WO2019080581A1 - 金属封装结构及制备方法、显示面板及其封装方法、显示装置 - Google Patents

金属封装结构及制备方法、显示面板及其封装方法、显示装置

Info

Publication number
WO2019080581A1
WO2019080581A1 PCT/CN2018/098565 CN2018098565W WO2019080581A1 WO 2019080581 A1 WO2019080581 A1 WO 2019080581A1 CN 2018098565 W CN2018098565 W CN 2018098565W WO 2019080581 A1 WO2019080581 A1 WO 2019080581A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal film
metal
silane
package structure
Prior art date
Application number
PCT/CN2018/098565
Other languages
English (en)
French (fr)
Inventor
李杰威
殷川
熊先江
齐忠胜
屈丽桃
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/338,299 priority Critical patent/US11264588B2/en
Publication of WO2019080581A1 publication Critical patent/WO2019080581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8721Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a metal package structure and a preparation method thereof, a display panel, a package method thereof, and a display device.
  • the pre-cured film is used to adhere the metal film to the OLED display panel (or the back sheet), and then the film is cured by a hot pressing process, thereby encapsulating the entire surface of the OLED display panel through the metal film. .
  • a high-viscosity Dam glue (cofferdam filler) is applied to the frame portion of the glass package cover, and a Filler dot matrix is coated in the display area of the Dam glue by a dispenser, and the Filler is usually made of a ring.
  • the transparent organic rubber material such as an oxy-resin or an acrylic resin is used to fill the gap between the display area and the Dam adhesive material region, and the glass package cover plate and the OLED display panel (or the back sheet) are vacuum-fitted.
  • the coated Filler dot matrix is pre-cured by UV (Ultraviolet), it is vacuum-bonded to the OLED display panel (or referred to as a back sheet), and finally thermally cured to complete the packaging process.
  • the above two processes occupy a dominant position because the metal film used in the metal packaging process has better water vapor barrier properties and is advantageous for realizing lightness and thinness of the display.
  • Embodiments of the present disclosure provide a metal package structure and a preparation method, a display panel, a package method thereof, and a display device.
  • an embodiment of the present disclosure provides a method of fabricating a metal package structure, the method of preparation comprising:
  • silane film Forming a silane film on the first surface of the metal film, the silane film having a reactive group away from a surface of the metal film;
  • the first surface on which the silane film is formed is bonded to the adhesive layer to combine the reactive group with the adhesive layer reaction.
  • the reactive group is selected from one or more of an ethylenically unsaturated group, an amino group and an epoxy group.
  • the step of forming a silane film on the first surface of the metal film comprises:
  • a silane film is formed on both the first surface and the second surface of the metal film.
  • the silane film further has a hydrophobic group away from the surface of the metal film.
  • the hydrophobic group is selected from the group consisting of an alkyl group having 10-20 carbon atoms, a perfluoroalkyl group having 10-20 carbon atoms, a phenyl group, an acyloxy group, and a polyoxypropylene group. Or a variety.
  • the step of forming a silane film on the first surface of the metal film comprises:
  • the first surface is subjected to a drying treatment to react the silane hydrolyzate with the hydroxyl group on the first surface to form a silane film attached to the first surface.
  • the step of forming a silane film on the first surface and the second surface of the metal film is:
  • the step of pretreating the first surface of the metal film to have a hydroxyl group on the first surface comprises:
  • the metal film was taken out and washed with deionized water to remove the alkaline solution remaining on the first surface.
  • the step of pretreating the first surface and the second surface of the metal film to have hydroxyl groups on the first surface and the second surface comprises:
  • the metal film is taken out and washed with deionized water to remove the alkaline solution remaining on the first surface and the second surface.
  • the silane hydrolyzate is formed by hydrolysis of a silane coupling agent.
  • the silane film has a thickness of 1-20 microns.
  • the adhesive layer comprises one or more of an acrylate and an epoxy resin.
  • the metal film is composed of an iron-nickel alloy.
  • the nickel content in the iron-nickel alloy is 35% to 45% based on the total mass of the iron-nickel alloy.
  • an embodiment of the present disclosure provides a metal package structure prepared by the method of fabricating the metal package structure described in any of the above.
  • an embodiment of the present disclosure provides a method for packaging a display panel, the packaging method including:
  • silane film Forming a silane film on the first surface of the metal film, the silane film having a reactive group away from a surface of the metal film;
  • the side of the metal package structure in which the glue layer is away from the metal film is attached to the display panel.
  • the step of attaching the side of the metal package structure away from the metal film to the display panel comprises: providing the metal package structure as described above; wherein the metal package structure is away from the metal layer a protective film is attached to one side of the film; the protective film is peeled off to expose a side of the adhesive layer away from the metal film; and a side of the adhesive layer away from the metal film is attached to the display panel on.
  • an embodiment of the present disclosure provides a display device including: a display panel packaged using the packaging method described above.
  • FIG. 1 is a schematic flow chart of a method for preparing a metal package structure according to an embodiment of the present disclosure
  • Figure 2 shows three conditions that occur when the protective film on the surface of the adhesive layer is peeled off
  • FIG. 3 is a schematic view showing a film formation mechanism of a silane film on a metal surface
  • FIG. 4 is a schematic diagram 1 of the principle of reacting a surface active group of a silane film with a reactive group on a rubber layer;
  • Figure 5 is a schematic diagram of the principle of the reaction of the surface active groups of the silane film with the reactive groups on the rubber layer;
  • FIG. 6 is a schematic diagram of a specific packaging process flow provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a general flow chart of a package of a display panel and a metal package structure according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a display panel after surface encapsulation using a metal package structure according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a general flow chart of a package of a display panel and a metal package structure according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a display panel after surface encapsulation using a metal package structure according to another embodiment of the present disclosure.
  • the terms “first”, “second” and similar terms used in the specification and the claims are not intended to mean any order, quantity or importance, and are merely used to distinguish different components.
  • the word “comprising” or “comprises” or the like means that the element or item preceding the word is intended to be in the
  • the terms “upper/upper”, “lower/lower”, and the like are used to indicate the orientation or positional relationship based on the drawings, and are merely for the convenience of explaining a simplified description of the technical solution of the present disclosure, instead of It is to be understood that the device or elements referred to have a particular orientation, are constructed and operated in a particular orientation, and thus are not to be construed as limiting the disclosure.
  • each of the metal film, the silane film, and the like involved in the embodiment of the present disclosure is very small, for the sake of clarity, each structural size and/or film thickness in the drawings of the embodiments of the present disclosure They are all enlarged and do not represent actual size and/or proportion unless otherwise stated.
  • the protective film on the surface of the adhesive film needs to be peeled off, and then attached to the OLED display panel for surface encapsulation.
  • the upper protective film is likely to cause the upper protective film to partially or completely carry the adhesive film, resulting in poor peeling. This will not only cause waste of film and metal film, but also cause abnormal shutdown of the equipment and delay in production. Production costs and yields are negatively affected and capacity increases are limited.
  • the present disclosure provides a metal package structure and a preparation method, a package method of a display panel, and a display device.
  • an aspect of the disclosure provides a method for preparing a metal package structure, the method comprising:
  • Step S1 providing a metal film having opposite first and second surfaces
  • Step S2 forming a silane film on the first surface of the metal film, the silane film having a reactive group away from a surface of the metal film;
  • Step S3 bonding the first surface on which the silane film is formed to the adhesive layer to combine the reactive group with the adhesive layer reaction.
  • the metal package structure is specifically used for surface-mounting the display substrate, considering that the base substrate of the display substrate is generally made of a glass material, in order to improve the sealing degree of the formed metal package structure and the heat-sealing package of the display panel, thermal expansion should be selected.
  • a material having a coefficient close to that of the glass material is used as a material constituting the metal film.
  • the material used for constituting the metal film may be an iron-nickel alloy in which the nickel content is 35% to 45% of the total mass to avoid a large difference in thermal expansion coefficient between the metal film and the substrate of the display substrate during hot press packaging. This causes warpage of the entire display device, affects subsequent processes, and adversely affects packaging effects and product quality.
  • the adhesive layer used in the metal packaging process may be made of acrylate or epoxy resin. After prepolymerization of such polymers, the degree of polymerization is at a lower state, i.e., a large number of reactive groups are not reacted. When stored at a low temperature, these reactive groups are in a dormant state, and when the temperature is appropriate, polymerization can occur and solidify.
  • the silane film formed on the first surface of the metal film is a silane coupling agent which reacts with a hydroxyl group on the first surface after being hydrolyzed to form a silane hydrolyzing solution to form a covalent bond having a strong binding force, and the silane film can be obtained. It adheres more firmly to the first surface of the metal film.
  • the surface of the silane film away from the metal film can be designed to have a reactive group which can react with a large number of reactive groups in the dope state to form a covalent bond.
  • the silane film located between the first surface of the metal film and the adhesive layer is equivalent to the connecting layer connecting the two, which can significantly improve the adhesion between the metal film and the adhesive layer, and avoid the peeling of the protective film on the surface of the adhesive layer.
  • the glue layer is partially or completely brought up.
  • the reactive group on the surface of the silane film may be exemplified by an ethylenically unsaturated group (such as a vinyl group), an amino group and/or an epoxy group, which is capable of reacting with an acrylate or epoxy resin.
  • the reactive group reacts to form a covalent bond.
  • the protective film 21 on the surface of the release adhesive layer 20 is provided.
  • the adhesive layer 20 and the silane film 30 are firmly bonded together, the protective film 21 can be completely peeled off from the surface of the adhesive layer 20, that is, a good product as shown in part (a) of FIG. 2 is formed; Since the protective film 21 is partially brought up by the protective film 21 due to the absence of the silane film 30, NG1 (No Good) defect as shown in part (b) of FIG. 2 occurs; or the protective film 21 is present as a glue layer. When all 20 is taken up, NG2 failure as shown in part (c) of Fig. 2 appears.
  • a silane film is formed on the first surface of the metal film by using a metal film surface silanization process.
  • the silane in the silane film not only reacts with the hydroxyl group on the first surface of the metal film to form a covalent bond with strong binding force; the reactive organic group in the silane can also combine with the reactive group in the gel layer to form
  • the covalent bond significantly increases the adhesion of the metal film to the adhesive layer, and avoids partially or completely bringing up the adhesive layer when peeling off the protective film on the adhesive layer. Thereby, it is possible to avoid the occurrence of poorly peeled products, reduce production costs, and increase production yield.
  • the step S2 includes forming a silane film on both the first surface and the second surface of the metal film.
  • a silane film is also formed on the other opposite second surface of the metal film, and the silane film serves as a protective layer, which can be enhanced. Corrosion resistance of metal film.
  • the surface of the silane film away from the metal film may further have a hydrophobic group.
  • the above silane film may be a silane film formed on the first surface and/or the second surface of the metal film.
  • the hydrophobic group may be conventionally used in conventional chemical designs, and may be exemplified by an alkyl group having 10 to 20 carbon atoms, a perfluoroalkyl group having 10 to 20 carbon atoms, a phenyl group, an acyloxy group, and a poly One or more of oxypropylene groups and the like.
  • the hydrophobic group on the surface of the silane film is used to enhance the water vapor barrier property of the above metal package structure, thereby further improving the packaging performance of the product.
  • the step specifically includes the following sub-steps:
  • Step (1-1) pretreating the first surface of the metal film to have a hydroxyl group on the first surface
  • step (1-1) the purpose of the above step (1-1) is to expose the metal bond on the first surface by treating the first surface of the metal film, thereby facilitating formation of a sufficient number of hydroxyl groups on the first surface.
  • the silane hydrolyzate used in the above step (1-2) is formed by hydrolysis of a silane coupling agent.
  • the silane coupling agent has the general formula: X-Si(OR) 3 , wherein -R is an alkyl group having at least 1 carbon atom; and X represents a reactive group selected from an ethylenic group. One or more of a saturated group, an amino group, and an epoxy group.
  • the -OR group in the silane coupling agent is hydrolyzed to form a silanol group (Si-OH), and the silanol group (Si-OH) between different silane molecules is dehydrated and condensed to form an oligosiloxane (including Si-OH). .
  • silane coupling agent examples include: 3-(2,3-epoxypropoxy)propyltriethoxysilane (Chenguang Chemical Co., Ltd.), chloropropyltrimethoxysilane (Chenguang Chemical Co., Ltd.), 1H ,1H,2H,2H-perfluorodecyltrimethoxysilane (Chenguang Chemical Company), cetyltrimethoxysilane (Nanjing Chengong Silicone Company), diphenyldimethoxysilane (Nanjing Chengong) One or more of silicone company) and ⁇ -methacryloxypropyltrimethoxysilane (Nanjing Xiang Chemical Co., Ltd.).
  • the process of forming the silane film 30 on the first surface of the metal film 10 mainly takes place in two steps:
  • Si-OH silane hydrolyzate
  • M-OH hydroxyl group on the surface of the metal film
  • Si-OM silicon-metal interface
  • the silanol groups in the oligomer form hydrogen bonds with the hydroxyl groups on the surface of the metal film (which are basic, so commonly referred to as basic hydroxyl groups).
  • the silane hydrolyzate is adhered thereto, and then solidified by heating to dehydrate and condense the oligomer to form a covalent bond with the hydroxyl group on the first surface of the metal film 10.
  • silanol (Si-OH) in each silane forms a bond with the hydroxyl group on the first surface of the metal film, and the remaining two silanols (Si-OH) or the silanol in other silanes (Si-OH)
  • the dehydration condensation reaction occurs, or is in a free state to form a silane film 30 having a network structure on the first surface of the metal film 10.
  • -X is a reactive organic group, and can react with a reactive group in a gum layer to form a covalent bond.
  • These reactive groups can react with reactive groups in the gum or coating to form covalent bonds that significantly enhance the adhesion between the glue or coating and the metal film 10.
  • R1 is an alkyl group on the silane coupling agent
  • R2 is an active group on the gum layer.
  • the silane film 30 formed on the surface away from the metal film 10 may further have a hydrophobic group (labeled as R3 in the figure) to enhance the water vapor barrier property of the metal package structure, thereby further improving the product.
  • the hydrophobic group is selected from one or more of an alkyl group having 10 to 20 carbon atoms, a perfluoroalkyl group having 10 to 20 carbon atoms, a phenyl group, an acyloxy group, and a polyoxypropylene group.
  • the silane coupling agent can be used in the prior art, and the conventional coupling agent material is subjected to the silanization treatment of the metal surface, which is not limited in the first embodiment of the present invention.
  • step S2 When the above step S2 is to form a silane film on both the first surface and the second surface of the metal film, the step specifically includes the following sub-steps:
  • Step S (2-3) drying both the first surface and the second surface to react the silane hydrolyzate with the hydroxyl groups on the first surface and the second surface to form a first surface and a second surface The silane film on it.
  • step S (1-1) or step S (2-1) further specifically includes the following sub-steps:
  • Step a cleaning the first surface and the second surface of the metal film to remove residual contaminants
  • Step b immersing the metal film in an alkaline solution to have hydroxyl groups on the first surface and the second surface;
  • Step c The metal film is taken out and washed with deionized water to remove the residual alkaline solution on the first surface and the second surface.
  • Soaking the metal film in an alkaline solution to have hydroxyl groups on the first surface and the second surface, and the alkaline solution for alkali washing may be a certain concentration of NaOH solution, and the pH value thereof should be based on the surface hydroxyl group of the metal film.
  • Another aspect of the present disclosure provides a metal package structure formed using the above-described fabrication method of the first aspect of the present disclosure, the metal package structure comprising: a metal film having opposite first surfaces and second a surface; a silane film disposed on the first surface; and a glue layer attached to the first surface to which the silane film is attached.
  • the silane film provided on the first surface of the metal film is bonded to the surface of the metal film by covalent bonding, so that the silane film can be firmly adhered to the first surface of the metal film.
  • the surface of the silane film away from the metal film is designed to have a reactive group which reacts with a large number of reactive groups in the dope state to form a covalent bond.
  • the silane film located between the first surface of the metal film and the adhesive layer is equivalent to a bridge connecting the two, which can significantly improve the adhesion between the metal film and the adhesive layer, and avoid the glue when the protective film is peeled off on the surface of the adhesive layer.
  • the layer is partially or completely brought up.
  • silane film is further disposed on the second surface, that is, the metal film is entirely wrapped to serve as a protective layer to enhance the corrosion resistance of the metal film.
  • the silane film 30 further has a hydrophobic group away from the surface of the metal film 10.
  • the hydrophobic group may be conventionally used in conventional chemical designs, and may be exemplified by an alkyl group having 10 to 20 carbon atoms, a perfluoroalkyl group having 10 to 20 carbon atoms, a phenyl group, an acyloxy group, and a poly One or more of oxypropylene groups and the like.
  • the use of the hydrophobic groups on the surface of the silane film 30 enhances the water vapor barrier properties of the above metal package structure, thereby further improving the packaging performance of the product.
  • the adhesive layer may be composed of acrylate and/or epoxy resin
  • the metal film may be composed of iron-nickel alloy, wherein the nickel content is 35% to 45% of the total mass.
  • Still another aspect of the present disclosure provides a packaging method of a display panel, the packaging method comprising: providing a metal package structure according to another aspect of the present disclosure; attaching a side of the metal package structure away from the metal film Closed on the display panel.
  • the above packaging method is specifically: peeling off the protective film attached to the side of the metal layer from the metal film in the metal package structure to expose the side of the adhesive layer away from the metal film; and bonding the side of the adhesive layer away from the metal film to the display panel on.
  • the specific packaging process is: peeling off the protective film 21 under the adhesive layer 20, and attaching it to the first surface of the metal film 10 on which the silane film is formed by a hot pressing process; in the Laminator device
  • the protective film 21 (ie, the upper protective film) on the side of the metal film 10 is peeled off from the adhesive layer 20, and is attached to the surface of the display panel 40 away from the light-emitting side, and sequentially finished by the film, hot pressing, and curing process.
  • Surface encapsulation process is: peeling off the protective film 21 under the adhesive layer 20, and attaching it to the first surface of the metal film 10 on which the silane film is formed by a hot pressing process; in the Laminator device
  • the protective film 21 (ie, the upper protective film) on the side of the metal film 10 is peeled off from the adhesive layer 20, and is attached to the surface of the display panel 40 away from the light-emitting side, and sequentially finished by the film, hot pressing, and curing process.
  • Still another aspect of the present invention provides a display device including the above display panel packaged by a packaging method according to still another aspect of the present disclosure.
  • the display device is specifically an OLED display device, and may be a product or a component having any display function, such as an OLED display, an OLED TV, a digital photo frame, a mobile phone, a tablet computer, and a navigator.
  • the preparation of the metal package structure and the specific packaging process are as follows:
  • Metal film pretreatment The surface of the metal film is subjected to rust removal and degreasing treatment; then an aqueous solution of NaOH having a concentration of 20 g/L is prepared as an alkali solution. The metal film is immersed in an alkali solution. After the immersion is completed, the lye remaining on the surface of the metal film is washed with deionized water.
  • silane hydrolyzate 50 g of silane coupling agent 3-(2,3-epoxypropoxy)propyltriethoxysilane was added to a mixture of 1 L of propanol and deionized water containing 0.55 L of propanol. While stirring, the pH is adjusted to 4.5 to 6.5 by adding an aqueous solution of acetic acid or NaOH, and stirring is continued until the solution is a uniform transparent liquid, thereby completing the preparation of the silane hydrolyzate.
  • the pH of the control solution is 4.5 to 6.5 (for example, about 5.5), which is advantageous for forming a uniform solution, and the solubility of the silane coupling agent in this pH range is good.
  • silaneization of the surface of the metal film uniformly coating the silane hydrolyzate on the first surface side of the metal film to be attached to the film, baking at a certain temperature, and sequentially completing the silylation reaction on the surface of the metal film.
  • the first step and the second step, and the water produced by the silane polycondensation reaction is dried.
  • the resulting silane film had a thickness of 10 ⁇ m.
  • Adhesive layer adhesion The protective film on one side of the adhesive layer is peeled off, and the side of the adhesive layer from which the protective layer is peeled off is attached to the first surface side of the metal film on the hot press laminating machine. During this process, the reactive groups on the surface of the silane film react with the reactive groups on the surface of the gel layer to form covalent bonds. Thereby, the adhesion of the adhesive layer to the metal film can be remarkably improved.
  • the metal film + film after the film is introduced into the Laminator device, and after peeling off the protective film, it is attached to the preheated display panel. Then, the display panel is introduced into the hot pressing device, and the adhesive layer is completely cured by hot pressing to form a display panel after the package is completed as shown in FIG. 8.
  • the preheating of the display panel is to increase the adhesion
  • the preheating temperature is in the range of 40 to 50 degrees Celsius at a low temperature to avoid high temperature preheating affecting the luminous efficiency of the OLED device in the display panel.
  • the adhesion between the surface of the metal film and the adhesive layer can be remarkably improved, and the case where the protective film is partially or completely brought up by the protective film can be avoided. It can achieve the effect of improving yield and productivity and reducing production costs.
  • the preparation of the metal package structure and the specific packaging process are as follows:
  • Metal film pretreatment The surface of the metal film is subjected to rust removal and degreasing treatment; then an aqueous solution of NaOH having a concentration of 20 g/L is prepared as an alkali solution. The metal film is immersed in an alkali solution. After the immersion is completed, the lye remaining on the surface of the metal film is washed with deionized water.
  • silane hydrolyzate 50 g of silane coupling agent 3-(2,3-epoxypropoxy)propyltriethoxysilane was added to a mixture of 1 L of propanol and deionized water containing 0.55 L of propanol. While stirring, the pH is adjusted to 4.5 to 6.5 by adding an aqueous solution of acetic acid or NaOH, and stirring is continued until the solution is a uniform transparent liquid, thereby completing the preparation of the silane hydrolyzate.
  • the pH of the control solution is 4.5 to 6.5 (for example, about 5.5), which is advantageous for forming a uniform solution, and the solubility of the silane coupling agent in this pH range is good.
  • silane film had a thickness of 10 ⁇ m.
  • Adhesive layer adhesion The protective film on one side of the adhesive layer is peeled off, and the side of the adhesive layer from which the protective layer is peeled off is attached to the first surface side of the metal film on the hot press laminating machine. During this process, the reactive groups on the surface of the silane film react with the reactive groups on the surface of the gel layer to form covalent bonds. Thereby, the adhesion of the adhesive layer to the metal film can be remarkably improved.
  • the metal film + film after the film is introduced into the Laminator device, and after peeling off the protective film, it is attached to the preheated display panel. Then, the display panel is introduced into the hot pressing device, and the adhesive layer is completely cured by hot pressing to form a display panel after the package is completed as shown in FIG.
  • Embodiment 2 has all the advantageous effects of the foregoing Embodiment 1, and an entire anticorrosive protective film is formed on the metal film.
  • the surface of the metal film can be effectively prevented from being rusted. Thereby extending the service life of the metal film, thereby improving the overall performance of the packaged display device.
  • Metal film pretreatment The surface of the metal film is subjected to rust removal and degreasing treatment; then, a NaOH solution having a concentration of 20 g/L is prepared as an alkali solution. The metal film is immersed in an alkali solution. After the immersion is completed, the lye remaining on the surface of the metal film is washed with deionized water.
  • silane hydrolyzate 50 g of reactive group-containing silane coupling agent 3-(2,3-epoxypropoxy)propyltriethoxysilane and 20 g of hydrophobic group-containing silane coupling agent 1H , 1H, 2H, 2H-perfluorodecyltrimethoxysilane was added to a mixture of 1 L of propanol and deionized water containing 0.55 L of propanol, and blended to form a composite silane hydrolyzate, while stirring while stirring Adding acetic acid aqueous solution or NaOH aqueous solution to adjust the pH value of 4.5-6.5, stirring continuously until the solution is a uniform transparent liquid, complete the preparation of the silane hydrolyzate.
  • the silane component is composed of a mixture of a reactive group-containing component and a hydrophobic group-containing component.
  • the silane film is formed by silanization treatment only on the first surface side of the metal film, or the silanization film is formed by silanization treatment on both the first surface and the second surface of the metal film.
  • the resulting silane film had a thickness of 10 ⁇ m.
  • Adhesive layer adhesion The protective film on one side of the adhesive layer is peeled off, and the side of the adhesive layer from which the protective layer is peeled off is attached to the first surface side of the metal film on the hot press laminating machine. During this process, the reactive groups on the surface of the silane film react with the reactive groups on the surface of the gel layer to form covalent bonds. Thereby, the adhesion of the adhesive layer to the metal film can be remarkably improved.
  • the metal film + film after the film is introduced into the Laminator device, and after peeling off the protective film, it is attached to the preheated display panel. After that, the display panel is introduced into the hot pressing device, and the adhesive layer is completely cured by hot pressing to form a display panel after the package is completed.
  • Embodiment 3 has all the beneficial effects of the foregoing Embodiment 1 and/or Embodiment 2, and utilizes the hydrophobic groups in the formulated composite silane reagent to enhance the water vapor barrier property of the package structure, thereby further improving the packaging performance of the product.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供的是一种金属封装结构及制备方法、显示面板的封装方法、显示装置。该制备方法包括:提供金属膜,所述金属膜具有相反的第一表面和第二表面;在所述金属膜的所述第一表面上形成硅烷膜;所述硅烷膜远离所述金属膜的表面具有活性基团;和将形成有所述硅烷膜的所述第一表面与胶层相贴合,以使所述活性基团与所述胶层反应相结合。

Description

金属封装结构及制备方法、显示面板及其封装方法、显示装置
相关申请的交叉引用
本申请要求于2017年10月24日提交的中国申请号201711004076.1的优先权的权益,所述申请的全部内容通过引用结合在此。
技术领域
本公开内容涉及显示技术领域,尤其涉及一种金属封装结构及制备方法、显示面板及其封装方法、显示装置。
背景技术
面封装技术作为目前大尺寸OLED(Organic Light-Emitting Display,有机电致发光显示)显示器的主流封装技术,已广泛的应用于现有的生产工艺。现有的工艺路线主要有以下两种:
1、金属封装工艺
即用预固化的胶膜将金属膜与OLED显示面板(或称为背板)粘附在一起,之后再通过热压工艺,将胶膜固化,从而通过金属膜将OLED显示面板整面进行封装。
2、Dam&Filler工艺
即在玻璃封装盖板的边框部分涂布高粘度的Dam胶材(围堰填充胶),通过点胶机在Dam胶内的显示区域内涂布Filler(填充物)点阵,Filler通常由环氧树脂、丙烯酸树脂等透明有机胶材构成,用来填充显示区域与Dam胶材区域的段差,便于玻璃封装盖板与OLED显示面板(或称为背板)进行真空贴合。涂布的Filler点阵经UV(Ultraviolet,紫外光)预固化之后,与OLED显示面板(或称为背板)进行真空贴合,最后进行热固化,完成封装工艺。
以上两种工艺,由于金属封装工艺中采用的金属膜具有更好的水汽阻隔性能,且有利于实现显示器轻薄化,而占据了主导地位。
发明内容
本公开内容的实施例提供一种金属封装结构及制备方法、显示面板及其封装方法、显示装置。
本公开内容的实施例采用如下技术方案:
在一个方面,本公开内容的实施例提供了一种金属封装结构的制备方法,所述制备方法包括:
提供金属膜,所述金属膜具有相反的第一表面和第二表面;
在所述金属膜的所述第一表面上形成硅烷膜,所述硅烷膜远离所述金属膜的表面具有活性基团;和
将形成有所述硅烷膜的所述第一表面与胶层相贴合,以使所述活性基团与所述胶层反应相结合。
可选的,所述活性基团选自烯键式不饱和基团、氨基和环氧基中的一种或多种。
可选的,所述在所述金属膜的所述第一表面上形成硅烷膜的步骤包括:
在所述金属膜的所述第一表面和所述第二表面上均形成硅烷膜。
可选的,所述硅烷膜远离所述金属膜的表面还具有疏水基团。
可选的,所述疏水基团选自具有10-20个碳原子的烷基、具有10-20个碳原子的全氟烷基、苯基、酰氧基、聚氧丙烯基中的一种或多种。
可选的,所述在所述金属膜的所述第一表面上形成硅烷膜的步骤包括:
对所述金属膜的所述第一表面进行预处理,以使所述第一表面上具有羟基;
将硅烷水解液涂布在经过所述预处理的所述第一表面上;和
对所述第一表面进行干燥处理,以使所述硅烷水解液与所述第一表面上的所述羟基发生反应以生成附着在所述第一表面上的硅烷膜。
可选的,所述在所述金属膜的所述第一表面和所述第二表面上均形成硅烷膜的步骤为:
对所述金属膜的所述第一表面和所述第二表面均进行预处理,以使所述第一表面和所述第二表面上均具有羟基;
将所述金属膜浸泡在硅烷水解液中,以使所述金属膜的所述第一表面和所述第二表面上均附着有所述硅烷水解液;和
对所述第一表面和所述第二表面均进行干燥处理,以使所述硅烷水解液与所述第一表面、所述第二表面上的羟基均发生反应以生成附着在所述第一表面、所述第二表面上的硅烷膜。
可选的,所述对所述金属膜的所述第一表面进行预处理,以使所述第一表面上具有羟基的步骤包括:
对所述金属膜的所述第一表面进行清洗,以去除残留污染物;
将所述金属膜浸泡在碱性溶液中,以使所述第一表面上具有羟基;和
取出所述金属膜用去离子水清洗,以去除所述第一表面上残留的所述碱性溶液。
可选的,所述对所述金属膜的所述第一表面和所述第二表面均进行预处理,以使所述第一表面和所述第二表面上均具有羟基的步骤包括:
对所述金属膜的所述第一表面和所述第二表面进行清洗,以去除残留污染物;
将所述金属膜浸泡在碱性溶液中,以使所述第一表面和所述第二表面上具有羟基;和
取出所述金属膜用去离子水清洗,以去除所述第一表面和所述第二表面上残留的所述碱性溶液。
可选的,所述硅烷水解液由硅烷偶联剂经水解后形成。
可选的,所述硅烷膜的厚度为1-20微米。
可选的,所述胶层包含丙烯酸酯和环氧树脂中的一种或多种。
可选的,所述金属膜由铁镍合金构成。
可选的,以所述铁镍合金的总质量计,所述铁镍合金中的镍含量为35%~45%。
在另一个方面,本公开内容的实施例提供了一种金属封装结构,所述金属封装结构通过上述任一项所述的金属封装结构的制备方法制备。
在又一个方面,本公开内容的实施例提供了一种显示面板的封装方法,所述封装方法包括:
提供金属膜,所述金属膜具有相反的第一表面和第二表面;
在所述金属膜的所述第一表面上形成硅烷膜,所述硅烷膜远离所述金属膜的表面具有活性基团;
将形成有所述硅烷膜的所述第一表面与胶层相贴合,以使所述活性基团与所述胶层反应相结合,从而得到金属封装结构;和
将所述金属封装结构中胶层远离金属膜的一侧贴合在显示面板上。
可选的,所述将金属封装结构中胶层远离金属膜的一侧贴合在显示面板上的步骤包括:提供如上所述的金属封装结构;其中,所述金属封装结构中胶层远离金属膜的一侧贴合有保护膜;剥离所述保护膜,以露出所述胶层远离所述金属膜的一侧;和将所述胶层远离所述金属膜的一侧贴合在显示面板上。
在再一个方面,本公开内容的实施例提供了一种显示装置,所述显示装置包括:采用上述所述的封装方法进行封装的显示面板。
附图说明
为了更清楚地说明本公开内容的实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开内容的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开内容的一个实施方案提供的一种金属封装结构的制备方法流程示意图;
图2为剥离胶层表面的保护膜时出现的三种状况;
图3为金属表面的硅烷膜的成膜机理示意图;
图4为硅烷膜表面活性基团与胶层上的活性基团反应结合的原理示意图一;
图5为硅烷膜表面活性基团与胶层上的活性基团反应结合的原理示意图二;
图6为本公开内容的一个实施方案提供的具体封装工艺流程示意图;
图7为本公开内容的一个实施方案提供的一种显示面板的封装及金属封装结构的制备总流程示意图;
图8为本公开内容的一个实施方案提供的一种显示面板采用金属封装结构进行面封装后的结构示意图;
图9为本公开内容的另一个实施方案提供的一种显示面板的封 装及金属封装结构的制备总流程示意图;
图10为本公开内容的另一个实施方案提供的一种显示面板采用金属封装结构进行面封装后的结构示意图。
具体实施方式
下面将结合本公开内容的实施例中的附图,对本公开内容的实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开内容一部分实施例,而不是全部的实施例。基于本公开内容中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开内容保护的范围。
需要指出的是,除非另有定义,本公开内容的实施例中所使用的所有术语(包括技术和科学术语)具有与本公开内容所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
例如,本申请说明书以及权利要求书中所使用的术语“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,仅是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上/上方”、“下/下方”、等指示的方位或位置关系的术语为基于附图所示的方位或位置关系,仅是为了便于说明本公开内容的技术方案的简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开内容的限制。
并且,由于本公开内容的实施例所涉及的金属膜、硅烷膜等各膜层实际厚度非常小,为了清楚起见,本公开内容的实施例的附图中的各结构尺寸和/或膜层厚度均被放大,除非另有说明,均不代表实际尺寸和/或比例。
在金属封装工艺中需要将胶膜表面的保护膜剥离,再贴附在OLED显示面板上进行面封装。然而,由于保护膜与胶膜之间较好的粘附性,剥离时容易导致上保护膜将胶膜部分或全部带起,出现剥离不良。这样不仅会造成胶膜和金属膜的浪费,而且会导致设备异常停 机,延误生产。导致生产成本和良率受到负面影响,产能提升受限。
有鉴于此,为了解决以上问题,本公开内容提供一种金属封装结构及制备方法、显示面板的封装方法、显示装置。
具体地,如图1所示,本公开内容的一个方面提供一种金属封装结构的制备方法,该制备方法包括:
步骤S1:提供金属膜,所述金属膜具有相反的第一表面和第二表面;
步骤S2:在所述金属膜的所述第一表面上形成硅烷膜,所述硅烷膜远离所述金属膜的表面具有活性基团;
步骤S3:将形成有所述硅烷膜的所述第一表面与胶层相贴合,以使所述活性基团与所述胶层反应相结合。
需要说明的是,上述金属膜和胶层的具体材料均可沿用现有技术中金属封装工艺的常规材料。
其中,由于上述金属封装结构具体用于面封装显示基板,考虑到显示基板的衬底基板通常由玻璃材质构成,为提高形成的金属封装结构与显示面板热压封装时的密封程度,应选取热膨胀系数与玻璃材质较为接近的材料用作构成金属膜的材料。示例的用作构成金属膜的材料可以为铁镍合金,其中的镍含量为总质量的35%~45%,以避免热压封装时由于金属膜与显示基板的衬底基板热膨胀系数相差较大,而导致整个显示装置发生翘曲变形,影响后续工艺,并且对封装效果和产品品质造成不良影响。
金属封装工艺中采用的胶层,其材料可以为丙烯酸酯类、环氧树脂类胶材等。此类聚合物在预聚合之后,聚合度处于较低状态,即还有大量具有反应活性的基团未发生反应。在低温状态下保存,这些活性基团处于休眠状态,当温度适宜之后,即可发生聚合反应而固化。
形成在上述金属膜的第一表面上的硅烷膜,是硅烷偶联剂经水解形成硅烷水解液后,与第一表面上的羟基反应,生成结合力很强的共价键,可使硅烷膜较为牢固地附着在金属膜的第一表面上。而硅烷膜远离金属膜的表面可设计为具有活性基团,该活性基团可与胶层中大量的处于休眠状态的具有反应活性的基团反应生成共价键。位于金属膜第一表面与胶层之间的硅烷膜相当于连接二者的连接层,可显著提高金属膜与胶层之间的粘附力,避免在进行胶层表面的保护膜剥离时将胶层部分或全部带起。
这里,硅烷膜表面的活性基团示例的可以为烯键式不饱和基团(如乙烯基)、氨基和/或环氧基,其能够与丙烯酸酯类、环氧树脂类胶材中具有反应活性的基团发生反应生成共价键。
这样一来,如图2所示,由于本公开内容的一个方面提供的上述金属膜10与胶层20之间具有起到连接层作用的硅烷膜30,在剥离胶层20表面的保护膜21时,由于胶层20与硅烷膜30牢固地结合在一起,能够将保护膜21完整地从胶层20表面剥离出,即形成如图2中(a)部分所示的良品;而不会出现由于没有硅烷膜30而造成的保护膜21将胶层20部分带起的情况,即出现如图2中的(b)部分所示的NG1(No Good)不良;或者出现保护膜21将胶层20全部带起,即出现如图2中的(c)部分所示的NG2不良。
基于此,通过本公开内容的一个方面提供的上述制备方法,利用金属膜表面硅烷化工艺流程,在金属膜的第一表面上制作一层硅烷膜。硅烷膜中的硅烷不仅能与金属膜第一表面上的羟基反应,生成结合力很强的共价键;硅烷中的反应性有机基团还能与胶层中的反应性基团结合,生成共价键,显著提高金属膜与胶层的粘附力,避免在进行胶层上的保护膜剥离时将胶层部分或全部带起。从而可避免出现剥离不良产品,降低生产成本、提高生产良率。
在上述基础上,进一步可选的,上述步骤S2包括:在金属膜的第一表面和第二表面上均形成硅烷膜。
即除了在金属膜与胶层相贴合的第一表面上形成硅烷膜之外,还在金属膜的另一相反的第二表面上也形成硅烷膜,硅烷膜作为一层保护层,可以增强金属膜的耐腐蚀性能。
这样一来,在金属膜的运输、存储、各工艺制程中,以及对显示面板进行面封装制作成整机之后的使用过程中,可以有效避免金属膜表面发生锈蚀。从而延长金属膜的使用寿命,进而提升封装后的显示装置的整体性能。
在上述基础上,硅烷膜远离金属膜的表面还可以具有疏水基团。
其中,上述的硅烷膜可以为形成在金属膜的第一表面和/或第二表面上的硅烷膜。
疏水基团可沿用现有化工设计中常规基团,示例的可以为具有10-20个碳原子的烷基、具有10-20个碳原子的全氟烷基、苯基、酰氧基、聚氧丙烯基等中的一种或多种。利用硅烷膜表面的疏水基团, 提升上述金属封装结构阻隔水汽的性能,从而进一步的改善产品的封装性能。
具体的,当上述步骤S2为仅在金属膜的第一表面上形成硅烷膜时,该步骤具体包括如下子步骤:
步骤(1-1):对金属膜的第一表面进行预处理,以使第一表面上具有羟基;
步骤(1-2):将硅烷水解液涂布在经过预处理的第一表面上;
步骤(1-3):对第一表面进行干燥处理,以使硅烷水解液与第一表面上的羟基发生反应生成附着在第一表面上的硅烷膜。
需要说明的是,上述步骤(1-1)的目的是通过对金属膜的第一表面进行处理,使第一表面上的金属键暴露出,从而有利于第一表面上形成足够多的羟基,实现金属表面羟基化的功能改性目的。
上述步骤(1-2)中采用的硅烷水解液由硅烷偶联剂经水解后形成。
硅烷偶联剂的结构通式为:X-Si(OR) 3,其中-R为具有至少1个碳原子的烷基;并且X表示活性基团,所述活性基团选自烯键式不饱和基团、氨基和环氧基中的一种或多种。所述硅烷偶联剂中的-OR基发生水解后形成硅羟基(Si-OH),不同硅烷分子间的硅羟基(Si-OH)经脱水缩合形成低聚硅氧烷(含Si-OH)。所述硅烷偶联剂的具体实例包括:3-(2,3-环氧丙氧)丙基三乙氧基硅烷(晨光化工公司)、氯丙基三甲氧基硅烷(晨光化工公司)、1H,1H,2H,2H-全氟癸基三甲氧基硅烷(晨光化工公司)、十六烷基三甲氧基硅烷(南京辰工有机硅公司)、二苯基二甲氧基硅烷(南京辰工有机硅公司)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(南京向前化工公司)等中的一种或多种。
如图3所示,金属膜10的第一表面上形成硅烷膜30的过程,主要发生两步反应:
(1)、Si-OH(硅烷水解液)+M-OH(金属膜表面的羟基)——Si-O-M(硅-金属界面)+H 2O;
低聚物中的硅羟基与金属膜表面的羟基(呈碱性,故通常称为碱性羟基)形成氢键。
(2)、Si-OH(硅烷水解液)+Si-OH(金属表面的硅烷)——Si-O-Si(硅烷膜)+H 2O。
金属膜10的第一表面上经过预处理后附着有硅烷水解液后,通 过加热固化,使低聚物脱水缩合与金属膜10第一表面上的羟基形成共价键。通常每个硅烷中只有一个硅羟基(Si-OH)与金属膜第一表面上的羟基形成键合,剩余的两个硅羟基(Si-OH)或者与其他硅烷中的硅羟基(Si-OH)发生脱水缩合反应,或者处于游离状态从而在金属膜10的第一表面形成具有网状结构的硅烷膜30。
其中,如图4所示,在形成的上述硅烷膜30中,-X为具有反应活性的有机基团,可与胶层中的活性基团反应生成共价键。具体可以是带有双键的基团,如CH 2=CH-(乙烯基);也可以是带有环氧基的基团,如-CH(O)CH-。这些活性基团可以与胶材或涂料中的活性基团发生反应,生成共价键,从而显著增强胶材或涂料与金属膜10之间的粘附性。
其中,R1为硅烷偶联剂上的烷基,R2为胶层上的活性基团。
或者,如图5所示,形成的上述硅烷膜30远离金属膜10的表面还可具有疏水基团(图中标记为R3),以提升上述金属封装结构阻隔水汽的性能,从而进一步的改善产品的封装性能。所述疏水基团选自具有10-20个碳原子的烷基、具有10-20个碳原子的全氟烷基、苯基、酰氧基、聚氧丙烯基中的一种或多种。
硅烷偶联剂可沿用现有技术中,金属表面硅烷化处理的常规偶联剂材料,本发明实施例1对此不作限定。
当上述步骤S2为在金属膜的第一表面和第二表面上均形成硅烷膜时,该步骤具体包括如下子步骤:
步骤S(2-1):对金属膜的第一表面和第二表面均进行预处理,以使第一表面和第二表面上均具有羟基;
步骤S(2-2):将金属膜浸泡在硅烷水解液中,以使金属膜的第一表面和第二表面上均附着有硅烷水解液;
步骤S(2-3):对第一表面和第二表面均进行干燥处理,以使硅烷水解液与第一表面、第二表面上的羟基均发生反应生成附着在第一表面、第二表面上的硅烷膜。
硅烷膜在金属膜的第二表面上的成膜原理可参见前述步骤(1-1)~步骤(1-3)的说明,此处不再赘述。
进一步的,上述步骤S(1-1)或步骤S(2-1)进一步具体包括以下子步骤:
步骤a:对金属膜的第一表面和第二表面进行清洗,以去除残留 污染物;
步骤b:将金属膜浸泡在碱性溶液中,以使第一表面和第二表面上具有羟基;
步骤c:取出金属膜用去离子水清洗,以去除第一表面和第二表面上残留的碱性溶液。
需要说明的是,对金属膜表面进行预处理时需彻底清除其表面的油脂、灰尘、氧化物(即锈)和水垢等污染物,使得处理后的金属膜表面具有良好的润湿性,有利于金属膜与硅烷分子的充分结合。若金属膜表面存在残留物,残留物会影响硅烷分子与金属膜表面的结合,造成硅烷膜成膜不均甚至局部无法成膜。
将金属膜浸泡在碱性溶液中,以使第一表面和第二表面上具有羟基,用于碱洗的碱性溶液示例的可以为一定浓度的NaOH溶液,其pH值应根据金属膜表面羟基化的难易程度灵活调节,示例的可以选取pH=12。
本发明内容的另一个方面提供了一种采用上述本公开内容的第一方面的制备方法形成的金属封装结构,该金属封装结构包括:金属膜,该金属膜具有相反的第一表面和第二表面;设置在第一表面上的硅烷膜;贴合在附着有硅烷膜的第一表面上的胶层。
这样一来,设置在上述金属膜的第一表面上的硅烷膜是通过共价键键合在金属膜表面的,可使硅烷膜较为牢固地附着在金属膜的第一表面上。而硅烷膜远离金属膜的表面设计为具有活性基团,该活性基团与胶层中大量的处于休眠状态的具有反应活性的基团反应生成共价键。位于金属膜第一表面与胶层之间的硅烷膜相当于连接二者的桥梁,可显著提高金属膜与胶层之间的粘附力,避免在进行胶层表面的保护膜剥离时将胶层部分或全部带起。
进一步的,上述硅烷膜还设置在第二表面上,即将金属膜整个包裹住,从而作为一层保护层,增强金属膜的耐腐蚀性能。
更进一步的,参考图5所示,上述硅烷膜30远离金属膜10的表面还具有疏水基团。疏水基团可沿用现有化工设计中常规基团,示例的可以为具有10-20个碳原子的烷基、具有10-20个碳原子的全氟烷基、苯基、酰氧基、聚氧丙烯基等中的一种或多种。利用硅烷膜30表面的疏水基团,提升上述金属封装结构阻隔水汽的性能,从而进一步的改善产品的封装性能。
其中,胶层可采用丙烯酸酯和/或环氧树脂构成,金属膜可由铁镍合金构成,其中的镍含量为总质量的35%~45%。
本公开内容的又一个方面提供一种显示面板的封装方法,该封装方法包括:提供根据如上本公开内容的另一个方面的金属封装结构;将金属封装结构中胶层远离金属膜的一侧贴合在显示面板上。
上述封装方法具体为:剥离金属封装结构中胶层远离金属膜一侧贴合的保护膜,以露出胶层远离金属膜的一侧;和将胶层远离金属膜的一侧贴合在显示面板上。
如图6所示,具体封装工艺流程为:将胶层20下方的保护膜21剥离,通过热压工艺贴附在形成有硅烷膜的金属膜10的第一表面;在Laminator(贴膜机)设备内再将胶层20远离金属膜10一侧的保护膜21(即上保护膜)剥离,贴附在显示面板40远离出光侧的表面,依次经过覆膜、热压、固化工艺完成对显示面板的面封装过程。
本发明的再一个方面提供一种显示装置,该显示装置包括:采用根据本公开内容的又一个方面所述的封装方法进行封装的上述显示面板。该显示装置具体为OLED显示装置,可以为OLED显示器、OLED电视、数码相框、手机、平板电脑、导航仪等具有任何显示功能的产品或者部件。
下面提供3个具体实施例,用于详细描述上述的金属封装结构的制备及贴合在显示面板上的封装过程。
实施例1
如图7所示,金属封装结构的制备及具体的封装过程如下:
1、金属膜预处理:将金属膜表面进行除锈、除油处理;之后配制浓度为20g/L的NaOH的水溶液作为碱液。将金属膜放入碱液中浸泡。完成浸泡之后,用去离子水洗净金属膜表面残留的碱液。
2、硅烷水解液配制:将50g的硅烷偶联剂3-(2,3-环氧丙氧)丙基三乙氧基硅烷加入含有0.55L丙醇的1L丙醇和去离子水的混合液中,一边搅拌,一边加入乙酸水溶液或NaOH水溶液调节pH值在4.5~6.5,持续搅拌至溶液呈均匀透明液体,完成硅烷水解液的制备。
这里,控制溶液pH值在4.5~6.5(例如为5.5左右),有利于形成均匀溶液,硅烷偶联剂在此pH范围内的溶解性较好。
3、金属膜表面硅烷化:将硅烷水解液均匀涂布在金属膜上待与胶膜贴附的第一表面一侧,在一定温度下烘烤,依次完成金属膜表面的硅烷化反应的前述第一步和第二步,并且将硅烷缩聚反应产生的水烘干。得到的硅烷膜的厚度为10微米。
4、胶层贴附:将胶层的一侧保护膜剥离,在热压覆膜机上将胶层剥离了保护膜的一侧与金属膜上的第一表面一侧相贴附。在此过程中,硅烷膜表面的活性基团与胶层表面的活性基团反应,形成共价键。从而可显著提高胶层与金属膜的粘附性。
5、与显示面板贴合:将覆膜之后的金属膜+胶膜传入Laminator(贴膜机)设备中,剥离保护膜之后,贴附到预热完成的显示面板上。之后将显示面板传入热压设备,利用热压将胶层完全固化,形成如图8所示的封装完成后的显示面板。
这里,对显示面板进行预热是为了增加粘附性,预热的温度在低温40~50摄氏度范围内,以避免高温预热影响显示面板中OLED器件的发光效率。
本实施例1可以显著提高金属膜表面与胶层的粘附性,避免出现保护膜将胶层部分或全部带起的情况。可实现提升良率和产能,降低生产成本的效果。
实施例2
如图9所示,金属封装结构的制备及具体的封装过程如下:
1、金属膜预处理:将金属膜表面进行除锈、除油处理;之后配制浓度为20g/L的NaOH的水溶液作为碱液。将金属膜放入碱液中浸泡。完成浸泡之后,用去离子水洗净金属膜表面残留的碱液。
2、硅烷水解液配制:将50g的硅烷偶联剂3-(2,3-环氧丙氧)丙基三乙氧基硅烷加入含有0.55L丙醇的1L丙醇和去离子水的混合液中,一边搅拌,一边加入乙酸水溶液或NaOH水溶液调节pH值在4.5~6.5,持续搅拌至溶液呈均匀透明液体,完成硅烷水解液的制备。
这里,控制溶液pH值在4.5~6.5(例如为5.5左右),有利于形成均匀溶液,硅烷偶联剂在此pH范围内的溶解性较好。
3、金属膜表面硅烷化:将经过预处理的金属膜浸泡在硅烷水解液中一定时间,之后将金属膜取出,经烘烤干燥,依次完成金属膜表 面的硅烷化反应的前述第一步和第二步,并且将硅烷缩聚反应产生的水烘干。得到的硅烷膜的厚度为10微米。
4、胶层贴附:将胶层的一侧保护膜剥离,在热压覆膜机上将胶层剥离了保护膜的一侧与金属膜上的第一表面一侧相贴附。在此过程中,硅烷膜表面的活性基团与胶层表面的活性基团反应,形成共价键。从而可显著提高胶层与金属膜的粘附性。
5、与显示面板贴合:将覆膜之后的金属膜+胶膜传入Laminator(贴膜机)设备中,剥离保护膜之后,贴附到预热完成的显示面板上。之后将显示面板传入热压设备,利用热压将胶层完全固化,形成如图10所示的封装完成后的显示面板。
实施例2具备前述实施例1的全部有益效果,并且在金属膜上形成了一整层防腐蚀保护膜。在金属膜的运输、存储、各工艺制程中,以及对显示面板进行面封装制作成整机之后的使用过程中,可以有效避免金属膜表面发生锈蚀。从而延长金属膜的使用寿命,进而提升封装后的显示装置的整体性能。
实施例3
1、金属膜预处理:将金属膜表面进行除锈、除油处理;之后配制浓度为20g/L的NaOH溶液作为碱液。将金属膜放入碱液中浸泡。完成浸泡之后,用去离子水洗净金属膜表面残留的碱液。
2、硅烷水解液配制:将50g带反应活性基团的硅烷偶联剂3-(2,3-环氧丙氧)丙基三乙氧基硅烷和20g带疏水基团的硅烷偶联剂1H,1H,2H,2H-全氟癸基三甲氧基硅烷加入含有0.55L丙醇的1L丙醇和去离子水的混合液中,共混形成一种复合型硅烷水解液,对其一边搅拌,一边加入乙酸水溶液或NaOH水溶液调节pH值在4.5~6.5,持续搅拌至溶液呈均匀透明液体,完成硅烷水解液的制备。得到的复合型硅烷水解液中,硅烷组分由含有反应性基团的组分和含有疏水性基团的组分混合组成。
3、金属膜表面硅烷化:可选取前述实施例1或实施例2中的一种流程进行。
即仅在金属膜的第一表面一侧通过硅烷化处理形成硅烷膜,或在金属膜的第一表面和第二表面两侧上均通过硅烷化处理形成硅烷膜。 得到的硅烷膜的厚度为10微米。
4、胶层贴附:将胶层的一侧保护膜剥离,在热压覆膜机上将胶层剥离了保护膜的一侧与金属膜上的第一表面一侧相贴附。在此过程中,硅烷膜表面的活性基团与胶层表面的活性基团反应,形成共价键。从而可显著提高胶层与金属膜的粘附性。
5、与显示面板贴合:将覆膜之后的金属膜+胶膜传入Laminator(贴膜机)设备中,剥离保护膜之后,贴附到预热完成的显示面板上。之后将显示面板传入热压设备,利用热压将胶层完全固化,形成封装完成后的显示面板。
实施例3具备前述实施例1和/或实施例2的全部有益效果,并且利用配制的复合硅烷试剂中的疏水基团,提升了封装结构阻隔水汽的性能,从而进一步地改善产品的封装性能。
以上所述,仅为本公开内容的具体实施方式,但本公开内容的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开内容揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开内容的保护范围之内。因此,本公开内容的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种金属封装结构的制备方法,所述制备方法包括:
    提供金属膜,所述金属膜具有相反的第一表面和第二表面;
    在所述金属膜的所述第一表面上形成硅烷膜,所述硅烷膜远离所述金属膜的表面具有活性基团;和
    将形成有所述硅烷膜的所述第一表面与胶层相贴合,以使所述活性基团与所述胶层反应相结合。
  2. 根据权利要求1所述的金属封装结构的制备方法,其中,所述活性基团选自烯键式不饱和基团、氨基和环氧基中的一种或多种。
  3. 根据权利要求1所述的金属封装结构的制备方法,其中,所述在所述金属膜的所述第一表面上形成硅烷膜的步骤包括:
    在所述金属膜的所述第一表面和所述第二表面上均形成硅烷膜。
  4. 根据权利要求1所述的金属封装结构的制备方法,其中,所述硅烷膜远离所述金属膜的表面还具有疏水基团。
  5. 根据权利要求4所述的金属封装结构的制备方法,其中,所述疏水基团选自具有10-20个碳原子的烷基、具有10-20个碳原子的全氟烷基、苯基、酰氧基、聚氧丙烯基中的一种或多种。
  6. 根据权利要求1所述的金属封装结构的制备方法,其中,所述在所述金属膜的所述第一表面上形成硅烷膜的步骤包括:
    对所述金属膜的所述第一表面进行预处理,以使所述第一表面上具有羟基;
    将硅烷水解液涂布在经过所述预处理的所述第一表面上;和
    对所述第一表面进行干燥处理,以使所述硅烷水解液与所述第一表面上的所述羟基发生反应以生成附着在所述第一表面上的硅烷膜。
  7. 根据权利要求3所述的金属封装结构的制备方法,其中,所述在所述金属膜的所述第一表面和所述第二表面上均形成硅烷膜的步骤为:
    对所述金属膜的所述第一表面和所述第二表面均进行预处理,以使所述第一表面和所述第二表面上均具有羟基;
    将所述金属膜浸泡在硅烷水解液中,以使所述金属膜的所述第一 表面和所述第二表面上均附着有所述硅烷水解液;和
    对所述第一表面和所述第二表面均进行干燥处理,以使所述硅烷水解液与所述第一表面、所述第二表面上的羟基均发生反应以生成附着在所述第一表面、所述第二表面上的硅烷膜。
  8. 根据权利要求6所述的金属封装结构的制备方法,其中,所述对所述金属膜的所述第一表面进行预处理,以使所述第一表面上具有羟基的步骤包括:
    对所述金属膜的所述第一表面进行清洗,以去除残留污染物;
    将所述金属膜浸泡在碱性溶液中,以使所述第一表面上具有羟基;和
    取出所述金属膜用去离子水清洗,以去除所述第一表面上残留的所述碱性溶液。
  9. 根据权利要求7所述的金属封装结构的制备方法,其中,所述对所述金属膜的所述第一表面和所述第二表面均进行预处理,以使所述第一表面和所述第二表面上均具有羟基的步骤包括:
    对所述金属膜的所述第一表面和所述第二表面进行清洗,以去除残留污染物;
    将所述金属膜浸泡在碱性溶液中,以使所述第一表面和所述第二表面上具有羟基;和
    取出所述金属膜用去离子水清洗,以去除所述第一表面和所述第二表面上残留的所述碱性溶液。
  10. 根据权利要求8所述的金属封装结构的制备方法,其中,所述硅烷水解液由硅烷偶联剂经水解后形成。
  11. 根据权利要求1所述的金属封装结构的制备方法,其中,所述硅烷膜的厚度为1-20微米。
  12. 根据权利要求1所述的金属封装结构的制备方法,其中,所述胶层包含丙烯酸酯和环氧树脂中的一种或多种。
  13. 根据权利要求1所述的金属封装结构的制备方法,其中,所述金属膜由铁镍合金构成。
  14. 根据权利要求13所述的金属封装结构的制备方法,其中,以所述铁镍合金的总质量计,所述铁镍合金中的镍含量为35%~45%。
  15. 一种金属封装结构,所述金属封装结构通过根据权利要求1至14中任一项所述的金属封装结构的制备方法制备。
  16. 一种显示面板的封装方法,所述封装方法包括:
    提供金属膜,所述金属膜具有相反的第一表面和第二表面;
    在所述金属膜的所述第一表面上形成硅烷膜,所述硅烷膜远离所述金属膜的表面具有活性基团;
    将形成有所述硅烷膜的所述第一表面与胶层相贴合,以使所述活性基团与所述胶层反应相结合,从而得到金属封装结构;和
    将所述金属封装结构中胶层远离金属膜的一侧贴合在显示面板上。
  17. 根据权利要求16所述的显示面板的封装方法,其中,所述将所述金属封装结构中胶层远离金属膜的一侧贴合在显示面板上的步骤包括:
    提供所述金属封装结构,其中所述金属封装结构中胶层远离金属膜的一侧贴合有保护膜;
    剥离所述保护膜,以露出所述胶层远离所述金属膜的一侧;和
    将所述胶层远离所述金属膜的一侧贴合在显示面板上。
  18. 一种显示面板,所述显示面板通过根据权利要求16所述的显示面板的封装方法制备。
  19. 一种显示装置,所述显示装置包括:权利要求18所述的显示面板。
PCT/CN2018/098565 2017-10-24 2018-08-03 金属封装结构及制备方法、显示面板及其封装方法、显示装置 WO2019080581A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/338,299 US11264588B2 (en) 2017-10-24 2018-08-03 Metal encapsulation structure and production method, display panel and encapsulation method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711004076.1A CN107785503B (zh) 2017-10-24 2017-10-24 金属封装结构及制备方法、显示面板的封装方法、显示装置
CN201711004076.1 2017-10-24

Publications (1)

Publication Number Publication Date
WO2019080581A1 true WO2019080581A1 (zh) 2019-05-02

Family

ID=61434945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098565 WO2019080581A1 (zh) 2017-10-24 2018-08-03 金属封装结构及制备方法、显示面板及其封装方法、显示装置

Country Status (3)

Country Link
US (1) US11264588B2 (zh)
CN (1) CN107785503B (zh)
WO (1) WO2019080581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518145A (zh) * 2019-08-28 2019-11-29 云谷(固安)科技有限公司 薄膜封装结构及其制备方法、显示面板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785503B (zh) 2017-10-24 2019-03-08 京东方科技集团股份有限公司 金属封装结构及制备方法、显示面板的封装方法、显示装置
US10446780B1 (en) 2018-04-19 2019-10-15 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Organic light emitting diode package structure and its method of manufacturing, display device
CN108400255A (zh) * 2018-04-19 2018-08-14 武汉华星光电半导体显示技术有限公司 有机发光二极管封装结构及其制备方法、显示装置
CN109346622A (zh) * 2018-10-19 2019-02-15 武汉华星光电半导体显示技术有限公司 Oled阵列基板及其制作方法
CN109713108B (zh) * 2018-12-30 2020-11-10 苏州东大科云硬件科技有限公司 一种发光二极管的封装方法
CN113690380A (zh) * 2020-05-19 2021-11-23 咸阳彩虹光电科技有限公司 一种oled封装方法、器件及显示装置
CN113690381A (zh) * 2020-05-19 2021-11-23 咸阳彩虹光电科技有限公司 一种oled器件封装结构、显示装置
CN112599704B (zh) * 2020-12-14 2022-07-12 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230203A (zh) * 2011-07-06 2011-11-02 浙江大学 一种硅烷膜的电沉积制备方法及其用途
CN104835920A (zh) * 2015-06-03 2015-08-12 合肥京东方光电科技有限公司 有机发光二极管封装方法以及封装结构
CN105247699A (zh) * 2013-05-21 2016-01-13 Lg化学株式会社 包封薄膜和使用该包封薄膜包封有机电子装置的方法
CN106816548A (zh) * 2015-11-27 2017-06-09 乐金显示有限公司 有机发光显示装置
CN107785503A (zh) * 2017-10-24 2018-03-09 京东方科技集团股份有限公司 金属封装结构及制备方法、显示面板的封装方法、显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179454A3 (en) * 2000-08-10 2003-03-12 Nihon Plast Co., Ltd. Superimposed airbag portions bonded with silicones
FR2832414B1 (fr) * 2001-11-20 2004-01-30 Rhodia Chimie Sa Reticulant pour composition silicone reticulable a basse temperature a base d'une huile silicone hydrogenee comprenant des motifs si-h en bout de chaine et dans la chaine
CN101924067B (zh) * 2009-06-09 2013-05-08 财团法人工业技术研究院 挠性膜自载板上脱离的方法及可挠式电子装置的制造方法
JP5400904B2 (ja) * 2011-07-15 2014-01-29 アルプス電気株式会社 タッチパネル一体型表示装置の製造方法
CN104071989A (zh) * 2013-03-26 2014-10-01 群创光电股份有限公司 显示面板的制作方法
CN103456900B (zh) * 2013-08-20 2016-07-06 Tcl集团股份有限公司 柔性显示装置的制造方法
WO2015137376A1 (ja) * 2014-03-13 2015-09-17 日本ゼオン株式会社 複合多層シート
US20170077440A1 (en) * 2015-02-04 2017-03-16 Lg Chem, Ltd. Pressure-sensitive adhesive composition
CN104793384B (zh) * 2015-04-03 2017-07-28 京东方科技集团股份有限公司 一种超薄液晶显示器及其制作方法
KR102071840B1 (ko) * 2015-07-17 2020-01-31 도판 인사츠 가부시키가이샤 메탈 마스크 기재, 메탈 마스크, 및 메탈 마스크의 제조 방법
CN106626580B (zh) * 2015-10-28 2019-12-24 财团法人工业技术研究院 复合积层板
TWI732892B (zh) * 2016-07-26 2021-07-11 日商松下知識產權經營股份有限公司 透視型電極用積層板、透視型電極素材、組件及透視型電極用積層板之製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230203A (zh) * 2011-07-06 2011-11-02 浙江大学 一种硅烷膜的电沉积制备方法及其用途
CN105247699A (zh) * 2013-05-21 2016-01-13 Lg化学株式会社 包封薄膜和使用该包封薄膜包封有机电子装置的方法
CN104835920A (zh) * 2015-06-03 2015-08-12 合肥京东方光电科技有限公司 有机发光二极管封装方法以及封装结构
CN106816548A (zh) * 2015-11-27 2017-06-09 乐金显示有限公司 有机发光显示装置
CN107785503A (zh) * 2017-10-24 2018-03-09 京东方科技集团股份有限公司 金属封装结构及制备方法、显示面板的封装方法、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, JIANFEI ET AL.: "Discussion on influencing factor of adhesion of epoxy coating on metal substrate", MODERN PAINT & FINISHING, vol. 21, no. 2, 20 February 2018 (2018-02-20), ISSN: 1007-9548 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518145A (zh) * 2019-08-28 2019-11-29 云谷(固安)科技有限公司 薄膜封装结构及其制备方法、显示面板
CN110518145B (zh) * 2019-08-28 2022-02-22 云谷(固安)科技有限公司 薄膜封装结构及其制备方法、显示面板

Also Published As

Publication number Publication date
CN107785503B (zh) 2019-03-08
US20210328176A1 (en) 2021-10-21
US11264588B2 (en) 2022-03-01
CN107785503A (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
WO2019080581A1 (zh) 金属封装结构及制备方法、显示面板及其封装方法、显示装置
CN102883879B (zh) 层叠体的制造方法和层叠体
JP5200538B2 (ja) 薄板ガラス積層体及び薄板ガラス積層体を用いた表示装置の製造方法
CN105474375B (zh) 用于处理半导体装置的方法及结构
CN103889712B (zh) 层叠体、层叠体的制造方法及带有电子器件用构件的玻璃基板的制造方法
JP5696038B2 (ja) 封止用組成物および封止用シート
WO2015119210A1 (ja) ガラス積層体
JP6927203B2 (ja) ガラス積層体およびその製造方法
JP2012060103A (ja) フレキシブル素子の製作方法
US9070846B2 (en) Primer composition and optical semiconductor apparatus using same
JP2016035832A (ja) 電子デバイスの製造方法、ガラス積層体の製造方法
WO2018161625A1 (zh) 显示面板及其制造方法、显示装置
TWI775726B (zh) 玻璃積層體及其製造方法
JP2015038188A (ja) 組成物
CN108448006A (zh) 封装结构、电子装置以及封装方法
JP3550527B2 (ja) プラスチックレンズ製造用粘着テープ
CN100347599C (zh) 液晶面板密封用光固化性组合物和液晶面板
JP5194718B2 (ja) 積層体
WO2009110405A1 (ja) 熱硬化性有機無機ハイブリッド透明材料
TW201117412A (en) Manufacturing method for solar cell Cux ZnSnSy (CZTS) this film
JP2010261014A (ja) シリコーン樹脂の接着方法及びシリコーン樹脂接着用プライマー
CN103774131A (zh) 壳体的制备方法及由该方法制得的壳体
TWI814401B (zh) 殼體結構及其製備方法、電子設備
TW201604019A (zh) 樹脂層之除去方法
CN110867506B (zh) 一种消膜剂的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18870815

Country of ref document: EP

Kind code of ref document: A1