WO2021179880A1 - 含氮有机化合物及包含该化合物的电子器件及装置 - Google Patents

含氮有机化合物及包含该化合物的电子器件及装置 Download PDF

Info

Publication number
WO2021179880A1
WO2021179880A1 PCT/CN2021/076332 CN2021076332W WO2021179880A1 WO 2021179880 A1 WO2021179880 A1 WO 2021179880A1 CN 2021076332 W CN2021076332 W CN 2021076332W WO 2021179880 A1 WO2021179880 A1 WO 2021179880A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
groups
Prior art date
Application number
PCT/CN2021/076332
Other languages
English (en)
French (fr)
Inventor
马天天
张林伟
岳富民
南朋
金荣国
李林刚
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010159357.XA external-priority patent/CN113372321B/zh
Priority claimed from CN202011565702.6A external-priority patent/CN114685552B/zh
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2021179880A1 publication Critical patent/WO2021179880A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass

Definitions

  • This application relates to the technical field of organic electroluminescent materials, in particular to organic electroluminescent materials having the structure of oxadihydrophenanthrene and triarylamine, and electronic devices and devices containing the compounds.
  • OLED Organic electroluminescent devices
  • a common organic electroluminescence device is composed of an anode, a cathode, and one or more organic layers arranged between the cathode and the anode.
  • the two electrodes When voltage is applied to the cathode and anode, the two electrodes generate an electric field. Under the action of the electric field, the electrons on the cathode side move to the light-emitting layer, and the electrons on the anode side also move to the light-emitting layer.
  • the two combine to form excitons in the light-emitting layer.
  • the excited state releases energy to the outside, and the process of releasing energy from the excited state to the ground state releasing energy emits light to the outside. Therefore, it is very important to improve the recombination of electrons and holes in OLED devices.
  • a multilayer structure is generally used in the device.
  • These multilayer structures include: hole injection layer, hole transport layer, electron-blocking layer, emitting layer, and electron transport layer )Wait.
  • These organic layers can increase the injection efficiency of carriers (holes and electrons) at the interface of each layer, and balance the transport of carriers between the layers, thereby improving the brightness and efficiency of the device.
  • the present application provides an organic electroluminescent compound, which can increase the incorporation rate of electrons and holes in an OLED device, so that the electronic device has high luminous efficiency.
  • the present application also provides an organic light-emitting device containing the organic electroluminescent compound, which has a lower driving voltage, a higher luminous efficiency and a longer service life.
  • the purpose of the present invention is to provide an organic compound with excellent performance, which can be used as a hole transport layer in an organic electroluminescence device.
  • the present invention provides a nitrogen-containing organic compound, wherein the structure of the compound is as shown in the chemical formula (I):
  • R 1 is selected from a substituted or unsubstituted aryl group having 6 to 14 carbon atoms and an alkyl group having 1 to 4 carbon atoms;
  • R 2 is selected from a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms; the substituents on R 1 and R 2 are the same or different, and each Independently selected from deuterium, cyano, halogen group or C1-C4 alkyl group;
  • L 1 , L 2 and each L 3 are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms
  • Ar 1 and Ar 2 are the same or different from each other, and are each independently selected from substituted or unsubstituted aryl groups having 6 to 40 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3 to 40 carbon atoms.
  • n represents the number of R 3 ; n is 0, 1, 2, 3, 4, 5, 6 or 7; when n is greater than 1, any two R 3 are the same or different;
  • n represents the number of L 3 groups connected in sequence; m is 0, 1 or 2; when m is greater than 1, any two L 3 are the same or different;
  • Each R 3 is independently selected from deuterium, halogen group, cyano group, halogenated alkyl group having 1 to 12 carbon atoms, alkyl group having 1 to 12 carbon atoms, deuterated alkyl group having 1 to 12 carbon atoms , C1-C12 alkoxy group, C3-C12 cycloalkyl group, C1-C12 alkylthio group, C3-C12 trialkylsilyl group , C6-C18 arylsilyl group, C6-C20 aryl group, C3-C20 heteroaryl group, C6-C20 aryloxy group, carbon atom
  • An arylthio group having 6-20, optionally, any two adjacent R 3 are connected to each other to form an aromatic ring with 6 or 10 carbon atoms;
  • the substituents in L 1 , L 2 , L 3 , Ar 1 , and Ar 2 are the same or different from each other, and are each independently selected from deuterium, halogen group, cyano group, alkyl group having 1 to 12 carbon atoms, carbon A haloalkyl group having 1 to 12 atoms, an alkoxy group having 1 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, an aryl group having 6 to 25 carbon atoms, and 3 carbon atoms ⁇ 20 heteroaryl groups, 6-20 aryloxy groups, 6-20 arylthio groups, 3-12 trialkylsilyl groups and 3 carbon atoms ⁇ 12 cycloalkyl; in L 1 , L 2 , L 3 , Ar 1 and Ar 2 , when there are two substituents on the same atom, optionally, the two substituents are connected to each other, Together with the atoms they are connected to form a 5- to 18-membered aliphatic
  • the second aspect of the present invention provides an electronic device comprising the organic compound according to the first aspect of the present invention.
  • the third aspect of the present invention provides an electronic device including an anode, a cathode, and a functional layer between the anode and the cathode, the functional layer containing the organic compound according to the first aspect of the present invention.
  • the functional layer is a hole transport layer.
  • the electronic device is an organic electroluminescence device, and in other embodiments, the electronic device is a photoelectric conversion device.
  • the fourth aspect of the present invention provides an electronic device including the electronic device according to the third aspect of the present invention.
  • the chemical structure of the organic compound of the present invention includes 9,10-dihydro-9,9-disubstituted-10-oxaphenanthrene group and aromatic amine.
  • the oxaphenanthrene group two substitutions Both the group and the oxygen can provide electrons to the benzene ring through the conjugation/hyperconjugation effect, so that the group has a high conjugated electron cloud density, and the combination of it with triarylamine will have a high hole migration Therefore, when the material is used in the hole transport layer of an organic electroluminescence device, the luminous efficiency of the device can be improved.
  • Dihydroxaphenanthrene structure has a more planar structure, while its asymmetry and steric hindrance are greater than that of general planar conjugated groups.
  • the addition of two 9-position substituents makes it have lower crystallinity and good
  • the film-forming property can effectively increase the service life of the device when it is applied to the electro-organic light-emitting device.
  • FIG. 1 is a schematic structural diagram of a specific embodiment (organic electroluminescent device) of the electronic device of the present invention.
  • Fig. 2 is a schematic structural diagram of a second specific embodiment (solar cell) of the electronic device of the present invention.
  • FIG. 3 is a schematic structural diagram of a third specific embodiment (electronic device) of the electronic device of the present invention.
  • R 1 is selected from a substituted or unsubstituted aryl group having 6 to 14 carbon atoms and an alkyl group having 1 to 4 carbon atoms;
  • R 2 is selected from a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms; the substituents on R 1 and R 2 are the same or different, and each Independently selected from deuterium, cyano, halogen group or C1-C4 alkyl group;
  • L 1 , L 2 and each L 3 are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms
  • Ar 1 and Ar 2 are the same or different from each other, and are each independently selected from substituted or unsubstituted aryl groups having 6 to 40 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3 to 40 carbon atoms.
  • n represents the number of R 3 ; n is 0, 1, 2, 3, 4, 5, 6 or 7; when n is greater than 1, any two R 3 are the same or different;
  • n represents the number of L 3 groups connected in sequence; m is 0, 1 or 2; when m is greater than 1, any two L 3 are the same or different;
  • Each R 3 is independently selected from deuterium, halogen group, cyano group, halogenated alkyl group having 1 to 12 carbon atoms, alkyl group having 1 to 12 carbon atoms, deuterated alkyl group having 1 to 12 carbon atoms , C1-C12 alkoxy group, C3-C12 cycloalkyl group, C1-C12 alkylthio group, C3-C12 trialkylsilyl group , C6-C18 arylsilyl group, C6-C20 aryl group, C3-C20 heteroaryl group, C6-C20 aryloxy group, carbon atom
  • An arylthio group having 6-20, optionally, any two adjacent R 3 are connected to each other to form an aromatic ring with 6 or 10 carbon atoms;
  • the substituents in L 1 , L 2 , L 3 , Ar 1 , and Ar 2 are the same or different from each other, and are each independently selected from deuterium, halogen group, cyano group, alkyl group having 1 to 12 carbon atoms, carbon A haloalkyl group having 1 to 12 atoms, an alkoxy group having 1 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, an aryl group having 6 to 25 carbon atoms, and 3 carbon atoms ⁇ 20 heteroaryl groups, 6-20 aryloxy groups, 6-20 arylthio groups, 3-12 trialkylsilyl groups and 3 carbon atoms ⁇ 12 cycloalkyl; in L 1 , L 2 , L 3 , Ar 1 and Ar 2 , when there are two substituents on the same atom, optionally, the two substituents are connected to each other, Together with the atoms they are connected to form a 5- to 18-membered aliphatic
  • heterocyclic group optionally substituted by an alkyl group means that an alkyl group may but does not have to be present, and the description includes the scenario where the heterocyclic group is substituted by an alkyl group and the scenario where the heterocyclic group is not substituted by an alkyl group.
  • R Q and R T connected to the same atom may be connected to each other to form a saturated or unsaturated 5- to 13-membered aliphatic ring or aromatic ring with the atom they are commonly connected to” means to be connected to R Q and R T on the same atom can form a ring but do not have to form a ring, including the scenario where R Q and R T are connected to each other to form a saturated or unsaturated 5- to 13-membered aliphatic or aromatic ring, and R Q is also included And R T exist independently of each other.
  • any two adjacent substituents form a ring may include two substituents on the same atom, and may also include one substituent on two adjacent atoms. Group; wherein, when there are two substituents on the same atom, the two substituents can form a saturated or unsaturated ring with the atom to which they are connected together; when two adjacent atoms each have a substituent, These two substituents can be fused to form a ring.
  • the number of carbon atoms of L 1 , L 2 , L 3 , L 4 , R 1 , R 2 , R 3 , Ar 1 , Ar 2 , Ar 3 , Ar 4 refers to the number of all carbon atoms, That is, the sum of the number of carbon atoms of the group itself and the substituents on it.
  • Ar 1 is selected from substituted aryl groups with 10 carbon atoms, the sum of all carbon atoms of the aryl group and the substituents thereon is 10.
  • hetero means that at least one heteroatom selected from B, N, O, S, Se, Si or P is included in a functional group, and the remaining atoms are carbon And hydrogen.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for ease of description, the substituents are collectively referred to as Rc).
  • Rc substituents
  • substituted or unsubstituted aryl group refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • substituent Rc can be, for example, deuterium, halogen group, cyano group, alkyl group, aryl group, heteroaryl group, alkoxy group, alkylthio group, halogenated alkyl group, deuterated alkyl group, cycloalkyl group, three Alkylsilyl, triphenylsilyl, diarylphosphinyl, aryloxy and other groups.
  • the "substituted" functional group may be substituted by one or more of the above-mentioned substituents Rc.
  • each q is independently 0, 1, 2 or 3
  • each R independently selected from hydrogen, fluorine, and chlorine in the description
  • formula Q-1 represents that there are q substituents R on the benzene ring ", each R” can be the same or different, and the options of each R" do not affect each other
  • formula Q-2 means that there are q substituents R" on each benzene ring of biphenyl, and the two benzene rings
  • the number q of R" substituents may be the same or different, and each R" may be the same or different, and the options of each R" do not affect each other.
  • alkyl may include linear or branched alkyl.
  • the alkyl group may have 1 to 12 carbon atoms, and in this application, a numerical range such as “1 to 12" refers to each integer in the given range; the alkyl group may have a specified number of carbon atoms.
  • the alkyl group may be a lower alkyl group having 1 to 6 carbon atoms. In some embodiments, the alkyl group contains 1 to 4 carbon atoms; in some embodiments, the alkyl group contains 1 to 3 carbon atoms.
  • alkyl groups include, but are not limited to, methyl (Me, -CH 3 ), ethyl (Et, -CH 2 CH 3 ), n-propyl (n-Pr, -CH 2 CH 2 CH 3 ), isopropyl (i-Pr, -CH(CH 3 ) 2 ), n-butyl (n-Bu, -CH 2 CH 2 CH 2 CH 3 ), isobutyl (i-Bu, -CH 2 CH (CH 3 ) 2 ), sec-butyl (s-Bu, -CH(CH 3 )CH 2 CH 3 ), tert-butyl (t-Bu, -C(CH 3 ) 3 ), etc.
  • the alkyl group may be substituted or unsubstituted.
  • Alkoxy refers to the formula -OR, where R is an alkyl group as defined herein.
  • R is an alkyl group as defined herein.
  • a non-limiting list of alkoxy groups is methoxy, ethoxy, n-propoxy, 1-methylethoxy (isopropoxy), n-butoxy, isobutoxy, sec-butoxy , Tert-Butoxy.
  • the alkoxy group may be substituted or unsubstituted.
  • haloalkyl or “haloalkoxy” means that an alkyl or alkoxy group is substituted with one or more halogen atoms, wherein the alkyl and alkoxy groups have the same as described in the present invention Meaning, such examples include, but are not limited to, trifluoromethyl, trifluoromethoxy and the like.
  • the C 1 ⁇ C 6 haloalkyl group includes a fluorine-substituted C 1 ⁇ C 6 alkyl group; in another embodiment, the C 1 ⁇ C 4 haloalkyl group includes a fluorine substituted C 1 ⁇ C 4 alkyl group. ; In another embodiment, the C 1 -C 2 haloalkyl group comprises a fluorine-substituted C 1 -C 2 alkyl group.
  • cycloalkyl refers to cyclic saturated hydrocarbons, including monocyclic and polycyclic structures.
  • Cycloalkyl groups can have 3-12 carbon atoms, and a numerical range such as “3 to 12" refers to each integer in the given range; for example, "3 to 12 carbon atoms” means that it can contain 3 carbon atoms, Cycloalkyl groups of 4 carbon atoms, 5 carbon atoms, 6 carbon atoms, 7 carbon atoms, 8 carbon atoms, 9 carbon atoms, 10 carbon atoms, 11 carbon atoms, and 12 carbon atoms.
  • cycloalkyl groups may be substituted or unsubstituted.
  • the cycloalkyl group is a 5- to 10-membered cycloalkyl group. In other embodiments, the cycloalkyl group is a 5- to 8-membered cycloalkyl group.
  • examples of the cycloalkyl group may be, but are not limited to :5-membered cycloalkyl is cyclopentyl, 6-membered cycloalkyl is cyclohexane, 10-membered polycyclic alkyl such as adamantyl, etc.
  • an aryl group refers to an optional functional group or substituent derived from an aromatic hydrocarbon ring.
  • the aryl group can be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group can be a monocyclic aryl group, a condensed ring aryl group, two or more monocyclic aryl groups conjugated by a carbon-carbon bond, through A monocyclic aryl group and a fused ring aryl group conjugated by carbon-carbon bonds, and two or more fused ring aryl groups conjugated by a carbon-carbon bond. That is, two or more aromatic groups connected by carbon-carbon bonds can also be regarded as aryl groups in the present application.
  • the fused ring aryl group may include, for example, a bicyclic fused aryl group (for example, a naphthyl group), a tricyclic fused aryl group (for example, a phenanthryl group, a fluorenyl group, an anthryl group), and the like.
  • the aryl group does not contain heteroatoms such as B, N, O, S, Se, Si, or P.
  • aryl groups may include phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, hexaphenyl, benzo[9,10 ]Phenanthryl, pyrenyl, perylene, benzofluoranthene, Group, spirobifluorenyl, indenyl, etc., but not limited thereto.
  • a substituted aryl group means that one or more hydrogen atoms in the aryl group are replaced by other groups.
  • at least one hydrogen atom is replaced by a deuterium atom, F, Cl, I, CN, hydroxyl, amino, branched alkyl, linear alkyl, cycloalkyl, alkoxy, alkylamino, alkylthio, alkylsilane Group, aryloxy group, arylthio group or other group substitution.
  • the number of carbon atoms of the substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • the substituted aryl group with 18 carbon atoms means that the total number of carbon atoms of the aryl group and the substituent on the aryl group is 18.
  • 9,9-dimethylfluorenyl is a substituted aryl group having 15 carbon atoms.
  • the fluorenyl group may be substituted, and two substituents may be combined with each other to form a spiro structure.
  • Specific examples include but are not limited to the following structures:
  • the "aryl group” in the present application may contain 6-40 carbon atoms.
  • the number of carbon atoms of the substituted or unsubstituted aryl group may be selected from 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 25, 30, 31, or 33.
  • the aryl group is an aryl group having 6 to 30 carbon atoms.
  • the aryl group is an aryl group having 6 to 25 carbon atoms.
  • the aryl group is a carbon atom.
  • the aryl group is an aryl group having 6 to 15 carbon atoms; in other embodiments, the number of carbon atoms in the aryl group is 6-12.
  • the involved arylene group refers to a divalent group formed by further losing one hydrogen atom of an aryl group.
  • the aryl group as the substituent includes, but is not limited to, phenyl, naphthyl, anthracenyl, phenanthryl, diphenyl, terphenyl, fluorenyl, and dimethylfluorenyl.
  • the heteroaryl group may be an aromatic group including at least one of B, O, N, P, Si, Se, and S as a heteroatom.
  • the heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated by carbon-carbon bonds, any aromatic ring
  • the system is an aromatic monocyclic ring or an aromatic condensed ring, and any aromatic ring system contains the heteroatom.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazine Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene Thienyl, benzofur
  • the involved heteroarylene group refers to a divalent group formed by the heteroaryl group further losing one hydrogen atom.
  • heteroaryl group in this application may include 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 heteroatoms selected from B, O, N, P, Si, Se and S ,
  • the number of carbon atoms can be 3-40, for example, the number of carbon atoms of a heteroaryl group can also be 5, 6, 7, 8, 9, 10, 12, 13, 14 One, 15, 16, 18, 20 or 40. Of course, the number of carbon atoms can also be other numbers, so I won’t list them all here.
  • the number of carbon atoms of the heteroaryl group can be 3-30. In other embodiments, the number of carbon atoms of the heteroaryl group can be 3-20, or 3-18, or 3-12. In some embodiments, the heteroaryl group is a heteroaryl group with 5 to 25 carbon atoms, in other embodiments, the heteroaryl group is a heteroaryl group with 5 to 18 carbon atoms, and other embodiments Here, the heteroaryl group is a heteroaryl group having 5 to 12 carbon atoms.
  • aryl can be applied to arylene
  • heteroaryl can be applied to heteroarylene
  • alkyl can be applied to alkylene
  • cycloalkyl can be Applied to cycloalkylene
  • heteroaryl groups as substituents include, but are not limited to, phenyl, pyridyl, pyrimidinyl, pyridazinyl, quinolinyl, isoquinolinyl, dibenzofuranyl, dibenzothienyl, Triazinyl, carbazolyl, N-phenylcarbazolyl, benzopyrimidinyl, benzopyridyl.
  • the ring system formed by m atoms is an m-membered ring.
  • phenyl is a 6-membered aryl group.
  • the 6-10 membered aromatic ring may refer to a benzene ring, an indene ring, a naphthalene ring, and the like.
  • the "ring” in this application includes saturated rings and unsaturated rings; saturated rings are cycloalkyl and heterocycloalkyl; unsaturated rings are cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl.
  • a 5- to 13-membered ring refers to a ring system formed by 5 to 13 ring atoms.
  • a fluorene ring belongs to a 13-membered ring.
  • aliphatic ring refers to cycloalkyl and cycloalkenyl.
  • aromatic ring refers to aryl and heteroaryl.
  • trialkylsilyl groups having 3 to 12 carbon atoms include, but are not limited to, trimethylsilyl, triethylsilyl, and the like.
  • cycloalkyl groups having 5 to 10 carbon atoms include, but are not limited to, cyclopentyl, cyclohexyl, adamantyl and the like.
  • halogen includes fluorine, chlorine, bromine, and iodine.
  • the non-positioned connecting bond refers to the single bond protruding from the ring system It means that one end of the link can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positional linkages that penetrate the bicyclic ring, and the meaning represented by the formula (f) -1) Any possible connection mode shown in formula (f-10).
  • the phenanthryl group represented by the formula (X') is connected to other positions of the molecule through a non-localized bond extending from the middle of the benzene ring on one side, which means The meaning of includes any possible connection mode as shown in formula (X'-1) ⁇ formula (X'-4).
  • the non-positional substituent in this application refers to a substituent connected by a single bond extending from the center of the ring system, which means that the substituent can be connected at any possible position in the ring system.
  • the substituent R'represented by the formula (Y) is connected to the quinoline ring through a non-localized linking bond, and its meaning includes formulas (Y-1) to Any possible connection mode shown in formula (Y-7).
  • the nitrogen-containing organic compound described in the present application has a structure represented by the following formula (I-1):
  • L 4 is selected from the group consisting of a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms;
  • Ar 3 and Ar 4 are the same or different from each other, and are each independently selected from substituted or unsubstituted aryl groups having 6 to 40 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3 to 40 carbon atoms.
  • Each R 3 is independently selected from deuterium, halogen group, cyano group, halogenated alkyl group having 1 to 12 carbon atoms, alkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 12 carbon atoms, Cycloalkyl groups having 3 to 12 carbon atoms, alkylthio groups having 1 to 12 carbon atoms, trialkylsilyl groups having 3 to 12 carbon atoms, aryl groups having 6 to 20 carbon atoms, carbon The group consisting of a heteroaryl group having 3 to 20 atoms, an aryloxy group having 6 to 20 carbon atoms, and an arylthio group having 6 to 20 carbon atoms;
  • n 0, 1, 2, 3, 4, 5, 6 or 7; when n is greater than 1, any two R 3 are the same or different;
  • the substituents in L 4 , Ar 3 , and Ar 4 are the same or different from each other, and are each independently selected from deuterium, halogen group, cyano group, alkyl group having 1 to 12 carbon atoms, and 1 to 12 carbon atoms
  • the organic compound represented by the formula (I-1) of the present application is selected from the structures represented by the following formulas (I-2) to (I-9):
  • the nitrogen-containing organic compound represented by formula (I) of the present application is selected from the following structural formulas (I-10) to (I-17):
  • L 4 is a single bond, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and a substituted or unsubstituted carbon number of 3 to 20
  • the substituents in the L 4 are the same or different from each other, and are each independently selected from deuterium, fluorine, chlorine, cyano, alkyl groups having 1 to 10 carbon atoms, and 1 to 10 halogenated alkyl groups, alkoxy groups having 1 to 10 carbon atoms, aryl groups having 6 to 20 carbon atoms, heteroaryl groups having 3 to 20 carbon atoms, aryloxy groups having 6 to 12 carbon atoms A group consisting of an arylthio group having 6 to 12 carbon atoms, a trialkylsilyl group having 3 to 9 carbon atoms, and a cycloalkyl group having 3 to 12 carbon atoms.
  • L 4 is substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted terphenylene, substituted or unsubstituted Substituted naphthylene, substituted or unsubstituted 9,9-dimethylfluorenylene, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted Quinolinylene, substituted or unsubstituted isoquinolinylene, substituted or unsubstituted carbazolylidene, substituted or unsubstituted phenyl-carbazolylidene, substituted or unsubstituted phenanthrylene, substituted or One of unsubstituted anthracenylene, substituted or unsubstituted pyridylene, or a subunit
  • L 4 is a group formed by two or three groups through a single bond
  • L 4 is a group formed by two different groups through a single bond
  • the two groups are phenylene and
  • dibenzofuranyl L 4 is
  • L 4 is selected from a single bond or selected from the group consisting of groups represented by the following formulas (i-1) to (i-14):
  • X is selected from the group consisting of O, S, Se, C(R 4 R 5 ), N(R 6 ) and Si(R 4 R 5 );
  • Each of X 1 to X 35 is independently C(R x ) or N.
  • any two R x are the same or different from each other;
  • Each R x and each Z 1 to Z 7 are independently selected from hydrogen, deuterium, fluorine, chlorine, bromine, cyano, alkyl groups having 1 to 10 carbon atoms, haloalkyl groups having 1 to 10 carbon atoms, Alkoxy group with 1-10 carbon atoms, alkylthio group with 1-10 carbon atoms, aryl group with 6-20 carbon atoms, heteroaryl group with 3-20 carbon atoms, carbon number A group consisting of 6-12 aryloxy groups, 6-12 arylthio groups, 3-9 trialkylsilyl groups, and 3-12 cycloalkyl groups ;
  • n 1 , n 3 , n 4 and n 6 is independently 1, 2, 3, or 4, and each n 2 is independently 1, 2, 3, 4, 5, or 6; n 5 is 1, 2, 3 , 4 or 5; n 7 is 1, 2, 3, 4, 5, 6 or 7;
  • R 4 , R 5 and R 6 are each independently selected from hydrogen, alkyl groups having 1 to 10 carbon atoms, haloalkyl groups having 1 to 10 carbon atoms, aryl groups having 6 to 20 carbon atoms, and carbon atoms The group consisting of a heteroaryl group having 3 to 20 and a cycloalkyl group having 3 to 12 carbon atoms; or,
  • R 4 and R 5 connected to the same atom are connected to each other to form a saturated or unsaturated 5- to 13-membered aliphatic ring or aromatic ring with the atom to which they are commonly connected.
  • L 4 is the formula (i-7) When Z 2 is H and X is C (R 4 R 5 ), optionally, R 4 and R 5 connected to the same atom are connected to each other to form a saturated or unsaturated
  • the 5- to 13-membered aliphatic ring refers to: R 4 and R 5 can be connected to each other to form a 5- to 13-membered ring, or they can exist independently of each other; when R 4 and R 5 form an aliphatic ring, the number of atoms in the ring It can be a 5-membered ring, for example It can also be a 6-membered ring, for example It can also be a 10-membered ring, for example Of course, the number of atoms in the ring formed by the interconnection of R 4 and R 5 can also be other values, which will not be listed here.
  • the ring formed by connecting R 4 and R 5 can also be an aromatic ring, such as a 13-membered aromatic ring,
  • R 4 and R 5 form a ring, attached to the same atom R 4 and R 5 are interconnected to atom to which they are attached form a saturated 5- to 10-membered aliphatic ring Or form a 9-13 membered aromatic ring.
  • L 4 is selected from a single bond, a substituted or unsubstituted group W 1 , and the unsubstituted group W 1 is selected from the group consisting of:
  • the substituents of W 1 are each independently selected from deuterium, fluorine, chlorine, cyano, alkyl with 1 to 6 carbon atoms, carbon Alkoxy group with 1 to 4 atoms, haloalkyl group with 1 to 4 carbon atoms, trialkylsilyl group with 3 to 9 carbon atoms, cycloalkyl group with 3 to 10 carbon atoms, carbon atom A group consisting of an aryl group having 6 to 15 and a heteroaryl group having 3 to 12 carbon atoms; when there is more than one substituent of W 1 , each substituent is the same or different.
  • L 4 is a single bond, or any one of the following groups:
  • L 4 is a single bond, or any one of the following groups:
  • the L 4 group is not limited to this.
  • L 4 is a single bond or is selected from a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted anthrylene group , Substituted or unsubstituted phenanthrylene, substituted or unsubstituted biphenylene, substituted or unsubstituted terphenylene, substituted or unsubstituted fluorenylene, substituted or unsubstituted dibenzofuran Group, substituted or unsubstituted dibenzothienylene group, substituted or unsubstituted pyridylene group, substituted or unsubstituted carbazolylidene group, substituted or unsubstituted N-phenylcarbazolylidene group , Or a group formed by connecting two or three of them through a single bond.
  • the substituents in L 4 are the same or different from each other, and are each independently selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl, n-propyl, tert-butyl, methyl The group consisting of oxy, ethoxy, trifluoromethyl, trimethylsilyl, phenyl, naphthyl, quinoline, isoquinolyl, pyridyl, cyclopentyl, and cyclohexane.
  • each R 3 is independently selected from deuterium, fluorine, chlorine, cyano, halogenated alkyl having 1 to 4 carbon atoms, C1-C6 alkyl group, C1-C4 alkoxy group, C5-C10 cycloalkyl group, C1-C4 alkylthio group, C1-C4 Is a trialkylsilyl group of 3-9, an aryl group of 6-12 carbon atoms, a heteroaryl group of 5-12 carbon atoms; n is 0, 1, 2, 3 or 4; when n is greater than 1 When, any two R 3 are the same or different.
  • each R 3 is independently selected from deuterium, fluorine, cyano, methyl, ethyl, propyl, tert-butyl, Trifluoromethyl, methoxy, ethoxy, isopropoxy, trimethylsilyl, cyclopentyl, cyclohexyl, phenyl, pyridyl, quinolyl, isoquinolyl, dibenzothiophene And dibenzofuranyl, n is 0, 1, 2, 3 or 4; when n is greater than 1, any two R 3 are the same or different.
  • R 3 is selected from cyclopentyl, fluorine, cyano, deuterium, phenyl, pyridyl, tert-butyl, methyl, isopropyl, trimethylsilyl.
  • Ar 3 and Ar 4 are the same or different from each other, and are each independently selected from substituted or unsubstituted aryl groups having 6 to 33 carbon atoms, substituted or unsubstituted The group consisting of heteroaryl groups with 3 to 18 carbon atoms; the substituents in Ar 3 and Ar 4 are the same or different from each other, and are independently selected from deuterium, fluorine, chlorine, cyano, and carbon atoms.
  • the Ar 3 and Ar 4 are the same or different from each other, and are each independently selected from the groups represented by the following formulas (j-1) to (j-16) Formed group:
  • M 1 is selected from a single bond or
  • G 1 to G 5 are each independently selected from N or C(F 1 ), and at least one of G 1 to G 5 is selected from N; when two or more of G 1 to G 5 are selected from C(F 1 ) , Any two F 1 are the same or different;
  • G 6 to G 13 are each independently selected from N or C(F 2 ), and at least one of G 6 to G 13 is selected from N; when two or more of G 6 to G 13 are selected from C(F 2 ) , Any two F 2 are the same or different;
  • G 14 to G 23 are each independently selected from N or C(F 3 ), and at least one of G 14 to G 23 is selected from N; when two or more of G 14 to G 23 are selected from C(F 3 ) , Any two F 3 are the same or different;
  • G 24 to G 33 are each independently selected from N or C(F 4 ), and at least one of G 24 to G 33 is selected from N; when two or more of G 24 to G 33 are selected from C(F 4 ) , Any two F 4 are the same or different;
  • H 1 is selected from hydrogen, deuterium, fluorine, chlorine, bromine, cyano, trialkylsilyl groups having 3 to 12 carbon atoms, alkyl groups having 1 to 10 carbon atoms, and those having 1 to 10 carbon atoms A halogenated alkyl group, a cycloalkyl group having 3 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkylthio group having 1 to 10 carbon atoms;
  • H 2 to H 9 and H 21 are each independently selected from: hydrogen, deuterium, fluorine, chlorine, bromine, cyano, trialkylsilyl having 3 to 12 carbon atoms, and alkane having 1 to 10 carbon atoms Group, halogenated alkyl group having 1 to 10 carbon atoms, cycloalkyl group having 3 to 10 carbon atoms, alkoxy group having 1 to 10 carbon atoms, alkylthio group having 1 to 10 carbon atoms, carbon Alkylthio groups having 1 to 10 atoms, heteroaryl groups having 3 to 18 carbon atoms;
  • H 10 to H 20 and F 1 to F 4 are each independently selected from: hydrogen, deuterium, fluorine, chlorine, bromine, cyano, trialkylsilyl having 3 to 12 carbon atoms, and 1 to carbon atoms 10 alkyl groups, halogenated alkyl groups having 1 to 10 carbon atoms, cycloalkyl groups having 3 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, alkyl sulfides having 1 to 10 carbon atoms Group, aryl group having 6 to 18 carbon atoms, heteroaryl group having 3 to 18 carbon atoms;
  • h 1 ⁇ h 21 are represented by h k
  • H 1 ⁇ H 21 are represented by H k
  • k is a variable, representing any integer from 1 to 21
  • h k is the number of substituents H k ; wherein, when k is selected from 5 Or when 17, h k is selected from 1, 2 or 3; when k is selected from 2, 7, 8, 12, 15, 16, 18 or 21, h k is selected from 1, 2, 3 or 4; when k is selected When 1, 3, 4, 6, 9 or 14, h k is selected from 1, 2, 3, 4 or 5; when k is 13, h k is selected from 1, 2, 3, 4, 5 or 6; When k is selected from 10 or 19, h k is selected from 1, 2, 3, 4, 5, 6 or 7; when k is 20, h k is selected from 1, 2, 3, 4, 5, 6, 7 Or 8; when k is 11, h k is selected from 1, 2, 3, 4, 5, 6, 7, 8 or 9; and when h k is greater than 1, any two H k are the same or different;
  • K 1 is selected from O, S, N (H 22 ), C (H 23 H 24 ), Si (H 23 H 24 ); wherein, H 22 , H 23 , and H 24 are each independently selected from: the number of carbon atoms is 6 to 18 aryl groups, 3 to 18 carbon atoms, heteroaryl groups, 1 to 10 alkyl groups, or 3 to 10 cycloalkyl groups, or the above are connected to the same atom
  • the H 23 and H 24 are connected to each other to form a 5- to 13-membered aliphatic ring or aromatic ring with the atoms they are commonly connected to.
  • H 23 and H 24 are connected to each other to connect to them.
  • Atoms forming a 5- to 13-membered aliphatic or aromatic ring means: H 23 and H 24 can be connected to each other to form a ring, or they can exist independently of each other; when H 23 and H 24 form a ring, the ring can be 5-membered Aliphatic rings, such as It can also be a 6-membered aliphatic ring, for example It can also be a 13-membered aromatic ring, for example Of course, the number of carbon atoms on the ring formed by the interconnection of H 23 and H 24 can also be other values, which will not be listed here.
  • K 2 is selected from a single bond, O, S, N(H 25 ), C(H 26 H 27 ), Si(H 26 H 27 ); wherein, H 25 , H 26 , and H 27 are each independently selected from: carbon An aryl group having 6 to 18 atoms, a heteroaryl group having 3 to 18 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms.
  • R 1 or R 2 is of formula (j-10)
  • R 23 and R 24 form a ring
  • R 23 and R 24 are connected to each other to form a saturated 5- to 10-membered aliphatic ring or form 9-13-membered aromatic ring.
  • the Ar 3 and Ar 4 are the same or different from each other, and are each independently selected from the substituted or unsubstituted group Y 1 , the unsubstituted group Y 1 is selected from the following groups:
  • the substituents of Y 1 are each independently selected from deuterium, fluorine, chlorine, cyano, alkyl groups having 1 to 6 carbon atoms, and carbon atoms Is an alkoxy group having 1 to 4, a haloalkyl group having 1 to 4 carbon atoms, a trialkylsilyl group having 3 to 9 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, and the number of carbon atoms is A group consisting of 6-25 aryl groups and 3-18 heteroaryl groups; when the substituent of Y 1 is more than one, each substituent is the same or different.
  • the substituent on the substituted group Y 1 is selected from the group consisting of methyl, fluorine, trimethylsilyl, tert-butyl, cyclohexyl, cyclopentyl, cyano, deuterium, chlorine, and phenyl.
  • the Ar 3 and Ar 4 are the same or different from each other, and are independently selected from the following groups:
  • the Ar 3 and Ar 4 may each independently be selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted Anthryl, substituted or unsubstituted phenanthryl, substituted or unsubstituted diphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted dibenzofuranyl, substituted Or unsubstituted dibenzothienyl, substituted or unsubstituted pyridinyl, substituted or unsubstituted pyrimidinyl, substituted or unsubstituted 1,4-diazinyl, substituted or unsubstituted quinolinyl, substituted or One of unsubstituted carbazolyl, substituted or unsubstituted N-phenylcar
  • the substituents in Ar 3 and Ar 4 are the same or different from each other and are independently selected from deuterium, fluorine, chlorine, cyano, alkyl groups with 1 to 6 carbon atoms, and 1 to 6 carbon atoms. 4 alkoxy, C 1-4 haloalkyl, C 3-9 alkylsilyl, C 3-10 cycloalkyl, C 6-25 A group consisting of an aryl group and a heteroaryl group having 3 to 18 carbon atoms.
  • the substituents in Ar 3 and Ar 4 are the same or different from each other, independently selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, iso Propyl, n-propyl, tert-butyl, methoxy, ethoxy, isopropoxy, trifluoromethyl, trimethylsilyl, cyclopentyl, cyclohexyl, adamantyl, phenyl, naphthalene Base, anthracenyl, phenanthryl, biphenyl, terphenyl, fluorenyl, 9,9-dimethylfluorenyl, spirobifluorenyl, dibenzofuranyl, dibenzothienyl, pyridyl, The group consisting of pyrimidinyl, 1,4-diazinyl, quinolinyl, isoquinolinyl, carbazolyl, N
  • Ar 3 and Ar 4 are the same or different from each other, and are each independently selected from the following groups:
  • Ar 3 and Ar 4 are not limited to this.
  • Ar 3 and Ar 4 may each independently be selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted anthracenyl , Substituted or unsubstituted phenanthryl, substituted or unsubstituted diphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted Substituted dibenzothienyl, substituted or unsubstituted pyridyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted N-phenylcarbazolyl, substituted or unsubstituted perylene, substituted or unsubstituted One of the pyrene groups, or a group formed
  • the substituents in Ar 3 and Ar 4 are the same or different from each other and are independently selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl, N-propyl, tert-butyl, trimethylsilyl, phenyl, naphthyl, anthracenyl, phenanthryl, diphenyl, terphenyl, fluorenyl, 9,9-dimethylfluorenyl, spiro two The group consisting of fluorenyl, dibenzofuranyl, dibenzothienyl, pyridyl, carbazolyl, and N-phenylcarbazolyl.
  • R 1 is a substituted or unsubstituted aryl group having 6 to 14 carbon atoms
  • R 2 is selected from a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, A substituted or unsubstituted alkyl group having 1 to 6 atoms; the substituents on R 1 and R 2 are the same or different, and are each independently selected from deuterium, cyano, halogen group, or carbon 1 to 4 alkyl;
  • R 1 is selected from phenyl or naphthyl
  • R 2 is selected from phenyl, naphthyl, alkyl with 1 to 4 carbon atoms, trifluoromethyl or trideuterium Substitute methyl.
  • the Ar 1 and Ar 2 are the same or different from each other, and are independently selected from substituted or unsubstituted aryl groups having 6 to 25 carbon atoms, and 5-25 substituted or unsubstituted heteroaryl groups; wherein the substituents in Ar 1 and Ar 2 are the same or different from each other, and are independently selected from deuterium, halogen groups, cyano groups, and carbon atoms of 1 to 4
  • the substituted or unsubstituted aryl group having 6 to 30 carbon atoms includes but is not limited to: substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted naphthyl , Substituted or unsubstituted anthracenyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted pyrenyl, substituted or unsubstituted perylene, substituted or unsubstituted triphenylene, substituted or unsubstituted fluorenyl, Substituted or unsubstituted spirobifluorenyl.
  • substituted or unsubstituted heteroaryl groups having 5 to 25 carbon atoms include, but are not limited to, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted dibenzofuranyl, substituted or Unsubstituted carbazolyl, substituted or unsubstituted pyridyl, substituted or unsubstituted quinolinyl, substituted or unsubstituted isoquinolinyl.
  • the substituents in Ar 1 and Ar 2 are the same or different from each other, and are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trimethyl Silyl, cyclohexyl, cyclopentyl, cyano, phenyl, naphthyl, pyridyl, quinolinyl.
  • the Ar 1 and Ar 2 are the same or different from each other, and are each independently selected from a substituted or unsubstituted group Y 2 , and the unsubstituted group Y 2 is selected from From the following groups:
  • the substituents of Y 2 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trimethyl
  • L 1 , L 2 and each L 3 are each independently selected from a single bond, a substituted or unsubstituted phenylene group, and a substituted or unsubstituted biphenylene group , Substituted or unsubstituted terphenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted 9,9-dimethylfluorenylene, substituted or unsubstituted dibenzofuranyl, substituted or Unsubstituted dibenzothienylene, substituted or unsubstituted carbazolylidene, substituted or unsubstituted N-phenylcarbazolylidene, substituted or unsubstituted pyridylene, substituted or unsubstituted quinoline
  • a substituted or unsubstituted phenanthrylene group a substituted or unsubstituted
  • substituents in L 1 , L 2 and L 3 are the same or different from each other, and are each independently selected from deuterium, fluorine, cyano, methyl, ethyl
  • L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted group W 2 , and the unsubstituted group W 2 is selected from the following groups:
  • the substituents of W 2 are each independently selected from deuterium, fluorine, chlorine, cyano, deuterium, fluorine, cyano, methyl, ethyl, iso
  • L 1 and L 2 are selected from a single bond or any one of the following groups:
  • the group W 3 is selected from a single bond, a substituted or unsubstituted, and the unsubstituted group W 3 is selected from the following groups:
  • the substituents of W 3 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trimethyl
  • L 1 and L 2 are single bonds.
  • L 1 and L 2 are selected from a single bond or any one of the following groups:
  • the nitrogen-containing organic compound of the present application is selected from the compound in claim 22.
  • This application also provides an electronic device for realizing photoelectric conversion or electro-optical conversion.
  • the electronic device includes an anode and a cathode arranged oppositely, and a functional layer arranged between the anode and the cathode; the functional layer includes the organic compound of the present application.
  • the electronic device is an organic electroluminescent device.
  • the organic electroluminescent device may include an anode 100, a cathode 200, and a functional layer 300, wherein the anode 100 and the cathode 200 are arranged opposite to each other.
  • the functional layer 300 is provided between the anode 100 and the cathode 200.
  • the functional layer 300 includes the nitrogen-containing organic compound described in any of the above embodiments.
  • the anode 100 can be a metal, an alloy, or a metal oxide, etc., for example, it can be nickel, platinum, vanadium, chromium, copper, zinc, gold or their alloys, or zinc oxide, indium oxide. , Indium tin oxide (ITO) and indium zinc oxide (IZO); the anode 100 material can also be other, for example, it can also be a composition, such as: ZnO: Al, SnO 2 : Sb, conductive polymer (poly (3- Methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole and polyaniline).
  • the anode 100 material is not limited to this, but can also be other The materials are not listed here.
  • the material of the anode 100 may be indium tin oxide (ITO).
  • the cathode 200 can be a metal or alloy material, for example, it can be magnesium, calcium, sodium, potassium, titanium, aluminum, silver, or their alloys, or a multilayer material, such as: LiF/ Al, Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al, and BaF2/Ca.
  • the material of the cathode 200 is not limited to this, but may also be other materials, which will not be listed here.
  • the material of the cathode 200 may be aluminum.
  • the functional layer 300 may include a hole transport layer 320, a light emitting layer 330 and an electron transport layer 350.
  • the light-emitting layer 330 is disposed on a side of the hole transport layer 320 away from the anode 100.
  • the electron transport layer 350 is disposed on the side of the light-emitting layer 330 close to the cathode 200.
  • the light-emitting layer 330 may be composed of a single light-emitting material, or may include a host material and a guest material.
  • the light-emitting layer 330 is composed of a host material and a guest material.
  • the holes injected into the light-emitting layer 330 and the electrons injected into the light-emitting layer 330 can recombine in the light-emitting layer 330 to form excitons.
  • the excitons transfer energy to the host material.
  • the material transfers energy to the guest material, which in turn enables the guest material to emit light.
  • the host material of the light-emitting layer 330 may be a metal chelate compound, a bisstyryl derivative, an aromatic amine derivative, a dibenzofuran derivative, or other types of materials, which are not described in this application. Special restrictions. This application does not impose special restrictions on this.
  • the host material of the light-emitting layer 330 may be CBP.
  • the host material of the light-emitting layer 330 may be ⁇ , ⁇ -ADN.
  • the guest material of the light-emitting layer 330 may be a compound with a condensed aryl ring or a derivative thereof, a compound with a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials. There are no special restrictions.
  • the guest material of the light-emitting layer 330 may be Ir(piq) 2 (acac).
  • the electron transport layer 350 can be a single-layer structure or a multi-layer structure. It can include one or more electron transport materials. The electron transport layer can use TPBi and LiQ with a film thickness of 1:1. Than perform co-evaporation.
  • the functional layer 300 may further include a hole injection layer 310.
  • the hole injection layer 310 may be provided between the hole transport layer 320 and the anode 100.
  • the functional layer 300 may further include an electron blocking layer.
  • the electron blocking layer may be provided between the hole transport layer 320 and the light emitting layer 330.
  • the functional layer 300 may further include an electron injection layer 360.
  • the electron injection layer 360 may be provided between the electron transport layer 350 and the cathode 200.
  • the hole transport layer 320 may include a first hole transport layer 3201 and a second hole transport layer 3202.
  • the first hole transport layer 3201 or the second hole transport layer 3202 includes the organic compound described in the present application.
  • the first hole transport layer 3201 covers the hole injection layer 310
  • the second hole transport layer 3202 is provided on the first hole transport layer 3201 away from the hole injection layer 310.
  • the compound of the application is used in the second hole transport layer.
  • the electronic device is a solar cell.
  • the solar cell may include an anode 100, a cathode 200 and a functional layer 300, where:
  • the anode 100 and the cathode 200 are arranged opposite to each other.
  • the functional layer 300 is provided between the anode 100 and the cathode 200.
  • the functional layer 300 includes the organic compound described in any of the above embodiments.
  • the functional layer 300 may include a hole transport layer 320, a photoelectric conversion layer 370 and an electron transport layer 350.
  • the photoelectric conversion layer 370 is disposed on the side of the hole transport layer 320 away from the anode 100.
  • the electron transport layer 350 is provided on the side of the photoelectric conversion layer 370 close to the cathode 200.
  • the hole transport layer 320 includes the organic compound described in the present invention.
  • the functional layer 300 may further include an electron blocking layer.
  • the electron blocking layer may be provided between the hole transport layer 320 and the photoelectric conversion layer 370.
  • the solar cell may be an organic thin film solar cell.
  • the electronic device of the present invention is based on the excellent performance of the organic compound of the present invention, and the electronic device obtained by using the compound as the functional layer material has higher luminous efficiency and prolonged device life.
  • the present application provides an electronic device 400, which includes any one of the photoelectric conversion devices described in the foregoing photoelectric conversion device embodiments.
  • the electronic device 400 may be a solar power generation device, a light detector, a fingerprint recognition device, an optical module, a CCD camera, or other types of electronic devices. Since the electronic device 400 has any one of the photoelectric conversion devices described in the foregoing photoelectric conversion device embodiments, it has the same beneficial effects, which will not be repeated in this application.
  • the lower reaction is generally under a positive pressure of nitrogen or argon or a drying tube on an anhydrous solvent (unless otherwise indicated), the reaction flask is plugged with a suitable rubber stopper, and the substrate is injected through a syringe. The glassware is all dried.
  • the chromatographic column is a silica gel column.
  • Silica gel 80-120 mesh was purchased from Qingdao Ocean Chemical Plant.
  • the measurement conditions for low-resolution mass spectrometry (MS) data are: Agilent 6120 quadrupole HPLC-M (column model: Zorbax SB-C18, 2.1 ⁇ 30mm, 3.5 microns, 6min, flow rate 0.6mL/min.
  • Mobile phase 5 %-95% (CH 3 CN containing 0.1% formic acid) in (H 2 O containing 0.1% formic acid) using electrospray ionization (ESI), and UV detection at 210nm/254nm.
  • Proton nuclear magnetic resonance spectrum Bruker 400MHz nuclear magnetic instrument, at room temperature, with CD 2 Cl 2 as the solvent (in ppm), and TMS (0 ppm) as the reference standard. When multiple peaks appear, the following abbreviations will be used: s (singlet), d (doublet), t (triplet, triplet), m (multiplet, multiplet).
  • Methyl 2-iodobenzoate (10.0g, 38.2mmol), 4-chloro-2-methoxyphenylboronic acid (7.83g, 42.0mmol), potassium carbonate (10.54g, 76.4mmol), tetrabutyl bromide Ammonium (1.27g, 3.82mmol), toluene (50mL), ethanol (30mL) and deionized water (20mL) were added to a three-necked flask, stirred for 15min under nitrogen protection, and then added tetrakistriphenylphosphine palladium (0.44g, 0.0382mmol) The temperature was increased to 75-80°C and stirred for 5 hours; the reaction solution was cooled to room temperature, and toluene (100 mL) was added for extraction.
  • intermediate IA except that raw material 1 is used instead of methyl 2-iodobenzoate in step (1) above, and raw material 2 is used instead of 4-chloro-2-methoxyphenylboronic acid in step (1) ,
  • steps (2) to (3) are prepared by the same synthesis method as intermediate I-A1, including but not limited to the intermediate I-A2 to intermediate I-A9 in Table 1 below:
  • intermediate I-B1 Refer to the synthesis process of intermediate I-B1 to synthesize the intermediate IB in the following table.
  • intermediate IB except that intermediate IA (part or all of IA selected from I-A2 to I-A9) is used instead of the step (1)
  • Intermediate I-A1 using raw material 3 instead of p-chloroiodobenzene in step (1), using the same synthetic route as Intermediate I-B1, including but not limited to the intermediate in Table 2 below Body IB:
  • intermediate II synthesis refers to the synthesis method of intermediate II-1, except that raw material 4 is used instead of 4-bromobiphenyl, and raw material 5 is used instead of 4-aminobiphenyl, and the same synthetic route as intermediate II-1 is adopted.
  • the preparation includes but is not limited to the intermediate II in Table 3 below:
  • Methyl 2-iodobenzoate (20.0g, 76.34mmol), 4-chloro-2-methoxyphenylboronic acid (17.07g, 91.60mmol), potassium carbonate (23.21g, 167.94mmol), tetrabutyl bromide Ammonium (4.93g, 15.27mmol), toluene (120mL), ethanol (50mL) and deionized water (20mL) were added to a three-necked flask, stirred for 30min under nitrogen protection, and then added tetrakis(triphenylphosphine)palladium (1.76g, 1.53) mmol) and heated to 75-80°C and stirred for 5 hours; the reaction solution was cooled to room temperature, toluene (100 mL) was added for extraction, the organic phases were combined, dried with anhydrous magnesium sulfate, and the organic phase was depressurized to remove the solvent.
  • the product was directly purified by
  • the intermediate QI-B1 was prepared according to the same method as the synthesis method of the intermediate QI-A1, except that in step (2) the raw material format reagent was replaced with phenyl magnesium bromide as methyl magnesium bromide, and the raw materials and products in other steps were the same
  • the synthesis method of the intermediate QI-A1 is the same, and the preparation reaction process is as follows:
  • steps (2) to (3) are prepared by the same synthesis method as the intermediate QI-A1, including but not limited to the intermediates QI-A2 to QI-A10 in Table 7 below, or Prepared by the same synthetic method as the intermediate QI-B1, including but not limited to QI-B2 ⁇ QI-B9 in Table 7 below:
  • the intermediate QI-C2-a was synthesized by the same method as the step (1) of the synthesis example of intermediate QI-C1, except that the intermediate QI-B7 was used instead of the intermediate QI-A1 to obtain the solid intermediate QI-C2-a( 6.8g, the yield was 77.5%).
  • intermediate QI-C1 Refer to the synthesis process of intermediate QI-C1 to synthesize the intermediate QIC in the table below.
  • intermediate QIC except for the intermediate QIA series (QIA is selected from QI-A2 to QI-A9, or QI-B1 to QI -B9) instead of intermediate QI-A1 in step (1), using raw material Q3 instead of p-chloroiodobenzene in step (1), and using the same synthetic route as intermediate QI-C1 to prepare but not limited to the intermediate QIC in Table 8 below:
  • the synthesis of the compounds in Table 10 can refer to the synthesis method of compound Q1.
  • the raw materials used are from commercial purchases, and suppliers such as Henan Chuangan Optoelectronics Technology Co., Ltd., etc.
  • the intermediate QI in Table 7 to Table 8 is used instead of the intermediate QI-A1 in the above reaction
  • the intermediate Q-II in Table 9 is used instead of the intermediate.
  • Q-II-1 the compounds shown in Table 10 can be prepared:
  • the anode is prepared by the following process: the thickness is The ITO substrate (manufactured by Corning) was cut into a size of 40mm ⁇ 40mm ⁇ 0.7mm, and a photolithography process was used to prepare it into an experimental substrate with cathode, anode and insulating layer patterns, using ultraviolet ozone and O 2 :N 2 plasma. Surface treatment to increase the work function of the anode (experimental substrate) and remove scum.
  • HIL-1 Hole injection layer 1
  • HTL-1 The hole transport layer 1
  • the compound P1 is vacuum-evaporated on the hole transport layer 1 to form a thickness of The second hole transport layer 2 (HTL-2).
  • the compound TCTA was vapor-deposited on the HTL-2 as the electron blocking layer (EBL) with a thickness of EBL
  • CBP is vapor-deposited on the electron blocking layer as the main body, and Ir(piq) 2 (acac) is doped at the same time, and the thickness of the vapor deposition is 30:1
  • the light-emitting layer (EML) is vapor-deposited on the electron blocking layer as the main body, and Ir(piq) 2 (acac) is doped at the same time, and the thickness of the vapor deposition is 30:1
  • TPBi and LiQ were co-evaporated with a film thickness ratio of 1:1 to form Thick electron transport layer (ETL), Yb is vapor-deposited on the electron transport layer to form a thickness of The electron injection layer (EIL), and then magnesium (Mg) and silver (Ag) are vapor-deposited on the electron injection layer with a film thickness ratio of 1:9 to form a thickness of The cathode.
  • the vapor deposition thickness on the above cathode is CP-1, forming an organic covering layer (CPL), thus completing the manufacture of an organic light-emitting device, the structure is shown in Figure 1.
  • the structure of the compound used in device example 1 is as follows:
  • An organic electroluminescence device was fabricated in the same manner as in Device Example 1, except that the compound shown in Table 11 was used when forming the hole adjustment layer (HTL-2, that is, the second hole transport layer).
  • HTL-2 hole adjustment layer
  • the organic electroluminescence device was prepared in the same manner as in Preparation Example 1, except that Compound A was used when forming the second hole transport layer.
  • the organic electroluminescence device was prepared by the same method as Preparation Example 1, except that Compound D was used when forming the second hole transport layer.
  • the operating voltage of the organic electroluminescent device prepared by using the compound of Synthesis Example 1-47 as the second hole transport layer (HTL-2) is reduced by at least 0.1V,
  • the luminous efficiency (Cd/A) is increased by at least 13%, and the life span is increased by at least 96 hours (at least 21%). It can be seen that the performance of the compound of the present application as the organic electroluminescent device of the second hole transport layer (HTL-2) has been significantly improved.
  • the present invention takes the combination of 9,10-dihydro-10-oxaphenanthrene group and triarylamine as the core structure.
  • the oxaphenanthrene group both methyl groups and oxygen can be conjugated to the benzene ring.
  • the hyperconjugation effect provides electrons, so that the group has a high conjugated electron cloud density.
  • the hole transport layer of the device can improve the luminous efficiency of the device.
  • the anode is prepared by the following process: the thickness is The ITO substrate (manufactured by Corning) was cut into a size of 40mm ⁇ 40mm ⁇ 0.7mm, and a photolithography process was used to prepare it into an experimental substrate with cathode, anode and insulating layer patterns, using ultraviolet ozone and O 2 :N 2 plasma. Surface treatment to increase the work function of the anode (experimental substrate) and remove scum.
  • HIL-1 The hole injection layer
  • HTL-1 The hole transport layer
  • the compound Q1 was vacuum-evaporated on the hole transport layer to form a thickness of The hole adjustment layer (HTL-2, the second hole transport layer).
  • HTL-2 The hole adjustment layer
  • the compound TCTA is vapor-deposited on the hole adjustment layer as the electron blocking layer (EBL), the thickness is
  • the compound H-01 was vapor-deposited as the main body, and Ir(piq) 2 (acac) was doped at the same time, and the thickness of the vapor-deposited layer was 30:1
  • TPBi and LiQ were co-evaporated with a film thickness ratio of 1:1 to form Thick electron transport layer (ETL), Yb is vapor-deposited on the electron transport layer to form a thickness of The electron injection layer (EIL), and then magnesium (Mg) and silver (Ag) are vapor-deposited on the electron injection layer with a film thickness ratio of 1:9 to form a thickness of The cathode.
  • the vapor deposition thickness on the above cathode is CP-1 to form an organic cover layer (CPL), thereby completing the manufacture of organic electroluminescent devices.
  • An organic electroluminescence device was fabricated in the same manner as in Device Example 48, except that the compound shown in Table 12 was used when forming the hole adjustment layer (HTL-2, that is, the second hole transport layer).
  • HTL-2 hole adjustment layer
  • An organic electroluminescent device was prepared in the same manner as in Device Example 48, except that Compound A was used when forming the hole adjusting layer.
  • the organic electroluminescence device was fabricated in the same manner as in Device Example 48, except that Compound C was used when forming the hole adjusting layer.
  • the organic electroluminescence device was prepared in the same manner as in Device Example 48, except that compound Q-D was used when forming the hole adjustment layer.
  • the organic electroluminescence device was fabricated in the same manner as in Device Example 48, except that Compound E was used when forming the hole adjustment layer.
  • the organic electroluminescence device was fabricated in the same manner as in Device Example 48, except that Compound F was used when forming the hole adjustment layer.
  • the oxygen atom in the compound QD of the comparative example is a spiro ring
  • the spatial conformation is basically fixed, and the carrier transmission efficiency is insufficient, which is generated between the organic layer of the light-emitting device, or between the organic layer and the metal electrode.
  • There is more Joule heat which reduces the service life of the device to a certain extent.
  • the heterocyclic atoms of compounds E and F are nitrogen atoms, and the nitrogen atoms are also connected to a power supply group, which makes the electron density in this region more concentrated, affects the thermal stability, and also reduces the device’s performance. Service life.
  • dihydroxaphenanthrene group has a more planar structure, its asymmetry and steric hindrance are greater than that of the general planar conjugated group.
  • Two substituents are added at the 9 position to make it have lower crystallinity. Its properties and good film-forming properties can effectively increase the life of the device when it is applied to electro-organic light-emitting devices.

Abstract

一类具有9,10-二氢-9,9-二取代的-10-氧杂菲和芳胺基团的有机电致发光材料以及包含该化合物的电子器件及装置。所述有机电致发光器件具有较低的驱动电压、较高的发光效率和较长的使用寿命。

Description

含氮有机化合物及包含该化合物的电子器件及装置
相关申请的交叉引用
本申请要求于2020年3月9日递交的申请号为CN202010159357.X的中国专利申请,及2020年12月25日递交的申请号为CN202011565702.6的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机电致发光材料技术领域,具体而言涉及具有氧杂二氢菲和三芳基胺的结构的有机电致发光材料以及包含该化合物的电子器件及装置。
背景技术
近年来,有机电致发光装置(OLED,Organic electroluminescent device)作为新一代显示技术逐渐进入人们的视野。常见的有机电致发光装置是由阳极、阴极以及在阴极和阳极之间设置的一层或多层有机层构成。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向发光层移动,阳极侧的电子也向发光层移动,两者在发光层结合形成激子,激子处于激发态向外释放能量,从激发态释放能量变为基态释放能量的过程对外发光。因此,提高OLED装置中电子和空穴的再结合性是至关重要的。
为了提高有机电致发光装置的亮度、效率和寿命,通常在装置中使用多层结构。这些多层结构包括:空穴注入层(hole injection layer),空穴传输层(hole transport layer),电子阻挡层(electron-blocking layer)、发光层(emitting layer)和电子传输层(electron transport layer)等。这些有机层能够提高载流子(空穴和电子)在各层界面间的注入效率,平衡载流子在各层之间传输,从而提高装置的亮度和效率。
目前,虽然大量性能优良的有机电致发光材料已被陆续开发出来,但该技术仍然存在很多问题。因此,如何设计新的性能更好的材料,从而降低有机电致发光装置的驱动电压、提高其发光效率并且延长其使用寿命,是本领域亟待解决的技术问题。
发明内容
为了解决上述问题,本申请提供有机电致发光化合物,其能够提高OLED装置中电子和空穴的结合率,使电子器件具有高的发光效率。与此同时,本申请还提供了包含该有机电致发光化合物的有机发光装置,其具有较低的驱动电压、较高的发光效率和较长的使用寿命。
本发明的目的在于提供一种性能优异的有机化合物,可用作有机电致发光器件中的空穴传输层。为了实现上述目的,本发明提供一种含氮有机化合物,其中,所述化合物的结构如化学式(I)所示:
Figure PCTCN2021076332-appb-000001
其中,R 1选自碳原子数6~14的取代或未取代的芳基、碳原子数1~4的烷基;
R 2选自碳原子数6~14的取代或未取代的芳基、碳原子数1~6的取代或未取代的烷基;所述R 1和R 2上的取代基相同或不同,各自独立地选自氘、氰基、卤素基团或碳原子数1~4的烷基;
L 1、L 2和各L 3分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基所组成的组;
Ar 1和Ar 2彼此相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数 为3~40的取代或未取代的杂芳基所组成的组;
n表示R 3的个数;n为0、1、2、3、4、5、6或者7;当n大于1时,任意两个R 3相同或者不相同;
m表示依次连接的L 3基团的个数;m为0、1或2;当m大于1时,任意两个L 3相同或者不相同;
各R 3独立地选自氘、卤素基团、氰基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷基、碳原子数为1~12的氘代烷基、碳原子数为1~12的烷氧基、碳原子数为3~12的环烷基、碳原子数为1~12的烷硫基、碳原子数为3~12的三烷基硅烷基、碳原子数6~18的芳基硅烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基,任选地,任意两个相邻的R 3相互连接形成碳原子数为6或10的芳环;
L 1、L 2、L 3、Ar 1、Ar 2中的各取代基彼此相同或不同,各自独立地选自氘、卤素基团、氰基、碳原子数为1~12的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为1~12的烷硫基、碳原子数为6~25的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的三烷基硅烷基和碳原子数为3~12的环烷基;在L 1、L 2、L 3、Ar 1和Ar 2中,当同一原子上具有两个取代基时,任选地,两个所述取代基之间相互连接,以与它们所共同连接的原子一起形成5到18元脂肪族环或芳香环。
本发明第二方面提供包含本发明第一方面所述的有机化合物的电子器件。
本发明第三方面提供一种电子器件,包括阳极、阴极、以及介于阳极与阴极之间的功能层,所述功能层含有本发明第一方面所述的有机化合物。在一些实施方式中,所述功能层为空穴传输层。
在一些实施方式中,所述电子器件为有机电致发光器件,在另一些实施方式中,所述电子器件为光电转化器件。
本发明第四方面提供一种电子装置,包含本发明第三方面所述的电子器件。
通过上述技术方案,本发明的有机化合物的化学结构包括9,10-二氢-9,9-二取代-10-氧杂菲基团和芳胺,在氧杂菲基团中,两个取代基和氧均可向苯环通过共轭/超共轭效应提供电子,从而使该基团具有很高的共轭电子云密度,将其和三芳基胺结合后将具有很高的空穴迁移率,从而在该材料用于有机电致发光装置的空穴传输层时,可以提升装置的发光效率。
二氢氧杂菲结构在具有较为平面结构的同时,其非对称性和位阻相比一般平面共轭基团更大,增加两个9位取代基使其拥有较低的结晶性以及良好的成膜性,使其在应用于电致有机发光装置时,可以有效提升装置寿命。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明的电子器件的一种具体实施方式(有机电致发光器件)的结构示意图。
图2是本发明的电子器件的第二种具体实施方式(太阳能电池)的结构示意图。
图3是本发明的电子器件的第三种具体实施方式(电子装置)的结构示意图。
附图标记说明
100阳极                     200阴极                     300功能层
310空穴注入层               320空穴传输层               3201第一空穴传输层
3202第二空穴传输层          330发光层                   340空穴阻挡层
350电子传输层               360电子注入层               370光电转化层
400电子装置
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本申请公开一种含氮有机化合物,其中,所述化合物的结构如化学式(I)所示:
Figure PCTCN2021076332-appb-000002
其中,R 1选自碳原子数6~14的取代或未取代的芳基、碳原子数1~4的烷基;
R 2选自碳原子数6~14的取代或未取代的芳基、碳原子数1~6的取代或未取代的烷基;所述R 1和R 2上的取代基相同或不同,各自独立地选自氘、氰基、卤素基团或碳原子数1~4的烷基;
L 1、L 2和各L 3分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基所组成的组;
Ar 1和Ar 2彼此相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~40的取代或未取代的杂芳基所组成的组;
n表示R 3的个数;n为0、1、2、3、4、5、6或者7;当n大于1时,任意两个R 3相同或者不相同;
m表示依次连接的L 3基团的个数;m为0、1或2;当m大于1时,任意两个L 3相同或者不相同;
各R 3独立地选自氘、卤素基团、氰基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷基、碳原子数为1~12的氘代烷基、碳原子数为1~12的烷氧基、碳原子数为3~12的环烷基、碳原子数为1~12的烷硫基、碳原子数为3~12的三烷基硅烷基、碳原子数6~18的芳基硅烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基,任选地,任意两个相邻的R 3相互连接形成碳原子数为6或10的芳环;
L 1、L 2、L 3、Ar 1、Ar 2中的各取代基彼此相同或不同,各自独立地选自氘、卤素基团、氰基、碳原子数为1~12的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为1~12的烷硫基、碳原子数为6~25的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的三烷基硅烷基和碳原子数为3~12的环烷基;在L 1、L 2、L 3、Ar 1和Ar 2中,当同一原子上具有两个取代基时,任选地,两个所述取代基之间相互连接,以与它们所共同连接的原子一起形成5到18元脂肪族环或芳香环。
在本申请中,术语“任选”或者“任选地”意味着随后所描述的事件或者环境可以但不必发生,该说明包括该事情或者环境发生或者不发生的场合。例如,“任选被烷基取代的杂环基团”意味着烷基可以但不必须存在,该说明包括杂环基团被烷基取代的情景和杂环基团不被烷基取代的情景。例如,“任选地,连接于同一个原子上的R Q和R T可以相互连接以与它们共同连接的原子形成饱和或不饱和的5至13元脂肪族环或芳香环”意味着连接于同一个原子上的R Q和R T可以成环但不必须成环,包括R Q和R T相互连接成饱和或不饱和的5至13元脂肪族环或芳香环的情景,也包括R Q和R T相互独立地存在的情景。
在本申请中,“任意两个相邻的取代基形成环”中,“任意相邻”可以包括同一个原子上具有两个取代基,还可以包括两个相邻的原子上分别具有一个取代基;其中,当同一个原子上具有两个取代基时,两个取代基可以与其共同连接的该原子形成饱和或不饱和的环;当两个相邻的原子上分别具有一个取代基时,这两个取代基可以稠合成环。
在本申请中,L 1、L 2、L 3、L 4、R 1、R 2、R 3、Ar 1、Ar 2、Ar 3、Ar 4的碳原子数,指的是所有碳原子数,也就是基团本身及其上的取代基的碳原子数之和。举例而言,若Ar 1选自取代的碳原子数为10的芳基,则芳基及其上的取代基的所有碳原子数之和为10。
在本申请中,当没有另外提供具体的定义时,“杂”是指在一个官能团中包括至少1个选自B、N、O、S、Se、Si或P的杂原子且其余原子为碳和氢。
在本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。例如,“取代或未取代的芳基”是指具有取代基Rc的芳基或者未取代的芳基。其中上述的取代基即Rc例如可以为氘、卤素基团、氰基、烷基、芳基、杂芳基、烷氧基、烷硫基、卤代烷基、氘代烷基、环烷基、三烷基硅基、三苯基硅基、二芳基氧膦基、芳氧基等基团。在本申请中,“取代的”官能团可以被上述1个或2个以上取代基Rc取代。
在本申请中所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。举例而言:在“
Figure PCTCN2021076332-appb-000003
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氟、氯”的描述中,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本申请中,“烷基”可以包括直链烷基或支链烷基。烷基可具有1至12个碳原子,在本申请中,诸如“1至12”的数值范围是指给定范围中的各个整数;烷基可具有指定数量的碳原子数。烷基可为具有1~6个碳原子的低级烷基。在一些实施方案中,烷基基团含有1~4个碳原子;还在一些实施方案中,烷基基团含有1~3个碳原子。
烷基基团的实例包含,但并不限于,甲基(Me、-CH 3),乙基(Et、-CH 2CH 3),正丙基(n-Pr、-CH 2CH 2CH 3),异丙基(i-Pr、-CH(CH 3) 2),正丁基(n-Bu、-CH 2CH 2CH 2CH 3),异丁基(i-Bu、-CH 2CH(CH 3) 2),仲丁基(s-Bu、-CH(CH 3)CH 2CH 3),叔丁基(t-Bu、-C(CH 3) 3)等。此外,烷基可为取代的或未取代的。
“烷氧基”是指式-OR,其中R为本文定义的烷基。烷氧基的非限制性列举为甲氧基、乙氧基、正丙氧基、1-甲基乙氧基(异丙氧基)、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基。烷氧基可为取代的或未取代的。
在本申请中,“卤代烷基”或“卤代烷氧基”表示烷基或烷氧基基团被一个或多个卤素原子所取代,其中烷基和烷氧基基团具有如本发明所述的含义,这样的实例包含,但并不限于,三氟甲基、三氟甲氧基等。在一实施方案中,C 1~C 6卤代烷基包含氟取代的C 1~C 6烷基;在另一实施方案中,C 1~C 4卤代烷基包含氟取代的C 1~C 4烷基;在又一实施方案中,C 1~C 2卤代烷基包含氟取代的C 1~C 2烷基。
在本申请中,环烷基指的是环状饱和烃,包含单环和多环结构。环烷基可具有3-12个碳原子,诸如“3至12”的数值范围是指给定范围中的各个整数;例如,“3至12个碳原子”是指可包含3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子、10个碳原子、11个碳原子、12个碳原子的环烷基。此外,环烷基可为取代的或未取代的。在一些实施方式中环烷基为5至10元环烷基,在另一些实施方式中,环烷基为5至8元环烷基,举例而言,环烷基的示例可以是,但不限于:5元环烷基即环戊烷基、6元环烷基即环己烷基、10元多环烷基如金刚烷基等。
在本申请中,芳基指的是衍生自芳香烃环的任选官能团或取代基。芳基可以是单环芳基或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,通过碳碳键连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。其中,芳基中不含有B、N、O、S、Se、Si或P等杂原子。芳基的示例可以包括苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、 四联苯基、五联苯基、六联苯基、苯并[9,10]菲基、芘基、苝基、苯并荧蒽基、
Figure PCTCN2021076332-appb-000004
基、螺二芴基、茚基等,而不限于此。
在本申请中,取代的芳基,指的是芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被氘原子、F、Cl、I、CN、羟基、氨基、支链烷基、直链烷基、环烷基、烷氧基、烷胺基、烷硫基、烷基硅烷基、芳氧基、芳硫基或者其他基团取代。可以理解的是,取代的芳基的碳原子数,指的是芳基及其芳基上的取代基的总碳原子数。例如,取代的碳原子数为18的芳基,指的是芳基和芳基上的取代基的碳原子总数为18个。举例而言,9,9-二甲基芴基为碳原子数为15的取代的芳基。
本申请中,芴基可以是取代的,两个取代基可以彼此结合形成螺结构,具体实例包括但不限于以下结构:
Figure PCTCN2021076332-appb-000005
本申请的“芳基”可含有6~40个碳原子,本申请中,取代或未取代的芳基的碳原子数可以选自6、10、12、13、14、15、16、17、18、20、25、30、31或33。在一些实施方案中,芳基是碳原子数为6~30的芳基,另一些实施方式中,芳基是碳原子数为6~25的芳基,另一些实施方式中,芳基是碳原子数为6~18的芳基,另一些实施方式中,芳基是碳原子数为6~15的芳基;在另一些实施例中芳基中的碳原子数是6-12个。
本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
本申请中,作为取代基的芳基,例如但不限于苯基、萘基、蒽基、菲基、二联苯基、三联苯基、芴基、二甲基芴基。
在本申请中,杂芳基可以是包括B、O、N、P、Si、Se和S中的至少一个作为杂原子的芳香基团。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,任一芳香环体系为一个芳香单环或者一个芳香稠环,且任一芳香环体系中含有所述杂原子。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、硅芴基、二苯并甲硅烷基、二苯并呋喃基、N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等等,而不限于此。
本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
本申请中的“杂芳基”可以包括1、2、3、4、5、6、7、8、9或10个任选自B、O、N、P、Si、Se和S的杂原子,碳原子数可以是3~40个,举例而言,杂芳基的碳原子数量还可以是5个、6个、7个、8个、9个、10个、12个、13个、14个、15个、16个、18个、20个或40个,当然,碳原子数还可以是其他数量,在此不再一一列举。
在一些实施例中杂芳基的碳原子数可以是3-30个,在另一些实施例中,杂芳基的碳原子数可以是3~20个,或3~18个,或3~12个;在一些实施方案中,杂芳基是碳原子数为5~25的杂芳基,另一些实施方式中,杂芳基是碳原子数为5~18的杂芳基,另一些实施方式中,杂芳基是碳原子数为5~12的杂芳基。在本申请中,对芳基的解释可应用于亚芳基,对杂芳基的解释同样应用于亚杂芳基,对烷基的解释可应用于亚烷基,对环烷基的解释可应用于亚环烷基。
本申请中,作为取代基的杂芳基,例如但不限于苯基、吡啶基、嘧啶基、哒嗪基、喹啉基、异喹啉基、二苯并呋喃基、二苯并噻吩基、三嗪基、咔唑基、N-苯基咔唑基、苯并嘧啶基、苯并吡啶基。
在本申请中,m个原子形成的环体系,即为m元环。例如,苯基为6元芳基。6~10元芳环可以指苯环、茚环和萘环等。
本申请中的“环”包含饱和环以及不饱和环;饱和环即环烷基、杂环烷基;不饱和环,即环烯基、杂 环烯基、芳基和杂芳基。5~13元环是指由5~13个环原子形成的环体系,例如芴环属于13元环。
本申请中“脂肪族环”指的是环烷基和环烯基。
本申请中“芳香环”指的是芳基和杂芳基。
在本申请中,碳原子数为3~12的三烷基硅基的具体实例包括但不限于,三甲基硅基、三乙基硅基等。
在本申请中,碳原子数为5~10的环烷基的具体实例包括但不限于,环戊基、环己基、金刚烷基等。
本申请中,卤素包括氟、氯、溴、碘。
本申请中,不定位连接键是指从环体系中伸出的单键
Figure PCTCN2021076332-appb-000006
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2021076332-appb-000007
再举例而言,下式(X')中所示的,式(X')所表示的菲基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式。
Figure PCTCN2021076332-appb-000008
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,下式(Y)中所示的,式(Y)所表示的取代基R’通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2021076332-appb-000009
下文中对于不定位连接或不定位取代的含义与此处相同,后续将不再进行赘述。
进一步地,本申请所述的含氮有机化合物具有如下式(I-1)所示的结构:
Figure PCTCN2021076332-appb-000010
其中,L 4选自由单键、取代或未取代的碳原子数为6~30的亚芳基和取代或未取代的碳原子数为3~30的亚杂芳基所组成的组;
Ar 3和Ar 4彼此相同或不同,且各自独立地选自由取代或未取代的碳原子数为6~40的芳基、取代或未取代的碳原子数为3~40的杂芳基所组成的组;
各R 3独立地选自由氘、卤素基团、氰基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷基、碳原子数为1~12的烷氧基、碳原子数为3~12的环烷基、碳原子数为1~12的烷硫基、碳原子数为3~12的三烷基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基组成的组;
n为0、1、2、3、4、5、6或者7;当n大于1时,任意两个R 3相同或者不相同;
L 4、Ar 3、Ar 4中的各取代基彼此相同或不同,各自独立地选自由氘、卤素基团、氰基、碳原子数为1~12的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为1~12的烷硫基、碳原子数为6~25的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的三烷基硅基和碳原子数为3~12的环烷基所组成的组;
在L 4、Ar 3、Ar 4中,当同一原子上具有两个取代基时,任选地,两个所述取代基之间相互连接,以与它们所共同连接的原子一起形成5到18元脂肪族环或芳香环。
在一些实施方式中,本申请式(I-1)所示有机化合物选自如下式(I-2)~(I-9)所示的结构:
Figure PCTCN2021076332-appb-000011
在一些更具体的实施方式中,本申请式(I)所示含氮有机化合物选自如下所示的结构式(I-10)~式(I-17):
Figure PCTCN2021076332-appb-000012
在一些实施方式,在式(I-1)构中,L 4为单键、取代或未取代的碳原子数为6~20的亚芳基、取代或未取代的碳原子数为3~20的亚杂芳基;所述L 4中的取代基彼此相同或不同,各自独立地选自由氘、氟、氯、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的烷氧基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~12的芳氧基、碳原子数为6~12的芳硫基、碳原子数为3~9的三烷基硅基和碳原子数为3~12的环烷基所组成的组。
在一些实施方式,在式(I-1)中,L 4为取代或未取代的亚苯基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚萘基、取代或未取代的9,9-二甲基芴亚基、取代或未取代的亚二苯并呋喃基、取代或未取代亚二苯并噻吩基、取代或未取代的亚喹啉基、取代或未取代的亚异喹啉基、取代或未取代的亚咔唑基、取代或未取代的苯基-咔唑亚基、取代或未取代的亚菲基、取代或未取代的亚蒽基、取代或未取代的亚吡啶基中的一种,或者为上述亚基中两者或三者通过单键连接所形成的亚基基团。
举例来讲,当L 4是两个或三个基团通过单键形成的基团,当其是两个不同基团通过单键形成的基团,且两个基团分别是亚苯基和亚二苯并呋喃基时,L 4
Figure PCTCN2021076332-appb-000013
在一些实施方式,在式(I-1)中,L 4选自单键或者选自以下式(i-1)~式(i-14)所示的基团所组成的组:
Figure PCTCN2021076332-appb-000014
Figure PCTCN2021076332-appb-000015
上述基团中,X选自O、S、Se、C(R 4R 5)、N(R 6)和Si(R 4R 5)所组成的组;
各X 1~X 35分别独立地为C(R x)或N,当一个基团中包含两个以上R x时,任意两个R x彼此相同或不同;
各R x和各Z 1~Z 7分别独立地选自氢、氘、氟、氯、溴、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~12的芳氧基、碳原子数为6~12的芳硫基、碳原子数为3~9的三烷基硅基和碳原子数为3~12的环烷基所组成的组;
各n 1、n 3、n 4和n 6分别独立地为1、2、3或4,各n 2独立地为1、2、3、4、5或6;n 5为1、2、3、4或5;n 7为1、2、3、4、5、6或7;
R 4、R 5和R 6分别独立地选自氢、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基和碳原子数为3~12的环烷基所组成的组;或者,
任选地,连接于同一原子上的R 4和R 5相互连接以与它们共同连接的原子形成饱和或不饱和的5至13元脂肪族环或芳香环。
举例而言,L 4为式(i-7)
Figure PCTCN2021076332-appb-000016
时,当Z 2为H,X为C(R 4R 5)时,任选地,连接于同一个原子上的R 4和R 5相互连接以与它们共同连接的原子形成饱和或不饱和的5至13元脂肪族环指的是:R 4和R 5可以相互连接形成一个5至13元环,也可以相互独立存在;当R 4和R 5形成脂肪族环时,该环的原子数可以是5元环,例如
Figure PCTCN2021076332-appb-000017
也可以是6元环,例如
Figure PCTCN2021076332-appb-000018
还可以是10元环,例如
Figure PCTCN2021076332-appb-000019
当然,R 4和R 5相互连接形成的环上的原子数还可以为其他数值,此处不再一一列举。同时,R 4和R 5相互连接形成的环还可以是芳香环,例如13元芳环,
Figure PCTCN2021076332-appb-000020
可选地,本申请中,上述R 4和R 5成环的情况,连接于同一个原子上的R 4和R 5相互连接以与它们共同连接的原子形成饱和的5至10元脂肪族环或形成9~13元芳香环。
在一些实施方式,在式(I-1)中,L 4选自单键、取代或未取代的基团W 1,所述未取代的基团W 1选自如下基团组成的组:
Figure PCTCN2021076332-appb-000021
其中,所述W 1基团被一个或多个取代基所取代时,W 1的取代基各自独立地选自由氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的卤代烷基、碳原子数为3~9的三烷基硅基、碳原子数为3~10的环烷基、碳原子数为6~15的芳基和碳原子数为3~12的杂芳基所组成的组;所述W 1的取代基多于1个时,各个取代基相同或不同。
本申请中的“多个”指的是两个或两个以上。
在一些更具体的实施方式,在式(I-1)中,L 4为单键、或者如下基团中的任意一个:
Figure PCTCN2021076332-appb-000022
Figure PCTCN2021076332-appb-000023
在一些更具体的实施方式,在式(I-1)中,L 4为单键、或者如下基团中的任意一个:
Figure PCTCN2021076332-appb-000024
Figure PCTCN2021076332-appb-000025
L 4基团并不限于此。
在一些具体实施方式中,在式(I-1)中,L 4为单键或者选自取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚蒽基、取代或未取代的亚菲基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚芴基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚吡啶基、取代或未取代的亚咔唑基、取代或未取代的N-苯基咔唑亚基中的一种,或者为它们中两者或三者通过单键连接形成的基团。
可选地,所述L 4中的取代基彼此相同或不同,各自独立地选自氘、氟、氯、氰基、甲基、乙基、异丙基、正丙基、叔丁基、甲氧基、乙氧基、三氟甲基、三甲基硅基、苯基、萘基、喹啉、异喹啉基、吡啶基、环戊烷基、环己烷基所组成的组。
在一些更具体的实施方式中,在式(I-1)和式(I)中,各R 3独立地选自氘、氟、氯、氰基、碳原子数为1~4的卤代烷基、碳原子数为1~6的烷基、碳原子数为1~4的烷氧基、碳原子数为5~10的环烷基、碳原子数为1~4的烷硫基、碳原子数为3~9的三烷基硅基、碳原子数为6~12的芳基、碳原子数为5~12的杂芳基;n为0、1、2、3或4;当n大于1时,任意两个R 3相同或者不相同。
在一些更具体的实施方式中,在式(I-1)和式(I)中,各R 3独立地选自氘、氟、氰基、甲基、乙基、丙基、叔丁基、三氟甲基、甲氧基、乙氧基、异丙氧基、三甲基硅烷基、环戊基、环己基、苯基、吡啶基、喹啉基、异喹啉基、二苯并噻吩基、二苯并呋喃基,n为0、1、2、3或4;当n大于1时,任意两个R 3相同或者不相同。
在一些实施方式,在式(I)中,R 3选自环戊基、氟、氰基、氘、苯基、吡啶基、叔丁基、甲基、异丙基、三甲基硅基。
在一些实施方式,在式(I-1)中,Ar 3和Ar 4彼此相同或不同,且分别独立地选自由取代或未取代的碳原子数为6~33的芳基、取代或未取代的碳原子数为3~18的杂芳基所组成的组;Ar 3和Ar 4中的各取代基彼此相同或不同,各自独立地选自由氘、氟、氯、氰基、碳原子数为1~8的烷基、碳原子数为1~8 的卤代烷基、碳原子数为1~8的烷氧基、碳原子数为1~8的烷硫基、碳原子数为6~25的芳基、碳原子数为3~18的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的三烷基硅基和碳原子数为3~12的环烷基所组成的组;
Ar 3和Ar 4中,当同一原子上具有两个取代基时,任选地,两个所述取代基之间相互连接,以与它们所共同连接的原子一起形成5到13元脂肪族环或芳香环。
在一些实施方式,在式(I-1)中,所述Ar 3和Ar 4彼此相同或不同,各自独立地选自以下式(j-1)~式(j-16)所示的基团所组成的组:
Figure PCTCN2021076332-appb-000026
其中,M 1选自单键或者
Figure PCTCN2021076332-appb-000027
G 1~G 5各自独立地选自N或者C(F 1),且G 1~G 5中至少一个选自N;当G 1~G 5中的两个以上选自C(F 1)时,任意两个F 1相同或者不相同;
G 6~G 13各自独立地选自N或者C(F 2),且G 6~G 13中至少一个选自N;当G 6~G 13中的两个以上选自C(F 2)时,任意两个F 2相同或者不相同;
G 14~G 23各自独立地选自N或者C(F 3),且G 14~G 23中至少一个选自N;当G 14~G 23中的两个以上选 自C(F 3)时,任意两个F 3相同或者不相同;
G 24~G 33各自独立地选自N或者C(F 4),且G 24~G 33中至少一个选自N;当G 24~G 33中的两个以上选自C(F 4)时,任意两个F 4相同或者不相同;
H 1选自氢、氘、氟、氯、溴、氰基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基;
H 2~H 9、H 21各自独立地选自:氢、氘、氟、氯、溴、氰基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为1~10的烷硫基、碳原子数为3~18的杂芳基;
H 10~H 20、F 1~F 4各自独立地选自:氢、氘、氟、氯、溴、氰基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~18的芳基、碳原子数为3~18的杂芳基;
h 1~h 21以h k表示,H 1~H 21以H k表示,k为变量,表示1~21的任意整数,h k表示取代基H k的个数;其中,当k选自5或者17时,h k选自1、2或者3;当k选自2、7、8、12、15、16、18或者21时,h k选自1、2、3或者4;当k选自1、3、4、6、9或者14时,h k选自1、2、3、4或者5;当k为13时,h k选自1、2、3、4、5或者6;当k选自10或者19时,h k选自1、2、3、4、5、6或者7;当k为20时,h k选自1、2、3、4、5、6、7或者8;当k为11时,h k选自1、2、3、4、5、6、7、8或9;且当h k大于1时,任意两个H k相同或者不相同;
K 1选自O、S、N(H 22)、C(H 23H 24)、Si(H 23H 24);其中,H 22、H 23、H 24各自独立地选自:碳原子数为6~18的芳基、碳原子数为3~18的杂芳基、碳原子数为1~10的烷基或碳原子数为3~10的环烷基,或者上述连接于同一个原子上的H 23和H 24相互连接以与它们共同连接的原子形成5至13元脂肪族环或芳香环。
举例而言,式(j-10)
Figure PCTCN2021076332-appb-000028
中,当M 1为单键,H 19均为氢,K 2为单键,K 1为C(H 23H 24)时,任选地,H 23和H 24相互连接以与它们共同连接的原子形成5至13元脂肪族环或芳香环指的是:H 23和H 24可以相互连接形成一个环,也可以相互独立存在;当H 23和H 24形成环时,该环可以是5元脂肪族环,例如
Figure PCTCN2021076332-appb-000029
也可以是6元脂肪族环,例如
Figure PCTCN2021076332-appb-000030
还可以是13元芳香环,例如
Figure PCTCN2021076332-appb-000031
当然,H 23和H 24相互连接形成的环上的碳原子数还可以为其他数值,此处不再一一列举。
K 2选自单键、O、S、N(H 25)、C(H 26H 27)、Si(H 26H 27);其中,H 25、H 26、H 27各自独立地选自:碳原子数为6~18的芳基、碳原子数为3~18的杂芳基、碳原子数为1~10的烷基或碳原子数为3~10的环烷基。可选地,本申请中,R 1或R 2为式(j-10)时,上述R 23和R 24成环的情况,R 23和R 24相互连接以与它们共同连接的原子形成饱和的5至10元脂肪族环或形成9-13元芳香环。
在一些实施方式中,在式(I-1)中,所述Ar 3和Ar 4彼此相同或不同,且分别独立地选自取代或未取代的基团Y 1,所述未取代的基团Y 1选自如下基团:
Figure PCTCN2021076332-appb-000032
Figure PCTCN2021076332-appb-000033
所述Y 1基团被一个或多个取代基所取代时,Y 1的取代基各自独立地选自由氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的卤代烷基、碳原子数为3~9的三烷基硅基、碳原子数为3~10的环烷基、碳原子数为6~25的芳基和碳原子数为3~18的杂芳基所组成的组;所述Y 1的取代基多于1个时,各个取代基相同或不同。
示例性地,取代的基团Y 1上的取代基选自:甲基、氟、三甲基硅基、叔丁基、环己基、环戊基、氰基、氘、氯、苯基。
本申请中“多个”指的是两个或两个以上。
在一些实施方式,在式(I-1)中,所述Ar 3和Ar 4彼此相同或不同,且分别独立地选自以下基团:
Figure PCTCN2021076332-appb-000034
Figure PCTCN2021076332-appb-000035
在一种具体实施方式,在式(I-1)中,所述Ar 3和Ar 4可以各自独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的吡啶基、取代或未取代的嘧啶基、取代或未取代的1,4-二嗪基、取代或未取代的喹啉基、取代或未取代的咔唑基、取代或未取代的N-苯基咔唑基、取代或未取代的苝基、取代或未取代的芘基中的一种,或者为它们中任选两者或三者通过单键连接形成的亚基基团。
可选地,所述Ar 3和Ar 4中的取代基彼此相同或不同,独立地选自氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的卤代烷基、碳原子数为3~9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6~25的芳基和碳原子数为3~18的杂芳基所组成的组。
在一种具体实施方式,在式(I-1)中,Ar 3和Ar 4中的取代基彼此相同或不同,独立地选自氘、氟、氯、氰基、甲基、乙基、异丙基、正丙基、叔丁基、甲氧基、乙氧基、异丙氧基、三氟甲基、三甲基硅基、环戊基、环己基、金刚烷基、苯基、萘基、蒽基、菲基、二联苯基、三联苯基、芴基、9,9-二甲基 芴基、螺二芴基、二苯并呋喃基、二苯并噻吩基、吡啶基、嘧啶基、1,4-二嗪基、喹啉基、异喹啉基、咔唑基、N-苯基咔唑基、苝基所组成的组。
在一些更具体的实施方式,在式(I-1)中,Ar 3和Ar 4彼此相同或不同,且分别独立地选自以下基团:
Figure PCTCN2021076332-appb-000036
Figure PCTCN2021076332-appb-000037
但Ar 3和Ar 4并不限于此。
在一种具体实施方式,在式(I-1)中,Ar 3和Ar 4可以各自独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的N-苯基咔唑基、取代或未取代的苝基、取代或未取代的芘基中的一种,或者为它们中两者或三者通过单键连接形成的基团。
可选地,在式(I-1)中,Ar 3和Ar 4中的取代基彼此相同或不同,独立地选自氘、氟、氯、氰基、甲基、乙基、异丙基、正丙基、叔丁基、三甲基硅基、苯基、萘基、蒽基、菲基、二联苯基、三联苯基、芴基、9,9-二甲基芴基、螺二芴基、二苯并呋喃基、二苯并噻吩基、吡啶基、咔唑基、N-苯基咔唑基所组成的组。
在一些实施方式,在式(I)中,R 1为碳原子数6~14的取代或未取代的芳基,R 2选自碳原子数6~14的取代或未取代的芳基、碳原子数1~6的取代或未取代的烷基;所述R 1和R 2上的取代基相同或不同,各自独立地选自氘、氰基、卤素基团或碳原子数1~4的烷基;
在一些实施方式,在式(I)中,R 1选自苯基或萘基,R 2选自苯基、萘基、碳原子数为1~4的烷基、三氟甲基或三氘代甲基。
在一些实施方式,在式(I)中,所述Ar 1和Ar 2彼此相同或不同,且分别独立地选自碳原子数为6~25的取代或未取代的芳基、碳原子数为5~25的取代或未取代的杂芳基;其中Ar 1、Ar 2中的各取代基彼此相同或不同,各自独立地选自氘、卤素基团、氰基、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为6~14的芳基、碳原子数为5~12的杂芳基、三甲基硅烷基和碳原子数为5~10的环烷基;在Ar 1和Ar 2中,当同一原子上具有两个取代基时,任选地,两个所述取代基之间相互连接,以与它们所共同连接的原子一起形成环戊烷、环己烷、二环庚烷、金刚烷或芴环。
在一些实施方式中,碳原子数为6~30的取代或未取代的芳基包括但不限于:取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的芘基、取代或未取代的苝基、取代或未取代的三亚苯基、取代或未取代的芴基、取代或未取代的螺二芴基。
在一些实施方式中,碳原子数为5~25的取代或未取代的杂芳基包括但不限于取代或未取代的二苯并噻吩基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的吡啶基、取代或未取代的喹啉基、取代或未取代的异喹啉基。
在一些实施方式中,Ar 1、Ar 2中的各取代基彼此相同或不同,各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、环己基、环戊基、氰基、苯基、萘基、吡啶基、喹啉基。
在一些实施方式,在式(I)中,所述Ar 1和Ar 2彼此相同或不同,且分别独立地选自取代或未取代的基团Y 2,所述未取代的基团Y 2选自如下基团:
Figure PCTCN2021076332-appb-000038
所述Y 2基团被一个或多个取代基所取代时,Y 2的取代基各自独立地选自由氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、环己基、环戊基、氰基、苯基、萘基、吡啶基、喹啉基、芴基所组成的组;所述Y 2的取代基多于1个时,各个取代基相同或不同。
在一些实施方式,在式(I)中,其中所述Ar 1和Ar 2彼此相同或不同,且分别独立地选自如下基团:
Figure PCTCN2021076332-appb-000039
Figure PCTCN2021076332-appb-000040
在一些实施方式,在式(I)中,其中,L 1、L 2和各L 3分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚萘基、取代或未取代的9,9-二甲基芴亚基、取代或未取代的亚二苯并呋喃基、取代或未取代亚二苯并噻吩基、取代或未取代的亚咔唑基、取代或未取代的N-苯基咔唑亚基、取代或未取代的亚吡啶基、取代或未取代的亚喹啉基、取代或未取代的亚菲基、取代或未取代的亚蒽基中的一种,或者为上述亚基中两者或三者通过单键连接所形成的新的亚基基团。
在一些实施方式,在式(I)中,其中,所述L 1、L 2和L 3中的取代基彼此相同或不同,且各自独立地选自由氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、环己基、环戊基、氰基、苯基、萘基、吡啶基所构成的组。
在一些实施方式,在式(I)中,L 1、L 2分别独立地选自单键、取代或未取代的基团W 2,所述未取代的基团W 2选自如下基团:
Figure PCTCN2021076332-appb-000041
所述W 2基团被一个或多个取代基所取代时,W 2的取代基各自独立地选自由氘、氟、氯、氰基、氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、环己基、环戊基、氰基、苯基、萘基、吡啶基、喹啉基所组成的组;所述W 2的取代基数目多于1个时,各个取代基相同或不同。
在一些实施方式,在式(I)中,L 1、L 2选自单键、或者如下基团中的任意一个:
Figure PCTCN2021076332-appb-000042
Figure PCTCN2021076332-appb-000043
在一些实施方式,在式(I)中,
Figure PCTCN2021076332-appb-000044
选自单键、取代或未取代的基团W 3,所述未取代的基团W 3选自如下基团:
Figure PCTCN2021076332-appb-000045
所述W 3基团被一个或多个取代基所取代时,W 3的取代基各自独立地选自由氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、环己基、环戊基、氰基、苯基、萘基、吡啶基、喹啉基所组成的组;所述W 3的取代基数目多于1个时,各个取代基相同或不同。
在一些实施方式,在式(I)中,
Figure PCTCN2021076332-appb-000046
选自单键、或者如下基团中的任意一个:
Figure PCTCN2021076332-appb-000047
Figure PCTCN2021076332-appb-000048
在一些实施方式,在式(I)中,L 1和L 2为单键。
在一些实施方式,在式(I)中,L 1、L 2选自单键、或者如下基团中的任意一个:
Figure PCTCN2021076332-appb-000049
本申请的含氮有机化合物选自权利要求22中的化合物。
本申请还提供一种电子器件,用于实现光电转换或者电光转化。所述电子器件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含本申请的有机化合物。
举例而言,电子器件为一种有机电致发光器件。如图1所示,如图1所示,该有机电致发光器件可以包括阳极100、阴极200以及功能层300,其中:该阳极100和阴极200相对设置。该功能层300设于所述阳极100和所述阴极200之间。该功能层300包含上述任一实施方式所述的含氮有机化合物。
如图1所示,阳极100可以是金属、合金或金属氧化物等,例如,其可以是镍、铂、钒、铬、铜、锌、金或它们的合金,也可以是氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);阳极100材料还可以是其他,例如,还可以是组合物,如:ZnO:Al、SnO 2:Sb、导电聚合物(聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺),当然,阳极100材料不仅限于此,还可以是其他材料,在此不再一一列举。可选地,阳极100材料可以是氧化铟锡(ITO,indium tin oxide)。
如图1所示,阴极200可以是金属或合金材料,例如,其可以是镁、钙、钠、钾、钛、铝、银、或它们的合金,也可以是多层材料,如:LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF2/Ca,当然,阴极200的材料不仅限于此,还可以是其他材料,在此不再一一列举。可选地,阴极200材料可以是铝。
如图1所示,所述功能层300可以包括空穴传输层320、发光层330和电子传输层350。其中,所述发光层330设于所述空穴传输层320远离所述阳极100的一侧。所述电子传输层350设于所述发光层330靠近所述阴极200的一侧。
如图1所示,发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,发光层330由主体材料和客体材料组成,注入发光层330的空穴和注入发光层330的电子可以在发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
如图1所示,发光层330的主体材料可以为金属螯合化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。本申请对此不做特殊的限制。在本发明的一种实施方式中,发光层330的主体材料可以为CBP。在本发明的另一种实施方式中,发光层330的主体材料可以为α,β-ADN。
如图1所示,发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本发明的一种实施方式中,发光层330的客体材料可以为Ir(piq) 2(acac)。如图1所示,电子传输层350可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输层可以使用TPBi和LiQ以1:1的膜厚比进行共蒸镀。
如图1所示,所述功能层300还可以包括空穴注入层310。所述空穴注入层310可以设于所述空穴传输层320与所述阳极100之间。
所述功能层300还可以包括电子阻挡层。所述电子阻挡层可以设于空穴传输层320与发光层330之间。
如图1所示,所述功能层300还可以包括电子注入层360。所述电子注入层360可以设于电子传输层350与阴极200之间。
此外,如图1所示,所述空穴传输层320可以包括第一空穴传输层3201和第二空穴传输层3202。所述第一空穴传输层3201或第二空穴传输层3202包含本申请所述有机化合物。其中,所述第一空穴传输层3201覆盖于所述空穴注入层310,所述第二空穴传输层3202设于所述第一空穴传输层3201远离所述空穴注入层310的一侧。优选地,本申请化合物用于第二空穴传输层.
在另一实施方式中,该电子器件为太阳能电池。如图2所示,该太阳能电池可以包括阳极100、阴极200以及功能层300,其中:
该阳极100和阴极200相对设置。该功能层300设于所述阳极100和所述阴极200之间。该功能层300包含上述任一实施方式所述的有机化合物。
下面对本申请实施方式的太阳能电池的各部分进行详细说明:
如图2所示,所述功能层300可以包括空穴传输层320、光电转化层370和电子传输层350。其中,所述光电转化层370设于所述空穴传输层320远离所述阳极100的一侧。所述电子传输层350设于所述光电转化层370靠近所述阴极200的一侧。所述空穴传输层320包含本发明所述的有机化合物。
所述功能层300还可以包括电子阻挡层。所述电子阻挡层可以设于空穴传输层320与光电转化层370之间。
一种具体实施方式中,该太阳能电池可以为有机薄膜太阳能电池。
本发明的电子器件基于本发明的有机化合物的优异性能,采用该化合物作为功能层材料得到的电子器件具有较高的发光效率和延长的器件寿命。
再举例而言,如图3所示,本申请提供一种电子装置400,该电子装置400包括上述光电转化器件实施方式所描述的任意一种光电转化器件。该电子装置400可以为太阳能发电设备、光检测器、指 纹识别设备、光模块、CCD相机或则其他类型的电子装置。由于该电子装置400具有上述光电转化器件实施方式所描述的任意一种光电转化器件,因此具有相同的有益效果,本申请在此不再赘述。
实施例
下文中,将参照实施例详细描述本发明。然而,根据本说明书的实施例可被修改成各种其他形式,并且本说明书的范围不解释为受限于以下描述的实施例。提供本说明书的实施例是为了更完整地向本领域技术人员描述本说明书。
所属领域的专业人员将认识到:本发明所描述的化学反应可以用来合适地制备许多本发明的其他化合物,且用于制备本发明的化合物的其它方法都被认为是在本发明的范围之内。例如,根据本发明那些非例证的化合物的合成可以成功地被所属领域的技术人员通过修饰方法完成,如适当的保护干扰基团,通过利用其他已知的试剂除了本发明所描述的,或将反应条件做一些常规的修改。另外,本发明所申请的反应或已知的反应条件也公认地适用于本发明其他化合物的制备。
下面所描述的实施例,除非其他方面表明所有的温度定为摄氏度。试剂购买于商品供应商如Aldrich Chemical Company,Arco Chemical Company and Alfa ChemicalCompany,使用时都没有经过进一步纯化,除非其他方面表明。一般的试剂从汕头西陇化工厂、广东光华化学试剂厂、广州化学试剂厂、天津好寓宇化学品有限公司、天津市福晨化学试剂厂、武汉鑫华远科技发展有限公司、青岛腾龙化学试剂有限公司和青岛海洋化工厂购买得到。原料来自商业采购,供应商例如河南创安光电科技有限公司等。
下反应一般是在氮气或氩气正压下或在无水溶剂上套一干燥管(除非其他方面表明),反应瓶都塞上合适的橡皮塞,底物通过注射器打入。玻璃器皿都是干燥过的。
色谱柱是使用硅胶柱。硅胶(80~120目)购于青岛海洋化工厂。
低分辨率质谱(MS)数据的测定条件是:Agilent 6120四级杆HPLC-M(柱子型号:Zorbax SB-C18,2.1×30mm,3.5微米,6min,流速为0.6mL/min。流动相:5%-95%(含0.1%甲酸的CH 3CN)在(含0.1%甲酸的H 2O)中的比例),采用电喷雾电离(ESI),在210nm/254nm下,用UV检测。
核磁共振氢谱:布鲁克(Bruker)400MHz核磁仪,室温条件下,以CD 2Cl 2为溶剂(以ppm为单位),用TMS(0ppm)作为参照标准。当出现多重峰的时候,将使用下面的缩写:s(singlet,单峰)、d(doublet,双峰)、t(triplet,三重峰)、m(multiplet,多重峰)。
(一)合成例
1、中间体I的制备:
a、中间体I-A1的合成
步骤(1):中间体I-1-A的合成
Figure PCTCN2021076332-appb-000050
将2-碘苯甲酸甲酯(10.0g,38.2mmol)、4-氯-2-甲氧基苯硼酸(7.83g,42.0mmol)、碳酸钾(10.54g,76.4mmol)、四丁基溴化铵(1.27g,3.82mmol)、甲苯(50mL)、乙醇(30mL)和去离子水(20mL)加入三口烧瓶中,氮气保护下搅拌15min后加入四三苯基膦钯(0.44g,0.0382mmol)并升温至75-80℃,搅拌5小时;将反应液冷却至室温,加入甲苯(100mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,将有机相减压除去溶剂,残留物直接用快速硅胶柱色谱纯化,浓缩得到黄色油状物中间体I-1-A(9.50g,90%)。
步骤(2):中间体I-1-B的合成
Figure PCTCN2021076332-appb-000051
将中间体I-1-A(5.54g,20mmol)和四氢呋喃(55mL)加入三口烧瓶中并开使搅拌,在氮气保护下缓慢滴加3M的甲基溴化镁的THF溶液(20mL,60mmol),滴加完毕后在室温下搅拌1h,随后升温至60-66℃并且搅拌进行反应6h;将反应液冷却至室温,加入二氯甲烷(110mL)、搅拌下缓慢加入去离子水(55mL),再缓慢加入1mol/L的稀盐酸(55mL),在搅拌后静置分液,将有机相使用无水硫酸镁进行干燥,过滤,减压除去溶剂;得到淡黄色油状物中间体I-1-B(5g,90.25%)。
步骤(3):中间体I-A1的合成
Figure PCTCN2021076332-appb-000052
将中间体I-1-B(5g,18mmol)和乙腈(50mL)加入三口烧瓶中,开始搅拌并使体系降温至0-10℃,然后滴加1M的三溴化硼的二氯甲烷溶液(18mL,18mmol),将温度控制在0-10℃,1h后将体系自然升至室温,搅拌约5h;而后向反应液中加入去离子水(50mL)、二氯甲烷(50mL),分液,将有机相用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得黄色油状粗品使用正庚烷进行硅胶柱色谱提纯,得到白色固体状中间体I-A1(3g,68.0%)。
GC-MS(pos.ion)m/z:244.10[M] +
H 1NMR(400MHz,CDCl 3):δ7.74-7.71(m,2H),7.40-7.37(m,2H),7.30(d,1H),7.05(dd,1H),6.99(d,1H),1.66(s,6H)ppm。
在以下的中间体I-A中,除了使用原料1代替上述步骤(1)中的2-碘苯甲酸甲酯、使用原料2代替步骤(1)中的4-氯-2-甲氧基苯硼酸外,其余步骤(2)~(3)采用与中间体I-A1相同的合成方式制备包括但不限定于如下表1中的中间体I-A2~中间体I-A9:
表1:
Figure PCTCN2021076332-appb-000053
Figure PCTCN2021076332-appb-000054
b、中间体I-B1、I-B2的合成:
(1)中间体I-B1的合成:
步骤(1):
Figure PCTCN2021076332-appb-000055
将中间体I-A1(2.5g,10.22mmol)、联硼酸频那醇酯(3.37g,13.28mmol)、三(二亚苄基丙酮)二钯(0.094g,0.10mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.15g,0.31mmol)、醋酸钾(2.51g,25.54mmol)和1,4-二氧六环(25mL)加入三口圆底烧瓶中,氮气保护下加热至80℃,搅拌3h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到固体中间体I-B1-A(2.8g,收率81.5%)。
步骤(2):
Figure PCTCN2021076332-appb-000056
将中间体I-B1-A(2.8g,8.33mmol)、4-氯-碘苯(1.99g,8.33mmol)、醋酸钯(0.0187g,0.0833mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.08g,0.17mmol)、碳酸钾(2.30g,16.65mmol)、甲苯(15mL)、无水乙醇(10mL)和去离子水(5mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌4h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到固体中间体I-B1(2.3g,收率83.6%)。
(2)中间体I-B2的合成:
步骤(1):
Figure PCTCN2021076332-appb-000057
将中间体I-A2(2.5g,10.22mmol)、联硼酸频那醇酯(3.37g,13.28mmol)、三(二亚苄基丙酮)二钯(0.094g,0.10mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.15g,0.31mmol)、醋酸钾(2.51g,25.54mmol)和1,4-二氧六环(25mL)加入三口圆底烧瓶中,氮气保护下加热至80℃,搅拌3h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到固体中间体I-B2-A(2.9g,收率84.5%)。
步骤(2):
Figure PCTCN2021076332-appb-000058
将中间体I-B2-A(2.8g,8.33mmol)、3,6-二溴-二苯并噻吩(2.71g,8.33mmol)、醋酸钯(0.0187g,0.0833mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.08g,0.17mmol)、碳酸钾(2.30g,16.65mmol)、甲苯(15mL)、无水乙醇(10mL)和去离子水(5mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌4h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到固体中间体I-B2(2.95g,收率77.8%)。
参照中间体I-B1的合成过程合成下表中的中间体I-B,在以下的中间体I-B中,除了使用中间体I-A(I-A选自I-A2到I-A9中的部分或全部)代替步骤(1)中的中间体I-A1、使用原料3代替步骤(1)中的对氯碘苯外,采用与中间体I-B1相同的合成途径制备包括但不限定于如下表2中的中间体I-B:
表2:
Figure PCTCN2021076332-appb-000059
Figure PCTCN2021076332-appb-000060
2、中间体II的制备:
以中间体II-1的合成为例
Figure PCTCN2021076332-appb-000061
将4-溴联苯(5.0g,21.0mmol)、4-氨基联苯(3.63g,21.45mmol)、三(二亚苄基丙酮)二钯(0.20g,0.21mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.20g,0.42mmol)以及叔丁醇钠(3.09g,32.18mmol)加入甲苯(80mL)中,在氮气保护下加热至108℃,搅拌2h,随后冷却至室温,将反应液 使用水洗涤后,分液,将有机相用无水硫酸镁进行干燥,,过滤后将滤液减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到淡黄色固体中间体II-1(5.61g,81.5%)。
以下的中间体II合成时参照中间体II-1的合成方法,除了使用原料4代替4-溴联苯、使用原料5代替4-氨基联苯外,采用与中间体II-1相同的合成途径制备包括但不限定于如下表3中的中间体II:
表3:
Figure PCTCN2021076332-appb-000062
Figure PCTCN2021076332-appb-000063
Figure PCTCN2021076332-appb-000064
Figure PCTCN2021076332-appb-000065
Figure PCTCN2021076332-appb-000066
Figure PCTCN2021076332-appb-000067
二、化合物的合成:
a、化合物P1的合成:
Figure PCTCN2021076332-appb-000068
将中间体I-A1(3g,12.26mmol)、中间体Ⅱ-1(3.94g,12.26mmol)、三(二亚苄基丙酮)二钯(0.224g,0.245mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.20g,0.49mmol)以及叔丁醇钠(1.77g,18.39mmol)加入甲苯(40mL)中,在氮气保护下加热至108℃,搅拌3h,而后冷却至室温,将反应液用水洗涤后分液,再将有机相用无水硫酸镁进行干燥,过滤后将滤液减压除去溶剂;使用甲苯对粗品进行重结晶提纯,得到白色固体化合物P1(4.02g,62.0%)。
质谱LC-MS(ESI,pos.ion):m/z=530.3[M+H] +
1HNMR(400MHz,CDCl 3,):7.66(d,1H),7.62-7.59(m,5H),7.52(d,4H),7.43(t,4H),7.34-7.31(m,3H),7.25-7.22(m,6H),6.82(dd,1H),6.74(d,1H),1.64(s,6H)。
化合物P451的合成:
Figure PCTCN2021076332-appb-000069
将中间体I-A1(4g,16.34mmol)、中间体Ⅱ-17(9.74g,16.34mmol)、三(二亚苄基丙酮)二钯(0.149g,0.163mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.134g,0.327mmol)以及叔丁醇钠(2.35g,24.51mmol)加入甲苯(100mL)中,在氮气保护下加热至108℃,搅拌3h,而后冷却至室温,将反应液用水洗涤后分液,再将有机相用无水硫酸镁进行干燥,过滤后将滤液减压除去溶剂;使用甲苯对粗品进行重结晶提纯,得到白色固体化合物P451(8.2g,62.4%)。
质谱LC-MS(ESI,pos.ion):m/z=804.5[M+H] +
化合物P3、P7、P9、P23、P24、P26、P32、P48、P53、P59、P64、P73、P77、P89、P93、P105、P118、P131、P144、P151、P390的合成可以参考化合物1的合成方法,所使用原料来自商业采购,供应商例如河南创安光电科技有限公司等。在以下的实施例中,除了使用表4中的中间体II列中的中间体II-10、II-18~II-37代替上述反应中的中间体II-1可制备如下化合物:
表4:
Figure PCTCN2021076332-appb-000070
Figure PCTCN2021076332-appb-000071
Figure PCTCN2021076332-appb-000072
Figure PCTCN2021076332-appb-000073
b、化合物P443的合成:
Figure PCTCN2021076332-appb-000074
将中间体I-B2(2.5g,5.49mmol)、中间体Ⅱ-2(1.62g,5.49mmol)、三(二亚苄基丙酮)二钯(0.05g,0.05mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.045g,0.11mmol)以及叔丁醇钠(0.79g,8.23mmol)加入甲苯(30mL)中,在氮气保护下加热至108℃,搅拌3h,而后冷却至室温,将反应液用水洗涤后分液,再将有机相用无水硫酸镁进行干燥,过滤后将滤液减压除去溶剂;使用甲苯对粗品进行重结晶提纯,得到白色固体化合物P443(2.4g,65.2%)。
LC-MS(ESI,pos.ion))m/z:670.3[M+H] +
参照化合物P443的合成方法,可以制备化合物P402、P338、P409、P356、P415、P371、P373、P391、P444、P445、P446、P447、P448、P449、P450,除了使用表5中的中间体I(I-A及I-B类)代替P443合成中的中间体I-B2、使用中间体II列化合物代替中间体II-2外,采用与化合物P443相同的合成方法制备包括但不限定于如下表5中的化合物:
表5:
Figure PCTCN2021076332-appb-000075
Figure PCTCN2021076332-appb-000076
Figure PCTCN2021076332-appb-000077
c.化合物P172的合成:
Figure PCTCN2021076332-appb-000078
将溴苯(10.0g,38.0mmol),4-氨基联苯(7.07g,41.8mmol),三(二亚苄基丙酮)二钯(0.35g,0.38mmol),2-二环己基磷-2’,4’,6’-三异丙基联苯(0.36g,0.76mmol)以及叔丁醇钠(5.48g,57.0mmol)加入甲苯(80mL)中,在氮气保护下加热至108℃,搅拌2h;随后冷却至室温,将反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到淡黄色固体中间体II-38(11.5g,86%)。
Figure PCTCN2021076332-appb-000079
将中间体I-B1(6.0g,18.7mmol)、中间体Ⅱ-38(4.59g,18.7mmol)、三(二亚苄基丙酮)二钯(0.342g,0.374mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.31g,0.748mmol)以及叔丁醇钠(2.70g,28.05mmol)加入甲苯(60mL)中,在氮气保护下加热至105-110℃,搅拌8h;随后冷却至室温,将反应液使用水洗,分出有机相用无水硫酸镁干燥,在过滤后将滤液减压除去溶剂;使用甲苯对粗品进行重结晶提纯,得到白色固体化合物P172(6.53g,65.96%)。
LC-MS(ESI,pos.ion)m/z:530.3[M+H] +
参照化合物172的合成方法可以制备化合物P204、P220、P247、P252、P276、P286,除了使用表6中的原料3代替步骤(1)中的4-氨基联苯、使用原料4代替溴苯外,采用与合成化合物P172相同的合成方法制备如下化合物:
表6:
Figure PCTCN2021076332-appb-000080
d.化合物P455的制备
Figure PCTCN2021076332-appb-000081
将中间体I-B1-A(2.8g,8.33mmol)、3-氯-碘苯(1.99g,8.33mmol)、醋酸钯(0.0187g,0.0833mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.08g,0.17mmol)、碳酸钾(2.30g,16.65mmol)、甲苯(15mL)、无水乙醇(10mL)和去离子水(5mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌4h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到固体中间体I-B10(2.3g,收率83.6%)。
Figure PCTCN2021076332-appb-000082
将中间体I-B10(6.0g,18.7mmol)、中间体Ⅱ-19(4.59g,18.7mmol)、三(二亚苄基丙酮)二钯(0.342g,0.374mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.31g,0.748mmol)以及叔丁醇钠(2.70g,28.05mmol)加入甲苯(60mL)中,在氮气保护下加热至105-110℃,搅拌8h;随后冷却至室温,将反应液使用水洗,分出有机相加入硫酸镁干燥,过滤,将滤液减压除去溶剂;使用甲苯对粗品进行重结晶提纯,得到白色固体化合物P455(6.53g,65.96%)。
LC-MS(ESI,pos.ion)m/z:530.3[M+H] +
4.中间体Q-I的合成
a、中间体Q-I-A1的合成
步骤(1):中间体I-A1-1#的合成
Figure PCTCN2021076332-appb-000083
将2-碘苯甲酸甲酯(20.0g,76.34mmol)、4-氯-2-甲氧基苯硼酸(17.07g,91.60mmol)、碳酸钾(23.21g,167.94mmol)、四丁基溴化铵(4.93g,15.27mmol)、甲苯(120mL)、乙醇(50mL)和去离子水(20mL)加入三口烧瓶中,氮气保护下搅拌30min后加入四(三苯基膦)钯(1.76g,1.53mmol)并升温至75-80℃,搅拌5小时;将反应液冷却至室温,加入甲苯(100mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,将有机相减压除去溶剂,残留物直接用快速硅胶柱色谱纯化,减压蒸馏除去溶剂得到黄色油状物中间体I-A1-1#(18.5g,收率为87.8%)。
步骤(2):中间体I-A1-2#的合成
Figure PCTCN2021076332-appb-000084
将中间体I-A1-1#(18.0g,65.05mmol)和四氢呋喃(THF)(150mL)加入三口烧瓶中并开启搅拌,在氮气保护下缓慢滴加3M(mol/L)的苯基溴化镁的THF溶液(55mL,165.0mmol),滴加完毕后在室温下搅拌1h,随后升温至60-66℃并且搅拌进行反应6h;将反应液冷却至室温,加入二氯甲烷(220mL)、搅拌下缓慢加入去离子水(110mL),再缓慢加入1mol/L的稀盐酸(30mL),继续搅拌30min后静置分液,将有机相用无水硫酸镁进行干燥,过滤,减压除去溶剂;然后采用干法柱层析提纯得到淡黄色油状物中间体I-A1-2#(19.61g,收率为75.2%)。
步骤(3):中间体Q-I-A1的合成
Figure PCTCN2021076332-appb-000085
将中间体I-A1-2#(19.2g,47.89mmol)和乙腈(150mL)加入三口烧瓶中,开始搅拌并使体系降温至0-10℃,然后滴加1M的三溴化硼的二氯甲烷溶液(120mL,120mmol),将温度控制在0-10℃,1h后将体系自然升至室温,搅拌约6h;而后向反应液中加入去离子水(150mL)、二氯甲烷(150mL),分液,将有机相用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得黄色油状粗品使用正庚烷进行硅胶柱色谱提纯,得到白色固体状中间体Q-I-A1(11.64g,收率为65.90%)。
GC-MS(pos.ion)m/z:369.10[M] +
(4):中间体Q-I-B1的合成
按照与中间体Q-I-A1合成方法相同的方法制备中间体Q-I-B1,不同之处在于步骤(2)将原料格式试剂替换苯基溴化镁为甲基溴化镁,其他步骤原料与产物与中间体Q-I-A1合成方法相同,其制备反应过程如下所示:
Figure PCTCN2021076332-appb-000086
在以下的Q-I-A系列与Q-I-B系列中间体的制备过程中,除了使用原料Q1代替上述步骤(1)中的2-碘苯甲酸甲酯、使用原料Q2代替步骤(1)中的4-氯-2-甲氧基苯硼酸外,其余步骤(2)~(3)采用与中间体Q-I-A1相同的合成方式制备包括但不限定于如下表7中的中间体Q-I-A2~Q-I-A10,或采用与中间体Q-I-B1相同的合成方法制备包括但不限于下表7中的Q-I-B2~Q-I-B9:
表7:部分中间体的结构和编号
Figure PCTCN2021076332-appb-000087
Figure PCTCN2021076332-appb-000088
c、中间体Q-I-C的合成:
(1)中间体Q-I-C1的合成:
步骤(1):
Figure PCTCN2021076332-appb-000089
将中间体Q-I-A1(7.54g,20.44mmol)、联硼酸频那醇酯(6.74g,26.56mmol)、三(二亚苄基丙酮)二钯(0.11g,0.2mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.3g,0.62mmol)、醋酸钾(5.02g,51.08mmol)和1,4-二氧六环(50mL)加入三口圆底烧瓶中,氮气保护下加热至80℃,搅拌3h;而后冷却至室温, 反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到固体中间体Q-I-C1-a(6.9g,收率73.4%)。
步骤(2):
Figure PCTCN2021076332-appb-000090
将中间体Q-I-C1-a(6.5g,14.12mmol)、4-氯-碘苯(3.37g,14.12mmol)、醋酸钯(0.032g,0.14mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.39g,2.82mmol)、碳酸钾(4.29g,31.06mmol)、甲苯(70mL)、无水乙醇(35mL)和去离子水(15mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌4h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到固体中间体Q-I-C1(4.44g,收率70.7%)。
(2)中间体Q-I-C2的合成:
步骤(1)
Figure PCTCN2021076332-appb-000091
采用与中间体Q-I-C1合成例步骤(1)相同的方法合成中间体Q-I-C2-a,不同之处在于用中间Q-I-B7代替中间体Q-I-A1得到固体中间体Q-I-C2-a(6.8g,收率为77.5%)。
步骤(2)
Figure PCTCN2021076332-appb-000092
将中间体Q-I-C2-a(6.4g,16.07mmol)、3,6-二溴-二苯并噻吩(6.28g,19.28mmol)、醋酸钯(0.036g,0.16mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.15g,0.32mmol)、碳酸钾(4.88g,35.35mmol)、甲苯(50mL)、无水乙醇(25mL)和去离子水(15mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌4h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到固体中间体Q-I-C2(5.43g,收率65.30%)。
参照中间体Q-I-C1的合成过程合成下表中的中间体Q-I-C,在以下的中间体Q-I-C中,除了使用中间体Q-I-A系列(Q-I-A选自Q-I-A2到Q-I-A9,或Q-I-B1到Q-I-B9中的部分或全部)代替步骤(1)中的中间体Q-I-A1、使用原料Q3代替步骤(1)中的对氯碘苯外,采用与中间体Q-I-C1相同的合成途径制备包括但不限定于如下表8中的中间体Q-I-C:
表8:部分中间体的结构和编号
Figure PCTCN2021076332-appb-000093
Figure PCTCN2021076332-appb-000094
5.中间体Q-II的制备:
以中间体Q-II-2的合成为例
Figure PCTCN2021076332-appb-000095
将4'-溴-1,1':3',1”-三联苯(12.9g,42mmol)、4-氨基联苯(3.63g,21.45mmol)、三(二亚苄基丙酮)二钯(0.20g,0.21mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.20g,0.42mmol)以及叔丁醇钠(3.09g,32.18mmol)加入甲苯(80mL)中,在氮气保护下加热至108℃,搅拌2h,随后冷却至室温,将反应液使用水洗涤后,分液,将有机相用无水硫酸镁进行干燥,,过滤后将滤液减压除去溶剂;使用二氯甲烷/ 乙酸乙酯体系对粗品进行重结晶提纯,得到淡黄色固体中间体Q-II-2(6.9g,81.5%)。
以下表9中的中间体II合成时参照中间体Q-II-2的合成方法,除了使用原料Q4代替4-溴联苯、使用原料Q5代替4-氨基联苯外,采用与中间体Q-II-1相同的合成途径制备包括但不限定于如下表9中的中间体Q-II:
表9:部分中间体的结构和编号
Figure PCTCN2021076332-appb-000096
Figure PCTCN2021076332-appb-000097
Figure PCTCN2021076332-appb-000098
6.化合物的合成:
a、化合物Q1的合成:
Figure PCTCN2021076332-appb-000099
将中间体Q-I-A1(4.52g,12.26mmol)、中间体Ⅱ-1(3.94g,12.26mmol)、三(二亚苄基丙酮)二钯(0.224g,0.245mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.20g,0.49mmol)以及叔丁醇钠(1.77g,18.39mmol)加入甲苯(40mL)中,在氮气保护下加热至108℃,搅拌3h,而后冷却至室温,将反应液用水洗涤后分液,再将有机相用无水硫酸镁进行干燥,过滤后将滤液减压除去溶剂;使用甲苯对粗品进行重结晶提纯,得到白色固体化合物Q1(4.7g,收率为58.6%)。
质谱LC-MS(ESI,pos.ion):m/z=654.3[M+H] +
1HNMR(400MHz,CD 2Cl 2):7.73(d,1H),7.68(d,1H),7.65-7.59(m,8H),7.57-7.49(m,11H),7.41-7.32(m,7H),7.24(t,1H),7.15(d,4H),7.08(dd,1H),6.98(s,1H).
化合物Q48的合成:
Figure PCTCN2021076332-appb-000100
将中间体Q-I-B1(3.33g,10.84mmol)、中间体Q-Ⅱ-4(6.46g,10.84mmol)、三(二亚苄基丙酮)二钯(0.1g,0.163mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.1g,0.217mmol)以及叔丁醇钠(1.56g,16.27mmol)加入甲苯(50mL)中,在氮气保护下加热至108℃,搅拌3h,而后冷却至室温,将反应液用水洗涤后分液,再将有机相用无水硫酸镁进行干燥,过滤后将滤液减压除去溶剂;使用甲苯对粗品进行重结晶提纯,得到白色固体化合物Q48(5.58g,59.4%)。
质谱LC-MS(ESI,pos.ion):m/z=866.4[M+H] +
1HNMR(400MHz,CD 2Cl 2):7.92(d,1H),7.78(d,1H),7.65(d,2H),7.59-7.46(m,11H),7.44-7.32(m,10H),7.26(t,1H),7.19(s,2H),7.16(d,1H),7.12(dd,1H),7.09(s,1H),7.07(d,1H),7.04(dd,1H),6.96(s,1H),1.68(s,3H),1.27(s,18H).
表10中的化合物的合成可以参考化合物Q1的合成方法,所使用原料来自商业采购,供应商例如河南创安光电科技有限公司等。在以下的实施例中,参照化合物Q1的合成方法,分别使用表7~表8中的中间体Q-I代替上述反应中的中间体Q-I-A1,使用表9中的中间体Q-II代替中间体Q-II-1,可制备表10中所示的化合物:
表10部分化合物的结构和原料
Figure PCTCN2021076332-appb-000101
Figure PCTCN2021076332-appb-000102
Figure PCTCN2021076332-appb-000103
Figure PCTCN2021076332-appb-000104
Figure PCTCN2021076332-appb-000105
上表中化合物Q12与化合物Q437的核磁数据:
化合物Q12: 1H NMR(400Hz,CD 2Cl 2):7.68(d,1H),7.64-7.52(m,9H),7.49-7.38(m,12H),7.36-7.24(m,11H),7.13-7.11(t,1H),7.04(d,1H),6.95(d,2H),6.92(dd,1H),6.84(s,1H).
化合物Q437: 1H NMR(400Hz,CD 2Cl 2):7.88-7.76(m,3H),7.72-7.65(m,4H),7.62(d,1H),7.54-7.50(t,1H),7.49-7.40(m,7H),7.36-7.25(m,13H),7.18(d,1H),7.15-7.07(m,4H),7.05-7.1(d,1H),6.97-6.95(d,2H),6.89-6.85(d,2H),6.84-6.82(dd,1H).
有机电致发光装置的制备实施例
器件实施例1:红色有机电致发光装置
通过以下过程制备阳极:将厚度为
Figure PCTCN2021076332-appb-000106
的ITO基板(康宁制造)切割成40mm×40mm×0.7mm的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极(实验基板)的功函数并清除浮渣。
在实验基板(阳极)上真空蒸镀HAT-CN以形成厚度为的厚度为
Figure PCTCN2021076332-appb-000107
的空穴注入层1(HIL-1),并且在空穴注入层蒸镀NPB,形成厚度为
Figure PCTCN2021076332-appb-000108
的空穴传输层1(HTL-1)。
在空穴传输层1上真空蒸镀化合物P1,形成厚度为
Figure PCTCN2021076332-appb-000109
的第二空穴传输层2(HTL-2)。
在HTL-2上蒸镀化合物TCTA作为电子阻挡层(EBL),厚度为
Figure PCTCN2021076332-appb-000110
在电子阻挡层上蒸镀CBP作为主体,同时掺杂Ir(piq) 2(acac),以30:1的膜厚比蒸镀形成厚度为
Figure PCTCN2021076332-appb-000111
的发光层(EML)。
将TPBi和LiQ以1:1的膜厚比进行共蒸镀,形成了
Figure PCTCN2021076332-appb-000112
厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为
Figure PCTCN2021076332-appb-000113
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的膜厚比蒸镀在电子注入层上,形成厚度为
Figure PCTCN2021076332-appb-000114
的阴极。
此外,在上述阴极上蒸镀厚度为
Figure PCTCN2021076332-appb-000115
的CP-1,形成有机覆盖层(CPL),从而完成有机发光装置的制造,结构如图1所示。
器件实施例1中的所使用的化合物的结构如下:
Figure PCTCN2021076332-appb-000116
器件实施例2~47
除了在形成空穴调整层(HTL-2即第二空穴传输层)时使用表11中所示的化合物以外,利用与器件实施例1相同的方法制作有机电致发光器件。
比较例1
除了在形成第二空穴传输层时使用化合物A以外,采用与制备实施例1相同的方法制备有机电致发光装置。
比较例2
除了在形成第二空穴传输层时使用化合物B以外,采用与制备实施例1相同的方法制作有机电致发光装置。
比较例3
除了在形成第二空穴传输层时使用化合物C以外,采用与制备实施例1相同的方法制作有机电致发光装置。
比较例4
除了在形成第二空穴传输层时使用化合物D以外,采用与制备实施例1相同的方法制备有机电致发光装置。
比较例5
除了在形成第二空穴传输层时使用化合物E以外,采用与制备实施例1相同的方法制作有机电致发光装置。
比较例6
除了在形成第二空穴传输层时使用化合物F以外,采用与制备实施例1相同的方法制作有机电致发光装置。
化合物A、化合物B、化合物C、化合物D、化合物E和化合物F的结构如下:
Figure PCTCN2021076332-appb-000117
Figure PCTCN2021076332-appb-000118
对如上制得的有机电致发光装置,在20mA/cm 2的条件下分析了装置的性能,其结果示于下表11。
表11用合成例制备的化合物和比较例1-6的化合物制备的有机电致发光装置的性能
Figure PCTCN2021076332-appb-000119
Figure PCTCN2021076332-appb-000120
参考表1可知,实施例1-47将本申请化合物用作红色有机电致发光装置空穴传输层2的材料,与比较例1~比较例6相比,电流效率(Cd/A)、外量子效率(EQE)以及寿命(T95)均得到了明显的改善。根据上述结果可知,与作为第二空穴传输层(HTL-2)的化合物A、化合物B、化合物C、化合物D、化合物E、化合物F(比较例1、比较例2、比较例3、比较例4、比较例5、比较例6)相比,使用合成例1-47的化合物作为第二空穴传输层(HTL-2)制备的有机电致发光装置的工作电压至少降低了0.1V,发光效率(Cd/A)至少提高了13%,寿命至少延长96小时(至少提高21%)。可见,本申请的化合物作为第二空穴传输层(HTL-2)的有机电致发光装置的性能有显著提高。
本发明以9,10-二氢-10-氧杂菲基团和三芳基胺的结合作为核心结构,在氧杂菲基团中,两个甲基和氧均可向苯环通过共轭/超共轭效应提供电子,从而使该基团具有很高的共轭电子云密度,将其和三芳基胺结合后将具有很高的空穴迁移率,从而在该材料用于有机电致发光装置的空穴传输层时,可以提升装置的发光效率。
器件实施例48:红色有机电致发光器件
通过以下过程制备阳极:将厚度为
Figure PCTCN2021076332-appb-000121
的ITO基板(康宁制造)切割成40mm×40mm×0.7mm的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极(实验基板)的功函数并清除浮渣。
在实验基板(阳极)上真空蒸镀HAT-CN以形成厚度为的厚度为
Figure PCTCN2021076332-appb-000122
的空穴注入层(HIL-1),并且在空穴注入层蒸镀HT-01,形成厚度为
Figure PCTCN2021076332-appb-000123
的空穴传输层(HTL-1)。
在空穴传输层上真空蒸镀化合物Q1,形成厚度为
Figure PCTCN2021076332-appb-000124
的空穴调整层(HTL-2,即第二空穴传输层)。
在空穴调整层上蒸镀化合物TCTA作为电子阻挡层(EBL),厚度为
Figure PCTCN2021076332-appb-000125
在电子阻挡层上蒸镀化合物H-01作为主体,同时掺杂Ir(piq) 2(acac),以30:1的膜厚比蒸镀形成厚度为
Figure PCTCN2021076332-appb-000126
的发光层(EML)。
将TPBi和LiQ以1:1的膜厚比进行共蒸镀,形成了
Figure PCTCN2021076332-appb-000127
厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为
Figure PCTCN2021076332-appb-000128
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的膜厚比蒸镀在电子注入层上,形成厚度为
Figure PCTCN2021076332-appb-000129
的阴极。
在上述阴极上蒸镀厚度为
Figure PCTCN2021076332-appb-000130
的CP-1,形成有机覆盖层(CPL),从而完成有机电致发光器件的制造。
器件实施例48中的所使用的化合物的结构如下:
Figure PCTCN2021076332-appb-000131
器件实施例49~77
除了在形成空穴调整层(HTL-2即第二空穴传输层)时使用表12中所示的化合物以外,利用与器件实施例48相同的方法制作有机电致发光器件。
比较例7
除了在形成空穴调整层时使用化合物A以外,采用与器件实施例48相同的方法制备有机电致发光器件。
比较例8
除了在形成空穴调整层时使用化合物B以外,采用与器件实施例48相同的方法制作有机电致发光器件。
比较例9
除了在形成空穴调整层时使用化合物C以外,采用与器件实施例48相同的方法制作有机电致发光器件。
比较例10
除了在形成空穴调整层时使用化合物Q-D以外,采用与器件实施例48相同的方法制备有机电致发光器件。
比较例11
除了在形成空穴调整层时使用化合物E以外,采用与器件实施例48相同的方法制作有机电致发光器件。
比较例12
除了在形成空穴调整层时使用化合物F以外,采用与器件实施例48相同的方法制作有机电致发光器件。
化合物Q-D的结构如下:
Figure PCTCN2021076332-appb-000132
对如上制得的有机电致发光器件,在15mA/cm 2的条件下分析了装置的驱动电压、效率等性能,在20mA/cm 2的条件下分析了装置的T95寿命,其结果示于下表12。
其结果示于下表12。
表12:有机电致发光器件的性能
Figure PCTCN2021076332-appb-000133
Figure PCTCN2021076332-appb-000134
参考表12可知,相较于比较例7~比较例12所制备的有机电致发光器件,实施例48~77所制备的有机电致发光器件的电流效率(Cd/A)、外量子效率(EQE)以及寿命(T95)均得到了明显的改善;其中,工作电压至少降低了0.1V,发光效率(Cd/A)至少提高了14%,寿命至少延长80小时(至少提高18.6%)。根据上表中的测试结果可知,在作为有机电致发光器件的第二空穴传输层时,与对比例7~对比例9的化合物相比,对比例化合物A~C中带有两个强供电的芳胺基团,HOMO能级过浅,导致其与第一空穴传输层的HOMO能级差比较大,会减低向电子阻挡层和有机发光层传输空穴的效率,进而使得发光效率下降,这导致器件的电流效率和T95寿命不佳。与对比例10化合物相比,对比例化合物Q-D中氧原子邻位为螺环,空间构象基本固定,载流子传输效率不足,在发光器件有机层之间,或有机层与金属电极之间产生的焦耳热较多,一定程度降低了器件使用寿命。与对比例11和12相比,化合物E和F的杂环原子为氮原子,氮原子上还接有供电基团,使得该区域电子密度较集中,热稳定性受影响,也会降低器件的使用寿命。
二氢氧杂菲基团在具有较为平面结构的同时,其非对称性和位阻相比一般平面共轭基团更大,在其9位增加两个取代基,使其拥有较低的结晶性以及良好的成膜性,使其在应用于电致有机发光装置时,可以有效提升装置寿命。

Claims (22)

  1. 一种含氮有机化合物,其中,所述化合物的结构如化学式(I)所示:
    Figure PCTCN2021076332-appb-100001
    其中,R 1选自碳原子数6-14的取代或未取代的芳基、碳原子数1-4的烷基;
    R 2选自碳原子数6-14的取代或未取代的芳基、碳原子数1-6的取代或未取代的烷基;所述R 1和R 2上的取代基相同或不同,各自独立地选自氘、氰基、卤素基团或碳原子数1-4的烷基;
    L 1、L 2和各L 3分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基所组成的组;
    Ar 1和Ar 2彼此相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~40的取代或未取代的杂芳基所组成的组;
    n表示R 3的个数;n为0、1、2、3、4、5、6或者7;当n大于1时,任意两个R 3相同或者不相同;
    m表示依次连接的L 3基团的个数;m为0、1或2;当m大于1时,任意两个L 3相同或者不相同;
    各R 3独立地选自氘、卤素基团、氰基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷基、碳原子数为1~12的氘代烷基、碳原子数为1~12的烷氧基、碳原子数为3~12的环烷基、碳原子数为1~12的烷硫基、碳原子数为3~12的三烷基硅烷基、碳原子数6-18的芳基硅烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基,任选地,任意两个相邻的R 3相互连接形成碳原子数为6或10的芳环;
    L 1、L 2、L 3、Ar 1、Ar 2中的各取代基彼此相同或不同,各自独立地选自氘、卤素基团、氰基、碳原子数为1~12的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为1~12的烷硫基、碳原子数为6~25的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的三烷基硅烷基和碳原子数为3~12的环烷基;在L 1、L 2、L 3、Ar 1和Ar 2中,当同一原子上具有两个取代基时,任选地,两个所述取代基之间相互连接,以与它们所共同连接的原子一起形成5到18元脂肪族环或芳香环。
  2. 根据权利要求1所述的含氮有机化合物,其具有如下式(I-1)所示的结构:
    Figure PCTCN2021076332-appb-100002
    其中,L 4选自由单键、取代或未取代的碳原子数为6~30的亚芳基和取代或未取代的碳原子数为3~30的亚杂芳基所组成的组;
    Ar 3和Ar 4彼此相同或不同,且各自独立地选自由取代或未取代的碳原子数为6~40的芳基、取代或未取代的碳原子数为3~40的杂芳基所组成的组;
    各R 3独立地选自由氘、卤素基团、氰基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷基、碳原子数为1~12的烷氧基、碳原子数为3~12的环烷基、碳原子数为1~12的烷硫基、碳原子数为3~12 的三烷基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基组成的组;
    n为0、1、2、3、4、5、6或者7;当n大于1时,任意两个R 3相同或者不相同;
    L 4、Ar 3、Ar 4中的各取代基彼此相同或不同,各自独立地选自由氘、卤素基团、氰基、碳原子数为1~12的烷基、碳原子数为1~12的卤代烷基、碳原子数为1~12的烷氧基、碳原子数为1~12的烷硫基、碳原子数为6~25的芳基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12的三烷基硅基和碳原子数为3~12的环烷基所组成的组;
    在L 4、Ar 3和Ar 4中,当同一原子上具有两个取代基时,任选地,两个所述取代基之间相互连接,以与它们所共同连接的原子一起形成5到18元脂肪族环或芳香环。
  3. 根据权利要求2所述的含氮有机化合物,其中,L 4为单键、取代或未取代的碳原子数为6~20的亚芳基、取代或未取代的碳原子数为3~20的亚杂芳基;所述L 4中的取代基彼此相同或不同,各自独立地选自由氘、氟、氯、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的烷氧基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为6~12的芳氧基、碳原子数为6~12的芳硫基、碳原子数为3~9的三烷基硅基和碳原子数为3~12的环烷基所组成的组。
  4. 根据权利要求2所述的含氮有机化合物,其中,L 4为单键或者选自取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚蒽基、取代或未取代的亚菲基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚芴基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚吡啶基、取代或未取代的亚咔唑基、取代或未取代的N-苯基咔唑亚基中的一种,或者为它们中两者或三者通过单键连接形成的基团;
    可选地,所述L 4中的取代基彼此相同或不同,各自独立地选自氘、氟、氯、氰基、甲基、乙基、异丙基、正丙基、叔丁基、甲氧基、乙氧基、三氟甲基、三甲基硅基、苯基、萘基、喹啉、异喹啉基、吡啶基、环戊烷基、环己烷基所组成的组。
  5. 根据权利要求2所述的含氮有机化合物,其中,L 4选自单键、取代或未取代的基团W 1,所述未取代的基团W 1选自如下基团:
    Figure PCTCN2021076332-appb-100003
    Figure PCTCN2021076332-appb-100004
    所述W 1基团被一个或多个取代基所取代时,W 1的取代基各自独立地选自由氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的卤代烷基、碳原子数为3~9的三烷基硅基、碳原子数为3~10的环烷基、碳原子数为6~15的芳基和碳原子数为3~12的杂芳基所组成的组;所述W 1的取代基数目多于1个时,各个取代基相同或不同。
  6. 根据权利要求2所述的含氮有机化合物,其中,各R 3独立地选自氘、氟、氯、氰基、碳原子数为1~4的卤代烷基、碳原子数为1~6的烷基、碳原子数为1~4的烷氧基、碳原子数为5~10的环烷基、碳原子数为1~4的烷硫基、碳原子数为3~9的三烷基硅基、碳原子数为6~12的芳基、碳原子数为5~12的杂芳基;n为0、1、2、3或4;当n大于1时,任意两个R 3相同或者不相同。
  7. 根据权利要求2所述的有机化合物,其中,Ar 3和Ar 4彼此相同或不同,且分别独立地选自由取代或未取代的碳原子数为6~33的芳基、取代或未取代的碳原子数为3~18的杂芳基所组成的组;
    Ar 3和Ar 4中的各取代基彼此相同或不同,各自独立地选自由氘、氟、氯、氰基、碳原子数为1~8的烷基、碳原子数为1~8的卤代烷基、碳原子数为1~8的烷氧基、碳原子数为1~8的烷硫基、碳原子数为6~25的芳基、碳原子数为3~18的杂芳基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基、碳原子数为3~12三烷基硅基和碳原子数为3~12的环烷基所组成的组;
    Ar 3和Ar 4中,当同一原子上具有两个取代基时,任选地,两个所述取代基之间相互连接,以与它们所共同连接的原子一起形成5到13元脂肪族环或芳香环。
  8. 根据权利要求2所述的有机化合物,其中,Ar 3和Ar 4可以各自独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的N-苯基咔唑基、取代或未取代的苝基、取代或未取代的芘基中的一种,或者为它们中两者或三者通过单键连接形成的基团;
    可选地,Ar 3和Ar 4中的取代基彼此相同或不同,独立地选自氘、氟、氯、氰基、甲基、乙基、异丙基、正丙基、叔丁基、甲氧基、乙氧基、异丙氧基、三氟甲基、三甲基硅基、环戊基、环己基、金刚烷基、苯基、萘基、蒽基、菲基、二联苯基、三联苯基、芴基、9,9-二甲基芴基、螺二芴基、二苯并呋喃基、二苯并噻吩基、吡啶基、嘧啶基、1,4-二嗪基、喹啉基、异喹啉基、咔唑基、N-苯基咔唑基、苝基所组成的组。
  9. 根据权利要求2所述的含氮有机化合物,其中,所述Ar 3和Ar 4彼此相同或不同,且分别独立地选自取代或未取代的基团Y 1,所述未取代的基团Y 1选自如下基团:
    Figure PCTCN2021076332-appb-100005
    Figure PCTCN2021076332-appb-100006
    所述Y 1基团被一个或多个取代基所取代时,Y 1的取代基各自独立地选自由氘、氟、氯、氰基、碳原子数为1~6的烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的卤代烷基、碳原子数为3~9的三烷基硅基、碳原子数为3~10的环烷基、碳原子数为6~25的芳基和碳原子数为3~18的杂芳基所组成的组;所述Y 1的取代基多于1个时,各个取代基相同或不同。
  10. 根据权利要求2所述的含氮有机化合物,其中,Ar 3和Ar 4彼此相同或不同,且分别独立地选自以下基团:
    Figure PCTCN2021076332-appb-100007
    Figure PCTCN2021076332-appb-100008
  11. 根据权利要求1所述的含氮有机化合物,其中,R 1为碳原子数6-14的取代或未取代的芳基,R 2选自碳原子数6-14的取代或未取代的芳基、碳原子数1-6的取代或未取代的烷基;所述R 1和R 2上的取代基相同或不同,各自独立地选自氘、氰基、卤素基团或碳原子数1-4的烷基;
  12. 根据权利要求11所述的含氮有机化合物,其中,R 1选自苯基或萘基,R 2选自苯基、萘基、碳原子数为1-4的烷基、三氟甲基或三氘代甲基。
  13. 根据权利要求11所述的含氮有机化合物,其中,所述Ar 1和Ar 2彼此相同或不同,且分别独立地选自碳原子数为6~25的取代或未取代的芳基、碳原子数为5~25的取代或未取代的杂芳基;其中Ar 1、Ar 2中的各取代基彼此相同或不同,各自独立地选自氘、卤素基团、氰基、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、碳原子数为6~14的芳基、碳原子数为5~12的杂芳基、三甲基硅烷基和碳原子数为5~10的环烷基;在Ar 1和Ar 2中,当同一原子上具有两个取代基时,任选地,两个所述取代基之间相互连接,以与它们所共同连接的原子一起形成环戊烷、环己烷、二环庚烷、金刚烷或芴环。
  14. 根据权利要求11所述的含氮有机化合物,其中,所述Ar 1和Ar 2彼此相同或不同,且分别独立地选自取代或未取代的基团Y 2,所述未取代的基团Y 2选自如下基团:
    Figure PCTCN2021076332-appb-100009
    Figure PCTCN2021076332-appb-100010
    所述Y 2基团被一个或多个取代基所取代时,Y 2的取代基各自独立地选自由氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、环己基、环戊基、氰基、苯基、萘基、吡啶基、喹啉基、芴基所组成的组;所述Y 2的取代基多于1个时,各个取代基相同或不同。
  15. 根据权利要求11所述的含氮有机化合物,其中,L 1、L 2和各L 3分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚萘基、取代或未取代的9,9-二甲基芴亚基、取代或未取代的亚二苯并呋喃基、取代或未取代亚二苯并噻吩基、取代或未取代的亚咔唑基、取代或未取代的N-苯基咔唑亚基、取代或未取代的亚吡啶基、取代或未取代的亚喹啉基、取代或未取代的亚菲基、取代或未取代的亚蒽基中的一种,或者为上述亚基中两者或三者通过单键连接所形成的新的亚基基团。
  16. 根据权利要求11所述的含氮有机化合物,其中,L 1、L 2分别独立地选自单键、取代或未取代的基团W 2,所述未取代的基团W 2选自如下基团:
    Figure PCTCN2021076332-appb-100011
    所述W 2基团被一个或多个取代基所取代时,W 2的取代基各自独立地选自由氘、氟、氯、氰基、氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、环己基、环戊基、氰基、苯基、萘基、吡啶基、喹啉基所组成的组;所述W 2的取代基数目多于1个时,各个取代基相同或不同。
  17. 根据权利要求11所述的含氮有机化合物,其中,
    Figure PCTCN2021076332-appb-100012
    选自单键、取代或未取代的基团W 3,所述未取代的基团W 3选自如下基团:
    Figure PCTCN2021076332-appb-100013
    Figure PCTCN2021076332-appb-100014
    所述W 3基团被一个或多个取代基所取代时,W 3的取代基各自独立地选自由氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、环己基、环戊基、氰基、苯基、萘基、吡啶基、喹啉基所组成的组;所述W 3的取代基数目多于1个时,各个取代基相同或不同。
  18. 根据权利要求11所述的含氮有机化合物,其中,R 3选自环戊基、氟、氰基、氘、苯基、吡啶-2-基、叔丁基、甲基、异丙基、三甲基硅基。
  19. 根据权利要求11所述的含氮有机化合物,其中,所述含氮有机化合物选自以下化合物中的一种或几种:
    Figure PCTCN2021076332-appb-100015
    Figure PCTCN2021076332-appb-100016
    Figure PCTCN2021076332-appb-100017
    Figure PCTCN2021076332-appb-100018
    Figure PCTCN2021076332-appb-100019
    Figure PCTCN2021076332-appb-100020
    Figure PCTCN2021076332-appb-100021
    Figure PCTCN2021076332-appb-100022
    Figure PCTCN2021076332-appb-100023
    Figure PCTCN2021076332-appb-100024
    Figure PCTCN2021076332-appb-100025
    Figure PCTCN2021076332-appb-100026
    Figure PCTCN2021076332-appb-100027
    Figure PCTCN2021076332-appb-100028
    Figure PCTCN2021076332-appb-100029
    Figure PCTCN2021076332-appb-100030
    Figure PCTCN2021076332-appb-100031
    Figure PCTCN2021076332-appb-100032
    Figure PCTCN2021076332-appb-100033
    Figure PCTCN2021076332-appb-100034
    Figure PCTCN2021076332-appb-100035
    Figure PCTCN2021076332-appb-100036
    Figure PCTCN2021076332-appb-100037
  20. 一种电子器件,其包括相对设置的阳极和阴极,以及设置于所述阳极和所述阴极之间的功能层;所述功能层包括权利要求1~19中任一项所述的含氮有机化合物。
  21. 根据权利要求20所述的电子器件,其中,所述功能层包括空穴传输层,所述空穴传输层包含权利要求1~19任一项所述的含氮有机化合物;
    可选地,所述空穴传输层包括依次层叠设置的第一空穴传输层、第二空穴传输层和电子阻挡层;所述第二空穴传输层包含权利要求1~19任一项所述的含氮有机化合物。
  22. 一种电子装置,其包括权利要求20或21所述的电子器件。
PCT/CN2021/076332 2020-03-09 2021-02-09 含氮有机化合物及包含该化合物的电子器件及装置 WO2021179880A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010159357.XA CN113372321B (zh) 2020-03-09 2020-03-09 有机化合物及包含该化合物的电子器件及装置
CN202010159357.X 2020-03-09
CN202011565702.6 2020-12-25
CN202011565702.6A CN114685552B (zh) 2020-12-25 2020-12-25 含氮化合物、电子元件和电子装置

Publications (1)

Publication Number Publication Date
WO2021179880A1 true WO2021179880A1 (zh) 2021-09-16

Family

ID=77671422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076332 WO2021179880A1 (zh) 2020-03-09 2021-02-09 含氮有机化合物及包含该化合物的电子器件及装置

Country Status (1)

Country Link
WO (1) WO2021179880A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490569A (zh) * 2022-02-23 2022-12-20 陕西莱特迈思光电材料有限公司 有机化合物、有机电致发光器件和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106478592A (zh) * 2015-08-28 2017-03-08 三星显示有限公司 稠环化合物和包括其的有机发光装置
CN106608848A (zh) * 2015-10-22 2017-05-03 三星显示有限公司 化合物、包括其的有机发光装置和显示设备
KR20180021339A (ko) * 2016-08-19 2018-03-02 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
CN112480057A (zh) * 2020-11-26 2021-03-12 武汉华星光电半导体显示技术有限公司 氧杂环型化合物及其应用和使用其的电子器件
CN112574162A (zh) * 2020-12-25 2021-03-30 吉林奥来德光电材料股份有限公司 一种二苯并吡喃基化合物、其制备方法及有机电致发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106478592A (zh) * 2015-08-28 2017-03-08 三星显示有限公司 稠环化合物和包括其的有机发光装置
CN106608848A (zh) * 2015-10-22 2017-05-03 三星显示有限公司 化合物、包括其的有机发光装置和显示设备
KR20180021339A (ko) * 2016-08-19 2018-03-02 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
CN112480057A (zh) * 2020-11-26 2021-03-12 武汉华星光电半导体显示技术有限公司 氧杂环型化合物及其应用和使用其的电子器件
CN112574162A (zh) * 2020-12-25 2021-03-30 吉林奥来德光电材料股份有限公司 一种二苯并吡喃基化合物、其制备方法及有机电致发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490569A (zh) * 2022-02-23 2022-12-20 陕西莱特迈思光电材料有限公司 有机化合物、有机电致发光器件和电子装置

Similar Documents

Publication Publication Date Title
WO2021135182A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2021218588A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2021135181A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022083598A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022027992A1 (zh) 含氮化合物、电子元件和电子装置
WO2022188514A1 (zh) 一种有机化合物及包含其的电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2021135183A1 (zh) 有机化合物、有机电致发光器件和电子装置
CN113511996B (zh) 有机电致发光材料、电子元件及电子装置
WO2022121618A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2021082714A1 (zh) 含氮化合物、电子元件和电子装置
WO2021083030A1 (zh) 含氮化合物、电子元件及电子装置
WO2022170831A1 (zh) 有机电致发光材料、电子元件和电子装置
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
CN114133400B (zh) 有机化合物以及使用其的电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
CN109336782B (zh) 一种芴类衍生物及其有机电致发光器件
WO2024087586A1 (zh) 有机化合物及包含其的电子元件和电子装置
CN113861044A (zh) 有机化合物及包含其的电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2021244442A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2021190380A1 (zh) 有机化合物、电子元件和电子装置
WO2021136006A1 (zh) 含氮化合物、电子元件和电子装置
WO2021179880A1 (zh) 含氮有机化合物及包含该化合物的电子器件及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768429

Country of ref document: EP

Kind code of ref document: A1