the present invention can be applied to various modes such as IPS (In-Plane Switching) type, FFS (fringe field switching) type, OCB (Optically Compensated Bend) type, and the like.
  • the liquid crystal element can be manufactured, for example, by a method including the following steps 1 to 3. Step 1 differs in the substrate used according to the desired operation mode. Steps 2 and 3 are common to each operation mode.
  • a liquid crystal aligning agent is applied on a substrate, and preferably a coated surface is formed to form a coating film on the substrate.
  • the substrate for example, glass such as float glass and soda glass; transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate and poly (alicyclic olefin) can be used.
  • a transparent conductive film provided on one side of the substrate an NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ) Etc. can be used.
  • a TN type, STN type or VA type liquid crystal element two substrates provided with a patterned transparent conductive film are used.
  • a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb shape, and a counter substrate not provided with an electrode Use
  • a film made of a metal such as chromium can be used as the metal film.
  • the application of the liquid crystal aligning agent to the substrate is preferably performed by an offset printing method, a spin coating method, a roll coater method, a flexographic printing method, or an ink jet printing method on the electrode formation surface.
  • preheating is preferably performed for the purpose of preventing dripping of the applied liquid crystal alignment agent.
  • the prebake temperature is preferably 30 to 200 ° C., and the prebake time is preferably 0.25 to 10 minutes.
  • a baking (post-baking) step is carried out to completely remove the solvent and, if necessary, thermally imidize the amic acid structure present in the polymer.
  • the baking temperature (post-baking temperature) at this time is preferably 80 to 300 ° C., and the post-baking time is preferably 5 to 200 minutes.
  • the film thickness of the film thus formed is preferably 0.001 to 1 ⁇ m.
  • Step 2 orientation treatment
  • a treatment (alignment treatment) for imparting liquid crystal alignment ability to the coating film formed in the above step 1 is carried out.
  • the alignment ability of the liquid crystal molecules is imparted to the coating film to form a liquid crystal alignment film.
  • rubbing treatment is performed by rubbing the coating film in a fixed direction with a roll wound with a cloth made of fibers such as nylon, rayon and cotton, or light irradiation to the coating film formed on the substrate using a liquid crystal alignment agent.
  • the optical alignment processing etc. which carry out and provide liquid crystal aligning ability to a coating film are mentioned.
  • the coating film formed in the above step 1 can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to alignment treatment.
  • the light irradiation in the photo alignment treatment is a method of irradiating the coating film after the post-baking step, a method of irradiating the coating film after the pre-baking step but before the post-baking step, at least the pre-baking step and the post-baking step
  • the coating film may be irradiated with heat while heating the coating film, or the like.
  • ultraviolet rays and visible rays containing light having a wavelength of 150 to 800 nm can be used as radiation for irradiating the coating film.
  • it is ultraviolet light containing light of a wavelength of 200 to 400 nm.
  • the radiation may be linearly polarized or partially polarized.
  • the irradiation may be performed from the direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination.
  • the direction of the irradiation is oblique.
  • a light source to be used for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser and the like can be used.
  • the radiation dose is preferably 400 to 20,000 J / m 2 , more preferably 1,000 to 5,000 J / m 2 .
  • the irradiation of the coating with light may be performed while heating the coating to enhance the reactivity.
  • Step 3 Construction of Liquid Crystal Cell
  • Two substrates on which the liquid crystal alignment film is formed as described above are prepared, and a liquid crystal is disposed between two substrates disposed opposite to each other to manufacture a liquid crystal cell.
  • a liquid crystal cell for example, (1) two substrates are disposed opposite to each other with a spacer between them so that the liquid crystal alignment film faces each other, and peripheral portions of the two substrates are sealed using a sealing agent.
  • Liquid crystal is injected and filled into a cell gap separated by a substrate surface and a sealing agent, and then the injection hole is sealed, (2) a seal is made at a predetermined place on one substrate on which a liquid crystal alignment film is formed.
  • Liquid crystal is applied onto the surface of the liquid crystal alignment film, and then the other substrate is bonded so that the liquid crystal alignment film faces each other and the liquid crystal is spread over the entire surface of the substrate (ODF method Etc.).
  • the liquid crystal cell produced is preferably further heated to a temperature at which the liquid crystal used has an isotropic phase, and then gradually cooled to room temperature to remove the flow alignment at the time of liquid crystal filling.
  • an epoxy resin containing a hardening agent and aluminum oxide spheres as a spacer can be used as a spacer.
  • a photo spacer, a bead spacer, etc. can be used as a spacer.
  • liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
  • Schiff base liquid crystals for example, Schiff base liquid crystals, azoxy liquid crystals, biphenyl liquid crystals, phenylcyclohexane liquid crystals, ester liquid crystals, terphenyl liquid crystals, biphenyl A cyclohexane type liquid crystal, a pyrimidine type liquid crystal, a dioxane type liquid crystal, a bicyclooctane type liquid crystal, a cubane type liquid crystal, or the like can be used.
  • cholesteric liquid crystals, chiral agents, ferroelectric liquid crystals, etc. may be added to these liquid crystals.
  • a polarizing plate is attached to the outer surface of the liquid crystal cell as required.
  • the polarizing plate include a polarizing plate in which a polarizing film called “H film” obtained by absorbing iodine while stretching and orienting polyvinyl alcohol is sandwiched by a cellulose acetate protective film or a polarizing plate consisting of the H film itself.
  • H film a polarizing film obtained by absorbing iodine while stretching and orienting polyvinyl alcohol
  • a cellulose acetate protective film or a polarizing plate consisting of the H film itself.
  • the resin film having a small accumulated charge can be formed, and the liquid crystal element having a small amount of image sticking can be obtained.
  • the reason for obtaining a liquid crystal element is unclear, but the HOMO level of the polymer (P) is high It is presumed to be one reason. That is, when the liquid crystal alignment film contains the polymer (P) having a high HOMO level, the hole transportability of the liquid crystal alignment film and the hole injection property through the ITO electrode are improved, and the resistance value of the liquid crystal alignment film is lowered. It is thought that. As a result, it can be inferred that the charge remaining after driving of the liquid crystal cell is effectively alleviated, and the DC afterimage characteristic of the liquid crystal cell is improved.
  • the polymer (P) has a structure in which an alicyclic structure having a tertiary nitrogen atom forms a polycyclic structure with an adjacent aromatic ring (that is, in the case of the polymer (PA))
  • a fat it is considered that the planarity of the molecular chain is improved by the ring structure, and the in-plane alignment of the polymer in the liquid crystal alignment film is improved.
  • hopping conduction between molecules is promoted, and the carrier mobility in the film thickness direction is improved, whereby the resistance value of the liquid crystal alignment film is lowered, and it is considered that the DC residual image characteristics are further improved.
  • the liquid crystal element of the present disclosure can be effectively applied to various applications.
  • clocks portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors
  • display devices such as liquid crystal televisions and information displays, light control films, retardation films and the like.
  • Example 1A The polyimide (polymer represented by the following formula (PI-1A)) obtained by the polycondensation of diamine (DA-1) and tetracarboxylic acid dianhydride (TA-1) The physical properties of the polymer were evaluated by performing quantum chemistry calculation of bissuccinimide represented by SI-1A). As a quantum chemistry calculation program, calculation was carried out by density functional theory (DFT) using Gaussian 09 (Revision B. 01) manufactured by Gaussian, USA.
  • DFT density functional theory
  • the evaluation is “excellent” when the HOMO level is ⁇ 5.24 eV (comparative example 6A) or higher, and the HOMO level is less than ⁇ 5.24 eV and ⁇ 5.51 eV (comparative example 2A) or higher.
  • the HOMO level was less than ⁇ 5.51 eV, it was regarded as “poor”. As a result, in this example, it was evaluated as "excellent”.
  • the HOMO level is preferably close to the work function (about 4.6 to 4.8 eV) of the ITO electrode.
  • ⁇ 400 nm / V the higher the light transmittance of the resulting polymer can be obtained.
  • the resulting polymer does not contain a secondary amine (-NH-), the deterioration of light transmittance due to oxidation can be suppressed, which is preferable.
  • Examples 2A to 7A, Comparative Examples 1A to 6A A diamine (DA-2 to DA-7, DB-1 to DB-6) and a tetracarboxylic acid dianhydride are prepared in the same manner as in Example 1A by changing the kind of diamine compound as described in Table 1 below.
  • the physical properties of the polyimide obtained by the polycondensation with (TA-1) were evaluated by quantum chemical calculation. The evaluation results are shown in Table 1 below.
  • the UV-visible absorption spectra of Examples 1A to 7A are shown in FIG. 1, and the UV-visible absorption spectra of Comparative Examples 1A to 6A are shown in FIG. FIG.
  • FIGS. 1 to 3 shows the relationship between the HOMO levels of Examples 1A to 6A and Comparative Examples 2A, 3A, 5A, and 6A and ⁇ 400 nm / V.
  • the numbers in FIGS. 1 to 3 represent the numbers of the respective examples and comparative examples.
  • the dinitro compound (DA-2-1) (1 g), 10 wt% palladium on carbon (0.2 g), and N, N-dimethylformamide (10 mL) were added to a two-necked flask, and 50 ° C. under a hydrogen atmosphere. Heated for 1 day.
  • the reaction solution was filtered to remove the catalyst and the filtrate was poured into 200 mL of ice water. The resulting precipitate was collected by filtration.
  • the obtained residue was recrystallized from ethanol to obtain a diamine compound (yield 70%, yield 0.70 g) of white crystals represented by the above formula (DA-2).
  • the NMR analysis results of the diamine compound (DA-2) are as follows.
  • the dinitro compound (DA-3-1) (1.18 g, 2.48 mmol), 5 wt% palladium on carbon (0.15 g), N, 3 was added to a three-necked flask equipped with a reflux condenser, a thermometer and a nitrogen inlet.
  • N-dimethylformamide (30 ml) and ethanol (5 ml) were added and stirred in an ice bath.
  • 0.8 ml of hydrazine monohydrate was slowly dropped.
  • the reaction solution was filtered through celite, and 100 ml of ethyl acetate was added to the filtrate.
  • Synthesis Example 3A A 3,3 '-([5,5'-biindoline] -1,1'-diyl) dianiline represented by the following formula (DA-6) was synthesized in the same manner as in Synthesis Example 2 according to the following synthesis scheme .
  • the 5,5′-biindoline was synthesized according to non-patent document “J. Org. Chem. 2013, 78, 5218-5226.”.
  • Example 11A Rubbing Oriented FFS-Type Liquid Crystal Display Device (1) Preparation of Liquid Crystal Alignment Agent
  • Two types of polymers using the polyamic acid (PA-1) obtained in Example 8A as the polymer 1 and the polyamic acid (PA-8) obtained in Synthesis Example 8A as the polymer 2
  • the solid content concentration is 4.0 mass%
  • the solution was filtered through a filter with a pore size of 0.2 ⁇ m to prepare a liquid crystal aligning agent (R-1).
  • the coating film surface was rubbed at a roll rotation speed of 1000 rpm, a stage movement speed of 25 mm / sec, and a hair-foot push-in length of 0.4 mm using a rubbing machine having a roll of nylon cloth wound around.
  • the coating film subjected to the rubbing alignment treatment was ultrasonically cleaned in ultrapure water for 1 minute, and then dried in an oven at 100 ° C. for 10 minutes to form a liquid crystal alignment film.
  • the liquid crystal aligning agent (R-1) prepared in the above (1) is applied on an ITO substrate using a spinner, dried on a hot plate at 80 ° C. for 1 minute, Drying was performed for 30 minutes in a nitrogen-replaced oven at 230 ° C. to form a coating having an average film thickness of 0.1 ⁇ m.
  • ITO was sputtered on the coating film to form a transparent electrode, and the resistance value in the film thickness direction of the coating film under light irradiation was measured using an electrical property measuring apparatus.
  • Examples 12A and 13A, Comparative Examples 7A to 10A A liquid crystal aligning agent is prepared in the same manner as in Example 11A except that the polymer 1 contained in the liquid crystal aligning agent is changed as described in Table 3 below, and a liquid crystal aligning film is formed by rubbing method. The liquid crystal display element was manufactured and various evaluations were performed. The evaluation results are shown in Table 3 below.
  • Example 11A to 13A using a liquid crystal aligning agent containing a polymer (P) the resistance value of the liquid crystal alignment film was low, and it was evaluated as “excellent” or “good”. In addition, the transmittance of the liquid crystal alignment film was also high. In particular, in Examples 12A and 13A, the resistance value of the liquid crystal alignment film was evaluated as “excellent”, and the relaxation time of the residual DC value was short in the liquid crystal cell obtained. From these, according to the liquid crystal aligning agent containing the polymer (P), a liquid crystal alignment film having a low resistance value and a high transmittance can be obtained, and a liquid crystal display element excellent in the liquid crystal alignment property and the DC afterimage characteristic It turned out that it can be obtained.
  • Example 1B The polyimide (polymer represented by the following formula (PI-1B)) obtained by the polycondensation of diamine (DC-1) and tetracarboxylic acid dianhydride (TC-1) The physical properties of the polymer were evaluated by performing quantum chemistry calculation of bissuccinimide represented by SI-1B). As a quantum chemistry calculation program, calculation was carried out by density functional theory (DFT) using Gaussian 09 (Revision B. 01) manufactured by Gaussian, USA.
  • DFT density functional theory
  • the evaluation is “excellent” when the HOMO level is ⁇ 5.24 eV (comparative example 4B) or higher, and the HOMO level is less than ⁇ 5.24 eV and ⁇ 5.51 eV (comparative example 2B) or higher.
  • the HOMO level was less than ⁇ 5.51 eV, it was regarded as “poor”. As a result, in this example, it was evaluated as "excellent”.
  • the HOMO level is preferably close to the work function (about 4.6 to 4.8 eV) of the ITO electrode.
  • ⁇ 400 nm / V the higher the light transmittance of the resulting polymer can be obtained.
  • the resulting polymer does not contain a secondary amine (-NH-), the deterioration of light transmittance due to oxidation can be suppressed, which is preferable.
  • a liquid crystal alignment film containing a polymer having a large uniaxial linearity in the main chain axial direction is preferable because the liquid crystal alignment property is not easily inhibited.
  • Examples 2B to 8B, Comparative Examples 1B to 5B Diamines (DC-2 to DC-8, DE-1 to DE-5) and tetracarboxylic acid dianhydrides in the same manner as in Example 1B, except that the types of diamine compounds are changed as described in Table 4 below.
  • the physical properties of the polyimide obtained by the polycondensation with (TC-1) were evaluated by quantum chemical calculation. The evaluation results are shown in Table 4 below.
  • the UV-visible absorption spectra of Examples 1B to 8B are shown in FIG. 4, and the UV-visible absorption spectra of Comparative Examples 1B to 5B are shown in FIG. FIG.
  • FIGS. 4 to 7 represent the numbers of the respective examples and comparative examples.
  • Example 10B to 12B Synthesis Examples 3B to 7B
  • Polyamic acids (PB-2 to PB-9) were obtained in the same manner as in Example 9B, respectively, except that the type and molar ratio of tetracarboxylic acid dianhydride and diamine compound were changed as described in Table 5 below.
  • the numerical value of tetracarboxylic acid dianhydride represents the use ratio (molar ratio) to 100 parts by mole of the total amount of tetracarboxylic acid dianhydride used for the synthesis of polyamic acid
  • the numerical value of diamine compound is The ratio (molar ratio) to the total amount of 100 mole parts of the diamine compound used for the synthesis of the polyamic acid.
  • Example 13B Rubbed Oriented FFS Liquid Crystal Display Element (1) Preparation of Liquid Crystal Alignment Agent
  • Two types of polymers using the polyamic acid (PB-1) obtained in Example 9B as the polymer 1 and the polyamic acid (PB-9) obtained in Synthesis Example 7B as the polymer 2
  • the solid content concentration is 4.0 mass%
  • the solution was filtered through a filter with a pore size of 0.2 ⁇ m to prepare a liquid crystal aligning agent (RB-1).
  • the coating film surface was rubbed at a roll rotation speed of 1000 rpm, a stage movement speed of 25 mm / sec, and a hair-foot push-in length of 0.4 mm using a rubbing machine having a roll of nylon cloth wound around.
  • the coating film subjected to the rubbing alignment treatment was ultrasonically cleaned in ultrapure water for 1 minute, and then dried in an oven at 100 ° C. for 10 minutes to form a liquid crystal alignment film.
  • the liquid crystal aligning agent (RB-1) prepared in the above (1) is coated on an ITO substrate using a spinner, dried on a hot plate at 80 ° C. for 1 minute, Drying was carried out for 30 minutes in a 230 ° C. oven purged with nitrogen to form a coating having an average film thickness of 0.1 ⁇ m.
  • ITO was sputtered on the coating film to form a transparent electrode, and the resistance value in the film thickness direction of the coating film under light irradiation was measured using an electrical property measuring apparatus.
  • Examples 14B to 16B, Comparative Examples 6B to 9B A liquid crystal aligning agent is prepared and a liquid crystal alignment film is formed by a rubbing method in the same manner as in Example 13B except that the polymer 1 contained in the liquid crystal aligning agent in Example 13B is changed as described in Table 6 below. At the same time, an FFS liquid crystal display device was manufactured and various evaluations were performed. The evaluation results are shown in Table 6 below.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

重合体(PA)及び重合体(PB)よりなる群から選ばれる少なくとも一種の重合体(P)を液晶配向剤に含有させる。重合体(PA):式(4A)等の芳香環と窒素含有脂肪族ヘテロ環との縮合環構造を有する重合体。重合体(PB):式(1B)等の含窒素メタアリーレン構造を有する重合体。ただし、式(4A)中、Q1は、酸素原子、硫黄原子、メチレン基又は-NH-である。式(1B)中、A51~A54は、それぞれ独立して、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の環状基であり、環部分に置換基を有していてもよい。

Description

液晶配向剤、液晶配向膜及び液晶素子 関連出願の相互参照
 本出願は、2017年11月7日に出願された日本出願番号2017-214357号及び日本出願番号2017-214358号に基づくもので、ここにその記載内容を援用する。
 本開示は、液晶配向剤、液晶配向膜及び液晶素子に関する。
 液晶素子は、テレビやモバイル機器、各種モニターなどに広く利用されている。液晶素子においては、液晶配向膜によって液晶セル中の液晶分子の配向を制御することより光の透過量を調整し、液晶素子としての各種機能(例えば、表示機能や調光機能など)を実現している。近年における液晶素子の高性能化の要求に伴い、液晶配向膜についてもその性能をさらに向上させることが要求されており、これを実現するべく種々の液晶配向剤が提案されている(例えば、特許文献1~3参照)。
 特許文献1には、表示されていた画像が画像を切り替えた後にも残像として残る、いわゆる「焼き付き」を低減させるべく、体積抵抗値が小さい液晶配向膜を得るための液晶配向剤が開示されている。この液晶配向剤は、窒素原子がtert-ブトキシカルボニル基で保護された特定構造を有するジアミンを用いて得られたポリアミック酸又はその誘導体を含有している。また、特許文献2には、電圧保持率及びラビング耐性が高く、蓄積した電荷を速く緩和させることが可能な液晶配向膜を得るべく、ピペリジン等の脂肪族ヘテロ環と3級アミン構造とを有するジアミンを用いてポリアミック酸やポリイミドを液晶配向剤に含有させることが開示されている。特許文献3には、2個又は3個の芳香環が直接結合した特定構造を有するジアミンを用いて、残留DCが小さい液晶配向膜を得ることが開示されている。
特許第5929298号公報 国際公開第2015/122413号 特開2011-154100号公報
 近年、液晶素子は、大画面の液晶テレビから、スマートフォンやタブレットPC等といった小型の表示装置まで幅広い範囲のデバイスや用途に適用されており、液晶素子の表示品位の更なる改善が従来よりも増して重要になってきている。これに伴い、液晶配向膜の更なる高性能化が求められている。
 本開示は上記事情に鑑みてなされたものであり、抵抗値が低くかつ透明性が高い液晶配向膜を得ることができるとともに、液晶配向性が良好であり、かつ焼き付きが少ない液晶素子を得ることができる液晶配向剤を提供することを一つの目的とする。
 本発明者らは、上記課題を解決するべく鋭意検討し、窒素含有の特定の部分構造(芳香環と窒素含有脂肪族ヘテロ環との縮合環構造又は含窒素メタアリーレン構造)を有する重合体によれば上記課題を解決できることを見出した。具体的には、以下の手段が提供される。
<1> 下記に示す重合体(PA)及び重合体(PB)よりなる群から選ばれる少なくとも一種の重合体(P)を含有する、液晶配向剤。
 重合体(PA):下記式(1A)で表される部分構造及び下記式(2A)で表される部分構造よりなる群から選ばれる少なくとも一種を有する重合体。
Figure JPOXMLDOC01-appb-C000008
(式(1A)及び式(2A)中、Xは4価の有機基であり、Xは、下記式(3A)で表される2価の有機基である。R及びRは、それぞれ独立して、水素原子又は炭素数1~6の1価の有機基である。)
Figure JPOXMLDOC01-appb-C000009
(式(3A)中、A、A及びAは、それぞれ独立して、単結合又は2価の有機基であり、Y及びYは、それぞれ独立して、単結合、酸素原子、硫黄原子又は「-NR10-」(ただし、R10は水素原子又は1価の有機基である。)である。Z及びZは、それぞれ独立して、下記式(4A)、(5A)又は(6A)で表される2価の環状基であり、環を構成する原子に結合する水素原子が置換基で置換されていてもよく、当該置換基がA又はAに結合して環を形成していてもよい。「*」は結合手を示す。)
Figure JPOXMLDOC01-appb-C000010
(式(4A)~(6A)中、Qは、酸素原子、硫黄原子、メチレン基又は-NH-であり、Qは、単結合、酸素原子、硫黄原子、メチレン基又は-NH-である。「*」は結合手を示す。)
 重合体(PB):下記式(1B)で表される部分構造及び下記式(2B)で表される部分構造よりなる群から選ばれる少なくとも一種を有する重合体。
Figure JPOXMLDOC01-appb-C000011
(式(1B)及び式(2B)中、A51~A54は、それぞれ独立して、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の環状基であり、環部分に置換基を有していてもよい。R51~R54は、それぞれ独立して、水素原子又は1価の有機基であり、R55~R58は、それぞれ独立して1価の有機基である。a3、b3、c3及びd3は、それぞれ独立して0~4の整数である。a3、b3、c3、d3が2以上の場合、式中の複数のR55、R56、R57、R58は、互いに同じでも異なっていてもよい。「*」は結合手を示す。)
<2> 上記<1>の液晶配向剤を用いて形成された液晶配向膜。
<3> 上記<2>の液晶配向膜を備える液晶素子。
 上記の液晶配向剤によれば、抵抗値が低く、かつ透明性が高い液晶配向膜を得ることができる。また、上記の液晶配向剤を用いて液晶配向膜を形成することにより、液晶配向性が良好であり、かつ焼き付きが少ない液晶素子を得ることができる。
図1は、実施例1A~7Aの重合体の紫外可視吸収スペクトルである。 図2は、比較例1A~6Aの重合体の紫外可視吸収スペクトルである。 図3は、実施例1A~7A及び比較例2A、3A、5A、6Aの重合体のHOMO準位とε400nm/Vの関係を示す図である。 図4は、実施例1B~8Bの重合体の紫外可視吸収スペクトルである。 図5は、比較例1B~5Bの重合体の紫外可視吸収スペクトルである。 図6は、実施例1B~8B及び比較例2B~5Bの重合体のHOMO準位とε400nm/Vの関係を示す図である。 図7は、実施例1B~8B及び比較例1B~5Bの重合体のI/Iとε400nm/Vの関係を示す図である。
 以下、本開示の内容について詳しく説明する。なお、本明細書において「炭化水素基」は、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基を含む意味である。「鎖状炭化水素基」とは、主鎖に環状構造を含まず、鎖状構造のみで構成された直鎖状炭化水素基及び分岐状炭化水素基を意味する。ただし、飽和でも不飽和でもよい。「脂環式炭化水素基」とは、環構造としては脂環式炭化水素の構造のみを含み、芳香環構造を含まない炭化水素基を意味する。ただし、脂環式炭化水素の構造のみで構成されている必要はなく、その一部に鎖状構造を有するものも含む。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基を意味する。ただし、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環式炭化水素の構造を含んでいてもよい。
≪重合体(P)≫
 重合体(P)は、重合体(PA)及び重合体(PB)よりなる群から選ばれる少なくとも一種である。重合体(PA)及び重合体(PB)のそれぞれについて以下に説明する。
<重合体(PA)>
 重合体(PA)は、芳香環と窒素含有脂肪族ヘテロ環との縮合環構造を有し、具体的には、上記式(1A)で表される部分構造及び上記式(2A)で表される部分構造よりなる群から選ばれる少なくとも一種を有する。上記式(1A)及び式(2A)において、Xは、テトラカルボン酸誘導体に由来する4価の有機基である。なお、本明細書において「テトラカルボン酸誘導体」は、テトラカルボン酸二無水物、テトラカルボン酸ジエステル及びテトラカルボン酸ジエステルジハロゲン化物を含む意味である。R及びRの1価の有機基としては、例えば1価の炭化水素基等が挙げられる。好ましくは炭素数1~10のアルキル基である。
 上記式(1A)及び式(2A)において、Xは、上記式(3A)で表される2価の有機基である。上記式(3A)において、Z及びZは、それぞれ独立して、上記式(4A)、(5A)又は(6A)で表される2価の環状基である。上記式(4A)及び式(5A)中のQは、酸素原子、硫黄原子、メチレン基又は-NH-であり、上記式(6A)中のQは、単結合、酸素原子、硫黄原子、メチレン基又は-NH-である。得られる重合体のホール輸送性が高く、重合体(PA)を用いて形成した膜の蓄積電荷の低減効果を十分に得ることができる点で、Qはメチレン基であることが好ましく、Qは単結合又は酸素原子であることが好ましい。得られる液晶素子のDC残像特性の改善効果が高い点で、上記式(4A)、(5A)及び(6A)中の窒素原子は芳香環に結合していることが好ましい。
 Z及びZは、環を構成する原子に結合する少なくとも1個の水素原子が置換基で置換されていてもよく、当該置換基がA又はAに結合して環構造を形成していてもよい。Z、Zが有する置換基としては、例えばメチル基、エチル基、プロピル基等のアルキル基、メトキシ基等のアルコキシ基、フッ素原子、水酸基等が挙げられる。なお、Q、Qがメチレン基又は-NH-の場合、Q、Qが有する水素原子が置換基で置換されていてもよい。Z及びZは、電荷がより蓄積されにくい樹脂膜が得られる点、及び化合物を合成しやすい点で、上記式(4A)~(6A)のうち、上記式(4A)で表される基が好ましく、上記式(4A)においてQがメチレン基である構造が特に好ましい。
 A、A及びAは、それぞれ独立して、単結合又は2価の有機基である。A~Aの2価の有機基としては、例えば炭素数1~30の2価の炭化水素基、当該炭化水素基の炭素-炭素結合間に、-O-、-S-、-CO-、-COO-、-NR41-、-CONR41-等を有する2価の基(ただし、R41は水素原子又は1価の有機基)、2価の複素環基等が挙げられ、炭素原子に結合する少なくとも1個の水素原子が置換基(例えばメトキシ基、フッ素原子等)で置換されていてもよい。
 A~Aは、膜の蓄積電荷がより低減された樹脂膜を得ることができる点で、上記のうち、単結合又は芳香環を有する2価の基であることが好ましい。なお、本明細書において「芳香環」とは、芳香族炭化水素環及び芳香族複素環を含む意味である。A~Aが芳香環を有する2価の基である場合、A~Aはそれぞれ、下記式(7A)、(8A)、(9A)又は(10A)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(7A)~(10A)中、R12~R16は、それぞれ独立して、ハロゲン原子又は1価の有機基であり、Qは、単結合、酸素原子、硫黄原子、炭素数1~3のアルカンジイル基、又は「-NR11-」(ただし、R11は水素原子又は1価の有機基である。)である。a、c及びdは、それぞれ独立して0~4の整数であり、bは0~3の整数であり、eは0~6の整数である。「*」は結合手を示す。)
 上記式(7A)~(10A)において、R12~R16の1価の有機基としては、例えば、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。a~eは、好ましくは0~2であり、より好ましくは0又は1である。Qは、単結合、酸素原子又は硫黄原子であることが好ましく、単結合であることがより好ましい。
 Y及びYは、それぞれ独立して、単結合、酸素原子、硫黄原子又は「-NR10-」(R10は、水素原子又は1価の有機基)である。R10の1価の有機基としては、例えば炭素数1~6のアルキル基、保護基等が挙げられる。保護基としては、例えばカルバメート系保護基、アミド系保護基、イミド系保護基、スルホンアミド系保護基などが挙げられる。保護基は、これらのうち、熱による脱離性が高い点や、脱保護した部分の膜中での残存量を少なくする点で、tert-ブトキシカルボニル基が好ましい。Y及びYとしては、膜の蓄積電荷をより低減させる観点から、少なくとも一方が単結合であることが好ましく、両方とも単結合であることがより好ましい。
 上記式(3A)で表される基は、本開示の効果を十分に得ることができる点で、上記のうち、下記式(12A-1)~下記式(12A-4)のそれぞれで表される基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(12A-1)中、A及びAは、それぞれ独立して、2価の炭化水素基又は2価の窒素含有芳香族複素環基である。Q及びQは、それぞれ独立して、酸素原子、硫黄原子、メチレン基、エチレン基、-NR40-、-CH-O-、-CH-S-、-CH-NR40-(ただし、R40は炭素数1~6の1価の炭化水素基である。以下同じ。)である。R20及びR21は、それぞれ独立してハロゲン原子又は炭素数1以上の1価の有機基である。f及びgは、それぞれ独立して0~4の整数である。「*」は結合手を示す。)
Figure JPOXMLDOC01-appb-C000014
(式(12A-2)中、A及びAは、それぞれ独立して、単結合、2価の炭化水素基又は2価の窒素含有芳香族複素環基である。Q及びQは、それぞれ独立して、酸素原子、硫黄原子、メチレン基、エチレン基、-NR40-、-CH-O-、-CH-S-、-CH-NR40-である。R22及びR23は、それぞれ独立してハロゲン原子又は1価の有機基である。Dは上記式(7A)、(8A)、(9A)又は(10A)で表される2価の基である。h及びiは、それぞれ独立して0~4の整数である。「*」は結合手を示す。)
Figure JPOXMLDOC01-appb-C000015
(式(12A-3)中、A及びAは、それぞれ独立して、2価の炭化水素基又は2価の窒素含有芳香族複素環基である。Q及びQ10は、それぞれ独立して、酸素原子、硫黄原子、メチレン基又は-NR40-である。R26及びR27は、それぞれ独立してハロゲン原子又は1価の有機基である。a1及びa2は、それぞれ独立して0~4の整数である。「*」は結合手を示す。)
Figure JPOXMLDOC01-appb-C000016
(式(12A-4)中、A及びA10は、それぞれ独立して、単結合、2価の炭化水素基又は2価の窒素含有芳香族複素環基である。Q11及びQ12は、それぞれ独立して、酸素原子、硫黄原子、メチレン基又は-NR40-である。R28及びR29は、それぞれ独立してハロゲン原子又は1価の有機基である。b1及びb2は、それぞれ独立して0~4の整数である。「*」は結合手を示す。)
 上記式(12A-1)~式(12A-4)において、R20~R23及びR26~R29の1価の有機基としては、例えば、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。f~i、a1、a2、b1及びb2は、好ましくは0~2であり、より好ましくは0又は1である。
 上記式(12A-1)中のA及びA、並びに式(12A-3)中のA及びAは、2価の芳香環基であることが好ましく、上記式(12A-2)中のA及びA、並びに式(12A-4)中のA及びA10は、単結合又は2価の芳香環基であることが好ましい。2価の芳香環基の具体例としては、例えばベンゼン環、ナフタレン環、アントラセン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた基等が挙げられる。
 重合体(PA)は、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種である。重合体(PA)は、テトラカルボン酸誘導体に由来する部分構造と、上記式(3A)で表される2価の有機基を有するジアミン化合物(以下、「特定ジアミンA」ともいう。)に由来する部分構造と、を有する。重合体(PA)の合成方法は特に限定されず、有機化学の定法により得ることができる。
<ポリアミック酸>
 重合体(PA)がポリアミック酸である場合、当該ポリアミック酸(以下、「ポリアミック酸(PA)」ともいう。)は、例えば、テトラカルボン酸二無水物と、特定ジアミンAを含むジアミン化合物と、を反応させることにより得ることができる。
(テトラカルボン酸二無水物)
 ポリアミック酸(PA)の合成に使用するテトラカルボン酸二無水物としては、特に限定されず、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物等が挙げられる。これらの具体例としては、脂肪族テトラカルボン酸二無水物として、例えばエチレンジアミン四酢酸二無水物などを;
 脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、3,5,6-トリカルボキシ-2-カルボキシメチルノルボルナン-2:3,5:6-二無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物などを;
 芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、p-フェニレンビス(トリメリット酸モノエステル無水物)、エチレングリコールビス(アンヒドロトリメリテート)、1,3-プロピレングリコールビス(アンヒドロトリメリテート)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物などを;それぞれ挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、重合体(PA)の合成に際し、テトラカルボン酸二無水物としては、1種を単独で又は2種以上を組み合わせて使用することができる。
(ジアミン化合物)
 特定ジアミンAとしては、下記式(11A)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
(式(11A)中、A、A及びAは、それぞれ独立して、単結合又は2価の有機基であり、Y及びYは、それぞれ独立して、単結合、酸素原子、硫黄原子又は「-NR10-」(ただし、R10は水素原子又は1価の有機基である。)である。Z及びZは、それぞれ独立して、上記式(4A)、(5A)又は(6A)で表される2価の環状基であり、環を構成する原子に結合する水素原子が置換基で置換されていてもよく、当該置換基がA又はAに結合して環を形成していてもよい。)
 上記式(11A)中のA~A、Y、Y、Z及びZの具体例及び好ましい例については、上記式(3A)の説明がそれぞれ適用される。特定ジアミンAとしては、下記式(13A)~式(16A)のそれぞれで表される化合物を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000018
(式(13A)中、A、A、Q、Q、R20、R21、f及びgは、それぞれ上記式(12A-1)と同義である。)
Figure JPOXMLDOC01-appb-C000019
(式(14A)中、Dは、上記式(7A)、(8A)、(9A)又は(10A)で表される2価の基である。A、A、Q、Q、R22、R23、h及びiは、それぞれ上記式(12A-2)と同義である。)
Figure JPOXMLDOC01-appb-C000020
(式(15A)中、A、A、Q、Q10、R26、R27、a1及びa2は、それぞれ上記式(12A-3)と同義である。)
Figure JPOXMLDOC01-appb-C000021
(式(16A)中、Dは、上記式(7A)、(8A)、(9A)又は(10A)で表される2価の基である。A、A10、Q11、Q12、R28、R29、b1及びb2は、それぞれ上記式(12A-4)と同義である。)
 上記式(13A)~式(16A)において、A~A10の2価の炭化水素基としては、2価の芳香族炭化水素基であることが好ましく、ベンゼン環、ナフタレン環又はアントラセン環の環部分から2個の水素原子を取り除いた基であることがより好ましい。2価の窒素含有芳香族複素環基としては、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた基であることが好ましい。D及びDは、膜の蓄積電荷の低減効果が高い点で、上記式(9A)のQが単結合である2価の基であることが好ましい。
 特定ジアミンAの具体例としては、例えば下記式(d-1A)~式(d-32A)のそれぞれで表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 特定ジアミンAとしては、光透過性がより良好な重合体を得ることができる点、及び合成のしやすさの観点から、これらのうち、上記式(13A)又は式(14A)で表される化合物を用いることが好ましい。具体的には、上記式(d-1A)~式(d-9A)、式(d-13A)、式(d-14A)、式(d-17A)~式(d-26A)のそれぞれで表される化合物が好ましく、上記式(d-1A)~式(d-7A)、式(d-13A)、式(d-14A)、式(d-17A)~式(d-20A)のそれぞれで表される化合物が特に好ましい。なお、特定ジアミンAは、1種を単独で又は2種以上を組み合わせて使用することができる。
 ポリアミック酸(PA)の合成に際しては、ジアミン化合物として特定ジアミンAのみを用いてもよいが、特定ジアミンAと共に、特定ジアミンA以外のその他のジアミンを使用してもよい。
 その他のジアミンとしては、上記式(3A)で表される部分構造を有さないジアミンであれば特に限定されず、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン及びジアミノオルガノシロキサン等が挙げられる。これらの具体例としては、脂肪族ジアミンとして、例えばメタキシリレンジアミン、エチレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等を;脂環式ジアミンとして、例えばp-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)等を;
芳香族ジアミンとして、例えばドデカノキシジアミノベンゼン、ヘキサデカノキシジアミノベンゼン、オクタデカノキシジアミノベンゼン、コレスタニルオキシジアミノベンゼン、コレステリルオキシジアミノベンゼン、ジアミノ安息香酸コレスタニル、ジアミノ安息香酸コレステリル、ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、2,5-ジアミノ-N,N-ジアリルアニリン、下記式(E-1)
Figure JPOXMLDOC01-appb-C000026
(式(E-1)中、XI及びXIIは、それぞれ独立に、単結合、-O-、-COO-又は-OCO-であり、Rは炭素数1~3のアルカンジイル基であり、RIIは単結合又は炭素数1~3のアルカンジイル基であり、aは0又は1であり、bは0~2の整数であり、cは1~20の整数であり、dは0又は1である。ただし、a及びbが同時に0になることはない。)
で表される化合物等の側鎖型ジアミン:
パラフェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-エチレンジアニリン、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニルスルフィド、4-アミノフェニル-4’-アミノベンゾエート、4,4’-ジアミノアゾベンゼン、3,5-ジアミノ安息香酸、1,2-ビス(4-アミノフェノキシ)エタン、1,5-ビス(4-アミノフェノキシ)ペンタン、N,N’-ジ(4-アミノフェニル)-N,N’-ジメチルエチレンジアミン、ビス[2-(4-アミノフェニル)エチル]ヘキサン二酸、ビス(4-アミノフェニル)アミン、N,N-ビス(4-アミノフェニル)メチルアミン、1,4-ビス(4-アミノフェニル)-ピペラジン、N,N’-ビス(4-アミノフェニル)-ベンジジン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-(フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン等の非側鎖型ジアミンを;
 ジアミノオルガノシロキサンとして、例えば、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等を;それぞれ挙げることができるほか、特開2010-97188号公報に記載のジアミン化合物を用いることができる。ポリアミック酸(PA)の合成に際し、その他のジアミンは1種を単独で又は2種以上を組み合わせて使用できる。
 特定ジアミンAの使用割合は、本開示の効果を十分に得る観点から、ポリアミック酸(PA)の合成に際して使用するジアミン化合物の合計量に対して、5モル%以上とすることが好ましい。より好ましくは10モル%以上であり、さらに好ましくは20モル%以上である。
 特定ジアミンAは、有機化学の定法を適宜組み合わせることによって得ることができる。その一例としては、上記式(11A)中の一級アミノ基に代えてニトロ基を有するジニトロ中間体を合成し、次いで、得られたジニトロ中間体のニトロ基を適当な還元系を用いてアミノ化する方法などが挙げられる。
 ジニトロ中間体を合成する方法は、目的とする化合物に応じて適宜選択することができる。例えば下記スキームに示すように、ニトロ化合物(15A-1)とハロゲン化合物(15A-2)とを、必要に応じて溶媒中、触媒の存在下で反応させることにより、上記式(15A-4)で表されるジアミンの前駆体であるジニトロ中間体(15A-3)を得ることができる。また、2級アミノ基含有化合物(16A-1)とハロゲン化合物(16A-2)とを、必要に応じて溶媒中、触媒の存在下で反応させることにより、上記式(16A-4)で表されるジアミンの前駆体であるジニトロ中間体(16A-3)を得ることができる。ただし、特定ジアミンAの合成方法は上記に限定されるものではない。出発物質に応じて主鎖の両端が互いに異なる構造の化合物を得ることもできる。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(スキーム中、A11及びA12は、単結合又は2価の有機基であり、Q21~Q23は、酸素原子、硫黄原子、メチレン基、エチレン基、-NR40-、-CH-O-、-CH-S-、-CH-NR40-であり、Dは、上記式(7A)~(10A)のいずれかで表される2価の基であり、X~Xは、それぞれ独立してハロゲン原子である。)
(ポリアミック酸の合成)
 ポリアミック酸(PA)は、上記の如きテトラカルボン酸二無水物とジアミン化合物とを、必要に応じて分子量調整剤(例えば、酸一無水物、モノアミン化合物、モノイソシアネート化合物等)とともに反応させることによって得ることができる。ポリアミック酸(PA)の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましい。
 ポリアミック酸(PA)の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は-20℃~150℃が好ましく、反応時間は0.1~24時間が好ましい。反応に使用する有機溶媒としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素等が挙げられる。特に好ましい有機溶媒は、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、m-クレゾール、キシレノール及びハロゲン化フェノールよりなる群から選択される1種以上を溶媒として使用するか、あるいはこれらの1種以上と、他の有機溶媒(例えばブチルセロソルブ、ジエチレングリコールジエチルエーテル等)との混合物である。有機溶媒の使用量は、テトラカルボン酸二無水物及びジアミン化合物の合計量が、反応溶液の全量に対して、0.1~50質量%になる量とすることが好ましい。ポリアミック酸(PA)を溶解してなる反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸(PA)を単離したうえで液晶配向剤の調製に供してもよい。
<ポリアミック酸エステル>
 重合体(PA)がポリアミック酸エステルの場合、当該ポリアミック酸エステルは、上記式(1A)で表される部分構造において、R及びRの少なくとも一方が炭素数1~6の1価の有機基である構造単位を有する重合体である。ポリアミック酸エステルは、例えば、[I]上記で得られたポリアミック酸(PA)とエステル化剤(例えばメタノールやエタノール、N,N-ジメチルホルムアミドジエチルアセタール等)とを反応させる方法、[II]テトラカルボン酸ジエステルと、特定ジアミンAを含むジアミン化合物とを、好ましくは有機溶媒中、適当な脱水触媒(例えば4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムハライド、カルボニルイミダゾール、リン系縮合剤等)の存在下で反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物と、特定ジアミンAを含むジアミン化合物とを、好ましくは有機溶媒中、適当な塩基(例えばピリジン、トリエチルアミン等の3級アミンや、水素化ナトリウム、水素化カリウム、水酸化ナトリウム、水酸化カリウム、ナトリウム、カリウム等のアルカリ金属類)の存在下で反応させる方法、等によって得ることができる。
 上記[II]で使用するテトラカルボン酸ジエステルは、テトラカルボン酸二無水物をアルコール類などで開環することにより得ることができる。上記[III]で使用するテトラカルボン酸ジエステルジハロゲン化物は、上記の如くして得たテトラカルボン酸ジエステルを、塩化チオニル等の適当な塩素化剤と反応させることにより得ることができる。ポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。上記反応によりポリアミック酸エステルを溶液として得た場合、該溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよい。
<ポリイミド>
 重合体(PA)がポリイミドの場合、当該ポリイミドは、上記式(2A)で表される部分構造を有する重合体である。ポリイミドは、例えば上記の如くして合成されたポリアミック酸(PA)を脱水閉環してイミド化することにより得ることができる。ポリイミドは、その前駆体であるポリアミック酸(PA)が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存する部分イミド化物であってもよい。該ポリイミドは、そのイミド化率が40~100%であることが好ましく、60~90%であることがより好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
 ポリアミック酸(PA)の脱水閉環は、ポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われることが好ましい。脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸等の酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01~20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01~10モルとすることが好ましい。使用する有機溶媒としては、ポリアミック酸(PA)の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は、好ましくは0~180℃であり、反応時間は、好ましくは1.0~120時間である。こうして得られたポリイミドを含有する反応溶液は、そのまま液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよい。
<重合体(PB)>
 重合体(PB)は、上記式(1B)で表される部分構造及び上記式(2B)で表される部分構造よりなる群から選ばれる少なくとも一種を有する。上記式(1B)においては、A53に結合する「-NR53-」、及びA54に結合する「-NR54-」は、それぞれ、A53、A54に結合する他の基に対してメタ位に結合している。また、上記式(2B)においては、ビフェニル構造に結合する「-NR51-」、「-NR52-」はそれぞれ、他の基(フェニレン基)に対してメタ位に結合している。
 上記式(1B)及び式(2B)において、A51~A54は、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の環状基である。A51~A54の2価の環状基は、環部分に置換基を有していてもよい。当該置換基としては、例えばメチル基、エチル基、プロピル基等のアルキル基、メトキシ基等のアルコキシ基、フッ素原子等が挙げられる。A51~A54としては、優れたホール輸送性を示す重合体が得られ、膜の蓄積電荷の低減効果を十分に得ることができる点、及び化合物を合成しやすい点で、ベンゼン環であることが好ましい。
 R51~R54としては、膜の光透過性を良好にする観点から、1価の炭化水素基であることが好ましい。その具体例としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基等のアルキル基;シクロヘキシル基、メチルシクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、ナフチル基等のアリール基;ベンジル基等のアラルキル基、等が挙げられる。これらのうち、好ましくは炭素数1~3のアルキル基又はフェニル基である。a3、b3、c3及びd3は、0~2が好ましく、0がより好ましい。なお、a3、b3、c3、d3が2以上の場合、式中の複数のR55、R56、R57、R58は、互いに同じでも異なっていてもよい。
 重合体(PB)は、上記式(1B)で表される部分構造及び上記式(2B)で表される部分構造の少なくとも一方を主鎖中に有する。重合体(PB)としては、例えばポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリオルガノシロキサン、ポリエステル、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを主骨格とする重合体が挙げられる。これらのうち、蓄積電荷がより少ない樹脂膜とすることができる点で、重合体(PB)は、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種(以下、「重合体(PB1)」ともいう。)であることが好ましい。
 重合体(PB1)は、好ましくは、下記式(3B)で表される部分構造及び下記式(4B)で表される部分構造よりなる群から選ばれる少なくとも一種を有する重合体である。
Figure JPOXMLDOC01-appb-C000029
(式(3B)及び式(4B)中、X51は4価の有機基であり、X52は、下記式(5B)又は式(6B)で表される2価の基である。R63及びR64は、それぞれ独立して、水素原子又は炭素数1~6の1価の有機基である。)
Figure JPOXMLDOC01-appb-C000030
(式(5B)及び式(6B)中、B51~B54は、それぞれ独立して、単結合又は2価の有機基である。A51~A54、R51~R58、a3、b3、c3及びd3は、上記式(1B)及び式(2B)と同義である。「*」は結合手を示す。)
 上記式(3B)及び式(4B)において、X51は、テトラカルボン酸誘導体に由来する4価の有機基である。X52中、A51~A54、R51~R58、a3、b3、c3及びd3の具体例及び好ましい例については上記の説明が適用される。R63及びR64の1価の有機基としては、例えばメチル基、エチル基、プロピル基、フェニル基等の1価の炭化水素基などが挙げられる。
 B51~B54の2価の有機基としては、例えば炭素数1~30の2価の炭化水素基、当該炭化水素基の炭素-炭素結合間に、-O-、-S-、-CO-、-COO-、-NR60-、-CONR60-等を有する2価の基(R60は、水素原子又は1価の炭化水素基。以下同じ。)、2価の複素環基等が挙げられ、炭素原子に結合する少なくとも1個の水素原子が置換基(例えばメトキシ基、フッ素原子等)により置換されていてもよい。B51~B54は、ホール輸送性及びホール注入性がより良好な重合体が得られる点で、単結合又は「*-R61-Y51-*」(ただし、R61は2価の炭化水素基であり、Y51は、-NR60-、-O-又は-S-である。「*」はA51~A54との結合手を示し、「*」は結合手を示す。)であることが好ましく、単結合であることが特に好ましい。B51~B54は単結合が好ましい。
 重合体(PB1)の合成方法は特に限定されず、主骨格に応じて有機化学の定法により得ることができる。
<ポリアミック酸>
 重合体(PB1)がポリアミック酸である場合、当該ポリアミック酸(以下、「ポリアミック酸(PB)」ともいう。)は、例えば、テトラカルボン酸二無水物と、上記式(1B)又は式(2B)で表される部分構造(好ましくは、上記式(5B)又は式(6B)で表される2価の有機基)を有するジアミン(以下、「特定ジアミンB」ともいう。)を含むジアミン化合物と、を反応させる方法により得ることが好ましい。
(テトラカルボン酸二無水物)
 ポリアミック酸(PB)の合成に使用するテトラカルボン酸二無水物としては、特に限定されず、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物等が挙げられる。これらの具体例については、ポリアミック酸(PA)の合成において使用することができるテトラカルボン酸二無水物の説明が適用される。なお、重合体(PB)の合成に際し、テトラカルボン酸二無水物としては、1種を単独で又は2種以上を組み合わせて使用することができる。
(ジアミン化合物)
 特定ジアミンBとしては、下記式(7B)で表される化合物及び下記式(8B)で表される化合物を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000031
(式(7B)中、A53、A54、R53、R54、R57、R58、c3及びd3は上記式(1B)と同義であり、B53及びB54は上記式(5B)と同義である。)
Figure JPOXMLDOC01-appb-C000032
(式(8B)中、A51、A52、R51、R52、R55、R56、a3及びb3は上記式(2B)と同義であり、B51及びB52は上記式(6B)と同義である。)
 上記式(7B)及び式(8B)中のA51~A54、R51~R58、B51~B54及びa3~d3の具体例及び好ましい例については、上記式(1B)、(2B)、(5B)、(6B)の説明がそれぞれ適用される。特定ジアミンBとしては、これらのうち、下記式(10B)又は式(11B)で表される化合物を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000033
(式(10B)中、R53、R54、R57、R58、c3及びd3は上記式(5B)と同義である。)
Figure JPOXMLDOC01-appb-C000034
(式(11B)中、R51、R52、R55、R56、a3及びb3は上記式(6B)と同義である。)
 特定ジアミンBの具体例としては、例えば下記式(d-1B)~式(d-24B)のそれぞれで表される化合物等が挙げられる。なお、下記式(d-2B)、式(d-3B)、式(d-5B)、式(d-6B)、式(d-8B)、式(d-10B)、式(d-11B)、式(d-13B)、式(d-14B)及び式(d-16B)のそれぞれで表される化合物が上記式(7B)で表される化合物に相当し、下記式(d-1B)、式(d-3B)、式(d-4B)、式(d-6B)、式(d-7B)、式(d-9B)、式(d-11B)、式(d-12B)、式(d-14B)、式(d-15B)及び式(d-17B)~式(d-24B)のそれぞれで表される化合物が上記式(8B)で表される化合物に相当する。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 特定ジアミンBとしては、得られる重合体の可視領域における光透過性をより良好にできる点で、これらのうち、上記式(7B)で表される化合物を好ましく用いることができ、樹脂膜の抵抗値をより低減できる点で、上記式(10B)で表される化合物を用いることがより好ましい。具体的には、上記式(d-1B)、式(d-2B)、式(d-4B)、式(d-5B)及び式(d-7B)のそれぞれで表される化合物が特に好ましい。なお、上記式(10B)で表される化合物によれば、得られる重合体の面内配向性や主鎖軸方向への一軸直線性が高く、分子鎖間のパッキングが促進される結果、樹脂膜の抵抗値をより低減できるものと推測される。特定ジアミンBは、1種を単独で又は2種以上を組み合わせて使用することができる。
 ポリアミック酸(PB)の合成に際しては、ジアミン化合物として特定ジアミンBのみを用いてもよいが、特定ジアミンBと共に、特定ジアミンB以外のその他のジアミンを使用してもよい。その他のジアミンとしては、上記式(1B)又は式(2B)で表される部分構造を有さないジアミンであれば特に限定されず、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン及びジアミノオルガノシロキサン等が挙げられる。ポリアミック酸(PB)の合成において使用するその他のジアミンの具体例については、ポリアミック酸(PA)を合成する際に使用してもよいその他のジアミンとして例示した化合物の説明が適用される。なお、ポリアミック酸(PB)の合成に際し、その他のジアミンは1種を単独で又は2種以上を組み合わせて使用できる。
 特定ジアミンBの使用割合は、本開示の効果を十分に得る観点から、ポリアミック酸(PB)の合成に際して使用するジアミン化合物の合計量に対して、5モル%以上とすることが好ましい。より好ましくは10モル%以上、さらに好ましくは20モル%以上である。
 特定ジアミンBは、有機化学の定法を適宜組み合わせることによって得ることができる。その一例としては、上記式(7B)及び式(8B)中の一級アミノ基に代えてニトロ基を有するジニトロ中間体を合成し、次いで、得られたジニトロ中間体のニトロ基を適当な還元系を用いてアミノ化する方法などが挙げられる。
 ジニトロ中間体を合成する方法は、目的とする化合物に応じて適宜選択することができる。例えば、アミノ基含有のニトロ化合物(13B-1)と、ビフェニル構造を有するハロゲン化合物(13B-2)とを、必要に応じて溶媒中、触媒の存在下で反応させることにより、下記式(13B-4)で表されるジアミンの前駆体であるジニトロ中間体(13B-3)を得ることができる。また、下記式(14B-4)で表されるジアミンの前駆体であるジニトロ中間体(14B-3)については、アミノ基含有のニトロ化合物(14B-1)と、ビフェニル構造を有するハロゲン化合物(14B-2)とを、必要に応じて溶媒中、触媒の存在下で反応させることにより得ることができる。ただし、特定ジアミンBの合成方法は上記に限定されるものではない。出発物質であるニトロ化合物に応じて、ビフェニル構造に結合する構造が互いに異なる化合物を得ることもできる。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
(スキーム中、A55及びA56は、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の環状基であり、環部分に置換基を有していてもよい。R71及びR72は、水素原子又は1価の有機基であり、B53及びB54は、単結合又は2価の有機基であり、X53~X56は、それぞれ独立してハロゲン原子である。)
(ポリアミック酸の合成)
 ポリアミック酸(PB)は、上記の如きテトラカルボン酸二無水物とジアミン化合物とを、必要に応じて分子量調整剤とともに反応させることによって得ることができる。ポリアミック酸(PB)の合成反応の具体的な各種条件については、ポリアミック酸(PA)の説明が適用される。
<ポリアミック酸エステル>
 重合体(PB)がポリアミック酸エステルの場合、当該ポリアミック酸エステルは、上記式(3B)で表される部分構造において、R63及びR64の少なくとも一方が炭素数1~6の1価の有機基である構造単位を有する重合体である。当該ポリアミック酸エステルの合成反応の具体的な各種条件については、重合体(PA)がポリアミック酸エステルである場合の説明が適用される。
<ポリイミド>
 重合体(PB)がポリイミドの場合、当該ポリイミドは、上記式(4B)で表される部分構造を有する重合体である。ポリイミドは、例えば上記の如くして合成されたポリアミック酸(PB)を脱水閉環してイミド化することにより得ることができる。当該ポリイミドの合成反応の具体的な各種条件については、重合体(PA)がポリイミドである場合の説明が適用される。
<重合体(P)の物性>
 重合体(P)の溶液粘度は、濃度10質量%の溶液としたときに10~800mPa・sの溶液粘度を持つものであることが好ましく、15~500mPa・sの溶液粘度を持つものであることがより好ましい。なお、溶液粘度(mPa・s)は、重合体(P)の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドン等)を用いて調製した濃度10質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
 重合体(P)のゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは5,000~100,000である。Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。なお、液晶配向剤に含有させる重合体(P)は1種のみでもよく、又は2種以上を組み合わせてもよい。
 重合体(P)は、蓄積電荷の低減と光透過性とが同時に要求される用途、例えば、液晶素子材料(例えば液晶配向膜、液晶ディスプレイ用平坦化膜、層間絶縁膜など)や、有機EL素子材料(例えば、有機EL用平坦化膜、電子輸送層など)、光学フィルム(例えば位相差フィルム、視野角補償フィルムなど)等として好ましく適用することができる。特に、重合体(PA)は、優れたホール輸送性及びITO電極を介したホール注入性を発現するとともに、吸収係数が小さく光透過性に優れていることから、重合体(PA)を用いることにより、抵抗値が低く、かつ光透過性に優れた樹脂膜を得ることができる点で好ましい。また、重合体(PB)は、HOMO準位が高く、優れたホール輸送性及びITO電極を介したホール注入性を発現するとともに、吸収係数が小さく光透過性に優れており、さらに主鎖軸方向への一軸直線性が高いことから、重合体(PB)を用いることによって抵抗値が低く、かつ光透過性及び液晶配向性に優れた樹脂膜を得ることができる点で好ましい。こうした特性により、重合体(P)は、液晶配向膜材料として好適に用いることができる。
≪液晶配向剤≫
 本開示の液晶配向剤は、重合体(P)を含有する。液晶配向剤中の重合体(P)の含有割合は、液晶配向剤中の固形成分(溶媒以外の成分)の合計100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、さらに好ましくは30質量部以上である。なお、液晶配向剤に含有される重合体(P)は1種のみでもよく、又は2種以上を組み合わせてもよい。
 本開示の液晶配向剤は、重合体(P)以外のその他の成分を含有していてもよい。当該その他の成分としては、例えば、重合体(P)とは異なる重合体(以下「その他の重合体」ともいう。)、分子内に少なくとも一つのエポキシ基を有する化合物、官能性シラン化合物、酸化防止剤、金属キレート化合物、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤、酸発生剤、塩基発生剤、ラジカル発生剤などが挙げられる。これらの配合割合は、本開示の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。
 その他の重合体は、電圧保持率の低下を抑制する目的や、液晶配向性の向上を図る目的で使用される。その他の重合体の主骨格は特に限定されないが、例えば、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリオルガノシロキサン、ポリエステル、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを主骨格とする重合体が挙げられる。その他の重合体は、これらのうち、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種であることが好ましい。
 その他の重合体を液晶配向剤に配合する場合、その配合割合は、液晶配向剤中の全重合体量に対して、1~95質量%が好ましく、5~90質量%がより好ましく、15~80質量%が更に好ましい。
 本開示の液晶配向剤は、重合体(P)及び必要に応じて使用されるその他の成分が、好ましくは適当な溶媒中に溶解してなる液状の組成物として調製される。
 使用する有機溶媒としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,2-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、γ-ブチロラクタム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネート等を挙げることができる。これらは、単独で又は2種以上を混合して使用することができる。
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。すなわち、液晶配向剤は、後述するように基板表面に塗布され、好ましくは加熱されることにより、液晶配向膜である塗膜又は液晶配向膜となる塗膜が形成される。このとき、固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。
≪液晶配向膜及び液晶素子≫
 本開示の液晶配向膜は、上記のように調製された液晶配向剤により形成される。また、本開示の液晶素子は、上記で説明した液晶配向剤を用いて形成された液晶配向膜を具備する。液晶素子における液晶の動作モードは特に限定されず、例えばTN(Twisted Nematic)型、STN(Super Twisted Nematic)型、VA(Vertical Alignment)型(VA-MVA型、VA-PVA型などを含む。)、IPS(In-Plane Switching)型、FFS(fringe field switching)型、OCB(Optically Compensated Bend)型など種々のモードに適用することができる。液晶素子は、例えば以下の工程1~工程3を含む方法により製造することができる。工程1は、所望の動作モードによって使用基板が異なる。工程2及び工程3は各動作モード共通である。
(工程1:塗膜の形成)
 先ず、基板上に液晶配向剤を塗布し、好ましくは塗布面を加熱することにより基板上に塗膜を形成する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一方の面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いることができる。TN型、STN型又はVA型の液晶素子を製造する場合には、パターニングされた透明導電膜が設けられている基板二枚を用いる。一方、IPS型又はFFS型の液晶素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。基板への液晶配向剤の塗布は、電極形成面上に、好ましくはオフセット印刷法、スピンコート法、ロールコーター法、フレキソ印刷法又はインクジェット印刷法により行う。
 液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、プレベーク時間は、好ましくは0.25~10分である。その後、溶剤を完全に除去し、必要に応じて、重合体に存在するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80~300℃であり、ポストベーク時間は、好ましくは5~200分である。このようにして形成される膜の膜厚は、好ましくは0.001~1μmである。基板上に液晶配向剤を塗布した後、有機溶媒を除去することによって、液晶配向膜、又は液晶配向膜となる塗膜が形成される。
(工程2:配向処理)
 TN型、STN型、IPS型又はFFS型の液晶素子を製造する場合、上記工程1で形成した塗膜に液晶配向能を付与する処理(配向処理)を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理や、液晶配向剤を用いて基板上に形成した塗膜に光照射を行って塗膜に液晶配向能を付与する光配向処理等が挙げられる。一方、垂直配向型の液晶素子を製造する場合には、上記工程1で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向処理を施してもよい。
 光配向処理における光照射は、ポストベーク工程後の塗膜に対して照射する方法、プレベーク工程後であってポストベーク工程前の塗膜に対して照射する方法、プレベーク工程及びポストベーク工程の少なくともいずれかにおいて塗膜の加熱中に塗膜に対して照射する方法、等により行うことができる。光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。好ましくは、200~400nmの波長の光を含む紫外線である。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。放射線の照射量は、好ましくは400~20,000J/mであり、より好ましくは1,000~5,000J/mである。塗膜に対する光照射は、反応性を高めるために塗膜を加温しながら行ってもよい。
(工程3:液晶セルの構築)
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば、(1)液晶配向膜が対向するように間隙(スペーサー)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止する方法、(2)液晶配向膜を形成した一方の基板上の所定の場所にシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げる方法(ODF方式)等が挙げられる。製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。スペーサーとしては、フォトスペーサー、ビーズスペーサー等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、例えばシッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などを用いることができる。また、これらの液晶に、例えばコレステリック液晶、カイラル剤、強誘電性液晶などを添加して使用してもよい。
 続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせる。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板が挙げられる。これにより液晶素子が得られる。
 なお、重合体(P)によれば、蓄積電荷が少ない樹脂膜を形成できるとともに、焼き付きが少ない液晶素子が得られる理由は定かではないが、重合体(P)のHOMO準位が高いことが一つの理由であると推測される。すなわち、液晶配向膜がHOMO準位の高い重合体(P)を含有することで、液晶配向膜のホール輸送性及びITO電極を介したホール注入性が向上し、液晶配向膜の抵抗値が低下すると考えられる。その結果として、液晶セルの駆動に伴い残留する電荷が効果的に緩和され、液晶セルのDC残像特性が向上したことが推測される。また、重合体(P)が、三級窒素原子を有する脂環構造が隣接芳香環とともに多環構造を形成している構造を有している場合(すなわち重合体(PA)の場合)、脂環構造によって分子鎖の平面性が向上し、液晶配向膜中の重合体の面内配向性が向上すると考えられる。その結果、分子間のホッピング伝導が促進されて、膜厚方向のキャリア移動度が向上することにより液晶配向膜の抵抗値が下がり、DC残像特性がより一層改善されたことが考えられる。また、重合体(PB)において、上記式(1B)では、A53に結合する「-NR53-」及びA54に結合する「-NR54-」はそれぞれ、A53、A54に結合する他の基に対してメタ位に結合しており、上記式(2B)では、ビフェニル構造に結合する「-NR51-」、「-NR52-」は他の基(フェニレン基)に対してメタ位に結合している。この場合、ベンジジン骨格と隣接芳香環(A51~A54)との共役系が分断されて共役長が短くなり、その結果、極大吸収波長が短波長シフトし、可視光領域の光透過性が改善されたと考えられる。なお、これらはあくまで推測であり、本開示の内容を限定するものではない。
 本開示の液晶素子は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光フィルム、位相差フィルム等として用いることができる。
 以下、実施例により更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下の例で使用した主な化合物の構造と略号は以下の通りである。
(テトラカルボン酸二無水物)
TA-1;1,2,3,4-シクロブタンテトラカルボン酸二無水物
TA-2;ピロメリット酸二無水物
Figure JPOXMLDOC01-appb-C000040
(特定ジアミン)
DA-1;1,1’-(1,4-フェニレン)ビス(インドリン-5-アミン)
DA-2;1,1’-(1,3-フェニレン)ビス(インドリン-5-アミン)
DA-3;1,1’-([1,1’-ビフェニル]-4,4’-ジイル)ビス(インドリン-5-アミン)
DA-4;1,1’-(9,9-ジメチル-9H-フルオレン-2,7-ジイル)ビス(インドリン-5-アミン)
DA-5;4,4’-([5,5’-ビインドリン]-1,1’-ジイル)ジアニリン
DA-6;3,3’-([5,5’-ビインドリン]-1,1’-ジイル)ジアニリン
DA-7;3,3’-(2,2’-ジメチル-[5,5’-ビインドリン]-1,1’-ジイル)ジアニリン
(その他のジアミン)
DB-1;2,2’-ジメチル-4,4’-ジアミノビフェニル
DB-2;4,4’-ジアミノジフェニルアミン
DB-3;1-(4-アミノフェニル)インドリン-5-アミン
DB-4;1,1’-(1,4-フェニレン)ビス(1H-インドール-5-アミン)
DB-5;N,N’-ビス(4-アミノフェニル)ビフェニル-4,4’-ジアミン
DB-6;N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルビフェニル-4,4’-ジアミン
DB-7;アジピン酸ビス(4-アミノフェネチル)
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
(溶剤)
NMP;N-メチル-2-ピロリドン
BC;ブチルセロソルブ
DMAc;N,N-ジメチルアセトアミド
<量子化学計算による重合体の物性評価>
[実施例1A]
 ジアミン(DA-1)とテトラカルボン酸二無水物(TA-1)の重縮合により得られるポリイミド(下記式(PI-1A)で表される重合体)について、その繰り返し単位である下記式(SI-1A)で表されるビススクシンイミドの量子化学計算を行うことにより重合体の物性を評価した。量子化学計算プログラムとしては、米国Gaussian社製のGaussian09(Revision B.01)を用い、密度汎関数法(DFT)により計算を行った。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
(1)HOMO準位
 ビススクシンイミド(SI-1A)の真空下での基底状態における最安定構造を、汎関数としてB3LYP、基底関数として6-31G(d)を用いて計算した。また、得られた最安定構造に対して、0.001(電子/bohr)密度の等高線で定義される分子体積V(cm/mol)を求めた。さらに、汎関数としてB3LYP、基底関数として6-31+G(d)を用いて一点エネルギー計算を行い、最高被占分子軌道(HOMO軌道)のエネルギー準位を算出した。評価は、HOMO準位が-5.24eV(比較例6A)以上であった場合を「優良」、HOMO準位が-5.24eV未満であって-5.51eV(比較例2A)以上であった場合を「可」、HOMO準位が-5.51eV未満であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
 なお、HOMO準位が高いほど、得られる重合体はホール輸送性に優れているといえる。また、ITO電極を介したホール注入性を大きくする観点から、HOMO準位はITO電極の仕事関数(4.6~4.8eV程度)に近いことが好ましい。
(2)吸光係数
 (1)で得られた最安定構造に対して、時間依存密度汎関数法(TD-DFT)により、汎関数としてB3LYP、基底関数として6-31+G(d)を用いて、一重項励起状態を計算した。各電子遷移(励起エネルギー及び振動子強度)に対して半値半幅を0.333eVとして各波長における吸光係数ε(a.u.)を算出し、(1)で得られた分子体積V(cm/mol)で除算することで紫外可視吸収スペクトルを求めた。さらに光透過性を評価するため、400nmにおける単位体積当たりの吸光係数ε400nm/Vを求めた。評価は、ε400nm/Vが66.5(比較例6A)未満であった場合を「優良」、ε400nm/Vが66.5以上であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
 なお、ε400nm/Vの値が小さいほど、得られる重合体の光透過性を高くでき好ましい。また、得られる重合体が二級アミン(-NH-)を含有しない構造である場合、酸化による光透過性の悪化を抑制することができ好ましい。
[実施例2A~7A、比較例1A~6A]
 ジアミン化合物の種類を下記表1に記載の通りに変更して、実施例1Aと同様にして、ジアミン(DA-2~DA-7、DB-1~DB-6)とテトラカルボン酸二無水物(TA-1)との重縮合により得られるポリイミドの物性を量子化学計算により評価した。評価結果は下記表1に示した。また、実施例1A~7Aの紫外可視吸収スペクトルを図1に示し、比較例1A~6Aの紫外可視吸収スペクトルを図2に示した。図3には、実施例1A~6A及び比較例2A、3A、5A、6AのHOMO準位とε400nm/Vの関係を示した。なお、図1~図3中の数字は各実施例、比較例の番号を表す。
Figure JPOXMLDOC01-appb-T000045
<化合物の合成>
[合成例1A]
 下記式(DA-2)で表される1,1’-(1,3-フェニレン)ビス(インドリン-5-アミン)を以下の合成スキームに従い合成した。
Figure JPOXMLDOC01-appb-C000046
 窒素雰囲気下の10mL二口フラスコに、1,3-ジヨードベンゼン(4.0mmol)、5-ニトロインドリン(10mmol)、炭酸カリウム(12mmol)、ヨウ化銅(I)(0.12mmol)、1,10-フェナントロリン(0.12mmol)を加え、4mLのDMAcに溶解させた。この溶液に窒素を室温で30分間吹き込むことで溶存酸素を除いたのち、窒素下150℃で40時間反応させた。TLCでジヨード化合物の消失を確認後、反応溶液を室温まで冷却し、300mLの蒸留水に注いで反応を停止させた。沈殿物を濾過し、残渣を蒸留水とメタノールで洗浄することで、未反応の5-ニトロインドリンを除去した。得られた残渣を80℃で一晩減圧乾燥することにより、上記式(DA-2-1)で表される赤茶色粉末のジニトロ化合物(収率93%,収量1.5g)を得た。ジニトロ化合物(DA-2-1)のNMR解析結果は以下のとおりである。
 H-NMR(400MHz,DMSO-d,ppm):δ 7.986(m,4H;ArH),7.452(t,J=8.4Hz,1H;ArH),7.222(s,1H;ArH),7.124(d,J=8.4Hz,2H;ArH),7.061(d,J=9.6Hz,2H;ArH),4.171(t,4H;CH),3.183(t,4H;CH).
 次いで、二口フラスコにジニトロ化合物(DA-2-1)(1g)、10wt%パラジウム/炭素(0.2g)、及びN,N-ジメチルホルムアミド(10mL)を加え、水素雰囲気下にて50℃で1日加熱した。反応溶液を濾過して触媒を除去した後、濾液を200mLの氷水に注いだ。生じた沈殿物を濾過して回収した。得られた残渣をエタノールから再結晶させることにより、上記式(DA-2)で表される白色結晶のジアミン化合物(収率70%,収量0.70g)を得た。ジアミン化合物(DA-2)のNMR解析結果は以下のとおりである。
 H-NMR(400MHz,DMSO-d,ppm):δ 7.159(t,J=8.0 Hz,1H;ArH),6.900(d,J=8.0Hz,2H;ArH),6.768(s, 1H;ArH),6.730(d,J=8.0Hz,2H;ArH),6.512(s,2H;ArH),6.311(d,J=8.0Hz,2H;ArH),4.576(s,4H; NH),3.828(t,4H;CH),2.949(t,4H;CH
[合成例2A]
 下記式(DA-3)で表される1,1’-([1,1’-ビフェニル]-4,4’-ジイル)ビス(インドリン-5-アミン)を以下の合成スキームに従い合成した。
Figure JPOXMLDOC01-appb-C000047
 窒素雰囲気下の10mL二口フラスコに、4,4’-ジヨードビフェニル(4.0mmol)、5-ニトロインドリン(10mmol)、炭酸カリウム(12mmol)、ヨウ化銅(I)(0.12mmol)、1,10-フェナントロリン(0.12mmol)を加え、4mLのDMAcに溶解させた。この溶液に窒素を室温で30分間吹き込むことで溶存酸素を除いたのち、窒素下150℃で40時間反応させた。TLCでジヨード化合物の消失を確認後、反応溶液を室温まで冷却し、300mLの蒸留水に注いで反応を停止させた。沈殿物を濾過し、残渣を蒸留水とメタノールで洗浄することで、未反応の5-ニトロインドリンを除去した。得られた残渣を80℃で一晩減圧乾燥することにより、上記式(DA-3-1)で表される赤色粉末のジニトロ化合物(収率94%,収量1.8g)を得た。ジニトロ化合物(DA-3-1)のNMR解析結果は以下のとおりである。
 H-NMR(400MHz,DMSO-d,ppm):δ 7.982(s,1H;ArH),7.775(d,J=8.0Hz,4H;ArH),7.707(d,J=8.0Hz,4H;ArH),7.765(d,J=8.0Hz,4H;ArH),7.425(d,J=8.0Hz,4H;ArH),4.169(t,4H;CH),3.193(t,4H;CH).
 次いで、還流管、温度計及び窒素導入管を備えた三口フラスコに、ジニトロ化合物(DA-3-1)(1.18g, 2.48mmol)、5wt%パラジウム/炭素(0.15g)、N,N-ジメチルホルムアミド(30ml)、及びエタノール(5ml)を入れ、氷浴下で撹拌した。次いで、ヒドラジン一水和物0.8mlをゆっくりと滴下した。その後、80℃で70時間撹拌した。反応終了後、反応溶液をセライトろ過し、ろ液へ酢酸エチル100mlを加えた。次いで、蒸留水を加えて分液精製を行い、その後減圧濃縮し、得られた析出物をDMAc及びエタノールにより再結晶して真空乾燥することにより、上記式(DA-3)で表されるジアミン化合物(収率80%,収量0.83g)を得た。得られたジアミン化合物(DA-3)のNMR解析結果は以下のとおりである。
 H-NMR(400MHz,DMSO-d,ppm):δ 7.537(d,J=8.7Hz,4H;ArH),7.137(d,J=8.7Hz,4H;ArH),6.934(d,J=8.2Hz,2H;ArH),6.520(d,J=2.1Hz,2H;ArH), 6.331(dd,J=2.1Hz,8.3Hz,2H;ArH),4.562(s,4H;NH),3.830(t,J=8.0Hz,4H;CH),2.973(t,J=8.0Hz,4H;CH).
[合成例3A]
 下記式(DA-6)で表される3,3’-([5,5’-ビインドリン]-1,1’-ジイル)ジアニリンを以下の合成スキームに従い、合成例2と同様にして合成した。なお、5,5’-ビインドリンは非特許文献「J.Org.Chem.2013,78,5218-5226.」に従って合成した。
Figure JPOXMLDOC01-appb-C000048
<重合体の合成>
[実施例8A]
 ジアミン(DA-2)をNMPに溶解し、0.95当量のテトラカルボン酸二無水物(TA-1)を加え、室温で6時間反応を行い、下記式(PA-1)で表される部分構造を有するポリアミック酸(PA-1)の15質量%溶液を得た。
Figure JPOXMLDOC01-appb-C000049
[実施例9A,10A、合成例4A~8A]
 テトラカルボン酸二無水物及びジアミン化合物の種類をそれぞれ下記表2に記載の通りに変更した以外は実施例8Aと同様にしてポリアミック酸(PA-2~PA-8)をそれぞれ得た。
Figure JPOXMLDOC01-appb-T000050
<液晶配向膜及び液晶表示素子の評価>
[実施例11A:ラビング配向FFS型液晶表示素子]
(1)液晶配向剤の調製
 実施例8Aで得たポリアミック酸(PA-1)を重合体1、合成例8Aで得たポリアミック酸(PA-8)を重合体2として、2種類の重合体1及び2を重合体1:重合体2=60:40(固形分換算質量比)となる配合比率で混合し、NMP及びBCにより希釈することにより、固形分濃度が4.0質量%、溶剤組成比がNMP:BC=80:20(質量比)となる溶液を得た。この溶液を孔径0.2μmのフィルターで濾過することにより液晶配向剤(R-1)を調製した。
(2)ラビング法による液晶配向膜の形成
 平板電極、絶縁層及び櫛歯状電極がこの順で片面に積層されたガラス基板と、電極が設けられていない対向ガラス基板とのそれぞれの面上に、上記(1)で調製した液晶配向剤(R-1)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間乾燥した後、庫内を窒素置換した230℃のオーブンで30分間乾燥を行い、平均膜厚0.1μmの塗膜を形成した。この塗膜表面に、ナイロン製の布を巻き付けたロールを有するラビングマシーンを用いて、ロール回転数1000rpm、ステージ移動速度25mm/秒、毛足押し込み長さ0.4mmにてラビング処理を行った。上記ラビング配向処理が施された塗膜を、超純水中で1分間超音波洗浄した後、100℃のオーブンで10分間乾燥を行い、液晶配向膜を形成した。
(3)液晶表示素子の製造
 上記(2)で作製した液晶配向膜を有する一対の基板について、液晶配向膜を形成した面の縁に液晶注入口を残して直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷塗布した後、基板を重ね合わせて圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、一対の基板間に液晶注入口よりネマチック液晶(メルク社製、MLC-7028)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを120℃で加熱してから室温まで徐冷した。次に、基板の外側両面に偏光板を貼り合わせてFFS型液晶表示素子を製造した。
(4)抵抗値の評価
 ITO基板上に、上記(1)で調製した液晶配向剤(R-1)をスピンナーを用いて塗布し、80℃のホットプレートで1分間乾燥した後、庫内を窒素置換した230℃のオーブンで30分間乾燥を行い、平均膜厚0.1μmの塗膜を形成した。該塗膜の上にITOをスパッタして透明電極を形成し、電気物性測定装置を用いて光照射下での塗膜の膜厚方向の抵抗値を測定した。0.01Hzでの抵抗値(1012Ω・cm)が0.1未満であった場合を「優良」、0.01Hzでの抵抗値(1012Ω・cm)が0.1以上20未満であった場合を「良好」、0.01Hzでの抵抗値(1012Ω・cm)が20以上であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
(5)透過率の評価
 石英基板上に、上記(1)で調製した液晶配向剤(R-1)をスピンナーを用いて塗布し、80℃のホットプレートで1分間乾燥した後、庫内を窒素置換した230℃のオーブンで30分間乾燥を行い、平均膜厚0.1μmの塗膜を形成した。紫外可視分光計を用いてブリュースター角において基板の透過率を測定した。400nmでの透過率が97%以上であった場合を「優良」、400nmでの透過率が95%以上97%未満であった場合を「良好」、400nmでの透過率が95%未満であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
(6)液晶配向性の評価
 上記(3)で製造した液晶表示素子につき、5Vの電圧をON・OFF(印加・解除)したときの明暗の変化における異常ドメインの有無を顕微鏡によって倍率50倍で観察した。評価は、異常ドメインが観察されなかった場合を配向秩序度「良好」とし、異常ドメインが観察された場合を「不良」とした。その結果、この実施例では「良好」の評価であった。
(7)DC残像特性の評価
 上記(3)で製造した液晶表示素子につき、AC2.5Vで駆動させて任意の2画素の間の輝度差を0に設定した後、AC2.5Vで駆動させつつ片方の画素のみにDC1Vを20分間印加して電荷を蓄積させた。DC1V印加を終了してAC2.5Vでの駆動のみに戻すと、蓄積された電荷によって2画素の間に輝度差が生じた。この輝度差の経時変化を観測することで、残留DC値が減衰する過程の緩和時間を算出した。緩和時間が10秒未満であった場合を「優良」、緩和時間が10秒以上20秒未満であった場合を「良好」、緩和時間が20秒以上であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
[実施例12A,13A、比較例7A~10A]
 液晶配向剤に含有させる重合体1を下記表3に記載の通りに変更した以外は実施例11Aと同様にして液晶配向剤を調製してラビング法により液晶配向膜を形成するとともに、FFS型の液晶表示素子を製造して各種評価を行った。評価結果は下記表3に示した。
Figure JPOXMLDOC01-appb-T000051
 表3に示すように、重合体(P)を含有する液晶配向剤を用いた実施例11A~13Aでは、液晶配向膜の抵抗値が低く、「優良」又は「良好」の評価であった。また、液晶配向膜の透過率も高かった。特に、実施例12A,13Aについては、液晶配向膜の抵抗値が「優良」の評価であり、得られる液晶セルにつき、残留DC値の緩和時間も短かった。これらことから、重合体(P)を含有する液晶配向剤によれば、抵抗値が低く、透過率が高い液晶配向膜が得られるとともに、液晶配向性及びDC残像特性に優れた液晶表示素子が得られることが分かった。これに対し、重合体(P)を含有しない液晶配向剤を用いた比較例7A~10Aでは、液晶配向膜の抵抗値及び透過率、並びに液晶セルのDC残像特性の少なくともいずれかが「不良」の評価であった。
 以下の例で使用した主な化合物の構造と略号は以下の通りである。
(テトラカルボン酸二無水物)
TC-1;1,2,3,4-シクロブタンテトラカルボン酸二無水物
TC-2;2,3,5-トリカルボキシシクロペンチル酢酸二無水物
TC-3;ピロメリット酸二無水物
Figure JPOXMLDOC01-appb-C000052
(特定ジアミン)
DC-1;N,N’-ビス(3-アミノフェニル)ビフェニル-4,4’-ジアミン
DC-2;N,N’-ビス(4-アミノフェニル)ビフェニル-3,3’-ジアミン
DC-3;N,N’-ビス(3-アミノフェニル)ビフェニル-3,3’-ジアミン
DC-4;N,N’-ビス(3-アミノフェニル)-N,N’-ジメチルビフェニル-4,4’-ジアミン
DC-5;N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルビフェニル-3,3’-ジアミン
DC-6;N,N’-ビス(3-アミノフェニル)-N,N’-ジメチルビフェニル-3,3’-ジアミン
DC-7;N,N’-ビス(3-アミノフェニル)-N,N’-ジフェニルビフェニル-4,4’-ジアミン
DC-8;N,N’-ビス(4-アミノフェニル)-N,N’-ジフェニルビフェニル-3,3’-ジアミン
(その他のジアミン)
DE-1;2,2’-ジメチル-4,4’-ジアミノビフェニル
DE-2;4,4’-ジアミノジフェニルアミン
DE-3;N,N’-ビス(4-アミノフェニル)ビフェニル-4,4’-ジアミン
DE-4;N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルビフェニル-4,4’-ジアミン
DE-5;N,N’-ビス(4-アミノフェニル)-N,N’-ジフェニルビフェニル-4,4’-ジアミン
DE-6;アジピン酸ビス(4-アミノフェネチル)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
(溶剤)
NMP;N-メチル-2-ピロリドン
BC;ブチルセロソルブ
DMAc;N,N-ジメチルアセトアミド
<量子化学計算による重合体の物性評価>
[実施例1B]
 ジアミン(DC-1)とテトラカルボン酸二無水物(TC-1)の重縮合により得られるポリイミド(下記式(PI-1B)で表される重合体)について、その繰り返し単位である下記式(SI-1B)で表されるビススクシンイミドの量子化学計算を行うことにより重合体の物性を評価した。量子化学計算プログラムとしては、米国Gaussian社製のGaussian09(Revision B.01)を用い、密度汎関数法(DFT)により計算を行った。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
(1)HOMO準位
 ビススクシンイミド(SI-1B)の真空下での基底状態における最安定構造を、汎関数としてB3LYP、基底関数として6-31G(d)を用いて計算した。また、得られた最安定構造に対して、0.001(電子/bohr)密度の等高線で定義される分子体積V(cm/mol)を求めた。さらに、汎関数としてB3LYP、基底関数として6-31+G(d)を用いて一点エネルギー計算を行い、最高被占分子軌道(HOMO軌道)のエネルギー準位を算出した。評価は、HOMO準位が-5.24eV(比較例4B)以上であった場合を「優良」、HOMO準位が-5.24eV未満であって-5.51eV(比較例2B)以上であった場合を「可」、HOMO準位が-5.51eV未満であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
 なお、HOMO準位が高いほど、得られる重合体はホール輸送性に優れているといえる。また、ITO電極を介したホール注入性を大きくする観点から、HOMO準位はITO電極の仕事関数(4.6~4.8eV程度)に近いことが好ましい。
(2)吸光係数
 (1)で得られた最安定構造に対して、時間依存密度汎関数法(TD-DFT)により、汎関数としてB3LYP、基底関数として6-31+G(d)を用いて、一重項励起状態を計算した。各電子遷移(励起エネルギー及び振動子強度)に対して半値半幅を0.333eVとして各波長における吸光係数ε(a.u.)を算出し、(1)で得られた分子体積V(cm/mol)で除算することで紫外可視吸収スペクトルを求めた。さらに光透過性を評価するため、400nmにおける単位体積当たりの吸光係数ε400nm/Vを求めた。評価は、ε400nm/Vが66.5(比較例4B)未満であった場合を「優良」、ε400nm/Vが66.5以上であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
 なお、ε400nm/Vの値が小さいほど、得られる重合体の光透過性を高くでき好ましい。また、得られる重合体が二級アミン(-NH-)を含有しない構造である場合、酸化による光透過性の悪化を抑制することができ好ましい。
(3)主慣性モーメント
 (1)で得られた最安定構造に対して、分子全体を剛体球として主慣性モーメントを計算した。与えられた座標系における慣性モーメントを対角項、慣性乗積を非対角項とする3×3の慣性行列を対角化することにより、固有値として主慣性モーメントを算出した。得られた固有値を小さい順にI、I、Iとし、分子形状の指標としてI/Iを求めた。評価は、I/Iが0.98(比較例4B)以上であった場合を「優良」、I/Iが0.98未満0.95(比較例2B)以上であった場合を「可」、I/Iが0.95未満であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
 なお、I/Iの値が大きいほど、得られる重合体の主鎖軸方向への一軸直線性が大きいといえる。また、主鎖軸方向への一軸直線性が大きい重合体を含有する液晶配向膜は、液晶配向性が阻害されにくくなるため好ましい。
[実施例2B~8B、比較例1B~5B]
 ジアミン化合物の種類を下記表4に記載の通りに変更して、実施例1Bと同様にして、ジアミン(DC-2~DC-8、DE-1~DE-5)とテトラカルボン酸二無水物(TC-1)との重縮合により得られるポリイミドの物性を量子化学計算により評価した。評価結果は下記表4に示した。また、実施例1B~8Bの紫外可視吸収スペクトルを図4に示し、比較例1B~5Bの紫外可視吸収スペクトルを図5に示した。図6には、実施例1B~8B及び比較例2B~5BのHOMO準位とε400nm/Vの関係を示した。図7には、実施例1B~8B及び比較例1B~5BのI/Iとε400nm/Vの関係を示した。なお、図4~図7中の数字は各実施例、比較例の番号を表す。
Figure JPOXMLDOC01-appb-T000057
<化合物の合成>
[合成例1B]
 下記式(DC-4)で表されるN,N’-ビス(3-アミノフェニル)-N,N’-ジメチルビフェニル-4,4’-ジアミンを以下の合成スキームに従い合成した。
Figure JPOXMLDOC01-appb-C000058
 窒素雰囲気下の10mL二口フラスコに、4,4’-ジブロモビフェニル(4.0mmol)、3-ニトロアニリン(10mmol)、炭酸セシウム(12mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)(0.8mmol)、(±)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(rac-BINAP)(0.8mmol)を加え、8mLのDMAcに溶解させた。この溶液に窒素を室温で30分間吹き込むことで溶存酸素を除いたのち、窒素下150℃で24時間反応させた。TLCでジブロモ化合物の消失を確認後、反応溶液を室温まで冷却し、300mLの蒸留水に注いで反応を停止させた。沈殿物を濾過し、残渣を蒸留水とメタノールで洗浄することで、未反応の3-ニトロアニリンを除去した。得られた残渣を80℃で一晩減圧乾燥することにより、上記式(DC-4-1)で表される深赤色粉末のジニトロ化合物(収率88%,収量1.5g)を得た。得られたジニトロ化合物(DC-4-1)のNMR解析結果は以下の通りである。
 H-NMR(400MHz,DMSO-d,ppm):δ 8.796(s,2H; ArN-H),7.795(s,2H;ArH),7.587(m,8H;ArH),7.451(d,J=8.4Hz,2H;ArH),7.202(d,J=8.4Hz,4H;ArH).
 水素化ナトリウム(2.0g、40mmol)を脱水DMAc(10mL)に溶解させ、ジニトロ化合物(DC-4-1)(1.7g,4.0mmol)を加えた。この溶液を室温で30分間反応させた後0℃に冷却した。この反応溶液に対して、ヨードメタン(2.5mL、40mmol)を脱水DMAc(5mL)に加えて調整した溶液を徐々に滴下した。滴下終了後、反応溶液を50℃で一晩反応させた。その後、反応溶液を室温まで冷却し、氷冷した塩酸水溶液に注ぐことで反応を停止させた。沈殿物を濾過し、残渣を80℃で一晩減圧乾燥することにより、上記式(DC-4-2)で表される黄色粉末のジニトロ化合物(収率99%,収量1.8g)を得た。得られたジニトロ化合物(DC-4-2)のNMR解析結果は以下の通りである。
 H-NMR(400MHz,DMSO-d,ppm):δ 7.707(d,4H; J=7.2Hz,ArH),7.591(m,6H;ArH),7.460(t,2H;J=8.4;ArH),7.287(d,4H,J=8.8Hz;ArH),3.352(s, 6H;CH).
 二口フラスコにジニトロ化合物(DC-4-2)(1g)、10wt%パラジウム/炭素(0.2g)、及びN,N-ジメチルホルムアミド(10mL)を加え、水素雰囲気下にて50℃で1日加熱した。反応溶液を濾過して触媒を除去した後、濾液を200mLの氷水に注いだ。生じた沈殿物を濾過して回収した。得られた残渣をエタノールから再結晶させることにより、上記式(DC-4)で表される白色結晶のジアミン化合物(収率84%,収量0.84g)を得た。得られたジアミン化合物(DC-4)のNMR解析結果は以下の通りである。
 H-NMR(400MHz,DMSO-d,ppm):δ 7.475(d,4H;J=8.0Hz,ArH),6.960(d,4H;J=8.0Hz,ArH),6.871(s,2H;ArH),6.507(m,2H;ArH),6.301(d,2H,J=8.8Hz;ArH),6.248(d,2H,J=8.8Hz;ArH),5.025(s,4H;NH),3.209(s,6H;CH).
[合成例2B]
 下記式(DC-1)で表されるN,N’-ビス(3-アミノフェニル)ビフェニル-4,4’-ジアミンを以下の合成スキームに従い、合成例1Bと同様にして合成した。
Figure JPOXMLDOC01-appb-C000059
<重合体の合成>
[実施例9B]
 ジアミン(DC-1)をNMPに溶解し、0.95当量のテトラカルボン酸二無水物(TC-1)を加え、室温で6時間反応を行い、下記式(PB-1)で表される部分構造を有するポリアミック酸(PB-1)の15質量%溶液を得た。
Figure JPOXMLDOC01-appb-C000060
[実施例10B~12B、合成例3B~7B]
 テトラカルボン酸二無水物とジアミン化合物の種類及びモル比をそれぞれ下記表5に記載の通りに変更した以外は実施例9Bと同様にしてポリアミック酸(PB-2~PB-9)をそれぞれ得た。なお、表5中、テトラカルボン酸二無水物の数値は、ポリアミック酸の合成に使用したテトラカルボン酸二無水物の全体量100モル部に対する使用割合(モル比)を表し、ジアミン化合物の数値は、ポリアミック酸の合成に使用したジアミン化合物の全体量100モル部に対する使用割合(モル比)を表す。
Figure JPOXMLDOC01-appb-T000061
[実施例13B:ラビング配向FFS型液晶表示素子]
(1)液晶配向剤の調製
 実施例9Bで得たポリアミック酸(PB-1)を重合体1、合成例7Bで得たポリアミック酸(PB-9)を重合体2として、2種類の重合体1及び2を重合体1:重合体2=50:50(固形分換算質量比)となる配合比率で混合し、NMP及びBCにより希釈することにより、固形分濃度が4.0質量%、溶剤組成比がNMP:BC=80:20(質量比)となる溶液を得た。この溶液を孔径0.2μmのフィルターで濾過することにより液晶配向剤(RB-1)を調製した。
(2)ラビング法による液晶配向膜の形成
 平板電極、絶縁層及び櫛歯状電極がこの順で片面に積層されたガラス基板と、電極が設けられていない対向ガラス基板とのそれぞれの面上に、上記(1)で調製した液晶配向剤(RB-1)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間乾燥した後、庫内を窒素置換した230℃のオーブンで30分間乾燥を行い、平均膜厚0.1μmの塗膜を形成した。この塗膜表面に、ナイロン製の布を巻き付けたロールを有するラビングマシーンを用いて、ロール回転数1000rpm、ステージ移動速度25mm/秒、毛足押し込み長さ0.4mmにてラビング処理を行った。上記ラビング配向処理が施された塗膜を、超純水中で1分間超音波洗浄した後、100℃のオーブンで10分間乾燥を行い、液晶配向膜を形成した。
(3)液晶表示素子の製造
 上記(2)で作製した液晶配向膜を有する一対の基板について、液晶配向膜を形成した面の縁に液晶注入口を残して直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷塗布した後、基板を重ね合わせて圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、一対の基板間に液晶注入口よりネマチック液晶(メルク社製、MLC-7028)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを120℃で加熱してから室温まで徐冷した。次に、基板の外側両面に偏光板を貼り合わせてFFS型液晶表示素子を製造した。
(4)抵抗値の評価
 ITO基板上に、上記(1)で調製した液晶配向剤(RB-1)をスピンナーを用いて塗布し、80℃のホットプレートで1分間乾燥した後、庫内を窒素置換した230℃のオーブンで30分間乾燥を行い、平均膜厚0.1μmの塗膜を形成した。該塗膜の上にITOをスパッタして透明電極を形成し、電気物性測定装置を用いて光照射下での塗膜の膜厚方向の抵抗値を測定した。0.01Hzでの抵抗値(1012Ω・cm)が0.1未満であった場合を「優良」、0.01Hzでの抵抗値(1012Ω・cm)が0.1以上20未満であった場合を「良好」、0.01Hzでの抵抗値(1012Ω・cm)が20以上であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
(5)透過率の評価
 石英基板上に、上記(1)で調製した液晶配向剤(RB-1)をスピンナーを用いて塗布し、80℃のホットプレートで1分間乾燥した後、庫内を窒素置換した230℃のオーブンで30分間乾燥を行い、平均膜厚0.1μmの塗膜を形成した。紫外可視分光計を用いてブリュースター角において基板の透過率を測定した。400nmでの透過率が97%以上であった場合を「優良」、400nmでの透過率が95%以上97%未満であった場合を「良好」、400nmでの透過率が95%未満であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
(6)液晶配向性の評価
 上記(3)で製造した液晶表示素子につき、5Vの電圧をON・OFF(印加・解除)したときの明暗の変化における異常ドメインの有無を顕微鏡によって倍率50倍で観察した。評価は、異常ドメインが観察されなかった場合を配向秩序度「良好」とし、異常ドメインが観察された場合を「不良」とした。その結果、この実施例では「良好」の評価であった。
(7)DC残像特性の評価
 上記(3)で製造した液晶表示素子につき、AC2.5Vで駆動させて任意の2画素の間の輝度差を0に設定した後、AC2.5Vで駆動させつつ片方の画素のみにDC1Vを20分間印加して電荷を蓄積させた。DC1V印加を終了してAC2.5Vでの駆動のみに戻すと、蓄積された電荷によって2画素の間に輝度差が生じた。この輝度差の経時変化を観測することで、残留DC値が減衰する過程の緩和時間を算出した。緩和時間が10秒未満であった場合を「優良」、緩和時間が20秒未満であった場合を「良好」、緩和時間が20秒以上であった場合を「不良」とした。その結果、この実施例では「優良」の評価であった。
[実施例14B~16B、比較例6B~9B]
 上記実施例13Bにおいて、液晶配向剤に含有させる重合体1を下記表6に記載の通りに変更した以外は実施例13Bと同様にして液晶配向剤を調製してラビング法により液晶配向膜を形成するとともに、FFS型の液晶表示素子を製造して各種評価を行った。評価結果は下記表6に示した。
Figure JPOXMLDOC01-appb-T000062
 表6に示すように、重合体(P)を含有する液晶配向剤を用いた実施例13B~16Bでは、液晶配向膜の抵抗値が低く、「優良」又は「良好」の評価であった。また、液晶配向膜の透過率も高かった。実施例13B,14Bについては、実施例15B,16Bよりも特定ジアミンBの使用割合を多くしたが、これら実施例13B,14Bでは液晶配向膜の抵抗値が「優良」の評価であり、得られた液晶セルにつき、残留DC値の緩和時間も短かった。以上の結果から、重合体(P)を含有する液晶配向剤によれば、抵抗値が低く、透過率が高い液晶配向膜が得られるとともに、液晶配向性及びDC残像特性に優れた液晶表示素子が得られることが分かった。これに対し、重合体(P)を含有しない液晶配向剤を用いた比較例6B~9Bでは、液晶配向膜の抵抗値及び透過率、並びに液晶セルのDC残像特性の少なくともいずれかが「不良」の評価であった。 

Claims (11)

  1.  下記に示す重合体(PA)及び重合体(PB)よりなる群から選ばれる少なくとも一種の重合体(P)を含有する、液晶配向剤。
     重合体(PA):下記式(1A)で表される部分構造及び下記式(2A)で表される部分構造よりなる群から選ばれる少なくとも一種を有する重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1A)及び式(2A)中、Xは4価の有機基であり、Xは、下記式(3A)で表される2価の有機基である。R及びRは、それぞれ独立して、水素原子又は炭素数1~6の1価の有機基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(3A)中、A、A及びAは、それぞれ独立して、単結合又は2価の有機基であり、Y及びYは、それぞれ独立して、単結合、酸素原子、硫黄原子又は「-NR10-」(ただし、R10は水素原子又は1価の有機基である。)である。Z及びZは、それぞれ独立して、下記式(4A)、(5A)又は(6A)で表される2価の環状基であり、環を構成する原子に結合する水素原子が置換基で置換されていてもよく、当該置換基がA又はAに結合して環を形成していてもよい。「*」は結合手を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(4A)~(6A)中、Qは、酸素原子、硫黄原子、メチレン基又は-NH-であり、Qは、単結合、酸素原子、硫黄原子、メチレン基又は-NH-である。「*」は結合手を示す。)
     重合体(PB):下記式(1B)で表される部分構造及び下記式(2B)で表される部分構造よりなる群から選ばれる少なくとも一種を有する重合体。
    Figure JPOXMLDOC01-appb-C000004
    (式(1B)及び式(2B)中、A51~A54は、それぞれ独立して、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の環状基であり、環部分に置換基を有していてもよい。R51~R54は、それぞれ独立して、水素原子又は1価の有機基であり、R55~R58は、それぞれ独立して1価の有機基である。a3、b3、c3及びd3は、それぞれ独立して0~4の整数である。a3、b3、c3、d3が2以上の場合、式中の複数のR55、R56、R57、R58は、互いに同じでも異なっていてもよい。「*」は結合手を示す。)
  2.  前記重合体(PA)を含有する、請求項1に記載の液晶配向剤。
  3.  前記A、A及びAは、それぞれ独立して、単結合又は芳香環構造を有する2価の基である、請求項1又は2に記載の液晶配向剤。
  4.  前記芳香環構造を有する2価の基は、下記式(7A)、(8A)、(9A)又は(10A)で表される基である、請求項3に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (式(7A)~(10A)中、R12~R16は、それぞれ独立してハロゲン原子又は1価の有機基であり、Qは、単結合、酸素原子、硫黄原子、炭素数1~3のアルカンジイル基、又は「-NR11-」(ただし、R11は水素原子又は1価の有機基である。)である。a、c及びdは、それぞれ独立して0~4の整数であり、bは0~3の整数であり、eは0~6の整数である。「*」は結合手を示す。)
  5.  前記Qはメチレン基である、請求項1~4のいずれか一項に記載の液晶配向剤。
  6.  前記Qは、単結合又は酸素原子である、請求項1~5のいずれか一項に記載の液晶配向剤。
  7.  前記重合体(PB)を含有する、請求項1に記載の液晶配向剤。
  8.  前記重合体(PB)は、ポリアミック酸、ポリアミック酸エステル、及びポリイミドよりなる群から選ばれる少なくとも一種である、請求項1又は7に記載の液晶配向剤。
  9.  前記重合体(PB)は、下記式(3B)で表される部分構造及び下記式(4B)で表される部分構造よりなる群から選ばれる少なくとも一種を有する、請求項1、7又は8に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    (式(3B)及び式(4B)中、X51は4価の有機基であり、X52は、下記式(5B)又は式(6B)で表される2価の基である。R63及びR64は、それぞれ独立して、水素原子又は炭素数1~6の1価の有機基である。)
    Figure JPOXMLDOC01-appb-C000007
    (式(5B)及び式(6B)中、B51~B54は、それぞれ独立して、単結合又は2価の有機基である。A51~A54、R51~R58、a3、b3、c3及びd3は、上記式(1B)及び式(2B)と同義である。「*」は結合手を示す。)
  10.  請求項1~9のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。
  11.  請求項10に記載の液晶配向膜を備える液晶素子。
PCT/JP2018/037278 2017-11-07 2018-10-04 液晶配向剤、液晶配向膜及び液晶素子 WO2019093037A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019552662A JP7074141B2 (ja) 2017-11-07 2018-10-04 液晶配向剤、液晶配向膜及び液晶素子
CN201880060292.4A CN111095092B (zh) 2017-11-07 2018-10-04 液晶取向剂、液晶取向膜及液晶元件
KR1020207009461A KR102323108B1 (ko) 2017-11-07 2018-10-04 액정 배향제, 액정 배향막 및 액정 소자

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017214357 2017-11-07
JP2017214358 2017-11-07
JP2017-214358 2017-11-07
JP2017-214357 2017-11-07

Publications (1)

Publication Number Publication Date
WO2019093037A1 true WO2019093037A1 (ja) 2019-05-16

Family

ID=66437681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037278 WO2019093037A1 (ja) 2017-11-07 2018-10-04 液晶配向剤、液晶配向膜及び液晶素子

Country Status (5)

Country Link
JP (1) JP7074141B2 (ja)
KR (1) KR102323108B1 (ja)
CN (1) CN111095092B (ja)
TW (1) TWI776969B (ja)
WO (1) WO2019093037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220014850A (ko) 2020-07-29 2022-02-07 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 액정 소자
KR20220014816A (ko) 2020-07-29 2022-02-07 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 액정 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100949A1 (fr) * 2001-06-12 2002-12-19 Nissan Chemical Industries, Ltd. Agents d'orientation de cristaux liquides et dispositif d'affichage a cristaux liquides utilisant ces agents
JP2010054872A (ja) * 2008-08-29 2010-03-11 Chisso Corp 液晶配向剤、液晶配向膜及び液晶表示素子
US20140024753A1 (en) * 2012-07-18 2014-01-23 Chi Mei Corporation Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2015092222A (ja) * 2013-10-03 2015-05-14 Jsr株式会社 液晶配向剤
JP2017200991A (ja) * 2016-04-28 2017-11-09 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体並びに化合物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5387428B2 (ja) 2010-01-26 2014-01-15 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP5929298B2 (ja) 2011-03-02 2016-06-01 Jnc株式会社 ジアミン、これを用いた液晶配向剤、液晶表示素子および液晶配向膜の形成方法
KR102344228B1 (ko) 2014-02-13 2021-12-27 닛산 가가쿠 가부시키가이샤 신규 액정 배향제, 디아민, 및 폴리이미드 전구체
CN103980493A (zh) * 2014-05-30 2014-08-13 北京化工大学常州先进材料研究院 可用于柔性高密度信息存储材料的异构化聚酰亚胺及其制备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100949A1 (fr) * 2001-06-12 2002-12-19 Nissan Chemical Industries, Ltd. Agents d'orientation de cristaux liquides et dispositif d'affichage a cristaux liquides utilisant ces agents
JP2010054872A (ja) * 2008-08-29 2010-03-11 Chisso Corp 液晶配向剤、液晶配向膜及び液晶表示素子
US20140024753A1 (en) * 2012-07-18 2014-01-23 Chi Mei Corporation Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2015092222A (ja) * 2013-10-03 2015-05-14 Jsr株式会社 液晶配向剤
JP2017200991A (ja) * 2016-04-28 2017-11-09 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体並びに化合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220014850A (ko) 2020-07-29 2022-02-07 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 액정 소자
KR20220014816A (ko) 2020-07-29 2022-02-07 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 액정 소자

Also Published As

Publication number Publication date
KR102323108B1 (ko) 2021-11-05
TW201923046A (zh) 2019-06-16
CN111095092B (zh) 2022-07-05
CN111095092A (zh) 2020-05-01
JP7074141B2 (ja) 2022-05-24
KR20200042001A (ko) 2020-04-22
TWI776969B (zh) 2022-09-11
JPWO2019093037A1 (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
KR102225386B1 (ko) 액정 배향제, 액정 배향막 및 그의 제조 방법, 액정 소자, 그리고 중합체
JP6558068B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP2019044192A (ja) 組成物、液晶配向剤、液晶配向膜及び液晶表示素子
TWI691526B (zh) 液晶配向劑、液晶配向膜、液晶配向膜的製造方法、液晶顯示元件、聚合物、二胺化合物及羧酸
CN109913241B (zh) 液晶取向剂、液晶取向膜以及液晶显示元件
CN108929705B (zh) 液晶取向剂、液晶取向膜及其制造方法、液晶元件、聚合物以及二胺
JP6477039B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2019093037A1 (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP2019085484A (ja) 重合体及び化合物
JP6682965B2 (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶配向膜の製造方法
TW202216967A (zh) 液晶配向劑、液晶配向膜及液晶元件
TW202206503A (zh) 液晶配向劑、液晶配向膜及液晶元件、聚合物、化合物
TWI805573B (zh) 液晶配向劑、液晶配向膜及其製造方法、液晶元件及聚合物
JP6551040B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6963256B2 (ja) 重合体及び化合物
JP6337594B2 (ja) 液晶配向剤、液晶配向膜の製造方法及び液晶表示素子
JP2017173454A (ja) 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体並びに化合物
TW202231853A (zh) 液晶配向劑、液晶配向膜、液晶元件及聚合體
TW202204479A (zh) 液晶配向劑、液晶配向膜及液晶元件
JP2023131106A (ja) 液晶配向剤、液晶配向膜及び液晶素子
CN117280278A (zh) 液晶取向剂、液晶取向膜、液晶显示元件、二胺以及聚合物
CN116731727A (zh) 液晶取向剂、液晶取向膜、液晶元件、聚合物及化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552662

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207009461

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875748

Country of ref document: EP

Kind code of ref document: A1