WO2019082457A1 - ボールねじ装置の軸方向すきま測定方法及び測定装置、並びに、ボールねじ装置、車両、及び機械装置の製造方法 - Google Patents

ボールねじ装置の軸方向すきま測定方法及び測定装置、並びに、ボールねじ装置、車両、及び機械装置の製造方法

Info

Publication number
WO2019082457A1
WO2019082457A1 PCT/JP2018/026983 JP2018026983W WO2019082457A1 WO 2019082457 A1 WO2019082457 A1 WO 2019082457A1 JP 2018026983 W JP2018026983 W JP 2018026983W WO 2019082457 A1 WO2019082457 A1 WO 2019082457A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball screw
nut
screw shaft
measurement
load
Prior art date
Application number
PCT/JP2018/026983
Other languages
English (en)
French (fr)
Inventor
弘平 土橋
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2018559912A priority Critical patent/JP6481804B1/ja
Priority to US16/344,694 priority patent/US11105604B2/en
Priority to EP18869714.8A priority patent/EP3702727B1/en
Publication of WO2019082457A1 publication Critical patent/WO2019082457A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/14Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • G01B5/146Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures measuring play on bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/14Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H2025/2481Special features for facilitating the manufacturing of spindles, nuts, or sleeves of screw devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls

Definitions

  • the present invention relates to a method and apparatus for measuring an axial clearance of a ball screw device, and a method for manufacturing a ball screw device, a vehicle, and a mechanical device.
  • Patent Document 1 discloses a ball screw clearance measuring method and apparatus for measuring an axial clearance between a screw shaft and a nut in a state in which a nut is screwed to a screw shaft of the ball screw.
  • a nut screwed to the screw shaft is fixed to a plate spring.
  • the leaf spring is bent in one direction by rotating the screw shaft in one direction and moving the nut in one direction.
  • a pressing force is applied to the screw shaft from the nut.
  • this state as an initial state, the screw shaft is rotated in the other direction from this initial state to move the nut in the other direction.
  • the rotation angle of the screw shaft and the movement amount of the nut are detected when the leaf spring is bent in the other direction via the neutral state. Then, the axial clearance of the ball screw is obtained by measuring the length of the dead zone in which the movement of the nut stops in the neutral state.
  • the present invention has the following constitution. (1) Support one member of a screw and a nut screwed together; With respect to the nut and the other member of the screw shaft, a load is applied in mutually opposite directions along the axial direction while holding the one member and the other member so as to be capable of relative displacement,
  • the axial direction clearance measurement method of a ball screw apparatus which measures the displacement amount of said other member.
  • loads are applied in mutually opposite directions in the axial direction, and the displacement amount along the axial direction of the screw shaft or the nut is measured, whereby the axial direction of the nut and the screw shaft Clearance can be measured easily.
  • the nut and the screw shaft are held in a uniformly screwed posture. Therefore, it is possible to minimize the occurrence of measurement error due to the deviation of the posture such as eccentricity or inclination of the central axes of the nut and screw shaft. As a result, it is possible to measure the axial clearance between the nut and the screw shaft with high accuracy, while reducing the time and effort for attaching the device precisely to the device so as not to cause eccentricity or inclination of the central axis of the nut and screw shaft. Therefore, the axial clearance between the nut and the screw shaft can be measured easily and in a short time, and utilization in a mass production process and automation can be achieved.
  • a support portion for supporting one member of a nut and a screw shaft screwed together;
  • a measurement unit configured to measure an amount of displacement of the nut and the other member of the screw shaft in the axial direction;
  • a load applying portion that applies a load in directions opposite to each other along the axial direction with respect to the other member;
  • a posture correction unit which is provided between the other member and the load application portion or between the one member and the support portion, and holds the one member and the other member so as to allow relative displacement; , Clearance measurement device for ball screw device with.
  • the load applying portion applies a load in the direction opposite to each other along the axial direction, and the measuring portion measures the axial position of the screw shaft or nut
  • the axial clearance between the nut and the screw shaft can be easily measured by determining it.
  • the posture correction unit since the nut and the screw shaft are held so as to be capable of relative displacement by the posture correction unit, the posture of the nut and the screw shaft is not restricted when a load is applied by the load application unit. The eccentricity and tilt of the axis are corrected.
  • the nut and the screw shaft are held in a uniformly screwed posture, and the occurrence of measurement error due to the deviation of the posture such as eccentricity or inclination of the central axes of the nut and the screw shaft can be suppressed. Therefore, it is possible to measure the axial clearance of the nut and the screw shaft with high accuracy while suppressing the time and labor for attaching the nut and the screw shaft precisely to the device so as not to cause eccentricity and inclination of the central axis. As a result, the axial clearance between the nut and the screw shaft can be measured easily and in a short time, and use in a mass production process and automation can be achieved.
  • the posture correction unit includes: a translational correction unit having translational degrees of freedom different in two directions in a plane perpendicular to the axial direction; and rotation axes in two different directions in a plane perpendicular to the axial direction
  • An axial clearance measuring device for a ball screw device according to (3) comprising: a rotational correction unit having at least two rotational degrees of freedom.
  • the translational correction portion and the rotation correction portion of the posture correction portion make two different directions in a plane perpendicular to the axial direction
  • the eccentricity and tilt of the central axes of the nut and the screw axis are corrected with at least two rotational degrees of freedom having rotational axes in two different directions in a plane perpendicular to the axial direction.
  • a manufacturing method of a ball screw device including a measurement process using an axial crevice measurement method of a ball screw device according to (1) or (2). According to the method of manufacturing the ball screw device, the axial clearance between the nut and the screw shaft can be measured easily and in a short time, and the productivity of the ball screw device can be improved.
  • the manufacturing method of the said ball screw apparatus including the measurement process which measures an axial clearance by the axial clearance measurement apparatus of the ball screw apparatus as described in any one of (3) to (6). According to the method of manufacturing the ball screw device, it is possible to manufacture a high quality ball screw device in which the axial clearance between the nut and the screw shaft is measured with high accuracy.
  • the present invention it is possible to easily mount the ball screw device to be measured and measure the axial clearance with high accuracy without requiring special attention.
  • FIG. 1 shows an axial clearance measuring device of a ball screw device according to an embodiment.
  • the axial clearance measurement device 11 of the ball screw device mainly includes a support portion 13, a measurement portion 15, a load application portion 17 and a posture correction portion 19.
  • the measuring device 11 is a device that measures the axial clearance of the nut 21 and the screw shaft 23 screwed together.
  • the nut 21 has a nut body 25 and a flange 27 formed at one end of the nut body 25.
  • the screw shaft 23 is screwed into and screwed into the screw hole of the nut 21.
  • the ball screw device including the nut 21 and the screw shaft 23 has a structure in which a plurality of rolling elements (for example, balls) are endlessly circulated between the nut 21 and the screw shaft 23.
  • the nut 21 may have a form in which the flange portion 27 does not exist. In that case, it is fixed to the support portion 13 by holding the upper end surface of the nut body 25 or gripping the outer diameter portion of the nut body 25.
  • the support portion 13 constitutes a base of the measuring device 11 and includes a leg portion 31.
  • the support portion 13 includes a table 33, a pressing plate 35, and a holding member 37.
  • the table 33 is a rectangular flat plate supported on the floor surface by the legs 31 and an insertion hole 39 is formed at the center thereof.
  • the pressing plate 35 is disposed above the table 33 and fixed to the table 33 by a plurality of bolts 41.
  • the pressing plate 35 has a fitting hole 43 at the center thereof, and the nut body 25 of the nut 21 with the flange 27 directed downward is fitted into the fitting hole 43 from below.
  • the holding member 37 is formed in a disk shape, and a through hole 45 is formed at the center thereof.
  • the holding member 37 is disposed above the table 33 such that the through hole 45 communicates with the insertion hole 39 of the table 33.
  • the screw shaft 23 screwed with the nut 21 is inserted into the through hole 45 of the holding member 37 and the insertion hole 39 of the table 33 which are in communication with each other.
  • the measurement unit 15 is provided on the table 33 of the support unit 13.
  • the measuring unit 15 includes a stay 51 and a measuring tool 53.
  • the stay 51 is formed in a rod, and one end of the stay 51 is fixed in the vicinity of the insertion hole 39 in the lower surface of the table 33.
  • the stay 51 is formed in an L shape having an attaching portion 57 at the other end.
  • the measuring tool 53 is attached to the attachment portion 57 at the other end of the stay 51.
  • a bracket 59 is provided on the stay 51.
  • the probe 61 of the measuring tool 53 is supported by the bracket 59.
  • the probe 61 is in contact with the lower end of the screw shaft 23 whose tip is supported by the support 13.
  • the screw shaft 23 is displaced along the axial direction A, whereby the probe 61 of the measuring tool 53 is displaced.
  • the displacement amount along the axial direction A of the screw shaft 23 can be obtained from the measurement value of the measurement tool 53.
  • the load application unit 17 is disposed above the support unit 13 via the posture correction unit 19.
  • the load application unit 17 is supported by the frame 71 together with the posture correction unit 19.
  • the frame 71 includes a pair of side plate portions 73 and a top plate portion 75.
  • the side plate portion 73 is erected on the table 33 of the support portion 13, and the upper end portion thereof is connected by the top plate portion 75.
  • the load application unit 17 includes a drive unit 77 and a pressing unit 79.
  • the drive unit 77 is fixed to the top plate portion 75 of the frame 71.
  • the drive unit 77 includes a rod 81 that is raised and lowered by a drive source such as, for example, a velocity drum air cylinder or a drive motor.
  • the rod 81 is protruded to the lower side of the top plate portion 75.
  • the pressing portion 79 includes a slide rail 85 and a pressing block 87.
  • the slide rail 85 is fixed to the side plate portion 73 of the frame 71, and is disposed along the vertical direction.
  • the pressing block 87 is slidably supported by the slide rail 85 in the vertical direction between the side plate portions 73 of the frame 71.
  • the rod 81 of the drive unit 77 is connected to the pressing block 87 of the pressing unit 79.
  • the pressing block 87 of the pressing unit 79 is driven to move up and down by advancing and retracting the rod 81 of the driving unit 77.
  • the posture correction unit 19 includes a bracket 91, a chuck unit 93, a translational correction unit 95, and a rotation correction unit 97.
  • the translational correction unit 95 is provided on the top of the bracket 91 and is disposed between the pressing block 87 of the load application unit 17 and the bracket 91.
  • the rotation correction unit 97 is provided between the bracket 91 and the chuck unit 93.
  • the bracket 91 has a rectangular upper plate portion 101 and a peripheral wall portion 103 extending downward from the periphery of the upper plate portion 101.
  • the translational correction unit 95 includes a support plate 105, a slide plate 107, and a plurality of sliders 109.
  • the slider 109 is provided between the support plate 105 and the slide plate 107 and at the top of the slide plate 107.
  • the translational correction unit 95 is attached to the bracket 91 by fixing the support plate 105 to the upper plate portion 101 of the bracket 91.
  • the translational correction unit 95 is disposed between the bracket 91 and the pressing block 87.
  • the slide plate 107 can slide in the X direction in a plane perpendicular to the axial direction A with respect to the upper plate portion 101 by the slider 109 between the slide plate 107 and the upper plate portion 101 of the bracket 91.
  • the slide plate 107 is moved by the slider 109 between the pressing block 87 and the pressing block 87 in the Y direction orthogonal to the X direction in the plane perpendicular to the axial direction A (see FIGS. Can slide in the orthogonal direction).
  • the bracket 91 of the posture correction unit 19 has translational freedom in two directions (X and Y directions) orthogonal to each other in a plane perpendicular to the axial direction A.
  • the translational freedom of the posture correction unit 19 is in two directions orthogonal to each other, it may be in two directions different from each other.
  • the chuck portion 93 has a chuck body portion 111 and a gripping portion 113.
  • the chuck portion 93 holds the upper end portion of the screw shaft 23 supported by the support portion 13 by the grip portion 113.
  • the gripping portion 113 performs gripping of the screw shaft 23 and release of gripping by the driving portion provided in the chuck main body 111.
  • the rotation correction unit 97 has a frame 115.
  • the frame 115 is supported by the bracket 91, and the chuck portion 93 is supported by the frame 115.
  • the frame 115 is rotatably supported around the rotation axis ⁇ in the X direction in a plane perpendicular to the axial direction A, with respect to the peripheral wall portion 103 of the bracket 91.
  • the chuck portion 93 is rotatably supported on the frame 115 around a rotation axis ⁇ in the Y direction in a plane perpendicular to the axial direction A.
  • the chuck portion 93 of the posture correction unit 19 has a rotational degree of freedom of rotation around two rotational directions ⁇ and ⁇ in two directions (X and Y directions) orthogonal to each other in a plane perpendicular to the axial direction A.
  • a nut 21 and a screw shaft 23 which constitute a ball screw device to be measured are screwed together.
  • the nut body portion 25 of the nut 21 is fitted into the fitting hole 43 of the pressing plate 35 from the lower side.
  • the screw shaft 23 is inserted into the through hole 45 of the holding member 37 disposed above the table 33 and the insertion hole 39 of the table 33 communicated with the insertion hole 39.
  • the pressure plate 35 is fastened to the table 33 by the bolt 41, and the nut 21 and the screw shaft 23 screwed together are fixed to the table 33.
  • the nut 21 and the screw shaft 23 are supported by the support portion 13, and the lower end portion of the screw shaft 23 protruding downward from the table 33 abuts on the probe 61 of the measurement unit 15. Thereafter, the upper end portion of the screw shaft 23 supported by the support portion 13 is gripped by the chuck portion 93 of the posture correction unit 19.
  • the rod 81 is pulled in by the drive unit 77 of the load application unit 17, and the pressing block 87 of the pressing unit 79 is raised. Then, the posture correction unit 19 is pulled up by the rising pressing block 87, and the screw shaft 23 gripped by the chuck unit 93 of the posture correction unit 19 is pulled up. In this state, the lower end position of the screw shaft 23 is measured by the measuring tool 53 of the measuring unit 15.
  • the amount of displacement of the screw shaft 23 in the axial direction A with respect to the nut 21 in the ball screw device is determined from the measurement values of the measurement unit 15 at the time of pressing down and pulling up by the load application unit 17.
  • the amount of displacement obtained from the measurement value of the measurement unit 15 at the time of pressing down and pulling up by the load application unit 17 corresponds to the axial clearance between the nut 21 and the screw shaft 23.
  • the load application unit 17 applies a load in mutually opposite directions along the axial direction A, and the position of the screw shaft 23 in the axial direction A is measured by the measurement unit 15
  • the axial clearance between the nut 21 and the screw shaft 23 can be easily measured by obtaining
  • the screw shaft 23 is held movably relative to the nut 21 by the posture correction unit 19.
  • a translational correction unit 95 having translational degrees of freedom in two directions (X and Y directions) orthogonal to each other in a plane perpendicular to the axial direction A, and orthogonal to each other in a plane perpendicular to the axial direction A
  • the nut 21 and the screw shaft 23 can be displaced relative to each other by the rotation correction unit 97 having two rotational degrees of freedom with the rotational axes ⁇ and ⁇ as two directions (X direction and Y direction).
  • the posture correction unit 19 naturally corrects the postures of the nut 21 and the screw shaft 23 with the above-described degree of freedom.
  • the nut 21 and the screw shaft 23 are held in a uniformly screwed posture, and the occurrence of measurement error due to the deviation of the posture such as eccentricity or inclination of the central axes of the nut 21 and the screw shaft 23 is minimized. it can. Therefore, it is possible to measure the axial clearance of the nut 21 and the screw shaft 23 with high accuracy while suppressing the time and labor for precisely attaching the nut 21 and the screw shaft 23 to the device so as not to cause eccentricity or inclination of the central axis. As a result, the axial clearance between the nut 21 and the screw shaft 23 can be measured easily and in a short time, and utilization in a mass production process and automation can be achieved.
  • a load is applied to the screw shaft 23 through the attitude correction unit 19 by the load application unit 17 installed upward.
  • the load application unit 17 is installed downward and the attitude correction unit 19 is installed from below.
  • a load may be applied to the screw shaft 23 via the same.
  • load application parts 17 may be installed at the top and the bottom via the posture correction part 19 and a load may be applied to the screw shaft 23 by the load application parts 17 at the upper and lower sides.
  • a pressing force is alternately applied to the screw shaft 23 by the upper and lower load application parts 17 or alternately applied to the screw shaft 23 by the upper and lower load application parts 17.
  • a force is applied, or a pressing force and a tensile force are applied to the screw shaft 23 by the upper and lower load applying portions 17 respectively.
  • the measuring unit 15 measures the displacement of the screw shaft 23 by bringing the measuring element 61 into contact with the lower end portion of the screw shaft 23.
  • the measuring element of the measuring unit 15 provided above the screw shaft 23 The displacement of the screw shaft 23 may be measured by bringing 16 into contact with the upper end of the screw shaft 23.
  • the nut 21 is fixed to the support portion 13 and a load is applied to the screw shaft 23.
  • the screw shaft 23 is fixed to the support portion 13 and a load is applied to the nut 21 to displace the nut 21.
  • the amount may be measured by the measuring unit 15.
  • the measurement part 15 should just be able to measure the displacement of an axial direction, and can apply a general various displacement gauge. Furthermore, the measuring unit 15 may be a non-contact type displacement gauge.
  • the axial clearance measuring device and measuring method of the ball screw device according to the present invention are mechanical devices (regardless of the type of power) such as various manufacturing devices having the ball screw device, and vehicles such as automobiles, motorcycles and railways It is applicable to the manufacturing apparatus of, and the manufacturing method.
  • the ball screw device manufactured by performing the measuring process of measuring the axial clearance with the axial clearance measuring device and measuring method of the ball screw device of the present invention may be incorporated into a mechanical device (regardless of the type of power) or vehicle. As a result, high-quality mechanical devices and vehicles can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Transmission Devices (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

ボールねじ装置の軸方向すきま測定装置は、特別な注意を要することなく測定対象のボールねじ装置を容易に取り付けて高精度に軸方向すきまを測定できる。この装置は、互いに螺合されたナット及びねじ軸の一方の部材であるナットを支持する支持部と、他方の部材であるねじ軸の軸線方向の変位量を測定する測定部と、ねじ軸に対して軸線方向に沿う互いに反する方向に荷重を付加する荷重付加部と、ねじ軸と荷重付加部との間に設けられ、ナットとねじ軸とを、相対変位可能に保持する姿勢補正部と、を備える。

Description

ボールねじ装置の軸方向すきま測定方法及び測定装置、並びに、ボールねじ装置、車両、及び機械装置の製造方法
 本発明は、ボールねじ装置の軸方向すきま測定方法及び測定装置、並びに、ボールねじ装置、車両、及び機械装置の製造方法に関する。
 特許文献1には、ボールねじのねじ軸にナットを螺合させた状態における、ねじ軸とナットとの間の軸方向すきまを測定するボールねじのすきま測定方法及びその装置が開示されている。この装置によりボールねじの軸方向すきまを測定するには、ねじ軸に螺合させたナットを板ばねに固定する。この状態で、ねじ軸を一方向に回転させてナットを一方向に移動させることで、板ばねを一方向に撓ませる。これにより、ナットからねじ軸に押圧力を作用させる。この状態を初期状態とし、更にこの初期状態からねじ軸を他方向に回転させてナットを他方向へ移動させる。このときの、板ばねが中立状態を経由して他方向へ撓んだ際の、ねじ軸の回転角とナットの移動量を検出する。そして、中立状態においてナットの移動が停止する不感領域の長さを測定することで、ボールねじの軸方向のすきまを得る。
日本国特公平4-76401号公報
 特許文献1の測定技術では、ナットとねじ軸の中心軸同士に生じる、偏心や傾きなどの姿勢のずれが測定誤差となり、測定精度の低下を招くおそれがある。このため、ナットとねじ軸の中心軸同士に偏心や倒れがないように、ナット及びねじ軸を精密に装置へ取り付ける必要がある。したがって、ナット及びねじ軸の装置への取り付けには、手間を要し、短時間での測定、量産工程での利用や自動装置化に困難が予想される。
 本発明の目的は、特別な注意を要することなく測定対象のボールねじ装置を容易に取り付けて高精度に軸方向すきまを測定することが可能なボールねじ装置の軸方向すきま測定方法及び測定装置、並びに、ボールねじ装置、車両、及び機械装置の製造方法を提供することにある。
 本発明は下記構成からなる。
(1) 互いに螺合されたナット及びねじ軸の一方の部材を支持し、
 前記ナット及び前記ねじ軸の他方の部材に対して、前記一方の部材及び前記他方の部材を相対変位可能に保持しながら、軸線方向に沿う互いに反する方向に荷重を付加し、
 前記他方の部材の変位量を測定する
 ボールねじ装置の軸方向すきま測定方法。
 このボールねじ装置の軸方向すきま測定方法によれば、軸線方向の互いに反する方向に荷重を付加してねじ軸又はナットの軸線方向に沿う変位量を測定することで、ナットとねじ軸の軸方向すきまを容易に測定できる。
 このとき、ナット及びねじ軸を相対変位可能に保持することで、ナットとねじ軸とが均一に螺合した姿勢に保持される。したがって、ナット及びねじ軸の中心軸同士の偏心や傾きなどの姿勢のずれによる測定誤差の発生を極力抑えることができる。これにより、ナット及びねじ軸の中心軸の偏心や傾きがないように精密に装置へ取り付けるための手間を抑えつつ、ナットとねじ軸の軸方向すきまを高い精度で測定できる。したがって、容易にかつ短時間に、ナットとねじ軸の軸方向すきまを測定でき、量産工程での利用や自動装置化が可能である。
(2) 前記他方の部材に荷重を付加する際に、前記軸線方向に垂直な平面内の互いに異なる二方向の並進自由度と、前記軸線方向に垂直な平面内の互いに異なる二方向を回転軸とする少なくとも二つの回転自由度で、前記他方の姿勢を補正する(1)に記載のボールねじ装置の軸方向すきま測定方法。
 このボールねじ装置の軸方向すきま測定方法によれば、軸線方向に垂直な平面内の互いに異なる二方向の並進自由度と、軸線方向に垂直な平面内の互いに異なる二方向を回転軸とする少なくとも二つの回転自由度でナット又はねじ軸の姿勢を補正する。これにより、荷重を付加した際に、それぞれの中心軸の偏心及び傾きを円滑に補正することができ、ナット及びねじ軸をより均一に螺合した姿勢に保持させることができる。したがって、ナットとねじ軸の軸方向すきまをさらに高い精度で測定できる。
(3) 互いに螺合されたナット及びねじ軸の一方の部材を支持する支持部と、
 前記ナット及び前記ねじ軸の他方の部材の軸線方向の変位量を測定する測定部と、
 前記他方の部材に対して軸線方向に沿う互いに反する方向に荷重を付加する荷重付加部と、
 前記他方の部材と前記荷重付加部との間又は前記一方の部材と前記支持部との間に設けられ、前記一方の部材と前記他方の部材とを、相対変位可能に保持する姿勢補正部と、
 を備えるボールねじ装置の軸方向すきま測定装置。
 このボールねじ装置の軸方向すきま測定装置によれば、荷重付加部によって軸線方向に沿う互いに反する方向に荷重を付加してねじ軸又はナットの軸線方向の位置を測定部で測定して変位量を求めることで、ナットとねじ軸の軸方向すきまを容易に測定できる。
 このとき、姿勢補正部によってナット及びねじ軸が相対変位可能に保持されるので、荷重付加部によって荷重が付加された際に、ナット及びねじ軸の姿勢が規制されることがなく、それぞれの中心軸の偏心及び傾きが補正される。これにより、ナットとねじ軸とが均一に螺合した姿勢に保持され、ナット及びねじ軸の中心軸同士の偏心や傾きなどの姿勢のずれによる測定誤差の発生が抑えられる。したがって、ナット及びねじ軸の中心軸の偏心や傾きがないように、精密に装置へ取り付けるための手間を抑えつつ、ナット及びねじ軸の軸方向すきまを高い精度で測定できる。これにより、容易にかつ短時間に、ナットとねじ軸の軸方向すきまを測定することができ、量産工程での利用や自動装置化が可能となる。
(4) 前記姿勢補正部は、前記軸線方向に垂直な平面内の互いに異なる二方向の並進自由度を有する並進補正部と、前記軸線方向に垂直な平面内の互いに異なる二方向を回転軸とする少なくとも二つの回転自由度を有する回転補正部とを備える(3)に記載のボールねじ装置の軸方向すきま測定装置。
 このボールねじ装置の軸方向すきま測定装置によれば、荷重付加部が荷重を付加した際に、姿勢補正部の並進補正部及び回転補正部によって、軸線方向に垂直な平面内の互いに異なる二方向の並進自由度と、軸線方向に垂直な平面内の互いに異なる二方向を回転軸とする少なくとも二つの回転自由度とで、ナット及びねじ軸の中心軸同士の偏心及び傾きが補正される。これにより、ナット及びねじ軸をより均一に螺合した姿勢に保持させることができ、ナット及びねじ軸の軸方向すきまをさらに高い精度で測定できる。
(5) 前記ナットは、前記支持部に支持され、前記ねじ軸は、前記姿勢補正部を介して荷重が付加されて変位量が前記測定部で測定される(3)又は(4)に記載のボールねじ装置の軸方向すきま測定装置。
 このボールねじ装置の軸方向すきま測定装置によれば、支持部に支持されたナットに螺合されたねじ軸に対して姿勢補正部を介して荷重が付加される。したがって、ナットの中心軸に対するねじ軸の中心軸の偏心及び傾きを抑制しつつねじ軸に荷重を付加させて、ナットとねじ軸の軸方向すきまを高い精度で測定できる。
(6) 前記ねじ軸は、前記支持部に支持され、前記ナットは、前記姿勢補正部を介して荷重が付加されて変位量が前記測定部で測定される(3)又は(4)に記載のボールねじ装置の軸方向すきま測定装置。
 このボールねじ装置の軸方向すきま測定装置によれば、支持部に支持されたねじ軸が螺合されたナットに対して姿勢補正部を介して荷重が付加される。したがって、ねじ軸の中心軸に対するナットの中心軸の偏心及び傾きを抑制しつつナットに荷重を付加させて、ナットとねじ軸の軸方向すきまを高い精度で測定できる。
(7) (1)又は(2)に記載のボールねじ装置の軸方向すきま測定方法を用いる測定工程を含む、ボールねじ装置の製造方法。
 このボールねじ装置の製造方法によれば、容易にかつ短時間に、ナットとねじ軸の軸方向すきまを測定でき、ボールねじ装置の生産性を向上できる。
(8) (3)から(6)のいずれか一つに記載のボールねじ装置の軸方向すきま測定装置によって、軸方向のすきまを測定する測定工程を含む前記ボールねじ装置の製造方法。
 このボールねじ装置の製造方法によれば、ナットとねじ軸の軸方向すきまが高精度に測定された高品質なボールねじ装置を製造できる。
(9) (8)に記載のボールねじ装置の製造方法を用いる車両の製造方法。
 この車両の製造方法によれば、高品質なボールねじ装置を備える車両を製造できる。
(10) (8)に記載のボールねじ装置の製造方法を用いる機械装置の製造方法。
 この機械装置の製造方法によれば、高品質なボールねじ装置を備える機械装置を製造できる。
 本発明によれば、特別な注意を要することなく測定対象のボールねじ装置を容易に取り付けて高精度に軸方向すきまを測定できる。
実施形態に係るボールねじ装置の軸方向すきま測定装置の断面図である。 実施形態に係るボールねじ装置の軸方向すきま測定装置の姿勢補正部付近の拡大断面図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 図1は実施形態に係るボールねじ装置の軸方向すきま測定装置である。
 図1に示すように、実施形態に係るボールねじ装置の軸方向すきま測定装置11は、主に、支持部13と、測定部15と、荷重付加部17と、姿勢補正部19とを備える。
 測定装置11は、互いに螺合されたナット21及びねじ軸23の軸方向のすきまを測定する装置である。ナット21は、ナット本体部25と、ナット本体部25の一端に形成されたフランジ部27とを有する。ねじ軸23は、ナット21のねじ孔にねじ込まれて螺合される。ナット21及びねじ軸23を含むボールねじ装置は、ナット21とねじ軸23との間に複数の転動体(例えばボール)が無限循環可能に設けられた構造を有する。なお、ナット21は、フランジ部27の存在しない形態であってもよい。その場合、ナット本体部25の上端面を押さえる、又はナット本体部25の外径部を把持することにより、支持部13に固定される。
 支持部13は、測定装置11の基台を構成するもので、脚部31を備える。支持部13は、テーブル33と、押え板35と、保持部材37とを備える。テーブル33は、脚部31によって床面に支持された矩形状の平板であり、その中心には、挿通孔39が形成される。押え板35は、テーブル33の上方に配置されており、複数のボルト41によってテーブル33に固定される。押え板35には、その中心に、嵌合孔43を有しており、この嵌合孔43に、フランジ部27を下方に向けたナット21のナット本体部25が下方側から嵌合される。保持部材37は、円板状に形成されており、その中心に貫通孔45が形成される。保持部材37は、貫通孔45がテーブル33の挿通孔39に連通するように、テーブル33の上部に配置される。互いに連通された保持部材37の貫通孔45及びテーブル33の挿通孔39には、ナット21に螺合されたねじ軸23が挿通される。
 測定部15は、支持部13のテーブル33に設けられる。測定部15は、ステー51と、測定具53とを有する。ステー51は、棒体に形成され、一端がテーブル33の下面における挿通孔39の近傍に固定される。ステー51は、他端に取付部57を有するL字状に形成される。ステー51の他端の取付部57には、測定具53が取り付けられる。また、ステー51には、ブラケット59が設けられる。このブラケット59には、測定具53の測定子61が支持される。測定子61は、その先端部が支持部13に支持されたねじ軸23の下端に当接される。測定部15では、ねじ軸23が軸線方向Aに沿って変位することで、測定具53の測定子61が変位する。これにより、測定具53の測定値からねじ軸23の軸線方向Aに沿う変位量が求められる。
 荷重付加部17は、姿勢補正部19を介して支持部13の上方に配置される。荷重付加部17は、姿勢補正部19とともに、枠体71に支持される。枠体71は、一対の側板部73と、天板部75とを有する。側板部73は、支持部13のテーブル33に立設されており、その上端部が天板部75で連結される。
 荷重付加部17は、駆動部77と、押圧部79とを備える。駆動部77は、枠体71の天板部75に固定される。駆動部77は、例えばベロフラム式のエアシリンダや駆動モータ等の駆動源によって昇降するロッド81を備える。ロッド81は、天板部75の下方側へ突出される。押圧部79は、スライドレール85と、押圧ブロック87とを備える。スライドレール85は、枠体71の側板部73に固定されており、上下方向に沿って配置される。押圧ブロック87は、枠体71の側板部73同士の間において、スライドレール85によって上下方向へスライド可能に支持される。駆動部77のロッド81は、押圧部79の押圧ブロック87に連結される。これにより、荷重付加部17では、駆動部77のロッド81が進退されることで、押圧部79の押圧ブロック87が昇降駆動される。
 図2に示すように、姿勢補正部19は、ブラケット91と、チャック部93と、並進補正部95と、回転補正部97とを備える。並進補正部95は、ブラケット91の上部に設けられ、荷重付加部17の押圧ブロック87とブラケット91との間に配置される。回転補正部97は、ブラケット91とチャック部93との間に設けられる。
 ブラケット91は、矩形状の上板部101と、上板部101の周囲から下方へ延出する周壁部103とを有する。
 並進補正部95は、支持板105と、スライド板107と、複数のスライダ109とを有する。スライダ109は、支持板105とスライド板107との間及びスライド板107の上部に設けられる。並進補正部95は、支持板105をブラケット91の上板部101に固定することで、ブラケット91に取り付けられる。これにより、ブラケット91と押圧ブロック87との間に、並進補正部95が配置される。スライド板107は、ブラケット91の上板部101との間のスライダ109によって、上板部101に対して、軸線方向Aに垂直な平面内におけるX方向へスライド可能となる。また、スライド板107は、押圧ブロック87との間のスライダ109によって、押圧ブロック87に対して、軸線方向Aに垂直な平面内におけるX方向と直交するY方向(図1,図2における紙面と直交する方向)へスライド可能となる。これにより、姿勢補正部19のブラケット91は、軸線方向Aに垂直な平面内の互いに直交する二方向(X,Y方向)の並進自由度を有する。なお、姿勢補正部19の並進自由度は、互いに直交する二方向としたが、互いに異なる二方向であればよい。
 チャック部93は、チャック本体部111と、把持部113とを有する。チャック部93は、把持部113が、支持部13に支持されるねじ軸23の上端部を把持する。把持部113は、チャック本体部111に設けられた駆動部によって、ねじ軸23の把持及び把持の解除を行う。
 回転補正部97は、フレーム115を有する。フレーム115は、ブラケット91に支持されており、チャック部93は、フレーム115に支持される。フレーム115は、ブラケット91の周壁部103に対して、軸線方向Aに垂直な平面内におけるX方向の回転軸αを中心として回動可能に支持される。また、チャック部93は、フレーム115に対して、軸線方向Aに垂直な平面内におけるY方向の回転軸βを中心として回動可能に支持される。これにより、姿勢補正部19のチャック部93は、軸線方向Aに垂直な平面内の互いに直交する二方向(X,Y方向)の回転軸α,βを中心に回転する回転自由度を有する。
 次に、上記構造のボールねじ装置の軸方向すきま測定装置11によるボールねじ装置の軸方向すきまの測定の仕方について説明する。
(ボールねじ装置のセット)
 測定対象のボールねじ装置を構成するナット21及びねじ軸23を、互いに螺合させる。ナット21のナット本体部25を、押え板35の嵌合孔43に下方側から嵌め込む。ねじ軸23を、テーブル33の上部に配置させた保持部材37の貫通孔45及びこの挿通孔39に連通したテーブル33の挿通孔39へ挿し込む。押え板35をボルト41によってテーブル33に締結し、互いに螺合したナット21及びねじ軸23をテーブル33に固定する。このようにすると、ナット21及びねじ軸23が支持部13に支持され、テーブル33の下方へ突出されたねじ軸23の下端部が、測定部15の測定子61に当接される。その後、支持部13に支持させたねじ軸23の上端部を、姿勢補正部19のチャック部93に把持させる。
(軸方向すきまの測定)
 ボールねじ装置を構成するナット21及びねじ軸23を測定装置11にセットしたら、荷重付加部17の駆動部77によってロッド81を突出させ、押圧部79の押圧ブロック87を下降させる。すると、下降する押圧ブロック87によって姿勢補正部19が押し下げられ、姿勢補正部19のチャック部93に把持されたねじ軸23が押し下げられる。この状態で、測定部15の測定具53によってねじ軸23の下端位置を測定する。
 次に、荷重付加部17の駆動部77によってロッド81を引き込ませ、押圧部79の押圧ブロック87を上昇させる。すると、上昇する押圧ブロック87によって姿勢補正部19が引き上げられ、姿勢補正部19のチャック部93に把持されたねじ軸23が引き上げられる。この状態で、測定部15の測定具53によってねじ軸23の下端位置を測定する。
 荷重付加部17による押し下げ時及び引き上げ時における測定部15の測定値から、ボールねじ装置におけるナット21に対するねじ軸23の軸線方向Aの変位量を求める。そして、荷重付加部17による押し下げ時及び引き上げ時における測定部15の測定値から求めた変位量が、ナット21とねじ軸23の軸方向すきまに相当することとなる。
 ところで、ナット21に対するねじ軸23の軸線方向Aの変位量を測定する際に、ナット21及びねじ軸23の中心軸同士に偏心や傾きなどの姿勢のずれがあると、測定誤差が生じて測定精度の低下を招くおそれがある。
 これに対して、本実施形態によれば、荷重付加部17によって軸線方向Aに沿う互いに反する方向に荷重を付加し、ねじ軸23の軸線方向Aの位置を測定部15で測定して変位量を求めることで、ナット21とねじ軸23の軸方向すきまを容易に測定できる。
 このとき、姿勢補正部19によってナット21に対してねじ軸23が相対変位可能に保持される。具体的には、軸線方向Aに垂直な平面内の互いに直交する二方向(X方向,Y方向)の並進自由度を有する並進補正部95と、軸線方向Aに垂直な平面内の互いに直交する二方向(X方向,Y方向)を回転軸α,βとする二つの回転自由度を有する回転補正部97と、によって、ナット21及びねじ軸23が相対変位可能となる。したがって、荷重付加部17によって荷重が付加された際に、ナット21及びねじ軸23の姿勢が規制されることがなく、それぞれの中心軸の偏心及び傾きが補正される。つまり、姿勢補正部19は、上記した自由度によって、ナット21及びねじ軸23の姿勢を自然に補正する。
 これにより、ナット21とねじ軸23とが均一に螺合した姿勢に保持され、ナット21及びねじ軸23の中心軸同士の偏心や傾きなどの姿勢のずれによる測定誤差の発生を極力抑えることができる。したがって、ナット21及びねじ軸23の中心軸の偏心や傾きがないように精密に装置へ取り付けるための手間を抑えつつ、ナット21及びねじ軸23の軸方向すきまを高い精度で測定できる。これにより、容易にかつ短時間に、ナット21とねじ軸23の軸方向すきまを測定でき、量産工程での利用や自動装置化が可能になる。
 なお、上記実施形態では、上方に設置した荷重付加部17によって姿勢補正部19を介してねじ軸23へ荷重を付加したが、荷重付加部17を下方に設置して下方から姿勢補正部19を介してねじ軸23へ荷重を付加してもよい。
 また、それぞれ姿勢補正部19を介して上下に荷重付加部17を設置し、これら上下の荷重付加部17によってねじ軸23へ荷重を付加してもよい。この場合、ねじ軸23への荷重の付加の仕方としては、上下の荷重付加部17によってねじ軸23に交互に押圧力を付加したり、上下の荷重付加部17によってねじ軸23に交互に引張力を付加したり、あるいは、上下の荷重付加部17によってねじ軸23へ押圧力及び引張力をそれぞれ負荷する。
 また、上記実施形態では、測定部15は、ねじ軸23の下端部に測定子61を接触させてねじ軸23の変位を測定したが、ねじ軸23の上方に設けた測定部15の測定子16をねじ軸23の上端に接触させて、ねじ軸23の変位を測定してもよい。
 また、上記実施形態では、支持部13にナット21を固定してねじ軸23に荷重を付加したが、ねじ軸23を支持部13に固定してナット21に荷重を付加してナット21の変位量を測定部15で測定してもよい。
 また、上記実施形態では、姿勢補正部19を介して荷重付加部17によってねじ軸23に荷重を付加したが、これに限らない。例えば、姿勢補正部19を介してナット21を支持部13に支持させ、ねじ軸23に荷重付加部17によって直接荷重を付加し、ねじ軸23の中心軸付近の変位を測定部15で測定してもよい。
 また、測定部15は、軸方向の変位が測定できればよく、一般的な種々の変位計を適用できる。更に、測定部15は非接触式の変位計であってもよい。
 本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 例えば、本発明のボールねじ装置の軸方向すきま測定装置及び測定方法は、ボールねじ装置を有する各種製造装置等の機械装置(動力の種別を問わない)、及び、自動車、オートバイ、鉄道等の車両の製造装置、製造方法に適用可能である。
 また、本発明のボールねじ装置の軸方向すきま測定装置及び測定方法で軸方向すきまを測定する測定工程を行って製造したボールねじ装置を機械装置(動力の種別を問わない)や車両に組み込むことにより、高品質な機械装置や車両が得られる。
 本出願は2017年10月26日出願の日本国特許出願(特願2017-207185)に基づくものであり、その内容はここに参照として取り込まれる。
 11 軸方向すきま測定装置
 13 支持部
 15 測定部
 17 荷重付加部
 19 姿勢補正部
 21 ナット
 23 ねじ軸
 95 並進補正部
 97 回転補正部
 A 軸線方向
 α,β 回転軸

Claims (10)

  1.  互いに螺合されたナット及びねじ軸の一方の部材を支持し、
     前記ナット及び前記ねじ軸の他方の部材に対して、前記一方の部材及び前記他方の部材を相対変位可能に保持しながら、軸線方向に沿う互いに反する方向に荷重を付加し、
     前記他方の部材の変位量を測定する、
    ボールねじ装置の軸方向すきま測定方法。
  2.  前記他方の部材に荷重を付加する際に、前記軸線方向に垂直な平面内の互いに異なる二方向の並進自由度と、前記軸線方向に垂直な平面内の互いに異なる二方向を回転軸とする少なくとも二つの回転自由度で、前記他方の姿勢を補正する請求項1に記載のボールねじ装置の軸方向すきま測定方法。
  3.  互いに螺合されたナット及びねじ軸の一方の部材を支持する支持部と、
     前記ナット及び前記ねじ軸の他方の部材の軸線方向の変位量を測定する測定部と、
     前記他方の部材に対して軸線方向に沿う互いに反する方向に荷重を付加する荷重付加部と、
     前記他方の部材と前記荷重付加部との間又は前記一方の部材と前記支持部との間に設けられ、前記一方の部材と前記他方の部材とを、相対変位可能に保持する姿勢補正部と、
    を備えるボールねじ装置の軸方向すきま測定装置。
  4.  前記姿勢補正部は、前記軸線方向に垂直な平面内の互いに異なる二方向の並進自由度を有する並進補正部と、前記軸線方向に垂直な平面内の互いに異なる二方向を回転軸とする少なくとも二つの回転自由度を有する回転補正部とを備える請求項3に記載のボールねじ装置の軸方向すきま測定装置。
  5.  前記ナットは、前記支持部に支持され、前記ねじ軸は、前記姿勢補正部を介して荷重が付加されて変位量が前記測定部で測定される請求項3又は請求項4に記載のボールねじ装置の軸方向すきま測定装置。
  6.  前記ねじ軸は、前記支持部に支持され、前記ナットは、前記姿勢補正部を介して荷重が付加されて変位量が前記測定部で測定される請求項3又は請求項4に記載のボールねじ装置の軸方向すきま測定装置。
  7.  請求項1又は請求項2に記載のボールねじ装置の軸方向すきま測定方法を用いる測定工程を含む、ボールねじ装置の製造方法。
  8.  請求項3から請求項6のいずれか一項に記載のボールねじ装置の軸方向すきま測定装置によって、軸方向のすきまを測定する測定工程を含む前記ボールねじ装置の製造方法。
  9.  請求項8に記載のボールねじ装置の製造方法を用いる車両の製造方法。
  10.  請求項8に記載のボールねじ装置の製造方法を用いる機械装置の製造方法。
PCT/JP2018/026983 2017-10-26 2018-07-18 ボールねじ装置の軸方向すきま測定方法及び測定装置、並びに、ボールねじ装置、車両、及び機械装置の製造方法 WO2019082457A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018559912A JP6481804B1 (ja) 2017-10-26 2018-07-18 ボールねじ装置の軸方向すきま測定方法及び測定装置、並びに、ボールねじ装置、車両、及び機械装置の製造方法
US16/344,694 US11105604B2 (en) 2017-10-26 2018-07-18 Method and apparatus of measuring axial clearance of ball screw device, and methods of manufacturing ball screw device, vehicle, and mechanical device
EP18869714.8A EP3702727B1 (en) 2017-10-26 2018-07-18 Axial gap measurement device and measurement method for ball screw device, and method for producing ball screw device, vehicle and mechanical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-207185 2017-10-26
JP2017207185 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019082457A1 true WO2019082457A1 (ja) 2019-05-02

Family

ID=66246366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026983 WO2019082457A1 (ja) 2017-10-26 2018-07-18 ボールねじ装置の軸方向すきま測定方法及び測定装置、並びに、ボールねじ装置、車両、及び機械装置の製造方法

Country Status (4)

Country Link
US (1) US11105604B2 (ja)
EP (1) EP3702727B1 (ja)
JP (1) JP2019078768A (ja)
WO (1) WO2019082457A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105604B2 (en) * 2017-10-26 2021-08-31 Nsk Ltd. Method and apparatus of measuring axial clearance of ball screw device, and methods of manufacturing ball screw device, vehicle, and mechanical device
CN112557002B (zh) * 2020-10-30 2022-08-16 中车长江车辆有限公司 一种闸调器螺杆螺母配合状态检测方法以及检测工装

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476401A (ja) 1990-07-18 1992-03-11 Noritake Co Ltd ダイヤモンド被覆測定工具及びその製造方法
JPH0476401B2 (ja) * 1985-03-27 1992-12-03 Kuroda Seiko Kk
JPH11183327A (ja) * 1997-12-19 1999-07-09 Honda Motor Co Ltd ボールねじの検査装置
JP2013167642A (ja) * 2013-04-30 2013-08-29 Ntn Corp ボールねじ測定装置およびその測定方法
JP2016109483A (ja) * 2014-12-03 2016-06-20 株式会社ジェイテクト ボールねじ測定装置
JP2017072455A (ja) * 2015-10-06 2017-04-13 株式会社ミツトヨ 測定プローブ、及び測定プローブシステム
JP2017207185A (ja) 2016-05-20 2017-11-24 日本精工株式会社 ピニオンシャフトの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257466A (ja) * 2003-02-26 2004-09-16 Nsk Ltd ボールねじ
JP4730940B2 (ja) * 2005-03-15 2011-07-20 Ntn株式会社 ボールねじ
JP4907527B2 (ja) * 2005-06-17 2012-03-28 Thk株式会社 ねじ装置及びねじ装置の製造方法
DE102009060528B4 (de) * 2009-12-23 2014-02-06 Thyssenkrupp Presta Aktiengesellschaft Vorrichtung und Verfahren zur Prüfung eines Kugelgewindetriebs
DE102012008106B4 (de) * 2012-04-25 2020-08-06 Thyssenkrupp Presta Ag Vorrichtung und Verfahren zur Prüfung des Kippspiels eines Kugelgewindetriebs
US9464703B2 (en) * 2013-07-17 2016-10-11 National Chung Cheng University Ball screw capable of sensing preload
CN104764432A (zh) * 2015-02-06 2015-07-08 燕山大学 关节轴承轴向游隙的测量装置
US11105604B2 (en) * 2017-10-26 2021-08-31 Nsk Ltd. Method and apparatus of measuring axial clearance of ball screw device, and methods of manufacturing ball screw device, vehicle, and mechanical device
CN208187315U (zh) * 2017-11-30 2018-12-04 慈兴集团有限公司 一种滚珠丝母轴承轴向游隙测试装置
CN208313263U (zh) * 2018-06-14 2019-01-01 宁波滚石自动化科技有限公司 滚珠丝杠副的轴向间隙检测装置
CN108709483B (zh) * 2018-07-19 2024-04-19 慈兴集团有限公司 一种滚珠丝杆轴向游隙测试装置
CN209655953U (zh) * 2019-04-28 2019-11-19 扬力集团股份有限公司 一种测量球头螺杆与螺杆套轴向间隙的检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476401B2 (ja) * 1985-03-27 1992-12-03 Kuroda Seiko Kk
JPH0476401A (ja) 1990-07-18 1992-03-11 Noritake Co Ltd ダイヤモンド被覆測定工具及びその製造方法
JPH11183327A (ja) * 1997-12-19 1999-07-09 Honda Motor Co Ltd ボールねじの検査装置
JP2013167642A (ja) * 2013-04-30 2013-08-29 Ntn Corp ボールねじ測定装置およびその測定方法
JP2016109483A (ja) * 2014-12-03 2016-06-20 株式会社ジェイテクト ボールねじ測定装置
JP2017072455A (ja) * 2015-10-06 2017-04-13 株式会社ミツトヨ 測定プローブ、及び測定プローブシステム
JP2017207185A (ja) 2016-05-20 2017-11-24 日本精工株式会社 ピニオンシャフトの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3702727A4

Also Published As

Publication number Publication date
EP3702727B1 (en) 2023-06-28
US20200378739A1 (en) 2020-12-03
EP3702727A4 (en) 2020-12-16
US11105604B2 (en) 2021-08-31
JP2019078768A (ja) 2019-05-23
EP3702727A1 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
JP6481804B1 (ja) ボールねじ装置の軸方向すきま測定方法及び測定装置、並びに、ボールねじ装置、車両、及び機械装置の製造方法
CN104568575B (zh) 一种施力推杆装置和多轴载荷加载机
US8925367B2 (en) Method of calibrating surface texture measurement device
WO2019082457A1 (ja) ボールねじ装置の軸方向すきま測定方法及び測定装置、並びに、ボールねじ装置、車両、及び機械装置の製造方法
US20130227851A1 (en) Coordinate measuring machine with constrained counterweight
JP5560167B2 (ja) 薄板ワークの固定装置およびそれを用いた薄板ワークの加工装置
JP2011112414A (ja) 力センサ試験装置
JP2009012083A (ja) 工作機械の運動誤差測定方法及び運動誤差測定装置
JP2016509680A (ja) 切り離されたロケータカップリングを有する測定機のプローブ展開機構
TWI569285B (zh) 可調整角度之多軸承載裝置
TWI543282B (zh) Drive mechanism and manufacturing device
JP5141651B2 (ja) 車両固定構造
CN202716050U (zh) 机身壁板对合柔性定位装置
CN105675307A (zh) 踏板刚度综合性能试验设备
CN108638103B (zh) 一种自动抓取及位姿调整的机器人末端执行器及调整方法
WO1995001848A1 (fr) Procedes et appareils permettant de soutenir un support de machine de moulage a rouleaux et de mesurer la position d'une plateforme de soutien
CN210892913U (zh) 汽车车身覆盖件用检具可调式定位组件及其装置
US10717161B2 (en) Rotating axis supporting device
CN110274783A (zh) 一种机器人末端多维力加载机构及其对整机性能测试方法
CN110153973A (zh) 一种汽车动力总成用三轴六向可调工装
JP5127634B2 (ja) 位置決め部保持装置、及びこれを用いたワーク位置決め方法
CN114441190B (zh) 一种汽车车身多轴局部刚度试验装置
CN107255449B (zh) 一种不同重力取向条件下含间隙铰质心运动轨迹实验分析方法
CN202367599U (zh) 正交三轴机床
CN220794185U (zh) 一种关节臂测量支架

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559912

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018869714

Country of ref document: EP

Effective date: 20200526