WO2019085688A1 - 基于4,6-二苯砜二苯并呋喃的双极性主体材料及应用 - Google Patents

基于4,6-二苯砜二苯并呋喃的双极性主体材料及应用 Download PDF

Info

Publication number
WO2019085688A1
WO2019085688A1 PCT/CN2018/107240 CN2018107240W WO2019085688A1 WO 2019085688 A1 WO2019085688 A1 WO 2019085688A1 CN 2018107240 W CN2018107240 W CN 2018107240W WO 2019085688 A1 WO2019085688 A1 WO 2019085688A1
Authority
WO
WIPO (PCT)
Prior art keywords
host material
diphenylamine
alkyl
bipolar host
substituted
Prior art date
Application number
PCT/CN2018/107240
Other languages
English (en)
French (fr)
Inventor
彭嘉欢
戴雷
蔡丽菲
Original Assignee
广东阿格蕾雅光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东阿格蕾雅光电材料有限公司 filed Critical 广东阿格蕾雅光电材料有限公司
Priority to JP2020523421A priority Critical patent/JP6836019B2/ja
Priority to KR1020207011732A priority patent/KR102350371B1/ko
Publication of WO2019085688A1 publication Critical patent/WO2019085688A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention relates to a novel bipolar host material, belonging to the technical field of organic luminescent materials, in particular to a bipolar host material based on 4,6-diphenyl sulfone dibenzofuran and application thereof.
  • OLEDs organic light-emitting diodes
  • OLED devices have the characteristics of active illumination, fast response, low energy consumption, high brightness, wide viewing angle, and flexibility, and have great application prospects in the field of flat panel display. It is highly regarded by academia and industry and is considered one of the most promising products of the 21st century. At present, OLED devices have been scaled up and widely used in electronic products such as mobile phones, tablet computers, automobile meters, and wearable devices. Electroluminescence and electrophosphorescence are referred to as first generation and second generation OLEDs, respectively. Fluorescent-based OLEDs have high stability, but are limited by the law of quantum statistics.
  • the ratio of singlet excitons to triplet excitons is 1:3, so the fluorescent material is electro-induced.
  • the quantum efficiency of luminescence is only 25% at most.
  • the phosphorescent material has a spin-orbit coupling effect of heavy atoms, which can comprehensively utilize singlet excitons and triplet excitons, and the theoretical internal quantum efficiency can reach 100%.
  • phosphorescent-based OLEDs have a significant efficiency roll-off effect in applications, which is a hindrance in high-brightness applications.
  • Phosphorescent materials can utilize singlet excitons and triplet excitons in combination to achieve 100% internal quantum efficiency. Studies have shown that due to the relatively long excitonic lifetime of transition metal complexes, triplet excitons accumulate at high current densities, resulting in triplet-triplet quenching (TTA) and triplet-pole quenching (TPA). ), resulting in the phenomenon of efficiency roll-off. In order to overcome this problem, researchers often dope the phosphorescent material into the organic host material, such as doping in the bipolar host material, which can better balance the carrier injection. Recently, materials with thermally active delayed fluorescence properties have also been applied to the bulk of phosphorescent devices.
  • thermally active delayed fluorescent material has a small singlet-triplet energy level difference
  • triplet excitons can pass through the intersystem Singlet, pass again Resonance energy transfer (FRET) is transferred to the guest material, thereby reducing the triplet exciton concentration and improving device performance. Therefore, for high-efficiency organic light-emitting diodes, it is important to develop high-performance host materials.
  • FRET Resonance energy transfer
  • CBP 4,4'-bis(9-carbazolyl)biphenyl
  • T g glass transition temperature
  • CBP is a P-type material
  • the hole mobility is much higher than the electron mobility, which is not conducive to carrier injection and transmission balance, and the luminous efficiency is low.
  • the invention provides a bipolar host material with a higher driving voltage, a glass transition temperature, a crystallization, a carrier injection and a transmission imbalance, etc., which are required for the existing host (CBP) material, and the material is 4, 6 -Diphenyl sulfone dibenzofuran is a pull-electron central nucleus, a diphenylamine, carbazole, acridine derivative or the like having electron donating ability as a linking group, and a DALAD type bipolar material.
  • R 1 -R 6 are represented by an alkyl-substituted or unsubstituted acridinyl group, a phenothiazine group, a phenoxazinyl group, a carbazole, an indolocarbazole, a diphenylamine or other aromatic diphenylamine derivative, hydrogen , halogen, C1-C4 alkyl, and at least one of R 1 -R 6 is alkyl substituted or unsubstituted acridinyl, phenothiazine, phenoxazinyl, oxazole, indolocarbazole, diphenylamine Or other aromatic diphenylamine derivatives.
  • R 1 , R 2 and R 3 are hydrogen, halogen or C1-C4 alkyl, and the other is a C1-C8 alkyl-substituted or unsubstituted acridinyl group, a phenothiazine group, a phenoxazinyl group.
  • R 4 , R 5 , and R 6 are hydrogen, halogen or C1-C4 alkyl, and the other is a C1-C8 alkyl group.
  • R 1 and R 4 are the same, R 2 and R 5 are the same, and R 3 and R 6 are the same.
  • R 2 , R 3 , R 5 , R 6 are hydrogen, halogen or C1-C4 alkyl
  • R 1 , R 4 are C1-C4 alkyl-substituted or unsubstituted acridinyl, phenothiazine , phenoxazinyl, carbazole, indolocarbazole, diphenylamine or other aromatic diphenylamine derivatives.
  • R 2 , R 3 , R 5 and R 6 are hydrogen
  • R 1 and R 4 are C1-C4 alkyl-substituted or unsubstituted acridinyl, carbazole and indolocarbazole.
  • the compound of the formula (I) is the following structural compound
  • An organic electroluminescent device comprising a cathode, an anode and an organic layer, the organic layer being one or more of a hole transport layer, a hole blocking layer, an electron transport layer, and a light-emitting layer. It is particularly noted that the above organic layers may be present in each of the layers as needed.
  • the compound of the formula (I) is a material of the light-emitting layer.
  • the organic layer of the electronic device of the present invention has a total thickness of from 1 to 1000 nm, preferably from 1 to 500 nm, more preferably from 5 to 300 nm.
  • the organic layer may be formed into a film by steaming or spin coating.
  • the preparation method of the above bipolar host material comprises the following preparation steps:
  • dibenzofuran (a) is formed into a lithium salt under n-butyllithium conditions, and then iodine is obtained to obtain 4,6-diiododibenzofuran (b), followed by halogenated thiophenol (fluorine, bromine
  • the thioether intermediate (c) is obtained by a Ullmann reaction; the halogenated thioether intermediate is oxidized to obtain a halogenated sulfone compound (d); and finally the halogenated sulfone compound (d) is substituted with or substituted acridine or hydrazine.
  • the bipolar host material is obtained by a palladium-catalyzed Buchwald reaction or a nucleophilic substitution reaction of azole, diphenylamine (e) or the like.
  • the compounds of the present invention have a higher glass transition temperature than the conventional host material CBP, and the present invention significantly improves the thermal stability of the host material.
  • the organic electroluminescent device prepared by using the bipolar host material of the invention has high stability, has better application prospect, and is more in line with the requirements of the organic light emitting diode for the host material.
  • Figure 1 is a DSC curve of Compound 2
  • FIG. 2 is a structural view of the device of the present invention, wherein 10 represents a glass substrate, 20 represents an anode, 30 represents a hole injection layer, 40 represents a hole transport layer, 50 represents a light-emitting layer, and 60 represents electron transport, 70 Representative is the electron injection layer and 80 is the cathode.
  • the synthetic route is as follows:
  • Dibenzofuran (8.41 g, 50 mmol) was weighed into a three-necked flask, protected with nitrogen, added to dry diethyl ether (150 mL), and the flask was placed in a -78 ° C low temperature reactor, and n-butyllithium was slowly added dropwise (2.2 M, 68 mL, 150 mmol). After the dropwise addition was completed, the reaction mixture was slowly warmed to room temperature and stirring was continued for 10 h.
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the product identification data is as follows:
  • the synthetic route is as follows:
  • the product identification data is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the product identification data is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the product identification data is as follows:
  • the glass transition temperature of Compound 2 was tested by differential scanning calorimetry (DSC) at a heating and cooling rate of 20 ° C/min under nitrogen atmosphere.
  • the glass transition temperature T g of Compound 2 was measured to be 180 ° C (Fig. 1).
  • the glass transition temperature of CBP reported in the literature is only 62 °C.
  • the compound of the present invention has a higher glass transition temperature than the conventional host material CBP, and the present invention remarkably improves the thermal stability of the host material.
  • the device structure is ITO/HATCN (5 nm) / TAPC (50 nm) / Compound 2: Ir (ppy): (4 wt%, 20 nm) / TmPyPb (50 nm) / LiF (1 nm) / AL (100 nm)
  • the transparent conductive ITO glass substrate (including 10 and 20) was treated as follows: previously washed with a detergent solution, deionized water, ethanol, acetone, deionized water, and then subjected to oxygen plasma treatment for 30 seconds.
  • TmPyPb 50 nm thick TmPyPb was vaporized on the light-emitting layer as the electron transport layer 60.
  • the device structure is ITO/HATCN (5 nm) / TAPC (50 nm) / CBP: Ir (ppy): (4 wt%, 20 nm) / TmPyPb (50 nm) / LiF (1 nm) / AL (100 nm)
  • Example 6 The method was the same as in Example 6, except that a commonly used commercially available compound CBP was used as a host material to prepare a comparative electroluminescent organic semiconductor diode device.
  • an electroluminescent device prepared using the bipolar host material of the present invention has a voltage of 6.99 V, a brightness of 7082 cd/m 2 , a current efficiency of 35.41 cd/A, and a power efficiency of 15.91 lm at a current density of 20 mA/cm 2 . /W, the external quantum efficiency EQE is 9.98%; and the electroluminescent device prepared using the commercially available main body CBP has a voltage of 7.71V, a luminance of 5,845 cd/m 2 , a current efficiency of 29.23 cd/A, and a power efficiency of 11.91 at the same current density. Lm/W, the external quantum efficiency EQE is 8.5%.
  • bipolar host material of the present invention a current efficiency of 21% higher than that of the device prepared by CBP and an external quantum efficiency of 17.4% can be obtained, higher device stability can be obtained, and a better application prospect is obtained. Meet the requirements of organic light-emitting diodes for the main material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Furan Compounds (AREA)

Abstract

本发明涉及一种基于4,6-二苯砜二苯并呋喃的双极性主体材料及其应用,该双极性主体材料,具有式(I)所述结构的化合物,其中,R 1-R 6表示为烷基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物,氢,卤素,C1-C4烷基,R1-R 6至少一个为取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物。实验表明,本发明的化合物比常用主体材料CBP具有更高的玻璃化转变温度,本发明显著提高了主体材料的热稳定性,更符合有机发光二极管对主体材料的要求。

Description

基于4,6-二苯砜二苯并呋喃的双极性主体材料及应用 技术领域
本发明涉及新型的双极性主体材料,属于有机发光材料技术领域,具体涉及一种基于4,6-二苯砜二苯并呋喃的双极性主体材料及其应用。
背景技术
相比于液晶显示器需要背光的特性,有机发光二极管(OLED)具有主动发光、响应速度快、耗能低、亮度高、视角广、可弯曲等特性,在平板显示领域有着巨大的应用前景,受到了学术界和产业界的高度重视,因此被视为21世纪最具前途的产品之一。目前OLED器件已经实现了规模生产,并广泛应用在手机、平板电脑、汽车仪表、可穿戴设备等电子产品上。电致荧光和电致磷光分别被称为第一代和第二代OLED。基于荧光材料的OLED具有稳定性高的特点,但受限于量子统计学定律,在电激活作用下,产生的单线态激子和三线态激子的比例为1:3,所以荧光材料电致发光内量子效率最大仅有25%。而磷光材料具有重原子的自旋轨道耦合作用,可以综合利用单线态激子和三线态激子,理论的内量子效率可达100%。但是,在应用中基于磷光的OLED具有明显的效率滚降效应,在高亮度应用中有一定的阻碍。
磷光材料可以综合利用单线态激子和三线态激子,实现100%的内量子效率。研究表明,由于过渡金属配合物的激发态激子寿命相对过长,在高电流密度下存在三线态激子堆积,会导致三线态-三线态湮灭(TTA)、三线态-极子湮灭(TPA),从而出现效率滚降等现象。为了克服这个问题,研究者们常将磷光材料掺杂于有机主体材料中,诸如掺杂于双极性主体材料中,可较好的平衡载流子的注入。最近,具有热活性延迟荧光性质的材料也被应用于磷光器件的主体中,由于热活性延迟荧光材料具有较小的单线态-三线态能级差,三线态激子可通过反系间窜越到单线态,再通过
Figure PCTCN2018107240-appb-000001
共振能量转移(FRET)传至客体材料中,从而降低三线态激子浓度,其器件性能也获得提高。因此,对于高效有机发光二极管,开发高性能的主体材料十分重要。
目前,广泛应用于磷光器件的主体材料为CBP(4,4’-二(9-咔唑基)联苯),但是它要求的驱动电压较高、玻璃化转变温度(T g)低(T g=62℃),易于结晶。另外,CBP是一种P型材料,空穴迁移率远高于电子迁移率,不利于载流子注入和传输平衡,且发光效率低。
发明内容
针对现有主体(CBP)材料要求的驱动电压较高、玻璃化转变温度易于结晶、载流子注入和传输不平衡等问题,本发明提供一种双极性主体材料,该材料以4,6-二苯砜二苯并呋喃为拉电子中心核,具有给电子能力的二苯胺类、咔唑、吖啶等衍生物作为连接基团,D-A-L-A-D型双极性材料。
基于4,6-二苯砜二苯并呋喃的双极性主体材料,具有式(I)所述结构,
Figure PCTCN2018107240-appb-000002
其中,R 1-R 6表示为烷基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物,氢,卤素,C1-C4烷基,且R 1-R 6至少有一个为烷基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物。
优选:R 1、R 2、R 3中两个为氢、卤素或C1-C4烷基,另一个为C1-C8烷基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物;R 4、R 5、R 6中两个为氢、卤素或C1-C4烷基,另一个为C1-C8烷基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物。
优选:R 1、R 4相同,R 2、R 5相同,R 3、R 6相同。
优选:其中,R 2、R 3、R 5、R 6为氢、卤素或C1-C4烷基,R 1、R 4为C1-C4烷基取代或者未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物。
优选:其中R 2、R 3、R 5、R 6为氢,R 1、R 4为C1-C4烷基取代或者未取代的吖啶基、咔唑、茚并咔唑。
式(I)所述的化合物为下列结构化合物
Figure PCTCN2018107240-appb-000003
有机电致发光器件,包括阴极、阳极和有机层,所述有机层为空穴传输层、空穴阻挡层、电子传输层、发光层中的一层或多层。需要特别指出,上述有机层可以根据需要,这些有机层不必每层都存在。
所述式(I)所述的化合物为发光层的材料。
本发明的电子器件有机层的总厚度为1-1000nm,优选1-500nm,更优选5-300nm。
所述有机层可以通过蒸渡或旋涂形成薄膜。
如上面提到,本发明的式(I)所述的化合物如下,但不限于所列举的结构:
Figure PCTCN2018107240-appb-000004
Figure PCTCN2018107240-appb-000005
上述双极主体材料的制备方法,包括以下制备步骤:
首先将二苯并呋喃(a)在正丁基锂条件下形成锂盐,再碘代获得4,6-二碘二苯并呋喃(b),再与卤代苯硫酚(氟代、溴代)通过Ullmann反应得到硫醚中间体(c);卤代硫醚中间体氧化得到卤代硫砜化合物(d);最后卤代硫砜化合物(d)与取代或未取代的吖啶、咔唑、二苯胺(e)等通过钯催化的Buchwald反应或亲核取代反应,得到所述的双极主体材料。
Figure PCTCN2018107240-appb-000006
实验表明,本发明的化合物比常用主体材料CBP具有更高的玻璃化转变温度,本发明显著提高了主体材料的热稳定性。使用本发明的双极性主体材料制备的有机电致发光器件,稳定性高,具有更好的应用前景,更符合有机发光二极管对主体材料的要求。
附图说明
图1为化合物2的DSC曲线;
图2为本发明的器件结构图,其中10代表为玻璃基板,20代表为阳极,30代表为空穴注入层,40代表为空穴传输层,50代表发光层,60代表为电子传输,70代表为电子注入层,80代表为阴极。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)4,6-二碘二苯并呋喃(b)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000007
具体合成步骤为:
称取二苯并呋喃(8.41g,50mmol)加至三口烧瓶中,氮气保护,加入干燥乙醚(150mL)中,将烧瓶置于-78℃低温反应器中,缓慢滴加正丁基锂(2.2M,68mL,150mmol),滴加完毕后,反应体系缓慢升至室温,继续搅拌10h。后降至-78℃,缓慢滴加I 2的四氢呋喃溶液(38g,150mmol),滴加完毕后在室温搅拌4h。反应结束后,加入10%NaHSO 3溶液(100mL),萃取分层,无机相用二氯甲烷萃取(3*50mL),收集有机相,无水MgSO4干燥,旋干溶液得粗产品,后乙醇打浆,抽滤干燥,得14g白色固体。产率:67%。
(2)4,6-双[(4-氟苯基)硫基]二苯并[b,d]呋喃(c1)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000008
具体合成步骤为:
称取4,6-二碘二苯并呋喃(b)(5.25g,12.5mmol),4-氟苯硫酚(3.27g,25.5mmol),CuI(0.48g,2.5mmol),菲啰啉(0.9g,5mmol),碳酸钾(4.8g,35mmol)于100mL三口烧瓶中,换氮气三次。加入干燥DMSO,升温至130℃反应16小时。反应结束后,加入150mL水,二氯甲烷萃取(3*50mL),合并有机层,无水硫酸镁干燥。砂芯漏斗过滤,旋干溶剂,乙醇打浆,抽滤干燥得到4.43g白色粉末固体。产率:84.6%
(3)4,6-双[(4-氟苯基)砜基]二苯并[b,d]呋喃(d1)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000009
具体合成步骤为:
称取4,6-双[(4-氟苯基)硫基]二苯并[b,d]呋喃(c1)(1g,2.38mmol)于烧瓶中,二氯甲烷溶解,反应体系置于冰浴中,缓慢加入2.2当量的间氯过氧苯甲酸,室温反应24小时。反应结束后,加入5%NaHSO 3溶液50mL,二氯甲烷萃取(3*50mL),合并有机层,Na 2CO 3溶液洗涤,无水硫酸镁干燥。砂芯漏斗过滤,旋干溶剂,乙醇打浆,抽滤后干燥得到1.02g白色粉末固体。产率:88.7%。
(4)4,6-双[(4-(9,9’-二甲基吖啶-10(9H)-基)苯基砜基]二苯并[b,d]呋喃(1)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000010
具体合成步骤为:
称取9,9’二甲基吖啶(0.89g,4.2mmol)于50mL烧瓶中,加入10mL干燥DMF,0℃条件下缓慢加入NaH(60%,0.21g,5.2mmol),室温搅拌30min,后一次性加入4,6-双[(4-氟苯基)砜基]二苯并[b,d]呋喃(d1)(1g,2.06mmol),反应在60℃搅拌6小时。反应结束后,加入20mL水,有固体析出,抽滤,水洗,二氯甲烷:正己烷=2:1为洗脱剂,硅胶柱层析分离得1.4g黄色固体。产率:78.6%
产物鉴定数据如下:
1H NMR(400MHz,CDCl 3)δ=8.73(d,J=8.0Hz,4H),8.27(d,J=8.0Hz,4H),7.65-7.59(m,6H),7.44-7.42(m,4H),6.95-6.93(m,8H),6.34-6.31(m,4H),1.63(s,6H),1.57(s,6H)ppm. 13C NMR(100MHz,CDCl 3)=147.1,140.1,131.7,131.0,130.5,128.0,126.2,125.0,124.0,121.5,115.2,30.7ppm.Ms(ESI:Mz 863)(M+1)
实施例2
(1)4,6-双[(4-(9H-咔唑-9-基)苯基砜基]二苯并[b,d]呋喃(2)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000011
具体合成步骤为:
称取咔唑(1.7g,10mmol)于50mL烧瓶中,加入20mL干燥DMF,0℃条件下缓慢加入NaH(60%,0.6g,15mmol),室温搅拌30min,后一次性加入4,6-双[(4-氟苯基)砜基]二苯并[b,d]呋喃(d1)(3g,5mmol),反应在60℃搅拌6小时。反应结束后,加入60mL水,有固体析出,抽滤,水洗,二氯甲烷:正己烷=2:1为洗脱剂,硅胶柱层析分离得3.3g黄色固体。产率:85.7%
产物鉴定数据如下:
1H NMR(400MHz,CDCl 3)δ=8.62(d,J=8.0Hz,4H),8.66(d,J=8.0Hz,2H),8.23(d,J=8.0Hz,2H),8.15(d,J=8.0Hz,4H),7.93(d,J=8.0Hz,4H),7.72(t,J=8.0Hz,2H),7.44(d,J=8.0Hz,4H),7.30(t,J=8.0Hz,4H),7.22(t,J=8.0Hz,4H)ppm. 13C NMR(100MHz,CDCl 3)=141.9,138.9,129.8,128.1,127.6,126.7,126.2,124.7,124.5,123.0,120.6,120.3,110.3,109.6ppm.Ms(ESI:Mz 779)(M+1)
实施例3
(1)4,6-双[(3-溴苯基)硫基]二苯并[b,d]呋喃(c2)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000012
具体合成步骤为:
称取4,6-二碘二苯并呋喃(b)(1.05g,2.5mmol),3-溴苯硫酚(0.98g,5.2mmol),CuI(0.095g,0.5mmol),菲啰啉(0.18g,1mmol),碳酸钾(0.96g,7mmol)于50mL三口烧瓶中,换氮气三次。加入10mL干燥DMSO,升温至130℃反应16小时。反应结束后,加入150mL水,二氯甲烷萃取(3*20mL),合并有机层,无水硫酸镁干燥。砂芯漏斗过滤,旋干溶剂,正己烷/乙酸乙酯=20/1洗脱剂硅胶柱层析分离得0.9g白色固体。产率:66%
(2)4,6-双[(3-溴苯基)砜基]二苯并[b,d]呋喃(d2)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000013
具体合成步骤为:
称取4,6-双[(3-溴苯基)硫基]二苯并[b,d]呋喃(c2)(0.9g,1.66mmol)于烧瓶中,二氯甲烷溶解,反应体系置于冰浴中,缓慢加入2.2当量的间氯过氧苯甲酸,室温反应24小时。反应结束后,加入5%NaHSO 3溶液50mL,二氯甲烷萃取(3*50mL),合并有机层,Na 2CO 3溶液洗涤,无水硫酸镁干燥。砂芯漏斗过滤,旋干溶剂,乙醇打浆,抽滤干燥得到0.8g白色粉末固体。产率:80%。
(3)4,6-双[(3-(9H-咔唑-9-基)苯基砜基]二苯并[b,d]呋喃(3)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000014
具体合成步骤为:
称取4,6-双[(3-溴苯基)砜基]二苯并[b,d]呋喃(d2)(0.136g,0.3mmol),咔唑(0.1g,0.6mmol),Pd 2(dba) 3(28mg,0.03mmol),P(tBu) 3甲苯溶液(24mg,0.06mmol),叔丁醇钠(0.115g,1.2mmol),甲苯5mL于10mL Schlenk瓶中,氮气保护,110℃反应10小时。反应结束后,加 入20mL 5%NaHSO 3溶液,二氯甲烷萃取(3*20mL),正己烷/乙酸乙酯=2:1为洗脱剂,硅胶柱层析分离得0.18g黄色固体。产率:69%
产物鉴定数据如下:
Ms(ESI:Mz 779)(M+1)
实施例4
(1)4,6-双[(2-溴苯基)硫基]二苯并[b,d]呋喃(c3)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000015
具体合成步骤为:
称取4,6-二碘二苯并呋喃(b)(2.1g,5mmol),2-溴苯硫酚(1.96g,10.4mmol),CuI(0.19g,1mmol),菲啰啉(0.36g,2mmol),碳酸钾(2g,14mmol)于50mL三口烧瓶中,换氮气三次。加入20mL干燥DMSO,升温至130℃反应15小时。反应结束后,加入150mL水,二氯甲烷萃取(3*30mL),合并有机层并水洗,无水硫酸镁干燥。砂芯漏斗过滤,旋干溶剂,正己烷/乙酸乙酯=20/1洗脱剂硅胶柱层析分离得1.5g白色固体。产率:55%
(2)4,6-双[(2-溴苯基)砜基]二苯并[b,d]呋喃(d3)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000016
具体合成步骤为:
称取4,6-双[(2-溴苯基)硫基]二苯并[b,d]呋喃(c3)(1.4g,2.58mmol)于烧瓶中,二氯甲烷溶解,反应体系置于冰浴中,缓慢加入2.2当量的间氯过氧苯甲酸,室温反应24小时。反应结束后,加入5%NaHSO 3溶液50mL,二氯甲烷萃取(3*50mL),合并有机层,Na 2CO 3溶液洗涤,无水硫酸镁干燥。砂芯漏斗过滤,旋干溶剂,乙醇打浆,抽滤干燥得到1.4g白色粉末固体。产率:89%。
(3)4,6-双[(2-(9H-咔唑-9-基)苯基砜基]二苯并[b,d]呋喃(4)的合成
合成路线如下所示:
Figure PCTCN2018107240-appb-000017
具体合成步骤为:
称取4,6-双[(2-溴苯基)砜基]二苯并[b,d]呋喃(d3)(1.36g,3mmol),咔唑(1g,6mmol),Pd 2(dba) 3(0.28g,0.3mmol),P(tBu) 3甲苯溶液(0.24g,0.6mmol),叔丁醇钠(1.15g,12mmol),甲苯10mL于25mL Schlenk瓶中,氮气保护,110℃反应10小时。反应结束后,加入30mL 5%NaHSO 3溶液,二氯甲烷萃取(3*30mL),正己烷/乙酸乙酯=2:1为洗脱剂,硅胶柱层析分离得1.1g黄色固体。产率:47%
产物鉴定数据如下:
Ms(ESI:Mz 779)(M+1)
实施例5
玻璃化转变温度测试:
氮气保护下,以20℃/min的加热和冷却速率用示差扫描量热法(DSC)测试化合物2的玻璃化转变温度。测得化合物2的玻璃化转变温度T g为180℃(图1)。而文献所报道的CBP的玻璃化转变温度仅为62℃。
可见,本发明中的化合物比常用主体材料CBP具有更高的玻璃化转变温度,本发明显著提高了主体材料的热稳定性。
实施例6
有机电致发光器件的制备
器件结构为ITO/HATCN(5nm)/TAPC(50nm)/化合物2:Ir(ppy):(4wt%,20nm)/TmPyPb(50nm)/LiF(1nm)/AL(100nm)
器件制备方式描述如下:见图2
首先,将透明导电ITO玻璃基板(包含10和20)按照以下步骤处理:预先用洗涤剂溶液、去离子水,乙醇,丙酮,去离子水洗净,再经氧等离子处理30秒。
然后,在ITO上蒸渡5nm厚的HATCN作为空穴注入层30。
然后,在空穴注入层上蒸渡50nm厚的TAPC作为空穴传输层40。
然后,在空穴传输层上蒸渡20nm厚的化合物2:Ir(ppy):(4wt%)作为发光层50。
然后,在发光层上蒸渡50nm厚的TmPyPb作为电子传输层60。
然后,在电子传输层上蒸渡1nm厚的LiF作为电子注入层70。
最后,在电子注入层上蒸渡100nm厚的铝作为器件阴极80。
比较例
电致发光器件的制备
器件结构为ITO/HATCN(5nm)/TAPC(50nm)/CBP:Ir(ppy):(4wt%,20nm)/TmPyPb(50nm)/LiF(1nm)/AL(100nm)
方法同实施例6,但使用常用市售化合物CBP作为主体材料,制作对比用电致发光有机半导体二极管器件。
实验表明,使用本发明的双极性主体材料制备的电致发光器件,在20mA/cm 2电流密度下,电压为6.99V,亮度7082cd/m 2,电流效率35.41cd/A,功率效率15.91lm/W,外量子效率EQE为9.98%;而使用市售主体CBP制备的电致发光器件在同等电流密度下,电压为7.71V,亮度5845cd/m 2,电流效率29.23cd/A,功率效率11.91lm/W,外量子效率EQE为8.5%。因此使用本发明的双极性主体材料,可获得比CBP制备的器件高21%的电流效率以及高17.4%的外量子效率,可获得更高的器件稳定性,具有更好的应用前景,更符合有机发光二极管对主体材料的要求。

Claims (10)

  1. 基于4,6-二苯砜二苯并呋喃的双极性主体材料,具有式(I)所述结构,
    Figure PCTCN2018107240-appb-100001
    其中,R 1-R 6表示为烷基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物,氢,卤素,C1-C4烷基,且R 1-R 6至少有一个为烷基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物。
  2. 根据权利要求1所述的双极性主体材料,其中R 1、R 2、R 3中两个为氢、卤素或C1-C4烷基,另一个为C1-C8烷基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物;R 4、R 5、R 6中两个为氢、卤素或C1-C4烷基,另一个为C1-C8烷基取代或未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物。
  3. 根据权利要求2所述的双极性主体材料,其中R 1、R 4相同,R 2、R 5相同,R 3、R 6相同。
  4. 根据权利要求3所述的双极性主体材料,其中R 2、R 3、R 5、R 6为氢、卤素或C1-C4烷基,R 1、R 4为C1-C4烷基取代或者未取代的吖啶基、吩噻嗪基、吩噁嗪基、咔唑、茚并咔唑、二苯胺或其它芳香性二苯胺衍生物。
  5. 根据权利要求4所述的双极性主体材料,其中R 2、R 3、R 5、R 6为氢,R 1、R 3为C1-C4烷基取代或者未取代的吖啶基、咔唑、茚并咔唑。
  6. 根据权利要求1所述的双极主体材料,式(I)为下列结构之一:
    Figure PCTCN2018107240-appb-100002
    Figure PCTCN2018107240-appb-100003
  7. 根据权利要求6所述的双极主体材料,式(I)为下列结构之一:
    Figure PCTCN2018107240-appb-100004
  8. 根据权利要求7所述的双极主体材料,式(I)为下列结构:
    Figure PCTCN2018107240-appb-100005
  9. 权利要求1-8任一所述的双极主体材料的制备方法,采用如下方法制得:
    首先将二苯并呋喃(a)在正丁基锂条件下形成锂盐,再碘代获得4,6-二碘二苯并呋喃(b),再与卤代苯硫酚通过Ullmann反应得到硫醚中间体(c);卤代硫醚中间体氧化得到卤代硫砜化合物(d);最后卤代硫砜化合物(d)与烷基取代或未取代的吖啶、咔唑、二苯胺(e)等通过钯催化的Buchwald反应或亲核取代反应,得到所述的双极主体材料,所述卤代为氟代或溴代;其反应式如下:
    Figure PCTCN2018107240-appb-100006
  10. 权利要求1-8任一所述的双极主体材料在有机电致发光器件中的应用。
PCT/CN2018/107240 2017-11-02 2018-09-25 基于4,6-二苯砜二苯并呋喃的双极性主体材料及应用 WO2019085688A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020523421A JP6836019B2 (ja) 2017-11-02 2018-09-25 4、6−ジフェニルスルホンジベンゾフランベースの双極性ホスト材料及び応用
KR1020207011732A KR102350371B1 (ko) 2017-11-02 2018-09-25 4,6-디페닐 설폰 디벤조퓨란계 양극성 호스트 물질 및 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711061783.4 2017-11-02
CN201711061783.4A CN109748908B (zh) 2017-11-02 2017-11-02 基于4,6-二苯砜二苯并呋喃的双极性主体材料及应用

Publications (1)

Publication Number Publication Date
WO2019085688A1 true WO2019085688A1 (zh) 2019-05-09

Family

ID=66331344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107240 WO2019085688A1 (zh) 2017-11-02 2018-09-25 基于4,6-二苯砜二苯并呋喃的双极性主体材料及应用

Country Status (5)

Country Link
JP (1) JP6836019B2 (zh)
KR (1) KR102350371B1 (zh)
CN (1) CN109748908B (zh)
TW (1) TWI668218B (zh)
WO (1) WO2019085688A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429391B (zh) * 2021-07-14 2022-07-19 山西大学 一种含二苯砜骨架的化合物及其制备方法和应用
CN113788820B (zh) * 2021-08-25 2023-08-22 常州大学 基于二苯并杂环共轭π桥的蓝色热活性延迟荧光材料及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109485A (ja) * 1991-10-15 1993-04-30 Ricoh Co Ltd 電界発光素子
CN103804332A (zh) * 2012-11-08 2014-05-21 海洋王照明科技股份有限公司 电子传输型红光磷光化合物及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109485B2 (ja) * 2007-06-05 2012-12-26 株式会社タンガロイ 旋削用スローアウェイチップ
CN103626683A (zh) * 2012-08-20 2014-03-12 海洋王照明科技股份有限公司 一种有机半导体材料、制备方法和电致发光器件
CN103804276A (zh) * 2012-11-08 2014-05-21 海洋王照明科技股份有限公司 双极性红光磷光化合物、其制备方法和有机电致发光器件
WO2017011531A2 (en) * 2015-07-13 2017-01-19 President And Fellows Of Harvard College Organic light-emitting diode materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109485A (ja) * 1991-10-15 1993-04-30 Ricoh Co Ltd 電界発光素子
CN103804332A (zh) * 2012-11-08 2014-05-21 海洋王照明科技股份有限公司 电子传输型红光磷光化合物及其制备方法和应用

Also Published As

Publication number Publication date
JP2021501989A (ja) 2021-01-21
CN109748908A (zh) 2019-05-14
JP6836019B2 (ja) 2021-02-24
KR102350371B1 (ko) 2022-01-18
TWI668218B (zh) 2019-08-11
TW201918479A (zh) 2019-05-16
CN109748908B (zh) 2021-07-16
KR20200056441A (ko) 2020-05-22

Similar Documents

Publication Publication Date Title
TWI667228B (zh) 化合物及含有該化合物的有機電子裝置
KR102210267B1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
KR101460365B1 (ko) 신규한 이미다졸 유도체 및 이를 이용한 유기전자소자
KR101769764B1 (ko) 신규한 유기반도체 화합물 및 이를 이용한 유기전계발광소자
JP2020084189A (ja) インドロカルバゾール誘導体及びこれを用いた有機発光素子
WO2022205592A1 (zh) 一种苯并噻吩并苯并五元杂环材料及其制备方法与应用
WO2020155419A1 (zh) 一种二苯并杂环化合物及其制备方法和应用
WO2019085687A1 (zh) 含有4,6-二苯砜二苯并呋喃的双极性材料的器件
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
JP7386937B2 (ja) 多環化合物及びこれを用いた有機発光素子
WO2019085688A1 (zh) 基于4,6-二苯砜二苯并呋喃的双极性主体材料及应用
WO2018120976A1 (zh) 含有螺[芴-9,2'-咪唑]基团的双极主体材料的有机电致发光器件
JP7407853B2 (ja) 多環化合物及びこれを用いた有機発光素子
WO2019114364A1 (zh) 含有4-硫砜芳基二苯并呋喃的光电材料及应用
WO2021179880A1 (zh) 含氮有机化合物及包含该化合物的电子器件及装置
KR20130083887A (ko) 새로운 이미다졸 유도체 및 이를 이용한 유기전자소자
KR102380561B1 (ko) 화합물, 유기 광전자 소자 및 표시 장치
KR20190020438A (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
JP2023545703A (ja) 多環化合物及びこれを用いた有機発光素子
CN116396253A (zh) 含氮化合物和电子元件及电子装置
KR20140009095A (ko) 신규한 이미다졸 유도체 및 이를 이용한 유기전자소자
KR20220139521A (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
CN114075166A (zh) 一种有机化合物以及使用其的电子元件和电子装置
KR20230134997A (ko) 유기발광소자
CN117384141A (zh) 有机化合物及包含其的电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207011732

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020523421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871909

Country of ref document: EP

Kind code of ref document: A1