WO2019088045A1 - 面発光半導体レーザ - Google Patents

面発光半導体レーザ Download PDF

Info

Publication number
WO2019088045A1
WO2019088045A1 PCT/JP2018/040185 JP2018040185W WO2019088045A1 WO 2019088045 A1 WO2019088045 A1 WO 2019088045A1 JP 2018040185 W JP2018040185 W JP 2018040185W WO 2019088045 A1 WO2019088045 A1 WO 2019088045A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor laser
emitting semiconductor
thickness
type
Prior art date
Application number
PCT/JP2018/040185
Other languages
English (en)
French (fr)
Inventor
匡史 山本
祐史 辻
大樹 ▲高▼水
実 村山
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US16/644,810 priority Critical patent/US11437783B2/en
Priority to JP2019550382A priority patent/JP7123068B2/ja
Priority to CN201880062247.2A priority patent/CN111133642B/zh
Publication of WO2019088045A1 publication Critical patent/WO2019088045A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0282Passivation layers or treatments
    • H01S5/0283Optically inactive coating on the facet, e.g. half-wave coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0286Coatings with a reflectivity that is not constant over the facets, e.g. apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18391Aperiodic structuring to influence the near- or far-field distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/32025Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth non-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Definitions

  • the present invention relates to a surface emitting semiconductor laser.
  • a surface emitting semiconductor laser is known in which the resonant direction of light is perpendicular to the substrate surface.
  • Patent Document 1 includes an n-type GaAs substrate, an n-type multilayer Bragg reflection layer on the n-type GaAs substrate, an n-type AlGaAs cladding layer on the n-type multilayer Bragg reflection layer, and an n-type AlGaAs cladding layer.
  • Multiple quantum well active layer a p-type AlGaAs cladding layer on the multiple quantum well active layer, a p-type AlAs selective oxide layer provided in the middle of the p-type AlGaAs cladding layer, and p-type on the p-type AlGaAs cladding layer
  • a surface emitting semiconductor laser is disclosed.
  • an object of the present invention is to provide a surface emitting semiconductor laser capable of outputting laser light with higher directivity.
  • a surface-emitting semiconductor laser includes a first conductive type layer, an active layer stacked on the first conductive type layer, and a second conductive type layer stacked on the active layer.
  • a current confinement layer an insulating layer formed on the second conductivity type layer and having transparency with respect to the emission wavelength of the active layer, and a first electrically connected to the first conductivity type layer
  • An electrode formed on the insulating layer, and penetrating the insulating layer to the second conductivity type layer;
  • FIG. 1 is a schematic plan view of a surface emitting semiconductor laser according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the surface emitting semiconductor laser taken along the line II-II in FIG.
  • FIG. 3 is a schematic cross-sectional view of the surface-emitting semiconductor laser taken along the line III-III in FIG.
  • FIG. 4 is a schematic cross-sectional view of the surface-emitting semiconductor laser taken along the line IV-IV in FIG.
  • FIG. 7 is a schematic cross-sectional view of the mesa structure taken along the line VII-VII in FIG. FIG.
  • FIG. 8 is an enlarged view of a portion surrounded by a two-dot chain line VIII in FIG.
  • FIG. 9 is an enlarged view of a portion surrounded by a two-dot chain line IX in FIG.
  • FIG. 10 is a view showing the relationship between the laser beam angle of incidence and the light output according to the example, the comparative example and the reference example.
  • FIG. 11 is a diagram showing the relationship between the current and the light output according to the example, the comparative example, and the reference example.
  • FIG. 12A is a view showing a part of the manufacturing process of the surface emitting semiconductor laser according to the embodiment of the present invention.
  • FIG. 12B is a view showing the next process of FIG. 12A.
  • FIG. 12C is a view showing the next process of FIG. 12B.
  • FIG. 12D is a view showing the next process of FIG. 12C.
  • FIG. 12E is a view showing the next process of FIG. 12D.
  • FIG. 12F is a view showing the next process of FIG. 12E.
  • FIG. 12G is a view showing the next process of FIG. 12F.
  • FIG. 12H is a view showing the next process of FIG. 12G.
  • FIG. 13 is a view showing a modification of the surface emitting semiconductor laser.
  • FIG. 14 is a view showing a modified example of the surface emitting semiconductor laser.
  • FIG. 15 is a view showing a modified example of the surface emitting semiconductor laser.
  • FIG. 16 is a view showing a modification of the surface emitting semiconductor laser.
  • FIG. 17 is a view showing a modification of the surface emitting semiconductor laser.
  • FIG. 18 is a view showing a modification of the surface emitting semiconductor laser.
  • FIG. 19 is an enlarged view of a portion surrounded by a two-dot chain line XIX in FIG. 7.
  • FIG. 20 is a view showing a modified example of the surface emitting semiconductor laser.
  • FIG. 21 is a view showing a modification of the surface emitting semiconductor laser.
  • FIG. 22 is a view showing a modification of the surface emitting semiconductor laser.
  • FIG. 23 is a view showing a modified example of the surface emitting semiconductor laser.
  • FIG. 1 is a schematic plan view of a surface emitting semiconductor laser 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the surface-emitting semiconductor laser 1 taken along the line II-II in FIG.
  • FIG. 3 is a schematic cross-sectional view of the surface-emitting semiconductor laser 1 taken along the line III-III in FIG.
  • FIG. 4 is a schematic cross-sectional view of the surface-emitting semiconductor laser 1 taken along the line IV-IV in FIG.
  • the ratio of each structure does not correspond between FIG. 2, FIG. 3, and FIG.
  • the surface emitting semiconductor laser 1 is formed on the substrate 2, the semiconductor multilayer structure 3 (group III nitride semiconductor multilayer structure) formed on the substrate 2, and the back surface of the substrate 2 (surface opposite to the semiconductor multilayer structure) Emitting laser comprising an n-side electrode 4 as an example of the first electrode of the present invention and a p-side electrode 5 as an example of the second electrode of the present invention formed on the surface of the semiconductor multilayer structure 3 (VCSEL: Vertical Cavity Surface Emitting Laser).
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the substrate 2 is formed in a rectangular shape in plan view, and for example, the length of the long side 2A is about 900 ⁇ m ⁇ 5 ⁇ m, and the length of the short side 2B is about 470 ⁇ m ⁇ 5 ⁇ m.
  • the substrate 2 in this embodiment is composed of an n-type GaAs single crystal substrate, and has a thickness of, for example, 70 ⁇ m to 300 ⁇ m.
  • the substrate 2 is doped with an n-type impurity (for example, Si) at a concentration of, for example, 5 ⁇ 10 17 cm ⁇ 3 to 4 ⁇ 10 18 cm ⁇ 3 .
  • the substrate 2 has, for example, a c-plane or an m-plane as a main surface.
  • the semiconductor multilayer structure 3 is formed by crystal growth on the main surface. Therefore, the semiconductor multilayer structure 3 is made of a group III nitride semiconductor whose main crystal plane is the same crystal plane as the main surface of the substrate 2.
  • a group III nitride semiconductor is epitaxially grown on a GaAs single crystal substrate having a nonpolar plane (in particular, the m plane) as a main surface, it is possible to grow a good group III nitride semiconductor crystal with further reduced dislocations.
  • the semiconductor multilayer structure 3 includes an active layer 6, an n-type semiconductor layer 7 as an example of the first conductivity type layer of the present invention, and a p-type semiconductor layer 8 as an example of the second conductivity type layer of the present invention. ing.
  • the n-type semiconductor layer 7 is disposed on the substrate 2 side with respect to the active layer 6, and the p-type semiconductor layer 8 is disposed on the p-side electrode 5 side with respect to the active layer 6.
  • the active layer 6 is sandwiched between the n-type semiconductor layer 7 and the p-type semiconductor layer 8 to form a double hetero junction. Electrons are injected into the active layer 6 from the n-type semiconductor layer 7 and holes are injected from the p-type semiconductor layer 8. These are recombined in the active layer 6 to generate light.
  • the n-type semiconductor layer 7 is configured by laminating an n-type buffer layer 9, an n-type DBR (Distributed Bragg Reflector) layer 10, and an n-type cladding layer 11 in this order from the substrate 2 side.
  • n-type DBR Distributed Bragg Reflector
  • the n-type buffer layer 9 is made of n-type GaAs in this embodiment, and has a thickness of, for example, 0.05 ⁇ m to 0.2 ⁇ m.
  • the n-type buffer layer 9 is doped with an n-type impurity (for example, Si) at a concentration of 1 ⁇ 10 18 cm ⁇ 3 to 3 ⁇ 10 18 cm ⁇ 3 , for example.
  • the n-type DBR layer 10 has, for example, a relatively low Al composition n-type Al 0.16 Ga 0.84 As layer 12 (low Al composition layer) having a thickness of 600 ⁇ , for example, 700 ⁇
  • an n-type Al 0.92 Ga 0.16 As layer 13 (high Al composition layer) having a relatively high Al composition and having a relatively large thickness is alternately laminated repeatedly for a plurality of cycles (for example, 20 cycles).
  • the n-type Al 0.16 Ga 0.84 As layer 12 and the n-type Al 0.92 Ga 0.16 As layer 13 are, for example, 2 ⁇ 10 17 cm ⁇ 3 to 3 ⁇ 10 18 cm ⁇ 3 and 2 respectively. at a concentration of ⁇ 10 17 cm -3 ⁇ 3 ⁇ 10 18 cm -3, n -type impurities (e.g., Si) is doped.
  • the n-type DBR layer 10 is an interference phenomenon of light reflected from a plurality of interfaces formed by the n-type Al 0.16 Ga 0.84 As layer 12 and the n-type Al 0.92 Ga 0.16 As layer 13. In this case, the phases of light reflected from different interfaces are shifted by 360.degree. So as to reinforce each other and to increase the intensity of the reflected light.
  • the refractive index of the n-type Al 0.16 Ga 0.84 As layer 12 is n1
  • the refractive index of the n-type Al 0.92 Ga 0.16 As layer 13 is n2, and the laser resonance is performed.
  • the thickness of the n-type Al 0.16 Ga 0.84 As layer 12 is determined by ⁇ / 4 n 1, where ⁇ is the wavelength of the laser beam to be oscillated in the chamber, and n-type Al 0.92 Ga 0.16 As The thickness of the layer 13 is determined by ⁇ / 4n2. The same applies to the p-type Al 0.16 Ga 0.84 As layer 22 and the p-type Al 0.92 Ga 0.16 As layer 23 in the p-type DBR layer 17 described later.
  • the n-type cladding layer 11 is made of n-type AlGaAs in this embodiment, and has a thickness of, for example, 0.08 ⁇ m to 0.12 ⁇ m.
  • the n-type cladding layer 11 may be doped with an n-type impurity (for example, Si) at a concentration of, for example, 3 ⁇ 10 18 cm ⁇ 3 or less, or may be undoped.
  • the active layer 6 is an active layer having a quantum well structure (Quantum Well), and has a structure in which the well layer (well layer) is sandwiched between barrier layers (barrier layers) having a larger band gap than the well layer. ing.
  • This quantum well structure may be not one but may be multiplexed, and in this case, it becomes MQW (Multi Quantum Well), that is, a multiple quantum well structure.
  • the active layer 6 has a multiple quantum well structure in which an undoped GaAs well layer 14 and an undoped AlGaAs barrier layer 15 (barrier layer) are alternately stacked.
  • an undoped Al 0.35 Ga 0.65 As barrier layer 15 having a thickness of 100 ⁇ is formed.
  • an undoped GaAs well layer 14 of 80 ⁇ in thickness and an undoped Al 0.35 Ga 0.65 As barrier layer 15 of 100 ⁇ thickness are alternately formed repeatedly 2 to 6 cycles.
  • An 80 ⁇ thick undoped GaAs well layer 14 is stacked thereon, and a 100 ⁇ thick undoped Al 0.35 Ga 0.65 As barrier layer 15 is further stacked on the well layer 14. That is, both sides of the multiple quantum well structure are formed of the barrier layer 15 made of an undoped Al 0.35 Ga 0.65 As layer having a thickness different from that of the middle barrier layer 15.
  • the p-type semiconductor layer 8 is configured by sequentially laminating a p-type cladding layer 16, a p-type DBR (Distributed Bragg Reflector) layer 17 and a p-type contact layer 18 on the active layer 6.
  • a p-type cladding layer 16 a p-type cladding layer 16
  • a p-type DBR (Distributed Bragg Reflector) layer 17 a p-type contact layer 18 on the active layer 6.
  • the p-type cladding layer 16 in this embodiment is made of p-type AlGaAs, and has a thickness of, for example, 0.08 ⁇ m to 0.12 ⁇ m.
  • the p-type cladding layer 16 may be doped with p-type impurities (for example, C) at a concentration of 5 ⁇ 10 18 cm ⁇ 3 or less, for example, or may be undoped.
  • a current confinement layer 20 surrounding the p-type layer 19 and the p-type layer 19 is formed.
  • the p-type layer 19 and the current confinement layer 20 are configured such that the upper surface and the lower surface of the p-type layer 19 and the current confinement layer 20 are continuous along the stacked interface of the semiconductor multilayer structure 3 in this embodiment.
  • the p-type layer 19 is made of p-type AlGaAs having a higher Al composition than the p-type cladding layer 16.
  • the p-type cladding layer 16 may be an Al 0.6 Ga 0.4 As layer
  • the p-type layer 19 may be an Al 0.98 Ga 0.02 As layer.
  • the current confinement layer 20 is formed of an oxide insulating layer containing Al. Also, the p-type layer 19 and the current confinement layer 20 have a thickness of 15 nm to 50 nm.
  • the p-type layer 19 is doped with a p-type impurity (for example, C) at a concentration of 5 ⁇ 10 18 cm ⁇ 3 to 2 ⁇ 10 19 cm ⁇ 3 , for example.
  • the current flowing through the surface emitting semiconductor laser 1 does not flow to the current confinement layer 20 in the p-type cladding layer 16, but is confined to the p-type layer 19 surrounded by the current confinement layer 20.
  • the region of the active layer 6 facing the layer 19 is the light emitting region.
  • the p-type layer 19 and the current confinement layer 20 may be selectively formed in the middle of the p-type cladding layer 16 in the thickness direction, as shown in FIGS.
  • the p-type cladding layer 16 is disposed on both sides of the p-type layer 19 and the current confinement layer 20 in the stacking direction of the semiconductor multilayer structure 3.
  • illustration is abbreviate
  • the current confinement layer 20 may be formed between the p-type DBR layer 17 and the active layer 6 as a part of the laminated structure of the p-type semiconductor layer 8 as in this embodiment. It may be formed between the p-type semiconductor layer 8 and the active layer 6 independently of the laminated structure of the semiconductor layer 8. That is, the current confinement layer 20 may be formed on the active layer 6 and closer to the active layer 6 than the surface of the p-type semiconductor layer 8.
  • the p-type DBR layer 17 has, for example, a relatively low Al composition p-type Al 0.16 Ga 0.84 As layer 22 (low Al composition layer) having a thickness of 600 ⁇ , for example, 700 ⁇ It is configured by alternately laminating a p-type Al 0.92 Ga 0.16 As layer 23 (high Al composition layer) having a relatively high Al composition having a thickness (a high Al composition layer) in multiple cycles (for example, 20 cycles) repeatedly. .
  • the p-type Al 0.16 Ga 0.84 As layer 22 and the p-type Al 0.92 Ga 0.16 As layer 23 are, for example, 2 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 and 2 respectively. at a concentration of ⁇ 10 18 cm -3 ⁇ 1 ⁇ 10 19 cm -3, p -type impurity (e.g., C) is doped.
  • the p-type contact layer 18 is made of p-type GaAs in this embodiment, and has a thickness of, for example, 0.02 ⁇ m to 0.08 ⁇ m. Further, the p-type contact layer 18 is doped with a p-type impurity (for example, C) at a concentration of, for example, 1 ⁇ 10 19 cm ⁇ 3 to 5 ⁇ 10 19 cm ⁇ 3 .
  • a p-type impurity for example, C
  • the mesa structure portion 24 is formed. More specifically, an annular trench 25 is formed in the semiconductor multilayer structure 3, and inside the trench 25, a mesa structure portion 24 having a substantially trapezoidal shape in a cross sectional view is formed.
  • a plurality of trenches 25 are formed independently of each other almost all over the surface of the semiconductor multilayer structure 3, and the mesa structure is surrounded by the respective trenches 25.
  • the part 24 is arranged.
  • the arrangement pattern of the mesa structure parts 24 may be a staggered arrangement as shown in FIG. 1 or may be a matrix arrangement.
  • distance L1 (the light emitting point size in the long side direction) between mesa structures 24 at both ends in the direction along long side 2A is, for example, about 800 ⁇ m, and both ends in the direction along short side 2B.
  • the distance L2 (the light emitting point size in the long side direction) between the mesa structures 24 of the part may be, for example, about 350 ⁇ m.
  • the distance L3 between adjacent mesa structures 24 (the pitch of the mesa structures) may be, for example, about 80 ⁇ m.
  • the field structure 26 is a laminated structure that extends continuously between adjacent mesa structures 24 in a plan view and extends over the entire surface of the semiconductor laminated structure 3.
  • the second side surface 30 (the wall surface of the field structure portion 26) and the first side surface 31 (the wall surface of the mesa structure portion 24) of each trench 25 are respectively inclined surfaces inclined with respect to the bottom surface 32 of the trench 25. There is.
  • the trench 25 is tapered toward the bottom surface 32 in a cross sectional view.
  • a surface insulating film 27 as an example of the insulating layer of the present invention is formed to cover the surface of the semiconductor multilayer structure 3. As shown in FIG. 1, the surface insulating film 27 is formed over the entire portion other than the peripheral portion 28 of the semiconductor multilayer structure 3 in plan view.
  • the peripheral portion 28 of the semiconductor multilayer structure 3 is the remaining portion of the dicing line cut by the dicing saw in the dicing process in the manufacturing process of the surface emitting semiconductor laser 1 and is exposed over the entire circumference.
  • the surface insulating film 27 is made of a material having a light transmitting property with respect to the light emission wavelength ⁇ of the active layer 6 (wavelength of laser light), and is made of, for example, silicon oxide (SiO 2 ) or silicon nitride (SiN). Further, as shown in FIGS. 2 to 4, in the surface insulating film 27, the contact hole 29 for selectively exposing the p-type contact layer 18 of the mesa structure portion 24 is formed.
  • the p-side electrode 5 is formed to be in contact with the surface of the semiconductor multilayer structure 3 in this embodiment.
  • the p-side electrode 5 covers the entire surface of the surface insulating film 27 so as to expose the peripheral portion 28 of the semiconductor multilayer structure 3.
  • the p-side electrode 5 is configured by laminating a Ti layer and an Au layer sequentially from the semiconductor laminated structure 3 side.
  • the thickness of the p-side electrode 5 may be, for example, 0.1 ⁇ m to 0.3 ⁇ m.
  • the p-side electrode 5 includes the contact portion 33 along the top surface of the mesa structure 24, the bottom surface 34 and the side surface 35 along the bottom surface 32 and the side surfaces 30, 31 of the trench 25; It may be defined as a field portion 36 along the top surface of the field structure portion 26.
  • the contact portion 33 of the p-side electrode 5 is connected to the p-type contact layer 18 of the mesa structure 24 via the contact hole 29 of the surface insulating film 27.
  • an opening 39 for laser oscillation which exposes a part of the surface insulating film 27 in a region (region surrounded by the contact hole 29) inside the contact hole 29. Is formed.
  • a metal layer 37 for wire bonding and a metal layer 38 for heat radiation are selectively formed on the field portion 36 of the p-side electrode 5.
  • Each of the metal layers 37 and 38 has a thickness greater than that of the p-side electrode 5, and the thickness may be, for example, 2 ⁇ m to 4 ⁇ m.
  • the metal layers 37 and 38 may be made of an Au layer in this embodiment.
  • these interfaces are Au / Au interfaces, as shown in FIGS. There may be no clear interface.
  • the metal layer 37 for wire bonding is disposed at the peripheral portion of the p-side electrode 5 (near the peripheral portion 28 of the semiconductor multilayer structure 3), and is a metal layer for heat dissipation.
  • the reference numeral 38 is disposed at the center of the p-side electrode 5.
  • the wire By arranging the metal layer 37 for wire bonding on the peripheral portion of the p-side electrode 5, the wire can be prevented from passing above the mesa structure 24, thereby preventing the wire from interfering with the laser oscillation. be able to.
  • the metal layer 38 for heat dissipation is disposed between the adjacent mesa structures 24 at the central portion of the p-side electrode 5 to effectively utilize the space on the p-side electrode 5.
  • the heat from the plurality of mesa structures 24 around the can be collected and dissipated efficiently.
  • the n-side electrode 4 is formed to be in contact with the back surface of the substrate 2 in this embodiment.
  • An AuGe layer, an Ni layer and an Au layer are stacked in this order from the substrate 2 side.
  • the thickness of the n-side electrode 4 may be, for example, 0.1 ⁇ m to 0.6 ⁇ m.
  • FIG. 5 is a schematic enlarged perspective view of the mesa structure 24 of FIG.
  • FIG. 6 is a schematic enlarged plan view of the mesa structure 24 of FIG.
  • FIG. 7 is a schematic cross-sectional view of the mesa structure 24 taken along the line VII-VII in FIG.
  • FIG. 8 is an enlarged view of a portion surrounded by a two-dot chain line VIII in FIG.
  • FIG. 9 is an enlarged view of a portion surrounded by a two-dot chain line IX in FIG.
  • the ratio of each component does not coincide between FIG. 2 to FIG. 4 and FIG. 5 to FIG.
  • the surface insulating film 27 has the exposed portion 40 exposed from the opening 39 for laser oscillation in the region on the mesa structure 24.
  • the exposed portion 40 is formed with an annular recess 41 which is selectively recessed.
  • a point-like first convex portion 42 is formed in an inner portion surrounded by the concave portion 41.
  • an annular second convex portion 43 surrounding the concave portion 41 is formed outside the concave portion 41. That is, the concave portion 41 is partitioned between the first convex portion 42 and the second convex portion 43, and as shown in FIGS. 8 and 9, the first side surface 45 (the wall surface of the first convex portion 42) and Second side surface 44 (wall surface of second protrusion 43) Second side surface 44 A first side surface 45 is connected by a flat bottom surface 46.
  • the first side surface 45 and the second side surface 44 of the recess 41 are each an inclined surface inclined with respect to the bottom surface 46, whereby the recess 41 faces the bottom surface 46 in a cross sectional view. And has a tapered shape in which the width narrows.
  • the inclination angle ⁇ 1 (see FIG. 9) with respect to the bottom surface 46 of the first side surface 45 and the second side surface 44 of the recess 41 may be about 30 ° to 40 °.
  • the light striking the inclined surfaces 44 and 45 from the semiconductor multilayer structure 3 has an effect of collecting light on the convex portion 42 side according to the relationship of the refractive index of the surface insulating film 27> the refractive index of air, that is, Snell's law. Therefore, as compared with the case where the first side surface 45 and the second side surface 44 are perpendicular to the bottom surface 46, an effect of making the radiation angle of light smaller can be obtained.
  • the exposed portion 40 of the surface insulating film 27 has a first portion 47 formed of the first convex portion 42 and a portion directly below the first convex portion 42 and the concave portion 41.
  • a second portion 48 is formed of the bottom portion and surrounds the first portion 47, and a third portion 49 is formed of the second convex portion 43 and a portion directly below the second convex portion 43 and surrounding the second portion 48. can do.
  • the emission wavelength ⁇ of the active layer 6 as compared to the optical thickness (first optical thickness) of the first portion 47 is set so as to lower the reflectance to.
  • the thickness d1 of the first portion 47 (the distance from the back surface 69 of the front surface insulating film 27 to the surface 70 of the first convex portion 42)
  • the optical thickness of 1 is set to be (n + 1) ⁇ / 2 (n: integer)
  • the thickness d2 of the second portion 48 (from the back surface 69 of the surface insulating film 27 to the bottom surface 46 of the recess 41
  • the distance is set such that the second optical thickness is (2n + 1) ⁇ / 4 (n: integer) with respect to the light emission wavelength ⁇ . Comparing the physical thicknesses d1 and d2 set according to this condition, the thickness d1 of the first portion 47> the thickness d2 of the second portion 48 is satisfied.
  • the optical thickness (second optical thickness) of the second portion 48 is compared with the optical thickness (third optical thickness) of the third portion 49,
  • the reflectance to the light emission wavelength ⁇ of the active layer 6 is set to be low.
  • the thickness d3 of the third portion 49 may be the same as the thickness d1 of the first portion 47, and the optical thickness may also be the same.
  • the surface insulating film 27 is formed of a single layer film made of a single material, and may be formed of, for example, the aforementioned silicon oxide (SiO 2 ) film or silicon nitride (SiN) film. Good.
  • the contact holes 29 formed in the surface insulating film 27 are formed in an annular shape in plan view, as in the case of the recess 41. Furthermore, as shown in FIG. 9, the contact hole 29 has a side surface 52 inclined with respect to the surface of the p-type semiconductor layer 8.
  • the outer peripheral end 50 is the first side 31 of the trench 25 (wall surface of the mesa structure 24). It is formed in the annular shape exposed from.
  • the current confinement layer 20 is indicated by dashed hatching for the sake of clarity.
  • the inner peripheral end 51 of the current confinement layer 20 is a first portion of the surface insulating film 27, as mainly shown in FIGS. Outside 47, more specifically, between the first side 45 and the second side 44 of the annular recess 41 (the auxiliary line a, which is an extension of the lower end of the first side 45, and the lower end of the second side 44 Between the auxiliary line b), which is an extension of the ring, and is formed along the annular recess 41 in the region directly below the annular recess 41.
  • the current confinement layer 20 surrounds the first portion 47 of the surface insulating film 27 and partially covers the annular recess 41 (second portion 48) from the outside in a plan view.
  • the outer peripheral end 50 of the current confinement layer 20 in the field structure 26 is also exposed from the second side surface 30 of the trench 25 (the wall surface of the field structure 26).
  • the light output relating to the high-order mode increases at the outer peripheral portion of the active layer 6 of the mesa structure 24, and the second portion 48 of the exposed portion 40 of the surface insulating film 27
  • the reflectance of the light of the light emission wavelength ⁇ is low.
  • the reflectance of the light of the high-order mode in the second portion 48 of the surface insulating film 27 can be reduced.
  • amplification of the light of the high-order mode emitted from the active layer 6 can be suppressed, and the light output can be reduced compared to the first portion 47.
  • the current confinement layer 20 is formed relatively thin as 20 nm to 50 nm, it is possible to improve the light output while maintaining the narrow angle of the laser beam.
  • the surface insulating film 27 is formed of a single layer film and refraction of light in the surface insulating film 27 does not easily occur, the oscillation direction of the fundamental mode can be easily predicted. Therefore, optical design when using the surface emitting semiconductor laser 1 as a sensor becomes easy.
  • FIG. 11 is a diagram showing the relationship between the current and the light output according to the example, the comparative example, and the reference example.
  • FIG. 10 The effects of the surface emitting semiconductor laser 1 will be described with reference to FIGS. 10 and 11.
  • FIG. 10 The effects of the surface emitting semiconductor laser 1 will be described with reference to FIGS. 10 and 11.
  • the conditions of the example, the comparative example, and the reference example were set as follows, and the other conditions were the same.
  • “with insulating film processing” means processing for forming the recess 41 in the surface insulating film 27, and “with epi layer processing” means processing the recess 41 into the p-type semiconductor layer 8. It is applied by etching.
  • “Thin current narrowing layer” means that the thickness of the current narrowing layer 20 is 300 ⁇
  • "normal current narrowing layer” is that the thickness of the current narrowing layer 20 is 800 ⁇ .
  • Example 1 With insulating film processing, thin current confinement layer ⁇
  • Example 2 With insulating film processing, current narrowing layer normal ⁇ Comparative example 1: No insulating film processing, current narrowing layer normal ⁇ Comparative example 2: Insulation film processing None, with epi layer processing, current constriction layer normal ⁇ Reference example 1: No insulation film processing, current constriction layer thin And, from the results of FIG. 10 and FIG. Although it can be obtained, higher order mode light is dominant, and the radiation angle is also about 28 °. Further, in Comparative Example 2, although the light of the fundamental mode could be oscillated due to the epi layer processing, the increase of the light output was dull even if the current was increased, and a high light output could not be obtained.
  • the second embodiment it is possible to oscillate the light of the fundamental mode (radiation angle of about 12 °) by the insulating film processing, and further, the decrease of the light output can be suppressed, and the light output sufficient for practical use. I could secure it. Furthermore, in Example 1, as a result of thinning the current confinement layer, it was also possible to obtain a very high light output.
  • the radiation angle can be narrowed to about 18 ° as compared with the comparative example 1, and the light output can be improved.
  • 12A to 12H are diagrams showing the manufacturing process of the surface emitting semiconductor laser 1 in order of processes.
  • the n-type semiconductor layer 7, the active layer 6, and the p-type semiconductor layer 8 are epitaxially grown (crystal growth on a semiconductor wafer (not shown)
  • the semiconductor laminated structure 3 is formed.
  • p-type semiconductor layer 8, active layer 6 and n-type semiconductor layer 7 are selectively removed by, eg, dry etching.
  • the trench 25 is formed in the semiconductor multilayer structure 3
  • the mesa structure 24 is formed inside the annular trench 25
  • the field structure 26 is formed outside the annular trench 25.
  • the semiconductor multilayer structure 3 is heat-treated in water vapor so that the first side surface 31 of the trench 25 to the inside of the mesa structure portion 24 and the second side surface 30 of the trench 25.
  • the p-type layer 19 (not shown) is oxidized.
  • the current confinement layer 20 is formed in the p-type semiconductor layer 8, and a part of the p-type layer 19 remains as a p-type semiconductor so as to be surrounded by the current confinement layer 20.
  • a surface insulating film 27 is formed on the entire surface of the semiconductor multilayer structure 3 by, eg, CVD.
  • the surface portion of surface insulating film 27 is selectively removed by wet etching, for example.
  • an annular recess 41 is formed in the surface insulating film 27.
  • the recess 41 may be formed by selective dry etching.
  • the surface insulating film 27 is selectively removed by wet etching, for example, until the p-type semiconductor layer 8 is exposed.
  • the contact hole 29 is formed in the surface insulating film 27.
  • the contact hole 29 may be formed by selective dry etching.
  • p-side electrode 5 (surface metal film) is formed on the entire surface of semiconductor laminated structure 3 by evaporation, for example. Thereafter, although not shown, a metal film is formed on the p-side electrode 5 by vapor deposition or plating in a state where the p-side electrode 5 is selectively covered with a mask (for example, photoresist). Thereby, metal layer 37 for wire bonding (see FIGS. 1 and 3) and metal layer 38 for heat dissipation (see FIGS. 1 and 4) selectively formed on p-side electrode 5 are obtained.
  • a mask for example, photoresist
  • p-side electrode 5 is selectively removed by dry etching, for example.
  • an opening 39 for laser oscillation is formed in the p-side electrode 5.
  • n-side electrode 4 (not shown) is formed on the back surface of substrate 2 by, for example, vapor deposition, and the wafer is divided along dicing lines set in advance on the wafer, thereby forming individual surface emitting semiconductors. A laser 1 is obtained.
  • FIGS. 13 to 18 are diagrams showing modifications of the surface emitting semiconductor laser 1. A modification of the surface emitting semiconductor laser 1 will be described with reference to FIGS. 13 to 18.
  • the concave portion 41 of the surface insulating film 27 is divided by the second convex portion 43 on the outer side in FIG. 8, but as shown in FIG. 13, the concave portion 41 is formed extending to the end face of the opening 39 for laser oscillation. It may be Thereby, the concave portion 41 may include the first side surface 45 formed of the first convex portion 42 and the second side surface 53 formed of the end surface of the opening 39 for laser oscillation.
  • the difference in film thickness between the first portion 47 and the second portion 48 of the surface insulating film 27 selects the point-like concave portion 54 in the central portion of the exposed portion 40 of the surface insulating film 27. It may be provided by forming.
  • the first portion 47 is composed of the bottom of the recess 54
  • the second portion 48 is composed of an annular projection 55 surrounding the point-like recess 54 and a portion directly below the projection 55.
  • the thickness d1 of the first portion 47 (the distance from the back surface 69 of the front surface insulating film 27 to the bottom surface 57 of the recess 54) is the first optical thickness with respect to the light emission wavelength ⁇ .
  • the thickness d2 of the second portion 48 (the distance from the back surface 69 of the front surface insulating film 27 to the front surface 71 of the convex portion 55) is an emission wavelength
  • the first optical thickness is set to be (2n + 1) ⁇ / 4 (n: integer) with respect to ⁇ , but when the physical thicknesses d1 and d2 are compared, the first portion 47 can be obtained.
  • the thickness d1 ⁇ the thickness d2 of the second portion 48 is satisfied.
  • the inner side surface 56 of the recess 54 may be an inclined surface which is inclined with respect to the bottom surface 57. Thereby, the recess 54 may have a tapered shape whose width narrows toward the bottom surface 46 in a cross sectional view.
  • the surface insulating film 27 is composed of a single layer film made of a single material in FIG. 8, as shown in FIG. 15, the first material layer 58 constituting the first convex portion 42, and The first material layer 58 that constitutes the lower part of the first protrusion 42 may be a multilayer film including a second material layer 59 made of a different material.
  • one of the first material layer 58 and the second material layer 59 may be made of a silicon oxide (SiO 2 ) film, and the other may be made of a silicon nitride (SiN) film.
  • SiO 2 silicon oxide
  • SiN silicon nitride
  • the surface insulating film 27 is a multilayer film, etching selectivity can be secured between the first material layer 58 and the second material layer 59. Therefore, for example, when forming the recess 41 in the surface insulating film 27 (see FIG. 12E), the film thickness difference is easily provided between the first portion 47 and the second portion 48 of the surface insulating film 27
  • the interface 68 between the first material layer 58 and the second material layer 59 may be located at the height position of the bottom surface 46 of the recess 41 as shown in FIG. 16 or as shown in FIG. Alternatively, it may be located in the middle of the first convex portion 42 in the thickness direction.
  • the current narrowing layer 20 is formed along the annular recess 41 in the region immediately below the annular recess 41 in FIG. 8, but as shown in FIG. It may be formed to recede outside the opening 39 (outside the auxiliary line c which is an extension of the lower end of the opening 39) to further surround the opening 39 for laser oscillation.
  • FIG. 19 is an enlarged view of a portion surrounded by a two-dot chain line XIX in FIG. 7.
  • FIG. 20 and FIG. 21 are diagrams showing a modification of the surface emitting semiconductor laser 1 concerning the configuration of FIG.
  • the annular trench 25 of the semiconductor multilayer structure 3 is formed by selectively removing portions of the p-type semiconductor layer 8, the active layer 6, and the n-type semiconductor layer 7 by dry etching (see FIG. See Figure 12B).
  • the trench 25 has wall surfaces (the second side surface 30 and the first side surface 31) straddling the n-type semiconductor layer 7, the active layer 6 and the p-type semiconductor layer 8. It is dug down to the side.
  • the semiconductor layer constituting the semiconductor multilayer structure 3 and the metal layer such as the p-side electrode 5 are activated even if the thermal stress due to the linear expansion coefficient difference between Since the layer 6 is not provided, stress applied to the active layer 6 can be relaxed. As a result, since damage to the active layer 6 due to stress can be suppressed, the reliability of the surface emitting semiconductor laser 1 can be improved.
  • the contact portion 33, the bottom portion 34 and the field portion 36 parallel to the substrate surface are formed thicker than the side portion 35 perpendicular or inclined to the substrate surface. This is because the metal material is attached in the vertical direction from above the semiconductor laminated structure 3 when the p-side electrode 5 is formed.
  • the thickness of the p-side electrode 5 may be 0.1 ⁇ m to 0.3 ⁇ m. More specifically, the thickness d4 of the contact portion 33, the bottom portion 34 and the field portion 36 is 0. It may be 1 ⁇ m to 0.6 ⁇ m, and the thickness d5 of the side surface portion 35 may be 0.1 ⁇ m to 0.6 ⁇ m.
  • the p-side electrode 5 relatively thin, in addition to the upper surface 63 of the surface insulating film 27 on the bottom surface 32 of the trench 25 in FIG.
  • the height position is lower than the interface 62 between the n-type semiconductor layer 7 and the active layer 6.
  • the semiconductor multilayer structure 3 is warped due to thermal stress, and accordingly, the portion parallel to the substrate surface of the surface insulating film 27 and the p-side electrode 5 present on the bottom surface 32 of the trench 25 is warped. Even if it occurs, the warped portion is not adjacent to the active layer 6, so that the influence of warping of the surface insulating film 27 and the portion parallel to the substrate surface of the p-side electrode 5 on the active layer 6 can be reduced.
  • the p-side electrode 5 is integrally formed on the entire surface of the semiconductor multilayer structure 3, in the field portion 36, the impact resistance in wire bonding and the mesa structure 24 occur. There is a concern about the decrease in heat dissipation.
  • the metal layer 37 for wire bonding and the metal layer 38 for heat dissipation are formed on the field portion 36 of the p-side electrode 5.
  • the metal layer 37 for wire bonding is selectively thickened.
  • the metal layer 38 for heat radiation thickly, the surface area of the metal layer contributing to heat radiation can be increased. As a result, the heat dissipation of the surface emitting semiconductor laser 1 can be improved.
  • the second side surface 30 and the first side surface 31 of the trench 25 are formed with uneven structures 65 and 66 over the entire surface due to surface roughening by dry etching. Then, a surface insulating film 27 is formed so as to enter the uneven structures 65 and 66.
  • the contact area between the wall surface of the trench 25 (the second side surface 30 and the first side surface 31) and the surface insulating film 27 can be increased, and the surface with respect to the second side surface 30 and the first side surface 31.
  • the frictional force of the insulating film 27 can be increased.
  • the adhesion of the surface insulating film 27 to the wall surfaces (the second side surface 30 and the first side surface 31) of the trench 25 can be improved, and the peelability of the surface insulating film 27 can be reduced.
  • the reliability of the surface emitting semiconductor laser 1 can be improved.
  • bottom surface 34 (portion parallel to the substrate surface) of p-side electrode 5 is adjacent to active layer 6 by forming p-side electrode 5 thicker than the configuration of FIG. It may be formed as follows. That is, the upper surface 64 of the bottom surface portion 34 of the p-side electrode 5 may be at a height position higher than the interface 62 between the n-type semiconductor layer 7 and the active layer 6.
  • the effect of alleviating the influence of the warpage of the bottom portion 34 (portion parallel to the substrate surface) of the p-side electrode 5 is smaller than that of the configuration of FIG.
  • the heat generated in the active layer 6 can be efficiently dissipated.
  • the reliability of the surface emitting semiconductor laser 1 can be improved.
  • a concave portion 67 which is selectively recessed in the central portion apart from the lower portions 60 and 61 of the wall surfaces (the second side surface 30 and the first side surface 31) of the trench 25. May be formed.
  • this recess 67 forms the trench 25 by etching, the etching rate at the central portion of the etching region is compared to the etching rate at the peripheral portion of the etching region (the portion where the second side surface 30 and the first side surface 31 are formed). It is because it is fast.
  • an opening 72 may be formed in the p-type contact layer 18 of the p-type semiconductor layer 8.
  • a part of the surface insulating film 27 may be connected to the p-type DBR layer 17 through the opening 72 of the p-type contact layer 18.
  • the opening 72 has a side surface 74 inclined with respect to the surface of the p-type semiconductor layer 8.
  • the diameter D1 of the opening 72 may be smaller than the diameter D2 of the current confinement layer 20 and larger than the diameter D3 of the first convex portion 42 of the surface insulating film 27. That is, the relationship of diameter D2 ⁇ diameter D1 ⁇ diameter D3 may be satisfied.
  • the p-type contact layer 18 has a first portion 73 protruding inward from the inner peripheral end 51 of the current confinement layer 20.
  • the first portion 73 of the p-type contact layer 18 is also formed in a ring shape.
  • the recess 41 of the surface insulating film 27 may be formed in the inward region of the opening 72.
  • the opening 72 in the p-type contact layer 18 by forming the opening 72 in the p-type contact layer 18, absorption of light in the fundamental mode by the p-type contact layer 18 can be suppressed.
  • the first portion 73 of the p-type contact layer 18 absorbs (cuts off) light passing through the vicinity of the inner peripheral end 51 of the current confinement layer 20 where the light output of the high-order mode tends to be relatively large. it can.
  • the thickness of the p-type contact layer 18 can be designed according to the amount of light of the higher order mode to be absorbed by the first portion 73. it can.
  • the thickness of the p-type contact layer 18 in which the opening 72 is not formed may be 0.02 ⁇ m to 0.08 ⁇ m as described above, in the case where the opening 72 is formed, the p-type contact layer The thickness of 18 may be 0.01 ⁇ m to 0.5 ⁇ m.
  • the formation of the opening 72 can absorb the light of the higher mode and can suppress the absorption of the light of the fundamental mode. Therefore, as described above, the first portion 47 and the second portion 48 of the surface insulating film 27 It is not necessary to provide a film thickness difference between them.
  • surface insulating film 27 may have a flat surface in the region over opening 72 of p-type contact layer 18 (that is, first convex portion 42 is formed). Need not).
  • the surface emitting semiconductor laser 1 described above can be used for applications such as an optical sensor and a laser printer.
  • the conductivity type of each semiconductor portion of the surface emitting semiconductor laser 1 is reversed may be adopted. That is, in the surface emitting semiconductor laser 1, the p-type portion may be n-type and the n-type portion may be p-type.
  • composition of each layer of the n-type semiconductor layer 7, the active layer 6 and the p-type semiconductor layer 8 described above is merely an example, and can be changed within a range where laser oscillation perpendicular to the substrate surface can be performed. It is.
  • a first conductivity type layer including a first conductivity type DBR (Distributed Bragg Reflector) layer, an active layer formed on the first conductivity type layer, and a second conductivity type DBR (Distributed Distributed Layer) formed on the active layer. And a wall surface extending over the first conductive type layer, the active layer, and the second conductive type layer, and indented toward the first conductive layer relative to the active layer.
  • Light emitting semiconductor including a recessed portion, a top portion of the second conductive type layer, an insulating layer formed along the wall surface and a bottom surface of the recessed portion, and a metal layer formed to cover the insulating layer laser.
  • the concave portion is formed in an annular shape surrounding a mesa structure portion including the first conductive type layer, the active layer, and the second conductive type layer.
  • the metal layer is electrically connected to the second conductivity type layer through the insulating layer, and has an opening for laser oscillation for exposing a part of the insulating layer. 5.
  • a surface emitting semiconductor laser according to item 3. Outside the recess, a field region is formed, which comprises a laminated structure including the first conductive type layer not used for laser oscillation, the active layer, and the second conductive type layer. 6.
  • the second metal layer for wire bonding is used even when the entire metal layer is formed relatively thin so that the portion of the metal layer disposed on the bottom of the recess is not adjacent to the active layer.
  • By selectively forming a thick layer it is possible to ensure the strength to withstand the force (for example, the vibration due to the ultrasonic wave, etc.) generated when bonding the wire bonding.
  • the reliability of the surface emitting semiconductor laser can be improved.
  • the third metal layer for heat radiation is selected even when the entire metal layer is formed relatively thin so that the portion of the metal layer disposed on the bottom of the recess is not adjacent to the active layer.
  • the surface area of the metal layer can be increased.
  • the heat dissipation of the surface emitting semiconductor laser can be improved.
  • the contact area between the wall surface of the recess and the insulating layer can be increased, and the frictional force of the insulating layer on the wall surface can be increased.
  • the adhesion of the insulating layer to the wall surface of the recess can be improved, and the peelability of the insulating layer can be reduced.
  • the reliability of the surface emitting semiconductor laser can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

面発光半導体レーザは、第1導電型層、活性層および第2導電型層を含み、前記活性層で発生した光が、これらの層の積層方向に沿って共振して前記第2導電型層側からレーザ光として取り出される半導体積層構造と、開口を介して前記活性層と前記第2導電型層とが電気的に接続された電流狭窄層と、前記活性層の発光波長に対して透光性を有する絶縁層と、前記第1導電型層に電気的に接続された第1電極と、前記第2導電型層に電気的に接続された第2電極とを含み、前記絶縁層の一部は前記第2電極から露出しており、その露出する前記絶縁層は、第1の厚さを有する第1部分と、前記第1の厚さに比べて前記活性層から発せられた光の出力を前記第1部分よりも低減させるような第2の厚さを有し、前記第1部分を取り囲む第2部分とを含む。

Description

面発光半導体レーザ
 本発明は、面発光半導体レーザに関する。
 光の共振方向が基板面に対して垂直な面発光半導体レーザが知られている。
 たとえば、特許文献1は、n型GaAs基板と、n型GaAs基板上のn型多層膜ブラッグ反射層と、n型多層膜ブラッグ反射層上のn型AlGaAsクラッド層と、n型AlGaAsクラッド層上の多重量子井戸活性層と、多重量子井戸活性層上のp型AlGaAsクラッド層と、p型AlGaAsクラッド層の途中に設けられたp型AlAs選択酸化層と、p型AlGaAsクラッド層上のp型多層膜ブラッグ反射層と、p型多層膜ブラッグ反射層上のp型GaAsコンタクト層と、p型GaAsコンタクト層の表面に形成されたp側電極と、基板裏面に形成されたn側電極とを含む、面発光半導体レーザを開示している。
特開2014-22690号公報
 従来の面発光半導体レーザでは、入力電流の増加に従い、斜め方向の光(高次モード)が発生し、光の方射角が大きくなりやすくなる。そのため、光学設計をすることが難しく、たとえば測距センサのようなセンサ用途として使用する際に光出力が制限される。
 そこで、本発明の目的は、より指向性の高いレーザ光を出力することができる面発光半導体レーザを提供することである。
 本発明の一実施形態に係る面発光半導体レーザは、第1導電型層、前記第1導電型層上に積層された活性層、および前記活性層上に積層された第2導電型層を含み、前記活性層で発生した光が、これらの層の積層方向に沿って共振して前記第2導電型層側からレーザ光として取り出される半導体積層構造と、前記活性層上であって前記第2導電型層の表面よりも前記活性層側に形成され、開口を有する絶縁性の電流狭窄層であって、前記開口を介して前記活性層と前記第2導電型層とが電気的に接続された電流狭窄層と、前記第2導電型層上に形成され、前記活性層の発光波長に対して透光性を有する絶縁層と、前記第1導電型層に電気的に接続された第1電極と、前記絶縁層上に形成され、前記絶縁層を貫通して前記第2導電型層に電気的に接続された第2電極とを含み、前記絶縁層の一部は前記第2電極から露出しており、その露出する前記絶縁層は、第1の厚さを有する第1部分と、前記第1の厚さに比べて前記活性層から発せられた光の出力を前記第1部分よりも低減させるような第2の厚さを有し、前記第1部分を取り囲む第2部分とを含む。
図1は、本発明の一実施形態に係る面発光半導体レーザの模式的な平面図である。 図2は、図1のII-II切断線における前記面発光半導体レーザの模式的な断面図である。 図3は、図1のIII-III切断線における前記面発光半導体レーザの模式的な断面図である。 図4は、図1のIV-IV切断線における前記面発光半導体レーザの模式的な断面図である。 図5は、図1のメサ構造部の模式的な拡大斜視図である。 図6は、図1のメサ構造部の模式的な拡大平面図である。 図7は、図6のVII-VII切断線における前記メサ構造部の模式的な断面図である。 図8は、図7の二点鎖線VIIIで囲まれた部分の拡大図である。 図9は、図8の二点鎖線IXで囲まれた部分の拡大図である。 図10は、実施例、比較例および参考例にかかるレーザ光の方射角と光出力との関係を示す図である。 図11は、実施例、比較例および参考例にかかる電流と光出力との関係を示す図である。 図12Aは、本発明の一実施形態に係る面発光半導体レーザの製造工程の一部を示す図である。 図12Bは、図12Aの次の工程を示す図である。 図12Cは、図12Bの次の工程を示す図である。 図12Dは、図12Cの次の工程を示す図である。 図12Eは、図12Dの次の工程を示す図である。 図12Fは、図12Eの次の工程を示す図である。 図12Gは、図12Fの次の工程を示す図である。 図12Hは、図12Gの次の工程を示す図である。 図13は、前記面発光半導体レーザの変形例を示す図である。 図14は、前記面発光半導体レーザの変形例を示す図である。 図15は、前記面発光半導体レーザの変形例を示す図である。 図16は、前記面発光半導体レーザの変形例を示す図である。 図17は、前記面発光半導体レーザの変形例を示す図である。 図18は、前記面発光半導体レーザの変形例を示す図である。 図19は、図7の二点鎖線XIXで囲まれた部分の拡大図である。 図20は、前記面発光半導体レーザの変形例を示す図である。 図21は、前記面発光半導体レーザの変形例を示す図である。 図22は、前記面発光半導体レーザの変形例を示す図である。 図23は、前記面発光半導体レーザの変形例を示す図である。
 以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
 図1は、本発明の一実施形態に係る面発光半導体レーザ1の模式的な平面図である。図2は、図1のII-II切断線における面発光半導体レーザ1の模式的な断面図である。図3は、図1のIII-III切断線における面発光半導体レーザ1の模式的な断面図である。図4は、図1のIV-IV切断線における面発光半導体レーザ1の模式的な断面図である。なお、図2、図3および図4の間で、各構成の比率は一致するものではない。
 面発光半導体レーザ1は、基板2と、基板2上に形成された半導体積層構造3(III族窒化物半導体積層構造)と、基板2の裏面(半導体積層構造と反対側の表面)上に形成された本発明の第1電極の一例としてのn側電極4と、半導体積層構造3の表面上に形成された本発明の第2電極の一例としてのp側電極5とを備えた面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)である。
 基板2は、図1に示すように、平面視長方形状に形成されており、たとえば長辺2Aの長さが900μm±5μm程度であり、短辺2Bの長さが470μm±5μm程度である。基板2は、この実施形態では、n型のGaAs単結晶基板で構成されており、たとえば、70μm~300μmの厚さを有している。また、基板2には、たとえば5×1017cm-3~4×1018cm-3の濃度で、n型不純物(たとえば、Si)がドープされている。この基板2は、たとえば、c面やm面を主面としたものである。この主面上における結晶成長によって、半導体積層構造3が形成されている。したがって、半導体積層構造3は、基板2の主面と同じ結晶面を成長主面とするIII族窒化物半導体からなる。非極性面(とくにm面)を主面とするGaAs単結晶基板上にIII族窒化物半導体をエピタキシャル成長させると、転位がより低減した良好なIII族窒化物半導体結晶を成長させることができる。
 半導体積層構造3は、活性層6と、本発明の第1導電型層の一例としてのn型半導体層7と、本発明の第2導電型層の一例としてのp型半導体層8とを備えている。n型半導体層7は活性層6に対して基板2側に配置されており、p型半導体層8は活性層6に対してp側電極5側に配置されている。こうして、活性層6が、n型半導体層7およびp型半導体層8によって挟持されていて、ダブルヘテロ接合が形成されている。活性層6には、n型半導体層7から電子が注入され、p型半導体層8から正孔が注入される。これらが活性層6で再結合することにより、光が発生するようになっている。
 n型半導体層7は、基板2側から順に、n型バッファ層9、n型DBR(Distributed Bragg Reflector:分布ブラッグ反射)層10およびn型クラッド層11を積層して構成されている。
 n型バッファ層9は、この実施形態では、n型のGaAsで構成されており、たとえば、0.05μm~0.2μmの厚さを有している。また、n型バッファ層9には、たとえば1×1018cm-3~3×1018cm-3の濃度で、n型不純物(たとえば、Si)がドープされている。
 n型DBR層10は、この実施形態では、たとえば600Åの厚さを有する相対的にAl組成が低いn型Al0.16Ga0.84As層12(低Al組成層)と、たとえば700Åの厚さを有する相対的にAl組成が高いn型Al0.92Ga0.16As層13(高Al組成層)とを交互に複数周期(たとえば、20周期)繰り返し積層して構成されている。n型Al0.16Ga0.84As層12およびn型Al0.92Ga0.16As層13には、それぞれ、たとえば2×1017cm-3~3×1018cm-3および2×1017cm-3~3×1018cm-3の濃度で、n型不純物(たとえば、Si)がドープされている。
 n型DBR層10は、n型Al0.16Ga0.84As層12とn型Al0.92Ga0.16As層13とで構成される複数の界面からの反射光同士の干渉現象を利用するものであり、異なる界面から反射されてくる光の位相を360°ずらせるようにして、互いに強め合うようにし、反射光の強度をより高くするものである。このように動作させるためには、n型Al0.16Ga0.84As層12の屈折率をn1、n型Al0.92Ga0.16As層13の屈折率をn2とし、レーザ共振器内の発振させたいレーザ光の波長をλとすると、n型Al0.16Ga0.84As層12の厚さはλ/4n1で決定され、n型Al0.92Ga0.16As層13の厚さはλ/4n2で決定される。後述するp型DBR層17におけるp型Al0.16Ga0.84As層22およびp型Al0.92Ga0.16As層23についても上記と同様のことが言える。
 n型クラッド層11は、この実施形態では、n型のAlGaAsで構成されており、たとえば、0.08μm~0.12μmの厚さを有している。また、n型クラッド層11には、たとえば3×1018cm-3以下の濃度で、n型不純物(たとえば、Si)がドープされていてもよいし、アンドープであってもよい。
 活性層6は、量子井戸構造(Quantum Well)を有する活性層であり、井戸層(ウェル層)を、井戸層よりもバンドギャップの大きな障壁層(バリア層)でサンドイッチ状に挟んだ構造となっている。この量子井戸構造は、1つではなく、多重化してもよく、この場合は、MQW(Multi Quantum Well)、すなわち多重量子井戸構造となる。
 活性層6は、この実施形態では、アンドープのGaAs井戸層14とアンドープのAlGaAs障壁層15(バリア層)とを交互に積層した多重量子井戸構造により構成されている。たとえば、最初に、100Å厚のアンドープAl0.35Ga0.65As障壁層15を形成する。次に、この障壁層15上に、80Å厚のアンドープGaAs井戸層14と100Å厚のアンドープAl0.35Ga0.65As障壁層15を交互に繰り返し2~6周期形成する。この上に、80Å厚のアンドープGaAs井戸層14を積層し、さらに、この井戸層14上に100Å厚のアンドープAl0.35Ga0.65As障壁層15を積層する。すなわち、多重量子井戸構造の両側は、中間の障壁層15と厚さが異なるアンドープAl0.35Ga0.65As層による障壁層15で形成される。
 p型半導体層8は、活性層6の上に順に、p型クラッド層16、p型DBR(Distributed Bragg Reflector:分布ブラッグ反射)層17およびp型コンタクト層18を積層して構成されている。
 p型クラッド層16は、この実施形態では、p型のAlGaAsで構成されており、たとえば、0.08μm~0.12μmの厚さを有している。また、p型クラッド層16には、たとえば5×1018cm-3以下の濃度で、p型不純物(たとえば、C)がドープされていてもよいし、アンドープであってもよい。
 p型クラッド層16には、p型層19およびp型層19を取り囲む電流狭窄層20が形成されている。p型層19および電流狭窄層20は、この実施形態では、互いの上面および下面が半導体積層構造3の積層界面に沿って連続して構成されている。p型層19は、この実施形態では、p型クラッド層16よりもAl組成が高いp型のAlGaAsで構成されている。たとえば、p型クラッド層16がAl0.6Ga0.4As層であり、p型層19がAl0.98Ga0.02As層であってもよい。一方、電流狭窄層20は、この実施形態では、Alを含有する酸化絶縁層で構成されている。また、p型層19および電流狭窄層20は、15nm~50nmの厚さを有している。また、p型層19には、たとえば5×1018cm-3~2×1019cm-3の濃度で、p型不純物(たとえば、C)がドープされている。
 面発光半導体レーザ1を流れる電流は、p型クラッド層16においては、電流狭窄層20に流れず、電流狭窄層20で取り囲まれたp型層19に狭窄されるようになっており、p型層19に対向する活性層6の領域が発光領域となる。
 なお、p型層19および電流狭窄層20は、図2~図4に示すように、p型クラッド層16の厚さ方向途中部に選択的に形成されていてもよい。この場合、半導体積層構造3の積層方向において、p型層19および電流狭窄層20の両側に、p型クラッド層16が配置されることになる。また、図示は省略するが、p型クラッド層16の厚さ方向一端から他端にわたって形成されていてもよい(つまり、p型層19がp型クラッド層16であってもよい)。また、電流狭窄層20は、この実施形態のように、p型半導体層8の積層構造の一部としてp型DBR層17と活性層6との間に形成されていてもよいし、p型半導体層8の積層構造から独立して、p型半導体層8と活性層6との間に形成されていてもよい。つまり、電流狭窄層20は、活性層6上であって、p型半導体層8の表面よりも活性層6側に形成されていればよい。
 p型DBR層17は、この実施形態では、たとえば600Åの厚さを有する相対的にAl組成が低いp型Al0.16Ga0.84As層22(低Al組成層)と、たとえば700Åの厚さを有する相対的にAl組成が高いp型Al0.92Ga0.16As層23(高Al組成層)とを交互に複数周期(たとえば、20周期)繰り返し積層して構成されている。p型Al0.16Ga0.84As層22およびp型Al0.92Ga0.16As層23には、それぞれ、たとえば2×1018cm-3~1×1019cm-3および2×1018cm-3~1×1019cm-3の濃度で、p型不純物(たとえば、C)がドープされている。
 p型コンタクト層18は、この実施形態では、p型のGaAsで構成されており、たとえば、0.02μm~0.08μmの厚さを有している。また、p型コンタクト層18には、たとえば1×1019cm-3~5×1019cm-3の濃度で、p型不純物(たとえば、C)がドープされている。
 そして、半導体積層構造3には、メサ構造部24が形成されている。より具体的には、半導体積層構造3に環状のトレンチ25が形成されており、当該トレンチ25の内側に、横断面視ほぼ台形形状のメサ構造部24が形成されている。
 この実施形態では、図1に示すように、平面視において、半導体積層構造3の表面のほぼ全体に複数のトレンチ25が互いに独立して形成されており、各トレンチ25に取り囲まれるようにメサ構造部24が配置されている。メサ構造部24の配列パターンは、図1に示すような千鳥配列であってもよいし、マトリクス配列であってもよい。
 面発光半導体レーザ1では、各メサ構造部24の活性層6で発光し、その光を増幅させることによってメサ構造部24の頂面からレーザ発振が行われる。基板2の面内において、長辺2Aに沿う方向における両端部のメサ構造部24間の距離L1(長辺方向の発光点サイズ)は、たとえば800μm程度であり、短辺2Bに沿う方向における両端部のメサ構造部24間の距離L2(長辺方向の発光点サイズ)は、たとえば350μm程度であってもよい。また、隣り合うメサ構造部24間の距離L3(メサ構造部のピッチ)は、たとえば、80μm程度であってもよい。
 一方、半導体積層構造3において、トレンチ25の外側に形成され、レーザ発振に寄与しないn型半導体層7、活性層6およびp型半導体層8の積層構造は、フィールド構造部26と定義してもよい。フィールド構造部26は、図1に示すように、平面視において、隣り合うメサ構造部24の間を連続して延び、半導体積層構造3の表面全体にわたって広がる積層構造部である。
 また、各トレンチ25の第2側面30(フィールド構造部26の壁面)および第1側面31(メサ構造部24の壁面)は、それぞれ、トレンチ25の底面32に対して傾斜した傾斜面となっている。これにより、横断面視において、トレンチ25は、底面32に向かって細くなるテーパ形状となっている。
 半導体積層構造3の表面を覆うように、本発明の絶縁層の一例としての表面絶縁膜27が形成されている。表面絶縁膜27は、図1に示すように、平面視において、半導体積層構造3の周縁部28以外の部分全体に形成されている。
 一方、半導体積層構造3の周縁部28は、面発光半導体レーザ1の製造プロセスにおけるダイシング工程において、ダイシングソーによって切断されるダイシングラインの残り部分であり、全周にわたって露出している。表面絶縁膜27は、活性層6の発光波長(レーザ光の波長)λに対して透光性を有する材料からなり、たとえば、酸化シリコン(SiO)、窒化シリコン(SiN)等からなる。また、図2~図4に示すように、表面絶縁膜27には、メサ構造部24のp型コンタクト層18を選択的に露出させるコンタクトホール29が形成されている。
 p側電極5は、この実施形態では、半導体積層構造3の表面に接触するように形成されている。p側電極5は、半導体積層構造3の周縁部28を露出させるように表面絶縁膜27の表面全体を覆っている。p側電極5は、この実施形態では、半導体積層構造3側から順に、Ti層およびAu層を積層して構成されている。p側電極5の厚さは、たとえば、0.1μm~0.3μmであってもよい。
 また、p側電極5は、配置された領域ごとに、メサ構造部24の頂面に沿うコンタクト部33、トレンチ25の底面32および側面30,31に沿う底面部34および側面部35、ならびに、フィールド構造部26の頂面に沿うフィールド部36と定義してもよい。
 p側電極5のコンタクト部33は、表面絶縁膜27のコンタクトホール29を介して、メサ構造部24のp型コンタクト層18に接続されている。また、p側電極5のコンタクト部33には、コンタクトホール29よりも内方の領域(コンタクトホール29に取り囲まれた領域)に、表面絶縁膜27の一部を露出させるレーザ発振用の開口39が形成されている。
 また、p側電極5のフィールド部36上には、ワイヤボンディング用の金属層37および放熱用の金属層38が選択的に形成されている。金属層37,38は、いずれも、p側電極5よりも厚い厚さを有しており、その厚さは、たとえば、2μm~4μmであってもよい。また、金属層37,38は、この実施形態では、Au層からなっていてもよい。なお、p側電極5がTi層とAu層との積層構造からなり、金属層37,38がAu層からなる場合、これらの界面はAu/Au界面となるため、図2~図4に示す明確な界面が存在しないことがある。
 また、図1に示すように、平面視において、ワイヤボンディング用の金属層37は、p側電極5の周縁部(半導体積層構造3の周縁部28の近傍)に配置され、放熱用の金属層38は、p側電極5の中央部に配置されている。
 ワイヤボンディング用の金属層37をp側電極5の周縁部に配置することによって、ワイヤがメサ構造部24の上方を通過することを防止できるので、ワイヤがレーザ発振の妨げになることを防止することができる。
 一方、放熱用の金属層38については、p側電極5の中央部において隣り合うメサ構造部24の間に配置することによって、p側電極5上のスペースを有効に利用しながら、金属層38の周囲にある複数のメサ構造部24からの熱を集約して効率よく放熱することができる。
 n側電極4は、この実施形態では、基板2の裏面に接触するように形成されている。基板2側から順に、AuGe層、Ni層およびAu層を積層して構成されている。n側電極4の厚さは、たとえば、0.1μm~0.6μmであってもよい。
 そして、この面発光半導体レーザ1では、n側電極4およびp側電極5を電源に接続し、n型半導体層7およびp型半導体層8から電子および正孔を活性層6に注入することによって、各メサ構造部24の活性層6内で電子および正孔の再結合を生じさせ、たとえば波長λ=840nm~860nmの光を発生させることができる。この光は、n型DBR層10とp型DBR層17との間を基板2に垂直な方向に沿って往復しながら共振して増幅される。そして、レーザ出射端面である各メサ構造部24の頂面から、レーザ発振用開口39を介してレーザ出力が外部に取り出されることになる。
 次に、面発光半導体レーザ1のメサ構造部24の構造を、より詳細に説明する。
 図5は、図1のメサ構造部24の模式的な拡大斜視図である。図6は、図1のメサ構造部24の模式的な拡大平面図である。図7は、図6のVII-VII切断線におけるメサ構造部24の模式的な断面図である。図8は、図7の二点鎖線VIIIで囲まれた部分の拡大図である。図9は、図8の二点鎖線IXで囲まれた部分の拡大図である。なお、図2~図4と図5~図9との間で、各構成の比率は一致するものではない。
 前述したように、表面絶縁膜27は、メサ構造部24上の領域においてレーザ発振用の開口39から露出した露出部40を有している。露出部40には、選択的に凹んだ環状の凹部41が形成されている。この凹部41で取り囲まれた内側部分に点状の第1凸部42が形成されている。さらに、この実施形態では、凹部41の外側に、凹部41を取り囲む環状の第2凸部43が形成されている。つまり、凹部41は、第1凸部42と第2凸部43との間に区画されており、図8および図9に示すように、第1側面45(第1凸部42の壁面)および第2側面44(第2凸部43の壁面)第2側面44第1側面45を有し、これらが平坦な底面46によって接続されている。
 より具体的には、凹部41の第1側面45および第2側面44は、それぞれ、底面46に対して傾斜した傾斜面であり、これにより、凹部41は、横断面視において、底面46に向かって幅が狭まるテーパ形状を有している。たとえば、凹部41の第1側面45および第2側面44の底面46に対する傾斜角θ1(図9参照)は、30°~40°程度であってもよい。半導体積層構造3から傾斜面44,45に当たった光は、表面絶縁膜27の屈折率>空気の屈折率の関係、すなわちスネルの法則によって、凸部42側に集まる効果がある。そのため、第1側面45および第2側面44が底面46に対する垂直面である場合に比べて、光の放射角をより小さくする効果を得ることができる。
 そして、図8および図9に示すように、表面絶縁膜27の露出部40は、第1凸部42および第1凸部42の直下の部分で構成された第1部分47と、凹部41の底面部で構成され、第1部分47を取り囲む第2部分48と、第2凸部43および第2凸部43の直下の部分で構成され、第2部分48を取り囲む第3部分49とに区別することができる。
 第1部分47および第2部分48の膜厚(物理的な厚さ)に関して、第1部分47の光学的厚さ(第1の光学的厚さ)に比べて、活性層6の発光波長λに対する反射率が低くなるように、第2部分48の光学的厚さ(第2の光学的厚さ)が設定されている。
 たとえば、図8および図9に示すように、第1部分47の厚さd1(表面絶縁膜27の裏面69から第1凸部42の表面70までの距離)は、発光波長λに対して第1の光学的な厚さが(n+1)λ/2(n:整数)となるように設定され、第2部分48の厚さd2(表面絶縁膜27の裏面69から凹部41の底面46までの距離)は、発光波長λに対して第2の光学的な厚さが(2n+1)λ/4(n:整数)となるように設定される。この条件に従い設定された物理的な厚さd1とd2とを比べると、第1部分47の厚さd1>第2部分48の厚さd2となっている。
 また、この実施形態では、第2部分48の光学的厚さ(第2の光学的厚さ)は、第3部分49の光学的厚さ(第3の光学的厚さ)に比べても、活性層6の発光波長λに対する反射率が低くなるように設定されている。たとえば、第3部分49の厚さd3は、第1部分47の厚さd1と同じであってよく、光学的な厚さも同じであってよい。
 なお、この実施形態では、表面絶縁膜27は、単一材料からなる単層膜で構成されており、たとえば、前述した酸化シリコン(SiO)膜または窒化シリコン(SiN)膜からなっていてもよい。
 また、表面絶縁膜27に形成されたコンタクトホール29に関して、凹部41と同様に、図6に示すように、平面視環状に形成されている。さらに、図9に示すように、コンタクトホール29は、p型半導体層8の表面に対して傾斜した側面52を有している。
 次に、電流狭窄層20に関して、この実施形態では、図5および図6に示すように、電流狭窄層20は、その外周端50がトレンチ25の第1側面31(メサ構造部24の壁面)から露出する環状に形成されている。図6では、明瞭化のため、電流狭窄層20を破線ハッチングで示している。
 一方、電流狭窄層20の内周端51(環状の電流狭窄層20の内側に区画された開口の周縁)は、図6および図8に主に示すように、表面絶縁膜27の第1部分47よりも外側、より具体的には、環状の凹部41の第1側面45と第2側面44との間(第1側面45の下端の延長である補助線aと、第2側面44の下端の延長である補助線bとの間)であって、環状の凹部41の直下の領域において環状の凹部41に沿って形成されている。これにより、電流狭窄層20は、平面視において、表面絶縁膜27の第1部分47を取り囲むと共に、環状の凹部41(第2部分48)を外側から部分的に覆っている。
 なお、フィールド構造部26内の電流狭窄層20についても、その外周端50がトレンチ25の第2側面30(フィールド構造部26の壁面)から露出するように形成されている。
 以上、この面発光半導体レーザ1によれば、高次モードに係る光出力は、メサ構造部24の活性層6の外周部で大きくなるところ、表面絶縁膜27の露出部40の第2部分48において、発光波長λの光の反射率が低くなっている。これにより、表面絶縁膜27の第2部分48における高次モードの光の反射率を低下させることができる。その結果、表面絶縁膜27の第2部分48においては、活性層6から発せられた高次モードの光が増幅することを抑制でき、光の出力を第1部分47よりも低減できるので、入力電流を増加させても、基本モードの光を優先的に増幅させ、狭い方射角のレーザ光を発振することができる。これにより、従来に比べて指向性の高いレーザ光を出力することができる面発光半導体レーザを提供することができる。
 一方、p型半導体層8を頂部から選択的にエッチングすることによって得られる凹凸構造によっても、上記と同様に、高次モードの光の反射率を低下させることが考えられる。しかしながら、p型半導体層8のような半導体層をエッチングするやり方では、エッチングによって半導体積層構造3に転位欠陥(結晶欠陥)が発生し、基本モードの光増幅に影響を与え、結果として光出力が大幅に低下するおそれがある。これに対し、面発光半導体レーザ1の構成であれば、表面絶縁膜27に対する加工で済むので、半導体積層構造3に転位欠陥が発生することを防止でき、光出力の低下を抑制することができる。
 さらに、上記の構成では、電流狭窄層20が、20nm~50nmと比較的薄く形成されているため、レーザ光の方射角を狭く維持できながら、光出力を向上させることができる。
 また、表面絶縁膜27が単層膜で構成されており、表面絶縁膜27中で光の屈折が生じ難いので、基本モードの発振方向を予測しやすくなる。そのため、面発光半導体レーザ1をセンサとして使用するときの光学設計が容易となる。
 図10は、実施例、比較例および参考例にかかるレーザ光の方射角と光出力との関係(電流=5mA)を示す図である。図11は、実施例、比較例および参考例にかかる電流と光出力との関係を示す図である。
 図10および図11を参照して、面発光半導体レーザ1の効果を説明する。
 まず、実施例、比較例および参考例の条件を次の通り設定し、それ以外の条件は同じとした。なお、以下の条件において、「絶縁膜加工あり」は、表面絶縁膜27に凹部41を形成する加工のことであり、「エピ層加工あり」は、凹部41の加工をp型半導体層8にエッチングによって施したものである。また、「電流狭窄層薄い」は、電流狭窄層20の厚さを300Åとしたものであり、「電流狭窄層通常」は、電流狭窄層20の厚さを800Åとしたものである。
・実施例1:絶縁膜加工あり、電流狭窄層薄い
・実施例2:絶縁膜加工あり、電流狭窄層通常
・比較例1:絶縁膜加工なし、電流狭窄層通常
・比較例2:絶縁膜加工なし、エピ層加工あり、電流狭窄層通常
・参考例1:絶縁膜加工なし、電流狭窄層薄い
 そして、図10および図11の結果から、比較例1では、電流の増加に伴い高い光出力を得ることができるものの、高次モードの光が支配的になり、放射角も28°程度もあった。また、比較例2では、エピ層加工のおかげで、基本モードの光を発振できた一方、電流を増加させても光出力の増加が鈍く、高い光出力を得ることができなかった。
 これに対し、実施例2では、絶縁膜加工のおかげで、基本モードの光(放射角約12°)を発振でき、さらに、光出力の低下を抑えることができ、実用上十分な光出力を確保できた。さらに、実施例1では、電流狭窄層を薄くした結果、非常に高い光出力を得ることもできた。
 また、参考例1では、明確に基本モードと定義し難いが、比較例1に比べて放射角を18°程度にまで狭くすることができ、しかも光出力を向上させることができた。
 図12A~図12Hは、面発光半導体レーザ1の製造工程を工程順に示す図である。
 次に、図12A~図12Hを参照して、面発光半導体レーザ1の製造方法を説明する。
 面発光半導体レーザ1を製造するには、たとえば、図12Aに示すように、半導体ウエハ(図示せず)上に、n型半導体層7、活性層6およびp型半導体層8がエピタキシャル成長(結晶成長)させられることによって、半導体積層構造3が形成される。
 次に、図12Bに示すように、たとえばドライエッチングによって、p型半導体層8、活性層6およびn型半導体層7が選択的に除去される。これにより、半導体積層構造3にトレンチ25が形成されると共に、環状のトレンチ25の内側にメサ構造部24が形成され、環状のトレンチ25の外側にフィールド構造部26が形成される。
 次に、図12Cに示すように、半導体積層構造3が水蒸気中で加熱処理されることによって、トレンチ25の第1側面31からメサ構造部24の内側に、かつトレンチ25の第2側面30からフィールド構造部26の内側に向かって、p型層19(図示せず)が酸化される。これにより、p型半導体層8中に電流狭窄層20が形成され、これに取り囲まれるように、p型半導体としてp型層19の一部が残る。
 次に、図12Dに示すように、たとえばCVD法によって、表面絶縁膜27が半導体積層構造3の全面に形成される。
 次に、図12Eに示すように、たとえばウエットエッチングによって、表面絶縁膜27の表面部が選択的に除去される。これにより、表面絶縁膜27に環状の凹部41が形成される。凹部41をウエットエッチングで形成することによって、図8および図9に示したように、凹部41の第1側面45および第2側面44を、底面46に対して傾斜させることができる。なお、凹部41は、選択的なドライエッチングによって形成してもよい。
 次に、図12Fに示すように、たとえばウエットエッチングによって、表面絶縁膜27が、p型半導体層8が露出するまで選択的に除去される。これにより、表面絶縁膜27にコンタクトホール29が形成される。コンタクトホール29をウエットエッチングで形成することによって、図9に示したように、コンタクトホール29の側面52を、p型半導体層8の表面に対して傾斜させることができる。なお、コンタクトホール29は、選択的なドライエッチングによって形成してもよい。
 次に、図12Gに示すように、たとえば蒸着法によって、p側電極5(表面金属膜)が半導体積層構造3の全面に形成される。この後、図示は省略するが、p側電極5を選択的にマスク(たとえばフォトレジスト)で覆った状態で、蒸着法またはめっき法によってp側電極5上に金属膜が形成される。これにより、p側電極5上に選択的に形成されたワイヤボンディング用の金属層37(図1および図3参照)および放熱用の金属層38(図1および図4参照)が得られる。
 次に、図12Hに示すように、たとえばドライエッチングによって、p側電極5が選択的に除去される。これにより、p側電極5に、レーザ発振用の開口39が形成される。
 この後、たとえば蒸着法によって、n側電極4(図示せず)が基板2の裏面に形成され、ウエハにあらかじめ設定されたダイシングラインに沿ってウエハが分割されることによって、個別の面発光半導体レーザ1が得られる。
 図13~図18は、面発光半導体レーザ1の変形例を示す図である。図13~図18を参照して、面発光半導体レーザ1の変形例について説明する。
 まず、表面絶縁膜27の凹部41は、図8では、その外側が第2凸部43によって区画されていたが、図13に示すように、レーザ発振用の開口39の端面まで広がって形成されていてもよい。これにより、凹部41は、第1凸部42からなる第1側面45と、レーザ発振用の開口39の端面からなる第2側面53とを含んでいてもよい。
 次に、表面絶縁膜27の第1部分47と第2部分48との膜厚差は、図14に示すように、表面絶縁膜27の露出部40の中央部に点状の凹部54を選択的に形成することによって設けられていてもよい。第1部分47は、凹部54の底面部で構成され、第2部分48は、当該点状の凹部54を取り囲む環状の凸部55および凸部55の直下の部分で構成されている。この場合、前述と同様に、第1部分47の厚さd1(表面絶縁膜27の裏面69から凹部54の底面57までの距離)は、発光波長λに対して第1の光学的な厚さが(n+1)λ/2(n:整数)となるように設定され、第2部分48の厚さd2(表面絶縁膜27の裏面69から凸部55の表面71までの距離)は、発光波長λに対して第1の光学的な厚さが(2n+1)λ/4(n:整数)となるように設定されるが、物理的な厚さd1とd2とを比べると、第1部分47の厚さd1<第2部分48の厚さd2となっている。また、凹部54の内側側面56は、底面57に対して傾斜した傾斜面であってもよい。これにより、凹部54は、横断面視において、底面46に向かって幅が狭まるテーパ形状を有していてもよい。
 次に、表面絶縁膜27は、図8では単一材料からなる単層膜で構成されていたが、図15に示すように、第1凸部42を構成する第1材料層58と、第1凸部42の下方部を構成する第1材料層58とは異なる材料からなる第2材料層59とを含む複層膜で構成されていてもよい。この場合、第1材料層58および第2材料層59の一方が酸化シリコン(SiO)膜からなり、他方が窒化シリコン(SiN)膜からなっていてもよい。表面絶縁膜27が複層膜であれば、第1材料層58と第2材料層59との間にエッチング選択比を確保することができる。そのため、たとえば、表面絶縁膜27に凹部41を形成する際(図12E参照)、表面絶縁膜27の第1部分47と第2部分48との間に、エッチングによって容易に膜厚差を設けることができる。
 また、第1材料層58と第2材料層59との界面68に関しては、図16に示すように、凹部41の底面46の高さ位置に位置していてもよいし、図17に示すように、第1凸部42の厚さ方向途中部に位置していてもよい。
 次に、電流狭窄層20は、図8では、その内周端51が環状の凹部41の直下の領域において環状の凹部41に沿って形成されていたが、図18に示すように、レーザ発振用の開口39よりも外側(開口39の下端の延長である補助線cよりも外側)に後退し、レーザ発振用の開口39をさらに取り囲むように形成されていてもよい。
 図19は、図7の二点鎖線XIXで囲まれた部分の拡大図である。図20および図21は、図19の構成に関する面発光半導体レーザ1の変形例を示す図である。
 次に、図19~図21を参照して、メサ構造部24を形成するトレンチ25の構造を、より詳細に説明する。
 前述したように、半導体積層構造3の環状のトレンチ25は、p型半導体層8、活性層6およびn型半導体層7の一部を選択的にドライエッチングで除去することによって形成されている(図12B参照)。これにより、トレンチ25は、n型半導体層7、活性層6およびp型半導体層8に跨る壁面(第2側面30および第1側面31)を有し、活性層6よりもn型半導体層7側にまで掘り下げられている。
 このように、トレンチ25を、n型半導体層7と活性層6との界面62よりも下方に掘り下げることによって、たとえば、半導体積層構造3を構成する半導体層とp側電極5等の金属層との間の線膨張係数差に起因する熱応力が生じても、当該応力が集中しやすいトレンチ25の壁面(第2側面30および第1側面31)の下部60,61や凹部の底面32が活性層6でないため、活性層6にかかる応力を緩和することができる。その結果、応力による活性層6の破損を抑制できるので、面発光半導体レーザ1の信頼性を向上させることができる。
 また、p側電極5は、基板面に平行なコンタクト部33、底面部34およびフィールド部36が、基板面に垂直もしくは傾斜した側面部35に比べて厚く形成されている。これは、p側電極5の形成時、半導体積層構造3の上方から垂直方向に金属材料を付着させることに起因する。たとえば、p側電極5の厚さは、0.1μm~0.3μmであってもよいが、より具体的には、コンタクト部33、底面部34およびフィールド部36の厚さd4が、0.1μm~0.6μmであり、側面部35の厚さd5が、0.1μm~0.6μmであってもよい。このように、p側電極5を比較的薄く形成することによって、図19では、トレンチ25の底面32上の表面絶縁膜27の上面63に加え、p側電極5の底面部34の上面64が、n型半導体層7と活性層6との界面62よりも低い高さ位置になっている。
 このような構成によって、熱応力によって半導体積層構造3に反りが生じ、それに伴ってトレンチ25の底面32上に存在する、表面絶縁膜27およびp側電極5の基板面に平行な部分に反りが生じても、当該反り部分が活性層6に隣接していないので、表面絶縁膜27およびp側電極5の基板面に平行な部分の反りが活性層6に与える影響を軽減することができる。
 一方で、p側電極5は、半導体積層構造3の表面全体に一体的に形成されるものであるため、フィールド部36においては、ワイヤボンディング接合における耐衝撃性や、メサ構造部24で発生する熱の放熱性の低下が懸念される。
 しかしながら、この実施形態では、前述したように、p側電極5のフィールド部36上に、ワイヤボンディング用の金属層37および放熱用の金属層38が形成されている。これにより、p側電極5の底面部34を活性層6に隣接させないようにするために、p側電極5全体を比較的薄く形成する場合でも、ワイヤボンディング用の金属層37を選択的に厚く形成することによって、ワイヤボンディングを接合する際に生じる力(たとえば、超音波による振動等)に耐える強度を確保することができる。その結果、フィールド構造部26の衝撃破壊の可能性を軽減できるので、面発光半導体レーザ1の信頼性を向上させることができる。さらに、放熱用の金属層38選択的に厚く形成することによって、放熱に寄与する金属層の表面積を増加させることができる。その結果、面発光半導体レーザ1の放熱性を向上させることができる。
 また、図19に示すように、トレンチ25の第2側面30および第1側面31には、ドライエッチングによる表面荒れによって、その面内全体にわたって凹凸構造65,66が形成されている。そして、この凹凸構造65,66に入り込むように、表面絶縁膜27が形成されている。
 このような構成によって、トレンチ25の壁面(第2側面30および第1側面31)と表面絶縁膜27との接触面積を増加させることができると共に、当該第2側面30および第1側面31に対する表面絶縁膜27の摩擦力を増加させることができる。これにより、トレンチ25の壁面(第2側面30および第1側面31)に対する表面絶縁膜27の密着性を向上でき、表面絶縁膜27の剥離可能性を軽減することができる。その結果、面発光半導体レーザ1の信頼性を向上させることができる。
 一方、図20に示すように、p側電極5を図19の構成よりも厚く形成することによって、p側電極5の底面部34(基板面に平行な部分)を、活性層6に隣接するように形成してもよい。つまり、p側電極5の底面部34の上面64が、n型半導体層7と活性層6との界面62よりも高い高さ位置になっていてもよい。
 この構成によれば、図19の構成に比べて、p側電極5の底面部34(基板面に平行な部分)の反りの影響の軽減効果は小さくなるが、底面部34が活性層6に隣接していることによって、活性層6で発生する熱を効率よく逃がすことができる。その結果、活性層6の熱破壊の可能性を軽減できるので、面発光半導体レーザ1の信頼性を向上させることができる。
 また、図21に示すように、トレンチ25の底面32には、トレンチ25の壁面(第2側面30および第1側面31)の下部60,61から離れた中央部において選択的に凹んだ凹部67が形成されていてもよい。この凹部67は、トレンチ25をエッチングによって形成する際、エッチング領域の中央部のエッチングレートが、エッチング領域の周縁部(第2側面30および第1側面31が形成される部分)のエッチングレートに比べて速いことに起因する。
 この構成によれば、トレンチ25の底面32直下のn型半導体層7の厚さを薄くできるので、n型半導体層7にかかる応力を緩和することができる。
 また、図22に示すように、p型半導体層8のp型コンタクト層18には、開口72が形成されていてもよい。表面絶縁膜27の一部は、p型コンタクト層18の開口72を介して、p型DBR層17に接続されていてもよい。さらに、開口72は、p型半導体層8の表面に対して傾斜した側面74を有している。
 開口72の径D1は、電流狭窄層20の径D2よりも小さく、表面絶縁膜27の第1凸部42の径D3よりも大きくてもよい。つまり、径D2<径D1<径D3の関係を満たしていてもよい。
 これにより、p型コンタクト層18は、電流狭窄層20の内周端51よりも内方にはみ出す第1部分73を有している。この実施形態では、電流狭窄層20が環状に形成されているので、p型コンタクト層18の第1部分73も同様に、環状に形成されている。また、表面絶縁膜27の凹部41は、開口72の内方領域に形成されていてもよい。
 この構成によれば、p型コンタクト層18に開口72が形成されていることによって、基本モードの光がp型コンタクト層18で吸収されることを抑制することができる。一方で、高次モードの光出力が比較的大きくなりやすい電流狭窄層20の内周端51付近を通過する光を、p型コンタクト層18の第1部分73で吸収(カットオフ)することができる。しかも、開口72の形成によって基本モードの光の吸収を抑制できるので、p型コンタクト層18の厚さは、第1部分73で吸収させたい高次モードの光の量に合わせて設計することができる。たとえば、開口72が形成されていないp型コンタクト層18の厚さは、前述のように0.02μm~0.08μmであってもよいが、開口72が形成されている場合、p型コンタクト層18の厚さは、0.01μm~0.5μmであってもよい。
 また、開口72の形成によって、高次モードの光を吸収できると共に、基本モードの光の吸収を抑制できるので、前述のように、表面絶縁膜27の第1部分47と第2部分48との間に膜厚差を設けなくてもよい。
 たとえば、図23に示すように、表面絶縁膜27は、p型コンタクト層18の開口72上の領域において、平坦な表面を有していてもよい(つまり、第1凸部42が形成されていなくてもよい)。
 以上、本発明の一実施形態を説明したが、本発明は、他の形態で実施することもできる。
 たとえば、前述の面発光半導体レーザ1は、光学式センサ、レーザプリンタ等の用途に使用することができる。
 また、面発光半導体レーザ1の各半導体部分の導電型を反転した構成が採用されてもよい。すなわち、面発光半導体レーザ1において、p型の部分がn型であり、n型の部分がp型であってもよい。
 また、前述のn型半導体層7、活性層6およびp型半導体層8の各層の組成は、ほんの一例に過ぎず、基板面に対して垂直なレーザ発振ができる範囲内で変更することが可能である。
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
 なお、前述の実施形態の内容から、特許請求の範囲に記載した発明以外にも、以下のような特徴が抽出され得る。
(項1)
 第1導電型DBR(Distributed Bragg Reflector)層を含む第1導電型層と、前記第1導電型層上に形成された活性層と、前記活性層上に形成され、第2導電型DBR(Distributed Bragg Reflector)層を含む第2導電型層と、前記第1導電型層、前記活性層および前記第2導電型層に跨る壁面を有し、前記活性層よりも前記第1導電層側に掘り下げられた凹部と、前記第2導電型層の頂部、前記壁面および前記凹部の底面に沿って形成された絶縁層と、前記絶縁層を覆うように形成された金属層とを含む、面発光半導体レーザ。
 この構成によれば、たとえば、第1導電型層、活性層および第2導電型層を含む半導体層と金属層との間の線膨張係数差に起因する熱応力が生じても、当該応力が集中しやすい凹部の壁面の下部や凹部の底面部が活性層でないため、活性層にかかる応力を緩和することができる。その結果、応力による活性層の破損を抑制できるので、面発光半導体レーザの信頼性を向上させることができる。
(項2)
 前記凹部の前記底面上に配置された前記絶縁層の部分は、その上面が前記第1導電型層と前記活性層との界面よりも低い高さ位置に位置する厚さで形成されている、項1に記載の面発光半導体レーザ。
 この構成によれば、熱応力によって半導体層に反りが生じ、それに伴って凹部の底面上の絶縁層の部分に反りが生じても、当該絶縁層の部分が活性層に隣接していないので、その絶縁層の反りが活性層に与える影響を軽減することができる。
(項3)
 前記凹部の前記底面上に配置された前記金属層の部分は、その上面が前記第1導電型層と前記活性層との界面よりも低い高さ位置に位置する厚さで形成されている、項2に記載の面発光半導体レーザ。
 この構成によれば、熱応力によって半導体層に反りが生じ、それに伴って凹部の底面上の金属層の部分に反りが生じても、当該金属層の部分が活性層に隣接していないので、その金属層の反りが活性層に与える影響を軽減することができる。
(項4)
 前記凹部の前記底面上に配置された前記金属層の部分は、前記活性層に隣接するように形成されている、項1または2に記載の面発光半導体レーザ。
 この構成によれば、項3に比べて、金属層の反りの影響の軽減効果は小さくなるが、金属層が活性層に隣接していることによって、活性層で発生する熱を効率よく逃がすことができる。その結果、活性層の熱破壊の可能性を軽減できるので、面発光半導体レーザの信頼性を向上させることができる。
(項5)
 前記凹部は、前記第1導電型層、前記活性層および前記第2導電型層からなるメサ構造部を取り囲む環状に形成されており、
 前記メサ構造部において、前記金属層は、前記絶縁層を通って前記第2導電型層に電気的に接続されており、前記絶縁層の一部を露出させるレーザ発振用の開口を有している、項3に記載の面発光半導体レーザ。
(項6)
 前記凹部の外側において、レーザ発振に使用されない前記第1導電型層、前記活性層および前記第2導電型層からなる積層構造部からなるフィールド領域が形成されており、
 前記フィールド領域において、前記金属層上に形成され、前記金属層よりも厚い厚さを有するワイヤボンディング用の第2金属層をさらに含む、項5に記載の面発光半導体レーザ。
 この構成によれば、凹部の底面上に配置された金属層の部分を活性層に隣接させないようにするために金属層全体を比較的薄く形成する場合でも、ワイヤボンディング用の第2金属層を選択的に厚く形成することによって、ワイヤボンディングを接合する際に生じる力(たとえば、超音波による振動等)に耐える強度を確保することができる。その結果、フィールド領域の衝撃破壊の可能性を軽減できるので、面発光半導体レーザの信頼性を向上させることができる。
(項7)
 前記金属層は、0.1μm~0.3μmの厚さを有し、前記第2金属層は、2μm~4μmの厚さを有している、項6に記載の面発光半導体レーザ。
(項8)
 前記フィールド領域において、前記金属層上に形成され、前記金属層よりも厚い厚さを有する放熱用の第3金属層をさらに含む、項6に記載の面発光半導体レーザ。
 この構成によれば、凹部の底面上に配置された金属層の部分を活性層に隣接させないようにするために金属層全体を比較的薄く形成する場合でも、放熱用の第3金属層を選択的に厚く形成することによって、金属層の表面積を増加させることができる。その結果、面発光半導体レーザの放熱性を向上させることができる。
(項9)
 前記金属層は、0.1μm~0.3μmの厚さを有し、前記第3金属層は、2μm~4μmの厚さを有している、項8に記載の面発光半導体レーザ。
(項10)
 前記壁面は、前記凹部の前記底面に対して傾斜した傾斜面であり、その面内に凹凸構造が形成されている、項1~9のいずれか一項に記載の面発光半導体レーザ。
 この構成によれば、凹部の壁面と絶縁層との接触面積を増加させることができると共に、当該壁面に対する絶縁層の摩擦力を増加させることができる。これにより、凹部の壁面に対する絶縁層の密着性を向上でき、絶縁層の剥離可能性を軽減することができる。その結果、面発光半導体レーザの信頼性を向上させることができる。
(項11)
 前記凹部の底面には、前記壁面の下端部から離れた領域において選択的に凹んだ第2の凹部が形成されている、項1~10のいずれか一項に記載の面発光半導体レーザ。
 この構成によれば、凹部の底面直下の第1導電型層の厚さを薄くできるので、第1導電型層にかかる応力を緩和することができる。
 本出願は、2017年10月31日に日本国特許庁に提出された特願2017-210954号、および2018年10月4日に日本国特許庁に提出された特願2018-189369号に対応しており、これらの出願の全開示はここに引用により組み込まれるものとする。
 1 面発光半導体レーザ
 2 基板
 2A 長辺
 2B 短辺
 3 半導体積層構造
 4 n側電極
 5 p側電極
 6 活性層
 7 n型半導体層
 8 p型半導体層
 10 n型DBR層
 17 p型DBR層
 19 p型層
 20 電流狭窄層
 24 メサ構造部
 25 トレンチ
 26 フィールド構造部
 27 表面絶縁膜
 30 (トレンチ)第2側面
 31 (トレンチ)第1側面
 32 (トレンチ)底面
 34 (p側電極)底面部
 36 (p側電極)フィールド部
 37 ワイヤボンディング用の金属層
 38 放熱用の金属層
 39 レーザ発振用開口
 40 露出部
 41 凹部
 42 凸部
 43 第2凸部
 44 (凹部)第2側面
 45 (凹部)第1側面
 46 (凹部)底面
 47 (表面絶縁膜)第1部分
 48 (表面絶縁膜)第2部分
 49 (表面絶縁膜)第3部分
 51 (高抵抗領域)内周端
 53 (凹部)第2側面
 54 凹部
 55 凸部
 56 (凹部)内側側面
 57 (凹部)底面
 58 第1材料層
 59 第2材料層
 60 (トレンチ)下部
 61 (トレンチ)下部
 62 界面
 63 (表面絶縁膜)上面
 64 (p側電極)上面
 65 凹凸構造
 66 凹凸構造
 67 凹部

Claims (19)

  1.  第1導電型層、前記第1導電型層上に積層された活性層、および前記活性層上に積層された第2導電型層を含み、前記活性層で発生した光が、これらの層の積層方向に沿って共振して前記第2導電型層側からレーザ光として取り出される半導体積層構造と、
     前記活性層上であって前記第2導電型層の表面よりも前記活性層側に形成され、開口を有する絶縁性の電流狭窄層であって、前記開口を介して前記活性層と前記第2導電型層とが電気的に接続された電流狭窄層と、
     前記第2導電型層上に形成され、前記活性層の発光波長に対して透光性を有する絶縁層と、
     前記第1導電型層に電気的に接続された第1電極と、
     前記絶縁層上に形成され、前記絶縁層を貫通して前記第2導電型層に電気的に接続された第2電極とを含み、
     前記絶縁層の一部は前記第2電極から露出しており、その露出する前記絶縁層は、第1の厚さを有する第1部分と、前記第1の厚さに比べて前記活性層から発せられた光の出力を前記第1部分よりも低減させるような第2の厚さを有し、前記第1部分を取り囲む第2部分とを含む、面発光半導体レーザ。
  2.  前記第1導電型層は、第1導電型DBR(Distributed Bragg Reflector)層を含み、
     前記第2導電型層は、第2導電型DBR(Distributed Bragg Reflector)層を含む、
    請求項1に記載の面発光半導体レーザ。
  3.  前記第2電極から露出する前記絶縁層は、環状の凹部と、前記環状の凹部で囲まれた第1凸部と含み、
     前記絶縁層の前記第1の厚さは、前記絶縁層の裏面から前記第1凸部の表面までの厚さであり、
     前記絶縁層の前記第2の厚さは、前記絶縁層の裏面から前記環状の凹部の底面までの厚さである、請求項1または2に記載の面発光半導体レーザ。
  4.  前記第2電極から露出する前記絶縁層は、前記環状の凹部の外周側に、前記環状の凹部を取り囲む第2凸部をさらに含み、
     前記環状の凹部は、前記第1凸部と前記第2凸部との間に区画されており、前記環状の凹部の内面は、前記第1凸部からなる第1側面と、前記第2凸部からなる第2側面とを含む、請求項3に記載の面発光半導体レーザ。
  5.  前記環状の凹部の前記第1側面および前記第2側面は、断面視において前記環状の凹部が前記環状の凹部の底面に向かって幅が狭まるテーパ形状となるように、前記第2導電型層の表面に対して傾斜した傾斜面を含む、請求項4に記載の面発光半導体レーザ。
  6.  前記第2電極は、前記絶縁層の一部を露出させるレーザ発振用の開口を有しており、
     前記環状の凹部は、前記レーザ発振用の開口の端面まで広がって形成されており、前記環状の凹部の内面は、前記第1凸部からなる第1側面と、前記レーザ発振用の開口の端面からなる第2側面とを含む、請求項3に記載の面発光半導体レーザ。
  7.  前記第2電極から露出する前記絶縁層は、点状の凹部と、前記点状の凹部を取り囲む環状の凸部と含み、
     前記絶縁層の前記第1の厚さは、前記絶縁層の裏面から前記点状の凹部の底面までの厚さを含み、
     前記絶縁層の前記第2の厚さは、前記絶縁層の裏面から前記環状の凸部の表面までの厚さを含む、請求項1または2に記載の面発光半導体レーザ。
  8.  前記点状の凹部の側面は、断面視において前記点状の凹部が前記点状の凹部の底面に向かって幅が狭まるテーパ形状となるように、前記第2導電型層の表面に対して傾斜した傾斜面を含む、請求項7に記載の面発光半導体レーザ。
  9.  前記絶縁層は、単一材料からなる単層膜を含む、請求項1~8のいずれか一項に記載の面発光半導体レーザ。
  10.  前記単層膜は、酸化シリコン(SiO)膜または窒化シリコン(SiN)膜からなる、請求項9に記載の面発光半導体レーザ。
  11.  前記絶縁層は、前記第1凸部を構成する第1材料層と、前記第1凸部の下方部を構成する前記第1材料層とは異なる材料からなる第2材料層とを含む複層膜を含む、請求項3~6のいずれか一項に記載の面発光半導体レーザ。
  12.  前記第1材料層と前記第2材料層との界面は、前記環状の凹部の底面の高さ位置に位置している、請求項11に記載の面発光半導体レーザ。
  13.  前記第1材料層と前記第2材料層との界面は、前記第1凸部の厚さ方向途中部に位置している、請求項11に記載の面発光半導体レーザ。
  14.  前記第1材料層および前記第2材料層の一方が酸化シリコン(SiO)膜からなり、他方が窒化シリコン(SiN)膜からなる、請求項11~13のいずれか一項に記載の面発光半導体レーザ。
  15.  前記電流狭窄層は、15nm~50nmの厚さを有している、請求項1~14のいずれか一項に記載の面発光半導体レーザ。
  16.  前記電流狭窄層は、前記半導体積層構造の一部が、前記積層方向に直交する方向に沿って選択的に酸化された選択酸化層を含む、請求項1~15のいずれか一項に記載の面発光半導体レーザ。
  17.  前記電流狭窄層の前記開口の周縁は、平面視において、前記第1部分よりも外側に配置されて前記第1部分を取り囲んでいる、請求項1~16のいずれか一項に記載の面発光半導体レーザ。
  18.  前記電流狭窄層の前記開口の周縁は、平面視において、前記環状の凹部または前記環状の凸部に沿って形成され、前記環状の凹部または前記環状の凸部を外側から部分的に覆っている、請求項3~8のいずれか一項に記載の面発光半導体レーザ。
  19.  前記第2電極は、前記絶縁層の一部を露出させるレーザ発振用の開口を有しており、
     前記電流狭窄層の前記開口の周縁は、平面視において、前記レーザ発振用の開口よりも外側に配置されて前記前記レーザ発振用の開口を取り囲んでいる、請求項1~16のいずれか一項に記載の面発光半導体レーザ。
PCT/JP2018/040185 2017-10-31 2018-10-29 面発光半導体レーザ WO2019088045A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/644,810 US11437783B2 (en) 2017-10-31 2018-10-29 Surface-emitting semiconductor laser
JP2019550382A JP7123068B2 (ja) 2017-10-31 2018-10-29 面発光半導体レーザ
CN201880062247.2A CN111133642B (zh) 2017-10-31 2018-10-29 面发射半导体激光器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-210954 2017-10-31
JP2017210954 2017-10-31
JP2018-189369 2018-10-04
JP2018189369 2018-10-04

Publications (1)

Publication Number Publication Date
WO2019088045A1 true WO2019088045A1 (ja) 2019-05-09

Family

ID=66331791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040185 WO2019088045A1 (ja) 2017-10-31 2018-10-29 面発光半導体レーザ

Country Status (4)

Country Link
US (1) US11437783B2 (ja)
JP (1) JP7123068B2 (ja)
CN (1) CN111133642B (ja)
WO (1) WO2019088045A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208755A (ja) * 2000-11-13 2002-07-26 Fuji Xerox Co Ltd 面発光型半導体レーザ
JP2006237648A (ja) * 2006-06-07 2006-09-07 Fuji Xerox Co Ltd 面発光型半導体レーザ
JP2011009693A (ja) * 2009-05-28 2011-01-13 Ricoh Co Ltd 面発光レーザ素子の製造方法、面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP2011119370A (ja) * 2009-12-02 2011-06-16 Ricoh Co Ltd 光デバイス、光走査装置及び画像形成装置
JP2011159962A (ja) * 2010-01-06 2011-08-18 Canon Inc 面発光レーザの製造方法
JP2012195510A (ja) * 2011-03-17 2012-10-11 Canon Inc 面発光レーザの製造方法及び面発光レーザアレイの製造方法
JP2013058687A (ja) * 2011-09-09 2013-03-28 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2013175712A (ja) * 2012-01-24 2013-09-05 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2014086565A (ja) * 2012-10-24 2014-05-12 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
US20160134083A1 (en) * 2014-11-06 2016-05-12 The Board Of Trustees Of The University Of Illinois Mode Control in Vertical-Cavity Surface-Emitting Lasers

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009393A (ja) * 2000-04-19 2002-01-11 Fuji Xerox Co Ltd 垂直共振器型面発光半導体レーザ装置及びその製造方法
US6529541B1 (en) 2000-11-13 2003-03-04 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser
US6650683B2 (en) 2000-11-20 2003-11-18 Fuji Xerox Co, Ltd. Surface emitting semiconductor laser
JP2003115634A (ja) * 2001-08-02 2003-04-18 Furukawa Electric Co Ltd:The 面発光レーザ素子
JP2004063707A (ja) * 2002-07-29 2004-02-26 Fuji Xerox Co Ltd 表面発光型半導体レーザ
JP4590820B2 (ja) 2002-12-16 2010-12-01 富士ゼロックス株式会社 面発光型半導体レーザおよびその製造方法
JP5376104B2 (ja) * 2005-07-04 2013-12-25 ソニー株式会社 面発光型半導体レーザ
JP5532321B2 (ja) * 2009-11-17 2014-06-25 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP2011124314A (ja) * 2009-12-09 2011-06-23 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP5754624B2 (ja) * 2010-05-25 2015-07-29 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置、画像形成装置及び面発光レーザ素子の製造方法
JP5725804B2 (ja) * 2010-11-05 2015-05-27 キヤノン株式会社 面発光レーザ及び面発光レーザアレイ、面発光レーザの製造方法及び面発光レーザアレイの製造方法、面発光レーザアレイを備えた光学機器
JP2014022690A (ja) 2012-07-23 2014-02-03 Sharp Corp 面発光半導体レーザ
JP2017157742A (ja) 2016-03-03 2017-09-07 株式会社リコー レーザー光発生装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208755A (ja) * 2000-11-13 2002-07-26 Fuji Xerox Co Ltd 面発光型半導体レーザ
JP2006237648A (ja) * 2006-06-07 2006-09-07 Fuji Xerox Co Ltd 面発光型半導体レーザ
JP2011009693A (ja) * 2009-05-28 2011-01-13 Ricoh Co Ltd 面発光レーザ素子の製造方法、面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP2011119370A (ja) * 2009-12-02 2011-06-16 Ricoh Co Ltd 光デバイス、光走査装置及び画像形成装置
JP2011159962A (ja) * 2010-01-06 2011-08-18 Canon Inc 面発光レーザの製造方法
JP2012195510A (ja) * 2011-03-17 2012-10-11 Canon Inc 面発光レーザの製造方法及び面発光レーザアレイの製造方法
JP2013058687A (ja) * 2011-09-09 2013-03-28 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2013175712A (ja) * 2012-01-24 2013-09-05 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2014086565A (ja) * 2012-10-24 2014-05-12 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
US20160134083A1 (en) * 2014-11-06 2016-05-12 The Board Of Trustees Of The University Of Illinois Mode Control in Vertical-Cavity Surface-Emitting Lasers

Also Published As

Publication number Publication date
CN111133642B (zh) 2021-11-30
US11437783B2 (en) 2022-09-06
JPWO2019088045A1 (ja) 2020-11-12
US20210075192A1 (en) 2021-03-11
JP7123068B2 (ja) 2022-08-22
CN111133642A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
US9160138B2 (en) Light-emitting element array
JP4352337B2 (ja) 半導体レーザおよび半導体レーザ装置
JP4411540B2 (ja) 半導体レーザ装置
JP5196179B2 (ja) 発光装置
WO2018190030A1 (ja) 発光素子および発光装置
JPWO2018168430A1 (ja) 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
US6403983B1 (en) Quantum well type light-emitting diode
US6546038B1 (en) Semiconductor surface-emitting element
CN113574751A (zh) 垂直腔面发射激光器件
JP5187525B2 (ja) 発光装置
JP2004111976A (ja) 光学的にポンピングされる半導体レーザ装置
JP3785683B2 (ja) 面発光素子
JP2010272558A (ja) 受発光装置
WO2019088045A1 (ja) 面発光半導体レーザ
JP4967615B2 (ja) 半導体発光装置
JP2006190854A (ja) 発光ダイオード
JPH11340570A (ja) 光電変換素子およびその製造方法
JP2011258883A (ja) 半導体レーザ
JP2009164449A (ja) 面発光レーザダイオード及びその製造方法
JP5168476B2 (ja) 発光装置
JP4771142B2 (ja) 垂直共振器型発光ダイオード
JPWO2019107273A1 (ja) 面発光半導体レーザ
US20220263288A1 (en) Semiconductor laser device
JP5064072B2 (ja) 光源装置
JP5403305B2 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874422

Country of ref document: EP

Kind code of ref document: A1