WO2021083030A1 - 含氮化合物、电子元件及电子装置 - Google Patents

含氮化合物、电子元件及电子装置 Download PDF

Info

Publication number
WO2021083030A1
WO2021083030A1 PCT/CN2020/122896 CN2020122896W WO2021083030A1 WO 2021083030 A1 WO2021083030 A1 WO 2021083030A1 CN 2020122896 W CN2020122896 W CN 2020122896W WO 2021083030 A1 WO2021083030 A1 WO 2021083030A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
nitrogen
containing compound
Prior art date
Application number
PCT/CN2020/122896
Other languages
English (en)
French (fr)
Inventor
马天天
杨敏
南朋
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Priority to KR1020217032226A priority Critical patent/KR102363659B1/ko
Publication of WO2021083030A1 publication Critical patent/WO2021083030A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This application relates to the field of organic materials, and specifically to a nitrogen-containing compound, an electronic component and an electronic device.
  • organic electroluminescent devices OLED, Organic electroluminescent devices
  • OLED Organic electroluminescent devices
  • Common organic electroluminescence devices are composed of an anode, a cathode, and an organic layer arranged between the cathode and the anode. When a voltage is applied to the cathode and the anode, the two electrodes generate an electric field.
  • the electrons on the cathode side and the holes on the anode side move to the light-emitting layer at the same time, and they combine in the light-emitting layer to form excitons, and the excitons are excited
  • the state releases energy outward, and the process of changing from an excited state to a ground state emits light to the outside.
  • Existing organic electroluminescent devices mainly include a hole transport layer, a light-emitting layer, and an electron transport layer.
  • the operating voltage of the device increases, the luminous efficiency decreases, and the lifespan is shortened. , Resulting in a decrease in device performance.
  • patent document KR1020170097242 patent document KR1020170161944 and patent document KR1020170048045.
  • the purpose of this application is to overcome the above-mentioned deficiencies in the prior art and provide a nitrogen-containing compound, electronic component and electronic device, which can reduce the operating voltage, increase the luminous efficiency, and prolong the life of the device.
  • a nitrogen-containing compound is provided, and the general structural formula of the nitrogen-containing compound is shown in Formula I-1:
  • X is oxygen or sulfur
  • R is selected from: substituted or unsubstituted heterocycloalkyl with 1-10 ring carbon atoms, substituted or unsubstituted heteroaryl with 5-15 ring carbon atoms;
  • L is selected from: a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group having 1 to 30 carbon atoms;
  • R a and R b are the same or different, and are each independently selected from deuterium, halogen group, cyano group, cycloalkyl having 3-10 carbon atoms, heterocycloalkyl having 2-10 carbon atoms, carbon atoms and an alkyl group of 1-15 carbon atoms, an aryl group of 6-30 carbon atoms, heteroaryl group having 3 to 30; n a is the number of R a, n b is the number of R b ;
  • n a is selected from 0, 1, 2, 3 or 4. When n a is greater than 1, any two Ras are the same or different;
  • n b is selected from 0, 1, 2, and when n b is greater than 1, any two R b are the same or different;
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms;
  • the substituents of L, Ar 1 and Ar 2 are each independently selected from: deuterium, halogen group, cyano group, alkyl group with 1-10 carbon atoms, cycloalkyl group with 3-10 carbon atoms,
  • the number of carbon atoms is 2-10 alkenyl, and the number of carbon atoms is 3-15 alkynyl, optionally 0, 1, 2, 3, 4 or 5 independently selected from deuterium, fluorine, cyano, methyl, tertiary
  • the butyl substituent is substituted by an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 3 to 10 carbon atoms, and a heterocycloalkyl group having 6 to 24 carbon atoms.
  • the substituent of the R is selected from deuterium, fluorine, cyano, alkyl with 1-10 carbon atoms, and cycloalkyl with 3-10 carbon atoms.
  • an electronic component including an anode and a cathode arranged oppositely, and a functional layer arranged between the anode and the cathode;
  • the functional layer includes the compound described in any one of the above.
  • an electronic device including the electronic component described in any one of the above.
  • a substituent with a nitrogen heterocycle is bonded to a commonly used electron transport group through a 2,4-disubstituted dibenzofuran (or dibenzothiophene) group
  • a 2,4-disubstituted dibenzofuran (or dibenzothiophene) group Above 1,3,5-triazine, on the one hand, the molecule has a large electron-deficient conjugated plane structure formed by the direct combination of triazine and dibenzofuran (or dibenzothiophene), which helps to improve The electron transfer rate can improve the efficiency of the device.
  • the nitrogen heterocycle can be introduced into the ortho-position structure of the dibenzofuran (or dibenzothiophene) and the triazine, which can effectively enhance the electron injection ability of the material. It can further improve the efficiency and lifetime of the device.
  • FIG. 1 is a schematic diagram of the structure of an organic electroluminescent device according to an embodiment of the application.
  • FIG. 2 is a schematic diagram of the structure of a solar cell according to an embodiment of the application.
  • FIG. 3 is a schematic diagram of an electronic device according to an embodiment of the application.
  • Electron injection layer 100 substrate; 200, anode; 300, functional layer; 301, hole transport layer; 302, photosensitive active layer; 303, electron transport layer; 400, cathode; 500, screen.
  • the embodiment of the present application provides a nitrogen-containing compound, and the general structural formula of the nitrogen-containing compound is shown in Formula I-1:
  • X is oxygen or sulfur
  • R is selected from: substituted or unsubstituted heterocycloalkyl with 1-10 ring carbon atoms, substituted or unsubstituted heteroaryl with 5-15 ring carbon atoms, and said R is not
  • L is selected from: a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group having 1 to 30 carbon atoms;
  • R a and R b are the same or different, and are each independently selected from deuterium, halogen group, cyano group, cycloalkyl having 3-10 carbon atoms, heterocycloalkyl having 2-10 carbon atoms, carbon and alkyl group of 1 to 15 carbon atoms in the heteroaryl group of 3-30; n a is the number of R a, n b is the number of R b;
  • n a is selected from 0, 1, 2, 3 or 4. When n a is greater than 1, any two Ras are the same or different;
  • n b is selected from 0, 1, 2, and when n b is greater than 1, any two R b are the same or different;
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms.
  • the substituents of L, Ar 1 and Ar 2 are each independently selected from: deuterium, halogen group, cyano group, alkyl group with 1-10 carbon atoms, cycloalkyl group with 3-10 carbon atoms,
  • the number of carbon atoms is 2-10 alkenyl, and the number of carbon atoms is 3-15 alkynyl, optionally 0, 1, 2, 3, 4 or 5 independently selected from deuterium, fluorine, cyano, methyl, tertiary
  • the butyl substituent is substituted by an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 3 to 10 carbon atoms, and a heterocycloalkyl group having 6 to 24 carbon atoms.
  • the substituent of the R is selected from deuterium, fluorine, cyano, alkyl with 1-10 carbon atoms, and cycloalkyl with 3-10 carbon atoms.
  • substituents selected from deuterium, fluorine, cyano, methyl are optionally 0, 1, 2, 3, 4 or Five substituents independently selected from deuterium, fluorine, cyano, methyl, and tert-butyl substituted by an aryl group with 6 to 20 carbon atoms substituted by an aryl group with 6 to 20 carbon atoms" means aryl
  • the group may be substituted by one or more of deuterium, fluorine, cyano, and methyl, or it may not be substituted by deuterium, fluorine, cyano, or methyl, and when the number of substituents on the aryl group is greater than or equal to 2 ,
  • the substituents can be the same or different.
  • n a is selected from 0, n b is selected from 0.
  • the compound represented by formula I-1 is selected from the compound represented by formula I:
  • X is oxygen or sulfur
  • R is selected from: substituted or unsubstituted heterocycloalkyl groups having 1-10 ring carbon atoms, substituted or unsubstituted heteroaryl groups having 4-20 ring carbon atoms;
  • L is selected from: a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group having 1 to 30 carbon atoms;
  • the substituent of the R is selected from: deuterium, nitro, hydroxyl, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocycloalkyl, alkoxy, arylsilyl , Alkylsilyl;
  • the substituent of L is selected from: deuterium, nitro, hydroxyl, alkyl, cycloalkyl, alkenyl, alkynyl, heterocycloalkyl, alkoxy, arylsilyl, alkylsilyl, Aryloxy, arylthio.
  • Ar 1 and Ar 2 are not phenyl at the same time.
  • L is selected from: a single bond, a substituted or unsubstituted arylene group with 6-25 carbon atoms, and a substituted or unsubstituted heteroarylene group with 5-25 carbon atoms;
  • L is selected from: a single bond, a substituted or unsubstituted arylene group having 6-15 carbon atoms, and a substituted or unsubstituted heteroarylene group having 5-12 carbon atoms.
  • the substituent of L is selected from the group consisting of deuterium, halogen group, cyano group, alkyl group with 1-5 carbon atoms, aryl group with 6-20 carbon atoms, and heterocyclic group with 3-20 carbon atoms.
  • Aryl is selected from the group consisting of deuterium, halogen group, cyano group, alkyl group with 1-5 carbon atoms, aryl group with 6-20 carbon atoms, and heterocyclic group with 3-20 carbon atoms.
  • the substituent of L includes but is not limited to: deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl, and the like.
  • L is selected from a single bond, a phenylene group, a naphthylene group, a biphenylene group, a dimethylene fluorenyl group, a naphthylene group, and a terphenylene group.
  • L is selected from a single bond, phenanthrylene, anthracenylene, pyridylene, pyrimidinylene, dibenzofuranylene, and dibenzothienylene.
  • L is selected from the group formed by the following groups:
  • * may indicate that the above-mentioned groups are used in combination with formula I Group binding; ** can indicate that the above-mentioned groups are used to bind to the R group in formula I.
  • L is selected from a single bond or the group formed by the following groups:
  • * means that the above-mentioned groups are used in combination with formula I-1 In formula I The group combination;
  • ** means that the above-mentioned groups are used to combine with the R groups in the formula I-1 and formula I groups.
  • R is selected from: substituted or unsubstituted heterocycloalkyl with 1-10 ring carbon atoms, substituted or unsubstituted heteroaromatic with 5-20 ring carbon atoms base.
  • R is selected from substituted or unsubstituted heterocycloalkyl groups having 3 to 5 ring carbon atoms.
  • the number of ring-forming carbon atoms can be 3, 4, or 5, of course, the number of ring-forming carbon atoms can also be other, which is not specifically limited here.
  • R is selected from substituted or unsubstituted heteroaryl groups having 5-18 ring carbon atoms.
  • R is selected from substituted or unsubstituted heteroaryl groups having 5-15 ring carbon atoms.
  • R is selected from substituted or unsubstituted heteroaryl groups having 5-13 ring carbon atoms.
  • R is selected from substituted or unsubstituted heteroaryl groups having 5-12 ring carbon atoms.
  • R is selected from substituted or unsubstituted heteroaryl groups having 5-11 ring carbon atoms.
  • R is selected from substituted or unsubstituted heteroaryl groups having 5-10 ring carbon atoms.
  • R is selected from substituted or unsubstituted nitrogen-containing heteroaryl groups having 12 ring carbon atoms.
  • R is selected from substituted or unsubstituted heteroaryl groups having 13 ring carbon atoms.
  • the number of carbon atoms in the ring can be 5, 8, 9, 10, 12, 13, or 15, of course, the number of carbon atoms can also be other, which will not be listed here. .
  • R is selected from: thienyl, furyl, pyrrolidinyl, imidazolyl, oxazolyl, triazolyl, pyridyl, bipyridyl, acridinyl, pyridazinyl, quinolinyl, quinazole Linyl, benzimidazolyl, benzothienyl, benzocarbazolyl, benzoxazolyl, phenanthrolinyl, isoxazolyl, phenothiazinyl, benzoquinolinyl, benzoquinoline Linyl, pyridoquinolinyl, naphthyridinyl and the like.
  • R may be selected from the following substituted or unsubstituted groups: N-pyrrolidinyl, pyridyl, bipyridyl, quinolinyl, quinoxalinyl, quinazolinyl, naphthyridinyl, benzoquine Linyl, phenanthrolinyl, benzoquinoxalinyl, pyridoquinolinyl.
  • the substituent of R can be selected from: deuterium, fluorine, cyano, alkyl with 1-5 carbon atoms, cycloalkyl with 3-5 carbon atoms, heterocyclic alkyl with 2-10 carbon atoms Cycloalkyl.
  • substituents of R include but are not limited to: deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, cyclopentyl, cyclohexyl, N-pyrrole alkyl,
  • L, Ar 1 and Ar 2 refers to the number of carbon atoms is L, the number of all the Ar 1 and Ar 2 carbon atoms (including substituted groups).
  • L is a substituted arylene group with 12 carbon atoms, and all carbon atoms of the arylene group and the substituents thereon are 12.
  • Ar 1 is Then the number of carbon atoms is 7; L is The number of carbon atoms is 12.
  • the number of ring-forming carbon atoms referred to by R in this application refers to the number of carbon atoms (not including substituents) used by R to form a ring.
  • This group is a substituted pyridyl group, which is a substituted heteroaryl group with 5 ring carbon atoms.
  • Cycloalkyl refers to a saturated hydrocarbon group containing one or more rings in its molecular structure.
  • cycloalkyl refers to a saturated hydrocarbon containing an alicyclic structure, including monocyclic and condensed ring structures.
  • Cycloalkyl groups can have 3-20 ring-forming carbon atoms, and a numerical range such as “3 to 20" refers to each integer in the given range; for example, "3 to 20 carbon atoms” means that it can contain 3 carbon atoms.
  • the cycloalkyl group may be a small ring, an ordinary ring, or a large ring having 3 to 20 carbon atoms. Cycloalkyl groups can also be classified as monocyclic-only one ring, bicyclic-two rings, or polycyclic-three or more rings.
  • Cycloalkyl groups can also be divided into two rings sharing one carbon atom-a spiro ring, two rings sharing two carbon atoms-a fused ring, and two rings sharing two or more carbon atoms-a bridged ring.
  • cycloalkyl groups may be substituted or unsubstituted.
  • the cycloalkyl group is selected from cycloalkyl groups having 3-10 ring carbon atoms, and specific examples include, but are not limited to, cyclopropane, cyclobutane, cyclopentane, cyclohexane, and adamantane.
  • Heterocycloalkyl refers to a group in which at least one carbon atom in a cycloalkyl group is replaced by a heteroatom N, O, P, S, or Si.
  • the number of carbon atoms used for ring formation in the heterocycloalkyl group may be 1 to 10, and it may be 3, 4, 5, or 10. Of course, it can also be other numbers, which are not specifically limited here.
  • Aryl refers to optional functional groups or substituents derived from aromatic hydrocarbon rings, including monocyclic aryl groups and polycyclic aryl groups.
  • aryl groups can be monocyclic aryl groups, condensed ring aryl groups, and through carbon-carbon bonds. Two or more monocyclic aryl groups that are conjugated together, a monocyclic aryl group and a condensed ring aryl group that are conjugated through carbon-carbon bonds, and two or more fused ring aryl groups that are conjugated through a carbon-carbon bond. That is, two or more aromatic groups conjugated through carbon-carbon bonds can also be regarded as aryl groups in the present application.
  • the aryl group does not contain heteroatoms such as B, N, O, S, or P.
  • the number of carbon atoms in the aryl group can be 6 to 30, which can be 6, 10, 12, 14, 15, 20, 25, or 30. Of course, it can also be other numbers.
  • the aryl group can be: phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, fluorenyl, dimethylfluorenyl, 9,9-diphenylfluorenyl, spirobifluorenyl, Fiki et al.
  • a substituted aryl group means that one or more hydrogen atoms in the aryl group are replaced by other groups.
  • at least one hydrogen atom is replaced by a deuterium atom, a branched chain alkyl group, a straight chain alkyl group, a cycloalkyl group, an alkoxy group, or other groups.
  • the substituted aryl group with 18 carbon atoms means that the total number of carbon atoms of the aryl group and the substituent on the aryl group is 18.
  • the number of carbon atoms of 9,9-diphenylfluorenyl is 25.
  • an aryl group with 6-25 ring carbon atoms means that the number of carbon atoms in the aromatic ring in the aryl group is 6-25, and the number of carbon atoms in the substituents on the aryl group is not calculated Inside.
  • the number of ring-forming carbon atoms in the aryl group can be 6-25, 6-20, 6-18, 6-15, 6-14, or 6-10, but is not limited thereto.
  • aryl groups as substituents include, but are not limited to, phenyl, naphthyl, biphenyl, dimethylfluorenyl, phenanthryl, anthryl, terphenyl and the like.
  • Heteroaryl refers to a group in which at least one carbon atom on an aryl group is replaced by a heteroatom N, O, P, S or Si.
  • the heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • the number of carbon atoms in the heteroaryl group can be 1 to 30, which can be 2, 5, 12, 13, 14, 20, 25, or 30. Of course, it can also be other numbers. There are no special restrictions here.
  • the heteroaryl group is a single ring, the heteroaryl group does not contain more than 2 nitrogen atoms.
  • a heteroaryl group with 5-15 ring carbon atoms means that the number of carbon atoms on the heteroaromatic ring in the heteroaryl group is 4-20, and the carbon atoms in the substituents on the heteroaryl group are The number of atoms is not counted.
  • the number of ring-forming carbon atoms in the heteroaryl group can be 4-20, 5-15, 5-14, 5-13, 5-12, 5-11, 5-10, 5-9, 5 -8, 5-7, 5-6, but not limited to this.
  • the number of ring-forming carbon atoms of the heteroaryl group is 4-20.
  • the heteroaryl group can be: pyridyl, bipyridyl, thienyl, furyl, pyrrolyl, imidazolyl, oxazolyl, triazolyl, pyridyl, bipyridyl, acridinyl, pyridazine Group, quinolinyl, quinazolinyl, benzimidazolyl, benzothienyl, benzoxazolyl, phenanthroline, isoxazolyl, phenothiazinyl, benzoquinolinyl, benzoquinoline Oxalinyl, pyridoquinolinyl, naphthyridinyl and the like.
  • heteroaryl groups as substituents include but are not limited to: pyridyl, phenanthrolinyl, methyl-substituted pyridyl, bipyridyl, quinolinyl, quinazolinyl, and benzimidazole Group, benzoquinolinyl, benzoquinoxalinyl, pyridoquinolinyl, naphthyridinyl and the like.
  • halogen can refer to fluorine, chlorine, bromine, and iodine.
  • substitution may mean that at least one hydrogen atom may be substituted by a substituent.
  • R is selected from a substituted or unsubstituted group V, wherein the unsubstituted group V is selected from the group consisting of the following groups:
  • the substituted V has one or more substituents, and the substituents are each independently selected from: deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl , Phenyl, pyridyl, cyclopentyl, cyclohexane, pyrrolidinyl; when the number of substituents of V is greater than 1, the substituents are the same or different.
  • R may be selected from the group formed by the following groups:
  • * means that the above-mentioned groups are used in the formula I Group bonding.
  • R may be selected from the group formed by the following groups:
  • * means that the above-mentioned groups are used in combination with formula I-1 In formula I The group in the bond.
  • the Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted aryl groups with 6-20 carbon atoms, and substituted or unsubstituted carbon atoms with 5-12 Heteroaryl
  • the substituents of Ar 1 and Ar 2 are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl, and pyridyl.
  • Ar 1 and Ar 2 are each independently selected from a substituted or unsubstituted group W, and the unsubstituted group W is selected from the group consisting of the following groups:
  • substituted W has one or more substituents, each of which is independently selected from: deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl , Phenyl, pyridyl; when the number of substituents of W is greater than 1, the substituents are the same or different.
  • Ar 1 and Ar 2 are each independently selected from the group consisting of the following groups:
  • the nitrogen-containing compound of the embodiment of the application is selected from the group formed by the following compounds:
  • nitrogen-containing compounds are only exemplary nitrogen-containing compounds, and may also include other nitrogen-containing compounds, which will not be listed here.
  • SM3 (5.00g, 21.35mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C, after the addition, the temperature was kept for 1h. Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • THF tetrahydrofuran
  • SM6 (10.00g, 40.30mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C, after the addition, it was kept for 1h.
  • Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • SM7 (5.00g, 21.35mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C, after the addition, the temperature was kept for 1h. Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • THF tetrahydrofuran
  • SM8 (10.00g, 32.13mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C, after the addition, it was kept for 1h.
  • Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • SM9 (10.00g, 32.13mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), and n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C. After the addition, it was kept for 1h. Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • THF tetrahydrofuran
  • SM10 (10.00g, 63.29mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C, and after the addition, it was kept for 1h.
  • Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • SM11 (10.00g, 58.12mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), and n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C. After the addition, it was kept for 1h. Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • THF tetrahydrofuran
  • SM12 (10.00g, 58.12mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), and n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C. After the addition, it was kept for 1 hour. Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • THF tetrahydrofuran
  • SM13 (10.00g, 53.75mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), and n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C. After the addition, it was kept for 1h. Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • THF tetrahydrofuran
  • IM-IL-2 (3.67g, 13.4mmol) was added to a bottle containing DCM (dichloromethane) (40ml), and NBS (N-succinimide) (6.36g, 35.7mmol) was added at room temperature Stir overnight, filter to obtain a white crude product after the reaction is completed, and be slurried with n-heptane to obtain a white solid intermediate IM-IL-3 (4.20 g, yield 90%).
  • DCM dichloromethane
  • NBS N-succinimide
  • SM14 (10.00g, 53.75mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C, and after the addition, it was kept for 1 hour. Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • THF tetrahydrofuran
  • SM15 (10.00g, 48.06mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C, and after the addition, it was kept for 1h.
  • Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • SM16 (10.00g, 47.83mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), and n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C. After the addition, it was kept for 1h. Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • THF tetrahydrofuran
  • SM17 (10.00g, 44.03mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), and n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C. After the addition, it was kept for 1h. Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • THF tetrahydrofuran
  • SM18 (10.00g, 51.00mmol) was added to a 250ml three-necked flask containing THF (tetrahydrofuran) (50ml), n-butyllithium (1.44g, 22.42mmol) was added dropwise at -78°C, after the addition, the temperature was kept for 1h. Trimethyl borate (3.33g, 32.03mmol) was added dropwise, the temperature was continued for 1 hour, and then the temperature was raised to room temperature and stirred overnight.
  • THF tetrahydrofuran
  • This application does not specifically limit the synthesis method of the nitrogen-containing compound provided, and those skilled in the art can determine a suitable synthesis method according to the nitrogen-containing compound of this application in combination with the preparation method provided in the synthesis example section.
  • the synthesis example part of the present invention exemplarily provides a method for preparing nitrogen-containing compounds, and the raw materials used can be obtained commercially or by methods well known in the art. Those skilled in the art can obtain all nitrogen-containing compounds provided in this application according to these exemplary preparation methods. All specific preparation methods for preparing the nitrogen-containing compounds will not be described in detail here. Those skilled in the art should not understand limit.
  • the second aspect of the present application provides an electronic component.
  • the electronic component includes an anode 1 and a cathode 5 arranged opposite to each other, and a functional layer 3 arranged between the anode 1 and the cathode 5.
  • the functional layer 3 includes The nitrogen-containing compound of any of the above embodiments.
  • the anode 1 may be a material that facilitates hole injection into the functional layer 3.
  • the anode 1 material may be a metal, alloy, or metal oxide, etc., for example, it may be nickel, platinum, vanadium, chromium, copper, Zinc, gold or their alloys can also be zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); of course, the anode 1 material can also be other, for example, it can also be a combination, such as : ZnO:Al, SnO 2 :Sb, conductive polymer (poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole And polyaniline).
  • the material of the anode 1 is not limited to this, but can also be other materials, which will not be listed here.
  • the anode 1 material may be indium tin oxide (ITO), which may be a film covering the surface of the functional layer 3 away from the anode 1, and its thickness may be For example, it can be or Of course, it can also be other thicknesses, which will not be listed here.
  • ITO indium tin oxide
  • the cathode 5 may be a material that facilitates electron injection into the functional layer 3.
  • the material of the cathode 5 may be a metal or alloy material, for example, it may be magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium , Gadolinium, aluminum, silver, tin, lead or their alloys, and can also be multilayer materials, such as: LiF/Al, Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca, Of course, the material of the cathode 5 is not limited to this, but can also be other materials, which will not be listed here.
  • the material of the cathode 5 may be aluminum.
  • the thickness of the cathode 5 can be or Of course, it can also be other thicknesses, which are not specifically limited here.
  • the functional layer 3 may include an electron transport layer 34, and the electron transport layer 34 may include any one of the nitrogen-containing compounds described above.
  • the electron transport layer 34 can be a thin film, which can be used for electron transport, and its thickness can be For example, it can be or Of course, it can also be other thicknesses, which are not listed here.
  • the functional layer 3 can also include a light-emitting layer 33, an electron blocking layer 32, and a hole transport layer 31.
  • the light-emitting layer 33 can be provided on the side of the electron transport layer 34 away from the cathode 5 to provide recombination or separation of electrons and holes. In places where electrons and holes can recombine to produce excitons in the light-emitting layer 33, the effect of light-emitting has been achieved.
  • the electron blocking layer 32 can be provided on the side of the light emitting layer 33 away from the electron transport layer 34 and can be used to block electrons from transporting to the anode 1.
  • the hole transport layer 31 may be provided on the side of the electron blocking layer 32 away from the light emitting layer 33 and may be used for hole transport.
  • the electronic component may include an anode 1, a hole transport layer 31, a light emitting layer 33, an electron transport layer 34 and a cathode 5 arranged in a stack.
  • the electronic component of the embodiment of the present application can also include a hole injection layer 2 and an electron injection layer 4.
  • the hole injection layer 2 can be provided between the functional layer 3 and the anode 1; the electron injection layer 4 can be provided on the functional layer. Between layer 3 and cathode 5.
  • the electronic component may be an organic electroluminescent device.
  • the electronic component may also be a solar cell, as shown in FIG. 2, for example, it may be an organic solar cell. It mainly includes a cathode 400, an anode 200, and a functional layer 300.
  • the functional layer 300 can be arranged between the cathode 400 and the anode 200, and the functional layer 300 can include the nitrogen-containing compound in any embodiment of the present application, which can be used to improve the stimulation.
  • the transmission rate of the child may include an electron transport layer 303, a hole transport layer 301, and a photosensitive active layer 302.
  • the anode 200 may be formed on a substrate 100, and the anode 200 may be a thin film attached to the substrate 100.
  • the hole transport layer 301 can be formed on the surface of the anode 200 away from the substrate 100, the photosensitive active layer 302 can be formed on the surface of the hole transport layer 301 away from the anode 200, and electrons can be formed on the surface of the photosensitive active layer 302 away from the hole transport layer 301.
  • the transport layer 303, and the electron transport layer 303 may include the nitrogen-containing compound of any embodiment of the present application, and the cathode 400 may be formed on the surface of the electron transport layer 303 away from the photosensitive active layer 302.
  • the electrons move to the cathode 400 and the holes move to the anode 200. Therefore, a potential difference can be generated between the cathode 400 and the anode 200 of the solar cell, thereby realizing the power generation function.
  • the electronic device can be a display device, a lighting device, an optical communication device, or other types of electronic devices. Televisions, electronic paper, emergency lighting, optical modules, etc.
  • the anode 1 is prepared by the following process: the thickness of ITO is The ITO substrate is cut into a size of 40mm (length) ⁇ 40mm (width) ⁇ 0.7mm (thickness), and the photolithography process is used to prepare it into an experimental substrate with cathode 5, anode 1 and insulating layer patterns, and can use ultraviolet light Ozone and O 2 :N 2 plasma are used for surface treatment to increase the work function of anode 1, and organic solvents can be used to clean the surface of the ITO substrate to remove impurities and grease on the surface of the ITO substrate. For example, ethanol, acetone or Organic solvents such as isopropanol perform ultrasonic cleaning on the ITO substrate to remove impurities on its surface. It should be noted that the ITO substrate can also be cut into other sizes according to actual needs, and the size of the ITO substrate in the content of this application is not specifically limited here.
  • HIL hole injection layer 2
  • NPB vacuum evaporation of NPB
  • the compound TCTA is vapor-deposited on the hole transport layer 31 (HTL) (the structural formula can be seen below), and the thickness is The electron blocking layer 32 (EBL).
  • HTL hole transport layer 31
  • EBL electron blocking layer 32
  • the electron blocking layer 32 (EBL) can also have other thicknesses, which is not specifically limited here.
  • the electron blocking layer 32 is vapor-deposited on the electron blocking layer 32 (EBL) with the compound ⁇ , ⁇ -ADN (the structural formula can be seen below) as the main body and BD-1 (the structural formula can be seen below) at the same time, the main body and the dopant have a film thickness ratio of 20:1
  • the formation thickness is The light-emitting layer 33 (EML).
  • the film thickness ratio can be controlled by the evaporation rate.
  • the compound ⁇ , ⁇ -ADN and the compound BD-1 can be simultaneously evaporated to form a light-emitting layer, wherein the deposition rate of the compound ⁇ , ⁇ -ADN is 20 times the deposition rate of the compound BD-1.
  • compound 1 and LiQ are vapor-deposited on the light-emitting layer 33 (EML) (the structural formula can be seen below) as the electron transport layer 34 (ETL).
  • EML light-emitting layer 33
  • ETL electron transport layer 34
  • the thickness of the electron transport layer 34 can be Of course, the electron transport layer 34 (ETL) can also have other thicknesses, which is not specifically limited here.
  • Silver (Ag) and magnesium (Mg) are vapor-deposited on the electron transport layer 34 (ETL) with a film thickness ratio of 10:1 to form a thickness of The cathode 5.
  • the vapor deposition thickness on the cathode 5 is The compound CP-1 (the structural formula can be seen below) is used as the cover layer (CPL) to complete the manufacture of the organic light-emitting device.
  • Example 2 Except that the compounds shown in Table 2 were used instead of Compound 1 when forming the electron transport layer (ETL), the other was the same as in Example 1, and the same method as in Example 1 was used to fabricate an organic electroluminescent device.
  • the performance parameters of each device produced are shown in Table 3.
  • the organic electroluminescence device can be manufactured by the same method as in Example 1, except that Compound A to Compound H can be used as the electron transport layer (ETL) instead of Compound 1, respectively.
  • ETL electron transport layer
  • the structural formulas of compound A to compound H are as follows:
  • Comparative Example 1 uses Compound A to manufacture organic electroluminescent devices
  • Comparative Example 2 uses Compound B to manufacture organic electroluminescent devices
  • Comparative Example 3 uses Compound C to manufacture organic electroluminescent devices
  • Comparative Example 4 uses Compound D to manufacture organic electroluminescent devices.
  • Electroluminescent device; Comparative Example 5 uses compound E to manufacture an organic electroluminescent device; Comparative Example 6 uses compound F to manufacture an organic electroluminescent device.
  • the present application also provides an electronic device, which may include the electronic component of any one of the above-mentioned embodiments.
  • the electronic device may be a display device, a lighting device, an optical communication device, or other types of electronic devices, such as, but not limited to, computers, mobile phones 500, televisions, electronic paper, emergency lighting, and optical modules. Of course It can also be other equipment or devices, which are not specifically limited here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

提供一种含氮化合物、电子元件及电子装置,涉及有机材料技术领域。该含氮化合物如式I-1所示,其具有能够降低电子元件的工作电压、提高器件效率和延长器件寿命的特性。

Description

含氮化合物、电子元件及电子装置
相关申请的交叉引用
本申请要求于2019年10月31日递交的申请号为CN201911054880.X的中国专利申请及2020年4月10日递交的申请号为CN202010280898.8的中国专利申请的优先权,在此引用上述中国专利申请公开的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机材料领域,具体而言,涉及一种含氮化合物、电子元件及电子装置。
背景技术
近年来,随着半导体技术的发展,电子元件受到广泛应用,例如:有机电致发光器件(OLED,Organic electroluminescent device)作为新一代显示装置逐渐进入人们的视野。常见的有机电致发光器件是由阳极、阴极以及设于阴极和阳极之间的有机层构成。当向阴极和阳极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子与阳极侧的空穴同时向发光层移动,且其在发光层结合形成激子,激子处于激发态向外释放能量,从激发态变为基态的过程对外发光。
现有有机电致发光器件主要包括空穴传输层、发光层及电子传输层,但由于各层之间载流子的传输性能较差,进而使得器件在工作电压上升,发光效率降低,寿命缩短,导致器件的性能下降。
现有技术文献也对此进行了研究,例如:专利文献KR1020170097242;专利文献KR1020170161944及专利文献KR1020170048045。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本申请的目的在于克服上述现有技术中的不足,提供一种含氮化合物、电子元件及电子装置,可降低工作电压、提高发光效率,延长器件寿命。
根据本申请的一个方面,提供一种含氮化合物,所述含氮化合物的结构通式如式I-1所示:
Figure PCTCN2020122896-appb-000001
其中,X为氧或硫;
R选自:取代或未取代的成环碳原子数为1-10的杂环烷基、取代或未取代的成环碳原子数为5-15的杂芳基;
且所述R不为
Figure PCTCN2020122896-appb-000002
L选自:单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30亚杂芳基;
R a和R b相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基、碳原子数为1-15的烷基和碳原子数为6-30的芳基、碳原子数为3-30的杂芳基;n a是R a的个数,n b是R b的个数;
n a选自0、1、2、3或4,当n a大于1时,任意两个R a相同或者不相同;
n b选自0、1、2,当n b大于1时,任意两个R b相同或者不相同;
Ar 1、Ar 2相同或不同,且分别独立地选自取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为3-30的杂芳基;
所述L、Ar 1和Ar 2的取代基分别独立地选自:氘,卤素基团,氰基,碳原子数为1-10的烷基,碳原子数为3-10的环烷基,碳原子数为2-10烯基,碳原子数为3-15炔基,任选地被0、1、2、3、4或5个独立选自氘、氟、氰基、甲基、叔丁基的取代基所取代的碳原子数为6~20的芳基,碳原子数为3-20的杂芳基、碳原子数为3-10杂环烷基、碳原子数为6-24的芳基甲硅烷基、碳原子数为3-12的烷基甲硅烷基、碳原子数为3-6的卤代烷基;
所述R的取代基选自氘、氟、氰基、碳原子数为1-10的烷基、碳原子数位3-10的环烷基。
根据本申请的一个方面,提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;
所述功能层包含上述任意一项所述的化合物。
根据本申请的一个方面,提供一种电子装置,包括上述任意一项所述的电子元件。
本申请的含氮化合物、电子元件及电子装置,将带有氮杂环的取代基通过2,4-二取代二苯并呋喃(或二苯并噻吩)基团结合至常用的电子传输基团1,3,5-三嗪之上,一方面,该分子具有三嗪与二苯并呋喃(或二苯并噻吩)直接相结合成的缺电子型的大共轭平面结构,有助于提高电子传输率,进而可提高器件效率;另一方面,可通过二苯并呋喃(或二苯并噻吩)的与三嗪互为邻位结构上引入氮杂环,可以有效增强材料电子注入能力,可进一步提升器件效率及寿命。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施方式有机电致发光器件的结构示意图。
图2为本申请实施方式太阳能电池的结构示意图。
图3为本申请实施方式电子装置的示意图。
图中:1、阳极;2、空穴注入层;3、功能层;31、空穴传输层;32、电子阻挡层;33、发光层;34、电子传输层;4、电子注入层;5、阴极;100基底;200、阳极;300、功能层;301、空穴传输层;302、光敏活性层;303、电子传输层;400、阴极;500、屏幕。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
用语“该”和“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
本申请实施方式提供了一种含氮化合物,所述含氮化合物的结构通式如式I-1所示:
Figure PCTCN2020122896-appb-000003
其中,X为氧或硫;
R选自:取代或未取代的成环碳原子数为1-10的杂环烷基、取代或未取代的成环碳原子数为5-15的杂芳基,且所述R不为
Figure PCTCN2020122896-appb-000004
L选自:单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30亚杂芳基;
R a和R b相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基、碳原子数为1-15的烷基和碳原子数为3-30的杂芳基;n a是R a的个数,n b是R b的个数;
n a选自0、1、2、3或4,当n a大于1时,任意两个R a相同或者不相同;
n b选自0、1、2,当n b大于1时,任意两个R b相同或者不相同;
Ar 1、Ar 2相同或不同,且分别独立地选自取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为3-30的杂芳基。
所述L、Ar 1和Ar 2的取代基分别独立地选自:氘,卤素基团,氰基,碳原子数为1-10的烷基,碳原子数为3-10的环烷基,碳原子数为2-10烯基,碳原子数为3-15炔基,任选地被0、1、2、3、4或5个独立选自氘、氟、氰基、甲基、叔丁基的取代基所取代的碳原子数为6~20的芳基,碳原子数为3-20的杂芳基、碳原子数为3-10杂环烷基、碳原子数为6-24的芳基甲硅烷基、碳原子数为3-12的烷基甲硅烷基、碳原子数为3-6的卤代烷基;
所述R的取代基选自氘、氟、氰基、碳原子数为1-10的烷基、碳原子数位3-10的环烷基。
在本申请中,任选地被0、1、2、3、4或5个选自氘、氟、氰基、甲基的取代基所任选地被0、1、 2、3、4或5个独立选自氘、氟、氰基、甲基、叔丁基的取代基所取代的碳原子数为6~20的芳基取代的碳原子数为6~20的芳基”是指芳基可以被氘、氟、氰基、甲基中的一个或多个取代,也可以不被氘、氟、氰基、甲基取代,且当芳基上的取代基的个数大于等于2时,取代基可以相同或不同。
优选地,n a选自0,n b选自0。
在本申请一实施方式中,式I-1所示的化合物选自式I所示的化合物:
Figure PCTCN2020122896-appb-000005
其中,X为氧或硫;
R选自:取代或未取代的成环碳原子数为1-10的杂环烷基、取代或未取代的成环碳原子数为4-20吧的杂芳基;
L选自:单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30亚杂芳基;
所述R的取代基选自:氘、硝基、羟基、烷基、环烷基、烯基、炔基、芳基、杂芳基、杂环烷基、烷氧基、芳基甲硅烷基、烷基甲硅烷基;
所述L的取代基选自:氘、硝基、羟基、烷基、环烷基、烯基、炔基、杂环烷基、烷氧基、芳基甲硅烷基、烷基甲硅烷基、芳氧基、芳硫基。
在本申请一实施方式中,Ar 1和Ar 2不同时为苯基。
在本申请一实施方式中,L选自:单键、取代或未取代的碳原子数为6-25的亚芳基、取代或未取代的碳原子数为5-25的亚杂芳基;
优选地,L选自:单键、取代或未取代的碳原子数为6-15的亚芳基、取代或未取代的碳原子数为5-12的亚杂芳基。
更优选地,L的取代基选自氘、卤素基团、氰基、碳原子数为1-5的烷基、碳原子数为6-20的芳基、碳原子数为3-20的杂芳基。
具体地,L的取代基包括但不限于:氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基等。
在本申请一种实施方式中,L选自单键、亚苯基、亚萘基、亚联苯基、亚二甲基芴基、亚萘基、亚三联苯基。
在本申请另一种实施方式中,L选自单键、亚菲基、亚蒽基、亚吡啶基、亚嘧啶基、亚二苯并呋喃基、亚二苯并噻吩基。
在本申请一实施方式中,L选自如下基团所形成的组:
Figure PCTCN2020122896-appb-000006
其中,*可表示上述基团用于与式I中
Figure PCTCN2020122896-appb-000007
基团结合;**可表示上述基团用于与式I中R基团结合。
在本申请一实施方式中,L选自单键或如下基团所形成的组:
Figure PCTCN2020122896-appb-000008
Figure PCTCN2020122896-appb-000009
Figure PCTCN2020122896-appb-000010
其中,*表示上述基团用于与式I-1中
Figure PCTCN2020122896-appb-000011
式I中
Figure PCTCN2020122896-appb-000012
的基团结合;
**表示上述基团用于与式I-1、式I基团中R基团结合。
在本申请一种实施方式中,R选自:取代或未取代的成环碳原子数为1-10的杂环烷基、取代或未取代的成环碳原子数为5-20的杂芳基。
优选地,R选自取代或未取代的成环碳原子数为3-5的杂环烷基。举例而言,其成环碳原子数可以是3个、4个或5个,当然,其成环碳原子数也可以是其他,在此不做特殊限定。
可选地,R选自取代或未取代的成环碳原子数为5-18的杂芳基。
优选地,R选自取代或未取代的成环碳原子数为5-15的杂芳基。
优选地,R选自取代或未取代的成环碳原子数为5-13的杂芳基。
优选地,R选自取代或未取代的成环碳原子数为5-12的杂芳基。
更优选地,R选自取代或未取代的成环碳原子数为5-11的杂芳基。
更优选地,R选自取代或未取代的成环碳原子数为5-10的杂芳基。
更优选地,R选自取代或未取代的成环碳原子数为12的含氮的杂芳基。
更优选地,R选自取代或未取代的成环碳原子数为13的杂芳基。举例而言,其成环碳原子数可以是5个、8个、9个、10个、12个、13个或15个,当然,碳原子数还可以是其他,在此不再一一列举。
举例而言,R选自:噻吩基、呋喃基、吡咯烷基、咪唑基、噁唑基、三唑基、吡啶基、联吡啶基、吖啶基、哒嗪基、喹啉基、喹唑啉基、苯并咪唑基、苯并噻吩基、苯并咔唑基、苯并噁唑基、菲咯啉基、异噁唑基、吩噻嗪基、苯并喹啉基、苯并喹喔啉基、吡啶并喹啉基、萘啶基等。
优选地,R可选自以下取代或未取代的基团:N-吡咯烷基、吡啶基、联吡啶基、喹啉基、喹喔啉基、喹唑啉基、萘啶基、苯并喹啉基、菲咯啉基、苯并喹喔啉基、吡啶并喹啉基。
优选地,R的取代基可选自:氘、氟、氰基、碳原子数为1-5的烷基、碳原子数为3-5的环烷基、碳原子数为2-10的杂环烷基。
具体地,R的取代基包括但不限于:氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、环戊烷基、环己烷基、N-吡咯烷基、
其中,需要说明的是,在本申请实施方式中,L、Ar 1和Ar 2的碳原子数指的是L、Ar 1和Ar 2所有的碳原子数(包含取代基)。举例而言:L为取代的碳原子数为12的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。例如:Ar 1
Figure PCTCN2020122896-appb-000013
则其碳原子数为7;L为
Figure PCTCN2020122896-appb-000014
其碳原子数为12。
本申请中R所指的成环碳原子数指的是R用于成环的碳原子数(不包含取代基),举例而言,
Figure PCTCN2020122896-appb-000015
该基团为取代的吡啶基,属于取代的成环碳原子数为5的杂芳基。
“环烷基”是指分子结构中含有一个或者多个环的饱和烃类基团。在本申请中,环烷基指的是含有脂环结构的饱和烃,包含单环和稠环结构。环烷基可具有成环碳原子3-20个,诸如“3至20”的数值范围是指给定范围中的各个整数;例如,“3至20个碳原子”是指可包含3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子、10个碳原子、11个碳原子、12个碳原子、13个碳原子、14个碳原子、15个碳原子、16个碳原子、17个碳原子、18个碳原子、19个碳原子或 20个碳原子的环烷基。环烷基可为具有3至20个碳原子的小环、普通环或大环。环烷基还可分为单环-只有一个环、双环-两个环、或多环-三个或以上环。环烷基还可分为两个环共用一个碳原子-螺环、两个环共用两个碳原子-稠环和两个环共用两个以上碳原子-桥环。此外,环烷基可为取代的或未取代的。
优选地,环烷基选自成环碳原子数为3-10的环烷基,具体施例包括但不限于,环丙烷、环丁烷、环戊烷、环己烷和金刚烷。
“杂环烷基”是指环烷基中至少一个碳原子被杂原子N、O、P、S或Si替换的基团。杂环烷基中用于成环的碳原子数可以是1至10个,其可以是3个、4个、5个或10个。当然,还可以是其他数量,在此不做特殊限定。
“芳基”是指衍生自芳香烃环的任选官能团或取代基,包括单环芳基和多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者多个稠环芳基。即,通过碳碳键共轭连接的两个或者多个芳香基团也可以视为本申请的芳基。其中,芳基中不含有B、N、O、S或P等杂原子。芳基中的碳原子数可以为6至30个,其可以是6个、10个、12个、14个、15个、20个、25个或30个,当然,还可以是其他数量,在此不做特殊限定。举例而言,芳基可以是:苯基、联苯基、三联苯基,萘基、蒽基、芴基、二甲基芴基、9,9-二苯基芴基、螺二芴基、菲基等。
在本申请中,取代的芳基,指的是芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被氘原子、支链烷基、直链烷基、环烷基、烷氧基或者其他基团取代。可以理解的是,取代的碳原子数为18的芳基,指的是芳基和芳基上的取代基的碳原子总数为18个。举例而言,9,9-二苯基芴基的碳原子数为25。
在本申请中,成环碳原子数为6-25的芳基指的是芳基中位于芳香环上的碳原子数是6-25个,芳基上的取代基中的碳原子数不计算在内。芳基中的成环碳原子数可以是6-25个、6-20个、6-18个、6-15个、6-14个或6-10个,但不仅限于此。
在本申请中,作为取代基的芳基具体实例包括但不限于包括但不限于:苯基、萘基、联苯基、二甲基芴基、菲基、蒽基、三联苯基等。
“杂芳基”是指芳基上至少一个碳原子被杂原子N、O、P、S或Si替换的基团。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。杂芳基中的碳原子数可以为1至30个,其可以是2个、5个、12个、13个、14个、20个、25个或30个,当然,还可以是其他数量,在此不做特殊限定。在杂芳基为单环情况下,杂芳基不包含2个以上的氮原子。
在本申请中,成环碳原子数为5-15的杂芳基指的是杂芳基中位于杂芳环上的碳原子数是4-20个,杂芳基上的取代基中的碳原子数不计算在内。杂芳基中的成环碳原子数可以是4-20个,5-15,5-14,5-13个、5-12个、5-11、5-10个、5-9个、5-8个、5-7个、5-6个,但不限于此。
优选地,杂芳基的成环碳原子数为4-20个。举例而言,杂芳基可以是:吡啶基、联吡啶基、噻吩基、呋喃基、吡咯基、咪唑基、噁唑基、三唑基、吡啶基、联吡啶基、吖啶基、哒嗪基、喹啉基、喹唑啉基、苯并咪唑基、苯并噻吩基、苯并噁唑基、菲咯啉、异噁唑基、吩噻嗪基、苯并喹啉基、苯并喹喔啉基、吡啶并喹啉基、萘啶基等。
在本申请中,作为取代基的杂芳基具体实例包括但不限于:吡啶基、菲咯啉基、甲基取代的吡啶基、联吡啶基、喹啉基、喹唑啉基、苯并咪唑基、苯并喹啉基、苯并喹喔啉基、吡啶并喹啉基、萘啶基等。
需要说明的是,在本申请中,对芳基的解释可应用于亚芳基,对杂芳基的解释可以应用于亚杂芳 基。
在本申请中,卤素可以为指的是氟、氯、溴、碘。
此外,取代可指至少一个氢原子可被取代基取代。
在本申请一种实施方式中,R选自取代或未取代的基团V,其中未取代的基团V选自如下基团组成的组:
Figure PCTCN2020122896-appb-000016
其中,
Figure PCTCN2020122896-appb-000017
表示化学键;取代的V上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、吡啶基、环戊烷基、环己烷基、吡咯烷基;当V的取代基个数大于1时,各取代基相同或不同。
可选地,R可选自如下基团所形成的组:
Figure PCTCN2020122896-appb-000018
其中,*表示上述基团用于与式I中
Figure PCTCN2020122896-appb-000019
基团结合。
可选地,R可选自如下基团所形成的组:
Figure PCTCN2020122896-appb-000020
其中,*表示上述基团用于与式I-1中
Figure PCTCN2020122896-appb-000021
式I中
Figure PCTCN2020122896-appb-000022
中的基团结合。
在本申请一种实施方式中,所述Ar 1、Ar 2分别独立地选自取代或未取代的碳原子数为6-20的芳基、取代或未取代的碳原子数为5-12的杂芳基;
优选地,所述Ar 1、Ar 2的取代基分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、吡啶基。
在本申请另一种实施方式中,Ar 1、Ar 2分别独立地选自取代或未取代的基团W,未取代的基团W选自如下基团组成的组:
Figure PCTCN2020122896-appb-000023
Figure PCTCN2020122896-appb-000024
其中,
Figure PCTCN2020122896-appb-000025
表示化学键;取代的W上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、吡啶基;当W的取代基个数大于1时,各取代基相同或不同。
可选地,所述Ar 1、Ar 2分别独立地选自如下基团组成的组:
Figure PCTCN2020122896-appb-000026
在本申请一实施方式中,本申请实施方式的含氮化合物选自如下化合物所形成的组:
Figure PCTCN2020122896-appb-000027
Figure PCTCN2020122896-appb-000028
Figure PCTCN2020122896-appb-000029
Figure PCTCN2020122896-appb-000030
Figure PCTCN2020122896-appb-000031
Figure PCTCN2020122896-appb-000032
Figure PCTCN2020122896-appb-000033
需要说明的是,以上含氮化合物仅为示例性的含氮化合物,还可以包含其他含氮化合物,在此不再一一列举。
下面,通过实施例对本申请的含氮化合物的合成过程进行详细说明。但是,下述实施例仅是本申请的例示,而并非限定本申请。
化合物1的合成:
Figure PCTCN2020122896-appb-000034
将SM1(50g,362.50mmol)、SM2(109.07g,362.50mmol)、四(三苯基膦)钯(20.95g,18.16mmol)、碳酸钾(100.20g,725.00mmol)、四丁基氯化铵(5.03g,18.12mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-A-1(87.13g,收率为90%)。
Figure PCTCN2020122896-appb-000035
将中间体IM-I-A-1(87.13g,326.20mmol)、氢氧化钠(26.09g,652.42mmol)、NMP(N-甲基吡咯烷酮)(1054.18g,10634.36mmol)加入圆底烧瓶中,加热至回流搅拌3h,将反应液冷却至室温,加入二氯甲烷(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用二氯甲烷为流动相进行硅胶柱色谱提纯,浓干过柱液,得到中间体IM-I-A(60.45g,收率为75%)。
Figure PCTCN2020122896-appb-000036
将SM3(5.00g,21.35mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-B(2.76g,收率为65%)。
Figure PCTCN2020122896-appb-000037
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-B(2.41g,12.14mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-C-1(3.49g,收率为90%)。
Figure PCTCN2020122896-appb-000038
将中间体IM-I-C-1(3.49g,10.86mmol)加入盛有DCM(二氯甲烷)(30ml)的瓶中,加入NBS(N-琥珀酰亚胺)(5.79g,32.57mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-C-2(3.5g,收率为90%)。
Figure PCTCN2020122896-appb-000039
将中间体IM-I-C-2(3.5g,10.86mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-C(2.97g,收率为65%)。
Figure PCTCN2020122896-appb-000040
将中间体IM-I-C(2.97g,8.13mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物1(3.95g,收率为88%)。质谱为:m/z=552.6[M+H] +
参照中间体IM-I-C的合成方法,合成如下所示的中间体。
Figure PCTCN2020122896-appb-000041
化合物2的合成:
Figure PCTCN2020122896-appb-000042
将SM5(10.00g,40.30mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-D-1(5.0g,收率为58%)。
Figure PCTCN2020122896-appb-000043
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-D-1(3.45g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应 液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-D-2(4.66g,收率为86%)。
Figure PCTCN2020122896-appb-000044
将中间体IM-I-D-2(4.0g,11.9mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-D-3(3.5g,收率为94%)。
Figure PCTCN2020122896-appb-000045
将中间体IM-I-D-3(4.66g,13.89mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-D(2.63g,收率为50%)。
Figure PCTCN2020122896-appb-000046
将中间体IM-I-D(2.63g,6.93mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物2(3.45g,收率为88%)。质谱为:m/z=566.7[M+H] +
化合物3的合成:
Figure PCTCN2020122896-appb-000047
将SM6(10.00g,40.30mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-E-1(5.0g,收率为58%)。
Figure PCTCN2020122896-appb-000048
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-E-1(3.45g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-E-2(4.66g,收率为86%)。
Figure PCTCN2020122896-appb-000049
将中间体IM-I-E-2(4.0g,11.9mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-E-3(3.5g,收率为94%)。
Figure PCTCN2020122896-appb-000050
将中间体IM-I-E-3(4.66g,13.89mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃ 下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-E(2.63g,收率为50%)。
Figure PCTCN2020122896-appb-000051
将中间体IM-I-E(2.63g,6.93mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物3(3.45g,收率为88%)。质谱为:m/z=566.7[M+H] +
化合物4的合成:
Figure PCTCN2020122896-appb-000052
将SM7(5.00g,21.35mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-F-1(2.76g,收率为65%)。
Figure PCTCN2020122896-appb-000053
将中间体IM-I-A(3.0g,12.14mmol)、中间体I-F-1(2.41g,12.14mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结 晶提纯,得到中间体IM-I-F-2(3.49g,收率为90%)。
Figure PCTCN2020122896-appb-000054
将中间体IM-I-F-2(3.3g,10.26mmol)加入盛有DCM(二氯甲烷)(30ml)的瓶中,加入NBS(N-琥珀酰亚胺)(5.48g,30.80mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-F-3(3.5g,收率为85%)。
Figure PCTCN2020122896-appb-000055
将中间体IM-I-F-3(3.49g,10.86mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-F(2.97g,收率为65%)。
Figure PCTCN2020122896-appb-000056
将中间体IM-I-F(2.97g,8.13mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物4(3.99g,收率为89%)。质谱为:m/z=552.6[M+H] +
Figure PCTCN2020122896-appb-000057
参照化合物4的化合物合成方法,将SM4替换成Q-1,得到化合物113(收率为85%)。质谱:m/z=643.2。
参照化合物4的合成方法,用中间体-X代替中间体IM-I-F,中间体-Y代替SM4,合成下表2所示的化合物。
表2
Figure PCTCN2020122896-appb-000058
化合物5的合成:
Figure PCTCN2020122896-appb-000059
将SM8(10.00g,32.13mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续 保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-G-1(5.0g,收率为56%)。
Figure PCTCN2020122896-appb-000060
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-G-1(4.46g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-G-2(5.42g,收率为84%)。
Figure PCTCN2020122896-appb-000061
将中间体IM-I-G-2(5.42g,13.6mmol)加入盛有DCM(二氯甲烷)(30ml)的瓶中,加入NBS(N-琥珀酰亚胺)(5.79g,32.57mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-G-3(5.69g,收率为88%)。
Figure PCTCN2020122896-appb-000062
将中间体IM-I-G-3(5.40g,18.30mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol), 继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-G(4.04g,收率为50%)。
Figure PCTCN2020122896-appb-000063
将中间体IM-I-G(4.04g,9.13mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物5(5.00g,收率为85%)。质谱为:m/z=529.7[M+H] +
化合物6的合成:
Figure PCTCN2020122896-appb-000064
将SM9(10.00g,32.13mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-H-1(5.0g,收率为56%)。
Figure PCTCN2020122896-appb-000065
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-H-1(4.46g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-H-2(5.42g,收率为84%)。
Figure PCTCN2020122896-appb-000066
将中间体IM-I-H-2(5.4g,13.5mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-H-3(5.8g,收率为90%)。
Figure PCTCN2020122896-appb-000067
将中间体IM-I-H-3(5.4g,18.30mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-H(4.04g,收率为50%)。
Figure PCTCN2020122896-appb-000068
将中间体IM-I-H(4.04g,9.13mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g, 0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物6(4.94g,收率为84%)。质谱为:m/z=529.7[M+H] +
化合物7的合成:
Figure PCTCN2020122896-appb-000069
将SM10(10.00g,63.29mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-I-1(4.90g,收率为56%)。
Figure PCTCN2020122896-appb-000070
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-I-1(1.98g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-I-2(3.29g,收率为83%)。
Figure PCTCN2020122896-appb-000071
将中间体IM-I-I-2(3.29g,13.4mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-I-3(3.87g,收率为89%)。
Figure PCTCN2020122896-appb-000072
将中间体IM-I-I-3(3.3g,13.14mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-I(1.95g,收率为49%)。
Figure PCTCN2020122896-appb-000073
将中间体IM-I-I(1.95g,6.74mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物7(2.66g,收率为83%)。质谱为:m/z=476.5[M+H] +
化合物7核磁数据: 1HNMR(400MHz,CDCl 3):9.23(s,1H),8.85-8.79(m,6H),8.73(s,1H),8.08(d,1H),7.82-7.76(m,3H),7.53(t,1H),7.49-7.44(m,5H),7.39-7.33(m,2H).
化合物8的合成:
Figure PCTCN2020122896-appb-000074
将SM11(10.00g,58.12mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-J-1(4.45g,收率为56%)。
Figure PCTCN2020122896-appb-000075
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-J-1(2.21g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-J-2(3.48g,收率为83%)。
Figure PCTCN2020122896-appb-000076
将中间体IM-I-J-2(3.48g,13.4mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-J-3(4.08g,收率为90%)。
Figure PCTCN2020122896-appb-000077
将中间体IM-I-J-3(3.50g,13.42mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-J(2.04g,收率为50%)。
Figure PCTCN2020122896-appb-000078
将中间体IM-I-J(2.04g,6.73mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、 碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物8(2.81g,收率为86%)。质谱为:m/z=495.6[M+H] +
化合物9的合成:
Figure PCTCN2020122896-appb-000079
将SM12(10.00g,58.12mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-K-1(4.45g,收率为56%)。
Figure PCTCN2020122896-appb-000080
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-K-1(2.21g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-K-2(3.48g,收率为83%)。
Figure PCTCN2020122896-appb-000081
将中间体IM-I-K-2(3.48g,13.4mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-K-3(4.08g,收率为90%)。
Figure PCTCN2020122896-appb-000082
将中间体IM-I-K-3(3.5g,13.42mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-K(2.04g,收率为50%)。
Figure PCTCN2020122896-appb-000083
将中间体IM-I-K(2.04g,6.73mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物9(2.81g,收率为86%)。质谱为:m/z=495.6[M+H] +
化合物10的合成:
Figure PCTCN2020122896-appb-000084
将SM13(10.00g,53.75mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-L-1(4.29g,收率为53%)。
Figure PCTCN2020122896-appb-000085
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-L-1(2.44g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-L-2(3.67g,收率为83%)。
Figure PCTCN2020122896-appb-000086
将中间体IM-I-L-2(3.67g,13.4mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-L-3(4.20g,收率为90%)。
Figure PCTCN2020122896-appb-000087
将中间体IM-I-L-3(3.7g,13.42mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-L(2.08g,收率为49%)。
Figure PCTCN2020122896-appb-000088
将中间体IM-I-L(2.08g,6.55mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结 晶提纯,得到化合物10(2.78g,收率为84%)。质谱为:m/z=504.6[M+H] +
化合物11的合成:
Figure PCTCN2020122896-appb-000089
将SM14(10.00g,53.75mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-M-1(4.29g,收率为53%)。
Figure PCTCN2020122896-appb-000090
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-M-1(2.44g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-M-2(3.67g,收率为83%)。
Figure PCTCN2020122896-appb-000091
将中间体IM-I-M-2(3.67g,13.4mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-M-3(4.20g,收率为90%)。
Figure PCTCN2020122896-appb-000092
将中间体IM-I-M-3(3.7g,13.42mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-M(2.08g,收率为49%)。
Figure PCTCN2020122896-appb-000093
将中间体IM-I-M(2.08g,6.55mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物11(2.78g,收率为84%)。质谱为:m/z=504.6[M+H] +
化合物12的合成:
Figure PCTCN2020122896-appb-000094
将SM15(10.00g,48.06mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-N-1(4.40g,收率为53%)。
Figure PCTCN2020122896-appb-000095
将中间体I-A(3.0g,12.14mmol)、中间体I-N-1(2.80g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结 晶提纯,得到中间体IM-I-N-2(4.06g,收率为85%)。
Figure PCTCN2020122896-appb-000096
将中间体IM-I-N-2(4.06g,13.4mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-N-3(4.57g,收率为89%)。
Figure PCTCN2020122896-appb-000097
将中间体IM-I-N-3(4.00g,13.75mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-N(2.28g,收率为49%)。
Figure PCTCN2020122896-appb-000098
将中间体IM-I-N(2.28g,6.72mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物12(2.97g,收率为84%)。质谱为:m/z=526.6[M+H] +
化合物13的合成:
Figure PCTCN2020122896-appb-000099
将SM16(10.00g,47.83mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-O-1(4.41g,收率为53%)。
Figure PCTCN2020122896-appb-000100
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-O-1(2.81g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-O-2(4.02g,收率为84%)。
Figure PCTCN2020122896-appb-000101
将中间体IM-I-O-2(4.02g,13.5mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-O-3(4.53g,收率为89%)。
Figure PCTCN2020122896-appb-000102
将中间体IM-I-O-3(4.00g,13.56mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol), 继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-O(2.31g,收率为50%)。
Figure PCTCN2020122896-appb-000103
将中间体IM-I-O(2.31g,6.79mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物13(3.01g,收率为84%)。质谱为:m/z=527.6[M+H] +
化合物14的合成:
Figure PCTCN2020122896-appb-000104
将SM17(10.00g,44.03mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-P-1(4.45g,收率为53%)。
Figure PCTCN2020122896-appb-000105
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-P-1(3.11g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重 结晶提纯,得到中间体IM-I-P-2(4.22g,收率为83%)。
Figure PCTCN2020122896-appb-000106
将中间体IM-I-P-2(4.22g,13.4mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-P-3(4.69g,收率为89%)。
Figure PCTCN2020122896-appb-000107
将中间体IM-I-P-3(4.20g,13.42mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-P(2.4g,收率为50%)。
Figure PCTCN2020122896-appb-000108
将中间体IM-I-P(2.40g,6.70mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物14(3.01g,收率为84%)。质谱为:m/z=545.6[M+H] +
化合物15的合成:
Figure PCTCN2020122896-appb-000109
将SM18(10.00g,51.00mmol)加入盛有THF(四氢呋喃)(50ml)的250ml三口瓶中,-78℃下滴加正丁基锂(1.44g,22.42mmol),滴加完后保温1h后滴加硼酸三甲酯(3.33g,32.03mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体I-Q-1(3.92g,收率为51%)。
Figure PCTCN2020122896-appb-000110
将中间体IM-I-A(3.0g,12.14mmol)、中间体IM-I-Q-1(2.44g,16.18mmol)、四(三苯基膦)钯(0.70g,0.61mmol)、碳酸钾(3.36g,24.28mmol)、四丁基氯化铵(0.17g,0.61mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-I-Q-2(3.75g,收率为85%)。
Figure PCTCN2020122896-appb-000111
将中间体IM-I-Q-2(3.75g,13.7mmol)加入盛有DCM(二氯甲烷)(40ml)的瓶中,加入NBS(N-琥珀酰亚胺)(6.36g,35.7mmol),室温搅拌过夜,反应完后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-Q-3(4.25g,收率为88%)。
Figure PCTCN2020122896-appb-000112
将中间体IM-I-Q-3(3.8g,13.72mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃ 下滴加正丁基锂(0.73g,11.40mmol),滴加完后保温1h后滴加硼酸三甲酯(1.69g,16.29mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-I-Q(2.18g,收率为50%)。
Figure PCTCN2020122896-appb-000113
将中间体IM-I-Q(2.18g,6.87mmol)、SM4(2.54g,8.13mmol)、四(三苯基膦)钯(0.47g,0.41mmol)、碳酸钾(2.25g,16.26mmol)、四丁基氯化铵(0.11g,0.41mmol)、甲苯(30mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物15(2.87g,收率为83%)。质谱为:m/z=504.6[M+H] +
化合物88的合成:
Figure PCTCN2020122896-appb-000114
将SMA-1(10g,29.24mmol)、SMB-1(4.0g,29.23mmol)、四(三苯基膦)钯(1.68g,1.46mmol)、碳酸钾(12.1g,87.7mmol)、四丁基氯化铵(0.4g,1.46mmol)、甲苯(100mL)、乙醇(40mL)和去离子水(20mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到中间体IM-AA-1(8.18g,收率为79%)。
Figure PCTCN2020122896-appb-000115
将中间体IM-AA-1(8.0g,22.5mmol)加入盛有THF(四氢呋喃)(30ml)的250ml三口瓶中,-78℃下滴加正丁基锂(2.17g,33.8mmol),滴加完后保温1h后滴加硼酸三甲酯(7.04g,67.75mmol),继续保温1h后升温至室温搅拌过夜。加入盐酸(2mol/L)调节PH至中性,后过滤得白色粗品,用正庚烷打浆得白色固体中间体IM-AA-2(4.54g,收率为63%)。
Figure PCTCN2020122896-appb-000116
将中间体IM-A-2(4.0g,12.57mmol)、SM4(3.92g,12.57mmol)、四(三苯基膦)钯(0.72g,0.63mmol)、碳酸钾(5.20g,37.71mmol)、四丁基氯化铵(0.17g,0.62mmol)、甲苯(32mL)、乙醇(16mL)和去离子水(8mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌10小时;将反应液冷却至室温,加入甲苯(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到化合物88(4.96g,收率为78%)。质谱为:m/z=493.1[M+H] +
化合物88的核磁: 1HNMR(400MHz,CDCl 3):9.30(s,1H),8.84-8.80(m,6H),8.72(s,1H),8.42(d,1H),8.05(d,1H),7.75(d,2H),7.57-7.50(m,2H),7.48-7.45(m,4H),7.38-7.34(m,2H).
本申请对提供的含氮化合物的合成方法没有特别限定,本领域技术人员可以根据本申请的含氮化合物结合合成例部分提供的制备方法确定合适的合成方法。换言之,本发明的合成例部分示例性地提供了含氮化合物的制备方法,所采用的原料可通过商购获得或本领域熟知的方法获得。本领域技术人员可以根据这些示例性的制备方法得到本申请提供的所有含氮化合物,在此不再详述制备该含氮化合物的所有具体制备方法,本领域技术人员不应理解为对本申请的限制。
本申请第二方面提供一种电子元件,如图1所示,该电子元件包括相对设置的阳极1和阴极5,以及设于阳极1和阴极5之间的功能层3,该功能层3包含上述任一实施方式的含氮化合物。
阳极1可以是有助于空穴注入至功能层3的材料,举例而言,阳极1材料可以是金属、合金或金属氧化物等,例如,其可以是镍、铂、钒、铬、铜、锌、金或它们的合金,也可以是氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);当然,阳极1材料还可以是其他,例如,还可以是组合物,如:ZnO:Al、SnO 2:Sb、导电聚合物(聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺),当然,阳极1的材料不仅限于此,还可以是其他材料,在此不再一一列举。优选地,阳极1材料可以是氧化铟锡(ITO,indium tin oxide),其可以是覆盖于功能层3远离阳极1的表面的薄膜,其厚度可以是
Figure PCTCN2020122896-appb-000117
举例而言,其可以是
Figure PCTCN2020122896-appb-000118
Figure PCTCN2020122896-appb-000119
当然,还可以是其他厚度,在此不再一一列举。
阴极5可以是有助于电子注入至功能层3的材料,举例而言,阴极5材料可以是金属或合金材料,例如,其可以是镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡、铅或它们的合金,也可以是多层材料,如:LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca,当然,阴极5的材料不仅限于此,还可以是其他材料,在此不再一一列举。优选地,阴极5材料可以是铝。阴极5的厚度可以是
Figure PCTCN2020122896-appb-000120
Figure PCTCN2020122896-appb-000121
当然也可以是其他厚度,在此不做特殊限定。
在一实施方式中,功能层3可以包括电子传输层34,该电子传输层34可以包括上述任一项的含氮化合物。举例而言,电子传输层34可以是一层薄膜,其可用于电子的传输,其厚度可以是
Figure PCTCN2020122896-appb-000122
举例而言,其可以是
Figure PCTCN2020122896-appb-000123
Figure PCTCN2020122896-appb-000124
当然,还可以是其他厚度,在此不再一一 列举。
功能层3还可以包括发光层33、电子阻挡层32及空穴传输层31,其中,发光层33可设于电子传输层34远离阴极5的一侧,可为电子和空穴提供复合或分离的场所,电子和空穴可在发光层33复合产生激子,已达到发光的效果。电子阻挡层32可设于发光层33远离电子传输层34的一侧,可用于阻挡电子向阳极1传输。空穴传输层31可设于电子阻挡层32远离发光层33的一侧,可用于空穴的传输。电子元件可以包括叠层设置的阳极1、空穴传输层31、发光层33、电子传输层34及阴极5。
同时,本申请实施方式的电子元件还可以包括空穴注入层2和电子注入层4,其中:空穴注入层2可设于功能层3与阳极1之间;电子注入层4可设于功能层3与阴极5之间。举例而言,该电子元件可以是有机电致发光器件。
在其他实施方式中,该电子元件还可以是太阳能电池,如图2所示,举例而言,其可以是有机太阳能电池。其主要包括阴极400、阳极200和功能层300,功能层300可设于阴极400和阳极200之间,且该功能层300可以包括本申请任一实施方式中的含氮化合物,可用于提高激子的传输速率。在一实施方式中,功能层300可以包括电子传输层303、空穴传输层301及光敏活性层302,可在一基底100上形成阳极200,该阳极200可以是附着于基底100上的薄膜,可在阳极200远离基底100的表面形成空穴传输层301,可在空穴传输层301远离阳极200的表面形成光敏活性层302,可在光敏活性层302远离空穴传输层301的表面形成电子传输层303,且该电子传输层303可包括本申请任一实施方式的含氮化合物,还可在电子传输层303远离光敏活性层302的表面形成阴极400。在阳光照射该太阳能电池时,光敏活性层302中的电子获得能量发生跃迁产生激子,在电子传输层303及空穴传输层301的协助下,电子向阴极400移动,空穴向阳极200移动,从而可在太阳能电池的阴极400和阳极200之间产生电势差,进而实现发电功能。
下面,以有机电致发光器件为例,通过实施例对本申请的有机电致发光器件进行详细说明。但是,下述实施例仅是本申请的例示,而并非限定本申请。
上述电子元件可以应用于多种电子装置,如图3所示,该电子装置可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如,可以包括但不限于电脑、手机500、电视机、电子纸、应急照明灯、光模块等。
有机电致发光器件的制作及评估实施例
实施例1:有机电致发光器件的制作
通过以下过程制备阳极1:将ITO厚度为
Figure PCTCN2020122896-appb-000125
的ITO基板切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极5、阳极1以及绝缘层图案的实验基板,并可利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极1的功函数,并可采用有机溶剂清洗ITO基板表面,以清除ITO基板表面的杂质及油污,举例而言,可采用乙醇、丙酮或异丙醇等有机溶剂对ITO基板进行超声清洗以去除其表面杂质。需要说明的是,ITO基板还可以根据实际需要切割成其他尺寸,在此不对在本申请内容中ITO基板的尺寸做特殊限定。
在实验基板(阳极1)上真空蒸镀HAT-CN(结构式可见下文)以形成厚度为
Figure PCTCN2020122896-appb-000126
的空穴注入层2(HIL),并且在空穴注入层2(HIL)上真空蒸镀NPB(结构式可见下文),以形成厚度为
Figure PCTCN2020122896-appb-000127
的空穴传输层31(HTL)。
在空穴传输层31(HTL)上蒸镀化合物TCTA(结构式可见下文),形成厚度为
Figure PCTCN2020122896-appb-000128
的电子阻挡层32(EBL)。当然,电子阻挡层32(EBL)还可以是其他厚度,在此不做特殊限定。
在电子阻挡层32(EBL)上蒸镀以化合物α,β-ADN(结构式可见下文)作为主体同时掺杂BD-1(结构式可见下文),主体和掺杂剂以20:1的膜厚比形成厚度为
Figure PCTCN2020122896-appb-000129
的发光层33(EML)。在本申请的一种实施方式中,膜厚比可以通过蒸镀速率进行控制。举例而言,可以同时蒸镀化合物α,β-ADN和化合物BD-1以形成发光层,其中,化合物α,β-ADN的蒸镀速率为化合物BD-1沉积速率的20倍。
按照比例为2:1的膜厚比在发光层33(EML)上蒸镀化合物1和LiQ(结构式可见下文)作为电子传输层34(ETL),电子传输层34的厚度可以是
Figure PCTCN2020122896-appb-000130
当然,电子传输层34(ETL)还可以是其他厚度,在此不做特殊限定。
将银(Ag)和镁(Mg)以10:1的膜厚比蒸镀在电子传输层34(ETL)上,形成厚度为
Figure PCTCN2020122896-appb-000131
的阴极5。
此外,在上述阴极5上蒸镀厚度为
Figure PCTCN2020122896-appb-000132
的化合物CP-1(结构式可见下文),作为覆盖层(CPL),从而完成有机发光器件的制造。
Figure PCTCN2020122896-appb-000133
实施例2~19
除了在形成电子传输层(ETL)时各自采用表2所示的化合物替代化合物1之外,其他与实施例1相同,采用与实施例1相同的方法制作有机电致发光器件。制作的各器件性能参数详见表3。
比较例1~比较例8
在比较例1~比较例8中,可分别使用化合物A~化合物H作为电子传输层(ETL)替代化合物1之外,采用与实施例1相同的方法制造有机电致发光器件。其中,化合物A~化合物H的结构式分别如下所示:
Figure PCTCN2020122896-appb-000134
即:比较例1采用化合物A制造有机电致发光器件;比较例2采用化合物B制造有机电致发光器件;比较例3采用化合物C制造有机电致发光器件;比较例4采用化合物D制造有机电致发光器件;比较例5采用化合物E制造有机电致发光器件;比较例6采用化合物F制造有机电致发光器件。
制备出的各器件的性能详见表2。其中,IVL(电流、电压、亮度)数据对比的是在10mA/cm 2下的测试结果,T95寿命是15mA/cm 2电流密度下的测试结果。
表3实施例1~19与比较例1~6的器件性能
Figure PCTCN2020122896-appb-000135
Figure PCTCN2020122896-appb-000136
根据表3可知,作为电子传输层(ETL)的实施例1-19所示地化合物与使用已公知的化合物A、化合物B、化合物C、化合物D和化合物E、化合物F的比较例1、比较例2、比较例3、比较例4、比较例5及比较例6相比,本申请中使用的作为电子传输层(ETL)制备的上述有机电致发光器件的寿命至少提高了25%。
本申请还提供一种电子装置,该电子装置可以包括上述任一实施方式的电子元件,其有益效果及具体细节可参考上述电子元件,在此不在赘述。举例而言,该电子装置可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑、手机500、电视机、电子纸、应急照明灯、光模块,当然还可以是其他设备或装置,在此不做特殊限定。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由所附的权利要求指出。

Claims (23)

  1. 一种含氮化合物,其特征在于,所述含氮化合物的结构通式如式I-1所示:
    Figure PCTCN2020122896-appb-100001
    其中,X为氧或硫;
    R选自取代或未取代的成环碳原子数为1-10的杂环烷基、取代或未取代的成环碳原子数为5-20的杂芳基,且所述R不为
    Figure PCTCN2020122896-appb-100002
    L选自:单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30亚杂芳基;
    R a和R b相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基、碳原子数为1-15的烷基和碳原子数为3-30的杂芳基;n a是R a的个数,n b是R b的个数;
    n a选自0、1、2、3或4,当n a大于1时,任意两个R a相同或者不相同;
    n b选自0、1、2,当n b大于1时,任意两个R b相同或者不相同;
    Ar 1、Ar 2相同或不同,且分别独立地选自取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为3-30的杂芳基;
    所述L、Ar 1和Ar 2的取代基分别独立地选自:氘,卤素基团,氰基,碳原子数为1-10的烷基,碳原子数为3-10的环烷基,碳原子数为2-10烯基,碳原子数为3-15炔基,任选地被0、1、2、3、4或5个独立选自氘、氟、氰基、甲基、叔丁基的取代基所取代的碳原子数为6~20的芳基,碳原子数为3-20的杂芳基、碳原子数为3-10杂环烷基、碳原子数为6-24的芳基甲硅烷基、碳原子数为3-12的烷基甲硅烷基、碳原子数为3-6的卤代烷基;
    所述R的取代基选自氘、氟、氰基、碳原子数为1-5的烷基、碳原子数位3-5的环烷基。
  2. 一种含氮化合物,其特征在于,所述化合物选自式I所示的化合物:
    Figure PCTCN2020122896-appb-100003
    其中,X为氧或硫;
    R选自:取代或未取代的成环碳原子数为1-10的杂环烷基、取代或未取代的成环碳原子数为4-20 的杂芳基;
    L选自:单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30亚杂芳基;
    所述R的取代基选自:氘、硝基、羟基、烷基、环烷基、烯基、炔基、芳基、杂芳基、杂环烷基、烷氧基、芳基甲硅烷基、烷基甲硅烷基;
    所述L的取代基选自:氘、硝基、羟基、烷基、环烷基、烯基、炔基、杂环烷基、烷氧基、芳基甲硅烷基、烷基甲硅烷基、芳氧基、芳硫基。
  3. 根据权利要求1所述的含氮化合物,其特征在于,所述Ar 1和Ar 2不同时为苯基。
  4. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述R选自:取代或未取代的成环碳原子数为3-5的杂环烷基、取代或未取代的成环碳原子数为5-15的杂芳基。
  5. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述L选自:单键、取代或未取代的碳原子数为6-25的亚芳基、取代或未取代的碳原子数为5-25的亚杂芳基。
  6. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述L选自:单键、取代或未取代的碳原子数为6-15的亚芳基、取代或未取代的碳原子数为5-12的亚杂芳基。
  7. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述L选自:单键、亚苯基、亚二甲基芴基、亚联苯基、亚萘基或亚三联苯基。
  8. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述L选自:单键、亚菲基、亚蒽基、亚吡啶基、亚嘧啶基、亚二苯并呋喃基、亚二苯并噻吩基。
  9. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述L选自如下基团所形成的组:
    Figure PCTCN2020122896-appb-100004
    Figure PCTCN2020122896-appb-100005
    其中,*表示上述基团用于与式I中
    Figure PCTCN2020122896-appb-100006
    基团结合;
    **表示上述基团用于与式I中R基团结合。
  10. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述L选自单键或如下基团所形成的组:
    Figure PCTCN2020122896-appb-100007
    Figure PCTCN2020122896-appb-100008
    Figure PCTCN2020122896-appb-100009
    其中,*表示上述基团用于与式I-1中
    Figure PCTCN2020122896-appb-100010
    式I中
    Figure PCTCN2020122896-appb-100011
    的基团结合;
    **表示上述基团用于与式I-1、式I基团中R基团结合。
  11. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述R选自取代或未取代的基团V,其中未取代的基团V选自如下基团组成的组:
    Figure PCTCN2020122896-appb-100012
    其中,
    Figure PCTCN2020122896-appb-100013
    表示化学键;取代的V上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、吡啶基、环戊烷基、环己烷基、吡咯烷基;当V的取代基个数大于1时,各取代基相同或不同。
  12. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述R选自如下基团所形成的组:
    Figure PCTCN2020122896-appb-100014
    其中,*表示上述基团用于与式I中
    Figure PCTCN2020122896-appb-100015
    的基团结合。
  13. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述R选自如下基团所形成的组:
    Figure PCTCN2020122896-appb-100016
    Figure PCTCN2020122896-appb-100017
    其中,*表示上述基团用于与式I-1中
    Figure PCTCN2020122896-appb-100018
    式I中
    Figure PCTCN2020122896-appb-100019
    的基团结合。
  14. 根据权利要求1或3所述的含氮化合物,其特征在于,所述Ar 1、Ar 2分别独立地选自取代或未取代的碳原子数为6-20的芳基、取代或未取代的碳原子数为5-12的杂芳基。
  15. 根据权利要求1或3所述的含氮化合物,其特征在于,所述Ar 1、Ar 2的取代基分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、吡啶基。
  16. 根据权利要求1或3所述的含氮化合物,其特征在于,所述Ar 1、Ar 2分别独立地选自取代或未取代的基团W,未取代的基团W选自如下基团组成的组:
    Figure PCTCN2020122896-appb-100020
    其中,
    Figure PCTCN2020122896-appb-100021
    表示化学键;取代的W上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、吡啶基;当W的取代基个数大于1时,各取代基相同或不同。
  17. 根据权利要求1或3所述的含氮化合物,其特征在于,所述Ar 1、Ar 2分别独立地选自如下基团组成的组:
    Figure PCTCN2020122896-appb-100022
  18. 根据权利要求1或3所述的含氮化合物,其特征在于,n a,n b分别独立地选自0。
  19. 根据权利要求1至3任意一项所述的含氮化合物,其特征在于,所述含氮化合物选自如下化合物所形成的组:
    Figure PCTCN2020122896-appb-100023
    Figure PCTCN2020122896-appb-100024
    Figure PCTCN2020122896-appb-100025
    Figure PCTCN2020122896-appb-100026
    Figure PCTCN2020122896-appb-100027
    Figure PCTCN2020122896-appb-100028
    Figure PCTCN2020122896-appb-100029
    Figure PCTCN2020122896-appb-100030
  20. 一种电子元件,其特征在于,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;
    所述功能层包含权利要求1~19任一项所述的含氮化合物。
  21. 根据权利要求20所述的电子元件,其特征在于,所述功能层包括电子传输层,所述电子传输层包括所述的含氮化合物。
  22. 根据权利要求21所述的电子元件,其特征在于,所述电子元件为有机电致发光器件或太阳能电池。
  23. 一种电子装置,其特征在于,包括权利要求20-22任一项所述的电子元件。
PCT/CN2020/122896 2019-10-31 2020-10-22 含氮化合物、电子元件及电子装置 WO2021083030A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217032226A KR102363659B1 (ko) 2019-10-31 2020-10-22 질소 함유 화합물, 전자 소자 및 전자 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911054880.XA CN111018847A (zh) 2019-10-31 2019-10-31 含氮化合物、电子元件及电子装置
CN201911054880.X 2019-10-31
CN202010280898.8A CN111393420B (zh) 2019-10-31 2020-04-10 含氮化合物、电子元件及电子装置
CN202010280898.8 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021083030A1 true WO2021083030A1 (zh) 2021-05-06

Family

ID=70200765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122896 WO2021083030A1 (zh) 2019-10-31 2020-10-22 含氮化合物、电子元件及电子装置

Country Status (3)

Country Link
KR (1) KR102363659B1 (zh)
CN (2) CN111018847A (zh)
WO (1) WO2021083030A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549059B (zh) * 2021-06-18 2023-04-28 陕西莱特光电材料股份有限公司 有机化合物及包含其的电子器件和电子装置
CN114075181B (zh) * 2021-08-31 2024-02-02 陕西莱特迈思光电材料有限公司 含氮化合物及使用其的有机电致发光器件和电子装置
CN116217557A (zh) * 2021-12-02 2023-06-06 常州强力昱镭光电材料有限公司 含二苯并呋喃的化合物和有机电致发光元件
CN117510480B (zh) * 2023-11-01 2024-07-23 陕西莱特光电材料股份有限公司 有机化合物、有机电致发光器件及电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250132A (zh) * 2015-02-13 2017-10-13 柯尼卡美能达株式会社 芳香族杂环衍生物、使用其的有机电致发光元件、照明装置及显示装置
KR20180012499A (ko) * 2016-07-27 2018-02-06 엘지디스플레이 주식회사 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
CN107922837A (zh) * 2015-07-27 2018-04-17 喜星素材株式会社 杂环化合物和使用其的有机发光二极管
KR20180071609A (ko) * 2016-12-20 2018-06-28 희성소재 (주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
CN108239078A (zh) * 2016-12-27 2018-07-03 株式会社Lg化学 新型杂环化合物及利用其的有机发光元件
CN111269219A (zh) * 2020-03-25 2020-06-12 烟台显华化工科技有限公司 一种有机发光材料及有机电致发光器件
WO2020130553A1 (ko) * 2018-12-17 2020-06-25 두산솔루스 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101991428B1 (ko) * 2015-11-17 2019-06-20 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 전자 소자
EP3392246A4 (en) * 2015-12-08 2019-10-30 Heesung Material Ltd. HETEROCYCLIC COMPOUND AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
KR102095001B1 (ko) * 2016-09-19 2020-03-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR101915716B1 (ko) * 2016-12-20 2018-11-08 희성소재 (주) 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
KR102003351B1 (ko) * 2017-01-20 2019-07-23 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR102017790B1 (ko) * 2017-04-13 2019-09-03 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
CN109535138B (zh) * 2017-09-22 2021-03-12 北京绿人科技有限责任公司 含氘代苯基的三嗪化合物及其应用和有机电致发光器件
KR20190064256A (ko) * 2017-11-30 2019-06-10 솔브레인 주식회사 화합물 및 이를 포함하는 유기 발광 소자
KR102685447B1 (ko) * 2018-12-17 2024-07-16 솔루스첨단소재 주식회사 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250132A (zh) * 2015-02-13 2017-10-13 柯尼卡美能达株式会社 芳香族杂环衍生物、使用其的有机电致发光元件、照明装置及显示装置
CN107922837A (zh) * 2015-07-27 2018-04-17 喜星素材株式会社 杂环化合物和使用其的有机发光二极管
KR20180012499A (ko) * 2016-07-27 2018-02-06 엘지디스플레이 주식회사 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
KR20180071609A (ko) * 2016-12-20 2018-06-28 희성소재 (주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
CN108239078A (zh) * 2016-12-27 2018-07-03 株式会社Lg化学 新型杂环化合物及利用其的有机发光元件
WO2020130553A1 (ko) * 2018-12-17 2020-06-25 두산솔루스 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
CN111269219A (zh) * 2020-03-25 2020-06-12 烟台显华化工科技有限公司 一种有机发光材料及有机电致发光器件

Also Published As

Publication number Publication date
CN111393420A (zh) 2020-07-10
CN111393420B (zh) 2021-04-13
KR20210129215A (ko) 2021-10-27
KR102363659B1 (ko) 2022-02-17
CN111018847A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021218491A1 (zh) 含氮化合物、电子元件和电子装置
WO2021083030A1 (zh) 含氮化合物、电子元件及电子装置
CN113511996B (zh) 有机电致发光材料、电子元件及电子装置
WO2022007909A1 (zh) 含氮化合物、电子元件和电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2023011028A1 (zh) 有机化合物、电子元件及电子装置
WO2021082714A1 (zh) 含氮化合物、电子元件和电子装置
CN113173858B (zh) 含氮化合物、电子元件和电子装置
CN113233987B (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2021136197A1 (zh) 含氮化合物、电子元件和电子装置
CN113004287B (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022170831A1 (zh) 有机电致发光材料、电子元件和电子装置
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
WO2023160121A1 (zh) 有机化合物及包含其的电子元件和电子装置
CN113861044A (zh) 有机化合物及包含其的电子元件和电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
CN114335399B (zh) 有机电致发光器件及包括其的电子装置
WO2021190380A1 (zh) 有机化合物、电子元件和电子装置
WO2024164548A1 (zh) 有机化合物、有机电致发光器件及电子装置
WO2024164534A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2023185078A1 (zh) 有机化合物和电子元件及电子装置
CN113896720B (zh) 有机化合物、电子元件及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217032226

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881463

Country of ref document: EP

Kind code of ref document: A1